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ARTICLE

Acoustic spin-Chern insulator induced by synthetic
spin–orbit coupling with spin conservation breaking
Weiyin Deng 1,5, Xueqin Huang 1,5, Jiuyang Lu 1, Valerio Peri 2, Feng Li 1✉, Sebastian D. Huber 2 &

Zhengyou Liu 3,4✉

Topologically protected surface modes of classical waves hold the promise to enable a variety

of applications ranging from robust transport of energy to reliable information processing

networks. However, both the route of implementing an analogue of the quantum Hall effect

as well as the quantum spin Hall effect are obstructed for acoustics by the requirement of a

magnetic field, or the presence of fermionic quantum statistics, respectively. Here, we con-

struct a two-dimensional topological acoustic crystal induced by the synthetic spin-orbit

coupling, a crucial ingredient of topological insulators, with spin non-conservation. Our setup

allows us to free ourselves of symmetry constraints as we rely on the concept of a non-

vanishing “spin” Chern number. We experimentally characterize the emerging boundary

states which we show to be gapless and helical. More importantly, we observe the spin

flipping transport in an H-shaped device, demonstrating evidently the spin non-conservation

of the boundary states.
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The discovery of topological insulators (TIs), featuring a
bulk gap and gapless boundary states, opened new avenues
for condensed-matter physics1,2. In two spatial dimen-

sions, TIs come in two different classes, either described by a Z or
Z2 topological index. The first3–5 breaks time-reversal symmetry
(TRS), and are commonly called Chern insulators (CIs). They
host an (anomalous) integer quantum Hall effect and their sur-
faces are characterized by chiral, i.e., unidirectional, surface states.
The latter Z2 insulators6–8, such as the quantum spin Hall effect,
are characterized by a pair of gapless helical boundary states. In
the presence of spin conservation, the Z2 insulators can equiva-
lently be described by spin-Chern numbers, where the spin sec-
tors might carry an opposite but nonzero Chern number9. In fact,
spin-Chern numbers are well defined even in the absence of spin
conservation or for TRS-broken systems9–11. The spin-Chern
numbers have been employed to identify TRS-broken spin-1/2
electronic TIs and pseudospin TIs, giving rise to the concept of
spin-Chern insulators (SCIs)10–17. The SCIs feature helical
boundary states, but whether gapless or not, depends on the
system symmetry and microstructure of the sample boundary17.

Recently, intense efforts have been devoted to realizing classical
analogs of TIs for electromagnetic, mechanical, and acoustic
waves18–21. Photonic CIs have been realized in magneto-optic
systems20–23, mechanical CIs have been proposed in gyroscopic
metamaterials24,25, and acoustic CIs have been proposed in sys-
tems with circulating fluid26–29 and experimentally implemented
recently30. Hafezi et al. achieved a photonic SCI and observed the
helical boundary states in a silicon photonic crystal. The
pseudospin–orbit coupling was induced by the differential optical
paths based on ring resonators31,32. Mechanical SCIs were rea-
lized in bilayer structures, which rely on opposite interlayer and
intralayer couplings33,34.

Helical edge states have been observed in acoustic systems35–44.
Although these systems all host pseudospin, since the spin–orbit

coupling, the essential ingredient for a SCI, is not available, they
are not the acoustic SCIs. This can be reflected by fact that the
helical edge states in the systems exist on the domain walls or
interfaces, rather than on the boundaries or surfaces, as in SCIs.
Returning to the photonic or mechanical SCIs aforementioned31–34,
it can be noted that the pseudospin in the SCIs is conserved,
which means that these SCIs can actually be viewed as two
independent copies of CIs and the topological properties can be
described by Chern numbers. When the pseudospin conserva-
tion is broken, the description in terms of Chern numbers is no
longer valid. One then needs to rely on the spin-Chern number
to characterize the SCIs, in which the spin can vary or flip
during transport. However, this general case has not yet been
explored in all classical scenarios. A natural question arises: can
we achieve acoustic SCIs (with spin–orbit coupling) without
spin conservation?

In this work, to answer this question, we realize an acoustic
spin-Chern insulator (ASCI) in a bilayer phononic crystal (PC).
By introducing a layer pseudospin degree of freedom and the
proper interlayer coupling, a synthetic spin–orbit interaction is
successfully induced, which, particularly, also breaks the pseu-
dospin conservation. We will first introduce the tight-binding
model built on a bilayer Lieb lattice, which hosts all the physics of
the ASCI. Then we will map this discrete model to a practical PC
and demonstrate the topological properties of the ASCI, including
the robust, transport of the helical or spin-momentum locking
boundary states in the ASCI. In particular, we will present the
observation of the spin-flipping transport in a H-shaped device,
evidencing the spin nonconservation of the boundary states.

Results
Tight-binding model for SCI. To illustrate how to realize an
ASCI, we construct a tight-binding model on a bilayer Lieb lattice
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Fig. 1 Spin-Chern insulator and helical boundary states for a bilayer Lieb lattice model. a Schematic of the lattice structure. The red, green, and blue
spheres of each layer denote A, B, and C lattices. b The bulk band structure along high symmetry lines. The interlayer coupling gives rise to two band gaps.
Inset: the first Brillouin zone. c Phase diagram determined by the spin-Chern number of the lower two bands Cl

s in the λ/t0 and m/t0 plane. The white lines
represent lower bandgap closure. The red star denotes the phase with the specific parameters used in b and d. d The boundary-state dispersion of a ribbon
with Cl

s ¼ 2 in the lower gap. A pair of boundary states at the same edge (inset) have opposite layer pseudospin polarizations (red and blue colors). The
parameters are chosen as t0=−1, λ=−0.2, and m= 0.8.
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with a unit cell containing three sites in each layer, denoted A
(red sphere), B (green sphere), and C (blue sphere) in Fig. 1a. The
Hamiltonian is

H ¼ t0
X

hiji;α
cyiαcjα þm

X

i2A;α
cyiαciα þ λ

X

hhijii;α≠ β

vij;αc
y
iαcjβ; ð1Þ

where cyiα is the creation operator of layer pseudospin α on site i.
The first term describes the nearest-neighbor intralayer hopping
with strength t0. The second term denotes the on-site energy m
on site A. The last term represents the chiral interlayer coupling
with strength λ, where vij;α ¼ ½εαðêkj ´ êikÞz þ 1�=2 with ε"# ¼ ± 1,
where i and j are two next-nearest-neighbor sites with i≠ j, k is
their unique common nearest-neighbor site, and the unit vector
êkj points from j to k (see Supplementary Note 1 for details). The
band dispersion of the model is presented in Fig. 1b. The inter-
layer coupling opens two bulk gaps and can induce topological
phase transitions in the model.

The topological properties of this system can be captured by a
spin-Chern number. One can introduce a pseudospin
τα ¼ σα � I3, where the Pauli matrices σα act on the layer degree
of freedom. While none of the components of τ is conserved, one
can use the projection of, say σy into pairs of bands below the gap
to split them. These split bands lead to well-defined fiber bundles
that may carry a nonzero Chern number: the spin-Chern number.
These spin-Chern numbers are a tool well tailored to classical
systems, as they neither require any symmetry nor the presence of
a fermionic time-reversal operator. However, it is important to
note that one relies not only on a spectral gap, but also on the
spin-projection gap that allows for the splitting of the bands.
Moreover, the details of the edge physics have to be inspected
independently of the bulk, as there might be a spin-gap closing
induced by the surface termination10,11, see Supplementary
Note 2 for details.

For illustrations, we focus on the tological properties of the
lower gap. Figure 1c shows the spin-Chern number of the lower
two bands Cl

s as a function of λ/t0 and m/t0. Three topologically
distinct phases exist. At the phase boundaries, indicated by the
white lines, the energetic bulk gap closes. In the absence of
spin–orbit interaction (λ= 0, the mass term opens a trivial gap:
Cl
s ¼ 0). The projected band dispersion for a ribbon with Cl

s ¼ 2
is plotted in Fig. 1d. The boundary states of the two lines oriented
along the dotted black arrows localize at one boundary of the
ribbon (the inset), while the others localize at the other boundary.
The complete topological phases, the generalized bulk-boundary
correspondence, and associated helical boundary states are shown
in Supplementary Note 2–4, respectively.

The SCI for acoustic waves. We now consider a PC imple-
mentation of the SCI for acoustic waves. As shown in Fig. 2a, the
PC sample, fabricated by 3D printing, consists of a bilayer
structure with interlayer connections realized by chiral tubes.
Each layer of the unit cell contains three nonequivalent cavities
connected by intralayer tubes (Fig. 2b). Mapping the PC to a
tight-binding model, the cavities can be regarded as lattice sites,
while the tubes provide hopping terms. The square unit cell has
in-plane length a= 20mm and height h= 12.5 mm. The three
square cavities composing a layer of the unit cell have the same
height hc= 5 mm and different in-plane dimensions: LA= 7 mm
and LB= LC= L0= 8 mm. The width and height of the intralayer
tubes are Lt= 3.2 mm and ht= 3 mm, respectively. The diameter
of the interlayer tubes is d= 3.2 mm. Since the volume of cavity A
is smaller than those of the other cavities, modes localized there
are detuned to higher frequencies. This corresponds to a regime

m/t0 < 0 for the tight-binding model of Eq. (1): a region of the
phase diagram with Cl

s ¼ 2.
In Fig. 2c, we present the measured bulk band dispersion along

high symmetry lines. Overlaid to the experimental data, we show
the simulated bands. A bulk gap at M opens, thanks to the chiral
interlayer couplers. To confirm the topologically nontrivial nature
of the gap, we calculate the spin-dependent Berry curvature and
spin-Chern number of the lowest two bands in the real PC. As the
pressure field is mainly localized at the cavities, we construct the
normalized wavefunctions φ(k) of the PC by using the pressure
field sampled at the center of each cavity. Using these
wavefunctions (Supplementary Note 2), we obtain the spin-
dependent Berry curvatures Ωl

± kð Þ, shown in Fig. 2d. The two
spin-projection sectors have opposite Berry curvature. By
integrating separately Ωl

± kð Þ in the whole Brillouin zone, we
determine the spin-Chern number of the PC. The result, Cl

s ¼ 2,
confirms that the PC has a gap with the same nontrivial topology
predicted by the tight-binding model. The other phases of the
ASCI, corresponding to the cases of λ/t0 > 0, are studied in
Supplementary Note 5.

Helical boundary states in an ASCI. The nonzero Cl
s can induce

a pair of helical boundary modes, even in the absence of crys-
talline symmetries (Supplementary Note 6). The projected band
dispersions along the kx direction are plotted in Fig. 3a and b for
the whole-cell and half-cell boundaries, respectively. The color
maps represent the experimental dispersions, while the overlaid
lines are the result of full-wave simulations. A pair of counter-
propagating gapless boundary states (solid white lines) exists in
the gap for both boundaries. The spin polarization along the y
direction is defined as hσyi ¼ hψkjσyjψki, where ψk is the
eigenmode of the projected dispersion of the PC ribbon sampled
at the center of each cavity. The spin nonconservation of
the boundary states results in jhσyij<1. On the other hand,
although the spin is nonconserved, the boundary states still host
spin-momentum locking property on each boundary. This is
because that the boundary states satisfy ψ�k ¼ ψ*

k in the pre-
sence of TRS, and thus possess opposite spin polarization as
hψ�kjσyjψ�ki ¼ �hψkjσyjψki. This can be understood as a gen-
eralization of the spin-momentum locking for the helical
boundary states. These results are demonstrated both by the
simulations (the lines) and experiments (circles) in Fig. 3c and d.
We note that the σy for the boundary states with kx < 0 and with
kx > 0 are opposite, both satisfying jhσyij<1.

Although the spin is nonconserved, the boundary waves are
still robust against backscattering induced by the defect with TRS,
because the spin-momentum locking property leads to destructive
interference of the backscattering wave2. The acoustic waves are
nonreciprocal or non-time-reversal in a flowing fluid26–30, so a
“magnetic defect” for an acoustic system can be created by
circulating the fluid component somewhere locally in the
structure. For our system, a “magnetic defect” on the boundary
may be created by circulating the air inside a certain tube close to
the boundary connecting the upper and lower layers. Practically,
creating circulating flow brings much complexity in design and in
experiment. Therefore, an equivalent “magnetic defect” for
acoustic waves is rare, which means that the helical edge states
observed in our acoustic system are topologically protected.
Figure 4a shows the transport of acoustic boundary wave at 7.44
kHz in a sample possessing a rectangular defect. The boundary
waves propagate smoothly around the defect. The experimental
(upper panel) result is consistent with the simulation one (lower
panel). However, the measured transmission is lower than that by
simulation, as shown in Fig. 4b, because the boundary waves

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17039-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3227 | https://doi.org/10.1038/s41467-020-17039-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


x

y

50 mm

a b

c

d

h

a

F
re

qu
en

cy
 (

kH
z)

� X M �

4

8

2

6

10

xy

dMin Max �±
l (a2/π2)–5.3 5.3

0 1 2 0 1 2
0

1

2

Lt
ht

hc LA/2
L0

k y
 (π

/a
)

kx (π/a) kx (π/a)

Fig. 2 Acoustic spin-Chern insulator and bulk properties. a A photo of the bilayer sample. The cylindrical holes are indeed for cost savings and have no
effect on the propagation of acoustic waves in the PC. b Left panel: magnified side view of the sample, which contains the whole-cell (up-edge) and half-cell
(down-edge) boundaries along the x direction. Air fills the inside of the bilayer structure (blue color) between two rigid plates (brown color). Right panel:
the unit cell of the sample, corresponding to the green dotted box in the left panel. The blue (pink) areas represent the rigid (periodic) boundaries. c The
bulk band structure of the lowest four modes along high symmetry lines. The color maps denote the measured data, and the white circles represent the
simulated results. d The calculated Berry curvatures of the spin-up (left) and -down (right) projection sectors for the lower two bands.

–1 –110 10
5

6

7

8

9

0.0

1.0

–1.0

a b

F
re

qu
en

cy
 (

kH
z)

P
ol

ar
iz

at
io

n

5

8

7

6

9

dc

Whole-cell boundary Half-cell boundary

F
re

qu
en

cy
 (

kH
z) Max

Min

kx (π/a) kx (π/a)

Fig. 3 Acoustic helical boundary waves. a, b The dispersions of helical boundary waves on the whole-cell and half-cell boundaries, respectively. The color
maps denote the measured data, and the white and black lines represent the simulated dispersions of the boundary states and projected bulk states,
respectively. c, d The spin polarizations of the boundary waves for the whole-cell and half-cell boundaries, respectively (lines for simulations and circles for
experimental results). Inset: the red (blue) color of arrows denotes spin up (down). A pair of gapless boundary waves with opposite spin polarizations
counterpropagate along the boundary.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17039-1

4 NATURE COMMUNICATIONS |         (2020) 11:3227 | https://doi.org/10.1038/s41467-020-17039-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


attenuate during propagation due to the loss in air. But the loss
would not change the topology of the systems. The influence of
air loss on the transmission and topology is discussed in
Supplementary Note 7. Figure 4b also gives the comparison of
the measured transmissions through a path along the rectangular
defect and through a straight one of the same length. The
transmission of the two samples agree in the bulk gap, indicating
the robustness of the surface modes against backscattering
induced by the defect. This result renders the realization of a
spin-filtered one-way waveguide.

Spin flipping in an H-shaped ASCI. Finally, we show the spin-
flipping transport in an H-shaped device to evidently demon-
strate the spin nonconservation of the helical boundary states.
Actually, the spin cannot flip along a ribbon structure, because

the spin polarization hσyi is independent of the spatial position
along a uniform periodic structure without bending. To show the
spin-flipping effect, we should consider hσyi in, for example, a H-
shaped structure, without uniform periodicity or with bending. In
a H-shaped sample, hσyi in the middle ribbon with small width is
different from that in the left/right one. Figure 5a shows a
schematic of the H-shaped structure of the ASCI, where the width
of the left and right ribbons is W= 20a, and that of the middle
ribbon is Wm= 1.5a. The boundary waves with spin-down
polarization excited from channel 1 not only can propagate to
terminals 2 and 3 kept with the same polarization, but also may
transport to terminal 4 with spin flipping, because of spin non-
conservation. In Fig. 5b, we calculate the transmissions from
channel 1 to terminals 2, 3, and 4 as a function of Lm, in which
the operated frequency 7.6 kHz is tuned to the passing band of
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the middle ribbon. One can see that S41 is periodically oscillated,
and the boundary waves can flip the spin polarization and reach
terminal 4 at the right Lm. In Fig. 5c, for a fixed Lm= 2a, the
measured and simulated field distributions clearly show that the
boundary wave excited at channel 1 can propagate to channel 4,
demonstrating that the spin polarization flips from spin down to
spin up. The H-shaped structure can be designed to act as a spin
flipper, and may also serve as a splitter with a switch effect, as
discussed in Supplementary Note 8 and 9.

Discussion
In summary, we have realized an ASCI with a pair of helical
boundary states with spin conservation breaking, which is of
fundamental interest and opens up an avenue for applications of
topological acoustics. This work implies two basic aspects dif-
ferent from earlier works of acoustic topological systems35–44:
first, the ASCI is induced by spin–orbit coupling, which is
independent of any crystalline symmetries, and exhibits gapless
edge states on the boundaries. Second, the ASCI breaks the spin
conservation, which greatly expands the field of current topolo-
gical physics, limited to spin conservation. The helical boundary
states may have potential applications in innovative acoustic
devices, such as topological splitters/switches with high tolerance.
It should be noted that a similar acoustic structure has been
employed to realize a fragile TI very recently45, which however is
essentially different from the presented ASCI (Supplementary
Note 10).

Methods
Numerical simulations. All numerical simulations were performed by the com-
mercial COMSOL Multiphysics solver package. The systems were filled with air
with a mass density 1.3 kg m−3 and sound velocity 343 m s−1 at room temperature.
Because of the huge acoustic impedance mismatch compared with air, the 3D-
printing plastic material was considered as hard boundary.

Experimental measurement. A subwavelength headphone with a diameter of 6
mm was used to generate acoustic waves. A microphone probe with a diameter of
1.5 mm was used to measure the acoustic pressure field distributions. A network
analyzer (Keysight 5061B) was used to send and record the acoustic signals. The
dispersions of bulk and boundary states were obtained by Fourier transforming the
scanned acoustic pressure field distributions inside and on the boundary of the
samples.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.
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