Anisotropic Compactification of Nonrelativistic M-Theory
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Anisotropic Compactification of Nonrelativistic M-Theory

Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

We study a decoupling limit of M-theory where the three-form gauge potential becomes critical. This limit leads to nonrelativistic M-theory coupled to a non-Lorentzian spacetime geometry. Nonrelativistic M-theory is U-dual to M-theory in the discrete light cone quantization, a non-perturbative approach related to the Matrix theory description of M-theory. We focus on the compactification of nonrelativistic M-theory over a two-torus that exhibits anisotropic behaviors due to the foliation structure of the spacetime geometry. We develop a frame covariant formalism of the toroidal geometry, which provides a geometrical interpretation of the recently discovered polynomial realization of SL(2,Z) duality in nonrelativistic type IIB superstring theory. We will show that the nonrelativistic IIB string background fields transform as polynomials of an effective Galilean "boost velocity" on the two-torus. As an application, we construct an action principle describing a single M5-brane in nonrelativistic M-theory and study its compactification over the anisotropic two-torus. This procedure leads to a D3-brane action in nonrelativistic IIB string theory that makes the SL(2,Z) invariance manifest in the polynomial realization.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View