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In recent decades, as a result of mathematicians’ endeavor to come up with more realistic

models for complex phenomena, the acceptance of a stochastic model seemed inevitable.

One class of these models are Stochastic Partial Differential Equations (SPDEs).

The solution to a SPDE, considered as a Wiener functional, can be analyzed by means of

Malliavin calculus. Malliavin calculus, which is a calculus on the Wiener space, is becoming

a standard method for investigating the existence of the density of random variables.

In this thesis, we study nonlinear SPDEs of the form ∂tu(t, x) = Lu(t, x) + σ(u(t, x))ẇ

with a periodic boundary condition on a torus, where L is the generator of a Lévy process

on the torus. We used the technique of Malliavin calculus to show that when σ is smooth,

under a mild condition on L, the law of the solution has a density with respect to Lebesgue

measure for all t > 0 and x ∈ T. It turns out that the density of u(t, x) has an upper bound

that is independent of x. We also prove that the Malliavin derivatives grow in time with

an exponential rate. This result, in certain cases, extends to the weak intermittency of the

random field of the Malliavin derivatives.
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of Utah, including Miljan Brakočević, Alex Chen, Mohammud Foondun, Nicos Georgiou,
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CHAPTER 1

Introduction and main results

Let {ẇ(t, x)}t≥0,x∈[0,2π] denote space-time white noise on the torus T, and let σ : R → R

be a nice function. For every T ∈ [0,∞], we define ET := [0, T ] × T, and let E denote

E∞ :=
⋃
T>0 ET . We study the parabolic stochastic partial differential equation [SPDE]∣∣∣∣∣∣∣∣∣

∂tu(t, x) = Lu(t, x) + σ(u(t, x))ẇ (t, x) ∈ E,

u(t, 0) = u(t, 2π) t ≥ 0,

u(0, x) = u0(x) x ∈ T,

(1.1)

where L is the L2(T)-generator of a Lévy process X := {Xt}t≥0, and acts only on the variable

x, and u0 is a bounded, measurable real function on T. We denote by C∞b (R) the space of all

smooth functions on R with bounded derivatives of all orders. Note that we do not require

σ to be bounded, however, the bound on |σ′| requires σ to be Lipschitz. Let Φ : Z→ C

denote the characteristic exponent of X normalized so that E exp(inXt) = exp(−tΦ(n)) for

all n ∈ Z and t > 0. In other words, Φ is the Fourier multiplier of L and L̂(n) = −Φ(−n)

holds for all n ∈ Z ; see section 2.1 for details.

We show that (1.1) has a well-defined and unique solution and let u denote this solution.

The idea for the existence and uniqueness of the solutions to (1.1) come from [24] and [23].

A linearized version of (1.1) on R, with vanishing initial data, in which the noise is additive;

i.e., ∣∣∣∣∣∣ ∂tu(t, x) = Lu(t, x) + ẇ,

u(0, x) = 0,
(1.2)

is studied by Foondun et al. in [24]. They have shown a one-to-one correspondence between

the existence of a unique random field solution to (1.2) and the existence of the local times
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for the symmetrized underlying Lévy process Ȳ , where

Ȳt = Yt − Y ′t ∀t ≥ 0, (1.3)

and Y ′ = {Y ′t }t≥0 is an independent copy of Y . Their result is the following:

Theorem 1.0.1 (Foondun-Khoshnevisan). The stochastic heat equation (1.2) has random

field solutions if and only if the symmetric Lévy process Y has local times.

In [23], the authors consider a multiplicative white noise and study the existence and

uniqueness of the mild solution to the equation∣∣∣∣∣∣ ∂tu = Lu+ σ(u)ẇ t ≥ 0, x ∈ R,

u(x, 0) = u0(x) x ∈ R,
(1.4)

with a nonnegative initial data u0. In this paper, Foondun and Khoshnevisan combine the

existence result of [24] with a result of Hawkes (see Theorem 2.1.1 below) to show that (1.4)

has a strong solution, whenever υ(β) <∞, for some β > 0 where

υ(β) :=
1

2π

∫ ∞
−∞

dξ

β + 2Re ϕ(ξ)
,

where ϕ denotes the characteristic exponent of Y . Therefore, it is natural to consider a

solution to equation (1.1) under a similar hypothesis. We define

Υ(β) :=
1

4π

∞∑
−∞

1

β + 2Re Φ(n)
.

Theorem 2.2.7, Lemma 2.2.4 and Lemma 2.2.5 deal with the existence and uniqueness of the

solution to Eq. (1.1). In Hypothesis H1 below, we will discuss briefly how the existence of a

mild solution imposes a restriction on the underlying Lévy process X and the corresponding

gauge function Υ(β).

Let {f(t, x)}t≥0,x∈T be a predictable random field. For each β > 0 and p ≥ 2 define a

family of seminorms via

‖f‖β,p :=

{
sup

(t,x)∈R+×T

e−βtE(|f(t, x)|p)

}1/p

, (1.5)
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and let Dβ,p = {f = f(t, x) : ‖f‖β,p < ∞}. Let Lk,p be the collection of all random fields

f ∈ Dβ,p such that f(t, x) ∈ Dk,p for all t ≥ 0 and x ∈ T. Define Γkt,xf := ‖Dkf(t, x)‖L2(Tk)

and let

Dk,β,p :=
{
f ∈ Lk,p : ‖Γkf‖β,p <∞

}
. (1.6)

Here Dk,p and the Dk operator denote a Malliavin Sobolev space and the Malliavin derivative

operator of kth order respectively; for precise definitions see Chapter 2.3.

Fix p ≥ 1, we will show that, for any k, there is β = β(k) so that β(k) ≥ β(k − 1)

and u ∈ Dk,β,p. This property of u, when interpreted as a rate of growth for the Malliavin

derivatives with time, translates into the existence of an upper bound for the Liapounov

exponents for the field Dku. We will show that, when u0 is sufficiently large, under some

conditions on σ, the Malliavin derivatives are intermittent. This property of the the random

filed describes the pronounced spatial structure of the field; for the precise definition and

more details we refer to Chapter 5. When σ is linear, this result holds for the derivatives of

all orders. For the general σ we will prove the intermittency for the Malliavin derivative of

the first and second order. To be more precise, let us define the upper pth-moment Liapounov

exponent γ̄k(p) of Dku(t, x) by

γ̄k(p) = lim sup
t→∞

1

t
ln(E‖Dku(t, x)‖p

H⊗k
) for all p ∈ (0,∞), (1.7)

where H = L2((0,∞)×T)). We say that Dku is weakly intermittent if

γ̄k(2) > 0 and γ̄k(p) <∞ for all p > 2. (1.8)

If we interpret the Malliavin derivatives as derivatives with respect to ω, then intermittency

implies an unusually big derivative with respect to path ω. In this context, the following

two theorems show the sensitivity of u(t, x) to the change of paths.

Theorem 1.0.1. Let u = u(t, x) be the solution of (1.1). If σ ∈ C∞b (R), then u ∈ Dk,p for

all k ≥ 1 and p ≥ 1, and

γ̄k(p) <∞. (1.9)

For the following theorem, we assume that u0 ≥ 0 is sufficiently large.
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Theorem 1.0.2. 1. When σ(x) = λx, then (1.8) holds for all k ≥ 1.

2. Furthermore, assume q0 := lim infx6=0 |σ(x)/x| > 0. Then

(a) If σ is differentiable with a bounded derivative, then (1.8) holds for k = 1.

(b) If σ is twice differentiable with bounded derivatives and infx |σ′(x)| > 0, then (1.8)

holds for k = 1, 2.

Chapter 5 of this thesis is devoted to the proof of the existence of the Liapounov exponents

and the intermittency of the Malliavin derivatives Dku. These results can be interpreted as

an indication of a “chaotic” behavior of the system defined by (1.1). We also establish

sufficient conditions for the existence of a smooth density for u(t, x); see Theorem 1.0.2.

By replacing σ with λσ, where λ > 0, we compare the dependencies of the upper and

lower bounds of the Liapounov exponents on λ. We note that the upper and lower bounds

have the same forms of dependency on λ. More precisely, we have

Υ−1

(
1

c2
0λ

2

)
≤ γ̄1(p) ≤ p

2
Υ−1

(
1

2λ2| supσ′|2(1 + z2
p)

)
,

where Υ−1 is the pseudo inverse of Υ, and defined by

Υ−1(θ) := inf{β > 0 : Υ(β) < θ},

c0 ∈ (0, q0) and zp is the optimal constant in Burkholder-Davis-Gundy inequality; see [23]

and the references therein for more details on the optimal constants zp.

The most common application of the Malliavin calculus is the investigation of the exis-

tence of the densities. The following result is in this direction.

Theorem 1.0.2. Let u be the mild solution to the equation (1.1), where σ ∈ C∞b (R) and

suppose that there is a κ > 0 such that infx σ(x) ≥ κ > 0. Assume that there exist finite

constants c, C ≥ 0 and 1 < α ≤ β ≤ 2, such that

c|n|α ≤ Re Φ(n) ≤ C|n|β, (1.10)
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for all n ≥ 1. If α ≥ 2β/(β + 1), then u(t, x) has a smooth density pt(x) at every t > 0 and

x ∈ T. This holds, in particular when

c n
4
3

+ε ≤ ReΦ(n) ∀n ≥ 1,

where 0 < ε < 2
3
.

We would like to remark that when (1.1) is linear, and α, β ≤ 1, a solution does not

exist. This observation might explain why in the nonlinear case of (1.1) we considered α > 1;

see Theorem 1.0.2.

Some variants of this result can be found in the literature. For example the case of

L = ∆, Laplacian, which is the well-known Stochastic Heat Equation (SHE), is treated

in [4]. In that article, the authors considered the Neumann boundary condition and showed

that, if σ is infinitely differentiable with bounded derivatives, then the law of any vector

(u(t1, x), · · · , u(tn, x)) has a smooth and strictly positive density with respect to Lebesgue

measure on the set {σ > 0}d . In [50] the authors studied (1.1), for L = ∆ on the interval

[0, 1], with Dirichlet boundary conditions. They showed that if σ is Lipschitz, then the

following holds true.

Theorem 1.0.3. Let (t, x) ∈ (0,∞)× (0, 1). The law of u(t, x) is absolutely continuous with

respect to Lebesgue measure if there exists x0 ∈ [0, 1] such that σ(u0(x0)) 6= 0.

The regularity of the density, under the condition σ(u0(x0)) 6= 0 for some x0, is an open

problem [15, page 99]. For the same equation the smoothness of the density was proved

by Muller and Nualart [43]. They assumed that σ is infinitely differentiable with bounded

derivatives. We also name [53, 33] as examples of Malliavin calculus for the SHEs on Rd

with colored noise. In [33], Hu, Nualart and Song considered the solution to (1.1) in which

ẇ(t, x) denotes a colored noise with covariance function Eẇ(t, x)ẇ(s, y) = t ∧ q(x, y), for

a γ0-Hölder continuous function q that satisfies |q(x1, x2)| ≤ C(1 + |x1|β + |x2|β), for some

β ∈ [0, 2). They further assumed that there is some γ > −1 such that for each t ≥ 0,

sup
x∈Rd

∫
R2d

pt(x, z1)pt(x, z2)q(z2, z2)dz2dz2 ≥ Ctγ.
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They proved the following result.

Theorem 1.0.4. Suppose there is x0 ∈ R such that u0(x0) 6= 0, and q(x0, x0) 6= 0, where

u0 is a bounded Hölder continuous function. The following holds true: If σ is infinitely

differentiable with bounded derivatives of all orders, then for any t > 0 and x ∈ Rd, the

probability law of u(t, x) has a smooth density with respect to Lebesgue measure.

To the best of our knowledge, the case of the SHE with multiplicative white noise on R

is not studied yet. See section 6.0.1 for more details.

Proposition 4.2.1 below, allows us to find a bound for density in Theorem 1.0.2. To state

the result we define the following quantities. Let C = 2Cα/c
1/α, where c is defined in (1.10)

(also defined as C1 in Hypothesis H2 below), and Cα =
∫∞

0
dx

1+xα
= π/α csc(π/α). Define ν,

d, and b by

ν =
2α− 1

α− 1
, b >

2Lip2
σ

π
∨
(

2Lip2
σC

π

) α
α−1

, d =
1− ν

4(bνν)1/(ν−1)
. (1.11)

Note that d < 0, as ν > 2.

Corollary 1.0.5. Let pt,y(x) denote the density of u(t, y) and let b and ν be defined as above.

There are K > 0 and β0 > 0 such that

pt,y(x) ≤ K exp(β0t+ Λ(t, x)), (1.12)

where Λ(t, x) ≤ 0 uniformly in t > 0 and x ∈ R, and is defined by

Λ(t, x) =

 d t−1/(ν−1) (ln(|x|/m))ν/(ν−1) |x| ≥ m,

0 |x| ≤ m,
(1.13)

and m = 2 supx∈T |u0(x)|+ 2|σ(0)/Lipσ|.

Remark 1.0.6. Since ν > 1, we have Λ(t, x) < 0. We can also define b > Lip2
σ

(1−ε)π ∨(
Lip2

σC
επ

) α
α−1

, for any ε ∈ (0, 1).

The proof of this corollary is in Chapter 4. The global nature of this estimate makes

it different from similar results in [17, 18, 20, 19]. In [17, 18], Dalang, Khoshnevisan and

6



Nualart study the stochastic heat equation with additive and multiplicative white noise

respectively. They find a Gaussian upper bound, which works only for t and y in compact

subsets of R+ × (0, 1). This is in contrast with our result which holds for all t > 0 and

y ∈ [0, 1]. In [20], Dalang and Sanz-Solé investigate the hitting probability of a stochastic

wave equation with colored noise.

The Kardar-Parisi-Zhang (KPZ) equation [35, 5], ∂th = −(∂xh)2 + ∂2
xh + ẇ, which is a

standard model for random interface growth, is related to (1.1). KPZ is ill-posed. However,

if we apply the Hopf-Cole nonlinear transformation [7], u(t, x) := exp{−h(t, x)}, then u

solves the well-posed SHE ∂tu = ∂2
xu + uẇ. This is a special case of (1.1), in which L = ∂2

x

and σ(x) = x. The Hopf-Cole transformation suggests that we can define the solution h to

KPZ via the well-defined random field u by

h(t, x) := − log u(t, x). (1.14)

For more details we refer to [7, 28]. If we start with u0(x) > 0 for all x ∈ T, then u(t, x) > 0

for all (t, x) ∈ E by the Mueller’s comparison theorem; see [15, Theorem 5.1] or [42, section

3]. Intuitively, when u is small, u(t, x)ẇ is small. Therefore, when u� 1, the effect of noise

become negligible and the equation behaves like the nonrandom heat equation.

One important feature of the KPZ equation is its scaling limit behavior and universal-

ity [1, 3, 22, 25] . A growth model which has a long time behavior similar to that of KPZ

is in KPZ universality class. Physicists employed the renormalization group method and

computed the dynamic scaling exponent z = 3/2; see [26, 5, 35]. This means that, under

the rescaling hε(t, x) = ε1/2h(ε−zt, ε−1x), we have a nontrivial limit, as ε ↓ 0. For a brief

introduction to KPZ, we refer to the unpublished survey [14].

Corollary 1.0.5 implies that a similar bound for the density of the KPZ equation might

hold true. Although, our result is not directly applicable to σ(x) = x, it certainly covers the

case of σ(x) = x + ε, for all ε > 0. This solution converges to the the Hopf-Cole solution of

KPZ as ε ↓ 0.

To elaborate more, let uε(t, y) and pεt,y(x) denote the solution and density of the perturbed

7



equation respectively. We also let supx∈T |u0(x)| be a small positive number. If ε > 0

is sufficiently small, then we have m < 1, and by Remark 1.0.6, b = 1 is admisible. In

particular, we find an upper bound for pεt,y(x), which is independent of ε,

pεt,y(x) ≤ K exp

[
β0t− c

(ln |x|)3/2 1|x|≥1√
t

]
, (1.15)

where c = (12
√

3)−1. As ε ↓ 0, we expect P(uε(t, x) ≤ −e−x) ↓ 0, by the Mueller’s comparison

theorem. Therefore,

d

dx
P(− log |uε(t, x)| ≤ x) =

d

dx
P(uε(t, x) ≥ e−x) +

d

dx
P(uε(t, x) ≥ e−x)

≈ − d

dx
P(uε(t, x) ≤ e−x) ≤ K exp

[
β0t− c(

|x|3/2√
t

+ x)1|x|≥1

]
.

Since the right-hand-side is independent of ε, one might be able to take the limit as ε ↓ 0,

and show that the density p̄t,y(x) of KPZ satisfies

p̄t,y(x) ≤ K exp

[
β0t− c(

|x|3/2√
t

+ x)1|x|≥1

]
,

for any bounded u0(x).

The technique of Malliavin calculus is normally implemented in two steps:

Step 1 is to prove that the solution is smooth; i.e., the existence of the Malliavin derivatives

of all orders, and

Step 2 is the proof of the nondegeneracy of the Malliavin matrix; i.e., the study of the

corresponding Malliavin matrix and existence of the negative moments.

In “Step 1” we offer a new method, which, in contrast to the other works [4, 50], does not

rely on the approximations that use the detailed features of the transition probabilities of the

Lévy process. This feature of our proof has enabled us to prove the Malliavin differentiability

of the solution for all Lévy processes for which the existence of the mild solution is proved.

To emphasize, we mention that, in this step we only require that Hypothesis H1 holds.
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In “Step 2” we followed carefully [15, pages 97-98], and could find an “ε-room” to extend

the results from Brownian motion to a large group of Lévy processes, characterized by the

rate of the growth of their Lévy exponents.

The rest of of this thesis is organized as follows. In chapter 2 we collect some results about

Lévy processes that are relevant to our study. We also discuss briefly the Walsh method of

integration. This discussion includes the result about the existence and uniqueness of the

solution to Eq (1.1). In Chapter 2, we also reviewed some elements of Malliavin calculus as

economically as possible. In Chapter 3 we show that the Malliavin derivative of u of all order

exists, i.e., the solution to (1.1) is smooth. In Chapter 4 we give a proof for Theorem 1.0.2

and its corollary, Corollary 1.0.5. Chapter 5 start with a short introduction to intermittency.

The proof of Theorem 1.0.2 is in this chapter. Finally, Chapter 6 is about the continuation

of this project.
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CHAPTER 2

Preliminaries and background

2.1 Lévy processes on a torus

In this section we review some results about Lévy processes. This material will be used in

the sequel. Let {Yt} be a Lévy process on R. This means that

1. Y0 = 0 a.s.

2. Y has independent and stationary increments.

3. It is stochastically continuous; i.e., for all ε > 0 and for all s ≥ 0,

lim
t→s

P(|Yt − Ys| > ε) = 0.

4. There is Ω0 ∈ F with P(Ω) = 1 such that, for every ω ∈ Ω, Yt(ω) is right-continuous

in t ≥ 0 and has left limits in t > 0.

Let ϕ denote the characteristic exponent of Y ; i.e,

Eeiλ(Ys+t−Ys) = e−tϕ(λ), s, t ≥ 0, λ ∈ R. (2.1)

The existence of the characteristic exponents for the rational numbers is a result of the

stationary and independent increments (property 2.) of the Lévy process. It extends to the

real numbers by the càdlàg property (property 4) of the paths.

As we discussed before — see the paragraph before (1.3)— we assume the following:

H 1. Let Ȳt = Yt − Y ′t , where Y ′ is an independent copy of Y . Ȳt has local times.

10



Combining Theorem 1.0.1 with the following theorem from [32] and the fact that Ȳt is a

Lévy process with characteristic exponent 2Re ϕ imply that Υ(β) <∞, for all β > 0.

Theorem 2.1.1 (Hawkes [32]). Let X be a Lévy process having exponent ϕ. Then a local

time exists if and only if

Re

(
1

1 + ϕ

)
∈ L1(R). (2.2)

Lemma 8.1 in [24] tells us that under hypothesis H1 process Yt has transition densities

{pt(x, y)} such that
∫
T
pt(x, y)2 dy <∞ for all x ∈ T. More precisely,

Theorem 2.1.2 (Foondun-Khoshnevisan-Nualart). If (1.2) has a random-field solution,

then the process Y has a jointly measurable transition density {pt(x)}t>0,x∈R that satises the

following: For all η > 0 there exists a constant C := Cη ∈ (0,∞) such that for all t > 0,∫ t

0

‖ps‖2
L2(R)ds ≤ Ceηt. (2.3)

Let T := [0, 2π). Define a process Xt on T, via Yt, by

Xt := Yt − 2nπ when 2nπ ≤ Yt < 2(n+ 1)π. (2.4)

Let {qt(x, ·)}x∈T denote the transition probability densities for the process X. A simple

calculation shows that the transition densities of X are given by

qt(x, y) =
∞∑

n=−∞

pt(x, y + 2nπ) ∀x, y ∈ T. (2.5)

Let us introduce a function Φ : Z→ C by

Φ(n) = ϕ(n) n ∈ Z. (2.6)

As is shown below, Φ is the characteristic exponent of the process X. It is clear from the

definition of Φ that Υ(β) < ∞ for all β > 0, when Hypothesis H2 below holds; i.e., H

2 implies H1. The function Υ continues to have a crucial role in “Step 1” above. The

convergence of all Picard iterations relies on the fact that Υ(β)→ 0 as β →∞.
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The L2 generator of X is defined via the concept of the Fourier Multiplier. To explain

this, we start with the definition of the Fourier integrals. For every g ∈ L2(T) we have

g(x) =
∞∑

n=−∞

ĝ(n)e−inx,

where

ĝ(n) =
1

2π

∫
T

einxg(x)dx.

Here the convergence of the series holds in L2(T). Since qt(x, y) is a function of y − x for

each t ≥ 0, we occasionally abuse notation and write qt(y − x) instead of qt(x, y).

Lemma 2.1.3. Under Hypothesis H1, qt(x, ·) ∈ L2(T) for all x ∈ T and t > 0. Further-

more,

q̂t(x, n) =
1

2π
einxe−tΦ(n), ‖qt(·)‖2

L2(T) =
1

4π2

∞∑
n=−∞

e−2tRe Φ(n), (2.7)

and

qt(x, y) =
1

2π

∞∑
n=−∞

einxe−tΦ(n)e−iny. (2.8)

Proof. In order to show that qt(x, ·) ∈ L2([0, 2π)) we need only to show that its Fourier

coefficients are in `2(Z). We can write q̂t in terms of Φ as follows:

q̂t(x, n) =
1

2π

∫
T

einy qt(y − x)dy =
1

2π
einx

∫ ∞
−∞

einzpt(z) dz =
1

2π
einxe−tΦ(n). (2.9)

Therefore, Φ is the characteristic exponent of the Lévy process Xt. To prove the second

formula, we need only to show that the sum in (2.7) converges, because then this equation

would be the Parseval identity. An application of Fubini and H1 imply that∫ ∞
0

∞∑
n=−∞

e−(βt+2tRe Φ(n))dt = 4π2Υ(β) <∞. (2.10)

Therefore, by the continuity of the integrand,

∞∑
n=−∞

e−(βt+2tRe Φ(n)) <∞ ∀t > 0.

Therefore
∑∞

n=−∞ e
−2tRe Φ(n) <∞ for all t > 0. Finally, (2.8) is a consequence of the inversion

formula.
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The transition densities qt induce a semigroup Tt on L2(T) defined by

Ttf(x) = Exf(Xt) :=

∫
T

f(y)qt(x, y)dy. (2.11)

Lemma 2.1.4. The semigroup operator defined in (2.11) is a convolution operator and

Ttf(x) =
∞∑

n=−∞

e−inxe−tΦ(−n)f̂(n). (2.12)

Proof. Since

Ttf(x) =

∫
T

f(y)
1

2π

(
∞∑

n=−∞

einxe−tΦ(n)e−iny

)
dy,

an application of Fubini gives us the result.

Let L be the generator of Xt in L2 sense. This means

Lf(x) = lim
t→0+

Ttf(x)− f(x)

t
in L2(T),

whenever the limit exists. It is natural to define

Dom[L] :=

{
ϕ ∈ L2(T) : L(ϕ) := lim

t→0+

Ttϕ− ϕ
t

exists in L2(T)

}
.

Next, we characterize Dom[L] in terms of the characteristic exponent.

Proposition 2.1.5. We have

Dom[L] =

{
f ∈ L2(T) :

∞∑
n=−∞

|Φ(n)|2|f̂(n)|2 <∞

}
.

Proof. From the definition and the continuity of the Fourier transform,

L̂f(n) = lim
t→0+

T̂tf(n)− f̂(n)

t
= L̂f(n) = f̂(n) lim

t→0+

e−tΦ(−n) − 1

t
= −Φ(−n)f̂(n)

Then Φ(n)f̂(n) ∈ `2(Z). Since Φ(−n) = Φ(n), this is equivalent to what we wanted to

prove.

Therefore L can be viewed as a convolution operator with Fourier multiplier L̂(n) =

−Φ(−n). We state the result as follows.
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Lemma 2.1.6. The L2(T) generator L of Tt can be written as

Lu0(x) = −
∞∑

n=−∞

einxΦ(−n)û0(n) x ∈ [0, 2π), (2.13)

for all u0 ∈ L2(T).

We borrow the following lemma from [23]; it plays a key role in the proof of the existence

of Malliavin derivatives.

Lemma 2.1.7. For all β > 0,

sup
t>0

e−βt
∫ t

0

‖qs‖2
L2(T )ds ≤

∫ ∞
0

e−βs‖qs‖2
L2(T )ds = Υ(β). (2.14)

Proof. Since e−βt ≤ e−βs for all s ≤ t, then we have the inequality. The equality follows

from (2.7) and (2.9),∫ ∞
0

e−βs‖qs‖2
L2(T )ds =

∫ ∞
0

e−βs
∞∑
n=1

|q̂s(x, n)|2ds

=
∞∑

n=−∞

∫ ∞
0

e−βs|q̂s(x, n)|2ds = Υ(β).

This finishes the proof.

We refer the reader to[2, page 172] for further details. The following results are used in

“Step 2” of our proof, that is the existence of negative moments.

Lemma 2.1.8. Let 1 < α ≤ 2. There is C ∈ (0,∞) such that

lim
λ→0

λ
1
α

∞∑
n=1

e−n
αλ = C. (2.15)

A proof for the special case of α = 2 is given in [15, pages 34-35]. We extend the result

to 1 < α ≤ 2 by modifying the same idea. We start with the following lemma.

Lemma 2.1.9. There is c <∞ depending only on α such that

nα − xα ≤ cxα−1.

for every x ∈ [n− 1, n] and for all n ≥ 1.
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Proof. Since nα − xα ≤ nα − (n− 1)α, by an application of the mean value theorem,

nα − xα ≤ αnα−1.

Since limn→∞
nα−1

(n−1)α−1 = 1, there is N such that nα−1 ≤ 2(n− 1)α−1 for all n ≥ N . But for

every for every n ≤ N , there is Cn such that

nα−1 ≤ Cn(n− 1)α−1.

Then, if we let C = max{2, C1, · · · , Cn}, we get

nα−1 ≤ C(n− 1)α−1 n ≥ 1.

Therefore, the inequality (n− 1)α−1 ≤ xα−1 completes the proof.

Proof of Lemma 2.1.8. Let
∫∞

0
e−x

α
dx = C. Then

∫∞
0
eλx

α
dx = C

λ
1
α

. Let

T =

∫ ∞
2

e−x
αλdx−

∞∑
n=3

e−λn
α ≥ 0. (2.16)

Since, 1− e−θ ≤ 1 ∧ θ,

T =
∞∑
n=3

∫ n

n−1

e−x
αλ
(
1− e−λ(nα−xα)

)
dx ≤

∞∑
n=3

∫ n

n−1

e−x
αλ (1 ∧ λ(nα − xα)) dx.

Then, by Lemma 2.1.9 followed by a change of variable,

T ≤
∫ ∞

0

e−x
αλ
(
1 ∧ λcxα−1

)
dx =

1

λ
1
α

∫ ∞
0

e−y
α

(1 ∧ λ
1
αy)dy.

Therefore, 0 ≤ λ
1
αT ≤

∫∞
0
e−y

α
(1 ∧ λ 1

αy)dy. Since by the dominated convergence theorem

lim
λ→0

∫ ∞
0

e−y
α

(1 ∧ λ1− 1
αy)dy = 0,

then by the squeeze theorem,

lim
λ→0

λ
1
αT = 0. (2.17)

Since limλ→0 λ
1
α

∫∞
2
e−y

αλdy = C > 0, (2.17) implies that

lim
λ→0

λ
1
α

∞∑
n=1

e−n
αλ = C.

15



Next we introduce the second hypothesis.

H 2. There are 1 < α < β ≤ 2 and 0 < C1 < C2 such that

C1|n|α ≤ Re Φ(n) ≤ C2|n|β ∀n ≥ 1. (2.18)

Corollary 2.1.10. Let Φ(n) denotes the Lévy exponent of a Lévy process with transition

probability q = qt(x). If Φ satisfies Hypothesis H2, then, for t ∈ [0, T ], there are constants

0 < A1 < A2 depending on T , such that

1. For all t > 0,

A1t
− 1
β ≤ ‖qt‖2

L2(T) ≤ A2t
− 1
α ; (2.19)

2. For every δ ∈ (0, T ),

A1δ
1− 1

β ≤
∫ δ

0

‖qt‖2
L2(T)dt ≤ A2δ

1− 1
α . (2.20)

Proof. We prove only the first part; the second part follows from the first part by integration.

It follows from (2.18) and (2.7) that
∞∑

n=−∞

e−2tC2|n|β ≤ 4π2‖qt‖2
L2(T) ≤

∞∑
n=−∞

e−2tC1|n|α . (2.21)

The first inequality in (2.21) implies that

t1/β‖qt‖2
L2(T) ≥

1

(2C2)1/β4π2
(2tC2)1/β

∞∑
n=−∞

e−2tC2|n|β . (2.22)

By (2.15) the right-hand-side of (2.22) converges to a number B1 > 0. Therefore there is an

ε1 > 0 such that

t1/β‖qt‖2
L2(T) ≥ B1/2 ∀t ∈ (0, ε1).

To extend the inequality to t ∈ (0, T ), we note that by (2.15), qt 6= 0 and is continuous for

t > 0. Therefore, there is A1 > 0 such that

t1/β‖qt‖2
L2(T) ≥ A1 ∀t ∈ (0, T ). (2.23)

Similarly, the second inequality in (2.21) implies that there is A2 such that

t1/β‖qt‖2
L2(T) ≤ A2 ∀t ∈ (0, T ). (2.24)

Inequalities (2.23) and (2.24) imply (2.19).
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2.2 A Stochastic Partial Differential Equation

Equation (1.1) is formal; we interpret it, in the Walsh sense, as the solution to the integral

equation

u(t, x) = v(t, x) +

∫
T

∫ t

0

σ(u(s, y))qt−s(y − x)w(dsdy), (2.25)

where v(t, x) = Ttu(x), and the integral on the right-hand-side is with respect to white noise.

The white noise also defines a filtration {Ft}t≥0 via

Ft = σ (ẇ([0, s]× A), 0 ≤ s ≤ t, and A ∈ B(T)) ,

where B(T) denotes the Borel σ-algebra on T equipped with Lebesgue measure, normalized

to have mass 1. In (2.25) a solution u that satisfies (2.25) is called a mild solution to (1.1),

if

sup
(t,x)∈[0,T ]×T

E(|u(t, x)|2) <∞ for all T <∞;

see [23, page 4]. We assume Ft satisfies the usual condition for all t ≥ 0. This means that

Ft is right continuous and contains all the null sets[51, page 22].

To better understand what this equation represents, consider the following noninteracting

particle system in a random environment. Particles are initially distributed on T according

to the initial density u0(x). At time t = 0 particles start a continuous time random walk

on the torus. The motion of the particles is governed by the generator of the Lévy process.

At each time-point (t, x) ∈ E, particles either multiply or die at a rate proportional to

the amount of the noise at (x, t). This branching mechanism is responsible for the term

σ(u(t, x))ẇ in (1.1). In this model the diffusive effect of the operator L competes with the

white noise. While the diffusion is trying to flatten the solution, the noise roughens it up.

White noise ẇ is a continuous analogue of a sequence of i.i.d. Gaussian random variables.

Roughly speaking, it is a Gaussian process with covariance function,

Eẇ(s, x)ẇ(t, y) = δ(t− s)δ(x− y)

More precisely, let B(E) denote the Borel σ-algebra on E, and let | · | denote the product

Lebesgue measure on B(E). White noise is a centered Gaussian process indexed by the
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elements in B(E), whose covariance function C : B(E)× B(E)→ R is defined by

C(A,B) = |A ∩B|. (2.26)

Although ẇ(A ∪ B) = ẇ(A) + ẇ(B) a.s. for all disjoint A and B, white noise is not a σ-

additive set function and fails to define a pathwise signed measure. However, for all disjoint

sets A1, A2, · · · ∈ B(E),

P

{
ẇ(

∞⋃
n=1

An) =
∞∑
i=1

ẇ(An)

}
= 1, (2.27)

where the infinite sum converges in L2(P). To define an Itô type integral against ẇ, for every

A ∈ B(E) we set ∫
1A(t, x)w(dt, dx) = ẇ(A).

By linearity of integration, we can define
∫
f(t, x)w(dt, dx) for every f of form

f(t, x) =
n∑
i=1

ci1Ai(t, x),

where Ai ∈ B(E) for i = 1, · · · , n. Then the Itô isometry,

‖f‖L2(E) =

∥∥∥∥∫ f(t, x)w(dt, dx)

∥∥∥∥
L2(Ω)

,

allows us to extend this definition to all functions in L2(E). It remains to define the integral

for the random integrands, which will be discussed briefly next. Let A = [0, t] × B, where

B ⊂ B(T). For sets of this form we define wt(B) = ẇ(A). Then following lemma holds.

Lemma 2.2.1. {wt(B)}t≥0,B∈B(T) is a “martingale measure” in the sense that:

1. For all A ∈ B(T), w0(B) = 0 a.s.;

2. If t > 0 when wt is a sigma-finite, L2(P)-valued singed measure; and

3. For all B ∈ B(T), {wt(B)}t≥0 is a mean-zero martingale.

Proof. See [15] page 15.
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Definition 1. A function f : R+ ×T× Ω→ R is elementary, if for some X and A,

f(t, x, ω) = X(ω)1(a,b](t)1A(x), (2.28)

where X is bounded and Fa measurable random variable, and A ∈ B(T). Finite [nonrandom]

linear combination of elementary functions are called simple functions. Let S denote the class

of all simple functions.

If f is an elementary function, then we define the stochastic-integral process of f as∫ t

0

∫
B

f(s, x, ω)w(ds, dx) = X[wt∧b(B ∩ A)− wt∧a(B ∩ A)], (2.29)

for every B ∈ B(T). This definition extends to S by linearity. The sigma algebra P generated

by S is called the predictable σ-algebra. We restrict the time variable t in a finite interval

[0, T ] and let Pw denote the collection of predictable functions f such that

E

[∫ T

0

∫
T

|f(s, x)|2dsdx
]
<∞,

where the index w in Pw emphasizes the dependency on the white noise. Let A,B ∈ B(T).

By Lemma 2.2.1, {wt(A)}t≥0 and {wt(B)}t≥0 are martingales, and we have

〈w(A), w(B)〉t = t|A ∩B|, (2.30)

where 〈·, ·〉t denotes the covariance process of the two martingales [36, page 205]. One way to

check (2.30) is to observe that wt(A)/
√
|A| is a standard Brownian motion for all A ∈ B(T).

(2.30) is best appreciated in view of the Burkholder inequality and (2.34), as it leads to the

following statement.

Theorem 2.2.2. Let f ∈ Pw, and define (f ·w) :=
∫ •

0

∫
T
f(s, x)w(ds, dx). For all t ∈ (0, T ]

and A,B ∈ B(T),

〈(f · w), (f · w)〉t =

∫ t

0

∫
T

|f(s, x)|2dsdx. (2.31)

Furthermore, we have the following Itô type isometry:

E [(f · w)]2 = E

[∫
T

∫ t

0

|f(s, x)|2dsdx
]
. (2.32)

19



Proof. A proof for a general martingale measure can be found in[15, page 21].

Let {f(t, x)}t≥0,x∈T be a predictable random field. For any T > 0, β > 0 and p ≥ 2

define

‖f‖β,p,T :=

{
sup

(t,x)∈[0,T ]×T

e−βtE(|f(t, x)|p)

}1/p

. (2.33)

To analyze this family of p-norms we will need the following inequality. It is an Lp(P)

version of (2.32), which can be proved by the Itô formula and Doob’s inequality.

Theorem 2.2.3. [Burkholder-Davis-Gundy Inequality[10]] Let (Ω,F , (Ft)t≥0,P) be a filtered

probability space. Let p > 0. There exist two universal constants Cp and cp, depending only

on p, such that for every (Ft)t≥0 continuous local martingale M , with M0 = 0, and any

stopping time ρ, we have

cpE(〈M〉1/2ρ )p ≤ E(sup
s≤ρ
|Ms|)p ≤ CpE(〈M〉1/2ρ )p, (2.34)

where the optimal constant Cp, when ρ = t, and p ≥ 2 is given by

zp := optimal Cp = sup

{
‖Nt‖Lp(P)

‖〈N,N〉2‖Lp/2(P)

: N ∈Mp

}
, (2.35)

where 0/0 = 0, and Mp denotes the collection of all continuous Lp(P) martingales.

Most of above discussion is borrowed from [15]. For more details on the theory and

examples of the stochastic partial differential equations we also refer to [13]. We aim next

to prove the existence and uniqueness of the solution to (1.1). It is well-known that the

stochastic heat equation (1.1), in which L = ∆, has solution {u(t, x)}t≥0,x∈R that is jointly

continuous. The solution is unique up to modification. This result can be found, for example

in Walsh[55, page 312], see also [16]. This special case arises also in the study of stochastic

Burger equation[30], the parabolic Anderson Model [12] and KPZ equation [35].

In order to analyze the mild solution (2.25), we define an operator A by

(Af)(t, x) =

∫ 2π

0

∫ t

0

qt−s(x, y)σ(f(s, y))w(dsdy) ∀x ∈ [0, 2π), t ≥ 0, (2.36)

provided that the stochastic integral exists in the sense of Walsh [55].
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Lemma 2.2.4. If f is predictable and ‖f‖β,p <∞ for a real β > 0 and p ≥ 1, then

‖Af‖β,p ≤ zp (σ(0) + Lipσ‖f‖β,p)
√

Υ(2β/p), (2.37)

where Υ and qt correspond to the Lévy process X.

Proof. The integrand in Af(t, x) depends on t. Therefore, Af(t, x) is not a martingale.

However, if we choose and fix r > 0, then the operator

Arf(t, x) :=

∫ t

0

∫
T

qr−s(x, y)σ(f(s, y))w(ds, dy)

is a martingale for all t ≤ r, with quadratic process,

〈Arf(•, x)〉t =

∫ t

0

∫
T

q2
t−s(x, y)|σ(f(s, y))|2dyds.

If we apply the Burkholder inequality to Arf(t, x), for t ≤ r,

‖Arf(t, x)‖pLp(P) ≤ zpE

∣∣∣∣∫ t

0

∫
T

q2
r−s(x, y)|σ(f(s, y))|2dyds

∣∣∣∣p/2 .
Now let t = r to get

‖Af(t, x)‖2
Lp(P) ≤ z2

p

∥∥∥∥∫ t

0

∫
T

q2
r−s(x, y)|σ(f(s, y))|2dyds

∥∥∥∥
Lp/2(P)

.

Minkowski’s inequality allows us to switch the norm [Lp/2(Ω)] with the integral [dyds],

‖Af(t, x)‖2
Lp(P) ≤ z2

p

∫ t

0

∫
T

q2
t−s(x, y) ‖σ(f(s, y))‖2

Lp(P) dyds.

Since σ(x) is Lipschitz, |σ(x)| ≤ c0 + c1|x|, where c0 = |σ(0)|, and c1 = Lipσ. This combined

with inequality

(a+ b)2 ≤ (1 + ε−1)a2 + (1 + ε)b2 a, b ∈ R, ε > 0,

yields,

|σ(f(s, y))|2 ≤ (1 + ε−1)c2
0 + (1 + ε)c2

0|f(s, y)|2.

Therefore, by the triangle inequality,

‖σ(f(s, y))‖2
Lp(P) ≤ (1 + ε−1)c2

0 + (1 + ε)c2
0‖f(s, y)‖2

Lp(P).
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Then, by replacing |σ|2 in (4.1) by this upper bound, and using the fact that ‖f(s, y)‖2
L2(P) ≤

e2βs/p‖f‖2
p,β we will arrive at

‖Af(t, x)‖2
Lp(P) ≤z2

p(1 + ε−1)c2
0

∫ t

0

‖qt−s‖2
L2(T)ds

+ z2
p(1 + ε)c2

1‖f‖2
p,β

∫ t

0

‖qt−s‖2
L2(T)e

2βs
p ds (2.38)

=z2
p(1 + ε−1)c2

0

∫ t

0

‖qs‖2
L2(T)ds

+ z2
p(1 + ε)c2

1‖f‖2
p,βe

2βt/p

∫ t

0

‖qs‖2
L2(T)e

−2βs/pds.

We multiply the above inequality by e−2βt/p and recall that by (2.1.7),

e−2βt/p

∫ t

0

‖qs‖2
L2(T)ds ≤

∫ t

0

‖qs‖2
L2(T)e

−2βs/pds ≤ Υ(2β/p),

to conclude that

e−2β/p‖Af(t, x)‖2
Lp(P) ≤z2

p(1 + ε−1)c2
0Υ(2β/p) + z2

p(1 + ε)c2
1‖f‖2

β,pΥ(2β/p).

From the definition of ‖ · ‖β,p, we have

‖Af‖2
β,p ≤

[
(1 + ε−1)c2

0 + (1 + ε)c2
1‖f‖2

β,p

]
z2
pΥ(2β/p).

Finally, we choose

ε =


|c0|

c1‖f‖β,p
if c1‖f‖β,p > 0,

0 if c0 = 0,

∞ if ‖f‖β,p = 0,

(2.39)

and the proof is complete.

Lemma 2.2.5. Let p ≥ 2. For every β > 0, and all predictable random fields f and g that

satisfy ‖f‖β,p + ‖g‖β,p <∞,

‖Af −Ag‖β,p ≤ zpLipσ
√

Υ(2β/p)‖f − g‖β,p. (2.40)

Remark 2.2.6. This result obviously implies the uniqueness of the solution to Eq. (1.1).
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Proof. As we did in the proof of Lemma 2.2.4, we can apply the Burkholder inequality. Then

the Lipschitz property of σ yields,

E|Af(t, x)−Ag(t, x)|p ≤ Lippσz
p
pE

∣∣∣∣∫ t

0

∫
T

q2
t−s(x, y)|f(s, y)− g(s, y)|2dyds

∣∣∣∣p/2 .
Then after raising the both sides to the power of 2/p we apply the Minkowski’s inequality

on the right-hand-side to conclude that

‖Af(t, x)−Ag(t, x)‖2
Lp(P)

≤ (Lipσ zp)
2

∫ t

0

∫
T

qt−s(x, y) ‖f(s, y)− g(s, y)‖2
Lp(P) dyds

≤ (Lipzp)
2‖f − g‖2

β,p

∫ 2π

0

∫ t

0

e
2βs
p q2

t−s(x, y)dsdy.

Then we get

‖Af(t, x)−Ag(t, x)‖2
Lp(P) ≤ (Lipσzp)

2‖f − g‖2
β,p e

2βt/pΥ(2β/p).

This finishes the proof.

Now, we can prove the following existence theorem. We omit the proof of the Lp conti-

nuity of u as it will not be used in the sequel.

Theorem 2.2.7. Under the hypothesis H1, (1.1) has a solution u that is unique up to

a modification. The solution is finite in ‖ · ‖β,p norm, for some β > 0, and all p ≥ 2.

Furthermore, when u0 is continuous, u is continuous in Lp(P) for all p > 0.

Proof. It is easy to check that, if we substitute t = 0 in the mild solution given by (2.25),

then u(0, x) = u0(x), and also, if the solution exists, then u(t, 2π) = u(t, 0). Notice that if v

is defined by

v(t, x) = Ttu0(x) (t, x) ∈ E, (2.41)

then v satisfies ∂tv(t, x) = Lv(t, x) weakly. Furthermore, the periodic condition v(t, 0) =

v(t, 2π) on T and the initial condition v(0, x) = u0(x) are satisfied. That is v is the Green’s
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function for the operator ∂t−L. We consider the following Picard iteration. Define v0(t, x) =

Ttu0(x), and for n ≥ 1 set

vn+1(t, x) = v0(t, x) +

∫ t

0

∫
T

qt−r(x, z)σ(vn(r, z))w(drdz). (2.42)

Then the existence of of the solution boils down to the convergence of vn. We first show, by

induction, that ‖Avn‖β,p < ∞ for all n. Since u0 is bounded, then ‖v0‖β,p < ∞ and then,

by Lemma 2.2.4,

‖Av0‖β,p ≤ zp(|σ(0)|+ Lipσ‖v0‖β,p)
√

Υ(2β/p) <∞.

Similarly, if ‖vn‖β,p <∞, then ‖Avn‖β,p <∞. Then the triangle inequality on (2.42), would

give us ‖vn+1‖β,p < ∞, and hence ‖Avn+1‖β,p < ∞. Next we find a bound on Avn that is

uniform in n. If we let an := ‖Avn‖, then, by (2.37) and the triangle inequality,

an+1 = α + βan, (2.43)

where α = zp
√

Υ(2β/p)(|σ(0)| + Lipσ‖v0‖β,p) and β = zp
√

Υ(2β/p)Lipσ. Iterating (2.43)

yields

an+1 ≤ α(1 + β + · · ·+ βn) + βn+1a0. (2.44)

Since limβ↑∞Υ(2β/p) = 0, then we can choose β sufficiently large to have β < 1. Therefore,

sup
n≥1

an ≤
α

1− β
.

Then supn ‖Avn‖β,p < ∞, and so is supn≥1 ‖vn‖β,p < ∞. This is because Ttu0 is bounded

uniformly by supx∈T |u0(x)|, and

sup
n≥1
‖vn‖β,p ≤ sup

x∈T
|u0(x)|+ α

1− β
<∞. (2.45)

Therefore, by Lemma (2.2.5) for all n ≥ 1 we have

‖vn+1 − vn‖β,p = ‖Avn −Avn−1‖β,p ≤ zpLipσ
√

Υ(2β/p)‖vn − vn−1‖β,p.

This proves that {vn}∞n=1 is Cauchy in ‖ · ‖β,p norm, and so is convergent to some predictable

random field u with

‖u‖β,p <∞, ‖vn‖β,p <∞ ∀p ≥ 1, β > 0, n ≥ 1. (2.46)
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This also shows that

lim
n→∞

‖vn(t, x)− u(t, x)‖p = 0 ∀(t, x) ∈ R+ × [0, 2π]. (2.47)

This and Remark 2.2.6 together prove more than what we promised to show.

2.3 Elements of Malliavin’s calculus

The Malliavin calculus is an infinite-dimensional differential calculus on the Wiener space.

It is an appropriate method for investigating the regularity of the law of functionals on

the Wiener space. Such functionals include the solutions to stochastic (partial) differential

equations. The integration by parts formula for an infinite dimensional space, against the

Gaussian measure is central in this calculus. Paul Malliavin[54] initially invented this method

to produce an alternative proof of Hörmanders condition[38, 31].

Most of this section is borrowed from [47] and [53]. Let C∞p (Rn) denote the space of the

smooth real-valued functions f on Rn, such that f and all its partial derivatives have at

most polynomial growth.

2.3.1 The Wiener chaos

For every h ∈ H := L2(ET ) let w(h) denote the Wiener integral

w(h) =

∫ T

0

∫
T

h(t, x)w(dt, dx). (2.48)

We call W = {w(h)}h∈H a Gaussian process on H and we let G ⊂ F denote the σ-algebra

generated by W .

For n ≥ 0, let Hn be the Hermite polynomial of degree n. These are functions defined by

Hn(x) =
(−1)n

n!
e
x2

2
dn

dxn
(e−

x2

2 ) n ≥ 1.

We let H0 = 1. For each n ≥ 1, let Hn denote the closed linear subspace of L2(Ω,F ,P)

generated by the random variables {Hn(w(h)), h ∈ H, ‖h‖H = 1}, and H0 is the set of
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constants. The space Hn is called the Wiener chaos of order n. Hn are orthogonal with

respect to P, and the space L2(Ω,G,P) can be decomposed into the infinite orthogonal sum

of Hn[47, Theorem 1.1.1].

2.3.2 The derivative operator

Let S denote the class of smooth random variables. A random variable F belongs to S ,

if there is n ≥ 1 and a function f : Rn → R such that F = f(w(h1), · · · , w(hn)), where

f ∈ C∞p (Rn) and w(hi) is defined by (2.48) for 1 ≤ i ≤ n. We initially define the Malliavin

derivative operator D : S → L2(Ω;H) ≈ L2(Ω × ET ) as the following: If F ∈ S is of the

form above, then we define

Dt,xF =
n∑
i=1

∂f

∂xi
(w(h1), · · · , w(hn))hi(t, x). (2.49)

The following result is an integration by parts formula in its simplest form. As mentioned

before, It plays an important role in the theory of Malliavin calculus.

Lemma 2.3.1. If F ∈ S and h ∈ H, then

E〈DF, h〉H = EFw(h). (2.50)

Proof. The proof follows from the definition. See [47, Lemma 1.2.1] for details.

A consequence of Lemma 2.3.1 is the fact that the derivative operator D is closable.

The closure of the S under the closed graph norm is called D1,2. To be able to investigate

the smoothness of a random variable X ∈ L2(Ω,G,P), we need to define the Malliavin

derivatives of higher orders. Let F ∈ S . For p ≥ 1 and j ∈ N, the Malliavin derivative

Dj : S → Lp(Ω;H⊗j) of order j is defined by

DjF =
∑ ∂jf

∂xi1 · · · ∂xij
(w(h1), · · · , w(hn))hi1 ⊗ · · · ⊗ hij , (2.51)

where the sum is over all j-tuples (i1, · · · , ij) ∈ {1, · · · , n}j. The operator Dj : S →

Lp(Ω;H⊗j) ≈ Lp(Ω × Ej
T ) is closable for all p ≥ 1 and n ∈ N. The domain of the closed
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operator is called Dj,p. More precisely, Dk,p is the closure of S under the ‖ ·‖k,p norm which

is defined by

‖F‖k,p =

(
E|F |p +

k∑
j=1

E‖DjF‖p
H⊗j

)1/p

. (2.52)

Example 2.3.1 (Standard Wiener Space[21]). In some cases, the Malliavin derivative coincides

with the Frechet derivative. Let Ω be the standard Wiener space of all continuous functions

on [0, 1] starting from zero. Let H be the space of all continuous functions ω such that ω(t) =∫ t
0
g(s)ds, where g ∈ L2([0, 1]). The space of all such paths is called the Cameron-Martin

space. The Cameron-Martin space and L2([0, 1]) are isometric via 〈ω, λ〉H := 〈g, h〉L2([0,1]),

where λ(t) =
∫ t

0
h(s)ds. We define the directional derivative of F : Ω → R at the point

ω ∈ Ω in direction of γ ∈ H by

DγF (ω) := lim
ε→0

F (ω + εγ)− F (ω)

ε
,

where the limit is in L2(P ). We say F is differentiable, if there exists ψ(s, ω) ∈ L2(P × λ)

such that

DγF (ω) =

∫ t

0

g(s)ψ(s, ω)ds,

and we set DtF (ω) = ψ(t, ω). We call D•F ∈ L2(P, λ) the Malliavin derivative of F . Now

assume f ∈ L2([0, 1]) and let F =
∫ 1

0
f(s)dBs, then

F (ω + εγ)− F (ω)

ε
=

∫ T

0

f(s)g(s)ds.

This implies that DtF = f(t). For example, since B(s) =
∫ 1

0
1[0,s](s)dBr, s ≤ 1, then

DtBs = 1[0,s](t).

For a different approach on the definition of the integration by parts formula, based on the

Cameron-Martin space, and the Girsanov theorem see [6, Chapter 8].

2.3.3 The divergence operator

We start with an elementary result [53, page 2].
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Proposition 2.3.2. Let F be an R-valued random variable. Assume there is a function

H ∈ L1(Ω) such that

Eϕ′(F ) = E[ϕ(F )H], (2.53)

for all bounded and differentiable function ϕ, whose first derivative is bounded. Then the

probability law of F has density p(x) with respect to Lebesgue measure on R. Moreover,

p(x) = E[1x≤FH].

Proof (non-rigorous). Loosely speaking, p(x) = Eδ(F − x). If we let ϕ(x) = 1[0,∞)(x), then

p(x) := E(δ0(F − x)) = Eϕ′(F − x) = E[1[0,∞)(F − x)H].

One can make this argument rigorous by approximating the delta function by smooth func-

tions.

In this section, our goal is to characterize a large class of functions in L2(Ω,G) for which

the random variable H in (2.53) is defined; as an example of such results see Theorem 2.3.3.

If F := p(X1, · · · , Xm), where p : Rm → R is a polynomial, ϕ : Rm → Rm is compactly

supported smooth functions, and {Xi}mi=1 are i.i.d. Gaussian random variables, then

E〈∇p(X), ϕ(X)〉Rm = E[p(X)(δmϕ)(X)], (2.54)

where X = (X1, · · · , Xm) and (δmϕ)(x1, · · · , xm) =
∑m

i=1 xiϕ(x1, · · · , xm)− ∂ϕ
∂xi

(x1, · · · , xm).

After a simple computation we have,

〈∇(ϕop)(X),∇p(X)〉Rm = ϕ′(p(X))|∇p(X)|2Rm ,

where | · |Rm denotes the Euclidean norm. Therefore, under the nondegeneracy condition

|∇p(X)|Rm 6= 0 almost surely with respect to the m dimensional Gaussian measure, we have

ϕ′(p(X)) = 〈∇(ϕop)(X),
∇p(X)

|∇p|2Rm

〉Rm

Therefore, if we take expectation, by (2.54), we arrive at the integration by part formula

Eϕ′(p(X)) = E[(ϕop)(X)δm(
∇p(X)

|∇p|2Rm

)]. (2.55)
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We can extend the integration by parts formula (2.55) to the functions in D∞m :=
⋂
p≥2,k≥1 Dk,p

m ,

where the space Dk,p
m is the finite dimensional counterpart of Dk,p; see [53, Chapter 2].

But the above analysis is not efficient for the investigation of the existence of the density,

when p(X) is replaced by the solution of a SPDE such as (1.1). This is because these

solutions are functions of infinitely many increments that are Gaussian and independent.

We define the infinite dimensional version δ of δm abstractly via duality. We saw an example

of such duality in Lemma 2.3.1, where D is restricted to S . Generally, we can define an

adjoint operator for D : D1,2 → L2(Ω;H) through the duality relation (2.50). More precisely

we have the following definition.

Definition 2. An unbounded operator δ : L2(Ω;H) → L2(Ω) is called the divergence

operator if:

1. The domain of δ, denoted by Domδ, is the set of all u ∈ L2(Ω;H) such

|E〈DF, u〉H | ≤ c‖F‖2, (2.56)

for all F ∈ D1,2, where c is constant depending only on u.

2. If u ∈ Domδ, then δ(u) is an element of L2(Ω) characterized by the

E〈DF, u〉H = E[Fδ(u)],

for all F ∈ D1,2.

Now, we state the infinite dimensional counterpart of Proposition 2.3.2. The statement

of the theorem and its proof are from [15, page 83-84].

Theorem 2.3.3. Let F be a random variable in the space D1,2. Suppose that DF/‖DF‖2
H

belongs to the domain of the operator δ. Then the law of F has a continuous and bounded

density given by

p(x) = E

[
1F>xδ

(
DF

‖DF‖2
H

)]
. (2.57)
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Proof. Let ψ be a nonnegative smooth function with compact support, and set ϕ(y) =∫ y
−∞ ψ(z)dz. A chain rule formula for the Malliavin derivatives implies that ϕ(F ) ∈ D1,2,

and 〈D(ϕ(F ), DF 〉H = ψ(F )‖DF‖2
H . Therefore, by duality,

E[ψ(F )] = E

[〈
D(ϕ(F )),

DF

‖DF‖2
H

〉
H

]
= E

[
ϕ(F )δ

(
DF

‖DF‖2
H

)]
.

By an approximation argument, the equation above holds for ψ(y) = 1[a,b](y), where a < b.

We apply Fubini’s theorem to get

P(a < F < b) = E

[(∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2
H

)]
=

∫ b

a

E

[
1F>xδ

(
DF

‖DF‖2
H

)]
dx,

which implies the desired result.

As we will see in the next two chapters, the solution to the SPDE (1.1) satisfies the

hypothesis of Theorem 2.3.3. In this thesis, we always apply δ to an adapted processes.

A stochastic process u = {u(t, x), t ≥ 0, 0 ≤ x ≤ 2π} is called adapted if u(t, x) is Ft

measurable for any (t ≥ 0, x) ∈ ET . Fix a (finite or infinite) time interval [0, t], and denote

by L2
a([0, t] × Ω) the set of all square integrable and adapted processes. The divergence

operator is an extension of the Itô integral in the following sense:

Proposition 2.3.4. L2
a([0, t] × Ω) ⊂ Domδ, and the operator δ restricted to L2

a([0, t] × Ω)

coincides with the Itô integral; that is,

δ(u) =

∫ t

0

∫
T

u(s, x)w(ds, dx). (2.58)

Proof. A proof can be found in [47, Proposition 1.3.11].

For the rest of this section, we state those theorems which will be used in Chapter 3.

Proposition 2.3.5. Suppose F ∈ L2(Ω), and let Jn denote the projection to the nth Wiener

chaos. Then, F ∈ Dk,2 if and only if

∞∑
n=1

nk‖JnF‖2
L2(Ω) <∞. (2.59)
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Proof. See [47, Proposition 1.2.2], and the paragraph after the proof of Proposition 1.2.2.

Proposition 2.3.6. Let {Fn, n ≥ 1} be a sequence of random variables that converge to F

in Lp(Ω) for some p > 1. Suppose that,

sup
n≥1
‖Fn‖k,p <∞, for some k ≥ 1. (2.60)

Then F belongs to Dk,p, and the sequence of derivatives {DkFn, n ≥ 1} converges to DkF

in the weak topology of Lp(Ω;H).

Proof. A proof for this proposition can be found in [15, page 78] or [47, Lemma 1.2.3].

Remark 2.3.4. The space D1,2(L2(T )), denoted by L1,2, coincides with the class of processes

u ∈ L2(T × Ω) such that u(t) ∈ D1,2 for almost all t ∈ T , and there exists a measurable

version of the two-parameter process Dsut verifying E
∫
T

∫
T

(Dsut)
2µ(ds)µ(dt) < ∞. The

space L1,2 is included in Domδ.

To apply the Malliavin calculus to our problem, we usually need to compute the Malliavin

derivatives of the integrals. In this regard the following proposition [47, Proposition 1.3.8]

is useful.

Proposition 2.3.7. Suppose that u ∈ L1,2. Furthermore assume that the following two

conditions are satisfied:

1. For almost all (s, y) ∈ E the process {Ds,yu(r, z), (r, z) ∈ E} is Skorohod integrable;

2. There is a version of the process{∫
T

∫ T

0

Ds,yu(r, z)W (dr, dz), (s, y) ∈ E
}
,

which is in L2(Ω× E).

Then δ(u) ∈ D1,2 and we have

Ds,y(δ(u)) = u(s, y) +

∫
T

∫ T

0

Ds,yu(r, z)W (dr, dz). (2.61)
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If F = (F 1, · · · , F n) is a random vector with F i ∈ D1,1, then we define its Malliavin

matrix γF to be

γF = (〈F i, F j〉)1≤i,j≤m.

Before we state the main theorem we introduce the following definition from [15, page 86].

Definition 1. We say that a random vector F = (F 1, · · · , F n) is non degenerate if it satisfies

the following conditions:

1. F i ∈ D∞ for all i = 1, · · · ,m;

2. The matrix γF satisfies E[(det γF )−p] <∞ for all p ≥ 2.

The following is a key result and can be found in [15, page 86].

Theorem 2.3.8. If F = (F 1, · · · , F n) is a non degenerate random vector, then the law of

F possesses an infinitely-differentiable density.

The hypothesis of Theorem 2.3.8 can be relaxed significantly, if we only demand the

existence of a density; see [9]. While Proposition 2.3.7 allows us to prove an integral is in

D1,2 it falls short of telling us whether or not it belongs to D1,p for p > 2. The following

proposition, which is a result of Meyer’s inequality (see [47] page 72) states the required

conditions for going from p = 2 to p > 2, [47, Proposition 1.5.5].

Proposition 2.3.9. Let F be a random variable in Dk,α, where α > 1. suppose that DiF

belongs to Lp(Ω, H⊗i) for i = 0, 1, · · · , k, and for some p > α. Then F ∈ Dk,p.

Remark 2.3.10. We will frequently use two families of semi-norms, indexed by two param-

eters. One is defined in (2.33), which always comes with parameter β, and the other one

is the norm ‖ · ‖k,p, on space Dk,p, which is indexed by integers such as k,m, n etc., and p.

For the sake of clarity, in the sequel, when these two norms are both used, we will use a new

notation defined by (3.16).
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CHAPTER 3

Smoothness of the Solution

3.1 The Malliavin derivatives of the solution

In this section we assume that σ ∈ C∞b (R) and the underlying Lévy process satisfies H1.

Remark 3.1.1. We occasionally use the symbol “ . ” in our proofs. By X . Y we mean

there is a positive C such that |X| ≤ CY . We might also subscript this by a parameter to

denote dependence on this parameter.

The main result in this section is the following theorem1. Before we state the theorem, we

introduce a notation. Let α = ((s1, y1), · · · , (sk, yk)) be a string of k pairs, where (si, yi) ∈

ET . Such α is and element of Ek
T . Let (ŝ, ŷ) denote the pair with the largest first coordinate,

i.e., ŝ = s1∨· · ·∨sk. To each α ∈ Ek
T , we assign an element α̂ ∈ Ek−1

T obtained by eliminating

the (ŝ, ŷ) from the string of the pairs that define α. We refer the reader to the section 3.1.2

for more details on this notation.

Theorem 3.1.2. If u is the solution to the Eq. (2.25) then u(t, x) ∈ D∞ for almost all

(t, x) ∈ [0, T ]× [0, 2π]. Furthermore

Dk
αu(t, x) = qt−ŝ(x, ŷ)Dk−1

α̂ σ(u(ŝ, ŷ)) +

∫ t

0

∫ 2π

0

qt−r(x, z)D
k
ασ(u(r, z))w(dr, dz), (3.1)

where α ∈ Ek
T .

We have a sequence of random functions vn, defined through the Picard iteration (2.42),

which converge to u in ‖ · ‖β,p, for β sufficiently large, and consequently in Lp(Ω), for all

1Most of the material in this chapter is from [37].

33



(t, x) ∈ ET and p ≥ 1. We would like to use Theorem 2.3.6 to show that u ∈ Dk,p for all

p ≥ 1 and k = 1, 2, · · · . Therefore the first step is to show that vn’s are in Dk,p for all k and

p. Then we need to show that Dkvn’s are convergent weakly for all k ≥ 1; i.e., it is sufficient

to have

sup
n
‖vn(t, x)‖k,p <∞,

where the ‖ · ‖k,p is the norm of Dk,p space. To this end we need a quantitive bound on the

growth of Malliavin derivatives as well. We carry out this task by induction. The case n = 1;

i.e., vn(t, x) ∈ D1,p is the subject of subsection 3.1.1. The second subsection is devoted to

introducing a few notations and some technical lemmas that will allow us to go from the first

derivative to the higher-order derivatives in the upcoming subsection. The third subsection

deals with the k’th derivatives of vn’s and the short final subsection concludes the this section

with proving main result of this section; i.e., Theorem 3.1.2.

3.1.1 The first derivative

The first Malliavin derivative is the only derivative that has σ(x) in its formulation. Here,

as me mentioned before, we require σ to be Lipschitz continuous.

Proposition 3.1.3. If the vn’s are defined by (2.42), then vn ∈ D1,p for all n ≥ 0, and:

1. Dv0 = 0 and

Ds,yvn+1(t, x) =qt−s(x, y)σ(vn(s, y)) (3.2)

+

∫ t

0

∫
T

qt−r(x, z)Ds,yσ(vn(r, z))w(dr, dz).

2. For all n ≥ 0, and T ∈ [0,∞),

‖Γ1vn+1‖2
β,p,T ≤ CpLipσ′Υ(2β/p)

(
1 + ‖Γ1vn‖2

β,p,T

)
, (3.3)

where Γ1
t,xf = ‖Df(t, x)‖H , and

Lipσ′ = 2 max

{
sup
x∈T
|σ(x)|2, sup

x∈T
|σ′(x)|2

}
.
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Proof. We need to mention that Ds,yσ(vn(r, z)) = 0 when r < s; i.e., the integral vanishes

on the subinterval [0, s], [47, Corollary 1.21].

We proceed by applying induction on n. We will find that the proofs of these three

conclusions go hand in hand, i.e., we use (3.3) for n = n0 to show that vn0+1 is in D1,2, with

a derivative which satisfies (3.2). Then we use (3.2), to show (3.3) holds for n = n0 + 1.

For n = 0 all these three conclusions hold vacuously. Next assume (3.3) holds for vn, then

vn+1 ∈ D1,2 and (3.2) holds by Proposition 2.3.7. Here we will not go through the details

to show this, as we will do this later for the derivatives of higher order [see subsection 3.1.2

below]. Next, we show that (3.3) holds for vn+1. Since

Ds,yvn+1(t, x) = qt−s(x, y)σ(vn(s, y)) (3.4)

+

∫ t

0

∫
T

qt−r(x, z)Ds,yσ(vn(r, z))w(dr, dz),

then by the triangule inequality for the H norm

Γ1
t,xvn+1 ≤ Lipσ

(∫ t

0

∫
T

q2
t−s(x, y)|vn(s, y)|2dyds

)1/2

+

(∫ t

0

∫
T

∣∣∣∣∫ t

0

∫
T

qt−r(x, z)Ds,yσ(vn(r, z))w(dr, dz)

∣∣∣∣2 dyds
)1/2

.

Take the Lp(Ω) norm from the both sides. Since, by the chain rule [47, Proposition 1.2.3]

Ds,yσ(vn(r, z)) = σ′(vn(r, z))Ds,yvn(r, z),

and by the Burkholder’s inequality for the Hilbert space-valued martingales,

E

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)Dσ(vn(r, z))w(dr, dz)

∥∥∥∥p
H

.p E

(∫ t

0

∫
T

q2
t−r(x, z)‖Dσ(vn(r, z))‖2

Hdzdr

)p/2
≤ sup

x∈T
|σ′(x)|pE

(∫ t

0

∫
T

q2
t−r(x, z)‖Dvn(r, z)‖2

Hdzdr

)p/2
,
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we obtain

‖Γ1
t,xvn+1‖2

Lp(Ω) .p Lip2
σ

∫ t

0

∫
T

q2
t−s(x, y)‖vn(s, y)‖2

Lpdyds

+ sup
x∈T
|σ′(x)|2

{
E

(∫ t

0

∫
T

q2
t−r(x, z)|Γ1

r,zvn|2dzdr
)p/2}2/p

.

Now, apply Minkowski’s inequality [dP × dzdr] to the last term to switch the expectation

and the double integral, as follows

‖Γ1
t,xvn+1‖2

Lp(Ω)

.p,σ,σ′

(
‖u‖2

β,p

∫ t

0

∫
T

q2
t−s(x, y)e2βr/pdyds

+

∫ t

0

∫
T

q2
t−r(x, z)‖Γ1

r,zvn‖2
Lp(Ω)dzdr

)
.p,σ,σ′

(
‖u‖2

β,p + ‖Γ1vn‖2
β,p,T

) ∫ t

0

∫
T

q2
t−r(x, z)e

2βr/pdzdr,

where we used the trivial inequality

‖Γ1
r,zvn‖2

Lp(Ω) ≤ e2βr/p‖Γ1vn‖2
β,p,T (r, z) ∈ [0, T ]×T. (3.5)

Therefore if we change the variable t−r → r in the last integral, and multiply the inequality

by e−2βt/p we arrive at

e−2βt/p‖Γ1
t,xvn+1‖2

Lp(Ω)

.p Lipσ′
(
‖u‖2

β,p + ‖Γ1vn‖2
β,p

) ∫ t

0

‖qr‖2
L2(T)e

−2βr/pdr

.p cσ,σ′Υ(2β/p)
(
1 + ‖Γ1vn‖2

β,p,T

)
,

where the last inequality follows from Lemma 2.1.7 and cσ,σ′ = Lip2
σ + supx |σ(x)|2 + ‖u‖β,p.

By optimizing this expression over all (t, x) ∈ ET we arrive at

‖Γ1vn+1‖2
β,p,T ≤ Cp,σ,σ′Υ(2β/p)

(
1 + ‖Γ1vn‖2

β,p,T

)
. (3.6)

This proves that ‖Dvn+1‖H ∈ Lp(Ω), and so vn+1(t, x) ∈ D1,p, for all (t, x) ∈ ET by Propo-

sition 2.3.9.
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Proposition 3.1.4. If u = u(t, x) denote the solution to (2.25), then u(t, x) ∈ D1,p and Du

satisfies (3.1); i.e.,

Ds,yu(t, x) = qt−s(x, y)u(s, y) +

∫ t

0

∫
T

qt−r(x, z)Ds,yσ(u(r, z))w(dr, dz). (3.7)

Proof. The fact that u ∈ D1,2 follows easily from the bound (3.6), because by iterating this

bound we get

‖Γ1vn‖2
β,p ≤ α + α2 + · · ·+ αn,

where α := CpLipσ′Υ(2β/p). Since limβ→∞Υ(β) = 0, we can choose β > 0 sufficiently large

so that α < 1 and consequently we get

sup
n
‖Γ1vn‖2

β,p,T ≤
α

1− α
<∞. (3.8)

Then u(t, x) ∈ D1,2, by Proposition 2.3.6. Then Proposition 2.3.9 proves that u(t, x) ∈ D1,p

for all p ≥ 1. Since the right-hand-side of (3.8) is independent of T , it holds for T = ∞.

Because of this, in the rest of the paper, we only work with the norm ‖ · ‖β,p.

In order to derive (3.7), it suffices to show that

‖Γ1(vn − u)‖β,p → 0, as n→∞, (3.9)

where

Γ1
t,xu := ‖Du(t, x)‖H .

By the triangle inequality, applied first to the H norm and then to the Lp(Ω) norm, and

squaring both sides, we have

1

2
‖Γ1(vn+1 − u)‖2

Lp(Ω) ≤ {E‖qt−•(x, ∗)[σ(vn(•, ∗))− σ(u(•, ∗))]‖pH}
2/p

+

{
E

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)D[σ(vn(r, z))− σ(u(r, z))]w(dr, dz)

∥∥∥∥p
H

}2/p

.

Since σ is Lipschitz, by applying Minkowski’s inequality to the first term and Burkholder’s

inequality followed by Minkowski’s inequality to the second term, we get

C‖Γ1
t,x(vn+1 − u)‖2

Lp(Ω) ≤
∫ t

0

∫
T

q2
t−s(x, y) ‖vn(s, y)− u(s, y)‖2

Lp(Ω) dyds

+

∫ t

0

∫
T

q2
t−r(x, z)

∥∥Γ1
r,z(σ(vn)− σ(u))

∥∥2

Lp(Ω)
dzdr.
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Then, by (3.5) and Lemma 2.1.7 we obtain

C‖Γ1
t,x(vn+1 − u)‖2

Lp(Ω) ≤ ‖vn − u‖
2
β,p e

2βt/pΥ(2β/p)

+
∥∥Γ1(σ(vn)− σ(u))

∥∥2

β,p
e2βt/pΥ(2β/p),

where C depends on Lipσ′ and Cp, where Cp is the constant in Burkholder’s inequality. After

we optimize on t ∈ [0, T ] and x ∈ [0, 2π], we have

‖Γ1(vn+1 − u)‖2
β,p ≤ Cβ,p,σ′

(
‖vn − u‖2

β,p +
∥∥Γ1(σ(vn)− σ(u))

∥∥2

β,p

)
, (3.10)

where Cβ,p,σ′ → 0 as β →∞. Since

D[σ(vn(r, z))− σ(u(r, z))] = σ′(vn(r, z))[Dvn(r, z)−Du(r, z)]

+[σ′(vn(r, z)− σ′(u(r, z))]Du(r, z),

then by applying the triangule inequality, and considering the boundedness and the Lipschitz

property of σ′ we obtain the following:

CΓ1
r,z(σ(vn)− σ(u)) ≤ Γ1

r,z(vn − u) + |vn(r, z)− u(r, z)|Γ1
r,zu.

Therefore,

C‖Γ1
r,z(σ(vn)− σ(u))‖β,p ≤ ‖Γ1(vn − u)‖β,p + ‖(vn − u)Γ1u‖β,p. (3.11)

By optimizing over (t, x) ∈ ET and substituting in (3.10) we obtain

‖Γ1(vn+1 − u)‖2
β,p ≤ Cβ,p,σ′(‖vn − u‖2

β,p + ‖(vn − u)Γ1u‖2
β,p (3.12)

+ ‖Γ1(vn − u)‖2
β,p).

Consider the first two terms in the parenthesis in (3.12). From Theorem 2.2.7 we know that

‖vn−u‖2
β,p → 0 as n→∞, while the second term in (3.12) vanishes as n→∞, for example,

by the Cauchy-Schwarz inequality. Therefore (3.12) can be written as

‖Γ1(vn+1 − u)‖2
β,p ≤ Cβ,p,σ′

(
λn + ‖Γ1(vn − u)‖2

β,p

)
, (3.13)
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where λn → 0 as n → ∞. Choose β sufficiently large such that Cβ,p,σ′ < 1. Then (3.13)

implies that

lim
n→∞

‖Γ1(vn+1 − u)‖2
β,p = 0.

This finishes the proof.

To state and prove the result for derivatives of higher order, we need to introduce some

notations and prove some preparatory lemmas that will be stated next.

3.1.2 Preliminaries and notations

We know that the mth derivative of vn(t, x), if it exists, belongs to the space L2(Em+1
T ×Ω).

Recall that L1,2 = D1,2(Em+1
T × Ω). Let α = αm denote an element in Em

T . We can write

α = ((s1, y1), · · · , (sm, ym)).

Let ŝ := max{s1, · · · , sm}. If i ∈ {1, · · · ,m} is so that si = ŝ, then we let ŷ denote yi

and α̂m := ((s1, y1), · · · , (si−1, yi−1), (si+1, yi+1), · · · , (sm, ym)). Note that α̂m ∈ Em−1
T .

If we think of α = αm as a set of m pairs α = {(s1, y1), · · · , (sm, ym)}, instead of an or-

deredm-tuple, then the partitions of α are defined. Let Pm := the set of all partitions of α Em
T .

If deg = {deg1, · · · , degl} ∈ Pm, then let |degj| denote the cardinality of degj, where

j = 1, · · · , l. Clearly |deg1|+ · · ·+ |degl| = m. If deg = {deg1, · · · , degl} ∈ Pm, then D
|degj |
degj

F

makes sense for j = 1, · · · , l. For example if deg1 = {(s1, y1), (s3, y3)}, then D
|deg1|
deg1

F =

D2
(s1,y1)(s3,y3)F . Furthermore, if deg = {deg1, · · · , degl} ∈ Pm, then we introduce the new

notation DdegF , and define it by

Ddeg
α F := D

|deg1|
deg1

F × · · · ×D|degl|
degl

F. (3.14)

Notice that

‖DρF‖H⊗m = Πl
i=1‖D|degi|F‖H⊗|degi| . (3.15)

Fix l ≤ m and let Pml denote the set of all deg ∈ Pm such that |deg| = l. We have

Pm = ∪ml=1Pml .
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We let Γdeg
x,y v denote the Hm norm of Dρv(t, x); i.e.,

Γdeg
t,x v = ‖Ddegv(t, x)‖H⊗m . (3.16)

If deg denotes the only member of Pm1 , i.e., deg = {{(s1, y1), · · · , (sk, yk)}}, then write

Γmt,xv instead of Γdeg
t,x v.

The following lemma allows us to approximate ‖σ(vn(t, x)‖k,p, where ‖ · ‖k,p denotes the

norm on Dk,p.

Lemma 3.1.5. Assume σ is smooth and bounded together with all its derivatives. If F ∈

∩p∈[1,∞)D
m,p, then so is σ(F ). Furthermore, for α ∈ Em

T ,

Dm
α σ(F ) =

m∑
j=1

σ(j)(F )
∑

deg∈Pmj

Ddeg
α F, (3.17)

where Pmj is the set of all partitions of α, comprised of j components deg1, · · · , degj, and σ(j)

denotes the jth derivative of σ.

Proof. We can easily prove this for the smooth functionals by induction, and then extend

the result to F ∈ ∩p∈[1,∞)D
m,p by approximation by the smooth functionals.

Lemma 3.1.6. Let α ∈ Em
T , and deg = {deg1, · · · , degl} ∈ Pm denote a partition of α.

Choose and fix β > 0. Let U(t, z) and V (t, z) belong to ∩p>1D
m,p for almost all r, z and

‖Γ|degj |V ‖β,p < ∞ for all p ≥ 1. If σ is bounded and smooth with bounded derivatives of all

orders, then

‖Γmσ(V )‖β,p . ‖ΓmV ‖β,p +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1‖Γ|degj |V ‖β,jp. (3.18)

Furthermore, if ‖Γ|degj |U‖β,p <∞ for all p ≥ 1, then we have

‖Γm(σ(V )− σ(U))‖β,p . ‖Γm(V −U)‖β,p +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1‖Γ|degj |(V −U)‖β,jp. (3.19)
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Proof. According to (3.17) we have

Γmr,zσ(V ) ≤ C
m∑
j=1

∑
deg1···degj∈Pm

Πj
i=1‖D|degi|V (r, z)‖H⊗|degi| ,

where C = supx{σ(x), σ′(x), · · · , σm(x)}. Then

‖Γmr,zσ(V )‖Lp(Ω) . ‖Γmr,zV ‖Lp(Ω) +
m∑
j=2

∑
deg1···degj∈Pm

‖Πj
i=1Γ|degi|

r,z V ‖Lp(Ω).

Therefore, by the generalized Hölder inequality,

‖Γmr,zσ(V )‖Lp(Ω) . ‖Γmr,zV ‖Lp(Ω) +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1‖Γ|degi|

r,z V ‖Ljp(Ω).

Multiplying both sides by eβr/p we get

eβr/p‖Γmr,zσ(V )‖Lp(Ω)

. eβr/p‖Γmr,zV ‖Lp(Ω) +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1e

βr/jp‖Γ|degi|
r,z V ‖Ljp(Ω)

. ‖ΓmV ‖β,p +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1‖Γ|degj |V ‖β,jp.

Therefore,

‖Γmσ(V )‖β,p ≤ C

‖ΓmV ‖β,p +
m∑
j=2

∑
deg1···degj∈Pm

Πj
i=1‖Γ|degj |V ‖β,jp

 . (3.20)

The proof of the second statement is similar, if we observe that,

D(σ(V )− σ(U)) =
m∑
j=1

∑
deg∈Pmj

σj(V )(Ddegj(V − U)) + [σj(V )− σj(U)]DdegjU.

In this case, the constant C in (3.20), is replaced by C ′ = C ∨ Lipσ′ ∨ · · · ∨ Lipσ(m) .

The following lemma must be known, but we could not find a reference for it. It explains

the method that we use to prove a random variable is in Dk+1,p, when we know it is in Dk,p.

Lemma 3.1.7. Let F ∈ Dk,p satisfy Dk
αF ∈ D1,p for almost all α ∈ ET . If E‖DDkF‖H⊗k+1 <

∞, then F ∈ Dk+1,p.
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Proof. To make the notation simpler, we prove the lemma only for k = and p = 2. In this

case we have F ∈ D1,2 and DF ∈ D1,2(L2(T )). By Proposition 2.3.5 we need only to show

that
∞∑
n=1

n(n− 1)‖JnF‖2
L2(Ω) <∞. (3.21)

Since DF ∈ D1,2(L2(T )), then

∞∑
n=1

n‖JnDF‖2
L2(Ω×T ) <∞.

Since F ∈ D1,2, then 〈DJnF, h〉L2(T ) = Jn−1(〈DF, h〉L2(T )), then

‖JnDF‖2
L2(Ω×T ) = E‖JnDF‖2

L2(T ) = E‖DJn+1F‖2
L2(T ) = (n+ 1)‖JnF‖2

2.

For the proof of the last equality we refer the reader to [48], Proposition 1.12.

Lemma 3.1.8. Let V (t, z) ∈ ∩p>1D
m+1,p for almost all r, z and let ‖Γ|degj |V ‖β,p < ∞ for

all p > 1, where deg = {deg1, · · · , degl} ∈ Pm+1. For α ∈ Em
T let

fα(r, z) = qt−r(x, z)D
m
α σ(V (r, z)). (3.22)

Then fα ∈ L1,2.

Proof. We need to verify that the three conditions mentioned in Remark 2.3.4 hold for fα.

1. By Lemma 3.1.6, ‖Γmσ(V )‖β,2 <∞. Then∫
EmT

E‖fα‖2
L2(ET×Ω)dα = E

∫ t

0

∫
T

q2
t−r(x, z)

∫
EmT

|Dm
α σ(V (r, z))|2dαdzdr

=

∫ t

0

∫
T

q2
t−r(x, z)E[Γmr,zσ(V )]2dzdr

≤
∫ t

0

∫
T

q2
t−r(x, z)e

βr‖Γmσ(V )‖2
β,2dzdr <∞.

This also means that ‖fα‖2
L2(ET×Ω) <∞ for almost all α ∈ ET .

2. fα(r, z) ∈ D1,2 because V (t, x) ∈ Dm+1,2.
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3. Since ‖Γm+1σ(V )‖β,2 <∞,∫
EmT

E‖Dfα‖2
L2(E2

T×Ω)dα (3.23)

= E

∫ t

0

∫
T

q2
t−r(x, z)

∫
Em+1
T

|Ds,yD
m
α σ(V (r, z))|2dλdzdr

=

∫ t

0

∫
T

q2
t−r(x, z)E[Γm+1

r,z σ(V )]2dzdr

≤
∫ t

0

∫
T

q2
t−r(x, z)e

βr‖Γm+1σ(V )‖2
β,2dzdr <∞,

where dλ = dαdyds. The last result also shows that Dfα ∈ L2(E2
T × Ω) for almost all

α ∈ ET .

Therefore fα ∈ L1,2 for almost all α.

Lemma 3.1.9. If V and fα are defined as in Lemma 3.1.8 and satisfy the same conditions,

then Ds,yfα ∈ Domδ.

Proof. Applying Fubini’s theorem to (3.23) yields,

‖Ds,yfα‖L2(ET×Ω) <∞ for almost all ((s, y), α) ∈ Em+1
T .

Since Ds,yfα is adapted and belongs to L2(ET × Ω) for almost all (s, y) and α, then the Itô

integral of Ds,yfα is defined and coincides with δ(fα).

Lemma 3.1.10. If V and fα are as defined in Lemma 3.1.8, and satisfy the same conditions,

then for each α ∈ Em
T ∫ t

0

∫
T

Dfα(r, z)w(dr, dz) ∈ L2(ET × Ω). (3.24)

Proof. This follows from Burkholder’s inequality:

E

∫ t

0

∫
T

∣∣∣∣∫ t

0

∫
T

Dfα(r, z)w(dr, dz)

∣∣∣∣2 dyds
≤ E

∫ t

0

∫
T

q2
t−r(x, z)‖DDm

α σ(vN(r, z))‖2
H dzdr.
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To show that the last expectation is finite for almost all α ∈ Em
T , we take integral with

respect α, and then Fubini’s theorem implies that∫
EmT

E

∫ t

0

∫
T

q2
t−r(x, z)‖DDm

α σ(vN(r, z))‖2
H dzdrdα

≤ E

∫ t

0

∫
T

q2
t−r(x, z)‖Dm+1σ(vN(r, z))‖2

H⊗m+1dzdr

≤
∫ t

0

∫
T

q2
t−r(x, z)e

βr‖Γm+1σ(vN)‖2
β,2dzdr <∞.

Among other things, this proves that the integrand is finite for almost all α.

Lemma 3.1.11. Let V and fα be as defined in Lemma 3.1.8, and satisfy the same conditions.

Define

F1(α) =

∫ t

0

∫
T

fα(r, z)w(dr, dz). (3.25)

Then:

1. F1(α) ∈ D1,2 for almost all α ∈ Em
T ;

2. DF1 is given by

Ds,yF1(α) = fα(s, y) +

∫ t

0

∫
T

Ds,yfα(r, z)w(dr, dz); (3.26)

3. We have

E
(
‖DF1‖pH⊗m+1

)
<∞. (3.27)

Proof. After proving Lemma 3.1.8, 3.1.9 and 3.1.10, we know that F1(α) satisfies the assump-

tions of Proposition 2.3.7. Therefore, it is an immediate consequence of Proposition 2.3.7

that F1(α) ∈ D1,2 and (3.26) holds. We finally prove (3.27) as follows. By the Burkholder’s

inequality,

E
(
‖F1‖pH⊗m+1

)
= E

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)D
m+1σ(V (r, z))w(dr, dz)

∥∥∥∥p
H⊗m+1

≤ CpE

(∫ t

0

∫
T

q2
t−r(x, z)‖Dm+1σ(V (r, z))‖2

H⊗m+1dzdr

)p/2
.
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By Minkowski’s inequality we have{
E
(
‖F1‖pH⊗m+1

)}2/p ≤ C2/p
p

∫ t

0

∫
T

q2
t−r(x, z){E|Γm+1

r,z σ(V )|p}2/pdzdr.

Therefore,{
E
(
‖F1‖pH⊗m+1

)}2/p ≤ C2/p
p e2βt/p‖Γm+1σ(V )‖2

β,p

∫ t

0

‖qτ‖2
L2(T )e

−2βτ
p dr. (3.28)

After rearranging and choosing a new constant, we arrive at{
e−βtE‖F1‖pH⊗m+1

}1/p ≤ Cp‖Γm+1σ(V )‖β,p
√

Υ(2β/p). (3.29)

This ends the proof.

Remark 3.1.12. If we define a random variable F̃1 := ‖F1‖H⊗m+1, then the (3.29) can be

written as

‖F̃1‖β,p ≤ Cp‖Γm+1σ(V )‖β,p
√

Υ(2β/p). (3.30)

3.1.3 The kth derivatives of the vn’s and the smoothness of the solution

Proposition 3.1.13. Let vn be defined by (2.42) for n = 0, 1, · · · , where σ ∈ C∞b (R) and

qt(x) satisfies hypothesis H1. Then vn ∈ Dk,p for k = 1, 2, · · · and p ≥ 2. Furthermore if

α ∈ Ek
T , then:

1. Dkv0 = 0 and

Dk
αvn+1(t, x) = qt−ŝ(ŷ, x)Dk−1

α̂ σ(vn(ŝ, ŷ)) (3.31)

+

∫ t

0

∫
T

qt−r(x, z)D
k
ασ(vn(r, z))w(dr, dz);

2. For some C > 0 which only depends on p:

‖Γm+1vn+1‖2
β,p ≤ CΥ(2β/p)(1 + ‖Γm+1vn‖2

β,p); (3.32)

3. If deg = {deg1, · · · , degl}, then

‖Γdegvn+1‖β,p ≤ Πl
j=1‖Γ|degj |vn+1‖lβ,lp <∞. (3.33)
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Proof. We proceed by applying induction on n and k. When k = 1 and α = (s, y) = α̂,

we have shown in Proposition 3.1.3 that all above claims hold. Next, by assuming that the

claims hold for all n ≥ 0 and k = 1, · · · ,m, we will prove that they also hold for m+ 1 and

all n ≥ 0. Since Dm+1v0 = 0, (3.32) and (3.33) hold for n = 0. Suppose the claims hold for

n = 0, · · · , N . To prove the claims for N + 1, notice that by Lemma 3.1.6,

‖Γm+1σ(vN)‖β,p <∞.

Then by Lemma 3.1.11,
∫ t

0

∫
T
qt−r(x, z)D

k
ασ(vn(r, z))w(dr, dz) belongs to D1,2. If we let

γ = ((s, y), α) ∈ Em+1
T , then after relabeling γ, we have

γ = ((s1, y1), · · · , (sm+1, ym+1)).

We let ŝ = max{s1, · · · , sm+1}, and define γ̂ and ŷ accordingly. Then by (3.26),

Dm+1
γ vN+1(t, x) = qt−ŝ(x, ŷ)Dm

γ̂ vN(ŝ, ŷ) (3.34)

+

∫ t

0

∫
T

qt−r(x, z)D
m+1
γ σ(vN(r, z))w(dr, dz),

where we applied the fact that Ds,yfα(r, z) = 0 if s > r. By the triangle inequality for the

H⊗m+1 norm,

Γm+1
t,x vN+1 ≤m+1∑
j=1

∫ t

0

∫
T

· · ·
∫ t

0

∫
T︸ ︷︷ ︸

m+1 times

q2
t−sj(x, yj)

∣∣∣Dm
γj
σ(vN(sj, yj))

∣∣∣2 1ŝ=sj(γ)dαjdyjdsj


1/2

+

∥∥∥∥∫ t

0

∫
T

q2
t−r(x, z)D

m+1σ(vN(r, z))w(dr, dz)

∥∥∥∥
H⊗m+1

,

where γj = ((s1, y1), · · · , (sj−1, yj−1), (sj+1, yj+1), · · · , (sm+1, ym+1)). Notice that γ̂ = γj

when ŝ = sj. All the integrals inside the sum are equal, and by omitting the indicator

function 1ŝ=sj(α) we arrive at

Γm+1
t,x vN+1 ≤

(
(m+ 1)

∫ t

0

∫
T

q2
t−s1(x, y1) ‖Dmσ(vN(s1, y1))‖2

H⊗m dy1ds1

)1/2

+

∥∥∥∥∫ t

0

∫
T

q2
t−r(x, z)D

m+1σ(vN(r, z)w(dr, dz)

∥∥∥∥
H⊗m+1

.
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Then, by the triangle inequality for the Lp(Ω) norm, followed by Burkholder’s inequality

applied to the second integral on the right-hand-side,

‖Γm+1
t,x vN+1‖Lp(Ω)

≤ (m+ 1)1/2

{
E

(∫ t

0

∫
T

q2
t−s1(x, y1)

∣∣Γms1,y1σ(vN)
∣∣2 dy1ds1

)p/2}1/p

+ Cp

{
E

(∫ t

0

∫
T

q2
t−r(x, z)

∣∣Γm+1
r,z σ(vN)

∣∣2 dzdr)p/2}1/p

.

If we square both sides of the last inequality and then apply Minkowski’s inequality to the

both integrals on the right-hand-side, then we obtain

Ap
∥∥Γm+1

t,x vN+1

∥∥2

Lp(Ω)
≤
∫ t

0

∫
T

q2
t−s1(x, y1)

∥∥Γms1,y1σ(vN)
∥∥2

Lp(Ω)
dy1ds1

+

∫ t

0

∫
T

q2
t−r(x, z)

∥∥Γm+1
r,z σ(vN)

∥∥2

Lp(Ω)
dzdr,

where Ap = 1
2(m+1)∨2C2

p
. By (3.5) we have

Ap
∥∥Γm+1

t,x vN+1

∥∥2

Lp(Ω)
≤
(
‖Γmσ(vN)‖2

β,p +
∥∥Γm+1σ(vN)

∥∥2

β,p

)
×
∫ t

0

∫
T

q2
t−r(x, z)e

2βr/pdzdr.

By optimizing on all t > 0, for some constant Bp > 0 which only depends on p, we have∥∥Γm+1vN+1

∥∥2

β,p
≤ Bp

(
‖Γmσ(vN)‖2

β,p +
∥∥Γm+1σ(vN)

∥∥2

β,p

)
Υ(2β/p).

Therefore, (3.18), and the induction hypothesis (3.33) for n = N , imply that ‖Γmσ(vN)‖2
β,p <

∞. Therefore, by choosing a constant C > 0 sufficiently large, we obtain∥∥Γm+1vN+1

∥∥2

β,p
≤ C

(
1 +

∥∥Γm+1vN
∥∥2

β,p

)
Υ(2β/p).

This proves (3.32) for k = m+ 1 and all n ≥ 0, in the sense that vN+1(t, x) ∈ Dm+1,p, for

all p ≥ 2.

The proof is not complete yet, as we need to study the case that deg 6= αm+1. Let

deg = {deg1, · · · , degl}. Since by definition

DdegvN+1(t, x) = D
|deg1|
deg1

vN+1(t, x) · · ·D|degl|
degl

vN+1(t, x),
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then

E‖D|deg|vN+1(t, x)‖pH⊗m+1

= E(‖D|deg1|vN+1(t, x)‖p
H⊗|deg1| · · · ‖D

|degl|vN+1(t, x)‖p
H⊗|degl|

),

where, l ≥ 2, and |deg1|+ · · ·+ |degl| = m+ 1. Then by the generalized Hölder’s inequality,

{
E‖D|deg|vN+1(t, x)‖pH⊗m+1

}l ≤ E‖D|deg1|vN+1(t, x)‖lp
H⊗|deg1| × · · ·

×E‖D|degl|vN+1(t, x)‖lp
H⊗|degl|

.

Equivalently,

e
−βt
lp
{

E‖D|deg|vN+1(t, x)‖pH⊗m+1

}1/p

≤
{
e−βtE|Γ|deg1|

t,x vN+1|lp
} 1
lp × · · · ×

{
e−βtE|Γ|degl|

t,x vN+1|lp
} 1
lp
.

We optimize, first the right-hand-side and then the left-hand-side of the latter inequality

over all t > 0 and x ∈ T in order to find that

‖ΓdegvN+1‖β
l
,p ≤ ‖Γ

|deg1|vN+1‖β,lp · · · ‖Γ|degl|vN+1‖β,lp.

If we replace β by lβ, then we have

‖ΓdegvN+1‖β,p ≤ ‖Γ|deg1|vN+1‖lβ,lp · · · ‖Γ|degl|vN+1‖lβ,lp

= Πl
j=1‖Γ|degj |vN+1‖lβ,lp <∞. (3.35)

Therefore, vn ∈ Dm+1,p for all n. This finishes the proof.

Remark 3.1.14. As in Proposition 3.1.4, we can iterate (3.32), and choose β > 0 suffi-

ciently large to obtain

sup
n

E‖Dmvn(t, x)‖pH⊗m <∞.

This in turn implies that

sup
n
‖vn(t, x)‖m,p <∞. (3.36)
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3.1.4 Proof of the Theorem 3.1.2

We prove Theorem 3.1.2 by applying induction on the order of the derivative k. In Propo-

sition 3.1.4 we showed that u ∈ D1,p and its derivative Du satisfies (3.1) for k = 1.

Assume now that u ∈ Dk,p < ∞ for all k ≤ m − 1, p ≥ 1 and the kth derivative Dku

satisfies (3.1) for k = 1, · · · ,m − 1. This together with (3.36) imply that u(t, x) ∈ Dm,p.

Next we show that (3.1) also holds for k = m. This proof is basically repeating what we

did for the proof of (3.32), and therefore we avoid going through the details. Define

c2
n(t, x) =

1

2
‖Γmt,x (vn+1 − u) ‖2

Lp(Ω),

b2
n(t, x) =

{
E
∥∥qt−•(x, ∗)Dm−1

� (σ(vn(•, ∗))− σ(u(•, ∗)))
∥∥p
H⊗m

}2/p
,

a2
n(t, x) =

{
E

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)D
m(σ(vn(r, z))− σ(u(r, z)))w(dr, dz)

∥∥∥∥p
H⊗m

}2/p

.

Our goal is to show that limn→∞ sup0<t≤T supx∈T c
2
n(t, x) = 0. By the triangle inequality,

c2
n(t, x) ≤ b2

n(t, x) + a2
n(t, x),

A similar argument as the proof of Proposition 3.1.13 leads to the following bound on bn:

e−2βt/pbn(t, x)2 ≤ m‖Γm−1(σ(vn)− σ(u))‖2
β,pΥ(2β/p).

Finding an upper bound for an(t, x) is similar to what we have done for F1, which led

to (3.29). For an we have

e−2βt/pa2
n(t, x) ≤ Cp‖Γm(σ(vn)− σ(u))‖2

β,pΥ(2β/p).

Another application of (3.19), together with the induction hypothesis shows that

e−2βt/pa2
n(t, x) ≤ Cp

(
λn + ‖Γm(vn − u)‖2

β,p

)
Υ(2β/p),

where λn is independent of t and x, and λn → 0 as n→∞. Therefore

e−2βt/pc2
n(t, x) ≤ Kp,m(θn + ‖Γm(vn − u)‖2

β,p)Υ(2β/p),
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where Kp,m = max{Cp,m} and θn is independent of t and x and θn → 0 as n → ∞.

Therefore, by choosing β sufficiently large so that Kp,mΥ(2β/p) < 1, we have

‖Γm(vn+1 − u)‖2
β,p ≤ Ck,m,β(θn + ‖Γm(vn − u)‖2

β,p).

The latter inequality implies that ‖Γm(vn − u)‖2
β,p → 0 as n → ∞ which is equivalent to

what we wanted to prove.

Remark 3.1.15. The value of β transfers through the induction steps; i.e., its value in the

mth step must be at least as large as its value in (m− 1)th step.
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CHAPTER 4

Analysis of the Malliavin Matrix

In this chapter, we study the Lp(Ω)-integrability of the inverse of the Malliavin matrix. Here

is the first place where we use the second assumption, Hypothesis H2, of this paper, which

asserts that there are 1 < α < β ≤ 2 and 0 < C1 < C2, such that

C1|n|α ≤ Re Φ(n) ≤ C2|n|β.

When (1.1) is linear, we know that if β ≤ 1, then a solution does not exist. In this section,

we want to show that for every (t, x) ∈ ET , and p ≥ 2,

E(‖Du(t, x)‖−p) <∞. (4.1)

This will finish the proof for the existence of the density. We will also find a bound for the

density pt(x).

4.1 Existence of a density

We start with the following lemma.

Lemma 4.1.1. Let u be the solution to Eq. (1.1). Let p ≥ 1.

1. If we define

V (t) = sup
x∈[0,2π]

E

(∫ t

0

∫
T

|Ds,yu(t, x)|2dyds
)p/2

,

then

V (t) ≤ CT,pt
(α−1)p/2α ∀t ∈ [0, T ].
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2. If we fix t ∈ [0, T ] and for any δ ∈ (0, t) define

W (δ) = sup
x∈[0,2π]

E

(∫ t

t−δ

∫
T

|Ds,yu(t, x)|2dyds
)p/2

,

then

W (δ) ≤ CT,pδ
(α−1)p/2α.

We prove only the first part in detail, as the second part can be proved similarly. We

will only mention the minor changes. But before starting the proof, we state the well-known

Bellman-Gronwall’s inequality, which will be used in our proof.

Lemma 4.1.2 (Bellman-Gronwall’s Lemma). Let λ(t) be a nonnegative piecewise continuous

function of time t and C ≥ 0. If the function y(t) satisfies the inequality

y(t) ≤ λ(t) + C

∫ t

0

y(s)ds,

then

y(t) ≤ λ(t) + C

∫ t

0

λ(s)eC(t−s)ds.

Proof. See[34, Lemma A.6.1.].

Proof of Lemma 4.1.1. We start with the expansion of Ds,yu(t, x). Because, by (3.7),

Dsyu(t, x) = qt−s(x, y)σ(u(s, y)) +

∫ t

0

∫
T

qt−r(x, z)Ds,yσ(u(r, z))w(dr, dz),

it follows that

‖Du(t, x)‖H ≤Lipσ

{∫ t

0

∫
T

q2
t−s(x, y)dy

}1/2

(4.2)

+

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)Dσ(u(r, z))w(dr, dz)

∥∥∥∥
H

.

Then, by (2.20),

‖Du(t, x)‖H ≤Cαt
α−1
2α (4.3)

+

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)Dσ(u(r, z))w(dr, dz)

∥∥∥∥
H

.
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By raising to the power of p and taking expectation,

E‖Du(t, x)‖pH .p,α t
p(α−1)

2α + E

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)Dσ(u(r, z))w(dr, dz)

∥∥∥∥p
H

.

Next, the Burkholder’s inequality yields,

E‖Du(t, x)‖pH .p,α t
p(α−1)

2α + E

∣∣∣∣∫ t

0

∫
T

q2
t−r(x, z)‖Dσ(u(r, z))‖2

H dzdr

∣∣∣∣p/2 .
Then

E‖Du(t, x)‖pH .p,α,σ,σ′ t
p(α−1)

2α + E

∣∣∣∣∫ t

0

∫
T

q2
t−r(x, z)‖Du(r, z)‖2

H dzdr

∣∣∣∣p/2 .
Next, by observing that

q2
t−r(x, z)‖D(u(r, z))‖2

H = q
2p−4
p

t−r (x, z)

(
q

4
p

t−r(x, z)‖D(u(r, z))‖2
H

)
,

we may apply the Hölder inequality to obtain∫ t

0

∫
T

q2
t−r(x, z)‖D(u(r, z))‖2

H dzdr ≤
(∫ t

0

∫
T

q2
t−r(x, z)dzdr

)(p−2)/p

×(∫ t

0

∫
T

q2
t−r(x, z)‖D(u(r, z))‖pH dzdr

)2/p

.

This yields(∫ t

0

∫
T

q2
t−r(x, z)‖D(u(r, z))‖2

H dzdr

)p/2
≤
(∫ t

0

∫
T

q2
t−r(x, z)dzdr

)(p−2)/2

×(∫ t

0

∫
T

q2
t−r(x, z)‖Du(r, z)‖pH dzdr

)
.

Another application of (2.20) yields(∫ t

0

∫
T

q2
t−r(x, z)‖D(u(r, z))‖2

H dzdr

)p/2
≤ Ct

(α−1)(p−2)
2α(∫ t

0

∫
T

q2
t−r(x, z)‖Du(r, z)‖pH dzdr

)
.

Therefore,

E‖Du(t, x)‖pH .p,α,σ,σ′ t
p(α−1)

2α +

t
(α−1)(p−2)

2α

∫ t

0

∫
T

q2
t−r(x, z)E‖Du(r, z)‖pH dzdr.
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Then, for a new constant C, we have

1

C
E‖Du(t, x)‖pH

≤ t
(α−1)p

2α + t
(p−2)(α−1)

2α

∫ t

0

sup
z∈[0,2π]

E‖Du(r, z)‖pH(t− r)−1/αdr.

We write everything in terms of V (t),

V (t) ≤ C

(
t

(α−1)p
2α + t

(p−2)(α−1)
2α

∫ t

0

V (r)(t− r)−1/αdr

)
.

Next, apply Hölder’s inequality to the integral on the right in order to find that∫ t

0

V (r)(t− r)−1/αdr ≤
(∫ t

0

V (r)p1dr

)1/p1 (∫ T

0

(t− r)−q1/α
)1/q1

,

where p1 = (α + 1)/2 and q1 = (α + 1)/(α− 1). Because q1/α < 1,(∫ T

0

(t− r)
−q1
α

) 1
q1

<∞.

Therefore there is C such that

V (t) ≤ C

(
t

(α−1)p
2α + t

(p−2)(α−1)
2α

(∫ t

0

V (r)p1dr

)1/p1
)
.

Consequently for some C > 0,

V (t)p1 ≤ C

(
t

(α−1)pp1
2α + t

p1(p−2)(α−1)
2α

∫ t

0

V (r)p1dr

)
.

Again, since 0 ≤ t ≤ T , then we can choose C such that

V (t)p1 ≤ C

(
t

(α−1)pp1
2α +

∫ t

0

V (r)p1dr

)
.

Then by the Gronwall’s lemma we have

V (t) ≤ Ct
(α−1)p

2α .

This finishes the proof of (1). Next we prove the second claim. If we proceed as what we

have done for part 1, we will get

‖Du(t, x)‖H∗ ≤
∫ t

t−δ

∫
T

qt−s(x, y)σ(u(s, y))dyds

+

∥∥∥∥∫ t

0

∫
T

qt−r(x, z)Dσ(u(r, z))w(dr, dz)

∥∥∥∥
H∗
,
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where H∗ denotes L2([t− δ]×T). We change the variable t− s→ r on the first integral on

the right and apply (2.20) to find an upper bound for it. Then we continue similar to our

previous proof with H replaced by H∗ to arrive at

W (δ) ≤ C

(
δ

(α−1)p
2α + δ

(p−2)(α−1)
2α

∫ δ

0

W (r)(δ − r)−1/αdr

)
.

Then an application of Gronwall’s lemma finishes the proof.

The following corollary is an estimate on the Malliavin’s derivative of the solution of the

equation (1.1).

Corollary 4.1.3. Let u be the solution to the equation (1.1), and Φ the Lévy exponent

corresponding the differential operator L. Define

Iδ =

∫ t

t−δ

∫
T

∣∣∣∣∫ t

0

∫
T

qt−r(x, z)Dsyσ(u(r, z)w(dr, dz)

∣∣∣∣2 dyds, (4.4)

where q = qt(x) is the transition density corresponding to L. If the Φ satisfies Hypothesis H

2, then

E (|Iδ|p) ≤ Cδ2p(α−1)/α,

Proof. By the Burkholder’s inequality

E(|Iδ|p) = E

(∣∣∣∣∣
∫ t

t−δ

∫
T

∣∣∣∣∫ t

s

∫
T

qt−r(x, z)Ds,yσ(u(r, z))w(dr, dz)

∣∣∣∣2 dyds
∣∣∣∣∣
p)

≤ cpLip2p
σ E

∣∣∣∣∫ t

t−δ

∫
T

q2
t−r(x, z)

(∫ r

t−δ

∫
T

|Dsyu(r, z)|2dyds
)
dzdr

∣∣∣∣p .
Raising to the power 1/p and applying Minkowski’s inequality gives us

{E(|Iδ|p)}1/p ≤ c1/p
p Lip2

σ

{
E

∣∣∣∣∫ t

t−δ

∫
T

q2
t−r(x, z)

(∫ r

t−δ

∫
T

|Ds,yu(r, z))|2dyds
)
dzdr

∣∣∣∣p}1/p

≤ c1/p
p Lip2

σ

(∫ t

t−δ

∫
T

q2
r(z, x)dzdr

)
sup

(r,z)∈[0,δ]×[0,2π]

{
E

∣∣∣∣∫ t

t−δ

∫
T

|Ds,yu(r, z))|2dyds
∣∣∣∣p}1/p

.
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Then, by (2.20), and Lemma 4.1.1,

E(|Iδ|p) ≤ C

(∫ δ

0

∫
T

q2
r(z, x)dzdr

)p
× sup

(r,z)∈[0,δ]×[0,2π]

E

∣∣∣∣∫ t

t−δ

∫
T

|Ds,yu(r, z))|2dyds
∣∣∣∣p

≤ Cδ(α−1)p/αδ(α−1)p/α.

The proof is complete.

Finally we quote from [15, page 97] a lemma which allows us to put together the results

of Lemma 4.1.1 and Corollary 4.1.3 and prove the existence of the negative moments (4.1).

Lemma 4.1.4. Let F be nonnegative random variable. Then property (4.1) holds for all

p ≥ 2 if and only if for every q ∈ [2,∞) there exists ε0 = ε0(q) > 0, such that

P(‖Du(t, x)‖2
H < ε) < Cεq,

for all ε < ε0.

Proof of Theorem 1.0.2. We need only to show that (4.1) holds for every (t, x) ∈ ET and

all p ≥ 2. Let q = qt(x) be the transition density corresponding to Φ and L. Since

qt−s(y, x)σ(u(s, y)) = Dsyu(t, x)−
∫ t

0

∫
T

qt−r(x, z)Dsyσ(u(r, z))w(dr, dz),

considering the fact that σ ≥ κ > 0, then

|Dsyu(t, x)|2 ≥ κ2

2
q2
t−s(y, x)−

∣∣∣∣∫ t

0

∫
T

qt−r(x, z)Dsyσ(u(r, z))w(dr, dz)

∣∣∣∣2 .
Therefore

‖Du(t, x)‖2
H ≥

∫ t

t−δ

∫
T

|Dsyu(t, x)|2dyds

≥ κ2

2

∫ t

t−δ

∫
T

q2
t−s(y, x)dyds−

∫ t

t−δ

∫
T

∣∣∣∣∫ t

0

∫
T

qt−r(x, z)Dsyσ(u(r, z))w(dr, dz)

∣∣∣∣2 dyds.
If we let τ = t− s in the first integral on the right, then we get

‖Du(t, x)‖2
H ≥ Jδ − Iδ ∀δ ∈ (0, t),
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where Iδ is defined in (4.4) and

Jδ :=
κ2

2

∫ δ

0

‖qu‖L2(T)du.

If we choose δ > 0 such that Jδ − ε > 0, then by the Chebyshev’s inequality

P(‖Dsyu(t, x)‖2
H < ε) ≤ P(Jδ − Iδ < ε) ≤ E|Iδ|p

(Jδ − ε)p
.

Then, by Corollary 4.1.3 and (2.20) we have

P(‖Du(t, x)‖2
H < ε) ≤ C1δ

2(α−1)p/α

(C
2
δ(β−1)/β − ε)p

.

Take δ = (4ε/C)
β
β−1 to get

P(‖Du(t, x)‖2
H < ε) ≤ Cα,pε

θp, (4.5)

where θ = 2β(α−1)
α(β−1)

− 1 > 0. Combine this with Lemma 4.1.4 to complete the proof of the

existence of the a density.

4.2 Upper bound for the density

Next, we prove the last claim of Theorem 1.0.2. We first mention the following result which

is a consequence of Eq. (2.57). Then come a few lemmas, which pave the road for applying

that result.

Proposition 4.2.1. Let q, α, λ be three positive real numbers such that q−1 +α−1 +λ−1 = 1.

Let F be a random variable in the space D2,α, such that E‖DF‖−2λ
H <∞. Then the density

p(x) of F can be estimated as follows.

p(x) ≤ cq,α,β(P(|F | > |x|))1/q ×
(
E‖DF‖−1

H + ‖D2F‖Lα(Ω,H⊗H)

∥∥‖DF‖−2
H

∥∥
λ

)
(4.6)

Proof. See [15] page 85.

Lemma 4.2.2. We have

lΥ(2β/l) ≤ 1

8π

[
l2

β
+ C

l2−
1
α

β1− 1
α

]
. (4.7)

where C = 2Cα/c
1/α, c = C1 is defined in Hypothesis H2, and Cα =

∫∞
0

dx
1+xα

= π/α csc(π/α); see[29].
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Proof. Starting with the definition of Υ(β), we have,

8πΥ(2β) =
1

β
+ 2

∞∑
n=1

1

β + cnα
≤ 1

β
+ 2

∫ ∞
0

dx

β + cxα
=

1

β
+

2C

β1− 1
α

.

This will give us the result.

Lemma 4.2.3. Let C be as in Lemma 4.2.2, and define,

ν =
2α− 1

α− 1
, b >

2Lip2
σ

π
∨
(

2Lip2
σC

π

) α
α−1

. (4.8)

If β > blν, then

z2
l Lip2

σΥ(2β/l) < 1/2. (4.9)

Proof. By combining (4.7) and the fact that zl ≤ 2l1/2 (see [11]), we only need to show that

l2

β
+ C

l2−
1
α

β1− 1
α

<
π

Lip2
σ

.

It is sufficient to show that each summand on the left is smaller than 1
2

π
Lip2

σ
. The first

summand is l2/blν . Since ν ≥ 2, we only need to have b > 2Lip2
σ/π, which holds true.

A simple computation shows that, if b >
(

2Lip2
σC
π

) α
α−1

, and ν as given above, the second

summand is also smaller that 1
2

π
Lip2

σ
.

Lemma 4.2.4. Let ν and b be as in (4.8). For |x| ≥ m we have

P(|u(t, y)| > |x|) ≤ exp(Λ(t, x)), (4.10)

where

Λ(t, x) = d t−1/(ν−1) (ln(|x|/m))ν/(ν−1) , (4.11)

and d = 1−ν
(bνν)1/(ν−1) < 0.

Proof. From (2.45) we know that

E|u(t, y)|l ≤

(
k + zl|σ(0)|

√
Υ(2β/l)

1− zlLipσ
√

Υ(2β/l)

)l

eβt,
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where k = supx∈T u0(x). Then, from (4.9), we conclude that

E|u(t, y)|l ≤ mleβt, (4.12)

where m = 2k + 2|σ(0)/Lipσ|, and k = supx∈T u0(x). Since by Chebyshev’s inequality,

P(|u(t, y)| > |x|) ≤ E|u(t, y)|l/|x|l, for every l ≥ 1, then

P(|u(t, y)| ≥ |x|) ≤ exp[tblν − l ln(|x|/m)] ∀l ≥ 1. (4.13)

Therefore,

P(|u(t, y)| ≥ |x|) ≤ inf
l≥1

exp[tblν − l ln(|x|/m)]. (4.14)

We can solve this optimization problem as follows: let A(l) := tblν − l ln(|x|/m). Then

A′(lmin) = 0, if and only if lmin =
(

ln(|x|/m)
tbν

)1/(ν−1)

. We have where the last inequality

follows from the fact that ν > 2.

Proof of Corollary 1.0.5. In (4.6) let F = u(t, y), q = λ = 4 and α = 2, to get the bound,

(P(|F | > |x|))1/4 ×
(
E‖DF‖−1

H + ‖D2F‖L2(Ω,H⊗H)

∥∥‖DF‖−2
H

∥∥
4

)
. (4.15)

Jensen’s inequality followed by (4.5) implies that E‖DF‖−1
H ≤

(
E‖DF‖−2

H

)1/2
< ∞, uni-

formly on x ∈ T and t > 0. With the same argument, we have
∥∥‖DF‖−2

H

∥∥
4
< ∞. Choose

C1 ∈ (0,∞) such that

E‖DF‖−1
H ∨

∥∥‖DF‖−2
H

∥∥
4
≤ C1.

From (3.32) we conclude, when β > 0 is sufficiently large,

sup
(t,x)∈(0,∞)×T

e−βtE‖D2u(t, y)‖2
H⊗H ≤

CΥ(β)

1− CΥ(β)
.

Therefore, there are a constants β, C > 0, such that ‖D2F‖L2(Ω,H⊗H) < Ceβt. Therefore, by

choosing β0 = β, the parenthesis on the right is bounded by C
(
1 + Ceβ0t/2

)
. Now, apply

Lemma 4.2.4 to finish.
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CHAPTER 5

Intermittency and Malliavin Derivatives

In this chapter we investigate the intermittency of the random fieldDku(t, x) for k = 1, 2, · · · ,

which is an asymptotic property of the these random fields. Roughly speaking, an intermit-

tent random field is distinguished by its sharp peaks. The following three examples will

illustrate the concept.

Example 5.0.1. consider a triangular array {Xn
i , n ≥ 1, i = 1, · · · , n} of Bernoulli i.i.d.

random variables with P(Xn
i = 1 + a2) = P(Xn

i = 0) = 1/2. Let Yn = Πn
i=1X

n
i . Then the

function

γ(p) :=
1

n
log EY p

n = p log(1 + a2)− log 2 (5.1)

satisfies 0 < γ(1) < γ(2)
2
< · · · . We also have γ(p) <∞ for all p ≥ 1.

If we let a2 = 2, then the random field Yn is zero with a large probability, and takes

a large value with a small probability. Nevertheless, an application of the Borel-Cantelli

lemma shows that P(Yn = 0 i.o.) = 0. This means that the large peaks will eventually occur

for almost all paths. The next example is from the theory of stochastic ordinary differential

equations.

Example 5.0.2 (Exponential Martingale). Consider the stochastic differential equation

dXt = XtdBt, X0 = 1. (5.2)

We know that Xt = exp(Bt − t/2) is the solution to (5.2). We also know that Xt → 0 a.s.

as t→∞, and EXp
t = exp(p(p−1)t

2
). We can check that the map p 7→ γ(p)/p defined by (5.1)

is finite, positive and strictly increasing.

Our next example from[40] is more sophisticated.
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Example 5.0.3 (Anderson parabolic problem). Consider the following parabolic anderson

equation on Zd. ∣∣∣∣∣∣ ∂tu = κ∆u+ ξ(x)u t ≥ 0, x ∈ Zd,

u(0, x) = 1 x ∈ Zd,
(5.3)

where ∆ψ(x) :=
∑
|x′−x|=1[ψ(x′)−ψ(x)]; i.e., κ∆ is a generator of the homogeneous random

symmetrical walk xt on Zd with continuous time and the rate of jumps κ in all directions

x → x′, |x − x′| = 1. Then γ̄(p) = p2/2, and (5.5) below holds. If u(t, x) is the density

of particles, the intermittency of the solution fields indicates a highly nonuniform, i.e., as t

goes to ∞, there are times at which most of the mass is concentrated at on the peaks.

To define the intermittency, we choose and fix some x0 ∈ R. Define the upper pth-

moment Liapounov exponent γ̄(p) of u as

γ̄(p) = lim sup
t→∞

1

t
log E|u(t, x0)|p p ∈ [1,∞). (5.4)

When u(t, x) is ergodic this limit is independent of x0. If u(t, x) is the solution to (1.1), then

γ̄(p) is independent of x0 if u0(x) is a constant. We say u is intermittent if regardless of

value of x0,

0 < γ(1) <
γ(2)

2
< · · · <∞. (5.5)

This implies a progressive increase of the moments. For example the second moment increases

faster than the square the second moment. To quote from[27],“When a random field is

intermittent, asymptotically as t → ∞, the main contribution to each moment function is

carried by higher and higher and more and more widely spaced “overshoots” (“peaks”) of

the random field.” In this thesis, we consider a variant of the above intermittency; i.e., the

weak intermittency. This means that we only require that

γ̄(2) > 0, and γ̄(p) <∞, ∀p ∈ [2,∞). (5.6)

In some situations, the weak intermittency may imply the full intermittency; i.e., (5.6) may

imply (5.5). Since γ̄ is convex and γ̄(0) = 0, then the map p→ γ̄(p)/p is nondecreasing. It

is also easy to check that the map p→ γ̄(p)/p is strictly increasing if 2γ̄(1) < γ̄(2). We also
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observe that convexity implies that if γ̄(1) = 0, then the weak intermittency implies the full

intermittency.

There is a big body of works on this intermittency. We refer to[12, 40, 41] for more

details. In[12], the authors device a probabilistic method for proving the intermittency. This

method employs the Feynman-Kac formula to formulate (1.1). Here, we borrow the idea of

our analytical approach from [23], in which the authors introduced this technique to prove

that the solution u(t, x) to (1.1) is intermittent.

Proof of Theorem 1.0.2. When σ(x) = λx, by (3.1), we have

Dk
αu(t, x) = λqt−ŝ(x, ŷ)Dk−1

α̂ u(ŝ, ŷ) + λ

∫ t

ŝ

∫ 2π

0

qt−r(x, z)D
k
αu(r, z)w(dr, dz).

Therefore,

E

∫
Ek
|Dk

αu(t, x)|2dα = λ2

∫
Ek
q2
t−ŝ(x, ŷ)E|Dk−1

α̂ u(ŝ, ŷ)|2dα

+ E

∫
Ek
λ2

∣∣∣∣∫ t

ŝ

∫ 2π

0

qt−r(x, z)D
k
αu(r, z)w(dr, dz)

∣∣∣∣2 dα.
This yields

E‖Dku(t, x)‖2
H⊗k ≥ λ2‖q2

t−•(x, ∗)EDk−1
� u(•, ∗)‖2

H⊗k .

To show that
∫∞

0
e−βtE‖Dku(t, x)‖2

H⊗kdt =∞, it is sufficient to show that∫
Tk
dξ

∫ ∞
0

dte−βt
∫ t

0

ds1 · · ·
∫ t

0

dsk
(
q2
t−ŝ(x, ŷ)E|Dk−1

α̂ u(ŝ, ŷ)|2
)

=∞,

where dξ = dy1 · · · dyk. Consequently, it is sufficient to show that∫ ∞
0

e−βt
∫ t

0

q2
t−s(x, y)‖EDk−1u(s, y)‖2

H⊗k−1dsdt =∞,

for almost all y ∈ Tk. Therefore, after a change of the variables [t− si → τ ], we should show

that (∫ ∞
0

e−βτq2
τ (x, y)dτ

)∫ ∞
0

e−βsE‖Dk−1u(s, y)‖2
H⊗k−1ds =∞.
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We conclude that
∫∞

0
e−βsE‖Dk−1u(s, y)‖2

H⊗k−1ds =∞ implies that∫ ∞
0

e−βsE‖Dku(s, y)‖2
H⊗k ds =∞.

Therefore, if we prove the claim for k = 1, then, by an application of induction on k, we can

finish the proof. Next, we prove the case k = 1 for general σ. By squaring (3.7) we obtain

E‖Du(t, x)‖2
H ≥

∫ t

0

∫ 2π

0

p2
t−s(x, y)E|σ(u(s, y))|2dyds.

If we assume c := lim inf |x|→∞ |σ(x)/x| > 0, then for every c0 ∈ (0, c), there is A such that

|σ(x)| ≥ c0|z| for |x| > A. Therefore

E|σ(u(s, y))|2 ≥ c2
0E(|u(s, y)|2;A) ≥ c2

0E|u(s, y)|2 − c2
0A

2. (5.7)

Therefore, ∫ ∞
0

e−βtE‖Du(t, x)‖2
Hdt

≥ c2
0

∫ ∞
0

e−βt
∫ t

0

∫
T

q2
t−s(x, y)E|u(s, y)|2dydsdt

− c2
0A

2

∫ ∞
0

e−βt
∫ t

0

∫
T

q2
t−s(x, y)dydsdt.

We know that the last integral is less than or equal to Υ(β)/β ∈ [0,∞). An application of

Fubini’s lemma followed by a change of variable t− s→ τ yields∫ ∞
0

e−βt
∫ t

0

∫
T

q2
t−s(x, y)E|u(s, y)|2dydsdt

=

∫
T

(∫ ∞
0

E|u(s, y)|2e−βsds
)(∫ ∞

0

e−βτq2
τ (x, y)dτ

)
dy.

From [23, proof of Theorem 2.10] we know that
∫∞

0
E|u(s, y)|2e−βsds =∞, when the initial

profile u0 is sufficiently large. Here we summarize their proof. From (5.7) we conclude that

Fβ(x)− (H Fβ)(x) ≥ Gβ(x) +
−c2

0A
2

β
Υ(β), (5.8)

where

Fβ(x) =

∫ ∞
0

e−βtE|u(t, x)|2dt,

Gβ(x) =

∫ ∞
0

e−βtE|u0(x+Xt)|2dt,

H (x) =

∫ ∞
0

e−βtc2
0q

2
t (x)dt,
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where H f(x) := Hβ ∗ f(x). Therefore, by linearity and positivity of H ,

H nFβ(x)− (H n+1Fβ)(x) ≥H nGβ(x) + H n−c2
0A

2

β
Υ(β). (5.9)

Let us assume that u0 ≥ k. Then H Gβ(x) ≥ c20k
2

β
Υ(β). Therefore,

H nFβ(x)− (H n+1Fβ)(x) ≥ k2 − A2c2
0Υ(β)

β
|c2

0Υ(β)|n. (5.10)

Summing this inequality from n = 0 to n =∞ yields

Fβ(x) ≥ k2 − A2c2
0Υ(β)

β

∞∑
n=0

|c2
0Υ(β)|n =∞,

given k2 ≥ A2c2
0Υ(β), and Υ(β) ≥ c−2

0 . Such β > 0 always exists, because X is a Lévy process

on a compact set and so is recurrent (see, for example,[39, page 144]); i.e., Υ(0) = ∞; see

Port-Stone [52] and Bertoin [8, page 33]. Therefore
∫∞

0
e−βtE‖Du(t, x)‖2

H dt = ∞ for all

x ∈ T. This implies that γ̄2(β) ≥ α > 0 for any α < β. To see this, assume to the contrary

γ̄1(2) < α. Then

lim sup
t→∞

log E‖Du(t, x)‖2
H

t
< α.

This means that E‖Du(t, x)‖2
H . eαt, and contradicts the fact that∫ ∞

0

e−βtE‖Du(t, x)‖2dt =∞.

Similarly, if we assume that σ′(x) ≥ c > 0, then

E‖D2u(t, x)‖2
H⊗2 ≥

∫
E2
t

p2
t−ŝ(x, ŷ)E|Dα̂σ(u(ŝ, ŷ))|2dα

≥ 2c2

∫ t

0

∫ 2π

0

∫ s

0

∫ 2π

0

p2
t−s(x, y)E|Dr,vu(s, y)|2dvdrdyds,

Therefore, ∫ ∞
0

e−βtE‖D2u(t, x)‖2
H⊗2dt ≥

∫
E2
t

p2
t−ŝ(x, ŷ)E|Dα̂σ(u(ŝ, ŷ))|2dα

≥ 2c2

∫ ∞
0

e−βt
∫ t

0

∫ 2π

0

∫ s

0

∫ 2π

0

p2
t−s(x, y)E|Dr,vu(s, y)|2dvdrdydsdt

≥ 2c2

∫ 2π

0

∫ ∞
0

E‖Du(s, y)‖2
He
−βsds

∫ ∞
0

e−βtp2
t (x, y)dtdy,

which is infinity, by the first part.
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CHAPTER 6

New directions and further developments

6.0.1 The Malliavin calculus on R

Consider the parabolic Anderson model on R; i.e.,∣∣∣∣∣∣ ∂tu(t, x) = Lu(t, x) + σ(u(t, x))ẇ (t, x) ∈ (0,∞)×R,

u(0, x) = 1 x ∈ R,
(6.1)

The existence and uniqueness of the solution to this equation is illustrated in [23]. Intuitively,

the solution should admit a density at all (t, x) ∈ R+ ×R. But the lack of the integrability

condition

E

∫ t

0

∫
R

|u(s, x)|2 dxds <∞,

causes a challenge. This is because Proposition 2.3.4 does not hold and the stochastic

integral in the formulation of the mild solution no longer coincides with the divergence

operator. This means that the commutative relation between the Malliavin derivative and

the divergence operator will not hold. There are two ways of overcoming this challenge: We

can approximate the solution on R by the solution to the truncated equation (truncated

on the intervals [−n, n], and then keep track of the their Malliavin derivatives. The other

possible approach is through the method offered by the recent paper [33]. The authors

were able to use a Feynman-Kac representation for the SHE driven by a non homogeneous

Gaussian noise, which allowed them to write an explicit formula for the Malliavin derivatives.

There is a possibility that their method could be adapted to the white noise case.
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6.0.2 Estimates on the densities

Finding an upper and lower gaussian bound for the density of the solution to (1.1) is another

direction for further research. A new method for obtaining such estimate is developed by

Nourdin and Peccati [44, 45], which is rooted in the interaction between the Stein’s method

and the Malliavin Calculus. In this context, Nualart and Quer-Sardanyons in [49] have

applied a result by Nourdin and Viens [46] to find such gaussian bounds.

6.0.3 Existence of the joint densities

There is also an interest in the existence and regularity of the joint density. Bally and

Pardoux proved such result [4] for (1.1), when L = ∆. The case for general L is yet to be

proved. The main challenge of this problem is the analysis of the Malliavin matrix and the

prove of the nondegeneracy.
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[49] David Nualart and Llúıs Quer-Sardanyons. Gaussian density estimates for solutions
to quasi-linear stochastic partial differential equations. Stochastic Process. Appl.,
119(11):3914–3938, 2009.

[50] Étienne Pardoux and Tu Sheng Zhang. Absolute continuity of the law of the solution
of a parabolic SPDE. J. Funct. Anal., 112(2):447–458, 1993.

[51] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise,
volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 2007. An evolution equation approach.

[52] Sidney C. Port and Charles J. Stone. Infinitely divisible processes and their potential
theory. Ann. Inst. Fourier (Grenoble), 21(2):157–275; ibid. 21 (1971), no. 4, 179–265,
1971.
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