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for Image Denoising and Deblurring

by

Daniel Swenson
May 2011

University of California, Merced

Abstract

Many problems in digital image processing are problems in digital image restoration. In
other words, we have a noisy, incomplete, or otherwise corrupted image, and our goal is to
estimate the original image from the corrupted image by solving an appropriate optimization
problem. Typically, in order to restore such corrupted images, we solve an optimization problem
that penalizes the “roughness” (and consequently, promotes the smoothness) of our estimate of
the original image. Often, we may have knowledge about some properties of the original image
that our estimate may not possess. If we impose these properties explicitly as constraints in
our optimization problem, then we may be able to significantly improve our estimate of the
original image. Our goal in this technical report is to examine what benefits are incurred when
we impose an intensity constraint in the context of total variation regularization, which is a
common image restoration tool that works by encouraging smoothness of the restored image.
We will provide analytical and numerical justification that the intensity constraint does not
significantly affect the outcome of total variation regularization when applied to denoising and
deblurring problems. Consequently, we can achieve the same image restoration results at a
lower computational cost, because we do not have to solve projection subproblems to enforce
the intensity constraint. In the future, we would like to see if our projection algorithm improves
the results of common tasks in digital image enhancement, such as image sharpening.
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1 Introduction

Many problems in digital image processing are problems in digital image restoration. In other
words, we have a noisy, incomplete, or otherwise corrupted image, and we are trying to estimate
the original image from the corrupted image by solving an appropriate optimization problem.
Typically, we solve an optimization problem that penalizes the “roughness” (and consequently,
promotes the smoothness) of our estimate of the original image, because natural images tend to be
smoother than corrupted images. Often, we may have additional knowledge about some properties
the original image that our estimate of the original image may or may not possess. For example,
8-bit black-and-white digital images have pixel values that lie between 0 and 255. This is not always
honored by our estimate of the true image. Also, we may sometimes know or have a reasonable
guess regarding what the overall intensity of the true image might be. Again, this may or may
not be the same as the overall intensity of our estimate of the true image. If we impose the above
properties explicitly as constraints in our optimization problem, then we may be able to significantly
improve our estimate of the original image. Our goal in this technical report is to examine what
happens when we impose the above constraints to perform image denoising and deblurring using
total variation regularization, a common image restoration tool that we will describe in detail
shortly.

2 Problem Formulation

The digital image restoration problems that we will consider in this technical report will be linear
inverse problems, that is, problems of the form

y = Au+ η, (1)

where u ∈ R
n is an image containing n pixels, A ∈ R

n×n is a linear operator, η ∈ R
n is a noise

term (which we will take to be zero-mean and Gaussian), and y ∈ Rn represents the noisy and/or
corrupted image that we observe. The problem then becomes finding a reasonable estimate û for
u by solving an appropriate optimization problem. Many problems in digital signal processing,
including denoising, deblurring, and other problems, can be modeled as specific examples of the
general problem (1). The naive approach to solving the problem (1), namely, computing

û = A−1y = u+A−1η

yields an estimate û that is not useful if A is ill-conditioned, because in that case the “inverted noise”
term A−1η dominates the estimate (see [8]). We may have general knowledge about the statistical
properties of η, but we will not know specifically what η is, so we cannot simply remove it from
the image. Consequently, we must solve a suitable optimization problem to obtain a reasonable
estimate of u.

3 Optimization Problem

Many approaches to solving the problem (1) involve finding

û = arg min
u∈Rn

1
2
||y −Au||22 + τpen(u) (2)

where 1
2 ||y − Au||

2
2 is a term that ensures that the argument u that minimizes (2) is not “too far”
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from our observed data y, pen(u) is some function that is designed to promote certain desirable
properties in the image (often referred to as a regularization term), and τ is a positive parameter
that determines how heavily regularized the resulting image will be. The function pen(u) tends to
be a function that penalizes some measure of “roughness” in the image. The problem (2) is also
sometimes expressed in the constrained form

min
u

pen(u) subject to ||y −Au||22 ≤ ||η||22. (3)

A classical image processing technique that follows the above framework for obtaining an
estimate û for u in (1) (as described in [5] and [7]), involves solving an optimization problem of the
form

min
u
||Γu||22 subject to ||y −Au||22 ≤ ||η||22 (4)

where Γ is chosen to be the discrete Laplacian operator. This problem, then, yields an estimate û
that is as smooth as it can be (in the sense that Γ measures smoothness) subject to the constraint
that our estimate û satisfies ||y−Aû||22 ≤ ||η||22. (This requires us to have an estimate of ||η||22, which
we may or may not have, depending on the situation at hand.) This problem (4) is convenient in
that the objective function and the constraint are both smooth, and the solution can be computed
efficiently by using an iterative method in the Fourier domain (see [7] for details). According to [8],
however, approaches such as the one described above do not do as good of a job of preserving
details or edges that are present in u as the approach that we will use in this technical report.

Advances in bases available for digital image processing and in optimization techniques have
made it viable to solve optimization problems that preserve the edges of the original image u or
preserve details in u in ways that the solution to (4) does not. Interest in this field has grown
recently with the advent of compressed sensing1. Compressed sensing is the process of acquiring
a signal in an “undersampled” manner and reconstructing the signal utilizing the prior knowledge
that it has a sparse representation in some basis (or dictionary). (For a good overview of compressed
sensing, see [14].) The resulting optimization problems are of the form

min
θ

1
2
||y −AWθ||22 + τ ||θ||1 (5)

or alternatively in the constrained form

min
θ
||θ||1 subject to ||y −AWθ||22 ≤ ||η||22 (6)

where τ is a non-negative parameter, and W is a sparsity-inducing representation - that is, one
in which we can represent most of the energy of u using only a few coefficients. If we denote the
solution to (5) by θ̂, then û = Wθ̂. The formulation (5) is more often used in practice since, as an
unconstrained problem, it is easier to solve. Solutions to either formulation of this problem tend
to promote the sparsity of θ̂. When using bases such as wavelet bases, the problems (5) and (6)
promote piecewise-smooth reconstructions û (see [13]). For a treatment of wavelets in an image
processing context, we refer the reader to [7]. For a more general treatment of wavelets the reader is
encouraged to consult [10] or [13]. Software that solves either the formulation (5) or the formulation
(6) includes [3], [4], [6], [15], and many other software packages.

1Note that the image restoration problems considered in this technical report are not of compressed sensing type.
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4 Total Variation

Total variation regularization, first introduced by Rudin, Osher, and Fatemi in [12], is an alternative
penalty which induces sparsity in an image’s gradient by minimizing the change between adjacent
pixels. Specifically, let ui,j denote the pixel in the ith row and j th column of an m × n image u,
let h and v signify the horizontal and vertical gradients of u, and define the operators

Dh;iju =

{
ui+1,j − ui,j , i ≤ m
0 i = m

Dv;iju =

{
ui,j+1 − ui,j , j ≤ n
0 j = n

and

Diju =
(
Dh;iju
Dv;iju

)
Diju can be interpreted as a discrete gradient of the digital image u. The total variation of u is
the sum of the magnitudes of this discrete gradient at every point:

TV (u) =
∑
i,j

√
(Dh;iju)2 + (Dv;iju)2 =

∑
i,j

||Diju||2. (7)

(This expression is also sometimes called the isotropic total variation of u.) For comparison, let us
consider the related functional

J(u) =
∑
i,j

((Dh;iju)2 + (Dv;iju)2) =
∑
i,j

||Diju||22.

Here, following the exposition in [8], we will give an intuition regarding the benefits of using (7)
rather than the more traditional functional J(u) for image regularization. The expression J(u) is
easier to work with due to the absence of the square roots (see [8]), but the presence of the square
root acting on each term in the summation in (7) is beneficial since it de-emphasizes large changes
(namely, edges) in u. Another form of total variation, the so-called anisotropic total variation of
u, is given by

TV`1(u) =
∑
i,j

(|Dh;iju|+ |Dv;iju|) =
∑
i,j

||Diju||1. (8)

Here, the absolute value functions de-emphasize large changes in u compared to the squaring
operations in J(u), which again means that (8) penalizes the edges of u less severely than J(u)
does. Regarding the differences between (7) and (8), note that if we use the isotropic total variation
(7) in our optimization problems, there is no preference for smoothing in any particular direction
(i.e., the image is smoothed in all directions), but if we use the anisotropic total variation (8), there
is a preference for smoothing in the horizontal and vertical directions. To illustrate our terminology,
we include a picture on the following page of the standard “cameraman” test image, its horizontal
gradient Dh;iju, its vertical gradient Dv;iju, and the magnitude of the gradient ||Diju||2 (see Figure
1). The isotropic total variation TV (u) of the test image is the sum of all of the pixel values of the
image ||Diju||2 in the lower-right-hand corner.
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(a) (b)

(c) (d)

Figure 1: (a) The cameraman test image. (b) Its horizontal gradient Dh;iju. (c) Its vertical
gradient Dv;iju. (d) The magnitude ||Diju||2 of the gradient. Note the strong vertical edges of the
town captured by Dh;iju in (b) and the horizontal rooftop edges of the building captured by Dv;iju
in (c).

We can use total variation regularization to estimate our original image u given y, A, and an
estimate of ||η||22, by solving the optimization problem

min
u

1
2
||y −Au||22 + τTV (u) (9)

for an appropriate value of τ > 0. Total variation regularization is also sometimes augmented with
constraints. A common constrained total variation regularization problem is

min
u

1
2
||y −Au||22 + τTV (u) (10a)

subject to a ≤ u ≤ b (10b)
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where a, b ∈ Rn and a ≤ u ≤ b should be understood as a component-wise inequality.

5 Algorithm for Total Variation Regularization

A mathematical approach that is often used for total variation regularization is Beck and Teboulle’s
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [1]. FISTA was designed to efficiently
solve the problem (6) by alternately employing a total variation regularization algorithm to denoise
the image and (if A 6= I) taking steps in the direction of the minus gradient of 1

2 ||y−Au||
2
2 to ensure

data fidelity. Between each data fidelity step, a few denoising steps are taken. Let ud denote the
image generated after any particular denoising step. After each iteration of the denoising algorithm,
the resulting image ud is projected onto the feasible set defined by (10b), so that at the end of each
iteration of the denoising algorithm, we have that the projected image up is given by

up = arg min
u

1
2
||u− ud||22 subject to a ≤ u ≤ b

which is easily accomplished by setting

(up)i,j =


a if (ud)i,j < a,
(ud)i,j if a ≤ (ud)i,j ≤ b,
b if (ud)i,j > b.

The next denoising iteration is then initialized with up. In this way FISTA ensures that the
solution to (6) satisfies the constraints (10b). FISTA can be modified to perform total variation
regularization subject to arbitrary constraints if the user supplies a projection algorithm that
projects ud onto the desired constraints. We will develop such a projection approach in the following
section.

6 Intensity-Constrained Total Variation Regularization

We are interested in solving the following problem:

min
u

1
2
||Au− y||22 + τ ||u||T.V. (11a)

subject to − u ≤ 0, (11b)
u− 2551 ≤ 0, (11c)
||u||1 − I0 = 0. (11d)

where 1 is a vector of ones. The constraints reflect the fact that our 8-bit images have pixel values
between 0 and 255, and that the true image’s intensity I0 is known. The algorithm FISTA can
solve this problem if we supply it with an algorithm that solves the projection subproblem

min
u

1
2
||ud − u||22 (12a)

subject to − u ≤ 0, (12b)
u− 2551 ≤ 0, (12c)
||u||1 − I0 = 0 (12d)
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(Note that (11d) reduces to (12d) because of (11b).) One naive attempt at solving the problem
(12) involves projecting ud first onto the constraints (12b) and (12c), and then projecting the result
onto the constraint (12d). However, in projecting onto (12d) last, it is quite likely that we will
violate (12c). Similarly, if we project ud onto (12b), (12d), and then (12c), we are quite likely to
violate (12d). Therefore, projecting onto each constraint individually will not yield the answer to
(12). Consequently, to compute the solution of (12), we will solve the corresponding Lagrange dual
problem, which incorporates the above constraints into the objective function and replaces them
with simpler (bound) constraints. We will appeal to standard results (see [2]) that show that the
solution of the dual problem yields the solution u∗ to the primal problem (12). The Lagrangian
L(u, λ, ξ, ψ) corresponding to (12) is

L(u, λ, ξ, ψ) =
1
2
||ud − u||22 − λTu+ ξT (u− 2551) + ψ(1Tu− I0) (13)

with λ, ξ ∈ Rn and ψ ∈ R, where we have partitioned the Lagrange multipliers corresponding to the
inequality constraints from (12) into λ and ξ for convenience. To get the Lagrange dual function
corresponding to the Lagrangian (13), we set ∂L

∂u = 0, which yields

u∗ = ud + λ− ξ − ψ1. (14)

Substituting the above expression for u∗ in for u in (13) we get the Lagrange dual problem
corresponding to the primal problem (12), which is

max
λ,ξ,ψ

g(λ, ξ, ψ) (15a)

subject to λ ≥ 0, ξ ≥ 0 (15b)

where

g(λ, ξ, ψ) = −1
2
nψ2− 1

2
λTλ− 1

2
ξT ξ − λTud + ξTud− 2551T ξ +ψ(1Tud) +ψ(1Tλ)−ψ(1T ξ)−ψI0.

where n is the number of pixels in u. The maximum value of the objective function in (12) is equal to
the minimum value of the objective function in (7), and the solution u∗ to (7) is given by (14). This
is guaranteed by the fact that our primal problem (12) satisfies Slater’s condition. For a problem
such as ours where the constraints and objective function are convex and all of the inequality
constraints are of the form rTi u − si ≤ 0, Slater’s condition says that if the optimization problem
in question has a non-empty feasible set, then the maximum value of (12) is in fact equal to the
minimum value of (7), and that the solution to (12) yields the solution to (7) (in our case, through
(14)). To see that this holds for our problem, consider the image u = I01

n . This satisfies all of our
equality and inequality constraints (unless an absurd choice for I0 is made that makes our projection
subproblem infeasible, such as some I0 ≤ 0 or some I0 ≥ 255n). Consequently, the feasible set of
our projection subproblem (12) is nonempty, so our problem satisfies Slater’s condition. Therefore,
since Slater’s condition is satisfied for our problem, the solution to the Lagrangian dual problem
(16) will yield the solution to our primal problem (13) through the expression (14). We will use an
iterative refinement algorithm similar to that of [9] to solve (15). To derive the procedure, we will
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first set ∇λg = 0, ∇ξg = 0, and ∂g
∂η = 0. This yields the following expressions:

λ = −z + ψ1,
ξ = z + (−255− ψ)1,

ψ =
1
T (z + λ− ξ)− I0

n
.

However, we have also the inequality constraints (15b). Consequently, we will initialize our
algorithm with some initial λ(0) and some initial ξ(0), and then we will perform the following
steps (where [·]+ denotes the positive-part operator):

ψ(i) =
1
T (z + λ(i−1) − ξ(i−1))− I0

1
T
1

,

λ(i) = [−(z − ψ(i)
1)]+,

ξ(i) = [(z − ψ(i)
1)− 2551]+.

Note that certainly g(λ(i−1), ξ(i−1), ψ(i−1)) ≤ g(λ(i−1), ξ(i−1), ψ(i)) for all i, since ψ = ψ(i) maximizes
g(λ(i−1), ξ(i−1), ψ). Also, the above expressions for λ = λ(i) and ξ = ξ(i) can be regarded as attempts
to maximize g(λ, ξ(i−1), ψ(i)) and g(λ(i), ξ, ψ(i)), respectively. Examination of g reveals that these
maximization problems are of the form

max
x
− 1

2
xTx+ xT b subject to x ≥ 0 (16)

where b ∈ R is given. The solution of (16) without the constraint x ≥ 0 is simply x = b. The above
terms for λ(i) and ξ(i) can then be regarded as finding the vector closest to x = b for which x ≥ 0,
that is, finding

min
x

1
2
||x− b||22 subject to x ≥ 0.

But

1
2
||x− b||22 =

1
2
xTx− xT b+

1
2
bT b

and so, dropping the term 1
2b
T b that does not depend on x, the above optimization problem reduces

to

min
x

1
2
xTx− xT b subject to x ≥ 0.

which is equivalent to the optimization problem (16). So, we see that λ = λ(i) and ξ = ξ(i) maximize
g(λ, ξ(i−1), ψ(i)) and g(λ(i), ξ, ψ(i)) respectively, subject to the constraints λ(i) ≥ 0 and ξ(i) ≥ 0.
Consequently, g(λ(i−1), ξ(i−1), ψ(i)) ≤ g(λ(i), ξ(i−1), ψ(i)) and g(λ(i−1), ξ(i), ψ(i)) ≤ g(λ(i), ξ(i), ψ(i))
for all i. These montonicity results, combined with the fact that the value of g(λ, ξ, ψ) for any λ,
ξ, and ψ is bounded above by the minimum value of the objective function in the primal problem
(13), allows us to conclude that our iterative refinement algorithm is convergent in a general sense.
Moreover, we will see in a moment that we are able to employ stopping criteria in our algorithm in
such a way that ensures that the output of our algorithm is arbitrarily close to the solution of (16).
To select such a robust set of stopping criteria for our algorithm, let us consider the first-order
necessary conditions, or so-called KKT conditions (see [11]), for u∗ to be a solution to (13):
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u∗ = ud + λ− ξ − ψ1, (17a)

1
Tu∗ − I0 = 0, (17b)
−u∗j ≤ 0, (17c)

u∗j − 255 ≤ 0, (17d)

λj ≥ 0, (17e)
ξj ≥ 0, (17f)

λju
∗
j = 0, (17g)

ξj(u∗j − 255) = 0. (17h)

where j = 1, 2, ..., n. Note that (17a), (17e) and (17f) are satisfied at each iterate of our algorithm.
The conditions (17c) and (17d) are also satisfied at each iterate of our algorithm. To see this, let
us first consider the bound constraints (12b) and (12c). We see that they will be satisfied at each
iterate within the projection algorithm:

u(i) = z − ψ(i)
1 + λ(i) − ξ(i) = (z − ψ(i)

1) + [−(z − ψ(i)
1)]+ − [(z − ψ(i)

1)− 2551]+.

It is readily seen from this last expression that the net effect of our procedure is to set u(i) equal
to the parts of z − ψ(i)

1 that are greater than zero and less than 255. Therefore, the conditions
(17c) and (17d) are satisfied at each iterate. Regarding the condition (17b), we can ensure that it
is satisfied at the kth iterate by taking as a stopping criterion that

|1Tu(k) − I0|
I0

is less than or equal to a user-specified tolerance (we chose 10−4). Regarding (17g) and (17h), since
we know that (17c), (17d), (17e), and (17f) hold at each iterate, we know that for j = 1, 2, ..., n
and at each iterate i,

−λ(i)
j u

(i)
j ≤ 0,

ξ
(i)
j (u(i)

j − 255) ≤ 0.

So, certainly

−λ(i)
j u

(i)
j + ξ

(i)
j (u(i)

j − 255) ≤ 0,

and consequently (17g) and (17h) are satisfied at the kth iterate if

−(λ(k))Tu(k) + (ξ(k))T (u(k) − 2551) = 0.

By considering (13), (14), (15a), and the fact that we are already enforcing (17b) in our algorithm,
we see that the above condition amounts to

|12 ||ud − u
(k)||22 − g(λ(k), ξ(k), ψ(k))|
1
2 ||ud − u(k)||22
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being less than some user-specified tolerance at the kth iterate. We have chosen to enforce this as an
additional stopping criterion (with 10−4 as our tolerance). Consequently, with our choice of stopping
criteria, our algorithm generates at the kth iterate estimates of the primal and dual variables that
satisfy the first-order necessary conditions (17a)-(17h) to within user-specified tolerances. To see
that u(k) is a solution to (13), we note that since the Hessian with respect to u of the Lagrangian
(13) is a multiple of the identity matrix, it is positive definite everywhere. Consequently, the image
u(k) found by our algorithm satisfies the second-order sufficient conditions (see [11]) to be a solution
to (13). In fact, since (12a) is convex everywhere, u(k) is in fact the unique solution to (13), to
within user-specified tolerances.

On a technical note, after we solve each projection subproblem, we retain the values of the
Lagrange multiplers λ, ξ, and ψ so that we can use them as our initializations for the Lagrange
multipliers at the beginning of the next projection subproblem. Consequently, in the following
experiments, it typically takes only two or three iterations of our projection algorithm before our
stopping criteria are satisfied.

7 Numerical Results

We will use FISTA combined with the projection algorithm described above to solve one denoising
problem and one deblurring problem. We will have three results for each of these problems. First,
we will solve the problem with only the bound constraints on the pixels. Next, we will take the
results from the bound-constrained solution and project it onto the intensity constraint to see if an
improvement is yielded. (By “the intensity constraint”, we mean ||û||1 = I0 = ||u||1, or in other
words, that our reconstructed images have the same intensity as the original, uncorrupted image.)
Finally, we will impose the intensity constraint at each denoising step that is taken by FISTA. For
both experiments, we will use the standard “cameraman” test image (see Figure 2a). For each
experiment, the τ values on the horizontal axis of each graph are the values of the regularization
parameter, and the “relative error” on the vertical access is ||û(τ)−u||2||u||2 , where û(τ) is our estimate
of the true image that corresponds to a particular value of τ , and u is the original, true cameraman
image. We choose values of τ ranging from 1

2 to 40 in increments of 1
2 . We will first display the

corrupted image, and the images corresponding to the best values of the relative error ||u(τ)−u||2||u||2 for

each of the three cases. Then, we will display a graph of ||u(τ)−u||2||u||2 against τ for each of the three
cases. We will use the isotropic total variation (7) in this section - numerical results using (8) are
similar.
a. Denoising. First we will perform a denoising experiment, where our cameraman test image
has been corrupted with zero-mean Gaussian noise with standard deviation 30. We have chosen
to stop iterating when the relative change in the image is less than 10−4. The optimal τ value in
all cases was τ = 26. The images resulting from regularizing at the optimal τ value can be seen in
Figure 2. We see that the image reconstructions where the intensity constraint (11d) is imposed
are not significantly different than the image reconstruction where we do not impose (11d). Also, if
we examine the relative error of each of our estimates as a function of τ (Figure 3), we see that the
relative error for any given value of τ is not meaningfully different when we impose the intensity
constraint (11d). All of these results would lead us to conclude that the intensity constraint (11d)
does not seem to meaningfully improve the results of total variation denoising. Consequently, we
can perform total variation denoising more quickly by not imposing (11d) and still achieve a very
similar result. In fact, solving (11a) for the optimal τ with only the bound constraints (11b) and
(11c) only takes 33 seconds on our machine (a Dell Inspiron 1545 laptop with a 2GHz dual-core
processor and 4GB of RAM), while solving (11a) with (11b), (11c), and the intensity constraint
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(a) (b)

(c) (d) (e)

Figure 2: (a) The cameraman test image. (b) The noisy cameraman image (relative error was
.2250963). (c) Result when regularizing with bound constraints (relative error was .0616943). (d)
Result of projecting (c) onto the intensity constraint (relative error was .0616930). (e) Result
when regularizing with bound and intensity constraints (relative error was .0616930). Note that
the image reconstructions (c), (d), and (e) look nearly identical.

(11d) for the same τ value takes 51 seconds.
b. Deblurring. Typically, blurring is modeled in digital image processing as the convolution of
an image with a point-spread function (PSF), which represents the type of blurring being modeled.
Typically, the point-spread function f is of odd size m × n with m = 2a + 1 and n = 2b + 1, and
is much smaller than the image w with which it will be convolved (see [7]). In such a case, the
elements of the convolution f ∗ w are given by

(f ∗ w)i,j =
s=a∑
s=−a

t=b∑
t=−b

fs,twi−s,j−t.

where i and j range over all of the pixels in the image w. For this experiment, we will convolve
our cameraman test image with the “out-of-focus” blur kernel from [8] which has a point-spread
function p where each element is given by

13



Figure 3: Relative error of our estimates as a function of τ . At the larger scale (top graph), the
three curves are indistinguishable, and if we zoom in on any particular part of the graph, we see
(bottom graph) that the estimates involving the intensity constraint yield only very slightly less
error than that involving only the bound constraints.
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pi,j =

{
1
s if (i− k)2 + (j − l)2 ≤ r2,
0 elsewhere,

(18)

where (k, l) is the center of the point-spread function, r is the radius of the blur, and s is the
number of non-zero elements in the point-spread function. We will use this PSF with r = 2 and
(k, l) = (3, 3), so that we have a symmetric PSF of size 5× 5, that is,

p =
1
13


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

 .
So the matrix-vector product Au corresponds to the convolution of the PSF p with the image u,
namely, the convolution p ∗ u has elements given by

(p ∗ u)i,j =
s=2∑
s=−2

t=2∑
t=−2

ps,tui−s,j−t. (19)

where i and j range over all of the pixels in u. (On a technical note, we need to extend the image
in some way to account for what happens when the term ui−s,j−t contains the values of pixels from
“outside the image.” We have chosen to adopt (standard) “reflexive” boundary conditions, which
amounts to mirror-reflecting the image across each of its boundaries before computing (19) - see [8].)
In addition to blurring u, we will also add zero-mean Gaussian noise η of standard deviation 30 to
the resulting blurred image Au, so that our problem y = Au+η now corresponds to estimating our
original test image from a noisy, blurry image y (see Figure 4b). Regarding our implementation of
deblurring, we will again use FISTA to perform total variation regularization to estimate u, taking
values of τ ranging from 1

2 to 40 in increments of 1
2 . We have again chosen to stop iterating when

the relative change in the image is less than 10−4, and we are solving the denoising subproblems
using the same stopping criterion. The optimal τ value was τ = 13.5 in all three cases. The images
resulting from regularizing at the optimal τ value can be seen in Figure 4. As with the denoising
experiment, we see that the image reconstructions where the intensity constraint (11d) is imposed
are not significantly different than the image reconstruction where we do not impose (11d). Again,
we also see that if we examine the relative error of each of our estimates as a function of τ (Figure 5),
the relative error for any given value of τ is not meaningfully different when we impose the intensity
constraint (11d). All of this would lead us to conclude that the intensity constraint (11d) does not
seem to meaningfully improve the results of total variation deblurring either. Consequently, as with
total variation denoising, we can perform total variation deblurring more quickly by not imposing
(11d) and still achieve a very similar result. In this case, solving (11a) for the optimal τ with only
the bound constraints (11b) and (11c) only takes 174 seconds on our machine, while solving (11a)
with (11b), (11c), and the intensity constraint (11d) for the same τ value takes 250 seconds.
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) The cameraman test image. (b) The blurred cameraman test image yielded by
performing the convolution (19) on (a). (c) The blurred, noisy cameraman image (relative error
was .2294614). (d) Result when regularizing with bound constraints (relative error was .0716356).
(e) Result of projecting (b) onto the intensity constraint (relative error was .0716343). (f) Result
when regularizing with bound and intensity constraints (relative error was .0716343). Again, the
image reconstructions (d), (e), and (f) look nearly identical.
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Figure 5: Relative error of our estimates as a function of τ . Again, at the larger scale (top graph),
the three curves are indistinguishable, and if we zoom in on any particular part of the graph,
we again see (bottom graph) that the estimates involving the intensity constraint yield only very
nominally less error than that involving only the bound constraints.
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8 Analysis of Numerical Results

To analyze our numerical results, let us consider that one way of solving the problem (9) (letting
f(u) = 1

2 ||y −Au||
2
2 + τTV (u)) is by the following “gradient descent” method:

Initialize with some u = u(0).
do “until converged”:
u(k+1) = u(k) − α∇f(u(k)) = u(k) − α(−AT y +ATAu(k) + τ∇TV (u(k))
end do

where α > 0 is a scalar chosen at each iterate to satisfy certain conditions that ensure that the
iterative scheme above yields the solution to (9) (for examples of such conditions, see [11]).
In appendix A, we prove that for any u,

1
T (∇TV (u)) =

∑
i,j

(∇TV (u))i,j = 0. (20)

Denoting the solution to (9) by u∗, we will use (20) to prove that if the conditions

A = AT , (21a)

1
TAu = 1

Tu ∀u (21b)

are satisfied for our linear operator A, then we have

1
Tu∗ = 1

T y. (22)

In the denoising experiment, A = I, so certainly (21a) and (21b) hold. Also, since the Gaussian
noise is zero-mean, we have that

1
T y = 1

TAu+ 1
T η

= 1
TAu+ 0

= 1
Tu.

As we discuss in appendix B, our linear operator A in the deblurring experiment also has the
properties (21a) and (21b) if we adopt periodic or reflexive boundary conditions. Now to prove
(22), suppose that we are solving (9) with A satisfying (21a) and (21b), and that we initialize our
algorithm with u0 = y. The first iteration looks like

u(1) = u(0) − α(−AT y +ATAu(0) + τ∇TV (u(0))

= AT y − α(−AT y +ATAy +∇TV (y))

and consequently
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1
Tu(1) = 1

TAT y − α(−1TAT y + 1
TATAy + 1

TTV (y))

= 1
T y + α1T y − α1TAy + 0

= 1
T y + α1T y − α1T y

= 1
T y

because of (20), (21a) and (21b). This forms the base case for induction. Now we suppose that
1
Tu(k) = 1

T y at some iteration k, and we consider

1
Tu(k+1) = 1

Tu(k) − α1T (−AT y + u(k) + τ∇TV (u(k))

= 1
T y + α1TAT y − α1Tu(k) + ατ1T∇TV (u(k))

= 1
T y + α1T y − α1T y + 0

= 1
T y.

by our induction hypothesis and because of (20), (21a) and (21b). So, by induction, we have shown
that 1Tu(k) = 1

T y for any k and any values of τ and α. We emphasize that, although the algorithm
that we are using from [1] to solve (9) does not use the above gradient descent algorithm, the above
reasoning still leads us to the conclusion that the solution to (9) has the property (22) for any value
of τ in cases where (21a) and (21b) are true, regardless of how the solution to (9) was obtained.
Moreover, in these cases, this property should still be observed even if the algorithm is initialized
with an initialization other than u(0) = y.
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Now, the problem (9) is our problem (12) without the constraints (11b), (11c), (11d). The
above analysis does not hold exactly if we impose the constraints (11b) and (11c), but it does
suggest that the constraint (11d) will almost hold in cases where (21a) and (21b) are true, even
if we do not impose (11d) explicitly. In fact, if we consult a graph of the sums of the pixel values
of the reconstructed images in the denoising problem, first solving the unconstrained problem (9),
and then solving (11a) with the bound constraints (11b) and (11c), we see the following:

Figure 6: A graph of the sum of the pixel values of the reconstructions as a function of τ . The
dashed line denoting the result of the unconstrained minimization problem is indistinguishable from
the sum of the pixel values of the noisy image. The result involving bound constraints at first only
has approximately the desired sum of pixel values, but as τ increases, the bound constraints tend
to be satisfied automatically by the total variation regularization, and the sum of pixel values is as
desired.

This would seem to confirm our expectations that the constraint (11d) holds exactly if we solve the
unconstrained problem (9), and that it will almost hold in cases where (21a) and (21b) are true,
even if we do not impose (11d) explicitly.

20



If we examine the analogous results for the deblurring problem, we see the following:

Figure 7: A graph of the sum of the pixel values of the reconstructions as a function of τ . Again,
the dashed line denoting the result of the unconstrained minimization problem is indistinguishable
from the sum of the pixel values of the noisy image. Again, the result involving bound constraints
at first only has approximately the desired sum of pixel values, but as τ increases, the bound
constraints tend to be satisfied automatically by the total variation regularization, and the sum of
pixel values is as desired.

This is consistent with the conclusions that we drew previously from examining the corresponding
graph from the denoising results. This would explain why the intensity constraint (11d) does not
improve the results of total variation denoising or deblurring. However, we emphasize that the
property (22) should not be expected for general linear operators A. Our analysis only shows that
it holds for A for which (21a) and (21b) are true.

9 Conclusions and Future Work

We have shown both analytically and empirically that total variation regularization preserves the
intensity of the original image u in denoising and deblurring problems. As a result, the intensity
constraint (11d) does not improve the results of total variation regularization in these cases. This
is fortunate, since these problems can be solved more quickly if (11d) does not need to be enforced.
Potential future work includes assessing whether the projection algorithm that solves (12) could be
used to improve the results of image enhancement techniques such as image sharpening.
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Appendix A

Theorem. Let the total variation TV (u) of a p× q digital image be defined by (7). Let us define
∇TV (u) : Rmn → R

mn as having entries given by

(∇TV (u))i,j =
∂

∂ui,j
(TV (u)).

Then

1
T (∇TV (u)) =

∑
i,j

(∇TV (u))i,j = 0

for any image u.

Proof. Let us consider the 3× 3 digital image

u =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 .
The isotropic total variation (7) for the above digital image u is

TV (u) =
√

(u1,1 − u1,2)2 + (u1,1 − u2,1)2 +
√

(u1,2 − u1,3)2 + (u1,2 − u2,2)2 + |u1,3 − u2,3|

+
√

(u2,1 − u2,2)2 + (u2,1 − u3,1)2 +
√

(u2,2 − u2,3)2 + (u2,2 − u3,2)2 + |u2,3 − u3,3|

+ |u3,1 − u3,2|+ |u3,2 − u3,3|

where the terms in absolute value that only involve the edge pixels come from the conditions for
i = m and j = n in (7), and the fact that

√
a2 = |a| for any real number a. Now if we compute all

of the terms in ∇TV (u), we get
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(∇TV (u))1,1 =
(u1,1 − u1,2) + (u1,1 − u2,1)√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

,

(∇TV (u))2,1 =
(u2,1 − u2,2) + (u2,1 − u3,1)√
(u2,1 − u2,2)2 + (u2,1 − u3,1)2

− (u1,1 − u2,1)√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

,

(∇TV (u))3,1 =− (u2,1 − u3,1)√
(u2,1 − u2,2)2 + (u2,1 − u3,1)2

+ sgn(u3,1 − u3,2),

(∇TV (u))1,2 =− (u1,1 − u1,2)√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

+
(u1,2 − u1,3) + (u1,2 − u2,2)√
(u1,2 − u1,3)2 + (u1,2 − u2,2)2

,

(∇TV (u))2,2 =− (u1,2 − u2,2)√
(u1,2 − u1,3)2 + (u1,2 − u2,2)2

− (u2,1 − u2,2)√
(u2,1 − u2,2)2 + (u2,1 − u3,1)2

,

+
(u2,2 − u2,3) + (u2,2 − u3,2)√
(u2,2 − u2,3)2 + (u2,2 − u3,2)2

,

(∇TV (u))3,2 =− (u2,2 − u3,2)√
(u2,2 − u2,3)2 + (u2,2 − u3,2)2

− sgn(u3,1 − u3,2) + sgn(u3,2 − u3,3),

(∇TV (u))1,3 =− (u1,2 − u1,3)√
(u1,2 − u1,3)2 + (u1,2 − u2,2)2

+ sgn(u1,3 − u2,3),

(∇TV (u))2,3 =− sgn(u1,3 − u2,3)− (u2,2 − u2,3)√
(u2,2 − u2,3)2 + (u2,2 − u3,2)2

+ sgn(u2,3 − u3,3),

(∇TV (u))3,3 =− sgn(u2,3 − u3,3)− sgn(u3,2 − u3,3)

where

sgn(x) =

{
1 if x > 0,
−1 if x < 0,

and we take sgn(0) = 0. Our claim is that

1
T (∇TV (u)) =

∑
i,j

(TV (u))i,j = 0.

To see this, let us first consider terms in (∇TV (u)) that involve u1,1. We see that only (∇TV (u))1,1,
(∇TV (u))2,1, and (∇TV (u))1,2 contain terms that involve u1,1, and that when we compute (∇TV (u))1,1+
(∇TV (u))2,1 + (∇TV (u))1,2, the terms containing u1,1 are

2u1,1√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

− (u1,1)√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

− (u1,1)√
(u1,1 − u1,2)2 + (u1,1 − u2,1)2

= 0.

Clearly this is true regardless of whether the dimensions of u are 3 × 3 or m × n. So, all terms
involving u1,1 vanish. The same thing happens to terms involving u1,3, u3,1, and u3,3, with the
computation looking essentially the same as that for terms involving u1,1. That is, the terms from
(∇TV (u))1,3 that involve u1,3 cancel with those in (∇TV (u))1,2 and (∇TV (u))2,3 that contain

24



u1,3 (and no other entries in ∇TV (u) contain terms with u1,3 in them), and so forth. Clearly the
computations would be similar for an image of size m × n rather than 3 × 3, with (∇TV (u))1,3
being replaced by (∇TV (u))1,n, (∇TV (u))3,3 being replaced by (∇TV (u))m,n, and so forth. Now
if we consider all terms in 1

T (∇TV (u)) that involve u2,2, we see that these are the terms from
(∇TV (u))2,2, (∇TV (u))2,1, (∇TV (u))1,2, (∇TV (u))3,2, and (∇TV (u))2,3 - namely, the pixels in
∇TV (u) that are adjacent to (∇TV (u))2,2, including (∇TV (u))2,2 itself. The addition of these
terms yields

4u2,2√
(u1,2 − u1,3)2

− u2,2√
(u1,2 − u1,3)2

− u2,2√
(u1,2 − u1,3)2

− u2,2√
(u1,2 − u1,3)2

− u2,2√
(u1,2 − u1,3)2

= 0.

For any interior pixel ui,j in an m × n digital image, the addition of all terms involving ui,j in
1
T (∇TV (u)) looks the same as the addition of the terms involving u2,2 for ∇TV (u) for our 3× 3

image, and also sums to zero. If we now look at all the terms in 1
T (∇TV (u)) that involve u2,1, we

see that only the terms in (∇TV (u))2,1, (∇TV (u))2,2, (∇TV (u))1,1, and (∇TV (u))3,1 involve u2,1,
and that adding these terms yields

3u2,1√
(u2,1 − u2,2)2 + (u2,1 − u3,1)2

− 3u2,1√
(u2,1 − u2,2)2 + (u2,1 − u3,1)2

= 0.

For any pixel ui,j in an m × n digital image that is on a boundary, but that is not a corner pixel
(u1,1, um,1, u1,n, or um,n), the addition of all terms involving ui,j in 1

T (∇TV (u)) looks the same
as the addition of the terms involving u2,1 (or u1,2 or u2,3 or u3,2) for ∇TV (u) for our 3× 3 image,
and also sums to zero. This covers all of the terms in ∇TV (u), giving us the desired result,

1
T (∇TV (u)) =

∑
i,j

(TV (u))i,j = 0,

for u of arbitrary size in addition to our 3×3 example. Similar computations show that we can also
say that 1T (∇TV`1(u)) for the anisotropic total variation (8) (if we adopt the convention sgn(0) = 0
as we did above).
There is also a corollary to the above theorem which is of considerable practical importance. The
above definition of ∇TV (u) involves division by zero if the image u contains regions where the
pixels’ intensity values do not change. (The anisotropic total variation (8), which does not have
this problem, does not need such an ε to be introduced.) In practice, using a slightly regularized
total variation functional TV (u; ε) (below) circumvents this problem. The proof of the corollary is
extremely similar to that of the theorem.

Corollary. If we define

TV (u; ε) =
∑
i,j

(
√

(Dh;iju)2 + (Dv;iju)2 + ε2 − ε),

and we define ∇TV (u; ε) : Rmn → R
mn as having entries given by

(∇TV (u; ε))i,j =
∂

∂ui,j
(TV (u; ε)),

then
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1
T (∇TV (u; ε)) =

∑
i,j

(∇TV (u; ε))i,j = 0

for any image u and any ε > 0.
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Appendix B

In this section, we argue that our convolution Pu = p ∗ u described by (19) has the property that,
if periodic or reflexive boundary conditions (see [8]) are adopted for the convolution, then for any
image u,

Pu = P Tu,

and

1
TPu =

∑
i,j

(Pu)i,j =
∑
i,j

ui,j = 1
Tu.

To give intuition regarding why the above are true, let us consider the convolution of a one-
dimensional signal x ∈ R8 and the 5× 1 filter p = 1

5 [1 1 1 1 1]T , which is a one-dimensional version
of our point-spread function (18). We can represent the convolution of p and x as a matrix-vector
product Px. If we adopt reflexive boundary conditions, then the matrix P is

P =
1
5



2 2 1 0 0 0 0 0
2 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 2
0 0 0 0 0 1 2 2


.

The sum along each column is 1, signifying that 1
TPx = 1

Tx. If we instead adopt periodic
boundary conditions, we see that

P =
1
5



1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1


.

The sum along each column is again 1, signifying that again 1
TPx = 1

Tx. Note also that P = P T

for each of the above matrices. For digital images, the computations in the convolution (19) are
more involved, so we will use an example with the 3× 3 version of the point-spread function (18),
namely,
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p =
1
5

 0 1 0
1 1 1
0 1 0

 .
In §4.3 of [8], the authors state that any two-dimensional point-spread function that exhibits
horizontal and vertical symmetry (as ours does) will lead to a matrix representation P that satisfies
P = P T . Therefore, we will focus on showing that P satisfies 1TPu = 1

Tu. To see this, let us
consider a 3× 3 image

u =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 .
and its 5× 5 reflexive extension

ur =


u1,1 u1,1 u1,2 u1,3 u1,3

u1,1 u1,1 u1,2 u1,3 u1,3

u2,1 u2,1 u2,2 u2,3 u2,3

u3,1 u3,1 u3,2 u3,3 u3,3

u3,1 u3,1 u3,2 u3,3 u3,3

 .
The convolution Pu = p ∗ u is then given by convolving p with the 3 × 3 submatrix consisting of
the interior pixels of ur. Specifically, we have that

Pu =
1
5

 3u1,1 + u1,2 + u2,1 2u1,2 + u1,1 + u1,3 + u2,2 3u1,3 + u1,2 + u2,3

2u2,1 + u1,1 + u2,2 + u3,1 u1,2 + u2,1 + u2,2 + u2,3 + u3,2 u1,3 + u2,2 + 2u2,3 + u3,3

3u3,1 + u2,1 + u3,2 u2,2 + u3,1 + 2u3,2 + u3,3 u2,3 + u3,2 + 3u3,3

 .
If we compute

1
TPu =

3∑
i=1

3∑
j=1

(Pu)i,j ,

we see that

3∑
i=1

3∑
j=1

(Pu)i,j =
3∑
i=1

3∑
j=1

ui,j = 1
Tu.

If we examine (Pu)2,2 and its adjacent entries (Pu)1,2, (Pu)2,1, (Pu)2,3, and (Pu)3,2, we see that
they each contain 1

5u2,2. This is the reason that the pixel u2,2 is counted exactly once in 1
TPu.

If p were convolved with a digital image that was larger than u, then for each interior pixel ui,j ,
the term 1

5ui,j would appear in (Pu)i,j and its adjacent entries (Pu)i−1,j , (Pu)i,j−1, (Pu)i,j+1, and
(Pu)i+1,j , as we have just seen. Consequently, this is the reason that pixels in the interior of u are

28



counted exactly once in 1
TPu. We also see that the reflexive boundary conditions ensure that the

pixels on the boundary of u are counted exactly once in 1
TPu, for similar reasons as in the one-

dimensional case. It can also be shown that 1TPu = 1
Tu if we adopt periodic boundary conditions

for the convolution Pu instead of reflexive boundary conditions. Finally, the 5 × 5 version of the
PSF (18) also satisfies 1TPu = 1

Tu, for the same reasons that the above 3× 3 PSF does.
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