Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Toward autonomous design and synthesis of novel inorganic materials

Abstract

Autonomous experimentation driven by artificial intelligence (AI) provides an exciting opportunity to revolutionize inorganic materials discovery and development. Herein, we review recent progress in the design of self-driving laboratories, including robotics to automate materials synthesis and characterization, in conjunction with AI to interpret experimental outcomes and propose new experimental procedures. We focus on efforts to automate inorganic synthesis through solution-based routes, solid-state reactions, and thin film deposition. In each case, connections are made to relevant work in organic chemistry, where automation is more common. Characterization techniques are primarily discussed in the context of phase identification, as this task is critical to understand what products have formed during synthesis. The application of deep learning to analyze multivariate characterization data and perform phase identification is examined. To achieve "closed-loop" materials synthesis and design, we further provide a detailed overview of optimization algorithms that use active learning to rationally guide experimental iterations. Finally, we highlight several key opportunities and challenges for the future development of self-driving inorganic materials synthesis platforms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View