Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Superenhancer-activation of KLHDC8A Drives Glioma Ciliation and Hedgehog Signaling

No data is associated with this publication.
Abstract

Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene (KLHDC8A) with a previously unknown function as an epigenetically-driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound Chaperonin-Containing TCP1 (CCT) to promote assembly of primary cilia to activate Hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and Hedgehog signaling. Combinatorial targeting of Aurora B/C Kinase and Hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the Hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.

Main Content

This item is under embargo until January 6, 2025.