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Abstract

Hydrogeological Modeling and Water Resources Management: Improving the Link Between
Site Characterization, Prediction, and Decision Making

by

Bradley Harken

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Yoram Rubin, Chair

Groundwater resources are an important part of any water resources management strat-
egy, but must be managed with care to ensure the availability of water in sufficient quantity
and quality to meet the ever growing demand from industrial, agricultural, and municipal
uses. Hydrogeological models have a great potential to support the successful management
of groundwater resources by making predictions regarding water availability and contam-
inant migration. However, complications arise due to the uncertainty stemming from in-
complete characterization and natural variability in subsurface hydraulic properties. The
uncertainty relating to these properties and model selection propagates through the mod-
eling process, producing uncertain hydrogeologic predictions. Many formal methods exist
for coping with this uncertainty in a theoretically sound manner which could improve deci-
sion making, but widespread adoption of these methods has been slow or nonexistent. This
dissertation explores potential reasons for this hindered adoption of these methods in hydro-
geological practice, despite success of similar methods in other industries. Issues examined
include practicability of stochastic methods, the role of regulations, and the translation of
uncertainty to risk at the knowledge-decision interface.

This dissertation presents a framework which addresses these challenges. The framework
utilizes statistical hypothesis testing and an integrated approach to the planning of hydro-
geological site characterization, modeling prediction, and water resources decision making.
Benefits of this framework include aggregated uncertainty quantification and risk evaluation,
simplified communication of risk between various stakeholders, and improved defensibility of
decisions. The framework acknowledges that 100% certainty in decision making is impossible
to obtain–rather, the focus is on providing a systematic way to make decisions in light of
this inevitable uncertainty and on determining the amount of field information needed to
make a decision under conditions meeting predefined criteria. In this manner, quantitative
evaluation of any field campaign design is possible before data is collected. This can be done
beginning from any knowledge state, and updating as more information becomes available
is also possible.
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The framework is presented in general and demonstrated in two synthetic case studies
predicting 1) contaminant arrival time and 2) enhanced cancer risk due to groundwater
contamination. Results from the arrival time study indicate that the effectiveness of field
campaigns depends not only on the environmental performance metric being predicted but
also its threshold value in decision making. Results also demonstrate that improved param-
eter estimation does not necessarily lead to better decision making, emphasizing the need
for goal-oriented characterization design. The case study in predicting enhanced cancer risk
involves hydrogeological characterization as well as population characterization. Popula-
tion characterization can involve physiological and behavioral parameters. This case study
explores the relationship between hydrogeological characterization, population characteriza-
tion, cancer risk, and water resources decision making.
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Chapter 1

Introduction and Background

1.1 Groundwater Resources

Groundwater is an important resource, comprising 96 percent of all liquid freshwater
in the world. It is used all over the world to meet municipal, agricultural, and industrial
demands. Nearly half of all drinking water consumed worldwide comes from groundwater,
as does over 40 percent of water used for irrigation (Smith et al., 2016). In the United
States, nearly 150 million people rely on groundwater for drinking water. In a twenty year
timespan, over 20 percent of groundwater samples have had at least one contaminant present
at levels potentially harmful to human health (DeSimone et al., 2014). In light of threats
from scarcity and contamination, providing groundwater resources in sufficient quantity and
quality is becoming an ever more challenging task. In management of groundwater resources,
decisions must be made regarding e.g. selection of water sources and allocation of remediation
resources. To ensure safe and sustainable management of groundwater resources, these
decisions should be made based on many different types of information. On one hand,
information regarding site-specific geologic, hydrologic, and hydraulic properties is necessary.
This information allows models to be used to make predictions which support groundwater
management decisions (Mays and Todd , 2005). On the other hand, these decisions should
also take social, economic, and political factors into consideration (Smith et al., 2016).

1.2 Conceptual Models and Environmental

Performance Metrics

While much of the groundwater present on Earth exists deep below the surface, the
majority of the groundwater resources extracted by humans for the aforementioned uses
comes from the shallow subsurface, which is replenished by precipitation (Smith et al., 2016).
Much of this water is stored in, and flows through, the pore spaces of natural soil material.
This flow through natural porous media can be modeled using Darcy’s law, which is given
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by
q(x) = K(x)∇H(x) (1.1)

where x indicates the spatial location, in one, two, or three dimensions. q is the spatially
dependent specific discharge vector [L/T ], and H(x) is the hydraulic head [L]. K(x) is the
hydraulic conductivity [L/T ] (Fetter , 2001). Darcy’s law together with the law of conserva-
tion of mass (assuming constant fluid density) provides the groundwater flow equation:

∇ · (K(x)∇H(x)) = S
∂H

∂t
(1.2)

where S is the storage coefficient [−]. In steady-state conditions, the right-hand-side of
Equation is equal to zero. Groundwater velocity v(x) is related to specific discharge by the
soil porosity n(x), which is defined as the volumetric proportion of the porous media which
is void space [−](Fetter , 2001).

v(x) =
q(x)

n(x)
(1.3)

Given hydraulic conductivity, porosity, storage coefficients, boundary conditions, and
initial conditions, Equation 1.2 can be solved to provide the hydraulic head and in turn,
discharge and velocity. Provided the solution to the groundwater flow problem, the transport
of solutes at a regional scale can be described by the advection-dispersion equation (ADE),
which is given by e.g. Dagan (1989):

∂C

∂t
= ∇ · (D∇C)− v · ∇C + s (1.4)

where C is spatially and temporally dependent solute concentration [M/L3], v is ground-
water velocity (Equation 1.3), and D is the dispersion tensor [L3/T ]. The dispersion tensor
represents the non-advective transport, and depending on the spatial scale being modeled,
can be used to model the effect of dispersion at various scales (e.g. de Barros and Rubin
(2011)). s represents sources or sinks of solutes, which may occur as a result of many natural
or anthropogenic causes [M/(L3T )].

With these equations, any of a number of different numerical methods may be applied to
make predictions which aid in management of groundwater resources (Anderson et al., 2015).
When dealing with contaminants, predictions may involve predicting some Environmental
Performance Metric (EPM), such as contaminant arrival time or contaminant concentration
at some specified location (de Barros et al., 2012).

In other scenarios, such as predicting the effect of a groundwater contaminant plume on a
nearby population, predicting hydrogeological processes is not enough. In these cases, other
information is necessary. For example, in the case of predicting enhanced cancer risk of a
population due to a population due to a nearby contaminant plume, information is needed
regarding exposure pathways, physiology, and behavior of the population (e.g. Maxwell et al.
(1998a), de Barros and Rubin (2008)). This concept is explored further in Chapter 5.



CHAPTER 1. INTRODUCTION AND BACKGROUND 3

Figure 1.1: Example of spatial heterogeneity of aquifer parameters. Visualized here is the
variability of the log-transform of hydraulic conductivity in three-dimensional space.

1.3 Spatial Heterogeneity and Geostatistics

One of the more challenging aspects of modeling hydrogeologic processes in natural media
is the spatial variability of the media and its properties. Parameters such as hydraulic
conductivity and porosity, as well as their spatial heterogeneity, have significant effect on
the behavior of flow and transport in the subsurface (Dagan (1989), Rubin (2003)). The
heterogeneity of parameters is demonstrated in Figure 1.1, which shows the variability of
hydraulic conductivity in a synthetic aquifer.

Due to the spatial heterogeneity of parameters such as these, a complete description
of their value at every location throughout a modeling domain is impossible, and some
amount of uncertainty will always be present. In light of this, these parameters are described
stochastically rather than deterministically. Fundamental probability theory provides tools
for describing uncertain quantities referred to as Random Variables (RVs) (Mukhopadhyay ,
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2000). Any quantity which depends on a RV is in turn also an RV, which means any EPM
prediction is also uncertain.

Dagan (1989), Kitanidis (1997), and Rubin (2003) provide many tools for modeling,
predicting, and simulating RVs which display spatial patterns, which are referred to Space
Random Functions (SRFs). SRFs are random variables which have a single distribution
but can be observed at any number of points in space. Spatial patterns are often described
using drift in the mean value or a spatial autocorrelation function, or both. An example of
a hydrogeologic variable which displays a drift in the mean is hydraulic head in an aquifer
exhibiting uniform-in-the-average flow. The average value of hydraulic head decreases in
the direction of flow, though small-scale variations occur. Spatial autocorrelation functions
are often described using variograms, which model the self-similarity of spatially variable
quantities.

Given some set of measurments of an SRF, a variety of geostatistical methods can be
used to estimate or simulate values at locations which have not been measured. Commonly
used methods include Kriging (depicted in Figure 1.2 and Sequential Gaussian Simulation.
Geostatistical simulation, which is depcited in Figure 1.3 often forms a component of Monte
Carlo (MC) simulations, which involve simulation of ensemble of some variable, then com-
putation via a transfer function of an ensemble of an output variable. MC methods are a
powerful tool, which enable probabilistic analysis of many processes in hydrogeology (e.g.
Rubin (2003)).

1.4 Site Characterization

Hydrogeological modeling has great potential to facilitate successful decision making in
management of groundwater resources. In order to make decisions about a specific location,
however, the location must be characterized. Generally speaking, the procedure has a few
different components: prior information, field data, and inverse modeling.

Prior Information

First, all information available about the site is collected. This may include geological
descriptions, maps, satellite data, or other forms of information. Specific information from
geologically similar sites, referred to as ex situ data, can be used a starting point. This
type of information is referred to as a priori information. A priori information can be used
for preliminary analyses of the site. Very often, the Bayesian framework is used for site
characterization, in which case the a priori information is formulated as prior distributions
of parameters to be inferred from field data. Prior distributions can be informative or non-
informative (e.g. Kass and Wasserman (1996), Ulrych et al. (2001), and Tang et al. (2016)).
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Figure 1.2: Example of geostatistical estimation by the method of Simple Kriging in one
dimension. The true value represented by the black line is the quantity to be estimated, but
is observed only where the black circles are. The method produces estimates represented
by the solid red line, as well as a variance, portrayed by the dashed red lines. As we can
see, the estimation variance decreases close to measurements and increases farther away.
Kriging methods exhibit the property of exactitude, which means that estimates always
honor measured values.
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Figure 1.3: Demonstration of geostatistical simulation in one dimension. The solid red
line represents the true value of the the quantity Z(x), but is observed only where the
red circles are. As opposed to estimation (see Figure 1.2), which produces a smooth best
guess, simulation produces a random output which obeys that same spatial pattern as the
underlying process. The conditional simulations, represented by the dashed black lines, both
exhibit the same pattern of spatial variability as the solid red line, and exactly honor the
observed values.
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Field Methods

There are many methods which can be used to estimate various parameters regarding a
site and its hydraulic conditions. Some methods involve collecting samples and analyzing
them in a laboratory, while others involve in situ testing. The various methods can provide
information about different parameters such as porosity, hydraulic conductivity, etc. and at
different scales (Fetter (2001), Rubin and Hubbard (2006)).

Traditional Methods

Many methods for characterizing hydraulic parameters of aquifers which have been used
for some time are laboratory tests and pumping tests. For laboratory tests, undisturbed
soil samples are taken from the site and analyzed in a laboratory to determine parameters
such as grain size distribution, porosity, and hydraulic conductivity. Grain size distribution
of a soil sample can be determined using a combination of sieve analysis and hydrometer
analysis. Hydraulic conductivity can be determined in a laboratory using any of a variety of
permeability type testing (Fetter , 2001).

Pumping tests involve pumping water from a borehole in the field and using nearby
monitoring wells to observe the change in hydraulic head over time. For transient analysis,
the Theis solution can be used which also provide information about the transient behavior
of soils, allowing estimates of storage coefficients (Cherry and Freeze, 1979). Steady-state
cone of depression analysis can be done using the Thiem solution (Fetter , 2001). These tests
provide information about the behavior of aquifers on a relatively large scale, and do not
always provide much information about smaller scale heterogeneity.

Direct Push Methods

Direct push technology has been developed relatively recently (e.g. Butler et al. (2002),
Rubin and Hubbard (2006)). Direct push methods involve probes which are driven into the
soil and involve in situ hydraulic analysis. The use of direct push permeameters is described
by Butler et al. (2007), which involve injecting a fluid at a known flowrate from a screened
portion of the probe, and measuring the pressure response along other portions of the probe.
The direct push injection logger rapidly provides information about relative conductivity
with great resolution along a profile, which can be correlated to nearby permeameter tests
(Dietrich et al., 2008). These technologies offer the advantages of providing a great quantity
of information in relatively little time, allowing for greater resolution of the spatial patterns
of variability (Köber et al., 2009).

Inverse Modeling

Inverse modeling is the process of utilizing observations from field or laboratory testing
to infer parameters of the site to be modeled. Parameters which can be inferred are not
only the hydraulic properties themselves, but also their patterns of spatial variability. Many
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different inverse modeling methods have been developed in the past few decades, each with
their own advantages and disadvantages. Discussion of many of these methods can be found
in e.g. Yeh (1986), Carrera et al. (2005), and Zhou et al. (2014).

1.5 Uncertainty: Inverse Modeling and Stochastic

Forward Modeling

Uncertainty associated with any EPM prediction is inevitable. Uncertainty stems from
the spatial heterogeneity of the aquifer material, unknown boundary and initial conditions,
data scarcity, uncertainty in conceptual model definition, uncertainty in inferred physical
parameters as well as uncertainty in their statistical distributions and parameters. Through-
out the past several decades, the field of stochastic hydrogeology has undergone significant
theoretical development and matured into numerous practical tools (e.g. Dagan (1989) and
Rubin (2003)). Stochastic hydrogeology, simply put, is the science of modeling hydrogeo-
logical phenomena while also accounting for and quantifying uncertainty. With stochastic
methods, not only can EPM predictions be provided, but also a description of the uncer-
tainty surrounding such predictions. However, very often stochastic models are not used in
practice, ignoring or not properly accounting for uncertainty, as discussed in a recent debate
series ((Cirpka and Valocchi , 2016), (Fiori et al., 2016), (Fogg and Zhang , 2016), (Rajaram,
2016), (Sanchez-Vila and Fernndez-Garcia, 2016)). This topic is explored further in Chapter
2.

1.6 Risk: Making Decisions Under Uncertainty

Water resource management decisions often depend on the predicted value of some EPM,
which can never be predicted with complete certainty. However, stochastic methods can be
employed to quantify uncertainty, improving the decision making process. U.S. Environmen-
tal Protection Agency (2014) described the importance of acknowledging such uncertainty
in management decisions, saying, “If uncertainty and variability have not been well charac-
terized or acknowledged, potential complications arise in the process of decision-making.”

The issue of how to make a decision when presented with uncertainty has been dealt with
in classical statistics by the method of hypothesis testing (Navidi , 2015). Hypothesis testing
enables the translation of uncertainty stemming from all the sources described above into
a simple description of risk, which simply describes the probability of making an incorrect
decision. Höllermann and Evers (2017) pointed out that this translation is often the missing
link between practicing hydrologists and water resources managers. This is discussed further
in Chapters 2 and 3. When dealing with uncertain outcomes, hypothesis testing allows
the discussion to shift from questioning whether a given outcome will occur to discussing
precisely how probable is the occurrence of such an outcome. The question, then, is about



CHAPTER 1. INTRODUCTION AND BACKGROUND 9

how much risk is acceptable when making such a decision. Farber and Findley (2010) shed
insight on this concept, stating:

“A basic fact about risk management is that there is a difference between a ’safe’
world and a ’zero-risk’ world. In many situations, ’safety’ cannot be absolute but
must entail an ’acceptable’ level of risk, however and by whomever that level may
be defined. In some cases the decision may be made by an ’expert’ risk manager,
while in other cases it may be a function of the political process.” (Farber and
Findley , 2010)

A Balancing Act

Successful water resources management should take social, economic, and political factors
into consideration in addition to hydrogeological information. There are often many roles and
many stakeholders are involved in the making of water resources management decisions. For
instance, hydrogeologists perform analysis, water resources managers make decisions based
on these analyses, all while communicating results and decisions to regulators as well as the
general public. As indicated by Farber and Findley (2010), some amount of risk must be
accepted. The hypothesis testing framework allows for input from regulators, policy makers,
and the general public in weighing the consequences of incorrect decisions in determination of
what level of risk is acceptable. In other words, it is the role of hydrogeologists to determine
the probability of incorrect decisions, not whether or not to act on such probabilities.

Field Campaign Design

The significant cost of obtaining field data of any type motivates the careful planning of
field campaigns in order to best balance cost and characterization efficacy. This balancing
process is complicated by the nonlinear relationship between design inputs (e.g. well location
and pumping rates), performance outputs, and characterization efficacy. Freeze and Gorelick
(1999) discussed these challenges in the context of remediation design, which faces similar
challenges. Abellan and Noetinger (2010) provided a method for optimizing hydrogeological
field campaigns with respect to improved geostatistical parameter estimates, and Nowak
et al. (2012) related field campaign design to decision making risk. However, challenges
remain in simply classifying a field campaign as adequate or not.

With sufficient site characterization, uncertainty can be reduced to acceptable levels
for defensible decisions. This raises two questions, however: 1) how much uncertainty is
acceptable? and 2) how much information is necessary for such a level of uncertainty?
The answer to question 1 is a choice defined by social and political values, and codified by
regulation. Chapter 3 presents a framework for determining the answer to question 2.
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Chapter 2

Challenges in Adoption of Stochastic
Methods

Stochastic hydrogeology has undergone significant development over the past few decades,
beginning with fundamental concepts regarding uncertainty of subsurface properties and
processes and maturing into advanced methodologies for quantification of uncertainty in
characterization and modeling efforts of many varieties (e.g. Dagan (1989), Rubin (2003)).
However, there appears to be a disconnect between the research community and practic-
ing hydrogeologists when it comes to the application of stochastic hydrogeology. Previous
series of articles have detailed the perspectives of stochastic hydrogeology researchers on
why this disconnect exists (Zhang and Zhang (2004), Sudicky (2004), Freeze (2004), Molz
(2004), Neuman (2004), Christakos (2004), Ginn (2004), Rubin (2004), Winter (2004), Da-
gan (2004), Cirpka and Valocchi (2016), Fiori et al. (2016), Fogg and Zhang (2016), Rajaram
(2016), Sanchez-Vila and Fernndez-Garcia (2016))

This chapter aims review the evolution of thoughts on this disconnect, to evaluate
strengths and weaknesses and to provide additional perspectives by highlighting misconcep-
tions of stochastic methods, evaluating external factors that affect the adoption of stochastic
methods in practice, and considering other impediments on the way to application.

First, we define the meaning of stochastic in this context. We consider any method
regarding uncertainty using formal statistical theories. Discussion is not limited to geosta-
tistical methods, but considers the uncertainties related to non-spatial variables and model
choice in addition to the uncertainty imposed by spatial heterogeneity.

The conversation of how practitioners and scientists consider uncertainty can be found
in other contexts. For example, Höllermann and Evers (2017) elicited perspectives from
practitioners and scientists in the water management sector on how uncertainty enters their
decision-making process. The authors point out how practitioners differ from scientists
regarding what sources of uncertainty are of greatest concern and in which direction uncer-
tainties flow between knowledge and decisions. Of interest is the translation from uncer-
tainty to risk, as practitioners are prone to do implicitly and as decision makers can use
directly. In order to make stochastic research more palatable for practitioners and decision-
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makers, stochastic theory should be complemented with the translation of uncertainty into
application-specific guidelines on interpreting risk and aiding decision making.

To begin the stochastic hydrogeology-specific discussion, the comments in two series of
articles addressing stochastic hydrogeology in practice are summarized. These series were
in the journal Stochastic Environmental Research and Risk Assessment (SERRA) in 2004
and in the journal Water Resources Research (WRR) in 2016. The 2004 SERRA series
asked nine researchers the following two specific questions: 1) “Why have there not been
many real-world applications of stochastic theories and approaches, despite the significant
progress in developing such rigorous theories and approaches for studying fluid flow and solute
transport in heterogeneous media?”, and 2) “In your opinion, what must be done in order
to render stochastic theories and approaches as routine tools in hydrogeologic investigation
and modeling?”. The 2016 WRR series is more open-ended, asking teams of researchers to
debate on stochastic subsurface hydrology from theory to practice. These two series were
chosen because they address similar questions, they combine multiple perspectives from a
variety of researchers, and the 12-year time span between them allows us to consider the
evolution of ideas on this topic. However, due to the more open nature of the 2016 WRR
series, not all of the discussion points can be directly compared between the two series. Of
note is that issues related specifically to modeling of transport were covered in greater detail
in 2016 than in 2004, and are excluded from consideration here in favor of the wider scope
of the questions regarding stochastic methods in general.

Even though the 2016 WRR series is so recent, this discussion is written to compare the
perspectives of the 2016 WRR series to the 2004 SERRA series as a baseline for comparison
and to provide additional discussion on external perspectives such as from the petroleum
industry and the legal system. The remainder of the chapter is organized as follows: given
first is a summary and comparison the 2004 SERRA and 2016 WRR series, followed by
discussion of issues pertaining to regulations, the legal systems, and incentive structure
along with a comparative analysis between the hydrogeologial and petroleum disciplines.

2.1 Status Quo 2004

The 2004 SERRA series contains perspectives from nine stochastic hydrogeology re-
searchers in response to the two questions listed above. Based on their responses to the
question regarding why stochastic hydrogeology is not used in practice, we have compiled
a list of five over-arching topics appearing across the nine papers (see Table 1). Those five
topics are:

1. The influence of regulations and the court system: This topic appears with comments
regarding how hydrogeology practitioners are motivated to use status quo, as opposed
to state-of-the-art. It was mentioned how very often hydrogeological analyses are used
in deliberation in the sometimes adversarial relationship between regulatory agencies
and potentially responsible parties, with the deliberation often taking place in court. In
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these deliberations, hydrogeological analyses are used to argue liability, or lack thereof.
There is a perception that acknowledging any uncertainty in the analyses weakens the
argument, thus disincentivizing the use of stochastic methods.

2. The role of higher education: This topic appeared either in terms of the lack of proper
training in stochastic methods for hydrogeology practitioners or in terms of the theory
being at a level not digestible by students.

3. The lack of appropriate measurement technology and/or data: This topic mainly ap-
pears as that the then-current technology did not provide measurements attributable
to the parameters and scales of stochastic models and that, in practice, too much data
is needed to fit those parameters.

4. The lack of user-friendly software that applies theory: This topic mainly appears as
the call for user-friendly software that integrates multiple forms of information and
that is computationally efficient enough for practitioners to use.

5. The lack of applicability of theory to real-world problems: Arguments here were ei-
ther directed to the theoretical research as not applicable in real-world problems (e.g.
oversimplification of spatial structure, or minimizing uncertainty in parameters when
other uncertainties need to be minimized), or at least there is a lack of applications to
showcase the applicability of theories in real-world problems.

6. Value: there was mention of a perception that relative to adhering to traditional deter-
ministic methods, stochastic characterization and prediction are simply not worth the
additional effort. This point can be considered directly related to Number 1. If risk-
based predictions were mandated by regulatory agencies, there would be no question
of value and incentive for adoption of uncertainty quantification would be provided by
compliance.

The second question in this series requests suggestions on what needs to be done to have
the field of stochastic hydrogeology adopted by practitioners. The suggestions provided by
the nine authors transcend the five topics listed above, so they are presented separately
below:

1. Cross-disciplinary collaborations: Have cross-disciplinary collaborations with hydroge-
ology practitioners for translating theory to practice, numerical modelers for embedding
stochastic tools in software, and decision-makers or health-related researchers for mak-
ing stochastic analyses relevant. These applications should be done and there should
be literature that is application-oriented and readable for people outside the stochastic
hydrogeology community.

2. Software: Develop flexible, powerful, and efficient tools for integration frameworks,
embed stochastic methods into pre-existing and popular software, or make stand-alone
stochastic software capable of coupling with flow/transport models.
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Mentioned in 2004 Remains in 2016 Resolved by 2016 Added in 2016

Influence of Regula-
tions

Resistance to proba-
bilistic analyses

Role of Higher Edu-
cation

Lack of Professionals
Trained in Stochastic
Methods

Measurement Tech-
nology and Availabil-
ity of Data

Stochastic methods
perceived to require
more data and be
more expensive

Measurement Tech-
nology has advanced.
Stochastic analysis
should use all avail-
able data via e.g.
Bayesian Methods

User-friendliness of
concepts

Lack of usable soft-
ware tools

Some forward mod-
els have incorporated
stochastic methods,
but too few

Misconception that
risk assessment is
not stochastic

Theory too limited or
not showcased in ap-
plications

Research does not
have the same goals
as practice and of-
ten has too many un-
realistic assumptions
and simplifications

Need a goal-oriented
framework for char-
acterization and
modeling.

Table 2.1: Summary of 2004 commentary on issues preventing adoption of stochastic methods
in practice along with changes in 2016 commentary.

3. Geological realism: Build catalogs of properties and geological structures or improve
theory for incorporating geological realism into stochastic models (Molz , 2004).

4. Education: Improve education and understanding of stochastic concepts, its data
needs, and its relationship with respect to deterministic methods.

5. Other comments on where improvements can be made included the notion that regu-
lations should embrace stochastic methods and that, in general, research topics take
time to translate into industry and adoption will improve with time.

2.2 Status Quo 2016

The 2016 WRR series was not intended to be an update on the 2004 SERRA series and
the foci dont fully overlap, but topics shared in common are still indicative of the evolution of
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thought over the 12 years. For comparison to a more recent series of papers addressing similar
questions, we searched for the same five topics in the 2016 WRR series to gauge progress
since the SERRA 2004 series. Since no new significantly different topics were discerned, we
provide the summary of the 2016 WRR series as it pertains to the 2004 topics have and
how they have changed. How those topics evolved per 2016 series perspective can be seen in
Table 2.1. The topics most commonly mentioned in the 2016 WRR series are Topic 4 (user-
friendliness of concepts) and Topic 5 (theory too limited or not showcased in applications).
Concerns regarding the availability of useful software tools remain (Cirpka and Valocchi ,
2016), however there is some recognition that few stochastic modules were introduced into
forward models (Fiori et al., 2016). The extensive discussion on geological realism (Fogg and
Zhang , 2016) and transport processes (Cirpka and Valocchi , 2016) in the 2016 WRR series
is encapsulated in the issue of simplicity-both concepts relate to the practical concerns of
applicability. Of interest, however, is the mention of goal-oriented frameworks by Fiori et al.
(2016), which is akin to the translation of uncertainty into risk at the knowledge-decision
interface that Höllermann and Evers (2017) recommends. More discussion on goal-oriented
framework is presented in the following chapters.

2.3 Misconception: Data Requirements

Many of the comments in the series refer to data requirements as one of the setbacks to
adoption of stochastic methods. The underlying idea here is that the stochastic paradigm
requires more data than the deterministic one. However, this idea is misleading. Returning
to the definition of stochastic, which is accounting for uncertainty in a theoretically sound
manner, it follows that uncertainty can be accounted for and quantified, regardless of the
amount of data. Properly accounting for uncertainty can involve many steps. For example,
determining statistical models and inferring parameters of those models can be precursors
to forward modeling. Undoubtedly, having a greater quantity of data will improve the
processes of model selection and parameter estimation. However, to think that in absence
of large datasets it is better to simply ignore uncertainty can be perilous. When data is
most scarce is when uncertainty is highest, and most important to be accounted for instead
of ignored (Rubin, 2003). When field data from a specific site is scarce, other information
can be used to constrain uncertainty and provide a better description of the site and the
processes occurring within. As mentioned by Cirpka and Valocchi (2016), Bayesian methods
can use a variety of forms of information including prior knowledge and indirect data to help
constrain the uncertainty in these parameters.

2.4 Regulations and Uncertainty

The challenges with respect to regulations can be broadly summarized in the following
points.
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1. Regulations prefer simple point estimates over probabilistically defined quantities.

2. Regulations often define compliance as having some quantity above or below some
threshold value. For example, contaminant concentrations must be below the specified
limit (MCL).

3. It can be difficult to define and communicate the relationship between all sources
of uncertainty (parameter, model, etc.). In this way, demonstrating compliance with
regulations is facilitated by providing simple, deterministic quantities and not acknowl-
edging uncertainty in such estimates.

While the first point may be true of many regulating agencies and many specific regulations,
it is not always the case, nor does it have to be. Presented below are examples of regulating
agencies coping with probabilistically defined quantities. A framework which addresses the
last two points is presented and demonstrated in the following chapters.

This section explores this topic by examining the regulations known as Risk-Based Cor-
rective Actions (RBCA). RBCA focuses on cancer risk, defined as the upper bound lifetime
probability of an individual developing cancer as a result of exposure to a particular level
of a potential carcinogen (US EPA, 1989). For example (following Smalley et al. (2000),
a risk of 10−6 represents an increased probability of one in one million of developing can-
cer. Assessment of the exposure risk would require analysts to consider all the elements
that combine to affect this risk, which would include source, contaminant transport path-
ways, exposure pathways, and toxicology parameters. RBCA thus specifically and explicitly
recognized the stochastic nature of making predictions under uncertainty. The rationale
underlying RBCA is extended to other focus areas of the EPA, such as “risk-based decision
making in underground storage tank corrective action programs.”

The claim that regulations dictate that hydrological predictions be expressed as single
values to this day is supported by Höllermann and Evers (2017), who surveyed scientists and
practitioners about the role of uncertainty in their professions. The survey results indicated
that practitioners are not opposed to uncertainty assessment within their internal analyses
before reporting to regulators. The willingness of practitioners to use stochastic concepts
in their internal analyses alongside the lack of reporting those probabilistic results indicates
that there is a component of the environmental regulation and policy sector that is stifling
the widespread adoption of stochastic analyses. This effect could be reversed if regulations
were to mandate probabilistic descriptions of quantities upon which decision making rests.

2.5 Communication of Uncertainty

Another issue in the management of uncertainty is communication. While quantified
levels of uncertainty can be readily utilized by engineers for analysis, sometimes a simpler
terminology is more suitable for communicating to a wider audience. Climate science is one
example of a different field where uncertainty pervades models and predictions. To address
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Term Likelihood of the Outcome

Virtually certain 99-100% probability
Extremely likely 95-100% probability
Very likely 90-100% probability
Likely 66-100% probability
More likely than not 50-100% probability
About as likely as not 33-66% probability
Unlikely 0-33% probability
Very unlikely 0-10% probability
Extremely unlikely 0-5% probability
Exceptionally unlikely 0-1% probability

Table 2.2: Terms for communicating uncertainty in event outcomes. From the Intergov-
ernmental Panel on Climate Change Guidance Note for Lead Authors of the IPCC Fifth
Assessment Report on Consistent Treatment of Uncertainties

the challenges associated with communicating uncertainty, the Intergovernmental Panel on
Climate Change provided a set of terms ranging from ’virtually certain’ to ’exceptionally
unlikely’ to communicate in plain language the probability of uncertain events. These terms
are shown in Table 2.2. Adoption of such terminology in hydrogeology could be beneficial in
communicating uncertain events to the many stakeholders, which range from water resources
managers, regulating bodies, governing bodies, and even the general public. The challenge
however, is relating between uncertainty in e.g. model selection and parameterization to
uncertainty in digestible outcomes, such as the probability of water supplies becoming con-
taminated. The framework presented in the next chapter provides a mechanism for exactly
this: aggregating all uncertainty into a single quantity describing the likelihood of making
an incorrect decision in water resources management (Intergovernmental Panel on Climate
Change, 2010).

2.6 A Comparative Study: Hydrogeology and

Petroleum

Several of the contributors to the 2004 and 2016 paper series have pointed to a lack of
education in stochastic hydrogeology, along with stochastic analyses being too costly and
not providing enough benefit, as main reasons for the lack of adoption of these methods
in practice (Dagan (2004), Molz (2004), Neuman (2004), Sudicky (2004), Winter (2004),
Cirpka and Valocchi (2016), Fiori et al. (2016)). In response, we aim to compare various
aspects affecting the adoption of new methods in hydrogeology and petroleum engineering,
where stochastic methods for characterizing, mapping, and modeling the subsurface have
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become commonplace in industry (Jonkman et al. (2000), Floris et al. (2001), Liu and
Oliver (2003), Oliver and Chen (2010), Rwechungura et al. (2011)). The aspects we aim
to compare include incentive structure, education, and interaction between academic and
industrial organizations.

Incentive

To begin comparing the two industries, we start by acknowledging a difference in basic
incentive structure, which in turn leads to a difference in operations and adoption of new
practices. In the petroleum industry, any improvement in subsurface characterization and
mapping capabilities would ultimately lead to a company being more profitable. Reservoir
characterization and reserve estimates have a major impact on the bottom-line of a com-
pany, affect interactions with Wall Street (Misund and Osmundsen, 2015), and are regulated
by the Securities and Exchange Commission (SEC). This relationship between petroleum
engineering and the economy relies on guidelines set by both the SEC, as well as the Society
for Petroleum Engineers, on how to communicate the certainty in the inherently uncertain
reserve estimates (Harrell and Gardner , 2003). By having both professional and regulatory
bodies dictating the use of probabilistic methods, the petroleum engineering field has sig-
nificant incentive to stay at the forefront of stochastic methods innovation and application.
In addition, the enormous capital costs associated with new and continued wellfield opera-
tions motivates using the most informative, risk-based predictions of costs versus benefits.
In summary, petroleum firms are extremely motivated to create the most accurate depic-
tion of underground resources in order to both accurately report reserve estimates and to
best allocate costly drilling resources. Simply put, there is a direct link between improved
characterization and improved profitability.

On the other hand, improvements in characterization and modeling do not always directly
link to improvements in profitability for firms involved with groundwater investigation and
contaminant remediation. As pointed out by Ginn (2004), there are numerous factors which
affect the perceived costs and benefits of adopting stochastic methods, thus obfuscating
the incentive structure. Very often, hydrogeologists involved in groundwater contamination
projects must explain and justify steps taken, methods used, and conclusions reached to a
wide range of people, including scientists in other fields, site owners, regulators, attorneys,
and the general public. In light of these factors, it may seem more justifiable to adhere to
established, proven methods because adopting new methods may seemingly invite criticism.
Furthermore, as Freeze (2004) pointed out, it may often be the case that hydrogeologists
are eager to use stochastic methods for uncertainty quantification, while their clients are
reluctant to do so due to the perception that admitting any uncertainty may be construed
as ignorance and thus leaving the client vulnerable to penalties from regulatory agencies.

However, these widespread perceptions do not necessarily represent the full extent of
possible costs. It is worth remembering that when dealing with groundwater contamination,
there is a lot at stake. For example, incomplete descriptions of subsurface characteristics,
plume behavior, and remediation efficacy could lead to costly outcomes such as necessitating
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the procurement of new water sources, or even worse, exposing populations to harmful
contaminants. In light of this, when the cost-benefit analysis is undertaken with appropriate
scope, the benefits of protecting our water resources clearly outweigh the costs of the marginal
effort associated with adopting stochastic methods and uncertainty quantification.

Education

Several contributions to the 2004 and 2016 series pointed to a lack of availability of
university courses in stochastic methods and, in turn, a lack of hydrogeologists trained in
stochastic methods as one of the setbacks to widespread adoption of stochastic methods in
practice (Neuman (2004), Winter (2004)). Due to the prevalence of these methods in the
petroleum industry, one explanation for the disparity could be a difference in the prevalence
of education in these methods across the two disciplines. Continuing the comparative anal-
ysis, we aim to compare the prevalence of courses in these subjects in the disciplines most
likely to be studied by future petroleum engineers and practicing hydrogeologists. Three
academic disciplines were selected: petroleum engineering, civil/environmental engineering,
and earth sciences. We surveyed the top ten schools in the US News World Report 2016
rankings for graduate programs in petroleum engineering and earth sciences. Rankings for
civil engineering are done separately from environmental engineering, and the top ten of the
two rankings produced thirteen unique universities, which were the universities included for
this survey.

Gathering information is made complicated because the amount of information about
course offerings was variable from school to school. For some schools, course titles and
course descriptions were available, while for others only course titles were available. For a
couple programs, no course information was publicly available online. While rankings exist
for Earth Sciences as a subject, it is difficult to make direct comparisons due to the various
organizational structures.

For schools where course information was found, seven out of nine petroleum engineering
schools had a course where geostatistics is the main focus (i.e. in the course title), and one
school had a course where geostatistics is mentioned as part of the course. On the other
hand four out of twelve of the civil/environmental programs had a course where geostatistical
methods were the main focus. Two programs had a course that included geostatistics or
stochastic hydrogeology in the course description, but were seemingly not a main focus.
Only one Earth Sciences program had a course focusing on stochastic hydrogeology.

Many civil/environmental engineering or Earth sciences program have at least one course
on the topics of probability, statistics, or uncertainty analysis in some regard, but not specif-
ically related to hydrology. While this survey does have limitations due to the variable
amount of information available regarding frequency of course offerings, enrollment statis-
tics, and neglecting the possibility of cross-department course enrollment, the results are
clear: courses in geostatistics and stochastic subsurface modeling are much more prevalent
in petroleum engineering than in civil/environmental engineering and Earth sciences.
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Petroleum engineering has a clear connection to the petroleum industry, with masters and
PhD programs serving as a pipeline for engineers for this industry. Practicing hydrogeolo-
gists, on the other hand, may come from a variety of educational backgrounds. Practitioners
may have degrees in civil/environmental engineering, earth sciences, or others. However,
the proportion of students in these departments who go on to become hydrogeologists is
very small. Civil/environmental engineering departments, for example, provide coursework
in structural engineering, transportation engineering, etc. where hydrogeology is, at best,
one very small subset of the department. A similar statement could be made about earth
sciences, where students take courses in tectonics, volcanology, and many other fields, where
contaminant transport in the shallow subsurface is a very small subset of the topics covered
in an earth sciences department.

One of the most obvious pathways for novel concepts and methods to move from re-
search to industry is via academic training of future practitioners. The fact that petroleum
engineering is considered its own discipline by many academic institutions facilitates this
transition. In hydrogeology, on the other hand, the opposite is true. The underlying premise
is that development of new methods occurs only in academic institutions. However, it is
possible for research and development to occur within industrial institutions, either inde-
pendently or in collaboration with academic institutions. The extent to which this occurs in
these two disciplines is explored in the next subsection.

Research Collaboration

The vast majority of research in any scientific field comes from institutions belonging to
one of three categories: academic, governmental, and industrial. While the fundamental re-
search goals of academic institutions can vary widely, the fundamental goals of governmental
and industrial research bodies can be more clearly distinguished. For governmental research
bodies, the goal is to create knowledge that serves as a public good. For industrial research
bodies, the goal is to advance the state-of-the-art of the industry and, in doing so, improve
the profitability of the company. Thus, significant participation in research by industrial
institutions can act as a catalyst to more widespread adoption of novel methods, because
research is more motivated by the needs of practitioners.

Since participation by industrial institutions in research is one avenue for adoption of
new methods in practice, we aim to compare this activity in the two fields. To accomplish
this, we performed a bibliometric survey using Web of Science similar to the one performed
by Rajaram (2016). The goal of the survey was to quantify the proportion of research con-
tributions coming from academic, governmental, and industrial affiliations in each of the two
disciplines. Thus, we aimed to perform a survey of the literature in the petroleum and the
hydrogeological fields to compare the cross-collaboration between the different types of insti-
tutions that produce research in the two fields. Due to the differences between hydrogeology
and petroleum described above, our hypothesis is that the body of research in petroleum
engineering will have significantly greater participation by industrial institutions than in
hydrogeology.
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Figure 2.1: Literature search results for university, government, and industry author affilia-
tions in hydrogeology and petroleum.

The bibliometric survey was performed in June 2017 by searching for all articles matching
keywords related to stochastic methods in the two fields. The author affiliations of the
resulting articles were recorded, and ordered by number of articles for each institution. All
institutions which appeared on at least five articles were recorded and categorized as one
of academic, governmental, or industrial. The number of appearances of each category was
calculated for each of the two disciplines, with results presented in Figure 2.1.

For both hydrogeology and petroleum engineering, the majority of affiliations are aca-
demic, which may be expected for any field, but the ratio of academic to industrial affiliations
is at least 106:1 for hydrogeology and at most 7.3:1 for petroleum engineering. Hydrogeology
has approximately three times as many publication results as petroleum engineering, but
petroleum engineering still has more industry appearances at 69-71 affiliations compared
to hydrogeologys 14 industry appearances. While this affiliation search is not completely
exhaustive for all publications, languages, and possible search terms, the results are conclu-
sive: there is clearly a larger presence of industrial institutions contributing to research in
the petroleum field compared to hydrogeology. These results confirm the hypothesis that
there is much greater participation in research by industrial institutions in the petroleum
field than in hydrogeology. In turn, it can be argued that this indicates a stronger connection
between theoretical development and practice: advances in theory are both motivated by
practice and smoothly adopted by practice.

This difference in cross-collaboration between academic, governmental, and industrial
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institutions between petroleum engineering and hydrogeology affect the adoption of new
techniques between the two fields. For example, since petroleum engineering has a greater
influence from industry, petroleum engineering research can benefit from both the greater
financial resources and the focused direction towards characterizing petroleum reservoirs.
Hydrogeology has a greater influence from government research, of which hydrogeology is a
small fraction. Similar to how hydrogeology is a minority in its own academic departments, it
is also a minority when it comes to the research conducted at the USGS or DOE laboratories
that are in charge of exploring topics ranging from earthquake risk to renewable energy.

Despite being closely aligned in theoretical bases, hydrogeology and petroleum fields have
many differences, beginning with their fundamental incentive structures. The direct nature of
the relationship between methodological improvements and increased profitability provides
impetus for advancement in the petroleum industry. However, this relationship is not as
direct in hydrogeology, which necessitates the intervention of legislation and regulation to
provide such impetus. In absence of such external forcing, the status quo in hydrogeology
persists. The constant desire for improvement in the petroleum industry both motivates and
is facilitated by greater connection between research and practice. This greater connection
manifests itself in the differences in education and research discussed above.

2.7 Summary and Outlook

This chapter has presented a description and analysis of issues preventing the widespread
adoption of stochastic methods by practicing hydrogeologists. The idea that these methods
are not practical was shown to be a misconception, evidenced by the widespread adoption of
very similar methods in the petroleum engineering industry. One of the most notable differ-
ences between these two industries. In environmental applications, incentive for innovation
is lacking and must be substituted by regulations. In order to smoothly transition into a
system where regulations mandate uncertainty quantification and risk analysis, the following
questions must be addressed:

1. How to quantify uncertainty in binary predictions related to threshold values?

2. How to translate uncertainty in e.g. model selection and parameter estimation to risk
as it pertains to decision making?

3. How to establish a framework where risk criteria can be defined by regulators which
enables simple demonstration of compliance by practicioners?

In the following chapters, a framework which addresses these questions is presented and
demonstrated.
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Chapter 3

Hypothesis Testing in
Hydrogeological Modeling and Water
Resources Management

This chapter presents the hypothesis testing framework as applied to decision making
in water resources management. As mentioned earlier, challenges to adoption of stochastic
methods in practice stem from difficulty in communicating between uncertainty in model
selection, parameterization, etc. to risk in decision making. Challenges in field campaign
design remain due to the difficulty in quantifying the efficacy of field data, especially before
data is collected. The framework presented in this chapter addresses these challenges.

Efficacy of a characterization campaign can be hard to define, due to the complex process
by which field data is used to define and parameterize conceptual models, define and param-
eterize statistical models and models of spatial variability, and also be used as conditioning
points in forward models. Abellan and Noetinger (2010) presented a method of optimizing
field campaigns, where the field campaign with the greatest information gain was selected.
Information gain was defined as the difference between the prior and posterior distributions
of geostatistical parameters using the Kullback-Leibler divergence.

The place of field campaigns in water resources decision making is demonstrated in Fig-
ures 3.1 and 3.4. First, prior information about the site is used to make preliminary as-
sessments and design the field campaign. After field data is collected, inverse modeling is
performed which provides a posteriori estimates of model parameters, as well as deciding
between alternative statistical models and conceptual models. Then, forward modeling is
performed where numerical models are used to predict EPMs relevant to the decision to be
made. Uncertainty in prior information, field data, inverse modeling, and numerical model-
ing is propagated to these final EPM predictions, complicating the decision making process.
For this reason, the importance of goal-oriented characterization is emphasized. In other
words, it is important to consider a justifiable decision as the ultimate objective of designing
field campaigns, rather than focusing on improved estimates of geostatistical parameters. As
Chapter 4 shows, improved estimates of geostatistical parameters do not necessarily indicate
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Figure 3.1: Relationship between hydrogeological characterization and prediction, water
resources management, and regulation. While previous work on field campaign design focuses
on improving parameter estimates (arrow A), the framework presented in this paper broadens
the scope to allow a more goal-oriented approach (arrow B). In addition, this framework
facilitates the relationships between decision making, risk, and regulations (arrows C and
D).
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improved decision making. In some application, such as assessing health risk to a potentially
exposed population, hydrogeological characterization and modeling play only one part in the
overall risk assessment, as shown by e.g. Maxwell et al. (1999) and de Barros and Rubin
(2008).

Nowak et al. (2012) presented a framework for optimizing field campaigns, where param-
eterization of geostatistical models was taken as a step in computing the objective, which
was water resources decision making, using a hypothesis testing framework. The present
work similarly focuses on defensible decisions as the objective, but differs by allowing for
any number of proposed field campaign designs to be analyzed resulting in a binary outcome:
either the proposed design is adequate or not.

3.1 Objective

The objective of this chapter is to present a framework which enables integrated planning
and holistic evaluation of the many processes involved in using hydrogeological models to
inform water resources decision making. These processes can involve many different roles,
including hydrologists, water resources managers, regulators, and even the general public
(see Figure 3.1). The benefits of using such a framework are as follows.

• Simple translation of uncertainty in hydrogeological models to risk in decision making:
Uncertainty is inevitable in all steps of hydrogeological characterization and prediction.
This framework facilitates aggregation of these uncertainties into a single quantity
describing the risk of making an incorrect decision, which can be readily used by those
tasked with decision making.

• Goal-oriented characterization: While much work has been done to enable design of
field campaigns which are optimal with respect to inferring parameters, this framework
acknowledges that parameter estimation is merely one step on the way to the goal of
effective decision making. As such, the framework enables design of field campaigns
which will enable decision making which complies with regulation-based risk criteria.
Simply put, this framework offers arrow B as an alternative to A in Figure 3.1.

• Simple specification of required risk criteria by regulators and demonstration of compli-
ance by managers: Zero-risk conditions for decision making are impossible to achieve,
so a balance must be struck between resources allocated towards reducing risk and
some level of risk which is considered acceptable. This framework allows for regulators
to define a level of risk which is deemed acceptable, and enables managers to demon-
strate compliance with this requirement. Referring again to Figure 3.1, this benefit is
visualized as arrow C.

• Simple communication of decisions and associated risks between managers, regulators,
and the general public: The holistic manner in which this framework treats hydroge-
ologic uncertainty and decision risk enables managers to communicate decisions and
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associated risks to regulators and the general public. Instead of describing risk in terms
of e.g. the uncertainty in variogram parameters, the framework allows communication
in terms of decision risk, which is accessible to stakeholders who are not trained in
hydrogeology. In Figure 3.1, this is visualized as arrow D.

The framework presented here can be simply summarized by the flowchart presented in
Figure 3.4. The framework is not a substitute for any of the steps of hydrogeological analysis.
Rather, it enables integrated analysis of the steps and aggregated evaluation of uncertainty,
which in turn facilitates evaluation of risk in decision making. This is done by probabilisti-
cally simulating an ensemble of synthetic baseline fields which represent the distribution of
plausible representations of the site under consideration. Then with each of these represen-
tations, each step of the process is simulated, beginning with data collection and leading to
simulated decision, which can be compared to the correct decision. After repeating with the
entire distribution of representations, a probabilistic description of the occurrence of correct
and incorrect decisions can be obtained which in turn enables calculation of risk. If this
outcome is adequate, the steps are then implemented. Otherwise, the steps are reformulated
and reevaluated.

3.2 Modeling Predictions as Hypotheses

The first step in achieving these objectives is to formulate the EPM predictions on which
decision making depend as hypotheses which can be tested. Baker (2017), Bloschl (2017),
McKnight (2017), Neuweiler and Helmig (2017), and Pfister and Kirchner (2017) discussed
the benefits of hypothesis testing in answering research questions in hydrology, and also
the challenges which arise due to the fact that we are not able to run repeated, controlled
experiments when modeling multi-scale processes within natural systems. Here we focus on
using hypothesis testing to make management decisions related to water resources, and to
cope with the inability to run repetitive experiments, we make use of extensive probabilistic
simulation. Such management decisions, when dealing with a binary outcome, can be cast
into the hypothesis testing framework following the method presented by Nowak et al. (2012).

The binary nature of the management questions described above lends to defining null
and alternative hypotheses, which can be treated statistically. Water resources management,
regulation, and policy making can be aided by hydrological models, which enable the predic-
tion of various EPMs including contaminant concentration or arrival time, sustainable yield,
or enhanced cancer risk (Nowak et al., 2012). However, these predictions are inherently
uncertain, an attribute which should not be neglected in making management or regulation
decisions (Oreskes et al. (1994), Beven (2002)). In seeking improvements of this decision
making process, we treat EPM predictions as hypotheses, subject to statistical treatment.
In many cases, what is ultimately important is not simply an estimate of the EPM, but also
its relation to some threshold value. For example, in some applications it is necessary to
predict the concentration of a contaminant, which in turn is compared to an MCL. A course
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of action (i.e. to remediate or not) is then decided based on whether or not the concentration
exceeds the MCL. In this context, the goal of the field and modeling campaigns should be
seen as predicting whether or not the concentration exceeds the MCL, rather than solely
predicting the concentration.

3.3 Modeling Predictions in Decision Making

These hypotheses can be formally tested as part of the decision making process as fol-
lows. We start by defining the EPM of concern, along with its critical, or threshold value,
which represents a value or range of values of special concern. In some cases, the critical
value could be a maximum allowable concentration, degradation time of a contaminant, or
minimum sustainable yield. These hypotheses conform to the tradition of the null hypoth-
esis being the undesirable, risky, or dangerous outcome. In the context of decision making
in water resources management, it could, for example, represent the outcome that water
supply becomes contaminated at levels greater than the MCL. The alternative hypothesis,
conversely, represents the desirable outcome, or in the same example, that the concentration
at the water supply will remain below the MCL. It is reiterated that in accordance with
convention, the burden of truth falls on the alternative hypothesis, while the null is assumed
to be true until convincing evidence shows otherwise.

The evidence used to test the null hypothesis comes in the form of field data. After
the field data is collected, processed, and used to inform modeling predictions, the decision
to either accept or reject the null hypothesis is made. The criteria for this decision are
based on the probability that the null hypothesis is true, and how that probability compares
to a predefined level of significance. The level of significance is subjective and should be
determined by regulators and policy makers based on the relative consequences associated
with the null hypothesis.

This decision making process leads to four possible outcomes: correctly accepting or
rejecting the null, and erroneously accepting or rejecting the null (see Figure 3.2). The
possible errors are classified as Type I, or alpha, error which is erroneously rejecting the
null, while Type II, or beta, error which is erroneously accepting the null. Since the null
hypothesis represents the non-desirable, or risk-posing state in the context of risk assessment,
Type II error represents being overly conservative, while Type I error represents assuming
safety when the system is in reality not safe. Without sufficient evidence to reject the null
hypothesis, the fallback assumption is to accept it.

3.4 Field Campaign Design

Field data plays a critical role in characterizing the site under consideration. In general,
field data provides information about the conceptual model, boundary conditions, the phys-
ical parameters of the model and their statistical distributions and spatial structures. Here,
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Figure 3.2: Four possible outcomes of hypothesis testing. These four possibilities stem from
the binary nature of both the true state of the of the system being modeled and the conclusion
which is made after making inferences and modeling.
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we use the term field data to refer to results from in situ procedures as well as laboratory
procedures using samples obtained in situ. Information from e.g. maps and satellite data
can also be useful in many applications, but in this context is considered prior information.
The processes of assimilating field data into models can be complex, and the resulting un-
certainty can be difficult to predict because it stems from measurement errors and uncertain
parameter estimates and manifests in the resulting EPM prediction. Another challenge is
that different types of measurements provide different types of information and at different
scales. Furthermore, is has been shown that information needs vary with different EPMs
(de Barros et al., 2012). These challenges obfuscate the process of designing field campaigns
that best balance cost with prediction accuracy.

Optimal field campaign design is the design which can best balance economic, logistical,
and practical constraints with modeling and prediction accuracy. The former can depend on
many factors and is not the focus of the present study. With the framework of hypothesis
testing, we can objectively and quantitatively assess and predict the effectiveness of field data
in meeting decision making goals. In theory, uncertainty would decrease with increasing field
data. However, this relationship is neither linear nor continuous, due to practical constraints.

Thus, given some proposed field campaign design, our aim is to test the design, where
the criteria is simple: will the proposed design enable a justifiable decision? Again, we
conceptualize this as a test of hypotheses. The undesirable scenario is our null hypothesis:
the field campaign is inadequate to enable such a decision. Our desirable scenario is the
alternative hypothesis: the field campaign design will enable a defensible decision. Again,
without convincing evidence we accept the null hypothesis, since the burden of proof rests on
the alternative, which in this context means that we assume the field campaign is inadequate
unless we can convincingly demonstrate that it is adequate.

It is emphasized that this design framework is not intended to replace the need for locally
experienced experts in field campaigns. Experience and intuition plays a vital role in the ini-
tial design of the proposed field campaigns since this framework does not actually design field
campaigns. What this framework provides is a systematic, formal way to determine if any
given campaign design will meet the needs of decision makers, better enabling practitioners
to meet information needs while minimizing costs and meeting other constraints.

3.5 Communication of Uncertainty

There are multiple steps in the process by which field data is used to make predictions
of EPMs. First, field data and prior information are used to estimate physical parameters
(e.g. hydraulic conductivity), as well as parameters describing their patterns of spatial
variability (e.g. autocorrelation length scales). With these parameter estimates, numerical
models are used to predict the relevant EPMs. Depending on the specific application, either
of these processes may need to be broken down further into subprocesses, all of which are
subject to uncertainty. Significant research has been devoted to developing methods for
quantification of this uncertainty (e.g. Rubin (2003)), and is not the focus here. As pointed
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out by Höllermann and Evers (2017), these measures of uncertainty are not always useful to
decision makers. Instead, the focus of decision makers tends to be on risks associated with
the possible outcomes of decision making.

Risk in decision making is determined by the probability of making an erroneous decision
and the consequences of such errors. Assessing the consequence of such errors can be a
challenging task, highly dependent on the specific application, and not the focus of this
paper. What the framework presented in this paper provides is a means of aggregating
uncertainty from each step in producing predictions into a simple, quantitative description of
the probability of erroneous decisions. In this way, the framework simplifies communication
of uncertainty between hydrogeologists, water resources managers, and other stakeholders.
Instead of focusing on process uncertainty, model uncertainty, or parametric uncertainty,
these uncertainties are aggregated into a description of risk.

3.6 Defensibility of Decisions

Goode and Evans (2007) describe the benefits of using the hypothesis testing framework
in the context of biotechnology development and Food and Drug Administration regulations.
While complete certainty regarding the safety and efficacy of a new product is impossible to
obtain, approvals must be granted or denied nevertheless. Formulating and testing hypothe-
ses regarding these considerations provides a rational method for communication of these
uncertainties and making a decision in light of them.

The challenges in water resources management are similar: complete certainty is impos-
sible to obtain, but decisions must still be made and, ultimately, justified and defended.
Further complicating this requirement, as noted above, is that decisions must be defended
to various stakeholders, many of whom are not trained in hydrogeological sciences. While
use of the hypothesis testing framework does not guarantee a correct decision 100% of the
time, what it does enable is transparency in the decision making process. Instead of making
a decision regarding water supply while speculating about how parameter or model uncer-
tainty may affect the outcome, decision makers are able to make decisions while knowing
precisely the probability that they may be wrong. In other words, use of hypothesis testing
shifts discussion and debate from whether or not the correct decision was made to with what
level of certainty was the decision made.

The use of hypothesis testing does not serve as a substitute for judicious design of field
campaigns, formulation of conceptual models, and validation of assumptions. Nor does it
prevent the documentation and review of all assumptions made, models used, and calcula-
tions executed throughout the process. Utilization of hypothesis testing allows all of this
but in addition enables simple description of the aggregated uncertainty.

Given regulations which mandate certain levels of acceptable risk for given applications,
practitioners and managers have a straightforward way of ensuring and demonstrating com-
pliance with such regulations. Therefore, even if a decision is made which is later shown to
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be erroneous, the decision is defensible if it can be shown that it was made under acceptable
conditions.

described in subsection 3.1. Presented first is formal definition and testing of hypotheses
in the context of water resources decision making, followed by the testing of a field campaign
design to ensure that it enables such a test.

3.7 Hypothesis Testing in Water Resources Decision

Making

This subsection describes how defensible water resources management decisions can be
made in light of uncertainty of all kinds: measurement error, parametric uncertainty, statis-
tical model uncertainty, and conceptual model uncertainty. The framework here can be used
in a situation when any EPM is being predicted, using any statistical formulation as well as
any conceptual model or combination of potential conceptual models.

Environmental Performance Metrics and the “Critical Range”

We start by considering a scenario where some water resources management, regulation,
or policy decision must be made based on some binary outcome, or the answer to a yes/no
question. Examples could be: will contaminant concentration at a water supply well exceed
the MCL? Will a contaminant arrive at a water supply well before it degrades? Answering
each of these questions hinges on predicting an EPM but in a binary state, i.e. is the EPM
in the “critical range”. The “critical range” is the range of values of the EPM which would
pose a problematic or dangerous condition, e.g. concentration above the MCL or arrival
before degradation. With this, we define the risk indicator variable I as 1 if the EPM is
within the critical range (i.e. the risky scenario), and 0 outside of the critical range (i.e. the
desirable scenario):

I =

{
1 if EPM ∈ EPMcritical

0 if EPM /∈ EPMcritical

(3.1)

I being equal to one represents the scenario which poses danger. With this indicator
variable we define the null and alternative hypotheses:

HI
0 : I = 1 (3.2)

HI
a : I = 0 (3.3)

where HI
0 is the null hypothesis, and HI

a is the alternative hypothesis, with the superscript
I indicating that risk indicator I is the subject of these hypotheses. Again, it is emphasized
that HI

0 represents the scenario which poses danger (e.g. water supplies are exposed to
contamination), while HI

a represents the “desirable” scenario (e.g. water supplies are safe
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from contamination). In conformity with the classical hypothesis testing, HI
0 is the fallback

assumption, which is accepted by default in absence of evidence pointing to it being false.
The burden of proof falls on HI

a , which must be supported by convincing evidence before
it is accepted. This aligns with safe water resources management–if the safety of our water
supply is in question, we remain suspicious until we can reliably demonstrate that it is in
fact safe.

The binary nature of the hypotheses and the decision making leads to four possibilities
based on both what is actually true as well as what we determine to be true: 1) correctly
accepting HI

0 , 2) correctly rejecting HI
0 , 3) erroneously rejecting HI

0 (Type I Error), and 4)
erroneously accepting HI

0 (Type II Error), as shown in Figure 3.2.

3.8 Level of Significance

Given the hypotheses above and the idea that we only reject H0 if we have convincing
evidence otherwise, the question arises: how “convincing” must the evidence be? This ques-
tion leads us to defining a level of significance, denoted by α. Given α, we reject H0 only if
the probability of H0 being true is less than α, and accept it otherwise:

accept HI
0 if Pr[I = 1] ≥ α (3.4)

reject HI
0 if Pr[I = 1] < α (3.5)

It is worth noting that α is not determined by any engineering calculation or modeling
prediction. Rather, α should be determined by regulation or policy to strike a balance
between accepted levels of uncertainty and characterization costs, and is often defined as
0.01 or 0.05. If the consequences of making Type I error are relatively high, then a relatively
low value of α should be used, and vice versa.

3.9 Field Data

After field data g is collected we decide to accept or reject the null hypothesis based on
the probability that the null hypothesis is true, Pr[I = 1|g] = 〈I|g〉 and the acceptance
criterion, α.

Dg =

{
1 if 〈I|g〉 ≥ α (accept HI

0 )

0 if 〈I|g〉 < α (reject HI
0 )

(3.6)

The field data vector g can contain measurements of any type. Depending on the EPM
under consideration, the amount of information available about the site, and the type of
measurements contained in g, computation of 〈I|g〉 can involve several steps. The steps can
include distinguishing between alternative conceptual models, inferring geostatistical param-
eters of the relevant variables (e.g. hydraulic conductivity) as well as simulation of whichever
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processes are necessary, determined by the EPM under consideration. If uncertainty about
〈I|g〉 is too high, more field information can be obtained to reduce such uncertainty.

The main difficulty in planning field campaigns, then, is evaluating the effectiveness of
measurements before they are even taken. In light of this, we must treat the measurement
values probabilistically. We consider NG proposed field campaign designs Gj; j = 1, ..., NG,
where each of the NG alternatives specifies the quantity, types, and spatial locations of
measurements to be taken. Thus, the field data gj is considered a realization of the random
variable Gj. To test the adequacy of any given campaign design G, we start by defining the
indicator variables φgα and φgβ as

φgα =

{
1 if Dg = 0 ∩ I = 1
0 otherwise

(3.7)

φgβ =

{
1 if Dg = 1 ∩ I = 0
0 otherwise

(3.8)

where φgα = 1 indicates the occurrence of Type I error, and φgβ = 1 indicates the occurrence
of Type II error. We can begin to summarize the effectiveness of G using the probabilities
of occurrence of each type of error, Pr[φGα = 1] = 〈φGα 〉 and Pr[φGβ = 1] = 〈φGβ 〉. With these
values, we can define the total decision risk

RG = wα〈φGα 〉+ wβ〈φGβ 〉 (3.9)

where wα and wβ are coefficients selected to quantify the relative significance of Type I and
Type II errors. With the decision risk RG, we can express our null and alternative hypotheses
regarding the field campaign design G

HG
0 : RG ≥ Rcrit (3.10)

HG
a : RG < Rcrit (3.11)

where Rcrit is the maximum allowable decision risk and the superscript G indicates that these
are hypotheses regarding the field campaign design G. In words, HG

0 indicates that G is not
adequate to ensure an appropriate test of HI

0 on which our water resources management
decision depends. The alternative hypothesis HG

a indicates that the design G is indeed
adequate to enable defensible decision making.

In general, Type I error is more consequential than Type II error because Type I error
indicates falsely assuming safety of water supplies while Type II error indicates being overly
conservative. Thus in many cases we may only be concerned with Type I error, and wish to
show that the probability of Type I error is below α. In this case, which is the focus of the
present work, wα takes a value of 1, wβ takes a value of 0, and Rcrit is equal to α. Thus,
3.10 can be expressed as

HG
0 : 〈φGα 〉 ≥ α (3.12)

HG
a : 〈φGα 〉 < α (3.13)
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where α is the level of significance defined above, and 〈φGα 〉 is the same as previously defined.
In words, this null hypothesis HG

0 states that the field campaign design G is inadequate to
ensure a test where the probability of Type I error is less than α. The alternative hypothesis,
for which we hope to provide evidence, states that G will indeed provide enough information
to ensure an adequate test of HI

0 .
The framework above formalizes the goal of our field campaign design: to enable de-

fensible decisions. As mentioned in previously, making decisions based on predictions of
complete certainty is impossible. In absence of complete certainty, a formal method such as
this is beneficial for water resources managers and regulators, as it allows for transparent
handling of uncertainty: the regulators can define the accepted level of uncertainty (α) for
any number of scenarios, and practitioners can formally justify decisions made in terms of
how much field data to collect and decisions ultimately made.

3.10 General Procedure

Presented in this subsection is the general method to test the hypotheses presented by
4.4. Simply put, this is done by simulating an ensemble of physically plausible baseline fields,
and then testing the ability of G to enable successful decisions.

Simulation of Baseline Fields

We start by generating an ensemble of baseline fields, Ỹ b
i , i = 1, ..., NY , where each

Ỹ b
i is a field of all parameters necessary to compute the EPM of concern. The NY fields

together form an ensemble considered to represent the entire range of physically plausible
possibilities of the site under consideration. One example could be simulating spatially
variable hydraulic conductivity and/or porosity in order to simulate flow and transport
in an aquifer. The baseline fields can be generated conditional to any knowledge state,
ranging from uninformative prior distributions based on ex situ information to conditional
distributions based on in situ data. The framework, in general, allows for consideration of
competing conceptual models, which may necessitate the generation of multiple ensembles
of baseline fields.

In many examples, prior information comes in the form of statistical distributions for
parameters of Space Random Functions (SRFs). In this case, it is necessary to first generate
an ensemble of these parameters, along with an ensemble of baseline fields for each of these
parameter sets.

Given the ensemble of baseline fields Ỹ b, we use each baseline field Ỹ b
i for two purposes:

simulating the baseline EPM, and simulating the field campaign and resulting decision mak-
ing process.
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Figure 3.3: Conventional process for characterization, modeling, prediction, and decision
making in hydrogeology and water resources management. Prior Info refers to geological
descriptions of the site along with ex situ data from similar sites. Data Acquisition Design
refers to the specification of the type, quantity, and location of field measurements to be
taken and Data refers to the information obtained from such measurements. Decision criteria
refers to the threshold value of the EPM being predicted (e.g. MCL), as well as the level
of significance. Inverse modeling refers to whichever process by which the parameters of the
site are inferred using the data. Forward modeling is the process by which numerical models
are used to predict EPM(s) using the information obtained from Inverse Modeling. Finally,
a decision regarding the management of water resources is made.
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Figure 3.4: Process for characterization, modeling, prediction, and decision making using
the framework presented in this paper. First, all steps leading up to and including final
decision making are simulated with an ensemble of baseline fields (synthetic realities), which
enables assessment of the field campaign design before data is collected. The criteria for
assessment of the data is the probability that the data collected will lead to an erroneous
decision. If this probability is low enough, then the steps are executed according to plan.
This framework enables the simple communication of uncertainty by allowing decisions to be
communicated in terms of the probability that an incorrect decision was made. While every
step of the process is open for review and scrutiny, the framework allows the aggregation
of uncertainty from each step into a simple description (risk) which is more useful to water
resources managers than e.g. descriptions of uncertainty in variogram parameters. Such open
communication of uncertainty in decisions improves the defensibility of decisions because it
moves discussion from what may or may not be correct to what level of risk can be considered
acceptable, which is defined outside the realm of engineering design.
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Synthetic Truth

On each baseline field Ỹ b
i , the value of the EPM of concern is computed and denoted

EPMi. Depending on the application, computing the EPM may involve any number of
hydrological, geochemical, biological, etc. models. In other words, EPMi represents the

value of the EPM which would occur if Ỹ b
i were a true representation of the site under

consideration. Thus, we can define for each baseline field the baseline indicator variable
Ibi , i = 1, ..., NY as

Ibi =

{
1 if EPMi ∈ EPMcritical

0 if EPMi /∈ EPMcritical

(3.14)

which indicates, if baseline field Ỹ b
i were a true representation of the site under consideration,

if HI
0 or HI

a would be the correct hypothesis.

Simulated Field Campaigns and Decision Making

The second use of each baseline field in the ensemble is to simulate the field campaign and
the resulting decision making process. Simulating the field campaign G involves selectively
collecting whatever information would be gathered from campaign G, assuming the baseline

field Ỹ b
i to be true, resulting in simulated field data gi. In the case where the information

measured is directly the quantity (or one of the quantities) simulated in Y b
i , this process

involves simply selecting the values corresponding to the grid points corresponding to the
measurement locations specified by G. In cases where G calls for e.g. pumping tests, further
modeling may be necessary to simulate the information that would be collected. After the
simulated field data gi is collected, we move on to simulated decision making that would
result, using only the information given by gi.

In most cases, simulated decision making based on gi involves many steps, including
inferring SRF parameters, distinguishing between conceptual models, forward modeling,
etc. The framework allows for any type of conceptual model or combination of conceptual
models, as well as any form of inverse modeling for model or parameter inference. The details
of the inverse and forward modeling are to be selected for each application, and thus not the
subject of discussion here.

After inferring any information about conceptual or statistical models (using only infor-
mation from gi), conditional simulation of EPMs is undertaken. Here, it is noted the double
usage of field measurements: both for inferring geostatistical (global) parameters, as well as
conditioning points in forward modeling. In most cases, this involves simulating an ensemble
of conditional fields Ỹ c

k , k = 1, ..., Nc, where the superscript c denotes that the field is con-
ditional to both the parameters inferred using gi, as well as the measured values themselves.
Numerical models are then executed with this ensemble of conditional fields. Again, de-
pending on the application, any number of hydrological, geochemical, biological, etc. models
may be necessary to compute the relevant EPM. With this ensemble of conditional EPM
predictions, we obtain an ensemble of conditional risk indicator variables Icik; k = 1, ..., Nc,
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determined by the same relationship as equation (3.14). With this ensemble, we can compute
the probability that the null hypothesis is true, conditional to the simulated field data as:

Pr[I = 1|gi] = 〈I|gi〉 =

∑Nc
k=1 I

c
ik

Nc

(3.15)

After computation of 〈I|gi〉, the decision making process can be simulated by the same
criteria given by (3.6), resulting in Dg

i . This simulated decision Dg
i represents what decision

we would have made, assuming that Y b
i were the real baseline field, and that the only

information we knew about it was gi, or the measurements specified by G.
Since the true value of the EPM (and thus the truth regarding HI

0 and HI
a) is known

about this baseline field (equation 3.14), we can now compare the simulated decision about

the field to the true nature of the site. Now, for each baseline field Ỹ b
i , i = 1, ..., NY , we

compute φgαi and φgβi as:

φαi =

{
1 if Ibi = 1 ∩Dg

i = 0

0 otherwise
(3.16)

φβi =

{
1 if Ibi = 0 ∩Dg

i = 1

0 otherwise
(3.17)

In other words, if Ỹ b
i were the actual field, and the field data gi were the only information

we knew about it in addition to prior information, would we make the correct decision? φgαi
is equal to one if Type I error would have occurred, and φgβi is equal to one if Type II error
would have occurred.

3.11 Calculation of Error Probabilities

After following the procedure described by 3.10, 3.10, and 3.10 on all NY baseline fields,
we can compute 〈φGα 〉 by equation (3.16) as

〈φGα 〉 =

∑NY
i=1 φ

g
αi

NY

= q (3.18)

Where q = 〈φGα 〉 is used as the test statistic to test the null hypothesis presented by 4.4 as

reject HG
0 if q ≤ α (3.19)

accept HG
0 if q > α (3.20)

where rejection of HG
0 indicates that the field campaign design G is sufficient for testing the

hypothesis HI
0 , and acceptance of HG

0 indicates the opposite. This process is summarized by
the Figures 3.5 and 3.6. Figure 3.6 describes the treatment of a single baseline field, while
3.5 describes the treatment of the ensemble of baseline fields.
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3.12 Conditional Error Probabilities

Other metrics for analyzing the effectiveness of G is the conditional error probabilities,
PG
α and PG

β . PG
α is the probability that Type I error occurs, conditional to HI

0 being true.
Similarly, PG

β is the probability that Type II error occurs, conditional to HI
a being true.

These quantities can be calculated by

PG
α =

〈φGα 〉
〈I〉

(3.21)

PG
β =

〈φGβ 〉
1− 〈I〉

(3.22)

and also provide information regarding the relationship between field data and decision
making. While conditional error probabilities (PG

α and PG
β ) are usually the focus in classical

hypothesis testing, in water resources management it makes sense to focus on the error
occurrence probabilities (〈φGα 〉 and 〈φGβ 〉). This is because in some cases, it may be practically
impossible to predict an event of extremely low probability (e.g. a very early arrival time).
In this scenario, the probability of occurrence would be very low, but the conditional error
probability would be very high due to its conditional nature. In other words, if the risk-
posing event has an exceptionally low probability of occurrence, no amount of field data will
enable the managers to predict this event, which would prevent any course of action from
being acceptable as indicated by conditional probabilities. This effect is demonstrated in
section 4.4.

Analogy to Classical Hypothesis Testing

An analogy to hypothesis testing in quality control helps to demonstrate the similarities
and differences between this framework and classical hypothesis testing. A manufacturer
buys chips from a supplier, who claims that no more than 10% of the chips are defective.
To test the supplier’s claim the manufacturer defines the null hypothesis to be the supplier’s
claim, with the alternative hypothesis indicating that the claim is false. This definition
of hypotheses follows convention as the manufacturer seeks to test the supplier’s claim, as
classical hypothesis testing is a test of the null. The hypotheses are defined as below, in
terms of the proportion q of defective chips and q0 = 0.1, the value claimed by the supplier.

H0 : q ≤ q0 (3.23)

Ha : q > q0 (3.24)

The manufacturer tests n chips, of which m are found to be defective. The test statistic
q̂ = m/n, is computed, and H0 is either accepted or rejected based on q0 and q̂, along with
whatever acceptance criteria the manufacturer selects.

In water resources management, the “chip” to be tested is the site being modeled, and the
chip is defective if the EPM is in the critical range, i.e. the “risky” scenario exists (I = 1).
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Figure 3.5: Flowchart of overall procedure computing error probabilities starting with prior
information about geostatistical parameters, simulation of baseline fields and decisions, as
well as computation of error probabilities. In many cases, simulation of an ensemble of
geostatistical parameters is necessary in order to create an ensemble of baseline fields which
accoutns for this variability. A more detailed description of the treatment of a single baseline
field is provided by Figure 3.6.

The difference is that in water resources management, there is only one chip. Through the
field and modeling campaigns we seek to determine if it is defective or not, rather than
determining a proportion of many chips which are defective. The challenge, however, is
that the chip cannot be directly tested for defectiveness. Instead, we collect information
about the production of the chip (field data) and simulate the production of many chips
(fields) matching the characteristics determined from the data. Then, the simulated chips
(fields) are tested for defectiveness (via numerical modeling). Then, the test statistic is the
proportion of simulated chips which were defective. This test statistic can be interpreted as
the probability that the one real chip (field) is defective.

The information about the production of the chip corresponds to the collected field data,
and the simulated production and testing of chips corresponds to conditional simulation of
the site and solving the relevant models for the EPM of concern.

Another difference is that there is no supplier with a claim about the proportion, q0, but
rather we have the critical value of the EPM, which is defined by considerations external to
the system being modeled. For example, maximum allowable concentration would be defined
by regulation. Since field data can be costly to acquire, the goal of the manager is then to
carefully select the appropriate amount and type of information which will most effectively
enable decision making about the site.

3.13 Summary

This chapter has introduced a framework for rational, risk-based decision making in water
resources management, policy, and regulation and field campaign design. The framework
explicitly acknowledges that absolute certainty is impossible and enables straightforward
management of uncertainty and risk in water resources decision making. Regulators and
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Figure 3.6: Flowchart describing the computational procedure for each baseline field. For a
descripiton of the ensemble baseline fields, see Figure 3.5.

policy makers are able to define, in whatever way is deemed appropriate, an acceptable level
of risk in management decisions. Managers and practitioners are able to simply demonstrate,
even if the wrong decision was reached, that all necessary steps were taken to make a decision
meeting the uncertainty levels deemed acceptable.

The framework presented here is general–it can accommodate any number of hydro-
geological, biological, geochemical, etc. conceptual models and be used with any type of
field data acquisition methods and inverse modeling methods. It is reiterated that a correct
decision is not guaranteed, but rather enables demonstration that a decision is justifiable.
Similarly, the method does not design a field campaign–rather, that is left to practitioners
with experience in field methods and local hydrogeological conditions. What the framework
does is allows practitioners to take a proposed field campaign design and determine whether
or not this design will provide enough information to enable successful decision making.

Another beneficial feature of the framework is that it allows for simple communication of
uncertainty and risk. Instead of focusing on geostatistical model uncertainty or parametric
uncertainty or other concepts unfamiliar to stakeholders outside of hydrologists, the frame-
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work allows for simple communication of uncertainty in the ultimate EPM predictions on
which the management decision depends.
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Chapter 4

Case Study: Contaminant Arrival
Time

The framework was applied in a synthetic case study where the goal is to predict the
arrival time, τ , of a contaminant plume in an aquifer. Specifically, the risky scenario would
arise if the contaminant plume arrives at a target before a critical amount of time, τcrit,
passes. This scenario could arise in many applications, such as evaluating locations for
waste disposal sites or in assessing the risk posed by a plume to a nearby supply well. Since
early arrivals are of concern, the indicator variable is

I =

{
1 if τ ≤ τcrit

0 if τ > τcrit
(4.1)

which allows us to define the null and alternative hypotheses:

HI
0 : I = 1 (4.2)

HI
a : I = 0 (4.3)

as indicated in Chapter 3. In this case study, only Type I error is of concern, so the hypotheses
regarding the field campaign designs are given by

HG
0 : 〈φGα 〉 ≥ α (4.4)

HG
a : 〈φGα 〉 < α (4.5)

and the level of significance α is 0.05.

4.1 Statistical & Physical Setup

Aquifer flow was simulated in a 2-D planar (x, y) rectangular domain, with constant head
boundary conditions along the two boundaries parallel to the y-axis, and no flow conditions
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Scenario Mean of Log-
conductivity µY

Variance σ2
Y Integral Scale IY

#1 (deterministic) -5.5 0.55 4.5
#2 Uniform[-6, -5] Uniform[0.1, 1] Uniform[3,6]
#3 Uniform[-7, -4] Uniform[0.1, 1] Uniform[3,6]

Table 4.1: Three prior information scenarios for the geostatistical parameters µY , σ2
Y , and

IY used in the case study.

along the boundaries parallel to the x-axis. Flow is uniform-in-the-average in the positive
x-direction. Porosity, n = 0.10 was assumed known and homogeneous. We assume the
contaminant to have originated from an instantaneous point release, where the time and
location of the release are assumed to be known.

Steady-state groundwater flow was modeled by

∇ · [K(x)∇H(x)] = 0 (4.6)

v(x) = ∇H(x)/n (4.7)

and unconditional contaminant arrival time was computed with the methods of Schlather
et al. (2017) and Pollock (1988). Conditional contaminant arrival times were computed with
the methods described by Rubin (1990) and Rubin (1991).

A set of field measurements were taken to characterize the natural logarithm of hydraulic
conductivity, Y = ln(K), which was modeled as a SRF with a multivariate Normal distribu-
tion and exponential covariance. The measurements were used to estimate the parameters
θ = (µY , σ

2
Y , IY ) where µY , σ2

Y , and IY represent the mean, variance, and integral scale,
respectively. The measurements were also used for conditioning points in forward modeling.

To investigate the effect of prior information, the case study was executed with three
alternative scenarios regarding prior distributions. In scenario one, the SRF parameters θ
were assumed to be deterministically known with (µY , σ

2
Y , IY ) = (−5.5, 0.55, 4.5). In this

scenario, no inference of θ was necessary, and the measurements served only as conditioning
points. In scenarios two and three, all three parameters were assumed to be distributed
uniformly and independently of each other. In scenario two, µY is distributed uniformly
in the range [−6,−5]. In the second scenario, µY is distributed uniformly in the range
[−7,−4]. In both scenarios 2 and 3, σ2

Y and IY are distributed uniformly in the ranges [0.1, 1]
and [3, 6], respectively. The three prior information scenarios were chosen to range from
deterministic knowledge (first scenario), to a relatively informative probabilistic description
(second scenario), to a relatively uninformative probabilistic description (third scenario) of
the SRF parameters. This is to allow a closer examination of the relationship between
parametric, travel time prediction, and decision making accuracy.
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4.2 Field Campaign Setup

Field campaigns to be tested were designed with n = 4, 8, 16, 32 measurements. For each
n, two alternative designs were tested. One configuration had measurements spread through-
out the domain and covering various lag distances with the idea of improving estimates of
the SRF parameters. The other configuration had all measurements located in the likely
area of the travel path. The likely area of the travel path was determined by simulating an
ensemble of particle paths conditional only to the prior information, and lateral displacement
was plotted versus distance from the point source, and results are shown in Figure 4.1. The
locations of the measurements for all field campaign designs Gj, j = 1, ..., 8 are shown in
Figure 4.2.

4.3 Monte Carlo Methodology

In accounting for uncertainty in θ, Latin Hypercube integration was used in order to
reduce the computational burden. For each realization of θ, traditional Monte Carlo sampling
was used to simulate the baseline fields from the distribution f(Y |θ).

Baseline Fields and Simulated Field Campaigns

For each baseline field, the travel time was computed deterministically and NY values of
Ib were computed via (5.1). After recording the deterministically known travel time, the field
campaign was simulated by recording the values of hydraulic conductivity at the locations
specified by the field campaign design. After this simulated field data g was collected, the
measurements were used to compute the maximum a posteriori value for the geostatistical
parameters, similar to the maximum likelihood method presented by Kitanidis and Lane
(1985), but with bounds provided by the prior distributions. After θMAP was computed,
the conditional distribution of travel time f(τ c|θMAP , g) was computed using semi-analytical
particle tracking (Rubin, 1991).

Simulated Decision Making

After computing Nc realizations of τ c, Nc realizations of Ic were computed by (5.1) and
in turn, 〈I|g〉 was computed via (3.15). In turn, HI

0 was accepted or rejected by (3.6).
After repeating on all baseline fields and for all field campaign designs, HG

0 was accepted or
rejected for each campaign based on (3.19) and (3.20).

4.4 Case Study Results and Discussion

This section presents results of the case study described in this Chapter. The results
focus on the effects of the critical value of travel time, measurement configurations, and
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Figure 4.1: Area of travel paths illustrated by plotting the 50% and 90% quantiles of lateral
displacement versus longitudinal displacement. The contaminant source is indicated by the
red square, and the green rectangle indicates the control plane defining the environmentally
sensitive target. The travel path quantiles were computed by simulating using unconditional
particle trajectories.
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Figure 4.2: The 8 campaign designs G to be tested. Left-hand-side (subscript A): measure-
ments concentrated along travel path. Right-hand-side (subscript B): measurements spread
throughout the domain. N = 4, 8, 16, 32 corresponding to subscripts 1, 2, 3, 4, respectively.
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parametric uncertainty, both a priori and a posteriori.

Effect of τcrit

The results from the case study are shown in several figures. Due to the reasons described
above, we focus on the behavior of 〈φGα 〉 and PG

α , though analogous conclusions can be made
regarding 〈φGβ 〉 and PG

β . The first thing to notice is that, regardless of the quantity or spatial
configuration of measurements, 〈φGα 〉 and PG

α are highly sensitive to τcrit, as shown in Figures
4.4 and 4.5. In turn, whether or not HG

0 can be rejected and G deemed adequate is dependent
on τcrit. Figure 4.3 shows for each measurement configuration and each prior information
scenario, the values of τcrit for which HG

0 can be rejected.
For large and small values of τcrit, we see 〈φGα 〉 approaching zero, for all measurement

configurations, indicating very low occurrence of Type I error in these regions. To understand
why, we examine the value of 〈I〉 for these regions, shown in Figure 4.5. By (5.1), 〈I〉 as a
function of τcrit corresponds directly to the cumulative distribution function of arrival time.
Thus, Type I error is very unlikely for relatively small values of τcrit due to the low probability
of HI

0 being true in this region. For relatively large values of τcrit, on the other hand, Type I
error is unlikely due to the relatively small probability that HI

0 is true and is thus easier to
correctly predict. Where Type I error is more likely, then, is where HI

0 is somewhat likely to
be true, but more difficult to correctly predict–the intermediate portion of the cdf of arrival
time.

The behavior of 〈φGα 〉 and 〈I〉 with varying τcrit explain the behavior of PG
α , recalling

the definition (3.21). Figure 4.5 shows graphically the relationship between 〈I〉, 〈φGα 〉, and
Pα and also highlights the difference between using occurrence probability and conditional
probability to describe the effectiveness of field data. Using conditional probability, it is
impossible to have a field campaign that would meet uncertainty criteria, while using oc-
currence probability takes into consideration the very unlikely nature of the earliest arrivals
and does not penalize the field data for not enabling prediction of these events.

As we have seen, the effectiveness of a field campaign and the success of decision making
is highly dependent on the value of τcrit. The practical implication of this result is that for
effective, goal-oriented characterization, the field campaign should be tailored to not just the
EPM to ultimately be predicted but also to the critical value of this EPM on which decision
making depends.

Effect of Measurement Configurations

Figures 4.7 and 4.8 show the root mean square error (RMSE) resulting from all of the
SRF parameter estimates for all baseline fields for all measurement configurations. The pa-
rameter estimates improve with increasing quantity of measurements. For any given number
of measurements, the error in parameter estimates was less for the measurements spread
throughout the domain than for the measurements focused along the travel path.
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Figure 4.3: Rejection regions with respect to τcrit (non-dimensionalized). “Reject” means
that HG

0 was rejected in favor of HG
a . In other words, rejection indicates that the specified

field campaign design is sufficient. The rejection region for each campaign corresponds to
the values of τcrit for which 〈φGα 〉 exceeds α, as indicated by Figure 4.4. The region for which
HG

0 is accepted is indicated by absence of shading. Prior Information Scenarios 1,2, and 3,
respectively. (Scenarios described in section 4.1)
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Figure 4.4: 〈φα〉 resulting from all 8 campaign designs, plotted against τcrit, nondimension-
alized by the travel length and the average velocity. As we can see, 〈φα〉 approaches zero
as τcrit appraoches zero, and also as τcrit gets large, for all measurement configurations. We
also see that increasing the quantity of measurements improves performance, with diminish-
ing marginal returns. Furthermore, for a given quantity of measurements, the configuration
with measurements focused along the travel path (A) performed better than the configura-
tion with measurements spread throughout the domain (B). Prior Information Scenarios 1,2,
and 3, respectively. (Scenarios described in section 4.1)
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Figure 4.5: PG
α , 〈φGα 〉, and 〈I〉 plotted against τcrit, which is nondimensionalized by the travel

path length and the average velocity. 〈I〉 coincides with the cumulative distribution function
of τ due to the definition of I (equation 5.1). 〈φGα 〉 represents the probability that HI

0 is
true and HI

0 is rejected, which happens most often when τcrit is near 〈τ〉. PG
α , on the other

hand, is defined as the probability that HI
0 is rejected, conditional to HI

0 being true, and

is thus equal to 〈φα〉
〈I〉 . Due to this, Pα approaches one as τcrit approaches zero. What this

indicates is that as τcrit decreases, the probability of HI
0 being true approaches zero. As this

event becomes more unlikely, it becomes nearly impossible to predict. Thus, the occurrence
probability 〈φGα 〉 remains small while the conditional probability PG

α becomes large. Prior
Information Scenarios 1,2, and 3, respectively. (Scenarios described in section 4.1)
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Figure 4.3 shows the regions, with respect to τcrit, in which HG
0 is rejected for the NG = 8

measurement configurations. Focusing for the moment on prior information scenario 2, we
notice two clear patterns: 1) larger quantities of measurements are adequate (HG

0 is rejected)
for a greater range of τcrit, and 2) given a specific quantity of measurements, the configuration
with measurements focused along the travel path (A) outperforms the configuration with
measurements spread throughout the domain, despite worse performance in estimating the
SRF parameters.

While summarizing a field campaign design in terms of rejection of HG
0 or not is a useful

tool for managers and practitioners, a more thorough description of the performance of a
campaign can be provided by analyzing 〈φGα 〉, which indicates the probability that Type I
error will occur. For prior information scenarios 1 and 3, Figure 4.3 does not provide much
information regarding the relative performance of the different measurement configurations,
so we instead look to Figure 4.4. For scenario 1, there is little difference between the behav-
ior of the different configurations, stemming from the unrealistic assumption that the SRF
parameters are known deterministically. For the relatively uninformative prior information
(scenario 3), we see the same patterns as for scenario 2: increasing quantity of measure-
ments improves performance, and measurements focused along the travel path are better for
predicting earlier arrivals, despite worsened performance in estimating SRF parameters.

The practical implications of these results, again, are emphatic of the need for goal-
oriented characterization design. Designing field campaign strategies to optimize perfor-
mance in estimating SRF parameters is clearly not the best approach, as it is shown that
improved parameter estimates do not necessarily indicate improved decision making perfor-
mance. In addition to designing field campaigns tailored to predicting a specified EPM (e.g.
arrival time), it is also necessary to take into consideration the critical value of this EPM,
the threshold for decision making.

Effect of Parametric Uncertainty

The differing results from the three scenarios described in section 4.1 highlight the effect of
prior information regarding the SRF parameters in predicting early arrival times. Assuming
the prior information to be correct, a more diffuse prior (Scenario 3) allows a wider range of
τ , which thus increases the range of τcrit for which 〈φGα 〉 is non-zero. Figure 4.5 shows how
the different amounts of prior information affect the behavior of 〈I〉, 〈φGα 〉, and in turn PG

α .
What we see is that a more diffuse knowledge of the SRF parameters (particularly µY ), leads
to a more diffuse fτ (τ), and in turn, a more gradual change in 〈I〉 with respect to τcrit. This
in turn leads to different behavior of 〈φGα 〉, which is better shown by Figure 4.4, which shows
a much wider range of non-zero 〈φGα 〉 for scenario 3, followed by scenario 2 and scenario 1.

One interesting result is that the peak values of 〈φα〉 are higher for the more informative
prior distributions, despite having much smaller ranges of non-zero values. One cause of this
is the bounded nature of the maximum a posteriori parameter estimation method.

Early (relative to Fτ (τ)) arrivals are associated with high permeability (relative to fµY (µY )
values). With a very informative, or deterministically known, prior distribution for µY , the
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conditional distribution fτ (τ |g, θ̂) will change relatively little compared to the unconditional
distribution. With a more diffuse prior fµY (µY ), the inferred value µ̂Y can be estimated to
higher values, thus allowing greater divergence between the unconditional and conditional
distributions of τ , in turn allowing for improved prediction of early arrivals associated with
high-K measurements.

In other words, early arrivals are most often associated with fields which have high per-
meability values along the travel path. If measurements indicate high permeability values,
a less informative prior will cause a greater estimate of µY (perhaps even overestimating),
which improves the chances of correctly predicting the early arrival. The maximum a poste-
riori method may not always be the best method for inverse modeling, but it was selected
for this case study due to its ability to be executed in a completely automated fashion, en-
abling computation on such a large number of baseline fields. What this result highlights,
however, is the value of subjective interpretation of measurements and manual involvement
in inverse modeling. In other words, a fully automated maximum a posteriori inversion fails
to subjectively analyze the field data or perhaps reconsider prior information if field data
casts doubt on its validity. The failure of the method to do this may contribute to these
results. A question for future research would be to investigate how this effect changes with
more sophisticated inversion methods.

Uncertainty in Results

For a sense of the uncertainty in the results, we look at the standard deviation of 〈φGα 〉,
〈I〉, and PG

α , shown in Figure 4.6. What we see is that the standard deviation of both
〈φGα 〉 and 〈I〉 are maximal near the mean arrival time (when τcrit〈v〉/L is near one). The
reason for this is that the majority of actual arrival times is near this value, making it more
difficult to predict the binary outcome given by equation (5.1). On the other hand, the

standard deviation of PG
α is at its peak when τcrit is equal to roughly 0.5 〈v〉

L
, meaning that

the conditional error probability is most uncertain when τcrit is about half of the expected
value of arrival time. The practical implication of this result is that even before simulation
is executed, a rough idea of how difficult the predictions will be can be provided by τcrit, 〈v〉,
and L. If τcrit〈v〉/L is close to zero, then it can be reasoned that HI

0 is unlikely to be true,
but if it is, it will be difficult to detect. Conversely, if τcrit〈v〉/L is much greater than one, it
can be reasoned that HI

0 is likely to be true, and it will be easy to detect.

4.5 Summary

The framework presented in Chapter 3 was demonstrated using a case study in predicting
early contaminant arrival time in an aquifer, and several conclusions were drawn. It was
shown that improved estimates of geostatistical parameters are not necessarily associated
with improved water resources decision making, demonstrating the importance of designing
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Figure 4.6: Standard deviation of I, φα, and Pα, plotted against non-dimenisonalized τcrit.
The figure shows that uncertainty in I and φα is highest when τcrit〈v〉/L is near one, while
uncertainty in Pα is highest for lower values of τcrit. Prior Information Scenarios 1,2, and 3,
respectively. (Scenarios described in section 4.1)
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Figure 4.7: Root mean square error in estimating µY , σ2
Y , and IY resulting from each mea-

surement configuration, for Scenario 2. As we can see, the estimates improve with increasing
number of measurements, and measurements spread throughout the domain (denoted B)
performed better than the configurations with measurements concentrated along the travel
path (denoted A).
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Figure 4.8: Root mean square error in estimating µY , σ2
Y , and IY resulting from each mea-

surement configuration, for Scenario 3. As we can see, the estimates improve with increasing
number of measurements, and measurements spread throughout the domain (denoted B)
performed better than the configurations with measurements concentrated along the travel
path (denoted A).
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field campaigns with the goal of making defensible management decisions, as opposed to
optimal parameter estimates.

It was shown that the amount of field data necessary to make a decision must be deter-
mined on a case-by-case basis. The critical value of the EPM on which the decision depends,
and also the amount of prior information available about the site can significantly affect
the amount of field data which is necessary. This further highlights the importance of goal-
oriented characterization design, which is important in light of the costs associated with site
characterization methods. The methods presented here can be utilized by managers to pre-
vent over-spending on unnecessary amounts of field data and also ensure that measurements
are strategically placed in order to ensure the maximum benefit of the data.
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Chapter 5

Case Study: Increased Cancer Risk

This chapter presents a case study in which the decision making framework presented in
Chapter 3 is demonstrated in an application. The application is chosen to emulate a scenario
where a water resources decision must be made based on whether or not a contaminated
groundwater site poses a risk to the health of a nearby population. The EPM of concern
in this case study is Increased Lifetime Cancer Risk (ILCR). Prediction of ILCR requires
knowledge of the hydrogeological characteristics of the site, toxicological characteristics of
the contaminant, and physiological characteristics of the population.

5.1 Introduction

One reason for concern regarding groundwater contamination is its potential to affect
nearby populations. As noted in Chapter 1, numerous people around across the United
States and around the world rely on groundwater for drinking water. Contaminants can
come from many sources, natural and anthropogenic, and if exposed to humans, can affect
health in many different ways. Many organic contaminants can have carcinogenic effects
on humans (U.S. Environmental Protection Agency , 1997). Guidelines for predicting the
extent to which these effects can increase the risk of a human developing cancer throughout
a lifetime have been presented by the United States Environmental Protection Agency (U.S.
Environmental Protection Agency , 1989). The extent to which a carcinogenic contaminant
increases the health risk of an individual is a function of the amount of the contaminant to
which an individual is exposed and also the toxicity of the contaminant (e.g. de Barros and
Rubin (2008). Groundwater contaminants can be exposed to humans via water pumped from
groundwater wells. In turn, individuals can be exposed to contaminants by either dermal
contact with the contaminated water, inhalation of volatilized contaminants, or by ingestion
(Maxwell et al., 1998a). Thus, the exposure to carcinogenic contaminants is determined by
both the concentration in the water supply wells and also various behavioral components
of the individuals, such as the amount of water ingested. The toxicity of the contaminant
is quantified by a dose-response curve and a slope factor. The slope factor represents an
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estimate of the probability of an individual developing cancer over a lifetime of exposure to a
given contaminant at a given level. These quantities must be estimated for each contaminant,
and are determined based on a combination of data sources, depending on availability. Types
of information which can aid the estimation of the dose-response curve or the slope factor
can be information from epidemiological studies with human data, or toxicological studies
with animal testing or other types of information such as research with cell cultures (U.S.
Environmental Protection Agency , 2000).

In light of threats from groundwater contamination (DeSimone et al., 2014), water re-
sources managers may be tasked with e.g. identifying water sources which will not increase
the local population’s risk of developing cancer or determining whether or not to remediate a
contaminated site. Often these decisions will be made based on whether or not the enhanced
cancer risk of the population will exceed some threshold value, which are determined based
on health effect and established by regulations (U.S. Environmental Protection Agency ,
1989). Given the numerous components that comprise estimation of this risk, computing
enhanced cancer risk can be a challenging task, prone to significant uncertainty (Maxwell
et al. (1998b), de Barros and Rubin (2008)). To reduce the uncertainty in cancer risk predic-
tions, many types of information can be obtained. For example, more information could be
gathered regarding the hydrogeological characteristics, or more research could be devoted to
epidemiological or toxicological laboratory studies to reduce uncertainty in the dose-response
estimations. Given the time and costs associated with this information gathering however,
some strategy which determines the most effective type of information (or combination of
multiple types) can help managers prioritize the information which will best enable success-
ful decision making. de Barros and Rubin (2008), de Barros et al. (2009), and de Barros
et al. (2012) explored this topic and presented methods of determining marginal relative
uncertainty reduction caused by additional hydrogeological and physiological information.
This was done by comparing the reductions of uncertainty in final prediction of enhanced
cancer risk, quantified by either variance or entropy. As an alternative, this Chapter presents
a framework for evaluating proposed data acquisition strategies by evaluating their ability
to enable successful decision making, as presented in Chapter 3.

5.2 Decision Making

The case study is intended to simulate a scenario where some water resources management
decision must be made based on whether or not increased lifetime cancer risk (ILCR), denoted
r, will exceed some threshold value, denoted rcrit. This scenario could arise, for example,
when determining whether or not a contaminated site near a water supply well should be
remediated, or in determining if alternate water supplies should be procured due to threats
from contamination.

To illustrate the use of the proposed decision making framework, we investigate the risk
of exposure to a carcinogenic substance. Therefore, the EPM of interest is ILCR (U.S.
Environmental Protection Agency , 1989). Based on ILCR, r, and its threshold value rcrit,
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the risk indicator variable I is defined as

I =

{
1 if r > rcrit

0 if r ≤ rcrit
(5.1)

where a value of one for I indicates that ILCR indeed exceeds the threshold value, and a
value of zero indicates the contrary.

With the indicator risk variable, the null and alternative hypotheses are defined as before.

HI
0 : I = 1 (5.2)

HI
a : I = 0 (5.3)

ILCR at levels below the critical value is the desirable scenario. In line with the conventions
discussed in Chapter 3, this then forms the alternative hypothesis.

To aid in decision making via reduction in uncertainty, some amount of information is
collected, which is denoted g = {gH , gβ} where gH indicates hydrogeological information and
gβ indicates information regarding toxicity of the contaminant or behavioral or physiological
characteristics of the local population. Provided with this information, the decision to be
made can be formulated in terms of accepting or rejecting the null hypothesis HI

0 . Recalling
the decision criteria from Chapter 3, the definition of Dg remains the same:

Dg =

{
1 if 〈I|g〉 ≥ α (accept HI

0 )

0 if 〈I|g〉 < α (reject HI
0 )

(5.4)

where a value of 1 for Dg indicates that the null hypothesis HI
0 was accepted based on the

information contained in g, and 0 indicates rejection of HI
0 .

Data Acquisition

In this scenario, the goal is to test HI
0 with the defined level of significance α. The

question, as before, is to determine how much information is necessary to appropriately test
HI

0 with sufficiently low risk of making an incorrect decision. To begin, some number of data
acquisition strategies Gi; i = 1, ..., NG are proposed, where upper case G = {GH , Gβ} is used
before the data is collected as it is treated probabilistically. The goal is then to determine,
for each of these strategies, whether the information provided will enable successful decision
making, defined by probability of Type I error being below the level of significance. While
de Barros and Rubin (2008) and de Barros et al. (2012) presented a means for evaluating the
relative effects of hydrogeological versus non-hydrogeological data acquisition, uncertainty
in model predictions was used as a means for comparison. As the previous chapter showed,
reduced uncertainty does not necessarily imply improved decision making so the goal in this
chapter is to evaluate the relative impact of alternative types of information with respect to
decision making.
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The goal, then, is to design a data acquisition strategy which results in a sufficiently low
probability of erroneous decisions. We recall from Chapter 3 the definition of decision risk

RG = wα〈φGα 〉+ wβ〈φGβ 〉 (5.5)

where wα and wβ are weights to be defined based on economic, and political considerations.
The expected values 〈φGα 〉 and 〈φGβ 〉 indicate the probability of occurrence of Type I and
Type II errors, respectively. These indicator variables are defined as

φgα =

{
1 if Dg = 0 ∩ I = 1
0 otherwise

(5.6)

φgβ =

{
1 if Dg = 1 ∩ I = 0
0 otherwise

(5.7)

and can be computed for every baseline field. When averaged over an ensemble of baseline
fields, they indicate the probability of occurrence of these types of errors.

5.3 ILCR Definition

For a carcinogenic contaminant, the ILCR posed to a population r can be modeled as
(U.S. Environmental Protection Agency (1989), Maxwell et al. (1999), de Barros and Rubin
(2008)):

r = 1− Exp[−ADDM × CPFM ] (5.8)

which, for small values of r can be approximated as

r ≈ ADDM × CPFM (5.9)

where CPFM is the metabolized cancer potency factor and ADDM is the average daily
dose (Maxwell et al. (1998a), Maxwell and Kastenberg (1999), de Barros and Rubin (2008)).
In general, the average daily dose is the sum of the quantities metabolized via inhalation,
ingestion, and dermal exposure.

The focus of the present work is ingestion, and thus inhalation and dermal exposure are
neglected and ADDM is given by

ADDM = fmo × Cf ×
IR

BW

ED × EF
AT

(5.10)

where Cf is the flux-averaged concentration at the control plane defining the water supply
area, and is determined by hydrogeological processes. The other parameters represent some
quantity related to the toxicity of the contaminant, the physiological characteristics of the
population, or the behavioral characteristics of the population. These terms are defined in
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Non-hydrogeological parameters

IR Ingestion Rate (l/d)
ED Exposure Duration (y)
EF Daily Exposure Frequency (d/y)
BW Body Weight (kg)
AT Average Expected Lifetime (y)
Sf0 Metabolized fraction of carcinogen
fmo Cancer Potency Factor

Table 5.1: Non-hydrogeological quantities necessary to predict enhanced cancer risk to a
population from a nearby groundwater contaminant plume.

Table 5.1. Each of these parameters may be variable among individuals in the population
and may be uncertain due to lack of characterizing information. Cf can be evaluated as

Cf (xcp, t) =
Q(xcp, t)

Qw(xcp)
(5.11)

where xcp defines the location of the control plane, Q(xcp, t) is the solute flux at the control
plane, and Qw(xcp) is the hydraulic flux at the control plane (e.g. Andricevic and Cvetkovic
(1998)). Thus, ILCR can be computed as

r(t) = β
Q(t)

Qw

(5.12)

where the location xcp of r, Q, and Qw are assumed and not explicitly stated. β is a lumped
parameter of all non-hydrogeological variables (de Barros and Rubin, 2008),

β = CPF
IR× ED × EF
BW × AT

fmo (5.13)

where the various terms are defined in Table 5.1.

5.4 Case Study Setup

Hydrogeological Description

This case study focuses on a scenario where a contaminant plume of total mass M0 =
0.1kg is released over a duration T0 = 0.1d from a point source of known location and migrates
towards a control plane defining a water supply located at xcp. Aquifer flow is uniform
in the average. The control plane location xcp is a distance of L = 40m from the point
source location, along the x-axis which defines the mean flow direction. This travel length
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Mean of Log-conductivity µY Variance σ2
Y Integral Scale IY

Uniform[-6, -5] (ln (m/min)) Uniform[0.1, 1] Uniform[3,6] (m)

Table 5.2: Prior information for the SRF parameters for Y = lnK used in the case study.

corresponds to a range of 6.67 to 13.3 integral scales. The natural logarithm of hydraulic
conductivity Y = lnK was modeled as a Gaussian SRF with an exponential covariance.
The independent prior distributions for the SRF parameters are shown in Table 5.2. As in
Chapter 4, baseline fields were simulated using the method of Schlather et al. (2017)

Calculation of Solute Flux

The solute flux and in turn, ILCR were assumed to be lognormally distributed, and were
calculated at the time of maximum solute flux,

Q(xcp, tpeak) = max
t
{Q(xcp, t))}. (5.14)

which occurs at t = tpeak. The pdf of ILCR is defined by its first two moments, which can
be defined by the pdf of contaminant arrival time using the expressions

µR =
βM0

QwT0
∆Fτ (tpeak) (5.15)

σ2
R =

[
βM0

QwT0

]2 [
∆Fτ (tpeak)− (∆Fτ (tpeak))

2
]

(5.16)

which are provided in de Barros and Rubin (2008). The hydraulic flux is assumed determin-
istic and given by

Qw = nLy〈U〉 (5.17)

where Ly is the length of the control plane orthogonal to mean flow direction, and 〈U〉 is the
mean velocity. ∆Fτ (tpeak) is determined by

∆Fτ (tpeak) =
∫ tpeak

tpeak−T0
fτ (τ)dτ (5.18)

where fτ is the pdf of arrival time.

Baseline Fields

On each baseline field Y b
i ; i = 1, ..., NY , fτ (t) was a Dirac delta function with peak

calculated by deterministic particle tracking using the method of Pollock (1988). In turn,
the moments of the ILCR pdf fR(R) were computed using the expressions above.
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A key difference in this case study from the one presented in Chapter 4 is that modeling
the response of interest on baseline fields can only be done probabilistically. In predicting
contaminant arrival time from a point source, a single baseline field produces a single de-
terministically known value, which simplifies the definition of I and in turn, computation
of 〈φGα 〉 and 〈φGβ 〉. In this case study, the hydrogeological response to be predicted is solute
flux, which is predicted probabilistically, even when modeling with a deterministically known
baseline field. In light of this difference, the definition of Ibi for each baseline field Y b

i must
be defined based on a probability:

Ibi =

{
1 if Pr[R > rcrit|Y b

i ] ≥ α

0 if Pr[R > rcrit|Y b
i ] < α

(5.19)

.

Conditional Simulations

With each baseline field Y b
i ; i = 1, ..., NY , data acquisition was simulated according to

the quantity and spatial locations of measurements specified by the design GH , which is
defined below. With these measurements, the maximum a posteriori SRF parameters θMAP

were estimated. The measurements and parameter estimates were used to semi-analytically
compute the arrival time pdf fτ (τ |gH , θMAP ) using the method of Rubin (1991) and kernel
density estimation (R Core Team, 2015). These pdfs were in turn utilized to calculate
the moments of the ILCR, conditional to the hydraulic conductivity measurements and the
inferred parameters.

At this point, decision making was simulated based on the pdf of ILCR and the criteria
defined above.

Dg
i =

{
1 if Pr[R > rcrit|gH , θMAP ] ≥ α (accept HI

0 )

0 if Pr[R > rcrit|gH , θMAP ] < α (reject HI
0 )

(5.20)

Dg
i was defined on each baseline field Yi, which in turn allowed definition of φαi and φβi.

Lastly, 〈φGα 〉 and 〈φGβ 〉 were computed by the summations

〈φGα 〉 =
1

NY

NY∑
i=1

φαi (5.21)

〈φGβ 〉 =
1

NY

NY∑
i=1

φβi (5.22)

which indicate the probabilities of Type I and Type II error, respectively.

Contaminant, Physiological, and Behavioral Description

Many of the parameters lumped into β were treated deterministically, and are summa-
rized in Table 5.3. The other parameters which were treated stochastically are summarized
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Parameter Deterministic Value

IR/BW 0.033 L/d-kg
EF 350 d/y
AT 22550 d
ED 30 d

Table 5.3: Values of non-hydrogeological parameters which are assumed deterministically
known for the enhanced cancer risk case study.

Parameter Probabilistic Description

CPF Uniform[0.045, 0.175]
fmo Uniform[0.2, 0.7]

Table 5.4: Probabilistic description of non-hydrogeological parameters which were stochas-
tically characterized for the enhanced cancer risk case study.

in Table 5.4. These parameters were chosen to simulate a PCE contaminant, in line with
previous work (e.g. McKone and Bogen (1991), Maxwell et al. (1998a), Maxwell and Kas-
tenberg (1999), de Barros and Rubin (2008)). For each baseline field, a realization of β was
simulated from the prior pdfs given in Table 5.4 and fR(R) was computed using the solute
flux on this baseline field and this realization of β. For the sake of simplicity, the condi-
tional simulations of fR(R|G) were executed using only Gβ

4 for the simulated physiological
characterization.

Data Acquisition Design

The case study aimed to compare the effectiveness of different forms of data acquisi-
tion: hydrogeological and non-hydrogeological data. For hydrogeological data acquisition,
measurements of hydraulic conductivity were simulated. Four different quantities of mea-
surements were taken, N = 4, 8, 16, 32. The measurements were clustered around the travel
path, corresponding to hydrogeological campaigns G1A, G2A, G3A, and G4A shown in Figure
4.2. In this case study, these four hydrogeological campaigns are denoted GH

1 , GH
2 , and GH

3 ,
GH

4 , respectively.
To model non-hydrogeological data acquisition, four alternative strategies were compared,

each of which defined the mean to be the baseline truth, corresponding to a realization of β
for each baseline field Y b

i . Gβ
1 involved reducing the variance of each of the prior pdfs by a

factor of 2, while Gβ
2 and Gβ

3 reduced the variance in the prior pdfs by a factor of 4 and 10,
respectively. Gβ

4 assumed perfect deterministic knowledge of β. Future research will aim to
more realistically simulate the effects of physiological and behavioral data acquisition.
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Figure 5.1: Empirical pdf showing uncertainty in lumped parameter β which results from
uncertainty in its components (see Table 5.4). Since β varies over only a few orders of
magnitude, the uncertainty in β contributes relatively little to uncertainty in predicting
enhanced cancer risk.

5.5 Results and Discussion

This section presents and discusses results from the case study described earlier in this
Chapter. The results focus on uncertainty in β and ILCR as well as the associated decision
risk resulting from such uncertainty.

Uncertainty in β

The effect of uncertainty in CPF and fmo is shown by the empirical pdf of β in Figure
5.1. The uncertainty in these two parameters cause a range of nearly two orders of magnitude
in β, indicating the wide range of cancer risk to be experienced throughout the population,
and enabling a preliminary assessment how much non-hydrogeological characterization may
be necessary. As a precursor to examining the effect of physiological information on predic-
tions of cancer risk, we focus for the moment on the effect of physiological information the
prediction of the distribution of β alone. To compare between the effects of Gβ

1 , Gβ
2 , and

Gβ
3 , we use the Kullback-Leibler convergence, defined as (Kullback and Leibler (1951), Tang
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Figure 5.2: Barplot showing the Kullback-Leibler Divergence resulting from the simulated
physiological information Gβ

1 , Gβ
2 , Gβ

3 , respectively.

et al. (2016))

DKL(P ||Q) =
∫
P (x)log

P (x)

Q(x)
dx (5.23)

where Q(x) is taken to be the prior distribution for β (see Figure 5.1), and P (x) is taken to
be the posterior pdf f(β|Gβ) for Gβ

1 , Gβ
2 , and Gβ

3 . DKL was calculated using a conditional
distribution for each unconditional realization of β, and the average values are presented in
Figure 5.2. Larger values of DKL indicate a greater “distance” between the prior pdf and
the posterior pdf, i.e. a greater effect of the information contained in Gβ. As the Figure
shows, Gβ

3 has the greatest informative effect, followed by Gβ
2 and in turn Gβ

1 .

Error Probabilities

The resulting probability of Type I error for hydrogeological campaigns GH
1 , GH

2 , GH
3 ,

and GH
4 were all zero, regardless of the value of rcrit. The reasoning can be understood by

examining the relationship between exceedance probabilities Pr[R > rcrit|Yi] and Pr[R >
rcrit|gH ], which are plotted in Figure 5.3 for three individual baseline fields. For Type I error
to occur, the baseline exceedance probability would need to be greater than α in a region
where the conditional exceedance probability is less than α. This would indicate a scenario
where the null hypothesis HI

0 is actually true but the measurement information would lead
us to reject it. However, this is not the case for any value of rcrit or for any measurement
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Figure 5.3: This figure shows how the probability Pr[R > rcrit] varies with respect to rcrit
for three selected baseline fields. The solid black line indicates the synhetic truth associated
with each baseline field, and the colored lines indicate the predicted response conditional to
the four different measurement configurations. Type I error would occur for values of rcrit
at which the black line is greater than α but the colored lines are less than α, which never
occurs in this scenario. Type II error would occur if the inverse was true.
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configuration. Type II error, analogously, occurs when the baseline exceedance probability
is less than α in a region where the conditional exceedance probability is greater than α.
This occurs for all measurement configurations for a small range of rcrit. The probability of
Type II error is plotted against rcrit in Figure 5.5. As indicated by the Figure, the response
is quite insensitive to the quantity of hydraulic conductivity measurements taken. A likely
explanation for this might be the lognormal assumption for the pdf of risk, which takes into
account only the first two moments of solute flux, rather than the entire distribution.

The aggregated probability of the null hypothesis being true conditional to baseline fields
as well as to the four hydrogeological campaigns are plotted versus rcrit in Figure 5.4. This
plot shows the same effect but instead averaged over the entire ensemble of baseline fields.
We see a much more diffuse behavior of the conditional distributions than we do for the
baseline fields. The reasoning for this is the point source nature of the contaminant source.
In the baseline fields, the advection dominated transport model produces an arrival time
pdf which emulates a Dirac delta, and therefore has a very steep descent as can be seen on
Figures 5.3 and 5.4. The conditional distributions of arrival times, on the other hand, are
based on an entire pdf of arrival time, which causes a much greater variance in the solute
flux pdf and in turn the risk pdf.

Future Work

Future research will aim to more realistically model uncertainty in physiological and
behavioral parameters to more closely examine their effect on decision making. A more
realistic method of simulating data acquisition aiming to characterize these parameters would
also be helpful.

As mentioned above, the lognormal assumption regarding the solute flux pdf can be
rather limiting. The effect of conditioning on hydraulic conductivity measurements mainly
manifests itself by altering the shape of the arrival time pdf, which would in turn affect
the solute flux pdf and the distribution of ILCR. Using the lognormal approximation only
takes into account a limited portion of these distributions near the time of peak solute flux.
Accounting for the entire arrival time pdf may provide greater insight into the relationship
between hydrogeological field data and decision making with respect to ILCR.

Finally, more research is needed into how the dimensions of the contaminant source affect
decision making. The present case study focused on a point source, which caused the rather
steep descent of the exceedance probability with respect to rcrit, which can be very difficult
to reproduce, regardless of the amount of hydrogeological data available. Further research
into varying source dimensions can indicate under what circumstances is hydrogeological
information more important than physiological information and vice versa.
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Figure 5.4: This figure shows the probability of the null hypothesis being true, conditional
to five information states. The black line is conditional only the prior distributions fβ(β)
and fθ(θ). The colored lines are conditional the four different measurement configurations.
This plot relates to Figure 5.3 by indicating whether or not the probabilities exceed α, and
averaged over all baseline fields.

Figure 5.5: This figure shows the occurrence probability for Type II error for the four
measurement configurations GH

1 , GH
2 , GH

3 , and GH
4 .
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Chapter 6

Conclusions

This dissertation has discussed the role of stochastic hydrogeological modeling in success-
ful, sustainable, groundwater resources management. While widespread adoption of stochas-
tic hydrogeology has been relatively slow, it has great potential to improve decision making
in water resources management, regulation, and policy making. This potential is due to the
ability to make predictions regarding quantities which inform the most appropriate course
of action in e.g. selection of water supply and allocation of limited remediation resources.
In addition to making these predictions, stochastic methods can improve decision making
by quantifying uncertainty stemming from all sources, which enables risk-based decisions.
However, challenges remain due to the complicated relationship between site characteriza-
tion, modeling, prediction, decision making, and the role uncertainty plays in each of these
steps. Further complications arise when needing to communicate uncertainty, which stems
from many sources and requires hydrogeology-specific training to understand, to stakeholders
outside of the hydrogeological community.

This dissertation presented a framework which addresses many of these challenges. The
benefits of the framework are simplified decision making, simplified communication of un-
certainty, direct translation from uncertainty to risk at the knowledge-decision interface,
and straightforward evaluation of data acquisition strategies before data is collected. Sim-
plified decision making and translation of uncertainty to risk is enabled via utilization of
the hypothesis testing framework, which aggregates uncertainty stemming from all sources
into a single quantity representing the decision making risk. Evaluation of data acquisition
strategies is enabled by using stochastic simulation and a holistic approach to planning of
field campaigns, inverse modeling, forward modeling, and decision making, which enables
prediction of decision risk resulting from the data, providing the ultimate measure of effi-
cacy of the data. The framework is able to accommodate any state of information, ranging
from relatively uninformative priors to possessing in situ data and planning of iterative field
campaigns.

The framework was demonstrated in two case studies, where the goal was predicting 1)
contaminant arrival time and 2) enhanced cancer risk. The case study predicting contami-
nant arrival time had a few key conclusions:
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1. The amount of field data necessary to predict early arrivals is highly dependent on
threshold value of time which defines “early” arrivals.

2. Improved estimation of geostatistical parameters does not necessarily improve decision
making.

3. A more informative prior distribution does not always lead to improved decision mak-
ing.

The first two conclusions strongly reinforce the notion that field campaigns should be de-
signed in a goal-oriented manner where successful decision making is defined as the goal, as
opposed to simply optimizing field campaign design with respect to improved inverse mod-
eling. The third conclusion is somewhat surprising and indicates that further research is
required to specifically investigate the role of prior information and how it may change with
alternative inverse modeling.

The case study in predicting enhanced cancer risk aimed to explore the relationship be-
tween hydrogeological characterization and physiological and behavioral characterization in
the context of decision making based on increased lifetime cancer risk caused by ground-
water contamination. More specifically, the aim was to explore the relationship between
different types of information and the probability of erroneous decision making. A point
source contaminant plume was modeled with lognormally distributed solute flux at a control
plane defining the contaminant receptor. Under these conditions, predictions are relatively
insensitive to hydrogeological measurement quantity and Type I error is virtually impossible,
though further research is needed for more general conclusions.
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