
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A study of near-inertial internal wave generation and the story of pelican flight.

Permalink
https://escholarship.org/uc/item/9z15b842

Author
Stokes, Ian

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9z15b842
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

A study of near-inertial internal wave generation and the story of
pelican flight.

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Ian Stokes

Committee in charge:

Professor Andrew Lucas, Chair
Professor Matthew Alford
Professor Samuel Kelly
Professor Stefan Llewellyn-Smith
Professor Oliver Schmidt

2023



Copyright

Ian Stokes, 2023

All rights reserved.



The dissertation of Ian Stokes is approved, and it

is acceptable in quality and form for publication

on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

To my Grandad, Rod MacPherson.

iv



EPIGRAPH

“We know less about the ocean’s bottom than about the moon’s back side.”

— Roger Revelle.

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Wave-slope soaring of the brown pelican . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Steady, Level Pelican Flight in the Absence of
Ocean Waves . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Airflow Induced by Near-Shoaling Waves . . . . . 11
1.2.3 Potential Flow over Solitary Waves . . . . . . . . 12
1.2.4 Wave-Slope Soaring Flight . . . . . . . . . . . . . 17

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Dedication . . . . . . . . . . . . . . . . . . . . . . 25
1.6.2 Ethics approval and consent to participate . . . . 25
1.6.3 Consent for publication . . . . . . . . . . . . . . . 25
1.6.4 Availability of data and material . . . . . . . . . . 25
1.6.5 Competing interests . . . . . . . . . . . . . . . . . 25

1.7 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7.1 Author’s contributions . . . . . . . . . . . . . . . 26
1.7.2 Acknowledgements . . . . . . . . . . . . . . . . . 26

vi



Chapter 2 A generalized slab model . . . . . . . . . . . . . . . . . . . . . 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Solution via decomposition into normal modes . . 37

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Local analysis: Iceland Basin (NISKINe site) . . . 42
2.3.2 Global Analysis: geospatial characteristics of the

TL and implications to TKE production . . . . . 49
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Calculation of total wind work . . . . . . . . . . . 54
2.4.2 TKE fraction . . . . . . . . . . . . . . . . . . . . 55
2.4.3 Available wind work . . . . . . . . . . . . . . . . 56
2.4.4 Vertical wavenumber spectra . . . . . . . . . . . . 57
2.4.5 Relation to PWP . . . . . . . . . . . . . . . . . . 57

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.1 Acknowledgements . . . . . . . . . . . . . . . . . 60
2.6.2 Data Availability Statement . . . . . . . . . . . . 60
2.6.3 Appendicies . . . . . . . . . . . . . . . . . . . . . 61

Chapter 3 Near-inertial wave generation in a linear, damped mixed-layer
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 Authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Theoretical approach: . . . . . . . . . . . . . . . . 66
3.2.3 Observations . . . . . . . . . . . . . . . . . . . . . 68

3.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Governing equations . . . . . . . . . . . . . . . . 71
3.3.2 Inertial pumping . . . . . . . . . . . . . . . . . . 75
3.3.3 Wave generation and propagation . . . . . . . . . 78

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . 84
3.4.1 Numerical solutions . . . . . . . . . . . . . . . . . 85
3.4.2 Model validation . . . . . . . . . . . . . . . . . . 85
3.4.3 Model sensitivity to linear damping . . . . . . . . 87
3.4.4 OS95 and NISKINe case studies . . . . . . . . . . 88
3.4.5 Sensitivity of generation to storm size and mesoscale

vorticity . . . . . . . . . . . . . . . . . . . . . . . 98
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.1 NIWs vs Tides . . . . . . . . . . . . . . . . . . . 100
3.5.2 The limits on the lateral scales of NIW generation: 101
3.5.3 Damping . . . . . . . . . . . . . . . . . . . . . . . 101

vii



3.5.4 High-frequency limit of the near-inertial band . . 102
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6.1 Acknowledgements . . . . . . . . . . . . . . . . . 103
3.6.2 Data Availability Statement . . . . . . . . . . . . 104

viii



LIST OF FIGURES

Figure 1.1: Photograph of a brown pelican using wave-slope soaring flight
on a calm day in La Jolla, CA. . . . . . . . . . . . . . . . . . . 5

Figure 1.2: Efficiency of steady, level flight out of ground effect in absence
of ocean waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.3: The energetics of flight in and out of ground effect. . . . . . . . 10
Figure 1.4: Flow visualization of the updraft induced by a traveling solitary

wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 1.5: Comparison of potential flow theory to measurements by Grare

et al Grare et al. [2018]. . . . . . . . . . . . . . . . . . . . . . . 18
Figure 1.6: Coordinate system for the inertial trajectories of a pelican

wave-slope soaring on a solitary wave. . . . . . . . . . . . . . . 19
Figure 1.7: the efficiency of wave slope soaring flight under a range of

environmental/flight conditions. . . . . . . . . . . . . . . . . . . 22

Figure 2.1: A schematic is shown for an example mixed layer, transition
layer, and the associated stratification and stress profiles. . . . . 30

Figure 2.2: A flow chart is provided to visualize the pathways energy can
take from wind in the atmosphere to mixing. . . . . . . . . . . 36

Figure 2.3: Minimet drifter track is displayed for August 7-27, 2018. . . . . 41
Figure 2.4: The generalized slab model is employed to study the near-

inertial response to an impulse-like wind event on 17-18 August,
2018 at the NISKINe site in the Iceland Basin. . . . . . . . . . 43

Figure 2.5: Modal spectra for the slab and MLTL model are calculated for
the NISKINe site (August 2018; 60 N, 22 W). . . . . . . . . . . 47

Figure 2.6: Relative transition layer thickness is calculated using high-
resolution Argo data and displayed for the global ocean. . . . . 50

Figure 2.7: The annual-mean ratio is calculated from Argo data and shown
globally to assess the impact the transition layer on wind work
calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.8: The TKE fraction calculated using the MLTL stress profile is
shown globally for the annual-mean. . . . . . . . . . . . . . . . 53

Figure 3.1: A schematic of our NIW generation model is displayed, adapted
from Alford et al. [2016], Figure 7. . . . . . . . . . . . . . . . . 65

Figure 3.2: A schematic of idealized wind forcing by an extratropical cy-
clone, as introduced by D’Asaro et al. [1995] in the Ocean
Storms Experiment. . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.3: Idealized, Gaussian representations of the eddy observed in
OS95 [D’Asaro et al., 1995] and the NISKINe dipole vortex
[Thomas et al., 2020] are shown. . . . . . . . . . . . . . . . . . 70

ix



Figure 3.4: Total inertial pumping is shown for the OS95 and NISKINe
test cases in the top and bottom panels, respectively. . . . . . . 77

Figure 3.5: Inertial pumping decomposition and associated power spectral
densities are shown for parameter space associated with OS95
(see the Ocean Storms column of Table 1). . . . . . . . . . . . . 79

Figure 3.6: Inertial pumping decomposition and associated power spectral
densities are shown for parameter space associated with NISK-
INe (see the NISKINe column of Table 1). . . . . . . . . . . . . 80

Figure 3.7: Near inertial wave generation and the associated local dissi-
pation are calculated for parameters associated with the Ocean
Storms experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 3.8: Near inertial wave generation (C), is plotted against inertial
periods for a range of linear damping values under the OS95
parameter space on a β-plane. . . . . . . . . . . . . . . . . . . . 88

Figure 3.9: Stratification, inertial currents, and vertical wavenumber spec-
tra for OS95 and NISKINe are shown. . . . . . . . . . . . . . . 89

Figure 3.10: Model output for mode-1 NIW generation associated with the
Ocean Storms Experiment test case is shown. . . . . . . . . . . 91

Figure 3.11: Modal pressure spectra and the corresponding dispersion curves
are shown for modes 1, 4, and 10 using OS95 parameters. . . . 92

Figure 3.12: Model output for mode-1 NIW generation associated with the
NISKINe Dipole Vortex test case is shown. . . . . . . . . . . . . 95

Figure 3.13: Modal pressure spectra and the corresponding dispersion curves
are shown for modes 1, 4, and 10 using NISKINe parameters. . 96

Figure 3.14: Near inertial wave generation, the associated local dissipation,
and wind work are calculated for variable storm size. . . . . . . 99

x



LIST OF TABLES

Table 1.1: Average Brown Pelican Parameters Pennycuick [1983]. . . . . . . 4

Table 3.1: The parameter space associated with the Ocean Storms experi-
ment [D’Asaro et al., 1995] and NISKINe [Thomas et al., 2020,
Klenz et al., 2022] is described. . . . . . . . . . . . . . . . . . . . 71

xi



ACKNOWLEDGEMENTS

I am grateful for my family – my parents, brother and my loving partner Emily

MacDonell – I couldn’t have made it here without your love and support! I extend

my gratitude to my advisor, Drew Lucas, and the rest of the team at the Multiscale

Ocean Dynamics Group, especially the engineers, technicians, my fellow graduate

students and postdocs, and the interns/undergraduates. Huge thanks to Captain

Brett Pickering, Marine Physical Laboratory, Rich Walsh and the SIO scientific

diving community. Lastly, thanks to Bucky, Trinity, and the rest of the dogs of

Neirenberg Hall, and of course, the brown pelicans of the Pacific coast!

Chapter 1, in full, is a reprint of the material as it appears in Wave-slope

soaring of the brown pelican, Movement Ecology. Ian A. Stokes, Andrew J. Lucas;

Published 2021. The dissertation author was the primary investigator and author

of this paper.

Chapter 2, in full, is a reprint of the material as it appears in A generalized

slab model, Journal of Physical Oceanography. Ian A. Stokes, Samuel M. Kelly,

Andrew J. Lucas, Amy F. Waterhouse, Caitlin B. Whalen, Thilo Klenz, Verena

Hormann, Luca Centurioni; Minor Revisions 2023. The dissertation author was

the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in Near-inertial wave

generation in a linear, damped mixed layer model, Journal of Physical Oceanogra-

phy. Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas; In Preparation 2023. The

dissertation author was the primary investigator and author of this paper.

xii



VITA

2012-2016 B. S. in Physics cum laude, University of California,
Santa Barbara

2018-2019 M. S. in Engineering Sciences (Mechanical Engineer-
ing), University of California San Diego

2023 Ph. D. in Engineering Sciences (Mechanical Engineer-
ing), University of California San Diego

PUBLICATIONS

Gregory Sinnett, Kristen A. Davis, Andrew J. Lucas, Sarah N. Giddings, Emma
Reid, Madeleine E. Harvey, Ian A. Stokes; “Distributed Temperature Sensing for
Oceanographic Applications”, Journal of Atmospheric and Oceanic Technology,
37, 1987-1997, (2020).

Ian A. Stokes, Andrew J. Lucas; “Wave Slope Soaring of the Brown Pelican”,
Movement Ecology, 9, 13, (2021).

Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas, Amy F. Waterhouse, Caitlin
B. Whalen, Thilo Klenz, Verena Hormann, Luca Centurioni; “A Generalized Slab
Model”, Physical Oceanography, Minor Revisions.

Leif N. Thomas, Samuel M. Kelly, Thilo Klenz, William R. Young, Luc Rainville,
Harper Simmons, Verena Hormann, Ian Stokes; “Why near-inertial waves are less
affected by vorticity in the Northeast Pacific than in the North Atlantic”, The
Oceanography Society, In Review.

Samuel M. Kelly, Erica L. Green, Ian A. Stokes, Jay A. Austin, Andrew J. Lucas,
Jonathan D. Nash; “Direct observations of coastally generated near-inertail waves”,
Journal of Physical Oceanography, In Review.

Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas; “Near-inertial wave generation
in a linear, damped mixed layer model”, Journal of Physical Oceanography, In
Preparation.

xiii



ABSTRACT OF THE DISSERTATION

A study of near-inertial internal wave generation and the story of

pelican flight.

by

Ian Stokes

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2023

Professor Andrew Lucas, Chair

Organizational notes. This dissertation consists of three distinct contribu-

tions in the field of Applied Ocean Science. These contributions are not directly

related, and each serve as a stand-alone scientific work. As such, the dissertation is

written and formatted as three independent chapters. These are titled ‘Wave-slope

soaring of the brown pelican’ (published in Movement Ecology, 2020), ‘A general-

ized slab model’ (submitted to Journal of Physical Oceanography and in review),

and ‘Near-inertial wave generation in a linear, damped mixed layer model’ (in

preparation for submission to Journal of Physical Oceanography). The abstract of

each chapter is included below. Following these abstracts, we will dive right into

‘Wave-slope soaring of the brown pelican’ in Chapter 1.
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(1) Wave-slope soaring of the brown pelican. From the laboratory at

Scripps Institution of Oceanography, one can observe the brown pelican (Pelecanus

occidentalis) traveling along the crests of near-shoaling waves just outside the surf

zone. In this manner, the birds travel great distances without flapping, all the while

a scant ∼ 30 cm off the ocean’s surface. Here we derive a theoretical framework for

assessing the energetic benefit of this behavior, “wave-slope soaring,” in which an

organism in flight takes advantage of updrafts caused by traveling ocean surface

gravity waves. The energy cost of steady, constant altitude flight is analyzed

as a control. Potential flow theory is used to quantify the ocean wave-induced

wind associated with near-shoaling, weakly nonlinear, shallow water ocean surface

gravity waves. Using a regular expansion of the Stokes stream function and the

Green’s function for Laplace’s equation in 2D with Dirichlet boundary conditions,

we obtain integral expressions for the horizontal and vertical components of the

wave-induced wind. The development of these relationships produces expressions

for the components of the wave-induced wind in a frame of reference moving with

the wave. Wave-slope soaring flight is then analyzed using an energetics-based

approach for waves of typical ocean conditions (wave height of 1m, period of 10s)

and the body plan of P. occidentalis. For pure ground effect flight, we calculate an

upper bound mechanical advantage of ∼ 20 - 25% as compared with steady, level

flight without ground effect. When wave-slope soaring is employed, we calculate

an upper bound mechanical advantage of ∼ 50 - 60% as compared with steady,

level flight without ground effect. The theoretical development presented here

suggests there are energy savings associated with wave-slope soaring. Individual

brown pelicans may gain upwards of 50% mechanical advantage utilizing this mode

of flight under typical ocean conditions, as compared to steady, level flight out of

ground effect. Thus wave-slope soaring appears to provide a significant benefit to

these highly mobile organisms that depend on patchy prey distribution over large

home ranges.

(2) A generalized slab model. We construct a generalized slab model to

calculate the ocean’s linear response to an arbitrary, depth-variable forcing stress

profile. To introduce a first-order improvement to the linear stress profile of the

xv



traditional slab model, a piecewise-nonlinear stress profile which allows momentum

to penetrate into the transition layer (TL) is used (denoted ‘mixed layer/transition

layer,’ or MLTL stress profile). The MLTL stress profile induces a two-fold reduc-

tion in power input to inertial motions relative to the traditional slab approxima-

tion. The primary reduction arises as the TL allows momentum to be deposited

over a greater depth range, reducing surface currents. The secondary reduction

results from the production of turbulent kinetic energy (TKE) beneath the mixed

layer (ML) related to interactions between shear stress and velocity shear. Di-

rect comparison between observations in the Iceland Basin, the traditional slab

model, the generalized slab model with the MLTL stress profile, and the Price-

Weller-Pinkel (PWP) model suggest that the generalized slab model offers im-

proved performance over a traditional slab model. In the Iceland Basin, modeled

TKE production in the TL is consistent with observations of turbulent dissipation.

Extension to global results via analysis of Argo profiling float data suggests that on

the global, annual-mean, ∼ 30% of the total power input to near-inertial motions

is allocated to TKE production. We apply this result to the latest global, annual-

mean estimates for near-inertial power input (0.27 TW) to estimate that 0.08 ±
0.01 TW of the total near-inertial power input are diverted to TKE production.

(3) Near-inertial wave generation in a linear, damped mixed layer

model. We present a new model for studying near-inertial internal wave (NIW)

generation. In development of the model, we provide a theoretical perspective on

the NIW generation process which is exactly analogous to that of internal tide

generation proposed by Llewellyn Smith and Young [2002]. We consider NIW

generation via wind-stress curl, latitudinal variability of the Coriolis parameter

(the β-effect) and lateral variability of the mesoscale eddy field (the ζ-effect) using

this model. We separate the forcing function and wave response in the model, which

reveals that beta and zeta refraction can produce high-wavenumber variability that

does not generate waves. This contradicts the common assumption that NIWs are

generated at scales which identically mirror their forcing. A spectral approach

is used in tandem with the model that allows us to constrain the scales of NIW

generation for each mode. Because the vertical energy propagation associated with

xvi



internal waves is a function of the total wave generation and the lateral scale of

these waves, this technique may prove to be a useful tool in reducing uncertainties

related to how NIWs impact the global ocean’s energy budget.
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Chapter 1

Wave-slope soaring of the brown

pelican

Authors: Ian A. Stokes and Andrew J. Lucas

1.1 Background

Some birds are able to fly with little flapping by exploiting energy present in

the ambient wind field Rayleigh [1883], Pennycuick [1973], Wilson [1975], Penny-

cuick [1983], Taylor et al. [2016]. When these energy gains are great enough to

offset the cost of flight, the phenomenon is known as ‘soaring’ Rayleigh [1883],

Cone [1962]. As an energy efficient means of searching for prey or travelling long

distances, soaring behaviors are widespread in avians and have demonstrated eco-

logical significance Taylor et al. [2016], Richardson [2011], Richardson et al. [2018],

Richardson [2019].

Soaring behaviors in general take advantage of the structure and variability of

the fluid flow in the lower atmosphere Pennycuick [1973, 1983]. For example, when

the desert floor and the still air just above is heated by the midday summer sun,

vigorous thermal convection can occur. ‘Thermal soaring’ is the familiar behavior

associated with catching these updrafts, and is used to gain altitude and locate prey

from long distances Pennycuick [1973, 1983]. The moving atmosphere impinging

on raised topography also can create strong vertical flows. ‘Slope soaring’ takes

1



advantage of updrafts that are created by the vertical redirection of airflow over

cliffs and steep hills Pennycuick [1973, 1983].

Soaring behaviors are not limited to localized convection or the presence of to-

pographic obstacles. In the windswept mid- and high-latitude open ocean, seabirds

use the vertical shear of wind within the turbulent atmospheric boundary layer to

gain energy in a behavior known as ‘dynamic soaring’ Richardson [2011], Richard-

son et al. [2018], Idrac [1925], Sachs et al. [2013]. The wandering albatross can

circumnavigate the globe, rarely flapping their wings, by employing this technique

Richardson [2011], Richardson et al. [2018]. The potential for using vertical shear

in horizontal winds to power continuous flight was first recognized by Leonardo da

Vinci in the 16th century Richardson [2019].

However, even in conditions with little to no ambient wind, albatrosses have

been reported to track and follow waves on the ocean surface for long distances

Richardson [2011], Froude et al. [1892]. At the coastline during calm conditions,

pelicans can also be seen tracking the crests of shoaling waves just outside of

the surf-zone, often in formation.In this fashion, they appear to be able to gain

forward speed and thus kinetic energy, which they then convert to height, peeling

off and upwards just as the wave begins to break. This altitude is then used to

glide downwards and offshore to the subsequent approaching wave. By linking

individual waves together, the birds can travel hundreds of meters or more with

limited flapping.

Here we theoretically examine the possibility that the vertical component of

the wind induced by traveling ocean waves Idrac [1925] may explain the birds’

tendency to follow wave crests Wilson [1975], Richardson [2011], Idrac [1925]. This

behavior, which we term ‘wave-slope soaring,’ is shown by this analysis to have

significant cost-benefit to energy efficient travel by comparison to steady level flight

in and out of ground effect. It is a special case of ‘slope soaring’ flight with the

primary difference that in wave-slope soaring, the updrafts are driven by traveling

ocean surface waves Wilson [1975], Richardson [2011], Idrac [1925], Jameson [1958]

pushing against a still atmosphere, rather than wind encountering a fixed object

Pennycuick [1973, 1983].

2



1.2 Methods

The goal is to estimate the energy savings associated with wave-slope soaring

(WSS) flight. To accomplish this, we perform a theoretical study of the brown

pelican practicing WSS over near-shoaling coastal waves. First, controls are devel-

oped in section 1.1. There we analyze the cost of steady, constant altitude pelican

flight in the absence of ocean surface waves, out of ground effect (OGE, section

1.1.1) and in ground effect (GE, section 1.1.2). In both cases, our description of the

energetics uses energy consumption per distance travelled, or ‘cost of transport’

(COT) as the minimizing function Taylor et al. [2016]. These two results provide

a baseline with which to compare the energy savings associated with wave-slope

soaring flight, since flight in ground effect has demonstrated flight efficiency ben-

efits Hainsworth [1988], Suh and Ostowari [1988], Laitone [1990], Rayner [1991],

Johansson et al. [2018].

Second, a description of the updrafts caused by near-shoaling waves is needed.

In the air-sea interactions literature, any displacement of the atmosphere caused by

traveling waves is known as ‘wave-induced wind’. The description of wave-induced

wind is, in general, very complex due to the broad spectrum of ocean surface

waves and nonlinear wave-wave and wave-wind interactions Semedo et al. [2009],

Sullivan and McWilliams [2010], Edson et al. [2013], Buckley and Veron [2016].

However, since wave-slope soaring behavior is seen in calm wind conditions close

to the coastline in the brown pelican, and appears to favor smooth, long-crested

swells, we proceed with a simplified model. This model describes wave-induced

wind in zero ambient wind conditions offshore of the depth of wave-breaking (Sec.

1.2, 1.3). To retain some of the nonlinearities intrinsic to shoaling waves, but allow

the problem to be analytically tractable, we assume a waveform shape of the well-

studied soliton Barthélemy [2004]. This approach has been effective in modeling

near-shoaling, shallow water, ocean surface gravity waves, and was shown to be

a reasonable representation of and ocean surface gravity wave in the region just

outside of the surf zone, where nonlinear steepening begins Barthélemy [2004].

We use potential flow theory to model the wave-induced wind over these soli-

tary waves. This is a significant simplification since, being an inviscid model, it

3



Table 1.1: Average Brown Pelican Parameters Pennycuick [1983].

Parameter Symbol Value
Mass M 2.65 kg
Wingspan b 2.10 m
Maximum Wing Area Swmax 0.45 m2

Wing Loading W/Swmax 57.8 N/m2

Aspect Ratio A 9.8

does not account for development of boundary layers, especially on the trailing face

of the moving wave. Obervations have shown that there are weak wind conditions

where the atmospheric boundary layer remains laminar and well-attached Smed-

man et al. [1994], Stull et al. [2000], Angevine et al. [2006], justifying the use of

an inviscid assumption here. This assumption is violated in moderate and strong

wind conditions, when a separated, turbulent boundary layer forms between wave-

crests Banner and Melville [1976], Högström et al. [2009], Smedman et al. [2009],

Soloviev and Kudryavtsev [2010].

Since we observe the wave-slope soaring behavior in weak wind conditions, we

assert for our model that the atmosphere is initially at rest, the ocean surface is

smooth, the wave steepness is small, and the dynamics of the wave-induced wind

in this idealized case can be largely captured by inviscid theory. Crucially, in

what follows, we provide a comparison of the wave-induced wind produced by our

potential flow model to measurements by Grare et al. [2018] in Sec. 1.3.

Armed with the vertical component of the wave-induced wind from our inviscid

model, we evaluate the cost of transport for flight through a moving medium

following Taylor et al. [2016]. We then assess the efficiency of flight in WSS for

a range of environmental/flight conditions, and compare to flight OGE and flight

in GE to assess possible energy benefit of WSS flight (Sec. 1.4). The physical

characteristics of the brown pelican relevant to flight are drawn from Pennycuick

Pennycuick [1983] and given in Table 1.1.
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Figure 1.1: Photograph of a brown pelican using wave-slope soaring flight on a
calm day in La Jolla, CA.

1.2.1 Steady, Level Pelican Flight in the Absence of Ocean

Waves

We decompose the total aerodynamic drag into profile, parasitic, and induced

drag components Pennycuick [1989, 2008]. Profile drag arises primarily from fric-

tion drag, and secondarily from pressure drag, both acting on the wings. Parasitic

drag results primarily from pressure drag, and secondarily from friction drag, acting

on the body. Finally, induced drag is a consequence of lift generation, associated

with the downwash required to produce lift Taylor et al. [2016], Rayner [1991],

Pennycuick [1989], Taylor and Thomas [2014]. From Pennycuick [1989, 2008], we

write the total drag experienced by a bird gliding in still air at equilibrium as a

function of airspeed u, such that

Doge(u) ≈
ρu2

2

(
bc̄CDpro + SbCDpar

)
+

2k

πρ

(mg
bu

)2
, (1.2.1.1)

where ρ is air density (1.225 kg/m3), b is wingspan, c̄ is the mean chord length,

Sb is the body frontal area, m is the mass of the bird, k is the induced drag factor,

and g is gravitational acceleration. CDpro and CDpar are the profile and parasitic
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drag coefficients, respectively.

With units of [J/m], (1.2.1.1) can be interpreted as the COT for gliding flight

in a still medium. In the case of gliding flight through a moving medium, (i.e.

wind) Taylor et al. [2016] show that the theoretical COT (C) can be expressed as

C ≈ Du−mgwu√
(u− wh)

2 + w2
s

=
Du−mgwu

U
, (1.2.1.2)

where wu is the vertical component of the wind, wh is the headwind experienced

by the bird, and ws is the crosswind experienced by the bird. Taylor et al Taylor

et al. [2016] show that the denominator in (1.2.1.2) can be equivalently expressed

as the groundspeed (U). Note that in the presence of ambient wind, u ̸= U . In

the case where w → 0, the airspeed and groundspeed equate (i.e. u → U) and

(1.2.1.2) simplifies to (1.2.1.1). In Section 1.4, we assess wave-slope soaring where

the still-air initial condition is relaxed, necessitating the introduction of (1.2.1.2).

Beginning with the first term on the right hand side of (1.2.1.1), which repre-

sents the profile drag, we calculate the standard mean chord c̄ assuming a straight

tapered wing with constant area (Swmax) and constant wingspan (b) given by Pen-

nycuick Pennycuick [1983] in Table 1.1. This calculation yields c̄ = Swmax/b =

0.21 m. Taylor & Thomas Taylor and Thomas [2014] propose setting CDpro =

2.656 · Re−1/2, where Re = ρc̄u/µ is the chord Reynolds number, and µ is the

dynamic viscosity of air (1.81 ·10−5 kg/m·s). We will follow this assumption in our

analysis to account for variation of the profile drag with changes in airspeed.

The second term on the right hand side of (1.2.1.1) represents the contribution

from parasitic drag, which is difficult to estimate for seabirds Taylor et al. [2016].

Taylor & Thomas Taylor and Thomas [2014] suggest setting SbCDpar = 0.01·Swmax .

This formulation shows agreement with field estimates of the parasitic drag on

diving passerines Hedenstrom and Liechti [2001].

To characterize the induced drag, the third term in (1.2.1.1), we must assign a

value to the induced drag factor, k. The induced drag factor is directly related to

the wing shape Taylor et al. [2016], Pennycuick [2008], Taylor and Thomas [2014],

Tucker [1993]. The slotted tips of the brown pelican wing Pennycuick [1983] act as

winglets in tandem to reduce the induced drag experienced in gliding flight Tucker
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[1993]. However, these winglets do not reduce k Munk [1923], Hummel [1980]. In

Pennycuick’s model Pennycuick [2008], a k value of 1.1 is used as default–Taylor

& Thomas Taylor and Thomas [2014] show that only for an efficient elliptically

loaded wing, rounding this factor down to k ≈ 1 is appropriate. Accordingly, for

a conservative estimate we will assume k = 1.1.

Flight out of Ground Effect

To analyze cost benefits of flight in ground effect (GE), we must first obtain

a baseline comparison through analysis of the steady, constant altitude flight of

a pelican in still air, out of ground effect (OGE). First, we assess the COT for a

range of airspeeds (u) by using the parameters in Table 1 and Section 1.1 with

(1.2.1.1) and evaluate for a range of values of airspeed u between [8, 20] m/s

for comparison with Pennycuick [1983], Schnell and Hellack [1978]. We refer to

the airspeed that minimizes the COT as the minimum-cost velocity, denoted umc.

Second, we quantify the required power output by the bird for a given COT. This

is done by multiplying the COT with the corresponding airspeed, as the gliding

flight here is apprioximated to be level.

Thus, power expenditure out of ground effect as a function of airspeed, Poge(u),

can be written as

Poge(u) ≈
ρu3

2

(
bc̄CDpro + SbCDpar

)
+

2k

πρu

(mg
b

)2
, (1.2.1.3)

The airspeed that minimizes the required power output will be referred to as the

minimum-power velocity, denoted ump. The results of this analysis are displayed

in Figure 1.2. COT and power output as functions of airspeed are shown in the

top and bottom panels, respectively.

Using the values corresponding to the brown pelican as given in Section 1.1 and

the density and viscosity of air at sea level, we find that umc ∼ 13.4 m/s with a

corresponding COT calculated from (1.2.1.1) of ∼ 1.5 J/m. Though umc provides

the minimum COT, this value exceeds ump ∼ 10.0 m/s, which is calculated by

minimizing (1.2.1.3) with respect to velocity.

The precise measurement of the metabolic power input for brown pelican flight
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Figure 1.2: Efficiency of steady, level flight out of ground effect in absence of ocean
waves. Top Panel: COT as a function of airspeed for steady, level flight out of
ground effect (OGE). Minimum-cost velocity ∼ 13.4 m/s with a corresponding
COT of ∼ 1.5 J/m. Bottom Panel: Power output as a function of airspeed for
steady, level flight OGE. Minimum-power velocity∼ 10.0 m/s with a corresponding
power output of ∼ 17.9 W.
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is not readily available in the literature. Noting that the mean airspeed from

Pennycuick [1983] lies roughly halfway between umc and ump, we estimate the

range of power expenditure for the brown pelican to be roughly [P (ump), P (umc)]

for steady, level flight. Using (1.2.1.3), we calculate this range of expected power

output to be ∼ [17.9, 20.6]. W. Ballance Ballance [1995], in study of the red footed

booby, a smaller marine bird, found that it expends an average of ∼ 20 W in gliding

flight. Though further experiment will be required to verify our estimated power

requirement of the brown pelican in steady, level flight, we use this minimum COT

as the primary control for what follows.

Flight in Ground Effect

Flight in ground effect decreases the induced drag, which is commonly referred

to as ‘induced drag savings’ Hainsworth [1988]. This is estimated using a drag

reduction factor, ϕ, that is a function of flight height H and wingspan b. The

profile and parasitic drag, which are related to the form of the flier only, remain

unchanged Hainsworth [1988], Suh and Ostowari [1988], Laitone [1990], Rayner

[1991]. Ground effect occurs when ϕ < 1 for heights less than one wingspan

(H < b) and tends to ϕ ≈ 1 as H > b Suh and Ostowari [1988], Laitone [1990].

An analytical expression for ϕ is given by Laitone [1990], which is written as

ϕ =
1− 2/π + (16H/πb)2

1 + (16H/πb)2
. (1.2.1.4)

Including this factor in (1.2.1.1) gives an expression for the total drag experi-

enced in GE, written

Dge(u) ≈
ρu2

2

(
bc̄CDpro + SbCDpar

)
+ ϕ

2k

πρ

(mg
bu

)2
. (1.2.1.5)

Noting again that for flight in still air the COT equates to the drag, we use

(1.2.1.5) to calculate COT in GE for flight heights between 0 to 2m above the sea

surface, which corresponds to H/b ≈ 1 where the GE becomes negligible. These

results are shown in Figure 1.3.

Hainsworth Hainsworth [1988] reports average brown pelican ground-effect

flight height of 33 cm, with a standard deviation of 5 cm. For flight heights on the

9



Figure 1.3: Using (1.2.1.5) we calculate the energetics of flight in GE. Minimum
Cost of transport as a function of flight height is plotted on the left hand y-axis,
in black. Reduction in Minimum Cost of Transport as a function of flight height
is plotted on the right hand y-axis, in blue. Note that this compares flight at
different airspeeds, as GE reduces the minimum cost velocity Rayner [1991].
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range reported by Hainsworth [1988], COT required for flight is ∼ 1.1-1.3 J/m,

with corresponding percent mechanical advantages of ∼ 15-25%, when compared

to the 1.5 J/m required for flight OGE. These values agree with Rayner [1991],

Johansson et al. [2018].

1.2.2 Airflow Induced by Near-Shoaling Waves

As ocean waves translate, they induce airflow as a result of the no-penetration

condition on a boundary, even in the case where there is no ambient wind. Inter-

estingly, wave-induced wind might have been first reported in 1925 by Idrac Idrac

[1925] in his study of albatrosses, who noted that large, steep traveling ocean sur-

face gravity waves can produce updrafts with vertical velocity in excess of 2 m/s

at 8 meters height. It was also noted that these updrafts effects can be felt up to

15 meters above the ocean surface Idrac [1925].

Research on wave-induced wind has principally focused on its impacts on

the ocean and atmospheric boundary layer properties and dynamics. These in-

clude both numerical (e.g. Sullivan et al. [2008]) and observational studies (e.g.

Högström et al. [2009], Smedman et al. [2009], Soloviev and Kudryavtsev [2010]).

Recently, the upward transfer of momentum from ocean swell to the wind was ex-

perimentally verified by Grare et al. [2018] in their experiment aboard the Scripps

Institution of Oceanography’s FLoating Instrumentation Platform (R/P FLIP).

Using wave measurement apparatus and an array of ultrasonic anemometers, they

estimated wave-induced components of the wind velocity for various wind-wave

conditions, producing an empirical curve for wave-induced wind components scaled

by surface wave orbital velocity as a function of height above the ocean scaled by

surface-wave wavenumber Grare et al. [2018].

We aim to model the process of wave-slope soaring in the coastal ocean offshore

of the surf-zone during periods of weak winds, when it is most commonly observed.

In this region, the ocean surface waves are depth limited and thus modified from

a linear sinusoidal state. It is typical to model ocean gravity waves just offshore

of the surf-zone as solitons Barthélemy [2004]. Solitons are localized nonlinear

waves that propagate without change of speed or form Lakshmanan [2011]. Here
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we assume weak nonlinearity such that we can use the Korteweg-de Vries (KdV)

equation Barthélemy [2004]. Note that the KdV equation is valid only for waves

in shallow water with λ≫ h or equivalently kh≪ 1, where λ is the wavelength, k

is the wavenumber, and h is the ocean depth.

Neglecting surface tension, we begin with the dimensional traveling soliton

solution,

η(x, t) = A sech2(kx− ωt), (1.2.2.1)

where

A ≡ 4

3
k2h3,

ω ≡ k
√
gh− 2

3
k3h2

√
gh.

(1.2.2.2)

We use the dispersion relation to write the wave’s dimensional phase velocity (c)

as

c =
√
gh

[
1− 2

3
(kh)2

]
. (1.2.2.3)

Our definition for the amplitude in (1.2.2.2) can be used to eliminate k from

(1.2.2.3), allowing us to write the phase velocity as a function of amplitude and

depth,

c =
√
gh

[
1− A

2h

]
. (1.2.2.4)

We now use the dispersion relation and the definition of amplitude given in (1.2.2.2)

to write an expression for the period as a function of amplitude and depth,

T =
4πh√

3gA
(
1− A

2h

) . (1.2.2.5)

For the waves we consider in the case of WSS flight (Sec. 1.4) with height of

2 meters and period of 15 seconds, the soliton approximation is valid over depths

on the order of 10 m, corresponding in our local area to distances of 100 to several

hundred meters offshore of the surf zone.

1.2.3 Potential Flow over Solitary Waves

The use of potential flow solutions requires that the fluid be irrotational, in-

compressible, and inviscid within our region of interest. The symmetry of the
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solitary waveform we have imposed justifies the assumption of irrotational flow,

while the assumption of incompressible flow is justified by the small Mach number

at ocean surface wave velocities. However, as noted in Section 1, the atmospheric

boundary layer over the ocean is generally turbulent in moderate to strong winds.

This restricts our analysis to weak or no wind conditions. Furthermore, the low

amplitude, smoothly varying wave-form used here is meant to approximate shoal-

ing swell in no wind conditions, where flow separation of the wave-induced wind

field is unlikely Smedman et al. [1994], Stull et al. [2000], Angevine et al. [2006],

Banner and Melville [1976].

We model potential flow over the soliton

η = A sech2(kx), (1.2.3.1)

moving at phase speed c. We first boost to a frame of reference moving with the

soliton such that U∞ = −c. As we are assuming potential flow conditions, the

system is governed by Laplace’s equation for the stream function,

∆ψ = 0, (1.2.3.2)

with the no penetration boundary condition

[u · n̂ = 0]z=A sech2(kx) . (1.2.3.3)

Laplace’s equation in the upper half plane with a no-penetration boundary

condition on the horizontal axis is a well-studied problem that can be solved using

Green’s theorem. With the proper nondimensionalization, the soliton boundary

can act as a small disturbance, or ‘perturbation’ to this problem. Thus, we will

use perturbation theory to derive an approximate solution for the airflow over a

soliton.

We introduce the non-dimensional coordinates

ζ = kz, ξ = kx. (1.2.3.4)

From (1.2.2.2) we can write

Ak =
4

3
(kh)3. (1.2.3.5)
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Figure 1.4: Flow visualization of the wave-induced updraft over the soliton η(x) =
A sech2(kx) in the x − z plane, forced by the Laplacian, ∆ψ = 0. The soliton
shown has wave height A = 2 m, period T = 15 s, and travels at phase speed
csolitary ≈ 7.75 m/s.

As the soliton was derived in the limit of λ ≫ h, it follows that kh ≪ 1. We

will define another nondimensional coordinate ϵ ≡ Ak such that ϵ ∝ (kh)3 ≪
1. This coordinate, ϵ, will serve as the small disturbance upon which we build

our perturbation expansions. Using (1.2.3.1), (1.2.3.4), and ϵ we can express the

boundary in terms of nondimensional coordinates as

ζ = ϵ sech2(ξ). (1.2.3.6)

Since ϵ ≪ 1 in the scaled geometry, to a first approximation we simply have to

solve Laplace’s equation in the upper half plane.

By the definition of the stream function, we have

uwi =
∂ψ

∂ζ
, wwi = −∂ψ

∂ξ
. (1.2.3.7)
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In this case, the stream function ψ is a function of the spatial variables ξ and ζ,

as well as the scaled wave dimension ϵ such that ψ = ψ(ξ, ζ, ϵ). The boundary

condition (1.2.3.3) enforces that ψ must be constant everywhere on the sea surface.

Integrating (1.2.3.7 a), using the condition that as ξ → ±∞, ψ → −c ζ, and taking

ψ to be constant on the sea surface gives the condition

ψ(ξ, ϵ sech2ξ) = 0. (1.2.3.8)

With ϵ≪ 1, we Taylor expand (1.2.3.8). This gives

ψ(ξ, 0) + ϵ sech2(ξ)ψζ(ξ, 0) +O(ϵ2) = 0 (1.2.3.9)

where subscripts denote partial derivatives. We now expand ψ in a regular pertur-

bation expansion to the order of ϵ, yielding

ψ = ψ0 + ϵ ψ1 +O(ϵ2), (1.2.3.10)

where for all ψn, with n ∈ [0,∞), ψn = ψn(ξ, ζ) and ∆ψn = 0. At O(ϵ0), ∆ψ0 = 0.

Integration yields

ψ0 = −c ζ. (1.2.3.11)

Substitution of our perturbation expansion (1.2.3.10) with (1.2.3.11) into (1.2.3.9)

gives

ϵ
[
ψ1(ξ, 0)− c sech2(ξ)

]
+O(ϵ2) = 0. (1.2.3.12)

At O(ϵ) in (1.2.3.12) we obtain the boundary condition

ψ1(ξ, 0) = c sech2(ξ), (1.2.3.13)

necessary to solve the Laplacian at O(ϵ), ∆ψ1 = 0. By Green’s theorem, the

solution to an arbitrary partial differential equation can be expressed as an inte-

gral of the relevant Green’s function, provided such a function exists Riley et al.

[2002]. This allows us to solve for the O(ϵ) term of the stream function (ψ1) us-

ing the Green’s function for Laplace’s equation in the two-dimensional upper half

plane with the Dirichlet boundary condition in (1.2.3.13). This particular Green’s
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function can be written as

G (ξ, ζ; ξ′, ζ ′) =
1

2π

(
ln

√
(ξ − ξ′)2 + (ζ − ζ ′)2

− ln

√
(ξ − ξ′)2 + (ζ + ζ ′)2

)
,

(1.2.3.14)

Riley et al. [2002] where (ξ′, ζ ′) lies within the upper ξ-ζ plane.

Using (1.2.3.13) and (1.2.3.14) with Green’s theorem allows us to obtain an

expression for ψ1(ξ, ζ) as

ψ1(ξ, ζ) =
c

π

∫ ∞

−∞

ζ sech2(ξ′)

(ξ − ξ′)2 + ζ2
dξ′, (1.2.3.15)

where ξ′ is the variable of integration. We remove the singularity by dividing

the domain of integration at ξ′ = ξ. Combining (1.2.3.15) and (1.2.3.11) with

(1.2.3.10), we can now obtain a full expression for ψ as

ψ = −cζ + Akc

π

∫ ∞

0

ζ

ξ′2 + ζ2

[
sech2(ξ − ξ′)

+ sech2(ξ + ξ′)
]
dξ′ +O(ϵ2),

(1.2.3.16)

where ξ′ remains our variable of integration. This expression can now be evaluated

numerically.

Using (1.2.3.7 a), we can carry out the differentiation to obtain an integral for

the horizontal flow speed u in the frame of reference moving with the wave to the

order of ϵ in terms of scaled coordinates as

uwi = −c+ Akc

π

∫ ∞

0

ξ′2 − ζ2

(ξ′2 + ζ2)2

[
sech2(ξ − ξ′)

+ sech2(ξ + ξ′)
]
dξ′ +O(ϵ2),

(1.2.3.17)

where we have substituted the definition of ϵ (ϵ ≡ Ak) back into the expression.

Similarly, we can use (1.2.3.7 b) to write an integral for the vertical flow speed w

to O(ϵ) in terms of scaled coordinates as

wwi =
2Akc

π

∫ ∞

0

ζ

ξ′2 + ζ2

[
sech2(ξ − ξ′)tanh(ξ − ξ′)

+ sech2(ξ + ξ′)tanh(ξ + ξ′)
]
dξ′ +O(ϵ2).

(1.2.3.18)
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In order to evaluate the flow velocities, we need the wave number k. As the

nonlinearities intrisic to KdV solitons are captured in our expressions for phase

velocity (1.2.2.4) and corresponding wave period (1.2.2.5), the linear dispersion

relation can be used to obtain an expression for the wavenumber in terms of the

phase velocity and period as k = 2π/cT Barthélemy [2004]. Note that (1.2.2.4)

and (1.2.2.5) can be co-evaluated to produce the phase velocity of our model wave

for a given wave height (A) and period (T ). Following this analysis, the resultant

phase velocity, wavenumber, and given amplitude can be inserted into (1.2.3.17)

and (1.2.3.18), yielding the theoretical wave-induced wind in the near-shoaling

regime relevant to wave-slope soaring. A visualization of this flow field above a

propagating, weakly nonlinear surface wave with no ambient wind is displayed in

Figure 1.4.

To validate our expression for wave-induced wind, we compare our predictions

to the findings of Grare et al Grare et al. [2018] (Fig. 1.5), using the vertical com-

ponent of the wave-induced wind non-dimensionalized by surface orbital velocity

(Akc), and the previously defined non-dimensional vertical height ζ = kz. In our

region of interest (kz ≤ 0.05), we see good agreement with an empirical fit to the

measurements given by Grare et al. as

w/Akc = 0.85
[
1− 0.66 · exp

(
−
∣∣∣ c
u
− 1
∣∣∣)]exp(−0.83 · kz), (1.2.3.19)

with r2 = 0.76. (Fig. 1.5 Grare et al. [2018]).

1.2.4 Wave-Slope Soaring Flight

We assume that the only wind field is that which is driven by the wave. We

define coordinates such that x̂ is in the direction of wave propagation, ŷ is parallel

to the wave front, and ẑ is in the vertical direction. A schematic of this coordinate

system is shown in the top panel of Figure 1.6. In order to gain benefit from the

wave for extended periods of time, the bird must translate in x̂ so that its ground-

speed in the direction of wave propagation (Ux) will match the phase velocity of

the wave, V (x, t). The phase velocity of the wave is constant under KdV soliton

theory so that V (x, t) = c, which we calculate for specified wave height and period
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Figure 1.5: Comparison of potential flow theory to measurements by Grare et al
Grare et al. [2018]. The vertical component of the wave-induced wind (wwi) scaled
with surface orbital velocity (Akc) is shown on the x-axis and scaled height (kz) is
shown on the y-axis in a semilog plot. We see that the potential flow estimate of
wave induced vertical gives a slight under-prediction but generally agrees with the
empirical model best-fit curve for the vertical component of wave-induced wind
from Grare et al. [2018]. This comparison to observations gives confidence that
the wave-induced wind estimates used here are reasonably representative of the
conditions at sea during wave-slope soaring.
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Figure 1.6: Top Panel: Coordinate system for the inertial trajectories of a pelican
wave-slope soaring on a solitary wave. Middle Panel: Ground velocity vs. air
velocity for wave-slope soaring and respective relations to phase velocity (c) and
wave-induced wind (uwi). Bottom Panel: Coordinate system for (xb, zb) in terms
of η(x) and bird’s flight height.
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using (1.2.2.4) and (1.2.2.5).

In setting Ux = c, it follows from Section 1.3 that the bird’s airspeed in the

direction of wave propagation (ux) must then equate to the horizontal component

of the wave-induced wind (uwi) at the bird’s location, shown in the middle panel

of Figure 1.6. Because the components of groundspeed and airspeed in the along-

wave-crest direction are equal (i.e. Uy = uy, Fig. 6, middle panel), we can use the

system’s geometry to eliminate uy and Uy. This allows us to write an expression

for the groundspeed in terms of airspeed (u), phase velocity (c), and the horizontal

component of the wave-induced wind (uwi) as

U =
√
u2 + c2 − u2wi. (1.2.4.1)

In (1.2.4.1), uwi is a function of the spatial flight coordinates (xb, zb) i.e. uwi =

uwi(xb, zb).

To estimate (xb, zb), we impose the assumption that the bird will fly at the

optimal location in the space above the wave for minimizing COT, and will remain

at this location throughout soaring flight. Section 1.3 shows that the optimal flight

location is directly over the inflection point of the wave surface, where the slope is

the steepest. Accordingly, for the x coordinate of the bird’s center of mass (xb),

we find the point of maximum slope associated with the waveform developed in

Section 1.2. For the z coordinate of the bird’s center of mass (zb), we use the free

surface elevation at this point of maximum slope, η(xb), calculated from (1.2.2.1)

and add the case-respective flight height. A schematic of this procedure is displayed

in the bottom panel of Figure 1.6

As the wavelength is large compared to the wingspan of the bird and the wave

slope is small, we ignore variation of the wave-induced wind over the wingspan

of the bird. The updraft component of the wind-field in (1.2.1.2) is driven solely

by the wave, which with neglecting variation over wingspan justifies the use of

a single value for wu, as wu = wwi, in (1.2.1.2). Using the formalism developed

in Section 1.3, wwi is calculated from (1.2.3.18) using the coordinates (xb, zb) and

case-respective wave parameters. Together with the substitution of (1.2.4.1) into

(1.2.1.2) and using (1.2.3.17) to evaluate uwi(xb, zb), we estimate the COT in wave-
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slope soaring, denoted Cwss. This can be expressed as

Cwss ≈
Du−mgwwi√
u2 + c2 − u2wi

, (1.2.4.2)

where D, uwi, and wwi are given by (1.2.1.1), (1.2.3.17), and (1.2.3.18) respectively,

while c is given by evaluating (1.2.2.5) for h and substituting into (1.2.2.4).

Thus, we see that, for the simplifying assumptions we have made here, and

ignoring ground-effect, we have an expression for the COT in WSS as a function

of airspeed, wave height, wave period, flight location, and bird geometry, i.e.

Cwss = Cwss(u,A, T, xb, zb, bird geometry). (1.2.4.3)

and is shown for a range of parameters in Figure 1.7.

1.3 Results

From our control, we find the minimum COT in steady, constant altitude pel-

ican flight out of ground effect ∼ 1.5 J/m with a corresponding minimum cost

velocity of ∼ 13.4 m/s (Fig. 1.2). When we consider ground effect flight for

heights in the range reported by Hainsworth [1988], we find the COT is reduced

by ∼ 15-25% to 1.1-1.3 J/m and the minimum cost velocity is decreased to ∼ 12

m/s (Fig. 1.3). A test case of WSS over a wave of 2 meters height with a 15 second

period is used for consistency with a typical Southern California winter swell event

Adams et al. [2008]. Under these conditions we estimate a large increases in energy

savings in comparison to the control cases. Ignoring any benefit from GE, we find

reductions in COT on the order of 70% for flight at 0.5m height, as compared to

the 15% cost-benefit from GE at this height, shown in panel (a) of Figure 1.7. As

expected, for lower flight heights and larger waves, the COT and minimum cost

velocities are even further reduced. This is shown in panels (b) and (c) of Figure

1.7, respectively. Increasing the wave period does not monotonically decrease the

COT. Though increasing the period increases the wave speed, it decreases the wave

steepness, resulting in a nonlinear relationship between the wave’s phase velocity

and the updraft, headwind, and crosswind experienced by the bird. The result is
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Figure 1.7: We explore the efficiency of wave slope soaring flight (WSS) under a
range of environmental/flight conditions. In each panel, the corresponding percent
reduction relative to flight in ground effect (GE) is shown in blue, with the right
hand y-axis. (a) Cost of transport (COT) of WSS is shown for a range of airspeeds
consistent with Pennycuick [1983], Schnell and Hellack [1978] in the default case
of 0.5m bird height, 2m wave height, 15s wave period. (b) Minimum COT of WSS
over a wave of 2m height, 15s period, varying flight height. (c) Minimum COT
of WSS for 0.5m flight height over 15s period waves, varying wave height. (d)
Minimum COT of WSS for 0.5m flight height over 2m high waves, varying wave
period.
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a maximum updraft at a relatively short period for a given wave height, shown in

panel (d) of Figure 1.7.

1.4 Discussion

In the simplified case studied here, we show theoretically that wave-slope soar-

ing can provide a considerable reduction in COT relative to steady, level flight in

and out of ground effect. This may account for the widespread use of the behavior

in the brown pelican that live in the coastal waters of Southern California.

There are several limitations of the theory presented here. We used the sim-

plifying assumption of a weakly nonlinear solitary waveform. In reality, when

observing pelicans employing wave-slope soaring, it is common for them to soar

well into the surf zone, where nonlinearities become progressively stronger. In this

regime, it becomes unreasonable to approximate the waveform as a soliton, and a

more elaborate theory or numerical simulation would need to be employed. Added

complications in the real world include the directional and frequency spread that

characterizes ocean swell Fujiki et al. [2018], Montiel et al. [2018], Le Merle et al.

[2019], Silva et al. [2020], and that shoaling waves tend to arrive in groups Mei

[1989], Deike et al. [2017], Van Den Bremer et al. [2019], Buldakov et al. [2017],

meaning that isolating the effect of a single wave may ignore an important effect

of a train of waves shoaling in sequence.

The assumption of no ambient airflow in our model is another significant sim-

plification. Our solution is framed around the benefit of vertical flow in the atmo-

sphere perturbed by a travelling wave, which would be altered as ambient wind

speeds increase, potentially increasing vertical velocities near the wave face Tamura

et al. [2018]. However, the development of a turbulent boundary layer that tends

toward separation between wave-crests is known to occur in moderate and strong

wind scenarios Banner and Melville [1976], Husain et al. [2019], Buckley and Veron

[2019]. This renders the inviscid simplification that underpins the potential flow

solution invalid.

Perhaps turbulent airflow over ocean waves is not amenable to wave-slope soar-
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ing. In the Southern Ocean, wave-slope soaring in albatrosses is only observed dur-

ing rare calm periods Richardson [2011]. This suggests that as the boundary layer

becomes turbulent, dynamic soaring is a more effective strategy. A separated, tur-

bulent boundary layer may be less amenable to wave-slope soaring since updrafts

associated with traveling waves may be reduced in magnitude or lose coherence in

time or along the wave crest, which is the primary direction of travel.

High-resolution numerical simulations capable of representing the full response

of the atmosphere to ocean waves are now being used to study air/sea interactions

Semedo et al. [2009], Buckley and Veron [2016], Sullivan et al. [2008], Semedo

et al. [2015], Druzhinin et al. [2012]. These simulations, if verified by future field

observations, allow a 3-D and time varying wind field to be calculated for different

forcing scenarios that would be of great utility for examining the aerodynamics of

wave-slope soaring. Similarly, individual brown pelicans tagged with inertial mea-

surement units and fast-rate GPS positions would allow for the flight behavior of

wave-slope soaring to be better quantified Bouten et al. [2013], Treep et al. [2016],

Williams et al. [2018]. In particular, time-series measurements of accelerations

and air-speed could be used to quantify the forces acting during wave-slope soar-

ing behavior Bouten et al. [2013], Elliott et al. [2013], Leos-Barajas et al. [2017],

Takahashi and Shimoyama [2018]. Further investigation of wave-slope soaring is

not relevant only to the ecology of seabirds, but in the future may be one of a

suite of environmental scenarios in which unmanned aerial vehicle control systems

can maximize flight endurance using environmental energy Bonnin et al. [2015],

Deittert et al. [2009], Zhao and Qi [2004], Zhu et al. [2020], Jiakun et al. [2020].

1.5 Conclusions

The theoretical framework presented here suggests that brown pelicans could

reduce the energetic demands of gliding flight by ∼ 60-70% via utilizing wave-

slope soaring during periods of weak winds. Although there must be some risk

associated with flying at a relatively high speed very close to an undulating and

evolving surface, the benefit in terms of efficiency of apparently favors the behavior.
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Surfing of shoaling and breaking waves has been documented in several species of

marine mammals, wherein it is assumed that the activity represents play Paulos

et al. [2010]. Brown pelicans, on the other hand, may leverage their ability to ride

waves for long-distance travel, since flight allows them to connect a set of multiple

shoaling waves in sequence. This allows continuous wave-riding for periods of

minutes, and may account for travel of kilometers up or down the coast. Cost-

effective travel resulting from wave-slope soaring behavior may have an important

impact on the foraging range and foraging strategy of these ecologically important

creatures.
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Chapter 2

A generalized slab model

2.1 Introduction

The oceanic surface boundary layer (OSBL) plays a key role in energy exchange

between the atmosphere and ocean [Grachev and Fairall, 2001]. Wind imposes

shear stress on the OSBL which drives surface waves and turbulent mixing in the

upper ocean. With time, a mixed layer (ML) develops that extends downward

from the ocean surface. The ML is a ubiquitous feature of the OSBL, charac-

terized by an approximately homogeneous region with small vertical gradients in

temperature and salinity that exists between the ocean’s surface and the stratified

interior [Brainerd and Gregg, 1995]. The thickness of the ML varies globally and

is generally largest during the winter and in energetic regions [Holte et al., 2017].

Beneath the ML stratification increases rapidly with depth, from a value near zero

in the ML to a maximum value in the interior. This region of strong stratification

gradients is the transition layer (TL) and marks the base of the OSBL [D’Asaro

et al., 1995, Johnston and Rudnick, 2009, Kaminski et al., 2021]. The TL plays the

important role of modulating interactions between the ML and the interior. For

example, entrainment processes which enable momentum and property exchange

between the OSBL and the interior are initiated in the TL and ultimately lead to

ML deepening [Grant and Belcher, 2011]. In the analysis that follows, we investi-

gate how variability in the TL modulates the atmosphere’s ability to supply power

to the internal wave field.
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Wind stress acting on the ocean surface is estimated to supply 0.27-1.4 TW of

power input to the near-inertial internal wave field globally [e.g., Wunsch, 1998,

Alford, 2001, Watanabe and Hibiya, 2002, Furuichi et al., 2008, Rimac et al., 2013,

Alford, 2020a]. Though these numbers only represent a small fraction of the to-

tal power input by the atmosphere into the ocean [Wunsch, 1998, Zippel et al.,

2022], energy in the internal wave band propagates vertically, creating a pathway

for energy from the atmosphere to penetrate deep into the ocean’s interior [Gill,

1982, Alford et al., 2012]. The path begins with near-inertial oscillations (NIOs) of

the ML. These oscillations are the ocean’s local response to wind-forcing, and the

frequency is set by the local Coriolis frequency [Plueddemann and Farrar, 2006].

Zonal gradients in wind stress produce variability in the intensity of NIOs, setting

up regions of convergence and divergence which resonantly pump the base of the

ML at the inertial frequency. This pumping action converts the inertial oscillations

into near-inertial internal waves [NIWs, Gill, 1984]. Meridional variability of the

Coriolis effect [i.e., the β-effect: D’Asaro, 1989, D’Asaro et al., 1995, Moehlis and

Llewellyn Smith, 2001]) and the submesoscale eddy field [e.g., Asselin et al., 2020,

Thomas et al., 2020] set up lateral gradients in the local vorticity which also gen-

erate NIWs. This process analogously produces convergence, but it is imposed by

phase variability between adjacent NIOs rather than intensity variability [Young

and Ben Jelloul, 1997]. Fast moving storms [e.g., Gill, 1984, D’Asaro et al., 1995,

Brizuela et al., 2022] and interactions with coastlines [e.g., Pettigrew, 1981, Millot

and Crépon, 1981, Kundu et al., 1983, Kelly, 2019]) can convert these oscillations

into NIWs as well.

Alford and Whitmont [2007] and Silverthorne and Toole [2009] show that NIWs

dominate internal wave kinetic energy and shear spectra at all depths throughout

the global ocean. Observations of inertial kinetic energy (IKE) and ocean mixing

show coherent seasonal variability, supporting the hypothesis that NIWs contribute

strongly to ocean mixing [Alford, 2020a]. Thus there is substantial evidence indi-

cating the importance of NIWs as a means for energy from the atmosphere to reach

the deep ocean. Because NIWs arise from NIOs, the potential for the generation

of NIWs is set by the wind’s ability to supply power to NIOs. This power input is
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often referred to as the “wind work” in the literature, and denoted Π (note that

‘wind work’ is actually power input with units of W/m2). Π sets bounds on NIW

generation and is of first order importance for energy transfer from the atmosphere

to the ocean’s interior.

The slab model, introduced by Pollard and Millard [1970], is a common method

for global wind work estimation [e.g., Alford, 2001]. The slab model operates on

the simplified view that the OSBL is a homogeneous ML that responds to wind

stress as a solid body. In this formulation, all of the momentum imparted by the

wind is deposited in the ML, and there are no currents below. For the solid-body-

ML assumption of the slab model to hold, there must exist a step-like change in

stratification at the base of the ML so that the TL thickness is negligible compared

to the ML thickness. What results is a linear stress profile with a step-like vertical

stress gradient, mirroring the ML’s step-like stratification (Figure 2.1).

Slab models perform well in some cases [e.g., Pollard and Millard, 1970], but

cannot always reproduce observations [Niiler, 1975, Alford, 2020a]. Plueddemann

and Farrar [2006] show how turbulent entrainment by inertially generated shear

at the base of the ML leads to ML deepening, which cannot be resolved in a slab

model. As a consequence, momentum is concentrated in the ML, leading to an

overestimation of inertial currents and wind work.

During the MIxed Layer Experiment (MILE), Davis et al. [1981] observed upper

ocean shear development in response to wind stress and found that the behavior

deviated considerably from the slab flow approximated by Pollard and Millard

[1970]. These observations showed momentum diffusion into the TL beneath the

ML. D’Asaro et al. [1995] also observed nonzero inertial currents beneath the ML

during the Ocean Storms experiment, which are consistent with a three-layer model

consisting of a ML, a TL, and a stratified interior. D’asaro [1995] reproduced the

observed inertial currents by vertically redistributing the wind stress using a body

force consistent with a linear stress profile in the ML and a quadratic stress profile

in the TL. We refer to this model of the upper-ocean stress as the ‘MLTL’ model.

D’asaro [1995]’s empirical method of tuning the forcing stress (body force) suc-

cessfully replicated the ML and TL currents during the Ocean Storms experiment.
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Figure 2.1: A schematic is shown for an example ML, TL, and the associated
stratification and stress profiles. Left-hand axes: Stratification data from a high
resolution Argo float in the Pacific Ocean on 2020/01/01 at 49.4 N, 129.3 W. The
mixed layer depth (MLD) and transition layer depth (TLD) are calculated from the
stratification data. MLD is calculated using the density method of Holte and Talley
[2009] to be 50 m. TLD is calculated using the local minimum method of Sun et al.
[2013] to be 95 m. Transition layer thickness (TLT) determined as TLD - MLD
= 45 m. In this case, we have a relative transition layer thickness (TLT/MLD)
of 0.9. The stratification data shown has been smoothed with a 15 point moving
mean. Middle axes: The stress profiles associated with the slab model and MLTL
model are plotted vs. depth in black and blue, respectively. The slab stress profile
is linear, and only nonzero within the ML. The MLTL stress profile is nonlinear,
and has nonzero components in both the ML and TL. Expressions for the vertical
dependence of these profiles are derived in the Appendix and given by (2.6.3.1)
and (2.6.3.2), respectively.
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To generalize a tuning method, stratification based methods are needed to objec-

tively define the ML, TL, and stratified interior. Johnston and Rudnick [2009]

and Sun et al. [2013] built on D’Asaro et al. [1995]’s work by developing rigorous

methods for determining the TL thickness (TLT). Johnston and Rudnick [2009]

shows that the TL can be resolved by using either fine-scale shear or fine-scale

stratification profiles. Sun et al. [2013] endorse the stratification approach to de-

termining the base of the TL and define the TL as a region that extends from the

base of the ML to a depth just below the maximum value of stratification. This

TL depth (TLD) is selected by choosing the shallower of either a local minimum

in stratification or an ‘abrupt change in slope’ below the maximum stratification

value. To avoid ambiguity associated with the latter definition, we use the local

minimum method as the primary means to determining the base of the TL. If there

is no local minimum in the neighborhood of the maximum, the depth of maximum

stratification is used in an effort to keep the estimation of TLT conservative. A

schematic for this setup that includes the stress profiles of both the slab and MLTL

model with corresponding stratification is shown in Figure 2.1. In this example

stratification profile, the local minimum and slope methods both produce the same

value for the base of the TL.

Observations show that the thickness of the TL can be equal to or greater than

that of the ML [e.g., Sun et al., 2013], making the traditional slab model a poor

approximation for the OSBL [see Figure 2.1 and D’Asaro et al., 1995, Grant and

Belcher, 2011]. However, the impact of TLs on wind work and energetics have

not been explicitly quantified. TLs substantially alter the vertical structure of

near-inertial currents [D’Asaro et al., 1995, Dohan and Davis, 2011]. They mix

momentum downward, reducing surface currents and, hence, wind work. This

study develops a generalized slab model that allows for arbitrary depth-varying

forcing stress profiles in the OSBL, which may be parameterized to match obser-

vations of the TL. We then analyze how the stress profile affects wind work. As

a first-order improvement on the stress profile used in the traditional (ML) slab

model, we add a TL using the three-layer piecewise-nonlinear MLTL model from

D’Asaro et al. [1995]. The MLTL model is still an idealized representation of the
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turbulent OSBL, but it provides the simplest estimate of how the TL affects wind

work.

This article is organized into three parts: theoretical development of the gen-

eralized slab model, an in situ comparison of data with the generalized slab model

and the traditional slab model, and a global analysis where the large-scale signif-

icance of the TL is evaluated. In section 2.2, we present the physics upon which

our model is based. An insight here is a proof of how nonlinear forcing stress

profiles lead directly to TKE production, thus limiting the ability of wind stress to

power inertial motions. We apply these ideas to the Iceland Basin (sec 2.32.3.1) by

comparing our model with observations from NISKINe (Near-Inertial Shear and

KInetic eNergy experiment). We extend the model to global analyses (sec 2.32.3.2)

by using high-resolution Argo autonomous profiling float observations to calculate

a global climatological atlas of TLT. Coupling the TLT atlas with ML climatolo-

gies of Holte et al. [2017] provides a global set of MLTL stress profiles, which allow

us to quantitatively estimate how TLs impact wind work globally.

2.2 Methods

2.2.1 Theory

Governing equations

Our goal is to assess the impact of vertical stress profiles on wind work cal-

culations using a simplified dynamical model. The linear momentum equations

governing the ocean’s response to stress, ignoring pressure gradients and buoyancy

forcing, are
∂u

∂t
+ f k̂× u =

∂τ

∂z
, (2.2.1.1)

where u is the velocity, f is the local Coriolis parameter, k̂ is the unit normal

vector, and τ is the total stress, normalized by a reference density, ρ0. As we are

primarily interested in inertial motions, we apply a high-pass filter to the forcing

term in order to remove Ekman effects [D’Asaro, 1985]. The stress gradient profile
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provides the forcing and damping in (2.2.1.1) and is

∂τ

∂z
=

∂

∂z

(
ν
∂u

∂z
− w′u′

)
. (2.2.1.2)

The second term on the right-hand side, w′u′, is the turbulent Reynolds stress,

which dominates over the first term (the viscous stress, kinematic viscosity ν) in

the ocean [Gargett, 1989]. The Reynolds stress depends on all of the turbulent

processes in the OSBL and is difficult to measure directly [Bian et al., 2018, Huang

and Qiao, 2021]. The stress can be modeled via direct numerical simulations

(DNS) and large eddy simulations (LES) [e.g., Skyllingstad et al., 2023], but these

are too computationally expensive for regional or global circulation models, which

rely on simpler 1D turbulence closure models [e.g., Large et al., 1994, Umlauf and

Burchard, 2005]. Thus, turbulence models either require high-resolution numerical

grids or ad hoc parameter tuning. An alternative approach is to tune a simple

conceptual model of the stress profile to fit and interpret observations [D’asaro,

1995, Plueddemann and Farrar, 2006, Alford, 2020a, Zippel et al., 2022]. Here, we

present a simple model to interpret how observed TLs alter wind work. Following

D’Asaro et al. [1995], Plueddemann and Farrar [2006], and Alford [2020a], we

separate stress into components due to direct wind forcing and inertial damping

∂u

∂t
+ f k̂× u =

∂τw

∂z
+
∂τ r

∂z
. (2.2.1.3)

The first term, ∂τw/∂z, parameterizes all of the turbulent motions in the OSBL

that rapidly inject wind momentum downward, such as breaking waves, Langmuir

turbulence, entertainment, Stokes drift, and shear instability of the total wind-

driven flow. This term may be interpreted as the body force exerted by the wind

on the inertial flow [D’asaro, 1995]. The second term, ∂τ r/∂z, parameterizes all

of the turbulent motions that specifically damp the inertial flow, which includes

stratified shear instability (due to the inertial flow), bottom drag, and wave drag

due to internal wave radiation [Plueddemann and Farrar, 2006].

We obtain an energy balance by taking (2.2.1.3)·u and depth integrating over
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the ocean depth H:

∂

∂t

(∫ 0

−H

|u(z)|2

2
dz

)
︸ ︷︷ ︸

IKE

= [τw · u]0︸ ︷︷ ︸
Πtot

−
∫ 0

−H

τw · ∂u
∂z

dz︸ ︷︷ ︸
PTL

−
∫ 0

−H

τ r ·
∂u

∂z
dz︸ ︷︷ ︸

PR

− [τ r · u]−H︸ ︷︷ ︸
PB

,

(2.2.1.4)

where we have expanded the stress-gradient terms using integration by parts, as-

suming τw is zero at the bottom and τ r is zero at the surface. The Coriolis term,

f(k̂ × u) · u = 0, does no work. The kinetic energy (KE) budget indicates that

the time rate-of-change of the inertial kinetic energy (IKE; left-hand side) is set

by the balance between the total power input by wind-stress (Πtot, ”total wind

work”) and turbulent kinetic energy (TKE) production, P . The sources of TKE

production are forcing stress in the TL (PTL), internal damping stresses (PR), and

bottom stress (PB). We emphasize that PTL is zero in a traditional slab model

because forcing stress is confined to the ML, where shear is zero. We also note

that PB can typically be neglected in the deep ocean, but may be appreciable near

coastlines or otherwise shallow bathymetry.

TKE production in the TL

Shear production (PTL + PR) is a positive quantity that is a sink in (2.2.1.4)

and a source term in the TKE equation [Tennekes and Lumley, 1972]. TKE pro-

duction only occurs where the curvature in the stress profile produces velocity

shear. Traditional slab models assume a linear forcing-stress profile through the

ML [Pollard and Millard, 1970], which produces no shear and no TKE production.

Instead, energy is extracted from the flow by parameterzing the damping stress

with a Rayleigh drag, ∂τ r/∂z ≈ −ru, which represents the combined effects of en-

trainment, convective-shear instability, wave radiation, and bottom drag [Moehlis

and Llewellyn Smith, 2001, Plueddemann and Farrar, 2006, Kelly, 2019].

Price et al. [1986] used the same forcing stress profile as Pollard and Millard

[1970], but substantially improved the parameterization of the damping stress.

Their numerical model, Price-Weller-Pinkel (PWP), is a well-accepted 1D quasi-

bulk dynamical instability ML model available for estimating vertical mixing in

the TL and the atmospheric power input to inertial motions [Alford, 2020b]. The
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PWP model is widely used in large-scale global ocean models [e.g., HYbrid Co-

ordinate Ocean Model, ‘HYCOM;’ Chassignet et al., 2007] when more accurate

parameterizations [e.g., KPP; Large et al., 1994] become too computationally ex-

pensive. PWP deepens the ML using a bulk Richardson number parameteriza-

tion for entrainment, and accounts for TKE shear production by parameterizing

stratified-shear instability of the inertial flow in the TL using the gradient Richard-

son number. Unstable patches are partially mixed, which smooths the velocity

profile, removes kinetic energy, and transfers momentum from the ML to the TL.

Plueddemann and Farrar [2006] and Alford [2020a] show that PWP agrees better

with observations than traditional slab model estimates.

The generalized slab model presented here differs from the traditional slab

model and PWP because it allows for an arbitrary profile of forcing stress that

can extend into the TL. That is, it relaxes the traditional slab-model assumption

that momentum from the wind is uniformly deposited throughout the ML. This

modification is motivated by observations that the actively mixing layer, as defined

by TKE dissipation, often differs from the ML, as defined by the density profile

[Brainerd and Gregg, 1995]. With the generalized slab model, one is free to specify

a forcing stress profile that was observed during a storm or modeled using LES.

Moreover, one can simply specify a forcing stress profile that directly reproduces

observed vertical shear in the TL [D’asaro, 1995] without having to resolve the

turbulent dynamics of the OSBL.

In the analyses here, we use the MLTL forcing stress profile because it is the

simplest model that produces shear in the TL (Fig. 2.1). The MLTL model can be

combined with any model of damping stress. For computational simplicity, we use

a tunable Rayleigh drag to parameterize unresolved damping stresses that depend

on the strength of the inertial currents. A catch-all Rayleigh damping was also

added to PWP by Plueddemann and Farrar [2006] and tuned to improve agreement

with observations.

The direct generation of TKE shear production by forcing stress in the TL

(PTL) is a feature of the generalized slab model that is absent in the traditional

slab model. Previous models which lump TKE production into PR require that
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Figure 2.2: A flow chart is provided to visualize the pathways energy can take
from wind in the atmosphere to mixing. The y-axis is correlated to ocean depth,
and is superposed on a layered model of the atmosphere-ocean system (layers in
descending order are atmosphere, ML, TL, interior). Boxes indicate processes in
play, and box positions indicate which layer(s) the processes act on. The vertical
positions of boxes within each layer are arbitrary. Processes highlighted in red are
included for completeness, but not specifically addressed in the paper.

36



the OSBL already be in motion (u ̸= 0) in order to generate TKE. They may

also underestimate PR if momentum is mixed through the OSBL by turbulence

that is not directly associated with the inertial flow (e.g., wave breaking, Langmuir

turbulence, etc.). In the generalized slab model, PTL is a direct function of the wind

stress, so that TKE shear production occurs as soon as the wind blows, provided

that the forcing stress profile has curvature. Thus, one may think of curvature in

the forcing stress profile as a distinct pathway for TKE shear production in the

ocean (Fig. 2.2).

2.2.2 Solution via decomposition into normal modes

In this section we present a method to solve the governing equations derived in

Section 2.22.2.1. In our generalized slab model, we allow for an arbitrary, depth-

variable forcing stress profile, making analytical solutions in Cartesian coordinates

difficult. We resolve this issue by employing the modal decomposition of Gill and

Clarke [1974]. For each mode, we recover the simple damped oscillator equation,

analogous to Pollard and Millard [1970]. Summing over all modes reconstructs the

velocity profile that is generated by an arbitrary forcing stress profile.

Modal decomposition

Horizontal baroclinic velocity, u(x, z, t) = [u(x, z, t), v(x, z, t)], is expressed as

sum of orthogonal vertical modes

u(x, z, t) =
∞∑
n=1

un(x, t)ϕn(z) , (2.2.2.1)

where x = [x, y], z, and t are horizontal, vertical, and time coordinates, un(x, t)

is the velocity modal amplitude, n is the vertical mode number, and ϕn(z) is the

vertical mode [Kelly, 2016]. The modes satisfy

d2Φn

dz2
+
N2

c2n
Φn = 0, with Φn(0) = Φ(−H) = 0, (2.2.2.2a)

and

d

dz

(
1

N2

dϕn

dz

)
+

1

c2n
ϕn = 0, with

dϕn

dz

∣∣∣∣∣
0

=
dϕn

dz

∣∣∣∣∣
−H

= 0, (2.2.2.2b)
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where ϕn = dΦn/dz, cn is the eigenspeed of mode n, and N is the buoyancy

frequency. In practice (2.2.2.2) is solved numerically using climatological stratifi-

cation. The modes are orthogonal such that∫ 0

−H

Φm
N2

cmcn
Φndz = Hδmn, and

∫ 0

−H

ϕmϕndz = Hδmn . (2.2.2.3)

Multiplying (2.2.1.3) by ϕn and depth integrating yields the momentum equation

for the nth mode,
∂Un

∂t
+ f k̂×Un = τw

n − rUn, (2.2.2.4)

where τw
n is the projection of the forcing stress onto mode n and the modal trans-

ports are simply Un = Hun.

Forcing stress parameterization

The modal forcing stress is

τw
n =

∫ 0

−H

∂τw

∂z
ϕndz. (2.2.2.5)

At any given time and place, the forcing stress may be written as τw = τ 0Σ(z),

where τ 0 is the surface wind stress and Σ(z) is the forcing profile with Σ(0) = 1.

Modal forcing can then be written as

τw
n = τ 0ϕns with ϕns =

∫ 0

−H

∂Σ

∂z
ϕndz . (2.2.2.6)

In general, both the wind stress, τ 0, and forcing profile, Σ(z), evolve in time.

Strong forcing alters the ML and TL depths through turbulent entrainment and

mixing [Price et al., 1986]. In the analyses here, we use static ML and TL depths

based on observations and climatology. This assumption is valid for moderate

winds and short-duration simulations over days to weeks. If longer simulations

are desired, say weeks to months, the stress profile can be updated during forward

time stepping.

When Σ(z) is constant in time and all modes are damped with the same r, the

modal transports are proportional to the total transport, Un = Uϕns, where the

total transport equation is

∂U

∂t
+ f k̂×U = τ 0 − rU . (2.2.2.7)
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We solve this equation numerically by specifying a wind stress time series, damping

coefficient, and inertial frequency, and using a convolution method consistent with

Gupta et al. [2019]. We can then obtain modal amplitudes by specifying a vertical

stress profile, Σ(z), computing ϕns from (2.2.2.6), and using Un = Uϕns.

Wind work calculations

Nomenclature: In the traditional slab model, “wind work” describes the power

input by the wind to inertial motions in the OSBL. Because TKE production in

the traditional slab is related to Rayleigh drag, the damping can only dissipate

motions which have already been generated by the wind. Thus the damping does

not affect the “power input”, only the decay rate, so the names “wind work”

and ”power input” can be used interchangeably. However, in the generalized slab

model, some TKE production is associated with the wind itself (PTL). This TKE

production inhibits the acceleration of inertial motions, and accordingly reduces

the net work on inertial motions. Specifically, some fraction of the total power

input is immediately diverted to TKE production in the TL, while the remainder

excites inertial motions. We refer to these quantities as the “TKE fraction” (P =

PTL/Πtot) and “available wind work” (Πavail = Πtot−PTL), respectively. Since PTL

is positive semi-definite, available wind work is always less than or equal to total

wind work.

Total wind work: From (2.2.1.4), the total wind work, (Πtot) is given by [τw ·
u]z=0 and can be expressed as

Πtot = τ 0 · usurf , (2.2.2.8)

where the surface velocity can be written as a sum of modes,

usurf =
1

H

∞∑
n=1

Unϕn(0) =
U

H

∞∑
n=1

ϕnsϕn(0) . (2.2.2.9)

and the total wind work as

Πtot =
τ 0 ·U
H

∞∑
n=1

ϕnsϕn(0). (2.2.2.10)

39



Available wind work: The net wind work on each mode (Πn) is given by Alford

[2020b] as

Πn = τw
n · un. (2.2.2.11)

Substituting τw
n = τ 0ϕns and un = Uϕns/H and summing over all modes yields

Πavail =
τ 0 ·U
H

∞∑
n=1

ϕ2
ns. (2.2.2.12)

TKE production: The TKE production in the TL is computed by rearranging

Πavail = Πtot − PTL and using the expressions above

PTL =
τ 0 ·U
H

∞∑
n=1

ϕns [ϕn(0)− ϕns] . (2.2.2.13)

TKE fraction: The fraction of Πtot which is diverted to TKE production (P =

PTL/Πtot) can be written using (2.2.2.10) and (2.2.2.13) so that it doesn’t depend

on wind stress

P = 1−
∑

n ϕ
2
ns∑

n ϕnsϕn(0)
. (2.2.2.14)

ϕn(0) only depends on observed or climatological stratification (N2) and ocean

depth via (2.2.2.2). ϕns additionally depends on the forcing stress profile, Σ(z),

via (2.2.2.6). This means that with stratification, ocean depth, and an inferred

(or measured) stress profile, we can estimate the ratio of TKE production to in-

ertial oscillation generation without explicitly knowing the wind. However, the

wind sets the forcing stress profile, and this profile changes as the OSBL structure

evolves (e.g., strong wind can deepen the ML). Thus, our analyses are only suit-

able for isolated wind events that do not strongly alter the structure of the OSBL.

For stronger storms and longer integrations, temporally evolving stress profiles

[Σ(z) −→ Σ(z, t)] can be used in the same way that traditional slab models have

incorporated time-dependent MLD [D’Asaro, 1985].

2.3 Results

We use both local and global observational datasets to assess the differences

between the generalized slab model, the traditional slab model of Pollard and
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Figure 2.3: Minimet drifter track is displayed for August 7-27, 2018. The wind
event under consideration occurred in the middle of this time-series, on August 17.
Local vorticity is obtained via satellite altimetry [Data Unification and Altime-
ter Combination System (DUACS); Taburet et al., 2019] using the assumption
of geostrophic flow and shown with the color contours. Along-track sea surface
temperature (SST) is obtained from the Minimet and shown by the color of along-
track data points. The drifter location on August 19, 2018 is shown with the cyan
star. The green and red stars represent the drifter location on August 7 and 27,
respectively.
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Millard [1970], and the PWP model [Price et al., 1986]. We start by comparing

these models with drifter observations of wind stress and surface currents in the

Icelandic Basin. We then estimate the global impact of TLs on power input to

near-inertial motions in the OSBL and TKE production.

2.3.1 Local analysis: Iceland Basin (NISKINe site)

The Office of Naval Research (ONR)-sponsored Near Inertial Shear and KInetic

eNergy experiment in the North Atlantic (NISKINe) is an ongoing Departmental

Research Initiative (DRI) to investigate the generation, evolution, and dissipation

of NIWs in the Iceland Basin. This region was chosen for the strong mesoscale

eddy field and stormy weather.

As part of a NISKINe field campaign in the boreal summer of 2018, Klenz

et al. [2022] discuss the deployment of a fleet of in situ Minimet surface drifters

to observe the upper-ocean dynamics (i.e., surface to 15-m depth) in the Iceland

Basin. The Minimet drifter [Centurioni, 2018] is a robust platform for measuring

surface meteorological data, and the Lagrangian nature of the measurements make

it an excellent candidate for observing the power input to near-inertial motions,

as discussed previously. Specific details pertaining to these observations can be

found in Goni et al. [2017], Centurioni [2018], Klenz et al. [2022].

On the 17th and 18th of August, 2018 in the Iceland Basin, a strong, impulse-

like wind event occurred over a region of substantial mesoscale activity following

deployment of the Minimet drifter fleet. Klenz et al. [2022] performed direct calcu-

lations of the power input to near-inertial motions associated with the wind event

using the observations from the Minimets. We focus our local analysis on a 15 day

period surrounding this wind event, from 10-25 August 2018.

Prior to the wind event, the step-like assumption of the slab model was vi-

olated since the MLD and TLD were 10 and 40 meters, respectively (G. Voet,

Pers. Comm.), giving TLT/MLD = 3. We use these MLD and TLD values to

parameterize a forcing stress profile for the generalized slab model. Closed form

expressions for the MLTL and traditional stress profiles are provided in section

2.6.3 of the Appendix.

42



Figure 2.4: The generalized slab model is employed to study the near-inertial
response to an impulse-like wind event on 17-18 August, 2018 at the NISKINe
site in the Iceland Basin. Lagrangian Minimet surface drifters described by Klenz
et al. [2022] provide in situ measurements of τ , usurf and Πavail. The observations
of τ from Minimet 3 [Klenz et al., 2022] are shown in the top panel, and are used
as the forcing input for the generalized slab model and PWP. Generalized slab
model calculations are performed using both the slab and MLTL stress profiles.
For consistency with Klenz et al. [2022, Figure 7], MLD and TLD are set to 10
m and 40 m, respectively. Zonal inertial surface velocities are shown in panel (b).
Panels (c) and (d) show the instantaneous and time-integrated Πavail, respectively.
Panels (e) and (f) show the instantaneous and time-integrated PTL, respectively. In
all cases, the purple line represents the slab model, the gold line represents PWP,
the green line represents the MLTL model, and black line represents observations
from Klenz et al. [2022].
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Hourly surface wind stress measurements by Minimet 3 [see Klenz et al., 2022,

Figure 4 for drifter coordinates] are used to force the traditional slab model (with

a linear stress profile), generalized slab model (with a MLTL stress profile), and

PWP (Fig. 2.4). Prior to the model runs, we apply a 24 hour 1/2 cosine Fourier

filter to the wind stress time series to suppress the generation of low frequency mean

flows and isolate the near-inertial response. We follow the procedures in Section

2.2 to calculate transports, inertial currents, wind work (total and available), TKE

production, and the TKE fraction. Climatological stratification and ocean depths

are obtained from the World Ocean Atlas (WOA) 2023 [Locarnini et al., 2023,

Reagan et al., 2023] and version 24.1 of Smith and Sandwell [1997], respectively.

Summations are truncated at 256 vertical modes. We use a constant Rayleigh

damping coefficient of r−1 = 7 days in the analysis of each model, for consistency

with Plueddemann and Farrar [2006]. The Coriolis frequency f varies with drifter

location in our model calculations, but the local vorticity is not considered. We

configure and run PWP by following Plueddemann and Farrar [2006] and Alford

[2020a].

The observed inertial velocities and those predicted by the MLTL model show

excellent agreement in both magnitude and phase immediately following the wind

event. PWP slightly under-predicts the observed inertial velocities, while the

slab model overpredicts the inertial currents, which is expected for shallow MLDs

[D’Asaro et al., 1995, Plueddemann and Farrar, 2006]. After a few inertial os-

cillations, a phase lag develops between the observations and model outputs and

the oscillations detune. However, despite differences in phase, the inertial veloc-

ity magnitudes associated with the MLTL model output and observations remain

consistent (Fig. 2.4).

The Iceland Basin is a region characterized by a highly energetic eddy field

[Zhao et al., 2018, Thomas et al., 2020], so the phase lag may be caused by vari-

ability in local vorticity. The sharp nature of the detuning suggests the change is re-

lated to frontal behavior. In Figure 2.3, we zoom in on the drifter track/location on

August 19, 2018 (time of the phase change). Local vorticity is shown in the colored

contours of the figure, obtained via satellite altimetry from the Data Unification
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and Altimeter Combination System (DUACS) and distributed by the “Copernicus

Marine Environment Monitoring Service” (CMEMS); [Taburet et al., 2019]. Be-

cause this method of vorticity calculation uses the assumption of geostrophic flow,

it cannot resolve sub-mesoscale vorticity and is thus limited to the mesoscale. How-

ever, the drifter track suggests that the Minimet encounters a sub-mesoscale eddy

(∼ 60.27 N, 21.52 W) at the time when the phase offset appears in the inertial ve-

locities. The drifter, initially traveling eastward, passes through a polarity change

in relative vorticity that is coupled with a sea-surface-temperature (SST) gradient

and shifts to westward propagation following its encounter with the sub-mesoscale

eddy (note that SST data is obtained from the Minimet). The collection of these

effects supports our hypothesis that the dephasing of the model and observations

is related to a frontal change in local vorticity. Since the observations do not fully

resolve sub-mesoscale vorticity, we do not attempt to include these effects in the

generalized slab model.

The maximum values of instantaneous wind work calculated by the generalized

slab model with the MLTL stress profile and PWP are consistent with the observa-

tions, while the slab model again overestimates the peak magnitude of Πavail (Fig.

2.4c). For each model, time-integrated wind work shows a variable degree of devi-

ation from the observations (Fig. 2.4d). Values calculated using the MLTL stress

profile show closest agreement with observations. Integrated wind work calculated

via PWP and the traditional slab model exceeds observations in both cases. The

increased available wind work in PWP is due to a bookkeeping difference. Note

that PWP extracts TKE shear production through the damping stress, so all wind

work is technically available to drive the inertial currents. In practice, the tur-

bulence parameterization in PWP immediately dissipates a significant fraction of

this available wind work.

The wind event acts as an isolated, impulsive forcing event with minimal in-

stantaneous wind work preceding or following 17-18 August (Fig. 2.4). In all cases

(i.e., slab, PWP, MLTL, and observations), the peak instantaneous wind work

and the peak wind stress magnitude occur on 17 August at 1600, suggesting that

hourly resolution is too coarse to estimate the lag between the wind event and
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energy input to inertial motions.

There is a substantial burst of TKE production associated with interactions

between shear stress and velocity shear in the TL surrounding the wind event

that mirrors the burst in Πavail. Otherwise, PTL is generally small and nonzero.

Although the TKE production is small compared to the wind work, the TKE

production is always positive. After the two-week example time series studied here,

the final magnitude of time-integrated PTL is comparable to the final magnitude

of time-integrated Πavail. Cumulatively over the course of this example two-week

time series, the total wind work is reduced by a factor of ∼ 2 as a result of TKE

production in the TL.

The TKE dissipation rate (ϵ) can be measured directly using rapidly sampling

microstructure shear probes [Gregg, 1991, Thorpe, 2005] and is thus more readily

observable than TKE shear production (P ). A precise transformation that allows

ϵ to be determined from P and vice versa is a topic of ongoing research and beyond

the scope of this paper [e.g., Zippel et al., 2022]. However, we follow Alford [2020a]

by using dimensional analysis and scaling to estimate the order-of-magnitude of ϵ

from PTL that is calculated by the generalized slab model.

Ignoring advective and straining terms, TKE shear production is related to

the dissipation rate (ϵ) and the buoyancy flux (Jb) via P = ϵ + Jb [Tennekes and

Lumley, 1972]. Studying turbulent dissipation in the TL, Kaminski et al. [2021]

show that a mixing efficiency Γ of 0.2 (defined Γ ≡ Jb/ϵ) can be used to relate

buoyancy flux to dissipation. Finally, we note that the TKE production in our

model has units of power input per unit area while ϵ has units of power input per

unit mass. We may convert between the two using the density of seawater and the

relevant length scale, which is in this case the TLT. Using values from the August

2018 wind event at the NISKINe site, we find ϵTL ∼ O(10−8), which is consistent

with previous observations of ϵ in the TL which find ϵTL ∼ O(10−9 − 10−8) W/kg

[Sun et al., 2013, Kaminski et al., 2021].

We calculate modal spectra for the slab and MLTL models and find that wind

work in high modes attenuates much faster with increasing mode number for the

MLTL model than for the slab model. Spectra are displayed in Figure 2.5. Mode
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Figure 2.5: Modal spectra for the slab and MLTL model are calculated for the
NISKINe site (August 2018; 60 N, 22 W). The OSBL at the NISIKINe site has
MLD of 10 m and TLD of 40 m. Top panel: Spectral amplitude vs. mode num-
ber is displayed. Amplitudes for the total wind work as calculated via slab model
(Πslab

tot ), total wind work as calculated via MLTL model (ΠMLTL
tot ), and available

wind work as calculated via MLTL model (ΠMLTL
avail ) are shown with the purple,

black, and green lines, respectively. Note that total and available wind work are
equal in the case of the slab model. All curves are normalized by the total am-
plitude of ΠMLTL

total , for example,
∑∞

n=1 ϕnsϕn(0). Bottom panel: The cumulative
modal amplitudes are displayed vs. mode number for the total wind work calcu-
lated with the slab model (purple line), available wind work calculated with the
MLTL model (green solid line), and TKE production in the TL calculated with the
MLTL model (green dotted line). All curves are again normalized by the total am-
plitude of ΠMLTL

avail . Normalization by ΠMLTL
avail allows for easy viewing of the division

of total wind work into IKE and TKE, shown by the asymptotic values (horizontal
color-matched dash-dotted lines): in this example the sum of amplitudes for PTL

and ΠMLTL
avail are asymptotic to 0.22 with ∼ 30 modes and 0.78 with ∼ 20 modes,

respectively (indicated on the right-hand y-axis). The sum of amplitudes for Πslab
tot

is asymptotic to 3.12 with ∼ 180 modes, indicating that in the case of NISKINe,
the slab model overestimates wind work by a factor of 3. Mode 3 is indicated in
both panels to mark the classical division between radiative and dissipative modes
[Alford, 2020b].
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3 is indicated in the figure to mark the classical division between radiative and

dissipative modes [Alford, 2020b]. Following Figure 2.4, we assert that available

wind work calculated using the MLTL model provides wind work estimates more

aligned with observations than the slab model. When viewed in tandem with

Figure 2.5, this suggests that the slab model overestimates the wind work in high

modes, consistent with the findings of Plueddemann and Farrar [2006], Alford

[2020a]. In the NISKINe test case specifically, we see that overestimation of Π

becomes significant around mode 10.

A secondary effect that results from the slab model’s overestimation of higher-

mode wind work is that fewer modes are required to resolve Π when a TL is

considered. For the NISKINe test case, total wind work via the MLTL model

requires ∼ 40 modes to resolve, while total wind work via the slab model requires

∼ 150 modes to resolve (Figure 2.5). This is easy to visualize from a mathematical

analogy: in a modal decomposition of the slab model, we are reconstructing a step-

like profile using smooth, continuous functions. This is analogous to reconstructing

a square wave using a Fourier series, which will require infinite modes to reach

closure. The TL serves to smooth the step-like discontinuity at the base of the

ML, and allows us to resolve the dynamics with fewer modes.

Normalization of available wind work and TKE production by the total wind

work highlights how the total power input by the atmosphere is partitioned. A

larger fraction of total wind work goes to TKE production for higher modes (Fig.

2.5). Enhanced TKE production begins around mode 10, consistent with the slab

model overestimation of Π. In our test case, available wind work is resolved with

25 modes and is 78% of the total wind work and TKE production is resolved with

40 modes and is 22% of the total wind work. Overall, total wind work calculated

via the slab model exceeds total wind work via the MLTL model by a factor of 3.

In both models, the spectral peak lies in the dissipative regime at mode 4, with

only 8% and 14% of energy contained in modes 1-3 for the slab and MLTL models,

respectively. These dissipative spectra are reasonably expected considering the

extremely shallow MLD of 10 m. However, the MLTL spectrum sees a red-shift

relative to the slab spectra. For deep MLs, the projection onto low modes is
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stronger than for shallow MLs [Alford, 2020b]. It follows that the stress profile’s

impact on the modal projection is inversely proportional to the MLD [D’Asaro

et al., 1995]. Our test case at the NISKINe site, with such a shallow ML, provides

a limiting case in this sense. Even for the 10 m MLD here, there is less than a 2%

difference between the modal amplitudes for the slab and MLTL stress profiles in

the radiative modes (1-3). We conclude that a traditional slab model will perform

well if only the low-mode dynamics are to be addressed, but one must proceed

cautiously for higher modes. Beyond mode 3 deviations between the slab and

MLTL models grow rapidly (Fig. 2.5), and the total number of modes used in

analysis must be taken into careful consideration.

The cumulative modal amplitudes (Fig. 2.5, bottom panel) reveal how the

MLTL stress profile results in a two-fold reduction in the power input to inertial

motions with comparison to the slab stress profile. First, because momentum is

deposited beneath the ML, inertial currents are reduced, thereby reducing Πtot.

This reduction of inertial currents is very pronounced in the Minimet dataset (Fig.

2.4, panel b), with a corresponding ∼ 60% reduction in Πtot (Fig. 2.5, bottom

panel). Second, the power imparted to inertial motions is given by Πavail, rather

than Πtot. The available wind work incurs an additional ∼ 22% reduction as a

result of TKE production in the TL (Fig. 2.5, bottom panel). For the NISKINe

case study, the net effect is a ∼ 70% reduction in the power input to inertial

motions.

2.3.2 Global Analysis: geospatial characteristics of the TL

and implications to TKE production

Data collected from Argo autonomous profiling floats throughout the lifespan

of the program [1997-2023; Wong et al., 2020] are used to calculate the TL charac-

teristics on a global scale. We restrict our analysis to high-resolution data (≤ 2 m

vertical) because the base of the TL is difficult to resolve if the vertical resolution

is too coarse [Johnston and Rudnick, 2009, Helber et al., 2012, Sun et al., 2013].

The local minimum method of Sun et al. [2013] is used to determine TLDs. The

procedure picks the base of the TL as the depth corresponding to the first local
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Figure 2.6: Relative transition layer thickness (TLTrel, determined as TLTrel =
TLT/MLD) is calculated using high-resolution Argo data and displayed for the
global ocean. The pivot point of the diverging colormap is set at TLTrel = 1 so
that grid points shaded red have TLT<MLD and grid points shaded blue have
TLT>MLD. In the line plot below, annual and seasonal median values are given
as a function of latitude. Error bars represent standard error, as the distribution
of TLTrel is non-Gaussian. Depths less than 2000 m are omitted.
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minimum in stratification beneath the depth of maximum stratification. Sun et al.

[2013] show this method to be reliable, but occasionally this method may fail if a

local minimum does not appear until well below the seasonal thermocline. These

cases can introduce anomalously large TLDs. For cases where the local minimum

method fails, the depth of maximum stratification is used to characterize the TLD

in an effort to keep estimates of TLD conservative. MLDs are taken from the

climatologies developed by [Holte et al., 2017]. Together, observations of TLD and

MLD allow for the calculation of TLT and the MLTL stress profiles at all grid

points with high-resolution Argo data. We ignore the region within ± 5o of the

equator as slab-like models fail as f → 0 in the equatorial zone.

To assess the validity of a traditional slab model, we compute the relative TL

thickness [TLTrel = TLT/MLD]. We assert that if TLTrel ∼ O(1), the assumption

of a negligible TL is violated. A global map of annual-mean TLTrel is shown in

Figure 2.6. The TLTrel mirrors many trends of MLD [see Holte et al., 2017], most

notably that deep TLD and MLD appear in the mode water regions associated

with the Southern Ocean, South Atlantic, Gulf Stream, and Kuroshio [Hanawa

and Talley, 2001]. These patterns are consistent with the low-resolution estimates

of absolute TLT thickness from Helber et al. [2012]. In the bottom panel of Figure

2.6, annual and seasonal median TLTrel values are plotted for each latitude. We

elect to use the median rather than the mean because the distribution of TLTrel

is not Gaussian. Deviations from a normal distribution increase in regions where

the ML is quite shallow. This creates outliers where TLTrel is extremely large,

skewing the distribution of TLTrel.

Furuichi et al. [2008], Simmons and Alford [2012], Alford [2020b], and others

have shown that there is strong seasonality to wind work that is tied to seasonal

variability of the ML. This motivates us to assess seasonal variability of the TL. We

follow Alford [2020b] in performing calculations for a global winter and summer.

For a global winter we concatenate results from months 1-3 (Jan-Mar) in the

northern hemisphere with months 7-9 (Jul-Sep) in the southern hemisphere. The

opposite is done for a global summer. The idea behind the global seasonal extremes

is to investigate bounding behavior of the TL. The magnitude of TLTrel is greater
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Figure 2.7: The annual-mean ratio W = 1−ΠMLTL
tot /Πslab

tot is calculated from Argo
data and shown globally to assess the impact the TL on wind work calculations.
Latitude-mean values of W are shown in the line plot below the map, with error
bars representing the standard error for each latitude bin. Depths less than 2000
m are omitted.

in the mid-latitude regions during the winter time, consistent with expectations of

Helber et al. [2012].

We first use the global distribution of TLTrel (Fig. 2.6) to investigate the

primary reduction in Πtot associated with the decrease in inertial current generation

when momentum is deposited in the TL. In Figure 2.7, we sum over 256 verical

modes to display the global distribution of annual-mean W = 1 − ΠMLTL
tot /Πslab

tot

and a seasonal latitude-mean line plot. The reduction of Πtot is correlated to the

geospatial distribution of TLTrel, with larger TLTrel producing greater disparities

between Πslab
tot and ΠMLTL

tot . These disparities are magnified in some regions of

the ocean, notably the Gulf Stream, North Indian Ocean, and Southern Ocean.

We find that on the annual-mean, using the MLTL stress profile rather than the
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Figure 2.8: The TKE fraction calculated using the MLTL stress profile is shown for
the annual-mean. A value near 0 indicates that the there is little to no TKE pro-
duction, consistent with the traditional slab model of Pollard and Millard [1970].
A value near 1 indicates that nearly all of the wind work is diverted to turbulence
production rather than exciting near-inertial motions. Latitude-mean values of P
are shown in the line plot below the map, with error bars representing the standard
error for each latitude bin. Depths less than 2000 m are omitted.

traditional slab stress profile reduces total wind work by ∼ 15 − 25%, with local

reductions upwards of 50% in extreme cases.

The TKE fraction quantifies the secondary reduction in power input to inertial

motions associated with the MLTL stress profile and is calculated via (2.2.2.14).

The annual-mean P is shown in the map displayed in Figure 2.8. The patterns in

the TKE fraction map are similar to those in the TLTrel map (Figure 2.6), where

the TKE fraction is elevated in areas where TLTrel is large. As in Figures 2.6 and

2.7, the Gulf Stream, North Indian Ocean, and Southern Ocean stand out with

elevated P . Latitude-mean dissipation is calculated and displayed in the line plot

of Figure 2.8, with error bars representing the standard error of the mean. The
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latitude-mean plot of P in the bottom panel of Figure 2.8 displays trends that do

not identically mirror the trends in the latitude-mean TLTrel, contrary to expecta-

tion. Most notably, summertime TKE fraction exceeds that of the winter months

throughout the ocean. On the global, annual-mean, ∼ 30% of the total wind work

is converted to TKE in the TL. In the high-latitude northern hemisphere, this

percentage increases to ∼ 50-70%.

2.4 Discussion

The curvature of the forcing stress profile has three important implications for

the atmospheric power input to the internal wave band. First, the shape of the

stress profile can spread momentum input over a greater depth range, reducing

surface currents and total wind work (Πtot). Second, when the stress profile ex-

tends beneath the base of the mixed layer (ML), a fraction of the total wind work

is converted into turbulent kinetic energy (TKE) production via the TKE fraction

(PTL). Third, the shape of the stress profile sets the vertical wavenumber spectra,

which influences the radiation of internal waves. The sum of these three effects

manifests in a generalized slab model that offers improved agreement with obser-

vations over the traditional slab model (e.g., Figure 2.4), and underscores the need

to refine and improve models and measurements of τ (z) and ϵ(z) in the oceanic

surface boundary layer (OSBL).

2.4.1 Calculation of total wind work

For the traditional slab model, wind work calculations often exceed observations

due to the concentration of momentum in the ML. This issue has been recognized

since the model’s introduction [Pollard and Millard, 1970], and is exacerbated

in locations with a shallow ML, as shown by D’asaro [1995] and Alford [2020a].

Including a TL allows near-inertial momentum imparted by the atmosphere to

extend beneath the ML which decreases the calculated inertial currents. In cases of

a shallow ML such as observed during NISKINe, this effect considerably improves

agreement with observations. In the second panel of Figure 2.4, the improved
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agreement for the case of a TL is self-evident, with inertial currents calculated

using the stress profile of a traditional slab model exceeding observations by a

factor of ∼ 2. We use Argo float data to estimate the magnitude of this effect

on a global scale (i.e., Fig. 2.7) and find that wind work estimates calculated

with the traditional slab model are biased high by a factor of 1.22 on the annual-

mean, globally. This is remarkably consistent with the overestimation bias of 1.23

reported by Alford [2020b].

2.4.2 TKE fraction

The TL is a region of strong shear, where the near-constant velocity profile

of the ML adapts to the much smaller velocities characteristic of the stratified

interior [Sun et al., 2013]. When the forcing stress profile penetrates the TL, a

nonzero fraction of the total wind work is converted into TKE production. This

term is always zero in models that omit forcing in the TL and assume a linear stress

profile in the ML. Using Argo float data to specify MLTL forcing stress profiles, we

estimate the TKE fraction to be ∼ 0.3 on the annual-mean, globally. In the high-

latitude northern hemisphere, the TKE fraction increases to ∼ 0.5-0.7. When

taken in tandem with the latest global, annual-mean estimates for near-inertial

power input of 0.27 TW [Alford, 2020a], these results suggest that 0.08 ± 0.01

TW of the total near-inertial power input are diverted to TKE production rather

than generating near-inertial motions. This estimate could be greatly improved

by collecting more observations of OSBL turbulence. For example, by equipping

Argo floats with microstructure instruments [Roemmich et al., 2019].

The TKE fraction represents the relative fraction of the total wind work that

is converted to TKE production when the TL is considered in the calculation.

Despite the greater relative impact of the TL in the summer (Fig. 2.8), total wind

work is much larger in the winter. Furuichi et al. [2008], Simmons and Alford

[2012] find that wintertime wind work is 2-4 times greater in magnitude than in

summertime. Thus, the total TKE production in the TL is substantially larger

in the winter than in the summer, despite a smaller TKE fraction. For a simple

numerical example, [Furuichi et al., 2008, Simmons and Alford, 2012] estimate
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that wind work contributes an annual-mean of ∼ 400 GW to the global ocean.

Ignoring the spring and fall, for a naive argument, we take the middle ground and

set winter wind work to 3 times that of summer, so that wind work in the summer

contributes ∼ 200 GW while wind work in the winter contributes ∼ 600 GW. With

these numbers and the seasonal TKE fractions calculated from Argo float data, it

follows that ∼ 40 and ∼ 120 GW of the total wind work are converted to TKE

production in the TL for the summer and winter, respectively.

2.4.3 Available wind work

Available wind work is the total wind work minus the energy lost to TKE

shear production. Alford [2020a] estimated that global available wind work is only

39% of total wind work for PWP, while we estimate a value closer to ∼ 70%.

The difference arises because Alford [2020a] computed power lost to turbulence by

examining the change in potential energy due to ML deepening. ML deepening

is driven by intense, short-lived, storms that dramatically alter the ML and TL.

In contrast, the TKE shear production estimated here is based on ML and TL

climatologies, such that our MLTL stress profile represents an “average” response

to moderate winds. As stated earlier, our MLTL stress profile is not appropriate

for during storms that dramatically alter the ML and TL. For such storms, ML and

TL statistics should be verified against observations to provide accurate wind-work

predictions (e.g., Iceland Basin test case). However, in the high-latitude northern

hemisphere where the TKE fraction is large, we find that the available wind work

is reduced to ∼ 30-50% of the total wind work, consistent with Alford [2020a].

A second difference in our estimation of available wind work is the interpreta-

tion of dissipation due to the Rayleigh damping term. Our ∼ 30% dissipation esti-

mate of results from PTL which arises from the forcing stress profiles alone with no

consideration of how oscillations are damped after being set in motion. Additional

analyses are necessary to better understand how the energy loss parameterized

by Rayleigh drag is divided between internal wave radiation and additional TKE

production. Estimates from Alford [2020b] are calculated using PWP estimates of

changes in potential energy, which are driven by both “instantanous” wind mix-
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ing and mixing induced after the wind forcing has stopped and the currents are

spinning down.

2.4.4 Vertical wavenumber spectra

The analysis presented suggests that the slab model and MLTL produce com-

parable results for the low, radiative modes, but diverge considerably for the dis-

sipative modes (4-∞). These spectra show that for the analysis of the dissipative

modes, the shape of the stress profile must be considered. It follows that if one

is to compare wind work from different models, care must be taken regarding the

number of modes considered. To that effect, we show that the traditional slab

stress profile requires far more modes for convergence. With regard to computa-

tional expense, the improved convergence of the MLTL model further incentives

implementation of a nonlinear stress profile.

2.4.5 Relation to PWP

PWP and the generalized slab model both accurately predict inertial currents,

which are necessary to calculate wind work (Fig. 2.4, panel b). A major strength

of PWP is that, by accurately parameterizing turbulence dynamics, it can predict

the vertical structure of currents using MLD and TLD from background strati-

fication and wind stress alone. In contrast, the generalized slab model leverages

observations to eliminate turbulence parameterizations (outside of the Rayleigh

drag). In essence, the generalized slab model infers TKE shear production in the

TL from observations of stress or currents or MLD and TLD.

The excellent agreement between PWP and the generalized slab model currents

in the Icelandic Basin implies that the turbulence parameterization in PWP is

consistent with the observed MLD and TLD at that location. We reiterate that

differences in available wind work (Fig. 2.4, panel c) are primarily due to different

bookkeeping conventions. PWP accounts for TKE shear production in the TL

through a damping stress, while the generalized slab model accounts for TKE

shear production through a forcing stress. Specifically, PWP estimates about 0.5
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kJ/m2 of “excess” available wind work, which nearly matches the MLTL estimate of

0.6 kJ/m2 of PTL. These bookkeeping differences might be eliminated by applying

wind stress in PWP using an MLTL stress profile rather than a linear (slab) profile.

Such a modification would likely reduce regions of subcritical Richardson number,

essentially “turning down” the PWP turbulence parameterization. However, we

are uncertain how this modification would affect the accuracy of PWP current

predictions, particularly during high winds.

We can use the PWP model as a control to estimate the viability of the gener-

alized slab model’s inferred TKE production. Alford [2020b] calculated the tradi-

tional slab model’s overestimation bias factor of 1.23 by comparing the traditional

slab results to PWP. We have calculated a comparable overestimation bias factor

of 1.22 via comparison with the MLTL model. The two methods used here are

completely different numerically, but produce nearly identical results. This im-

plies that the MLTL and the PWP models both vertically spread momentum in

the same way, despite the different approaches to the problem, and reinforces the

importance of TKE production in the TL.

2.5 Conclusion

The generalized slab model developed here allows for the calculation of the

ocean’s linear response to an arbitrary, nonlinear, depth-variable forcing stress

profile. To introduce a first-order improvement upon the step-like, linear stress

profile of the traditional slab model, we utilized a piecewise-nonlinear MLTL stress

profile inspired by D’Asaro et al. [1995] which injects momentum into the TL. Our

analyses show that nonlinearities in the stress profile lead to a two-fold reduction

in power input to inertial motions. When the TL is considered, momentum is

distributed to greater depths, reducing surface currents and inducing a primary

reduction in wind work. A secondary reduction in wind work results from TKE

production in the TL which reduces the amount of energy available to generate

inertial currents in the OSBL. Direct comparison between Minimet observations in

the Iceland Basin [Klenz et al., 2022], the traditional slab model, the generalized
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slab model with the MLTL stress profile, and the PWP model suggest that includ-

ing the TL improves the slab model performance. Modeled TKE production in the

TL in Icelandic Basin is consistent with other observations of turbulent dissipation

in the TL [Sun et al., 2013]. A global analysis of Argo autonomous profiling float

data suggests that on the global, annual-mean, ∼ 30% of the total power input to

near-inertial motions is allocated to TKE production. When taken in tandem with

the latest global, annual-mean estimates for near-inertial power input of 0.27 TW

[Alford, 2020a], these results suggest that 0.08 ± 0.01 TW of the total near-inertial

power input are diverted to TKE production rather than generating near-inertial

motions. We emphasize that our estimates of TKE production represent conditions

of moderate winds and stress profiles based on climatology.
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2.6.3 Appendicies

Obtaining a semi-analytical solution

Here we outline a procedure that can be used to obtain a semi-analytical solu-

tion from the theory presented.

1. Obtain the wind-stress time series, stratification, and ocean depth for the

study area.

2. Solve the eigenvalue problem of (2.2.2.2) to obtain ϕn. This can be done

using spectral methods consistent with Boyd [2001].

3. Choose the structure of the stress profile, Σ(z). We provide expressions for

the traditional slab and the MLTL model in (2.6.3.1) and (2.6.3.2), but a

form of Σ could be empirically derived from observations. One may also

consider writing a new analytical structure function for Σ to represent an

abnormal water column (e.g., double thermocline, inversions, etc.).

4. Evaluate the integral in (2.2.2.6) to calculate ϕns. Unless the traditional slab

model (2.6.3.1) is used, this will need to be done numerically.

5. Obtain ϕn(0). This is the value of ϕn at the ocean surface.
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6. Solve (2.2.2.4) numerically to obtain Un for each mode, then sum all modes

to obtain total transport U. This can be done using a convolution method

consistent with Gupta et al. [2019].

7. Solve (2.2.2.10), (2.2.2.12), (2.2.2.13), and (2.2.2.14) to calculate Πtot, Πavail,

PTL, and q respectively.

Example stress profiles

Traditional, linear ‘slab’ stress profile: Assume a linear ML stress gradient

profile, consistent with the slab model of Pollard and Millard [1970]. The conditions

in a linear formulation are that the surface stress equals the wind stress, and

is constant throughout the ML. Below the ML, the stress is zero. The vertical

structure function for this stress profile can be expressed as

Σ(z) =

1 + z/Hmix for z > −Hmix,

0 for −Hmix > z,
(2.6.3.1)

where MLD is denoted as Hmix. A sketch of this stress profile is shown with the

black line in the right hand panel of Figure 2.1.

Quadratic MLTL stress profile: Assume a linear stress gradient profile in the

ML, but include a quadratic taper from the bottom of the ML to the bottom of

the TL to obtain the MLTL stress profile. The conditions for the MLTL stress

profile are that the profile is continuously differentiable, the surface stress equals

the wind stress, and both the stress and its vertical gradient go to zero at the base

of the TL. Solving this system produces the structure function

Σ(z) =


1+2(z/TLD)

1+
Hmix
TLD

for z > −Hmix,

1+2(z/TLD)+(z/TLD)2

1−(Hmix
TLD )

2 for −Hmix > z > −TLD.
(2.6.3.2)

A Sketch of this stress profile is shown with the blue line in the right hand panel

of Figure 2.1.
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Chapter 3

Near-inertial wave generation in a

linear, damped mixed-layer model

3.1 Authors:

Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas

3.2 Introduction

3.2.1 Motivation

Near-inertial internal waves (NIWs) play a crucial role in wind driven mixing

by providing a conduit for large-scale atmospheric forcing to radiate energy into

the deep ocean [Alford et al., 2016]. For internal waves, the rate at which energy

propagates vertically varies with the horizontal wavenumber squared [Gill, 1982,

1984], and thus NIWs transfer energy vertically downward at a rate set by their

lateral length scales [Alford et al., 2016]. It is commonly assumed that NIWs are

generated with large horizontal scales that mirror the large-scale storms from which

they are generated [Pollard, 1980, Thomson and Huggett, 1981, Asselin et al., 2020,

Thomas et al., 2020]. Without a mechanism of scale-reduction, these large-scale

waves are inefficient at transferring energy into the ocean’s interior.

The importance of lateral scale-reduction is highlighted in the recent works
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of Asselin et al. [e.g. 2020], Thomas et al. [e.g. 2020], among others, where a

wavenumber evolution approach is employed to describe NIW behavior with time.

The wavenumber evolution technique is a vetted method for analysis of NIW prop-

agation, but does not explicitly solve for the generation of these waves. Rather, the

lateral scales and energy content of the incident NIW field is used as an input, and

is often assumed. We seek to improve understanding of the scales and available

energy imparted to the incident NIW field by investigating the NIW generation

problem in greater detail.

NIWs are predominantly generated by wind-stress curl [Alford et al., 2016], lati-

tudinal variation in the inertial frequency [i.e., the β-effect: D’Asaro, 1989, D’Asaro

et al., 1995, Moehlis and Llewellyn Smith, 2001], and interactions of near-inertial

oscillations (NIOs) with the mesoscale eddy field [i.e., the ζ-effect Weller, 1982,

Young and Ben Jelloul, 1997]. Wind stress acting on the ocean surface imparts

momentum into the mixed layer (ML). After the wind stops, water parcels continue

to move due to their inertia while turning due to Coriolis force. They complete an

orbit each inertial period, creating near-inertial oscillations (NIOs). Over scales of

tens to hundreds of kilometers, the spatial variability of wind stress (primarily the

wind stress curl) induces non-uniformity in these oscillations, resulting in regions

of convergence and divergence. In these regions, the ML is vertically stretched and

squeezed, respectively [Moehlis and Llewellyn Smith, 2001], producing undulations

that can propagate freely as gravity waves with a near-inertial frequency.

The meridional variability of the Coriolis parameter can generate NIWs in a

similar process to generation via wind-stress curl. Consider for example, a constant

wind-stress with large meridional span. The NIOs produced by the wind-stress at

different latitudes vary in frequency with the local Coriolis parameter. As time

progresses, the phase offsets between the northern and southern NIOs result in

convergent and divergent zones, analogous to the case of variable wind-stress. Just

as for wind-stress, the ML is modulated by the divergence, resulting in propagating

NIWs.

Gradients in local vorticity in a mesoscale eddy field generate near-inertial

waves by a similar mechanism to the β-effect [i.e. the ζ-effect: Kunze, 1985, Young
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Figure 3.1: A schematic of our NIW generation model is displayed, adapted from
Alford et al. [2016], Figure 7. Mid-latitude wind stress along the storm track forces
inertial oscillations of the ML. The energy of these oscillations is generates local
dissipation from a suite of damping processes and propagating NIWs with modal
distribution set by the local stratification and stress profiles [Stokes et al., 2023].
High modes are unstable and contain little energy, but propagate vertically and
contribute strongly to local mixing. Low modes are stable and carry the bulk of
the near-inertial energy. The energy propagates vertically with the group velocity,
which is proportional to the horizontal wavenumber. Low-mode, low horizontal
wavenumber NIWs are observed to radiate far from the generation site, ultimately
dissipating and contributing to mixing at remote locations [Alford, 2020b].

and Ben Jelloul, 1997]. To illustrate this process, consider a case now at constant

latitude in the presence of mesoscale eddies. On a β-plane, NIOs oscillate with the

effective Coriolis frequency, feff = f0 + βy + ζ/2, where f0 is the central Coriolis

frequency and y is latitude. For constant wind stress in the presence of an eddy

field, gradients in ζ set up lateral variability in the effective Coriolis frequency.

The NIOs resulting from the wind stress have ζ- imprinted phase lags that become

non-negligible over scales of 10-100 km, depending on the local vorticity gradients

intrinsic to the eddy field. Gradients in phase detune the initially coherent NIOs,
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again producing nonzero divergence resulting in NIW generation.

These generation mechanisms can be important simultaneously in the real-

world. Atmospheric storms over the open ocean often have a strong wind-stress curl

that can generate NIWs [e.g. Price, 1983, Gill, 1984]). For large storms, the Corio-

lis parameter may vary significantly across the storm footprint [e.g. Ocean Storms

experiment; D’Asaro et al., 1995]. Further complicating the issue, storms are preva-

lent in the mid- to high- latitudes where local vorticity due to the mesoscale eddy

field is strong (e.g. Kuroshio region in the North Pacific and Gulf Stream in the

North Atlantic, see Thomas et al. [2020]). The goal of the work presented here is

to provide a theoretical and numerical approach to explore bounds on the lateral

scales (e.g. horizontal wavenumber) and the magnitude of NIW generation from

wind-stress curl, β-, and ζ- effects holistically, so that the relative importance of

each can be explored for any particular case.

3.2.2 Theoretical approach:

Starting from the Boussinesq approximation for hydrostatic motions on a β-

plane, we use the method of multiple scales to separate the slowly varying quasi-

geostrophic flow from the internal wave field. Expansion for small Rossby number

produces the internal wave equations. We follow Gill and Clarke [1974] in employ-

ing a modal decomposition and assume barotropic mean flow over a flat seafloor

so that the modes remain uncoupled and are not subject to intermodal scattering.

This allows us to use the formalism developed by Stokes et al. [2023] to obtain the

structure of the vertical wavenumbers for each mode as a function of wind-stress

forcing and stratification in the oceanic surface boundary layer (OSBL). From here,

we proceed in studying the lateral near-inertial response for each mode individually,

using vertical modal structure and environmental forcing (e.g. ∇ × τ, β, and ζ)

as inputs.

We separate the near-inertial dynamical motions into a ‘forced’ component

which describes accelerations of the ML due to Coriolis that arise from direct

forcing by (wind) stress divergence, and a wave component in which accelerations

are balanced by pressure gradients (see Figure 3.1). The forced response drives
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vertical motions of the base of the ML at inertial frequencies which we refer to as

‘inertial pumping.’ The components of inertial pumping related to ∇×τ, β, and ζ
can be isolated and calculated explicitly for a specified wind stress, latitude, and

mesoscale field using this formalism. We use frequency-wavenumber spectra to

examine the how the inertial pumping overlaps the modal dispersion curves, setting

bounds on the horizontal wavenumbers of NIWs that are generated.

The forced/wave decomposition allows us to parameterize dissipative stresses

in the ML by including a linear damping term in the forcing equation, consistent

with the ML models described by D’Asaro [1985], Plueddemann and Farrar [2006],

Alford [2020a]; and Stokes et al. [2023]. The use of linear damping is common in ML

models, because it allows one to account for a broad range of motions that extract

energy from the system in a single variable. ML damping stresses commonly

considered are turbulent entrainment at the base of the mixed layer, convective

shear instabilities, and iteractions with bathymetry in the case of shallow water

[Moehlis and Llewellyn Smith, 2001, Plueddemann and Farrar, 2006, Kelly, 2019,

Stokes et al., 2023, see Fig. 3.1].

In the numerical experiments that follow, we find that small variations in the

damping parameter can have substantial impacts on NIW generation and local

dissipation. The propagation of the generated waves that are able to escape the ML

is described using the ‘wave-response’ equations. These wave equations determine

the horizontal wavenumber spectra of the NIWs, while the modal distribution and

vertical wavenumber spectra are determined by the vertical profile of forcing stress

[stress profile Stokes et al., 2023]. Together, this framework allows us to estimate

how much energy can reach depths via low-mode, high horizontal wavenumber

NIWs; how much energy can propagate to remote dissipation sites via low-mode,

low horizontal wavenumber NIWs; and the high-mode contributions to mixing

locally. A visual representation of these contributions is shown in Figure 3.1

By separating ML motions from internal wave generation and propagation, we

find a useful, previously unappreciated analogy between the generation of internal

tides in the vicinity of topography [Llewellyn Smith and Young, 2002] and the

generation of NIWs by wind stress curl. We show that the equations which govern
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NIW generation can be written in a form that is mathematically equivalent to

the equations describing conversion of barotropic tidal energy into internal tides,

providing a new perspective on NIW generation. This allows us to use tools previ-

ously developed for study of internal tide generation [e.g. the barotropic conversion

formula from Llewellyn Smith and Young, 2002] to quantify the energetic volume

of NIW generation for each mode.

We next present a numerical tool to solve these governing equations which is

analogous to the coupled shallow water (CSW) model of Kelly et al. [2016], Kelly

[2019], and Savage et al. [2020]. We refer to this tool as the extended Klein-

Gordon (eKG) model. The analogy with internal tide generation allows us to

validate this numerical model against analytical solutions of internal wave genera-

tion from Llewellyn Smith and Young [2002]. We then use the eKG model to study

the dynamics of NIW generation across a range of environmental forcing scenarios

inspired by two important oceanographic field campaigns, the Ocean Storms ex-

periment and the Near Inertial Shear and KInetic eNergy experiment in the North

Atlantic experiment (NISKINe).

3.2.3 Observations

The Ocean Storms experiment (OS95 hereafter) was an Office of Naval Research

(ONR) sponsored initiative with the goal of observing the upper ocean’s response

to strong storms. Using a moored array in tandem with a fleet of aircraft-deployed

Lagrangian drifters, [D’Asaro et al., 1995] documented substantial NIW generation

associated with a strong extratropical cyclone in the North Pacific ocean during

October 1987. Nominal characteristics of the OS95 storm event are displayed in

Table 1. Analysis suggests that β-refraction was the dominant NIW generation

mechanism, despite the strong wind-stress curl.

The Near Inertial Shear and KInetic eNergy experiment in the North Atlantic

(NISKINe) is an ONR Departmental Research Initiative to investigate the gener-

ation, evolution, and dissipation of NIWs in the Iceland Basin. This region was

chosen for the strong mesoscale eddy field and stormy weather. Observations from

NISKINe suggest that ζ-refraction is often the dominant NIW generation mecha-
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Figure 3.2: A schematic of idealized wind forcing by an extratropical cyclone,
as introduced by D’Asaro et al. [1995] in OS95. We idealize the cyclone with
radial symmetry, then consider an impulse Gaussian jet associated with the zone
of influence of the storm. The zone of influence is denoted by the black rectangle.
The storm model is the same in both OS95 and NISKINe, but the magnitude of
forcing is different. Forcing magnitude for OS95 is displayed above.

nism as the mesoscale eddy field in the Iceland basin is host to strong eddies with

vorticity as large as ζ/f ≥ 0.3 [Asselin et al., 2020]. Nominal characteristics of the

NISKINe case study are displayed in Table 1.

These two test cases provide examples of strong NIW generation via different

mechanisms. OS95 provides context to the more classical storm-generated NIW

cases, while NISKINe underscores how strong mesoscale vorticity impacts NIW

generation. Throughout the theoretical derivations that follow, we provide con-

textual examples which draw upon the OS95 and NISKINe test cases. Following

development of the theory and model, we use the eKG model to investigate the

NIW generation associated with strong storms and mesoscale vorticity. In par-

ticular, we explore the OS95 extratropical cyclone and an idealized dipole vortex

corresponding to NISKINe observations [Thomas et al., 2020]. In these case stud-

ies, our focus is not to replicate the full complexity of the observed dynamics, but

to explore the relative interplay between ∇× τ , β, and ζ under different idealized

forcing conditions. Schematics of the wind and mesoscale forcing for the OS95 and
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Figure 3.3: Idealized, Gaussian representations of the eddy observed in OS95
[D’Asaro et al., 1995] and the NISKINe dipole vortex [Thomas et al., 2020] are
shown. Spatial Rossby number variability is displayed in the color maps. The
OS95 storm took place over a region of weak mesoscale eddies, with nominal Rossby
number ∼ 0.02 and diameter of 100 km. The NISKINe dipole vortex is quite strong
with variability of the Rossby number between 0.3 and -0.3. Additional mesoscale
characteristics are shown in Table 1. For both cases, meridional profiles of the
surface currents and Rossby number are shown in the vertical plots. Note that the
spatial axis limits in the color maps are the same for OS95 and NISKINe, but the
surface currents and Rossby number are more than an order of magnitude larger
in the NISKINe case.
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Table 3.1: The parameter space associated with the Ocean Storms experiment
[D’Asaro et al., 1995] and NISKINe [Thomas et al., 2020, Klenz et al., 2022] is
described. Note that the NISKINe dipole vortex consists of two eddies, so the
mesoscale feature width is twice the mesoscale RMS width.

Parameter Ocean Storms NISKINe
Latitude [◦ N] 47.5 57.8

Ocean Depth, H [m] 4200 3010
Storm RMS Width, Lstorm [km] 283 283
Peak Wind Stress, τmax [Pa] 2.3 0.8
Inertial Currents, |uF | [cm/s] 60 25
Mode-1 Eigenspeed, c [m/s] 2.28 1.59
Rossby Radius, LRo [km] 21.2 12.9

Mesoscale Feature Eddy Dipole
Rossby Number, Ro [1] 0.02 0.3

Eddy RMS Width Leddy [km] 15.9 11.1
Damping Parameter, r−1 [days] 7 7

NISKINe case studies are displayed in Figures 3.2 and 3.3, respectively.

3.3 Theory

3.3.1 Governing equations

We are interested in the propagation of internal waves through the ocean’s

mesoscale. The flow is approximated as Boussinesq, hydrostatic, and rotating on

a β-plane. Following Wagner et al. [2017], we expand the equations treating the

Rossby number as a small parameter. This expansion separates the slow and fast

timescales of the mesoscale and wavefields, respectively, and linearizes the advec-

tive terms. After reconstituting the O(1) and O(Ro) equations, the slowly-evolving

mesoscale flow evolves according to the standard quasi-geostrophic equation [Wag-

71



ner et al., 2017], and the rapidly evolving internal wave equations are

∂u

∂t
+ (u · ∇)u+ feff k̂× u = −∇p+ ∂τ

∂z
, (3.3.1.1a)

0 = −∂p
∂z

+ b, (3.3.1.1b)

∂b

∂t
+ u · ∇b+ wN2 = 0, (3.3.1.1c)

∇ · u+
∂w

∂z
= 0, (3.3.1.1d)

[Savage et al., 2020], where u = ûi+ v̂j and w are the horizontal and vertical veloc-

ity, p is pressure (divided by reference density, ρ0), and τ is turbulent (Reynolds)

stress (divided by reference density). Buoyancy is b = −gρ/ρ0, where g is gravity

and ρ is density. The buoyancy frequency squared is N2, which is also the vertical

gradient of mesoscale buoyancy. The equations are written in Cartesian coordi-

nates, where x, y and z are the zonal, meridional, and vertical directions. The

upper and lower boundaries are located at z = 0 and z = −H, respectively. Wave-

wave advection terms have been omitted from (3.3.1.1) because they only force

an Eulerian meanflow and second harmonic, which are not presently of interest

[Wagner et al., 2017, Savage et al., 2020].

The mesoscale flow in (3.3.1.1) is denoted by an overbar. The small Rossby

number approximation eliminates mean vertical velocity, divergence, and strain,

which are O(Ro2) [Chavanne et al., 2012]. The small Richardson number approx-

imation eliminates terms involving mean flow vertical shear, although it does not

require the meanflow to be barotropic. The small Richardson number also ensures

stability with respect to symmetric instability. The retained mean flow terms in

(3.3.1.1) produce two effects: (i) advecting the internal waves and (ii) altering the

effective inertial frequency

feff = f0 + βy + ζ/2, (3.3.1.2)

through the vertical component of mesoscale vorticity, ζ. The effective inertial

frequency also depends on the reference inertial frequency, f0, and the latitudinal

gradient in the inertial frequency, β.

To focus our study on NIW generation via wind stress curl, β refraction, and

ζ refraction, we select an idealized setting similar to D’asaro [1995] to eliminate
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several effects that primarily affect internal wave propagation. First, we limit our

study to a mesoscale flow that is zonal, barotropic, steady, and only varies in

the meridional direction u(x, y, z, t) = u(y)̂i. Eliminating vertical variability in

mesoscale advection and vorticity eliminates internal wave scattering from low to

high vertical modes by the mesoscale [Dunphy and Lamb, 2014, Dunphy et al.,

2017, Savage et al., 2020]. Next, we ignore topographic variability to eliminate

vertical mode scattering by mid ocean ridges and continental slopes [Buijsman

et al., 2020, Kelly et al., 2021]. Lastly, we neglect all variability in the zonal

direction (∂/∂x ≈ 0) to reduce the flow to two dimensions and eliminate mesoscale

advection.

With the above simplifications, the equations of motion become

∂u

∂t
+ feff k̂× u = −∂p

∂y
+
∂τ

∂z
, (3.3.1.3a)

0 = −∂p
∂z

+ b, (3.3.1.3b)

∂b

∂t
+ wN2 = 0, (3.3.1.3c)

∂v

∂y
+
∂w

∂z
= 0, (3.3.1.3d)

where the mesoscale only appears in the vorticity (ζ = −∂u/∂y) that determines

feff .

We represent the internal waves as a sum of vertical normal modes [Gill and

Clarke, 1974], which are conveniently uncoupled in our idealized setting,

u(y, z, t) =
∞∑
n=1

un(y, t)ϕn(z), (3.3.1.4a)

p(y, z, t) =
∞∑
n=1

pn(y, t)ϕn(z), (3.3.1.4b)

where un and pn are the modal amplitudes, n is the vertical mode number, and

ϕn(z) is the vertical mode [Kelly, 2016]. The vertical modes are orthogonal

1

H

∫ 0

−H

ϕmϕndz = δmn , (3.3.1.5)

and determined, along with the eigenspeeds, by solving the Sturm-Liouville prob-
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lem

d2Φn

dz2
+
N2

c2n
Φn = 0 with Φn(0) = Φn(−H) = 0 , (3.3.1.6)

where ϕn = dΦn/dz and cn(x) is the mode eigenspeed. The rigid-lid approximation

in (3.3.1.6) has almost no effect on internal wave dynamics, although it may lead to

inconsistencies if it is used when analyzing output from models with a free surface

[Kelly, 2016].

Multiplying (3.3.1.3) by ϕn and depth averaging produces the modal equation

of motion

∂un

∂t
+ feff k̂× un = −∂pn

∂y
+ τw

n , (3.3.1.7a)

∂pn
∂t

= −c2n
∂vn
∂y

. (3.3.1.7b)

The variable τw
n is given by the projection of an arbitrary wind stress, τw(x, z, t),

onto modes, ϕn(z), as

τw
n =

1

H

∫ 0

−H

∂τw

∂z
ϕndz. (3.3.1.8)

In general, the vertical structure of the wind stress profile is nontrivial, evolves in

time, and strongly effects the observed dynamics [D’Asaro et al., 1995]. Strong

forcing alters the ML and TL depths through turbulent entrainment and mixing

[Price et al., 1986]. Recent work by Stokes et al. [2023] highlights the importance

of stress profiles in determining shear production in the OSBL and the amount of

energy going into high vertical modes.

The traditional integrated layer ‘slab’ model [Pollard and Millard, 1970, Plued-

demann and Farrar, 2006] parameterizes wind forcing through a constant stress

divergence in the ML (z > −Hmix) and numerous damping processes through a

catch-all linear (Rayleigh) drag, r [Plueddemann and Farrar, 2006]. This formula-

tion is useful as the integral in (3.3.1.8) can be solved in closed form so that the

stress projection is

τw
n =

1

H

∫ 0

−Hmix

τw

Hmix

ϕndz −
1

H

∫ 0

−H

ruϕndz

= αnτw − run , (3.3.1.9)
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where τw(y, t) is wind stress and αn = ϕn(0)/H determines the effective forcing on

each vertical mode. Alternative stress profiles can also be specified, either through

parameterizations, turbulence closure models, or observations, which will change

the value of αn. Stokes et al. [2023].

Since all vertical modes are uncoupled, we can solve (3.3.1.7) for each individual

mode. The resulting solutions only differ due to eigenspeed (c2n) and forcing (αn).

Thus, we drop modal subscripts in the remainder of this analysis and analyze a

single arbitrary mode, which propagates as a linear shallow water wave.

In the analysis of mean flows, it is standard to separate the acceleration (due

to Coriolis) into an Ekman component which is balanced by stress divergence, and

a geostrophic component which is balanced by the pressure gradient. Here we

generalized this procedure to time varying flows and define(
∂

∂t
+ r

)
uF + feff k̂× uF = ατw, (3.3.1.10a)

∂u′

∂t
+ feff k̂× u′ = −∂p

∂y
(3.3.1.10b)

∂p

∂t
+ c2

∂v′

∂y
= −c2 w

H
, (3.3.1.10c)

where F subscripts and primes indicate forced (Ekman) and wave (geostrophic)

components of the flow [Kelly, 2019]. We have also re-defined the vertical velocity,

w = H∂vF/∂y, as the ‘inertial pumping’ that arises due to horizontal variability

in the transport of the forced flow. We note that the forcing due to w
H

is actually

independent of depth, so (3.3.1.10) only depends on H through the modal forcing

coefficient, α.

3.3.2 Inertial pumping

(3.3.1.10a) is a 1D damped forced oscillator that can be solved at each hori-

zontal location [e.g., Pollard and Millard, 1970, Alford, 2001, Plueddemann and

Farrar, 2006, Kelly, 2019]. The convergence and divergence of the currents creates

inertial pumping that generates near-inertial waves. Inertial pumping depends on

the wind stress, β and ζ. The wind stress associated with atmospheric storms is

a particularly effective inertial pump. [Gill, 1984, D’Asaro et al., 1995, Brizuela
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et al., 2022]. Gill [1984], D’Asaro et al. [1995]; and others have shown it reasonable

to approximate a fast moving storm as an impulse forcing event. For a simplified

model, we represent the wind stress associated with a storm as an impulse of

Gaussian zonal wind stress centered at y = 0, with width L,

τw(y, t) = A exp

(
−y2

2L2
storm

)
δ(t)̂i (3.3.2.1)

where A = τstorm∆Tstorm is the wind stress multiplied by the storm duration. For

reference, D’asaro [1995] used τstorm = 2.3 Pa, ∆Tstorm = 0.5 days, and Lstorm = 280

km to replicate the inertial response during the Ocean Storms experiment [note

that D’asaro [1995] used a different width convention and prescribed
√
2Lstorm =

400 km].

We also include a mesoscale eddy with vorticity

ζ(y) = ζ0 exp

(
− y2

2L2
eddy

)
, (3.3.2.2)

which is centered at y = 0 and has an root-mean-squared width of Leddy. In the

Ocean Storms case, we use a nominal mesoscale eddy where ζ ∼ 0.02f0 and the

eddy diameter is 100 km, so that Leddy = 100/(2π) For reference the dipole vortex

observed by Thomas et al. [2020], had ζ0 = 0.3f0 and Leddy ≈ 70 km.

Inserting this wind stress and vorticity into (3.3.1.10a) and solving for the

meridional velocity produces

uF (y, t) = αA cos(fefft) exp

(
−y2

2L2
storm

− rt

)
Θ(t) (3.3.2.3a)

vF (y, t) = −αA sin(fefft) exp

(
−y2

2L2
storm

− rt

)
Θ(t) (3.3.2.3b)

where Θ(t) is the Heaviside function. The inertial pumping, w = H∂vF/∂y is then

w(y, t) =

[
y

L2
storm

sin (f0t)− βt cos ((f0 + βy)t)

+
ζ0y

2L2
eddy

exp

(
− y2

2L2
eddy

)
t cos (fefft)

]

× αHA exp

(
− y2

2L2
storm

− rt

)
Θ(t) , (3.3.2.4)
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Figure 3.4: Total inertial pumping is shown for the OS95 and NISKINe test cases in
the top and bottom panels, respectively. Conditions for the numerical simulations
are given in Table 1. Inertial pumping is dominated by β and strongly enhanced
by ζ in OS95. In the NISKINe case, inertial pumping is dominated by ζ.

where the first term is due to the wind stress curl, the second term β refraction,

and the third term ζ refraction. Note that at y = Leddy, the third term is maximum

and equal to ζ0/2Leddyt cos (fefft). That is, ζ0/2Leddy acts like an effective β. Each

component [term] of w is shown individually in Figures 3.5 and 3.6 for 30 inertial

periods in the OS95 and NISKINe, respectively. The net inertial pumping (e.g.

3.3.2.4) for either case is shown in Figure 3.4.

In the time domain, inertial pumping due to wind stress alone simply oscillates

near the inertial frequency, with a spatial pattern that matches the storm. For a

Gaussian storm, the wind stress curl has a dominant wavelength of 2πLstorm. β

refraction leads to a wavelength that shrinks in time, so that inertial pumping looks

like a spatially periodic wave-maker being dragged toward the equator. ζ refraction

is similar to β refraction, except the wavelength shrinks at a rate proportional to

the vorticity gradient and it looks like a wave-maker being dragged from cyclonic
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to anticyclonic regions (i.e., from regions of high to low feff).

Inertial pumping forces the wave equation (3.3.1.10c). The forcing is most ef-

fective at generating internal waves when it lies along the dispersion curve. When

ζ and β are not too large (see next section), the dispersion relation can be approx-

imated as

ω2 = f 2 + c2l2 (3.3.2.5)

[Pedlosky, 2003], where ω is the frequency and l is the meridional wavenumber.

One can then compare the power spectral density of the three components of w

in (3.3.2.4) to the dispersion curve. We show these spectra alongside mode-1 and

mode-4 dispersion curves for the OS95 and NISKINe cases in Figures 3.5 and

3.6, respectively. For low modes, β and ζ refraction can cause forcing at high

wavenumbers that lie below the dispersion curve. That is, the high wavenumber

forcing occurs too close to the inertial frequency to excite internal waves. This

forcing may excite higher modes, which have smaller eigenspeeds and flatter dis-

persion curves, but high-mode generation is ultimately limited by α, which is set

by the vertical profile of stress and typically decreases rapidly with mode number

[Stokes et al., 2023]. For example, if the wind is blowing over a very deep ML there

is very little high mode forcing, even if the mesoscale vorticity produces variability

at the right wavelengths for high-mode generation.

3.3.3 Wave generation and propagation

The equations governing wave dynamics in (3.3.1.10) are identical to those gov-

erning internal-tide generation under the weak-topography approximation [Llewellyn

Smith and Young, 2002], except w is driven by convergence and divergences in a

wind driven flow rather than the barotropic tide flowing up and down topography

and the equations depend on feff , which varies in y, instead of a constant f0 (i.e.,

the f -plane approximation). The wave equations may be combined into a single
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Figure 3.5: Inertial pumping decomposition (panel a: wind-stress curl, panel b:
β-refraction, panel c: ζ-refraction) is shown for parameter space associated with
OS95 (see the Ocean Storms column of Table 1). The simulation runs for 200
inertial periods; the first 10 are shown (x-axis). Meridional distance (y) is plotted
on the y-axis, with negative values representing southward displacements from the
origin, and positive values northward displacements. The bottom row, panels d-
f, show the power spectral density (PSD) associated with each component of the
inertial pumping; wind-stress curl, β-refraction, and ζ-refraction, respectively. The
mode-1 and mode-4 dispersion curves are plotted as solid and dashed black lines,
respectively. Internal waves are generated where non-negligible PSD overlaps with
the dispersion curve. Note the different y-axis and colorbar bounds in the inertial
pumping decomposition plots (top row).
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Figure 3.6: Inertial pumping decomposition (panel a: wind-stress curl, panel b:
β-refraction, panel c: ζ-refraction) is shown for parameter space associated with
NISKINe (see the NISKINe column of Table 1). The simulation runs for 200
inertial periods; the first 10 are shown (x-axis). Meridional distance (y) is plotted
on the y-axis, with negative values representing southward displacements from the
origin, and positive values northward displacements. The bottom row, panels d-
f, show the power spectral density (PSD) associated with each component of the
inertial pumping; wind-stress curl, β-refraction, and ζ-refraction, respectively. The
mode-1 and mode-4 dispersion curves are plotted as solid and dashed black lines,
respectively. Internal waves are generated where non-negligible PSD overlaps with
the dispersion curve. Note the different y-axis and colorbar bounds in the inertial
pumping decomposition plots (top row).
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equation (
∂2

∂t2
+ f 2

eff

)2
∂p

∂t
−
(
∂2

∂t2
+ f 2

eff

)
c2
∂2

∂y2
∂p

∂t

+c2
∂f 2

eff

∂y

∂

∂y

∂p

∂t
= −

(
∂2

∂t2
+ f 2

eff

)2

c2
w

H
, (3.3.3.1)

[Pedlosky, 2003]. These equations are nearly a forced Klein-Gordon equation,

except the third term has been added due to variability in the effective inertial

frequency. We refer to (3.3.3.1) as the extended Klein-Gordon (eKG) equation.

On an f-plane without a mean flow, ∂f 2
eff/∂y = 0, and the third term on the

right hand side of (3.3.3.1) vanishes. In this case, we recover the standard Klein-

Gordon (KG) equation(
∂2

∂t2
+

(
f0 +

ζ

2

)2
)
∂p

∂t
− c2

∂2

∂y2
∂p

∂t
= −

(
∂2

∂t2
+

(
f0 +

ζ

2

)2
)
c2
w

H
, (3.3.3.2)

as derived, and solved, by Llewellyn Smith and Young [2002] to describe inter-

nal tide generation. This equation produces the traditional inertia-gravity wave

dispersion relation for shallow water waves.

Extending the Klein-Gordon internal tide generation formalism to de-

scribe NIW generation

Llewellyn Smith and Young [2002] solved (3.3.3.2) using vertical velocities (w)

generated by a spatially-uniform oscillating barotropic tide (u0) over Gaussian and

Witch of Agnesi ridges to model the conversion of the barotropic tide to internal

tides (‘conversion’ is equivalent to ‘internal wave generation’). To apply these

results, we must find the wind stress τ (x, t) that produces vertical velocities equal

in magnitude as those generated in the tidal problem. If the wind stress is purely

zonal, oscillates in time, and only varies in the meridional direction then we can

write τw(x, t) = τx(y)e
−iωt̂i. Substituting this into (3.3.1.10a) produces the forced

velocities

uF (y, t) =
−iω

ω2 − f 2
τxe

−iωt (3.3.3.3a)

vF (y, t) =
f

ω2 − f 2
τxe

−iωt (3.3.3.3b)
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The vertical velocity is obtained from (3.3.1.3d) as

w(y, t) =
−1

ω2/f 2 − 1

∂

∂y

(
τx
f

)
e−iωt . (3.3.3.4)

Evidently, a wind-stress curl is analogous to a topographic slope. We write both

the topography and wind stress as Gaussian

H = H0 − hmaxe
− 1

2(
y
L)

2

(3.3.3.5a)

τx = τmaxe
− 1

2(
y
L)

2

(3.3.3.5b)

where L is the RMS width of the feature (storm or ridge). The vertical velocities

are now

wtide = − [u0hmax]
y

L2
e−

1
2(

y
L)

2

e−iωt (3.3.3.6a)

wwind =

[
τmax/f

ω2/f 2 − 1

]
y

L2
e−

1
2(

y
L)

2

e−iωt (3.3.3.6b)

where the quantities in brackets can be compared. In the ocean, a reasonable

internal-tide generation problem might involve a 1 cm/s barotropic current flowing

over a 1000 m tall ridge, yielding u0hmax ≈ 10. In comparison, a 0.1 Pa wind stress

at 44◦ latitude with a frequency ω/f = 1.05 also yields τmax/f
ω2/f2−1

≈ 10.

Analytical solution to the Klein-Gordon equation

Analytical solutions to (3.3.3.2) are derived in Llewellyn Smith and Young

[2002] and Pollmann et al. [2019]. The Klein-Gordon equation is valid on an f-

plane, so feff −→ f0. The equation is solved in the frequency domain using the

Fourier transform pair

p̂(ω) =

∫ ∞

−∞
p(t)e−iωtdt, (3.3.3.7a)

p(t) =
1

2π

∫ ∞

−∞
p̂(ω)e−iωtdω , (3.3.3.7b)

for pressure, and an analogous Fourier transform pair for the vertical velocity

source function, ŵ(ω). The Green’s function is

G(y, y′) =
eiκ|y−y′|

2iκ
, where κ ≡

√
1− f 2

0

ω2

ω

c
, (3.3.3.8)
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is the meridional wavenumber of a free wave with frequency ω. Pressure is then

computed as

p̂(y, ω) = −cg
1

2H

∫ ∞

−∞
eiκ|y−y′|ŵ(y′, ω)dy′ . (3.3.3.9)

The key quantity of interest is the near-inertial wave generation, which repre-

sents the power going into the near-inertial wave field. This is generically defined

Ĉ(ω) = −ρ0
1

2

∫ ∞

−∞
(ŵp̂∗ + ŵ∗p̂) dy , (3.3.3.10)

where a star superscript denotes the complex conjugate and the negative sign

indicates that internal wave generation is associated with downward energy flux.

Llewellyn Smith and Young [2002] prove that for a 1D source function (ŵ(ω)),

the spatially integrated conversion (3.3.3.10) simplifies to

Ĉ(ω) = cg
ρ0|ŵ(κ)|2

2H
(3.3.3.11)

which is just the energy associated with inertial pumping times the group speed

cg ≡
√

1− f 2
0

ω2
c . (3.3.3.12)

K-G solutions for a 1D, idealized Gaussian storm:

For an arbitrary storm, we approximate the forcing as an impulse and obtain

the total generation by integrating over all frequencies

C =

∫ ∞

−∞
Ĉ(ω)dω [W/(m− storm length)] . (3.3.3.13)

Solution of (3.3.3.13) requires specification of w. We are interested in NIW gen-

eration by a 1D, idealized, Gaussian storm over a mesoscale eddy field, e.g. C(τ ,

β, ζ), so w is related to the inertial pumping and given in (3.3.2.4). We take the

Fourier transform of the inertial pumping to find the source function ŵ(ω), written

in terms of the variable κ as

ŵ(κ) =
√
2πL

τw

f0

[
ξ2

(1− ir∗ξ)2 − ξ2

]
κe−

1
2
(Lκ)2 , (3.3.3.14)
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where the notations ξ = f0/ω and r∗ = r/f0 are introduced for simplicity. NIW

generation, is found by inserting (3.3.3.14) into (3.3.3.11) and evaluating the inte-

gral in (3.3.3.13).

A crucial distinction between the work presented and that of Llewellyn Smith

and Young [2002] is that the model derived in Llewellyn Smith and Young [2002] is

inviscid. By invoking the Ekman-geostrophic decomposition in the model we have

constructed, the vertical velocity source function which forces the Klein-Gordon

equation is derived from a damped slab, e.g. (3.3.1.10). This allows us to extend

the work of Llewellyn Smith and Young [2002] and employ the analytical Klein-

Gordon solutions in a damped flow regime to validate our damped numerical model

against theory and explore how damping effects internal wave generation.

A natural quantity to compare C with is the total wind work

Π =

∫ ∞

−∞

ρ0H

2
|uF (y, 0)|2dy

=
ρ0H

2
|αA|2

√
πLstorm, (3.3.3.15)

which is just the meridional integral of the forced flow energy at t = 0, calculated in

the time domain. Note that for a specified stress profile, wind work only depends

on the storm width, wind forcing, and bottom depth. Stress profile effects the

wind work through modulation of the variable α [Stokes et al., 2023].

The fraction of energy dissipated by the forcing flow

q = 1− C

Π
, (3.3.3.16)

is expected to vary greatly because C is a sensitive function of β, ζ, f0 and r

(through w), while Π is not. This variable is analogous to the ‘locally dissipated

fraction,’ also denoted q, discussed by Alford [2020b].

3.4 Numerical Experiments

We use the eKG model to investigate how the interplay between forcing, damp-

ing, and the mesoscale impacts near-inertial internal wave generation. We begin by

comparing our model output with analytical K-G solutions from Llewellyn Smith
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and Young [2002] to evaluate agreement between theory and numerics. This exer-

cise highlights how the strength of damping affects the numerical solutions. Follow-

ing model validation, the OS95 and NISKINe test cases are explored with model

runs and spectral analysis to assess the energetic volume NIW generation and

scales of the generated waves. These case studies provide contextual visualization

of NIW generation and propagation under β-dominated and ζ-dominated regimes,

respectively. Finally we investigate how storm size, β, and ζ are coupled to NIW

generation in a generalized numerical experiment where storm size is varied with

and without mesoscale vorticity, on f- and β-planes.

3.4.1 Numerical solutions

To calculate the NIW generation and propagation associated with synoptic

storm events, we solve (3.3.3.1) numerically. The inertial pumping, w, forces

(3.3.3.1) and must be calculated first. For a 1D meridional grid, this can be done

directly through (3.3.2.4), producing a time-variable forcing map (e.g. Figure 3.4).

This 1D spatiotemporal map of w is inserted into (3.3.3.1), which is solved on the

grid using third-order Adams-Bashforth and fourth order Adams-Moulton time-

stepping algorithms and time constants consistent with regional ocean modeling

software [ROMS; Shchepetkin and McWilliams, 2005].

3.4.2 Model validation

To validate our model, the analytical K-G solution is calculated for the OS95

case on an f-plane with variable damping (recall that the K-G equation is not valid

on a β-plane). The analytical and numerical solutions agree with respect to NIW

generation (C) and the local dissipation (q), shown in the top and bottom panels

of Figure 3.7, respectively.

Choice of f - or β-plane approximations has a substantial impact on NIW gen-

eration in the case of the OS95 storm. As the storm size decreases (i.e. Figure

3.14), the f -plane and β-plane curves for C and q converge. Because the eKG

model allows for analysis on a β-plane and recovers the analytical results on an
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Figure 3.7: Near inertial wave generation (C, top panel) and the associated local
dissipation (q, bottom panel) are calculated for parameters associated with the
Ocean Storms experiment (OS95; purple lines. See Table 1 for parameter details.
Lstorm = 13 LRo ∼ 280 km), without consideration of mesoscale vorticity on f-plane
and β-plane approximations (solid and dashed lines, respectively). The Rossby
radius (LRo = 21.1 km) is calculated for the Ocean storms mode-1 eigenspeed,
c = 2.28 m/s. Calculations are additionally performed for small and large storms
(Lstorm = 2 LRo ∼ 42 km, green lines; Lstorm = 20 LRo ∼ 424 km, black lines)
for comparison. The analytical Klein-Gordon solution is shown for the OS95 case
with a purple dashed line.
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f -plane for small storms, we conclude that our model is valid for analysis of NIW

generation on a β-plane.

Including ζ is appropriate for both the KG and eKG equations, because ζ does

not impact the governing equations from which these are derived. ζ simply modifies

the effective Coriolis parameter, feff , and the forcing function, w Therefore ζ and

can be considered without issue in both f- and β-plane approximations [Reznik,

2010].

3.4.3 Model sensitivity to linear damping

We explore the effect of damping on NIW generation and dissipation, on an f-

plane and a β−plane for three storm sizes, ignoring mesoscale vorticity (i.e. ζ = Ro

= 0). Lstorm = 13LRo is the middle storm size, corresponding to OS95 observations

[D’Asaro et al., 1995]. Lstorm = 2 LRo and Lstorm = 20 LRo are selected for small

and large storm test cases, respectively. Results from this experiment are shown

in Figure 3.7. To supplement these results, we keep storm size and strength fixed

using the OS95 parameter space, and then allow the damping parameter to vary

through a broad range, from r−1 = 1 day to r−1 = 5 years. Results from this

experiment are shown in Figure 3.8.

The study of response to variable damping as storm size and strength are fixed

allows us to establish the ‘inviscid’ range of r−1 ≥ 1 year, as generation changes

very little between r−1 = 1 year and r−1 = 5 years. In the inviscid limit (i.e.

r = 0, r−1 −→ ∞), all the wind work is radiated on both the f-plane and beta-

plane, and local dissipation becomes negligible (i.e. q −→ 0). This trend is seen

in the bottom panel of Figure 3.7. Literature estimates of damping range from

r−1 ∼ 3-14 days, where a damping parameter of two weeks is thought of as nearly

inviscid [Plueddemann and Farrar, 2006]. In Figure 3.8, we see that for the OS95

case, varying r−1 from 2 weeks to the inviscid limit causes an associated increase

in NIW generation by a factor of ∼ 2.5.

The effect of variable damping on generation is even more strongly enhanced

within the ‘realistic’ range of damping values, where r−1 ∼ 3-14 days. In the OS95

case, there is an order of magnitude of variation in C over this range. Looking at
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Figure 3.8: Near inertial wave generation (C), is plotted against inertial periods
for a range of linear damping values under the OS95 parameter space on a β-plane.

the curve for q in the bottom panel of Figure 3.7, we see that damping has a huge

impact on the local dissipation as well. For the ‘nearly inviscid’ case of r−1 = 14

days, about 30 percent of the NIW energy is dissipated locally for small storms

and 60 percent of the NIW energy is dissipated for large storms.

These results are striking because previous studies of near-inertial wave gener-

ation have focused on the perfectly inviscid case. The results here indicate that

even a minute amount of damping has a large impact on internal-wave generation

and local dissipation. Without endorsing the specific choice of linear drag that was

used here, we caution that a model’s damping parameterization greatly impacts

near-inertial wave generation.

3.4.4 OS95 and NISKINe case studies

We now apply the eKG model to the OS95 and NISKINe settings. Stratifica-

tion, inertial currents, and vertical wavenumber spectra for OS95 and NISKINe

are shown in Figure 3.9. OS95 is much more stratified than NISKINe, by about

an order of magnitude in N2. The storm associated with OS95 produced stronger

inertial currents, by more than a factor of 2. These motions are intensified in the

low modes, likely due to the deeper ML of OS95 (35 m in OS95, 10 m in NISKINe).

The relative importance of high-vs-low modes is shown in the vertical wavenumber

88



Figure 3.9: Panel a: Stratification for OS95 and NISKINe are shown with the
black and grey lines, respectively. Panel b: Total inertial currents for OS95 are
shown with the black line, with nominal ML currents of ∼ 60 cm/s. A modal
decomposition of these currents is displayed for radiative modes (1-3) and dissipa-
tive modes (4-∞) with the blue and red lines, respectively. The inertial currents
have comparable contributions from the radiative and dissipative modes. Panel
c: Total inertial currents for NISKINe are shown with the black line, with nominal
ML currents of ∼ 25 cm/s. A modal decomposition of these currents is displayed
for radiative modes (1-3) and dissipative modes (4-∞) with the blue and red lines,
respectively. The inertial currents are dominated by the dissipative (high-mode)
contributions. Panel d: Vertical wavenumber spectra are shown for OS95 and
NISKINe with the blue and red lines, respectively.

spectra as well; the OS95 dynamics can be resolved with ∼ 15 modes while NISK-

INe requires > 30 modes. The differences in these cases provide an instructive set

of observations with which to explore the utility of our numerical model.

Ocean Storms Experiment

We assess the dynamics associated with the large extratropical cyclone observed

by D’Asaro et al. [1995] in the North Pacific during October 1989 (e.g. the Ocean

Storms experiment, hereafter OS95). We approximate the impact of the storm

as an impulse Gaussian jet with RMS width of 283 km (see Fig. 3.2). For a
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characteristic length scale, we use the mode-1 Rossby radius, given by cn/f , which

is Ro1 = 21.2 km (Table 1). The inertial period at the latitude of observations (47.5

N) is 16.2 hours, which serves as the characteristic time scale of the analysis. We

have established that dynamics are the same between different modes, except that

the Rossby radius shrinks as the eigenpseed, cn, becomes smaller. Here, we focus

our study on the evolution of mode-1, the most dispersive mode, with reference to

modes 4 and 10 for context.

In our simulations, the storm is modeled as an impulse and prescribed analyt-

ically using (3.3.2.4). We use a 2 km grid with 6000 grid points. For consistency

with Stokes et al. [2023] we set damping to r−1 = 7 days. Performing calculations

under both the β-plane approximation and the f -plane approximation allows us

to estimate the NIW generation associated with β-refraction. The OS95 observa-

tions occur in an area of weak mesoscale eddies with near-surface RMS vorticity

of about 0.02 f0 [D’asaro, 1995]. To explore possible effects of NIW generation via

ζ-refraction, we include the option to superpose a mesoscale eddy in our simulation

domain. We set the nominal eddy diameter to 100 km with a Rossby number Ro

= 0.02 for consistency with the length scales of a typical mesoscale eddy [Rhines,

2001] and observed local vorticity in OS95 [D’asaro, 1995].

Model output for mode-1 NIW generation associated with the OS95 test case is

shown in Figure 3.10. Throughout a majority of the domain, the inertial pumping

signal is dominated by ∇× τ and β. However, local enhancement by ζ contributes

strongly to the inertial pumping in the neighborhood of the eddy. Inertial pumping

due to ∇ × τ and β is maximized 100 km north or south of the storm’s core,

negligible at locations outside of the storm, and decays to negligible values for

times greater than 50 inertial periods after the storm. This is consistent with

the mode-1 NIW generation, which suggests that NIW generation ceases after 30

inertial periods as the forced velocities decay through drag. This decay limits the

generation of extremely long near-inertial waves with extremely slow group speeds.

The group velocity of the generated waves can be extracted from the slope of the

cone of pressure fluctuations. Phase velocity is extracted as the slope of individual

bands of constant pressure. As the waves propagate southwards, group velocity
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Figure 3.10: Model output for mode-1 NIW generation associated with the Ocean
Storms Experiment test case is shown. For all cases, time is given as inertial
periods on the x-axis. Top panel: Inertial pumping (w) is shown as a function of
distance [km north/south, y-axis] and time. Peak vertical velocities of 2.6× 10−4

cm/s are observed after 10 inertial periods, beyond which inertial pumping decays
exponentially. Middle panel: Pressure fluctuations associated with the NIWs are
shown as a function of distance [km north/south, y-axis] and time. Group velocity
is extracted as the slope of the cone, and phase velocity is extracted as the slope
of individual isobars. Bottom panel: Total NIW flux (generation) is calculated
for the domain. After ∼ 30 inertial periods, generation ceases.
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Figure 3.11: Modal pressure spectra and the corresponding dispersion curves are
shown for modes 1, 4, and 10 using OS95 parameters. Pressure spectra are calcu-
lated from model runs after 100 inertial periods.
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increases and phase velocity decreases, consistent with the standard inertia-gravity

wave dispersion relation.

The NIW generation occurs over 30 inertial periods before the inertial pumping

signal is damped out and generation associated with the impulse storm is over.

Mode-1 and mode-4 NIW generation related to individual sources (∇× τ , β, and

ζ) can be inferred from the spectra of Figure 3.5. NIW generation is enhanced

where the modal dispersion curve passes through regions of elevated power spectral

density in frequency/wavenumber space (mode-1 and mode-4 dispersion curves

are shown). This provides cutoff wavenumbers for each generation mechanism

and sets the horizontal scales of the generated waves. Higher mode dispersion

relations result in flatter lines in frequency wavenumber space, and thus allow for

the generation of waves with smaller horizontal scales. However, the amplitude of

the vertical velocity for each mode is determined by the stress profile [through α in

(3.3.2.4)], and tends to decrease rapidly at higher modes, which ultimately limits

the generation of waves at small horizontal scales.

Cutoff wavenumbers can be more rigorously quantified by taking the power

spectral density of the pressure fluctuations in frequency-wavenumber space and

comparing these spectra to the modal dispersion curves. We calculate these spec-

tra for modes 1, 4, and 10 in Figure 3.11, alongside the dispersion curves. View-

ing the pressure spectra in tandem with the modal distribution provides a three-

dimensional view of the wave-field characteristics. For example, in the case of

OS95, the vertical wavenumber spectra is asymptotic to zero beyond mode-10 (Fig

3.9, bottom panel). Looking at the mode-10 pressure spectra shows that the PSD

decays rapidly for wavenumbers larger than ∼ 25 × 10−5. This defines a lower

bound on the lateral scales of NIWs that can be generated from the OS95 forcing

case, and we find minimum wavelengths of ∼ 25 km. We note that this technique

provides more precision with respect to estimating cutoff wavenumbers for specific

modes, but comes at the cost of losing the ability to isolate individual forcing

mechanisms from one another.
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NISKINe Dipole Vortex

Observations from the NISKINe experiment in the Iceland basin revealed a

strong, time-persistent pair of counter-rotating eddies that were termed the ‘dipole

vortex’ [Thomas et al., 2020]. This structure featured variability of the Rossby

number on the order of 0.1 over distances of ∼ 10 km, with total dipole size on the

order of ∼ 100 km [Asselin et al., 2020]. The resulting dipole feature has a Rossby

number Ro ∼ 0.3.

Strong storms are common in the Iceland basin. In an investigation of the power

input to near inertial motions in the ML, Klenz et al. [2022] discusses observations

of one such storm in the Iceland Basin. Using Lagrangian Minimet drifters, the

peak wind stress associated with the storm was observed to have τmax ∼ 0.8 Pa

[Centurioni, 2018, Klenz et al., 2022]. The storm size is not explicitly quantified in

the study, but wind maps show size comparable to the storm observed by D’Asaro

et al. [1995]. This storm was weaker than OS95, with peak wind stress of 0.8 Pa, but

is still a substantial atmospheric forcing event, was shown by Klenz et al. [2022] to

generate strong inertial oscillations, and was hypothesized to be an effective NIW

generation event.

We construct a numerical study of NISKINe which draws upon the observations

discussed by Thomas et al. [2020] and Klenz et al. [2022]. In this case study, we

superpose an idealized storm on a simplified dipole vortex consistent with Asselin

et al. [2020]. We employ the same impulsive Gaussian storm structure and size as

that used in our analysis of OS95, but impose the wind stress observed by Klenz

et al. [2022]. For vorticity, we approximate the structure as two Gaussian eddies in

tandem, with opposing sign of ζ. The local vorticity is positive in the northern eddy

and negative in the southern eddy, with a central latitude of 57.8◦ N. Note that

in the observations, the dipole is oriented with major axis running from northwest

to southeast, but for our 1D meridional model, we neglect this zonal rotation. For

NISKINe, c1 ∼ 1.59, yielding a mode-1 Rossby radius of Ro1 = 12.9 km.

Model output for mode-1 NIW generation associated with the NISKINe test

case is shown in Figure 3.12. Here, the inertial pumping due to ζ is ∼ two orders

of magnitude stronger than that of ∇×τ and β [Asselin et al., 2020]. The spectral

94



Figure 3.12: Model output for mode-1 NIW generation associated with the NISK-
INe Dipole Vortex test case is shown. For all cases, time is given as inertial periods
on the x-axis. Top panel: Inertial pumping (w) is shown as a function of dis-
tance [km north/south, y-axis] and time. Peak vertical velocities of 8.6×10−4 m/s
are calculated after 15 inertial periods, beyond which inertial pumping decays.
Middle panel: Pressure fluctuations associated with mode-1 NIWs are shown
as a function of distance [km north/south, y-axis] and time. Group velocity is
extracted as the slope of the cone, and phase velocity is extracted as the slope of
individual isobars. Bottom panel: Total NIW flux (generation) is calculated for
the domain. After ∼ 55 inertial periods, generation ceases.

95



Figure 3.13: Modal pressure spectra and the corresponding dispersion curves are
shown for modes 1, 4, and 10 using NISKINe parameters. Pressure spectra are
calculated from model runs after 100 inertial periods.
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density of mesoscale forcing (Figure 3.6) implies that the contribution to NIW

generation associated with ζ for all modes is also roughly two orders of magnitude

greater than that of ∇×τ and β. We note that although the magnitudes of inertial

pumping we see in the NISKINe case are stronger by an order of magnitude or

more, the OS95 case generates nearly twice the energetic volume of mode-1 waves.

NIW generation is dominant in the neighborhood of the dipole vortex, where

wave frequencies are strongly modified by the local Rossby number. Packets of

waves generated near the core of the cyclonic eddy can travel poleward for great

distances due to this shift in inertial frequency. Model output shows poleward

propagating waves reaching as far as 1500 km north of the generation site, consis-

tent with Fu [1981]’s turning-latitude theory. This presents a considerable contrast

with the Ro=0.02 eddy in OS95, where poleward NIW propagation is negligible.

The individual mode-1 waves that are generated at the dipole, however, have

much larger lateral scales than the feature itself. This can be explained by compar-

ing the power spectral densities of ζ−forcing with the mode-1 dispersion curve (Fig.

3.6). The forcing spectral peak lies in the super-inertial band on l ∼ 5 × 10−5,

which corresponds to length scales on the order of the dipole size. Despite the

peak forcing at these scales, the mode-1 dispersion curve increases quickly and

leaves the peak forcing regime as wavenumber increases, with little contribution

for l ≥ 2× 10−5. This trend is mirrored in the pressure spectra. For contrast, the

flatter mode-4 dispersion curve is coincident with the strongest ζ−forcing through-

out a broader range of wavenumbers.

The NISKINe case study has a rich modal structure with substantial high-mode

activity showing on the vertical wavenumber spectra (Fig. 3.9, bottom panel).

While the mode-1 waves which exceed the dipole in lateral scale, we find that the

forcing in the NISKINe case preferentially generates waves that decrease in lateral

scale as mode increases. In the pressure spectra, this shows as the spectral peak of

l ∼ 20×10−5 for mode-4 and the peak of l ∼ 45×10−5 for mode-10. This is a very

different picture from the OS95 case, where a maximum wavenumber was reached

by mode-4, which was unchanged through mode-10 and beyond, where generation

ceases.
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3.4.5 Sensitivity of generation to storm size and mesoscale

vorticity

Mode-1 NIW generation, local dissipation, and wind work are shown for a

range of storm sizes in Figure 3.14. The ‘default’ storm parameters in the figure

are again set for consistency with OS95 (see Table 1). Performing analyses on both

an f-plane and a β-plane allows us to place quantitative bounds on the threshold

storm size beyond which β-refraction must be considered. This is determined by

the minimum storm size that causes the generation curves calculated on f- and

β-planes to diverge. We find a bounding storm size of approximately 2 Rossby

radii in terms of the OS95 parameter space, which is equivalent to an RMS storm

width of ∼ 40 km.

As storm size increases, the energetic volume of NIW generation monotonically

increases. However, as RMS storm width increases beyond ∼ 70 km (3.5 LOS95
Ro ), C

decreases if β is not considered, regardless of Rossby numnber. This implies that

the wind stress curl becomes less effective at generating NIWs for large storms. For

the OS95 case, we find that β’s contribution to NIW generation is nearly 80%, with

∇× τ contributing only ∼ 15% of the total NIW generation. This is qualitatively

consistent with D’Asaro et al. [1995], but the decomposition introduced in the

work presented allows us to extend D’Asaro et al. [1995]’s results by quantifying

the individual productivity of the three NIW generation mechanisms considered.

As with the relationship of β to storm size, there exists a threshold storm size

beyond which ζ plays an important role in NIW generation. Recall that we are

studying the impact of a nominal mesoscale eddy with diameter of 100 km and

Ro = 0.1 [Rhines, 2001]. Our numerical experiment suggests that once the size

of the storm exceeds the size of the eddy, the impact of ζ becomes non-negligible.

Unlike β, here we find that ζ does not continue to increase generation indefinitely

with increasing storm size. In the case presented, for Lstorm > 6 LOS95
Ro , increases

in C due to ζ attenuate as storm size increases. This appears in the top panel of

Figure 3.14 as the region where the two dashed lines parallel each other, showing

that further increases in C at this point are attributed to β rather than ζ.
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Figure 3.14: Near inertial wave generation (C, top panel), the associated local
dissipation (q, middle panel), and wind work (Π, bottom panel) are calculated for
variable storm size. The base parameter space corresponds to OS95 with ζ = 0.
When mesoscale eddies are considered, the vorticity structure follows a nominal
mesoscale eddy with 100 km diameter and Ro = 0.1 [Rhines, 2001].
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3.5 Discussion

3.5.1 NIWs vs Tides

We have developed a new conceptual model of NIW generation. In this for-

mulation, the NIW generation problem is analogous to internal tide generation,

but the vertical velocities are set by forced dynamics in the oceanic surface bound-

ary layer (OSBL) rather than flow over topography [Llewellyn Smith and Young,

2002]. For a typical parameter space, these fundamentally different forcing mech-

anisms (OSBL and topography) produce comparable vertical velocities (e.g. Sec.

3.3.3.6). Because the vertical velocities provide the forcing in the internal wave

generation equations, which are analogous, a naive assertion would be that the re-

sulting energy contained in these respective internal wave fields should be similar

in magnitude.

The relative importance of internal tides and near inertial internal waves is

an open area of research with a long history [Baines, 1986, Alford et al., 2007].

Internal tidal conversion is well-observed and estimated to contribute 1 ±O(0.1)
TW of power to the global ocean [Baines, 1982, Egbert and Ray, 2000, 2001].

Because tidal forcing is continuous, measurements of internal tides are ubiquitous,

driving down uncertainties in their energetic contributions [Zhao et al., 2016]. On

the contrary, NIWs are forced intermittently by wind events causing observations

of NIWs to be more sparse than those of internal tides [Alford et al., 2016]. Though

the importance of NIWs is incontrovertible, inconsistency of observation, analysis

techniques, and variable resolution of wind measurement/reanalysis all contribute

to the large uncertainties associated with the impact of NIWs on the global ocean’s

energy budget. The analogy presented here allows one to directly compare the

forcing of an NIW generation event with that of internal tide generation, and may

prove useful in constraining the relative importance of these two phenomena. The

mathematical equivalence of the two problems also opens up a suite of tools for

use in the study of NIW generation, as we have used the conversion formula from

Llewellyn Smith and Young [2002] in our analysis.
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3.5.2 The limits on the lateral scales of NIW generation:

We have introduced a method for estimating the lateral scales of NIWs gener-

ated at each mode, summarized as follows. The forced/wave decomposition allows

us to isolate the inertial pumping that results from each source of ML forcing under

consideration (∇×τ , β, and ζ). Taking the power spectral density of the forcing re-

veals where in frequency-wavenumber space NIWs can be generated. One can then

compare the dispersion curve for a particular mode to estimate the wavenumber of

generated waves, and at which frequencies these will occur. Because the forcing is

decomposed by generation mechanism, this reveals the relative importance of each

mechanism, for each generated wave (e.g. by mode, frequency, wavenumber etc).

Taking the power spectral densities of the pressure fluctuations provides a rig-

orous bound on the lateral scale of NIWs that are generated at each mode, but this

technique has the drawback that the pressure spectra cannot be obtained a priori

as in the case of the forcing spectra. That is, forward time-stepping over some

domain must occur in order to obtain the pressure dataset upon which spectral

analysis is performed.

3.5.3 Damping

Results from the parameter sweeps using the eKG model emphasize the care

that must be taken in tuning the damping in a mixed layer model. We have shown

that damping has little impact on wind work, while NIW generation (C) is strongly

effected by damping. One must proceed cautiously when using an inviscid model.

The results of our study suggest that damping scales of r−1 = 1 month may impact

NIW generation by ∼ 20-40 % for small and large storms, respectively, compared to

inviscid results. Compared to standing literature estimates, which assert damping

scales are on the order of r−1 = 3-7 days, inviscid models may overestimate NIW

generation by 50 % or more. These results generally support the notion that tuning

the damping parameterizations in numerical models is of first-order importance to

estimating NIW generation.

Ultimately, the stress profile is a key part of this problem to consider. Recall

that throughout the analysis presented, we have used the damped slab model of
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Pollard and Millard [1970]. This ML model is used for simplicity, so that the

modal forcing (denoted αn here) can be approximated as a constant. In general,

the modal forcing is an integral related to the form of the stress profile. Stokes

et al. [2023] develop a generalized slab model for which the modal forcing can be

calculated using an observed (or assumed) stress profile.

Stokes et al. [2023] show that the stress profile contributes strongly to the

local dissipation which we have absorbed into our catch-all linear damping param-

eter r. Additionally, they show that changing the stress profile shifts the vertical

wavenumber spectra which ultimately effects whether NIWs will dissipate locally

or propagate away from the generation site, which has important implications to

ocean mixing. In the present manuscript, part of the large impact that varying

damping has on NIW generation is directly related to these factors that are ac-

counted for by the damping parameter, such as the shape of the stress profile. We

emphasize the need to refine and improve models and measurements of the stress

and dissipation profiles (τ (z) and ϵ(z)) in the oceanic surface boundary layer.

3.5.4 High-frequency limit of the near-inertial band

It is not clear where the line should be drawn in frequency-wavenumber space

define the high-frequency limit of the near-inertial band. Alford et al. [2016] sug-

gests that the near-inertial band cuts off where ω/f ≤ 1.2, based on the abundance

of observations where this is the case. However, our pressure spectra suggest that

the wind impulse generates a continuum of internal waves. The frequency range

of this continuum is mode dependent, with low-mode waves reaching higher values

of ω/f . In both the OS95 and NISKINe cases, we calculate mode-1 spectra with

frequencies extending through and beyond ω/f = 2. Such large frequencies lie

well outside of the traditional near-inertial band, but because these waves arise

from the ML’s inertial response to wind forcing, it seems fair to refer to them as

near-inertial waves. An open area of research is further investigating where and

when the bandwidth of inertially-generated waves may be directly observable vs.

where and when it is dominated by GM or submesoscale variability.
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3.6 Conclusions

(1) The extended Klein-Gordon (eKG) model developed in this manuscript

provides a new perspective on the NIW generation process. Specifically, we show

that NIW generation can be formulated so that it is exactly analogous to internal

tide generation. This analogy allows us to quantitatively compare forcing and

to use previously developed tools, such as the conversion formula from Llewellyn

Smith and Young [2002] (e.g. 3.3.3.11). One could even use the convolutions

developed by Nycander [2005], but these require greater numerical computations

than simply solving the eKG equations.

(2) The separation of the forcing function and wave response reveals that β−
and ζ refraction can produce high-wavenumber variability that does not generate

waves. This contradicts the common assumption that NIWs are generated at

scales which identically mirror their forcing. For example, D’Asaro et al. [1995]

quantified the growing meridional wavenumber of mixed layer currents as a result of

β−refraction, but this does not guarantee that inertia-gravity waves are radiated at

every observed wavenumber. For the OS95 case our spectral analysis suggest that

once the wavelength reaches about 25 km, mode-1 waves are no longer generated.

More generally, the spectral approach we have introduced constrains the scales of

NIW generation for each mode. Because the vertical energy propagation associated

with internal waves is a function of the total wave generation and the lateral scale of

these waves, this technique may prove to be a useful tool in reducing uncertainties

related to how NIWs impact the global ocean’s energy budget.

(3) Even modest damping can have a major impact on near-inertial wave gener-

ation and local dissipation. Reducing the number of phenomena that are absorbed

into the linear damping parameter will relax the impact of damping variability on

generation and dissipation.
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Eric Barthélemy. Nonlinear shallow water theories for coastal waves. Surveys in

Geophysics, 25(3-4):315–337, 2004.

Changwei Bian, Zhiyu Liu, Yongxiang Huang, Liang Zhao, and Wensheng Jiang.

On estimating turbulent reynolds stress in wavy aquatic environment. Journal

of Geophysical Research: Oceans, 123(4):3060–3071, 2018.

Vincent Bonnin, Emmanuel Bénard, J-M Moschetta, and CA Toomer. Energy-

harvesting mechanisms for uav flight by dynamic soaring. International Journal

of Micro Air Vehicles, 7(3):213–229, 2015.

106



Willem Bouten, Edwin W Baaij, Judy Shamoun-Baranes, and Kees CJ Camphuy-

sen. A flexible gps tracking system for studying bird behaviour at multiple scales.

Journal of Ornithology, 154(2):571–580, 2013.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

Keith E Brainerd and Michael C Gregg. Surface mixed and mixing layer depths.

Deep Sea Research Part I: Oceanographic Research Papers, 42(9):1521–1543,

1995.

Cynthia A Brewer, Geoffrey W Hatchard, and Mark A Harrower. Colorbrewer in

print: a catalog of color schemes for maps. Cartography and geographic infor-

mation science, 30(1):5–32, 2003.

Noel G Brizuela, TM Shaun Johnston, Matthew H Alford, Olivier Asselin, Daniel L

Rudnick, Jim Moum, Elizabeth J Thompson, Shuguang Wang, and Chia-Ying

Lee. A vorticity-divergence view of internal wave generation by tropical cyclones:

insights from super typhoon mangkhut. Authorea Preprints, 2022.

Marc P Buckley and Fabrice Veron. Structure of the airflow above surface waves.

Journal of Physical Oceanography, 46(5):1377–1397, 2016.

Marc P Buckley and Fabrice Veron. The turbulent airflow over wind generated

surface waves. European Journal of Mechanics-B/Fluids, 73:132–143, 2019.

M. C. Buijsman, G. R. Stephenson, J. K. Ansong, B. K. Arbic, J. A. M. Green,

J. G. Richman, J. F. Shriver, C. Vic, A. J. Wallcraft, and Z. Zhao. On the

interplay between horizontal resolution and wave drag and their effect on tidal

baroclinic mode waves in realistic global ocean simulations. Ocean Modelling,

152:101656, 2020.

Eugeny Buldakov, Dimitris Stagonas, and Richard Simons. Extreme wave groups

in a wave flume: Controlled generation and breaking onset. Coastal Engineering,

128:75–83, 2017.

107



Luca R Centurioni. Drifter technology and impacts for sea surface temperature,

sea-level pressure, and ocean circulation studies. Observing the Oceans in Real

Time, pages 37–57, 2018.

E. P. Chassignet, H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan,

A. J. Wallcraft, R. Baraille, and R. Bleck. The HYCOM (HYbrid Coordinate

Ocean Model) data assimilative system. J. Mar. Systems, 65:60–83, 2007.

Cédric P Chavanne, Eric Firing, and François Ascani. Inertial oscillations in

geostrophic flow: Is the inertial frequency shifted by ζ/2 or by ζ? Journal

of Physical Oceanography, 42(5):884–888, 2012.

Clarence D Cone. Thermal soaring of birds. American Scientist, 50(1):180–209,

1962.

E. D’Asaro. The energy flux from the wind to near-inertial motions in the surface

mixed layer. J. Phys. Oceanogr., 15:1043–1059, 1985.

E. D’Asaro. The decay of wind-forced mixed layer inertial oscillations due to the

β effect. J. Geophys. Res., 94:2045–2056, 1989.

E. A. D’Asaro, C. C. Eriksen, M. D. Levine, P. Niler, C. A. Paulson, and P. Van

Meurs. Upper-ocean inertial currents forced by a strong storm. Part I: Data and

comparisons with linear theory. J. Phys. Oceanogr., 25:2909–2936, 1995.

Eric A D’asaro. Upper-ocean inertial currents forced by a strong storm. part ii:

Modeling. Journal of physical oceanography, 25(11):2937–2952, 1995.

RE Davis, R DeSzoeke, D Halpern, and P Niiler. Variability in the upper ocean

during mile. part i: The heat and momentum balances. Deep Sea Research Part

A. Oceanographic Research Papers, 28(12):1427–1451, 1981.

Luc Deike, Nick Pizzo, and W Kendall Melville. Lagrangian transport by breaking

surface waves. Journal of Fluid Mechanics, 829:364, 2017.

108



Markus Deittert, Arthur Richards, Chris A Toomer, and Anthony Pipe. Engineless

unmanned aerial vehicle propulsion by dynamic soaring. Journal of guidance,

control, and dynamics, 32(5):1446–1457, 2009.

Kathleen Dohan and Russ E Davis. Mixing in the transition layer during two

storm events. Journal of Physical Oceanography, 41(1):42–66, 2011.

OA Druzhinin, Yu I Troitskaya, and SS Zilitinkevich. Direct numerical simulation

of a turbulent wind over a wavy water surface. Journal of Geophysical Research:

Oceans, 117(C11), 2012.

M. Dunphy and K. G. Lamb. Focusing and vertical mode scattering of the first

mode internal tide by mesoscale eddy interaction. J. Geophys. Res., 119:523–536,

2014.

M. Dunphy, A. L. Ponte, P. Klein, and S. Le Gentil. Low-mode internal tide

propagation in a turbulent eddy field. J. Phys. Oceanogr., 47:649–659, 2017.

James B Edson, Venkata Jampana, Robert A Weller, Sebastien P Bigorre, Albert J

Plueddemann, Christopher W Fairall, Scott D Miller, Larry Mahrt, Dean Vick-

ers, and Hans Hersbach. On the exchange of momentum over the open ocean.

Journal of Physical Oceanography, 43(8):1589–1610, 2013.

G. D. Egbert and R. D. Ray. Significant dissipation of tidal energy in the

deep ocean inferred from satellite altimeter data. Nature, 405:775–778,

doi:10.1038/35015531, 2000.

G. D. Egbert and R. D. Ray. Estimates of M2 tidal energy dissipation from

TOPEX/POSEIDON altimeter data. J. Geophys. Res., 106:22475–22502, 2001.

Kyle H Elliott, Maryline Le Vaillant, Akiko Kato, John R Speakman, and Yan

Ropert-Coudert. Accelerometry predicts daily energy expenditure in a bird with

high activity levels. Biology letters, 9(1):20120919, 2013.

Robert Edmund Froude, William Froude, and William Thomson. On the soaring

of birds: being a communication from mr re froude in continuation of the extract

109



from a letter by the late mr william feoude to sir william thomson, published

in these “proceedings,” march 19, 1888. Proceedings of the Royal Society of

Edinburgh, 18:65–72, 1892.

Lee-Lueng Fu. Observations and models of inertial waves in the deep ocean. Re-

views of Geophysics, 19(1):141–170, 1981.

Takashi Fujiki, Koji Kawaguchi, Fumikazu Suehiro, and Noriaki Hashimoto. Highly

resolved directional properties of wind waves and swell with various scales.

Coastal Engineering Proceedings, (36):36–36, 2018.

Naoki Furuichi, Toshiyuki Hibiya, and Yoshihiro Niwa. Model-predicted distri-

bution of wind-induced internal wave energy in the world’s oceans. Journal of

Geophysical Research: Oceans, 113(C9), 2008.

Ann E Gargett. Ocean turbulence. Annual Review of Fluid Mechanics, 21(1):

419–451, 1989.

A. E. Gill. Atmosphere-ocean dynamics. Academic Press, 1982.

A. E. Gill. On the behavior of internal waves in the wakes of storms. J. Phys.

Oceangr., 14:1129–1151, 1984.

A. E. Gill and A. J. Clarke. Wind-induced upwelling, coastal currents and sea-level

changes. Deep-Sea Res., 21:325–345, 1974.

Gustavo J Goni, Robert E Todd, Steven R Jayne, George Halliwell, Scott Glenn,

Jili Dong, Ruth Curry, Ricardo Domingues, Francis Bringas, Luca Centurioni,

et al. Autonomous and lagrangian ocean observations for atlantic tropical cy-

clone studies and forecasts. Oceanography, 30(2):92–103, 2017.

AA Grachev and CW Fairall. Upward momentum transfer in the marine boundary

layer. Journal of physical oceanography, 31(7):1698–1711, 2001.

Alan LM Grant and Stephen E Belcher. Wind-driven mixing below the oceanic

mixed layer. Journal of physical oceanography, 41(8):1556–1575, 2011.

110



Laurent Grare, Luc Lenain, and W Kendall Melville. Vertical profiles of the wave-

induced airflow above ocean surface waves. Journal of Physical Oceanography,

48(12):2901–2922, 2018.

Michael C Gregg. The study of mixing in the ocean: A brief history. Oceanography,

4(1):39–45, 1991.

Rahul Gupta, Rohit Gupta, and Dinesh Verma. Application of convolution method

to the impulsive response of a lightly damped harmonic oscillator. International

Journal of Scientific Research in Physics and Applied Sciences, 7(3):173–175,

2019.

F Reed Hainsworth. Induced drag savings from ground effect and formation flight

in brown pelicans. Journal of Experimental Biology, 135(1):431–444, 1988.

Kimio Hanawa and Lynne D Talley. Mode waters. In International Geophysics,

volume 77, pages 373–386. Elsevier, 2001.

A Hedenstrom and FELIX Liechti. Field estimates of body drag coefficient on

the basis of dives in passerine birds. Journal of Experimental Biology, 204(6):

1167–1175, 2001.

Robert W Helber, A Birol Kara, James G Richman, Michael R Carnes, Charlie N

Barron, Harley E Hurlburt, and Timothy Boyer. Temperature versus salinity

gradients below the ocean mixed layer. Journal of Geophysical Research: Oceans,

117(C5), 2012.
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