Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Accelerating large scale de novo metagenome assembly using GPUs

Published Web Location

https://dl.acm.org/doi/abs/10.1145/3458817.3476212
No data is associated with this publication.
Abstract

Metagenomic workflows involve studying uncultured microorganisms directly from the environment. These environmental samples when processed by modern sequencing machines yield large and complex datasets that exceed the capabilities of metagenomic software. The increasing sizes and complexities of datasets make a strong case for exascale-capable metagenome assemblers. However, the underlying algorithmic motifs are not well suited for GPUs. This poses a challenge since the majority of next-generation supercomputers will rely primarily on GPUs for computation. In this paper we present the first of its kind GPU-Accelerated implementation of the local assembly approach that is an integral part of a widely used large-scale metagenome assembler, MetaHipMer. Local assembly uses algorithms that induce random memory accesses and non-deterministic workloads, which make GPU offloading a challenging task. Our GPU implementation outperforms the CPU version by about 7x and boosts the performance of MetaHipMer by 42% when running on 64 Summit nodes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item