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ABSTRACT OF THE DISSERTATION

Utilization of Low Dimensional Structure to Improve the Performance

of Nonparametric Estimation in High Dimensions

by

Daniel Joshua Conn

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2018

Professor Gang Li, Co-Chair

Professor Christina Michelle Ramirez, Co-Chair

When the number of covariates is small, nonparametric regression methods serve

a number of useful purposes. In this setting, nonparametric regression methods

often demonstrate better predictive performance than parametric models. This is

because nonparametric methods have the virtue of being able to detect nonlinear

structure and complex interactions. In settings where the sample size is small or

the level of noise is high, it may be the case that parametric models outperform

nonparametric methods. However, even in this setting, nonparametric methods

can be useful for diagnosing problems of model misspecification. Unfortunately,

when the number of covariates is large, the curse of dimensionality, in its many

forms, renders many of the most commonly used nonparametric regression meth-

ods unstable and prone to overfitting. We have developed two methods that, in

some sense, overcome the curse of dimensionality. Both methods implicitly assume

the existence of lower dimensional structure. First, we have developed a variant

of random forests, called fuzzy forests. Fuzzy forests reduce the bias observed in

random forest variable importance measures by clustering covariates into distinct

groups such that the correlation of covariates within a group is high and the cor-
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relation between groups is low. Fuzzy forests is expected to work well when the

true regression function exhibits an additive structure. Second, we have extended

a machine learning method called metric learning to right-censored survival out-

comes. If the true regression function is multi-index, we have shown that a closely

related metric learning estimator achieves a rate of convergence dependent on the

number of indices rather than the number of covariates.
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CHAPTER 1

Introduction

1.1 Introduction

It is widely known that many popular statistical methods fail in high-dimensional

settings. For example, in the context of multiple linear regression, if the number

of covariates (p) is larger than the sample size (n) the least squares estimate of the

regression coefficients fails to be unique. In fields such as genetics it is common to

analyze data sets where the number of covariates is a magnitude larger than the

sample size. This is the so-called p >> n setting. The dimension of a statistical

problem depends not only on the number of covariates and sample size; the di-

mension of a statistical problem also depends on the complexity of the proposed

model. In the context of nonparametric regression, the true regression function

cannot generally be determined by a finite number of parameters. Therefore, even

if p is moderately sized (p = 5 or p = 10), the sample size required to accurately

estimate the true regression function may be astronomical. A nonparametric re-

gression model is high dimensional even if the sample size is much larger than the

number of covariates. This degradation of performance for many nonparametric

regression methods, even for moderately sized p, is one of many manifestations

of the curse of dimensionality. The methods we have developed seek to overcome

the curse of dimensionality by taking advantage of lower dimensional structure in

the data (if such lower dimensional structure exists).

Random forests is a popular machine learning algorithm introduced in [1]. In
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addition to being renowned for its predictive performance, random forests pro-

vide nonparametric measures of variable importance. These variable importance

measures (VIMs) estimate the extent to which the regression function depends on

each covariate. These VIMs are calculated by assessing the decrease in predictive

accuracy when the levels of a particular covariate are permuted across observa-

tions. VIMs can be used to rank the importance of covariates and to carry out

variable selection. Unfortunately, it has been demonstrated that these VIMs can

be quite biased in the presence of correlated covariates [2, 3, 4]. Because of this

bias, random forest variable selection methods that utilize these VIMs will also

be biased. Conditional variable importance measures, proposed in [2], have been

shown to reduce the bias. However, these conditional VIMs have the drawback of

being computationally infeasible when n and p are moderately large.

We have developed the fuzzy forests variable selection algorithm to reduce the

bias observed in random forest variable selection [5]. In a simulation study, we

compare fuzzy forests to variable selection carried out via random forest VIMs

and conditional VIMs. We also present a fuzzy forests analysis with the goal of

understanding which aspects of the immune system allow a certain subset of HIV

infected patients to control the virus without taking anti-retroviral therapy (ART).

Such patients are called elite controllers. In particular, we analyze a flow cytom-

etry data set and determine which immunological phenotypes distinguish elite

controllers from immunological responders (subjects on ART with undetectable

levels of virus).

Our other contributions primarily concern a machine learning technique called

metric learning which is closely related to the classical Nadaraya-Watson kernel

regression estimator. Metric learning is a framework for regression and classifica-

tion in which the data is used to estimate a distance metric that will lead to good

predictive performance [6, 7, 8]. Once this distance metric is estimated it can be

used in another algorithm such as kernel regression or k-nearest neighbors. In
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regression, observations that are close to one another according to this distance

metric will have similar estimated means. The metric learning algorithm we study

is an extension of kernel regression with a matrix-valued bandwidth parameter [9].

The matrix-valued bandwidth is chosen by using gradient descent to minimize the

K-fold cross-validation criterion.

We have shown that if the true regression function is a multi-index regression

model [10, 11, 12, 13] and if minimization of theK-fold cross-validation criterion is

used to select the bandwidth matrix, the estimated regression function overcomes

the curse of dimensionality in the sense that the convergence rate of the estimator

depends on the index number rather than the number of covariates. This result

relies on a more general theorem on the efficacy of K-fold cross-validation when

the cross-validation criterion is minimized over a continuum of tuning parameters

rather than a discrete grid of tuning parameters. This general result is important

as it provides a theoretical basis for the use of general optimization techniques

such as gradient descent to minimize the K-fold cross-validation criterion.

We then extend metric learning to right censored survival data by taking

advantage of a synthetic variable transformation [14, 15] method and an iterative

Buckley-James type imputation method [16].

In Chapter 2 the fuzzy forests algorithm is introduced and its performance

is assessed via a simulation experiment. Chapter 3 presents our result on the

performance of the Nadaraya-Watson regression estimator when K-fold cross-

validation is used to select the bandwidth matrix. In Chapter 4 we introduce our

extension of metric learning to right-censored survival analysis data. In Chapter

5 we summarize our contributions and outline potential areas of future research.
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CHAPTER 2

Fuzzy Forests: A New Random Forest Based

Variable Selection Method

2.1 Introduction

In the era of high-throughput technologies such as multi-color flow cytometry

and next generation sequencing, high dimensional data has become increasingly

common in biomedical research. However, the ability to generate data has vastly

outpaced our ability to analyze it. In the biomedical sciences as well as the

Omics fields it is common for the number of features (p) to be much larger than

the number of observations (n), the so-called p >> n problem. This problem

is exacerbated by the fact that the features are often highly correlated and the

correlation structure is often unknown a priori.

Identifying important features in this situation has been an area of intense re-

search within the statistics and machine learning community. While model based

feature selection algorithms such as the LASSO [17, 18, 19] or SCAD (smoothly

clipped absolute deviation) [20, 21] may detect important features in the presence

of correlation [22], this comes at the cost of making parametric assumptions that

may not hold in practice.

Random forests are a popular ensemble machine learning algorithm. Random

forests are nonparametric, nonlinear, embarrassingly parallelizable, easy to imple-

ment, and have been described as one of the best “off-the-shelf" classifiers [23].

Random forest variable importance measures (VIMs) offer a flexible alternative
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to model based feature selection algorithms [1]. While random forest VIMs have

demonstrated the ability to accurately capture the true importance of features in

settings where the features are independent, it is well known that random forest

VIMs are biased when features are correlated with one another [24, 2, 3].

Fuzzy forests handle correlated features by taking a piecewise approach. We

first estimate the correlation structure of the data and partition the set of features

into distinct modules such that the correlation within each module is high and

the correlation between modules is low. We then use recursive feature elimination

random forests (RFE-RF) [25] to select the most important features from each

module. The surviving features from each module are combined and one final

RFE-RF is then applied, selecting and ranking the most important ones. The

fact that fuzzy forests carry out separate feature selection algorithms on distinct

groups of correlated covariates distinguishes it from other commonly used random

forest based feature selection methods. We believe that fuzzy forests will be useful

to a wide variety of researchers including those in biology, medicine, psychology,

social sciences, and any application in which there is high dimensional data with

correlation.

The general fuzzy forests algorithm allows for the use of a variety of methods for

partitioning the features into distinct clusters. The fuzzyforest package allows

the analyst to input their own clustering of the features. Commonly, such a

partition of the features would be derived by considering the correlation matrix

of the features.

The particular implementation of the fuzzy forests algorithm given in the R

package fuzzyforest also gives the analyst the option of utilizing the functionality

of Weighted Gene Coexpression Network Analysis via the package WGCNA [26]

to partition covariates into distinct clusters. WGCNA is a rigorous framework for

detecting correlation networks [27]. Although WGCNA has been used primarily

in genetics, it has also been applied successfully in contexts such as brain imaging

5



and cancer biology [26].

The conditional variable importance measures introduced in [2] have also been

proposed as a means for reducing the bias in random forest VIMs. However,

the calculation of conditional variable importance measures is computationally

intensive. In this article, we compare feature selection from random forests, con-

ditional inference forests, and fuzzy forests, using packages randomForest[28],

party [29, 24, 2], and fuzzyforest, respectively. We find that fuzzy forests offer

a computationally feasible alternative to conditional inference forests for feature

selection in the presence of highly correlated features.

2.2 Variable Importance Measures and the Fuzzy Forests

Algorithm

2.2.1 Motivation for Variable Importance Measures

In this section we introduce basic notation and discuss VIMs. The VIMs that we

discuss in this section describe important aspects of the true regression function

and are well-defined outside of the context of random forests. We assume that our

data comes in the form of n independently and identically distributed (iid) pairs

(X, Y ) ∼ G(X,Y ). Here, X is a p dimensional feature vector, with vth element

X(v), and Y is a scalar outcome. Let X(v)
i denote the value of the vth feature for

the ith subject and let Xi = (X
(1)
i , . . . , X

(p)
i )> be the feature vector for the ith

subject. Finally, the distribution of X and the marginal distribution of X(v) are

denoted as GX and GX(v) , respectively.

In the case of regression, we are interested in modeling the conditional mean

of Y given a feature vector X. We denote this conditional mean as E[Y |X] or

f(X). We assume that Y |X has distribution equal to that of f(X) + ε, where Y

is continuous and the ε are independent of X and iid with variance σ2. In the
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case of regression, a prediction for a new observation Xnew would be obtained by

evaluating the conditional mean at Xnew: f(Xnew).

For binary classification, we are again interested in modeling the conditional

mean of Y given a feature vector X, however, Y is restricted to take the value 0

or 1. Thus, Y |X is a Bernoulli trial with mean E[Y |X = x] = P (Y = 1|X = x).

In the case of binary classification, the predicted outcome for a new observation

would be 1 if f(Xnew) = P (Y = 1|X = Xnew) > 0.5, and 0 otherwise. See

Chapters 2 and 5 of [30] and the Chapter 1 of [31] for justification and criticism

of the use of this rule for prediction. Random forests are also able to handle the

case of multi-class classification [1].

For both classification and regression, we say that feature X(v) is unimportant

if E[Y |X] does not depend on X(v). The problem of feature selection requires

more than a “black box" estimate of f(X). It requires an understanding of how

f(X) depends on each individual feature.

If p is low dimensional (p = 1, 2), we can simply plot our estimate of f(X) to

understand how it varies as a function of X. On the other hand, if p is moderate

or large, the estimate of f(X) may be difficult to interpret. This problem of

interpretability may be alleviated by assuming f(X) has a specific parametric

form such that fγ(X) is known up to a finite dimensional parameter γ. In the case

of linear regression, where fγ(Xi) = γ0 +
∑p

v=1 γvX
(v)
i , γ is a vector of regression

coefficients and we may measure the importance of one feature versus another by

examining the absolute magnitude of their corresponding coefficients (assuming

the features have all been standardized).

A chosen parametric model, fγ(X), is often intended as a decent parametric

approximation to f(X). Unfortunately, this parametric approximation may fail

to capture salient characteristics of f(X) for a variety of reasons. Notably, fγ(X)

might miss important interactions between features, or, in the case of the above

linear regression model, the true f(X) may be nonlinear in such a way that the best

7



linear approximation fails to capture. In contrast, random forests are nonlinear

and nonparametric. Therefore, the resulting random forest VIMs, defined below,

naturally take interactions and nonlinear structure into account.

With large sample sizes, nonparametric regression methods are more likely to

detect nonlinearities and interactions, however with smaller sample sizes or greater

levels of noise, linear models can easily outperform nonparametric models [32].

In practice, nonparametric methods and parametric methods complement one

another. For example, nonparametric methods can be used to diagnose incorrect

parametric modeling assumptions (see Chapter 6 of [33], Chapter 4 of [34], and

Chapter 17 of [35]).

We would like to end this section with a discussion of the general goals of

feature selection and how they relate to estimation of VIMs. The ultimate objec-

tive of fuzzy forests is to select a small subset of features such that the selected

features will have relatively high VIM in comparison with the rest of the features.

Another potential goal of feature selection is to select a subset of features with

the ultimate goal of predicting outcomes for new observations. In this latter case,

feature selection might be advisable as a means of improving predictive capabil-

ities (some predictive algorithms may be adversely effected by the presence of

unimportant features). Using feature selection with the goal of prediction may

also be useful if it is advantageous to reduce the number of measurements taken

on each individual.

In the presence of correlation, feature selection methods such as fuzzy forests

that are designed to select features with the highest VIMs may yield different

results than feature selection methods designed to optimize predictive accuracy.

For example, suppose two features are highly correlated and only one feature is

important while the other is not. If the goal is maximizing predictive accuracy,

either feature may be selected without adversely effecting predictive ability. The

two features effectively serve as proxies for one another.
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2.2.2 An Introduction to Random Forests

The random forests algorithm is a popular ensemble method that has been ap-

plied in the settings of both classification and regression [1]. The random forests

algorithm works by combining the predictions of an ensemble of classification or

regression trees. Each tree is grown on a separate bootstrap sample of the data.

The number of trees grown in this manner is denoted as ntree. The subjects

that are not selected in a particular bootstrap sample are said to be “out of bag."

Roughly one third of subjects will be out of bag for each tree. These out of bag

subjects play the important role of serving as a validation set for each tree, al-

lowing the user to obtain estimates of the prediction error that are not overly

optimistic.

Call the kth tree f̂k(X). In the case of regression trees, f̂(X) = 1
ntree

∑ntree
k=1 f̂k(X).

In the case of classification, f̂(X) is the majority vote of the ntree predictions

given by f̂k(X). Each tree, by itself, may be highly unstable, leading to highly vari-

able estimates of f(X), however, by averaging multiple trees over many bootstrap

samples, the variance of our estimate for f(X) may be significantly reduced. The

algorithm described thus far is known as bagging (bootstrap-aggregating). This

algorithm is a special case of random forests.

A further element of randomness is introduced by random forests. Before a

node in a particular tree is split, a subset of features is chosen at random. The

best splitting rule, derived from only these randomly selected features, is then

used to split the node. The number of randomly selected features at each stage

is commonly called mtry. If mtry = p, then random forests are equivalent to

bagging. High values of mtry tend to lead to just a few important features getting

selected at the majority of nodes. Lower values of mtry allow more features to

play a role in the estimation of f(X). In the case of regression, a common default

value of mtry is bp/3c and, in the case of classification, √p is a common choice

9



[28].

Multiple random forest VIMs have been developed. In this article we will

exclusively focus on unscaled random forest permutation VIMs. Random forest

permutation VIMs are obtained by testing how predictive accuracy suffers when

the values of an individual feature are randomly permuted.

For example, suppose a particular feature is important in determining the

value of the outcome. Randomly permuting the values of this feature destroys its

relationship with the outcome. Because the connection between this particular

feature and the outcome has been obscured, there should be a subsequent decrease

in predictive accuracy when predictions are made using this permuted data. If

there was no relationship to begin with, the predictive accuracy obtained using the

permuted data should be comparable to the predictive accuracy obtained using the

original, unpermuted, data. The random forest permutation VIM measures the

average decline in predictive performance for each feature across multiple trees.

An advantage of the permutation VIM is that it is understood what parameter

the permutation VIM is estimating. Thus, the permutation VIM leads to a formal

definition of “importance" given by Equation 5.1.

We now describe the calculation of the random forest permutation VIM for

the vth feature. Let OOBk ⊂ {1, . . . , n} be the indices for the out of bag

sample from the kth tree and let |OOBk| be the number of out of bag sam-

ples. Let πk = (πk1, . . . , πkn) be a random permutation of OOBk and let X̃i =

(X
(1)
i , . . . , X

(v)
πki , . . . , X

(p)
i )> be the feature vector for the ith subject where the vth

feature has been permuted. In the case of regression, the variable importance of

the vth feature from the kth tree is defined as

V̂ IMk(v) =

∑
i∈OOBk(yi − f̂k(X̃i))

2 − (yi − f̂k(Xi))
2

|OOBk|
(2.1)

10



The random forest permutation VIM for the vth feature is defined as

V̂ IM(v) =

∑ntree
k=1 V̂ IMk(v)

ntree
(2.2)

We note that a number of other VIMs are in common use. The random-

Forest package implements two types of VIMs. randomForest implements the

permutation based VIM discussed above. It also implements a VIM based on the

mean decrease in “impurity" in the child nodes after splitting a node on a par-

ticular feature. The measure of impurity will depends on whether classification

or regression trees are being used. For example, in the case of regression, the

within-node variance is a measure of impurity. For classification, the Gini-index

is the default measure of node impurity.

In the package party, an additional VIM, called the conditional VIM is im-

plemented. The conditional VIM, developed in [2], has been shown to reduce

the bias in random forest VIMs, however, calculation of the conditional VIM is

computationally quite expensive, particularly when the sample size is large.

We summarize a number of VIMs and feature selection methods in Table

2.1 below. There is a distinction between VIMs and feature selection methods.

Calculation of VIMs alone does not immediately lead to a unique set of features

to select, however VIMs may play the central role in a feature selection procedure.

For example, calculating random forest VIMs and keeping the VIMs that rank in

the top 5% defines a feature selection procedure. The fuzzy forests algorithm is a

more complex feature selection procedure that relies on the calculation of VIMs.

[4] presents a clear discussion of the nature and source of bias in random forest

permutation VIMs. In their article, [4] conducts a simulation study in which the

true model is linear with a group of positively correlated important features and
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Method Type Nonparametric R Package
Permutation Importance VIM T randomForest/party

Mean Decrease in Node Impurity VIM T randomForest
Conditional VIM VIM T party
Fuzzy Forests FS T fuzzyforest

LASSO FS and VIM F glmnet
SCAD FS and VIM F ncvreg

Table 2.1: Popular VIM and feature selection (FS) methods

a group of independent important features. They find in this simulation study

that permutation VIMs favor the group of correlated features.

It is worth noting that the correlation of features alone does not guarantee

heavily biased permutation VIMs. For example, as demonstrated in [4], in a null

model, a model in which none of the features are important for the outcome, the

resulting permutation VIMs are not particularly biased. The simulations of [4]

suggest that correlation of features will induce bias in the VIMs if the correlation

structure induces marginal correlations that do not reflect the importance of the

features.

2.2.3 A Brief Review of WGCNA

In genetics, statistical network models play a significant role in uncovering im-

portant regulatory mechanisms or processes. Weighted genetic co-expression net-

work analysis (WGCNA), first developed to detect networks of highly correlated

genes, has seen great success in many biological applications. The R package

WGCNA is a robust and well-documented implementation of the WGCNA

framework [36, 26] that was originally designed to detect correlation networks

in the context of genetics. WGCNA has been used extensively outside of the

context of gene expression data. For example, it has seen use in the analysis of

fMRI data [37]. We believe that WGCNA has fairly wide applicability as, at its

core, it relies on an application of hierarchical clustering methods to functions of
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the correlation matrix.

We expect that researchers already familiar with the WGCNA package will

easily adopt the fuzzy forests algorithm and we expect that newcomers toWGCNA

will be able to make good use of WGCNA’s fine documentation and tutorials.

WGCNA takes in the matrix of features and uses the correlation structure to par-

tition the features into distinct groups such that the correlation between features

in the same group is large and the correlation between features in separate groups

is small. In the context of WGCNA, these groups of features are called modules.

WGCNA constructs a network of features, each feature representing one node,

via the correlation matrix of features. It determines modules based off of this

network.

Formally, the user first specifies a similarity matrix with (u, v)th entry suv =

S(X(u), X(v)) for features u and v. The function S(X(u), X(v)) is called the

similarity function and often takes values between 0 and 1. Common similar-

ity functions include |Ĉorr(X(u), X(v))| and (1 + Ĉorr(X(u), X(v)))/2 [27], where

Ĉorr(X(u), X(v))) is the sample correlation between features u and v. The former

choice of similarity function leads to an unsigned network where features have

high similarity score if they have strong positive or negative correlation with one

another. The latter choice of similarity function leads to a signed network where

features are deemed most similar if they have strong positive correlation and are

deemed highly dissimilar if they have strong negative correlation. A signed net-

work takes into account the sign of the correlation.

This similarity matrix is then transformed into an adjacency matrix A = [auv]

via an adjacency function auv = α(suv). The adjacency function determines how

similarities translate into properties of the network. The hard threshold function,

denoted by signum(suv, τ), where τ is defined to be the threshold, is the simplest

choice of adjacency function: if suv ≥ τ then auv = signum(suv, τ) = 1, otherwise

auv = 0. Nodes are either classified as connected or unconnected. In practice,
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a soft-thresholded network is often more plausible than a hard-thresholded one.

The power function auv = sβuv is a common choice of soft-thresholding adjacency

function. Large values of β yield behavior closer to a hard-thresholded network.

Setting β = 1 is equivalent to using the similarity function. Once an adjacency

function is calculated, a hierarchical clustering tree algorithm is used to define the

clusters of features.

It is common to apply this hierarchical clustering algorithm to the topological

overlap matrix rather than the adjacency matrix. The topological overlap between

two nodes is defined as

ωuv =
quv + auv

min{cu, cv}+ 1− auv
(2.3)

where quv =
∑p

r=1 aurarv and cu =
∑p

r=1 aur is the connectivity of the uth feature

[38] . The topological overlap between two nodes can be high even if auv is low.

This occurs when the two nodes are strongly connected to the same set of nodes.

Use of the topological overlap matrix rather than the adjacency matrix may lead

to more distinct modules [27].

In many biological contexts, it is suspected that only a few features are highly

connected to many other features. This prior knowledge leads to the scale-free

criterion for determining which value of β to select. Let r(cu) be resulting density

function from fitting a histogram, with equal size bin widths, to the observed

connectivities. We call r(cu) the frequency function of the connectivities. A

network is said to have generalized scale-free topology if r(cu) ∝ cβu [27], where β

is a non-negative real number and ∝ is the symbol for “proportional to". If the

scale-free topology criterion is suspected to hold, one should select a value of β

such that the R2 between log10(r(cu)) and log10(cu) is high.
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2.2.4 The Fuzzy Forests Algorithm

The fuzzy forests algorithm is an extension of random forests designed to obtain

less biased feature selection in the presence of correlated features. In this section,

we describe the algorithm. First we give a summary of the procedure.

In the first step of fuzzy forests, the features are partitioned into distinct

groups or modules, such that the correlation of features within modules is high

and the correlation of features between modules is low. Our package, fuzzyforest,

facilitates the use of WGCNA to determine the modules although it is possible

to use alternative methods to partition the features. Once features have been

subdivided into distinct modules, fuzzy forests eliminates features in two steps:

a screening step and a selection step. In the screening step, RFE-RF is used on

each module to eliminate the least important features within each module. In the

selection step, a final RFE-RF is used on the surviving features.

A detailed explication of RFE-RF is given below. RFE-RF sequentially elim-

inates features with the lowest VIMs until a pre-specified percentage of features

remain. By sequentially eliminating the least important features, RFE-RF is able

to better focus on determining which features are the most important.

The screening step of fuzzy forests achieves two goals. First, it reduces the

number of features that have to be analyzed at one time. Second, the bias caused

by correlated features is alleviated. In [3], it is observed that unimportant features

that are correlated with an important feature are more likely to be chosen at the

root of tree than uncorrelated important features. The high importance of these

unimportant correlated features comes at the cost of the important uncorrelated

features. When we analyze each module separately, features in different groups

are no longer competing against one another.

In biological applications, modules might represent different biological compo-

nents or demographic information about the subjects. By carrying out RFE-RF

15



Begin with all features

. . . .Module 1 Module 2 Module m−1 Module m

Cluster features into distinct modules such that
correlation within modules is high.

. . . .Module 1
Survivors

Module 2
Survivors

Module m−1
Survivors

Module m
Survivors

Use RFE−RF within modules to retain top k% of
features from each module (k=keep_fraction).

(Screening Step)

Surviving features are
combined into one data set.

Data set with only
 surviving features

Use RFE−RF on surviving features.
Keep top k% (k=keep_fraction).

(Selection Step)

Selected Features

Figure 2.1: Flow chart of fuzzy forests algorithm

on the features that survived the screening step, the selection step effectively

allows these systems to interact with one another.

A flow chart of the fuzzy forests algorithm is given in Figure 2.1.

We now provide a detailed description of the screening step and RFE-RF.

Denote the set of modules by P = {P1, . . . , Pm}. Let pl = |Pl| so that
∑m

l=1 pl = p,

where m is the number of modules. For each element of the partition, Pl, RFE-RF

is used to screen out unimportant or less important features.

We now describe the RFE-RF procedure in the context of screening features

in a particular partition Pl. At the start of the procedure, a random forest is fit

using all of the features in Pl and the least important features are eliminated. For

16



example, the features with VIM in the bottom 25% might be dropped. Call the

reduced set of features in Pl, after this first random forest, P (1)
l . A second random

forest is then fit using only features in P
(1)
l . The least important features from

this latest random forest are then eliminated leading to a further reduced set of

features P (2)
l ⊂ P

(1)
l ⊂ Pl. The subset obtained after iteration t is denoted as

P
(t)
l and let p(t)

l be the number of features in P (t)
l . Features are eliminated in this

manner until a user-specified stopping criteria is reached. For example, features

may be eliminated until 5% of the original features in Pl remain.

The user must specify a few tuning parameters at the screening step. First,

the user must specify what fraction of features are to be dropped after each step

of the RFE-RF. We call this fraction the drop_fraction. The user must

also specify a stopping criteria. In fuzzyforest the user specifies what frac-

tion of the original pl features, in each module Pl, to retain. This fraction is

called the keep_fraction. The first time the number of features drops below

keep_fraction ∗ pl, the RFE-RF stops and the top bkeep_fraction ∗ plc

features are selected. More precisely, for the first iteration t such that p(t)
l <

keep_fraction ∗ pl, we retain the top bkeep_fraction ∗ plc features from

P
(t−1)
l .

For each RFE-RF, mtry and ntree must be appropriately selected. Since the

number of features varies across the forests, mtry and ntree must be a function

of the current number of features. Suppose we are at iteration t and are about to

fit a random forest to obtain P
(t+1)
l ⊂ P

(t)
l , in the case of regression, fuzzyfor-

est sets mtry =
⌊
p

(t)
l ∗mtry_factor/3

⌋
. For classification, fuzzyforest sets

mtry =

⌊√
p

(t)
l ∗mtry_factor

⌋
. In both cases, mtry_factor must be spec-

ified by the user, with the default being 1. The parameter ntree must be set high

enough to be able to pick up the effects of important variables, however if ntree is

set too high, the iterative series of random forests takes longer to fit. The package

fuzzyforest sets ntree = max(min_ntree,
⌊
p

(t)
l ∗ ntree_factor

⌋
), where
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min_ntree is a minimal number of trees grown for each forest and ntree_factor

allows the number of trees to increase with the number of features.

The final step consists of one last RFE-RF to allow for interactions between

features in different modules. Note that a separate choice of drop_fraction,

mtry_factor, min_tree, and ntree_factor may be used for the final se-

lection step. The user specifies how many features to keep in the final selection

step. If certain features are, a priori, known to be important (perhaps demo-

graphic characteristics), fuzzyforest allows the user to let these features skip the

initial round of screening.

Finally, we compare the RFE-RF procedure described above to the RFE-RF

procedure described in [25] and implemented in the package varSelRF [39]. In

the procedure presented in [25], [25] prefer that the VIMs not be recalculated at

each iteration, with the intent of preventing overfitting. In the RFE-RF proce-

dure described above, permutation VIMs are calculated at each iteration. This

is because we wanted to allow the ranking of VIMs to change as unimportant

features are dropped. The ultimate focus of fuzzy forests is to select features with

the highest ranking VIMs. We do note that varSelRF does allow for the option

of recalculating VIMs at each iteration and an RFE-RF procedure in which VIMs

were calculated at each iteration was proposed by [40]. Classification as opposed

to regression also appears to be the primary focus of the RFE-RF procedure in

varSelRF.

2.2.5 A Justification for the Fuzzy Forests Algorithm

The screening of features within distinct modules is motivated by the following

heuristic observations concerning the theoretical properties of VIMs. As noted

previously, correlation between features can cause bias because the correlation

structure can induce high marginal correlation between features and the outcome
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that do not reflect the importance of the features. This is particularly problem-

atic when important features are correlated with one another. In this case, the

marginal correlation between these features and the outcome will be greatly am-

plified by the correlation, causing the permutation VIMs to ignore or underrate

the independent and important features.

Intuitively, dividing features into distinct, correlated modules and carrying out

feature selection within each module provides an advantage because the correlation

structure within a module is relatively uniform. Although the correlation within

a module is high, the uniform nature of the correlation structure is not expected

to lead to particularly misleading VIMs. Importantly, feature selection on the

independent features is unaffected by feature selection on the correlated features.

In the following discussion, we formally define the parameter being estimated by

permutation VIMs and we discuss conditions under which the VIMs calculated

within a module are equivalent to VIMs calculated using the full set of features.

The estimation of VIMs is formally investigated by [41]. The random forest

VIM is discussed in [42] and [43]. Intuitively, the random forest VIM of the vth

feature measures how much f(Xi) changes when the vth entry of Xi, X
(v)
i , is

replaced by an independent realization, X̃(v)
i , generated with distribution GX(v) .

Formally, the random forest permutation VIM of feature v estimates the following

parameter

V IM(v) = E(f(X
(1)
i , . . . , X

(v)
i , . . . , X

(p)
i )− f(X

(1)
i , . . . , X̃

(v)
i , . . . , X

(p)
i ))2. (2.4)

First, note that the expression is the same for all choices of index, i, because the

(Xi, Yi) are iid with distribution G(X,Y ). Next note that f is fixed and the expec-

tation is with respect to the random variables Xi = (X
(1)
i , . . . , X

(v)
i , . . . , X

(p)
i ) and

X̃
(v)
i . The random vector Xi has distribution GX and X̃

(v)
i , generated indepen-

dently of Xi, has distribution GX(v) . If the value of f(Xi) changes greatly when
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X
(v)
i is replaced by X̃(v)

i , it implies that the vth feature is important. In the case

where fγ(X) = γ0 +
∑p

v=1 γvX
(v) is a linear model, with standardized features

(Var(X(v)
i ) = 1), VIM(v) = 2γ2

v .

Let GP (l) denote the joint distribution of the features in the module P (l) and

let XP (l) ∼ GP (l) . In general, the conditional expectation, E[A|B], of one random

variable A with respect to another random variable, B, is defined as the function

h(B) that minimizes E[(A− h(B))2] or, written more compactly, argminhE[(A−

h(B))2]. When random forests are fit using only the features in module P (l), the

estimated regression function converges to

argminhE[(Y − h(XP (l)

))2] = argminhE[(f(X) + ε− h(XP (l)

))2] (2.5)

= argminhE[ε2 + 2ε(f(X)− h(XP (l)

)) + (f(X)− h(XP (l)

))2]

(2.6)

= argminhE[2ε(f(X)− h(XP (l)

)) + (f(X)− h(XP (l)

))2]

(2.7)

= argminhE[(f(X)− h(XP (l)

))2] (2.8)

= E[f(X)|XP (l)

]. (2.9)

Note that E[2ε(f(X) − h(XP (l)
))] = 0 because ε is independent of X and has

mean 0.

Assume that features in separate modules XP (1)
, . . . , XP (m) are independent

and suppose that f(X) =
∑m

j=1 fj(X
P (j)

). The form of the regression function,

f(X), allows for interactions within modules but no interactions between modules.

We now demonstrate that if we fit random forests using only the features in P (l),
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we are no longer estimating E[Y |X] = f(X), instead we are estimating

E[f(X)|XP (l)

] =
m∑
j=1

E[fj(X
P (j)

)|XP (l)

] = fl(X
P (l)

) +
m∑
j 6=l

EX
P (l)

[fj(X
P (j)

)].

(2.10)

As a result, the VIMs obtained by fitting a separate random forest to each module

P (l), are equal to the VIMs obtained by fitting a random forest using the full set

of features.

This is seen by the following argument

E[Y |XP (l)

] = argminhE[(Y − h(XP (l)

))2] (2.11)

= argminhE[{(Y − f(X))− (h(XP (l)

)− f(X))}2]. (2.12)

This last term equals:

argminh{E[(Y−f(X))2]−2E[(Y−f(X))(h(XP (l)

)−f(X))]+E[(h(XP (l)

)−f(X))2]}.

(2.13)

Now, the first of the above expectations does not depend on h. The second

expectation equals 0:

E[(Y − f(X))(h(XP (l)

)− f(X))] = E[E[(Y − f(X))(h(XP (l)

)− f(X))|X]]

(2.14)

= E[(h(XP (l)

)− f(X))E[(Y − f(X))|X]]

(2.15)

= 0. (2.16)

This leaves only the third expectation remaining. Thus, E[Y |XP (l)
] = argminhE[(h(XP (l)

)−

f(X))2]. By the definition of conditional expectation, this last term equalsE[f(X)|XP (l)
].

Note that by the independence of the modules, we have E[fj(X
P (j)

)|XP (l)
] =
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EX
P (l)

[fj(X
P (j)

)] for all j 6= l. This yields Equation 2.10.

Suppose feature v is in partition P (l), the VIM obtained by fitting a random

forest to only those features in P (l) is estimating the following quantity:

V IM∗(v) = E(fl(X
(l1)
i , . . . , X

(v)
i , . . . , X

(lm)
i )− fl(X(l1)

i , . . . , X̃
(v)
i , . . . , X

(lm)
i ))2.

(2.17)

Here, X lk
i is the kth element of partition P (l). As in Equation 5.1, X(v)

i and X̃(v)
i

are iid from GX(v) . We see from this equation that V IM∗(v) = V IM(v) if the true

regression function is additive across modules and if the modules are independent

of each other. If our assumptions are met, the VIMs obtained by analyzing each

module separately are asymptotically the same as those that would have been

obtained if VIMs were obtained by analyzing all features at once.

These observations suggest that if we assume strict additivity and indepen-

dence of the modules, then obtaining VIMs from each module separately should

suffice. However, if these assumptions are not met, the VIMs obtained by ana-

lyzing each module separately are, in general, different than the VIMs obtained

by fitting a single random forest on all of the features at once. We stress that

the above derivation depends on the additivity assumption and the assumption of

independence of modules.

If there are interactions between features in different modules, the VIMs calcu-

lated within modules will be asymptotically biased. However, under the circum-

stances that the most important VIMs in each module are also the features that

are most likely to be heavily involved in interactions between modules, carrying

out feature selection on each module separately should still allow for the selection

of important features.

The final RFE-RF, applied at the selection step serves to relax this restric-

tive additivity assumption, allowing for interactions between features that were

found to be important within modules. However, it is important to note that
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when features from separate modules are combined, the potential for bias due to

correlation between features is reintroduced. Thus, the estimated VIMs may still

be biased and must be interpreted with caution.

While the implicit assumptions underlying fuzzy forests are strict, we point out

that random forests, as well as conditional inference forests may also demonstrate

bias. In the case of random forests, as discussed above, the simulation results of [2]

and [4] suggest that random forests will be unbiased if the marginal correlations

between features and the outcome largely reflect the true VIMs. We believe

that this is an even more stringent assumption than the assumptions made in

Section 2.5. We believe that fuzzy forests will have less biased feature selection

properties than random forests because the conditions under which random forest

feature selection is roughly unbiased are even more stringent than fuzzy forests.

The simulations carried out below also demonstrate that feature selection using

conditional permutation VIMs can also demonstrate bias.

2.3 The fuzzyforest package

The package fuzzyforest has two functions for fitting fuzzy forests. The first is

wff, the second is ff. The function wff automatically carries out a WGCNA

analysis on the features. Then it uses these newly derived modules as input to

fuzzy forests. The WGCNA analysis is carried out via the blockwiseModules

function, from the package WGCNA.

The second function ff assumes that the features have already been parti-

tioned into separate modules. For example, it may be advantageous to use hier-

archical clustering directly on the correlation matrix and to cut the tree by visual

inspection via calls to hclust and cutree in the stats package. This procedure

may give the user more flexibility in which distance metric to use and in how

to cluster the features. The package pvclust calculates p-values to assess the
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uncertainty in clusters of features and can be used to find a stable clustering of

the features. Another common use case for ff is to carry out the fuzzy forests

algorithm using the output of WGCNA, thereby allowing more customization

of options for WGCNA.

A number of tuning parameters must be specified before fuzzy forests can

be run. These tuning parameters are organized into separate control objects.

Tuning parameters related to WGCNA are specified with an object of type

WGCNA_control. Similarly, tuning parameters related to the screening step and

the selection step are specified through objects of type screen_control and

select_control.

We demonstrate the workings of fuzzyforest with an analysis of a data set

concerning gene expression in liver tissue in female mice. The data set can be

found in the tutorial website for WGCNA:

http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.

The number of mice is 131 and the number of genes is 3,600. We examine how

the expression of these genes correlates with the weight(g) of the mice. In the

following code, the data set is called Liver_Expr.

R> weight <- Liver_Expr[, 1]

R> expression_levels <- Liver_Expr[, -1]

We first use WGCNA to select the power that leads to a network with approx-

imately scale-free topology. We set β = 6 (β is equivalent to power in the code

below) and set other tuning parameters for WGCNA in the following call. Note

that the resulting number of modules can be sensitive to minModuleSize.

R> WGCNA_params <- WGCNA_control(power = 6, TOMType = "unsigned",

+ minModuleSize = 30, numericLabels = TRUE, pamRespectsDendro = FALSE)

Then we set tuning parameters for the selection step and the screening step:
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R> mtry_factor <- 1; drop_fraction <- .25; number_selected <- 10

R> keep_fraction <- .05; min_ntree <- 5000; ntree_factor <- 5

R> final_ntree <- 5000;

R> screen_params <- screen_control(drop_fraction = drop_fraction,

+ keep_fraction = keep_fraction, min_ntree = min_ntree,

+ mtry_factor = mtry_factor, ntree_factor = ntree_factor)

> select_params <- select_control(drop_fraction = drop_fraction,

+ number_selected = number_selected, min_ntree = min_ntree,

+ mtry_factor = mtry_factor, ntree_factor = ntree_factor)

Finally, we use wff to fit fuzzy forests to the data set.

R> wff_fit <- wff(expression_levels, weight, WGCNA_params=WGCNA_params,

+ screen_params = screen_params, select_params = select_params,

+ final_ntree = final_ntree, num_processors = 4)

The function wff returns an object of type fuzzy_forest. Objects of type

fuzzy_forest have the usual generic methods. The function print prints the

selected features as well as module memberships. The function

predict(fuzzy_forest, new_data) takes in a data.frame or matrix and pro-

duces predictions based on the selected features. The generic predict method for

fuzzy forests produces a vector of predicted values for the set of observations in

the data set used to fit fuzzy forests or, if a new, independent data set is provided

as the value of the argument new_data, predicted values for observations in the

new data set. Although the fuzzy forests algorithm was designed with feature

selection in mind, it is possible to fit random forests using the selected features

and to use the resulting model for prediction.

A data.frame with the selected features can be obtained by accessing the

element feature_list from the fuzzy_forest object.

> wff_fit$feature_list
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feature_name variable_importance module_membership

1 MMT00026944 5.4857 6

2 MMT00019254 4.8648 6

3 MMT00067823 3.5857 3

4 MMT00006001 3.5310 3

5 MMT00074983 3.1431 7

6 MMT00061313 2.3732 3

7 MMT00070342 2.3454 3

8 MMT00065159 2.3377 3

9 MMT00078732 2.2109 6

10 MMT00067261 2.1083 3

Before the analysis is run, the user selects the desired number of important

features as the end output of fuzzy forests. The number of features selected can

be thought of as a tuning parameter. The predictive accuracy on a validation set

can then be used to determine the optimal number of features to select.

As it is often useful to ascertain which modules are contributors to the signal of

the outcome, we create a visual representation of all modules and the distribution

of important features across the modules. The function modplot yields a visual

display of which modules are important. The height of the bars represents what

percentage of the total p features fall into a particular module. The area of the

bar which is red represents the percentage of each module that is selected by fuzzy

forests. Applying the function modplot to the object wff_fit above, we obtain

the graph in Figure 2.2.

2.4 Simulations

In this section we demonstrate the performance of fuzzy forests in a number of

simulation scenarios. These simulations are designed to compare fuzzy forests to
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Figure 2.2: Importance of VIMs within each module. The height of the bars
represents the proportion of features in each module. The proportion of each bar
colored in red represents the proportion of features that are selected within each
module. In this case, modules 0 and 11 contain most of the selected features.

random forests and conditional inference forests when the features are correlated.

We carry out two simulations. In the first simulation, data is generated from a

linear model. In the second simulation, data is generated from a nonlinear model.

For random forests, feature selection is carried out by selecting the features with

top 10 permutation VIMs. For conditional inference forests, feature selection is

carried out by selecting the features with top 10 conditional VIMs. The first

simulation is closely related to the simulations given in [4] and [2], the key dis-

tinction being that the simulation below includes additional “noise" features that

are unrelated to the outcome.

In all simulations, Xi is generated from a multivariate normal distribution.

The error terms, εi, are normal with mean 0 and standard deviation 0.5. The

marginal distribution of each feature is standard normal. Features are subdivided

into distinct modules. The correlation between features in different modules is 0.

If the features in a module are correlated with one another, the correlation between

features within the same module is set to 0.8. In each simulation, features in the

final module are independent of each other (i.e., with correlation 0). Thus, within

modules, the covariance structure is compound symmetry. In fitting fuzzy forests,
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we do not assume the modules are known. We use WGCNA to estimate the

modules.

For the simulation from a linear model, we carry out two simulation scenarios.

For the first scenario, the number of parameters p is set to 100. In this scenario,

there are 4 modules. The features in the 4th module are independent of each other

and of the features in the other modules. The features in the other three modules

are correlated with one another. Namely, {X(1), . . . , X(25)}, {X(26), . . . , X(50)},

and {X(51), . . . , X(75)} constitute 3 distinct modules each containing 25 features.

The final module is {X(76), . . . , X(100)}. In this scenario, Yi = X>i γ+εi and among

the correlated features we have γ1 = γ2 = 5 and γ3 = 2. Among the group of

independent features, γ76 = γ77 = 5 and γ78 = 2. All other elements of γ are set

to 0. In addition, the intercept term, γ0, is set to 0.

To evaluate the feature selection performance, we compute the proportion of

times the non-zero features were selected over 100 simulation runs. The results

are displayed in Figure 2.3.

For random forests and conditional inference forests the results of this simula-

tion are largely in line with the results from [4] and [2]. Random forests is much less

likely to select independent covariates than conditional inference forests. Fuzzy

forests select important features with slightly lower frequency than conditional

inference forests, however its performance is generally comparable.

In the second scenario for the linear model, we have the same setup as before

except we increase p to 1,000 while leaving n at 100. The group of correlated

features now contains 900 features, grouped into the following modules:

{X(1), . . . , X(100)}, . . . , {X(801), . . . , X(900)}. Again, the correlation between fea-

tures in the same module is 0.8. The correlation of features from different mod-

ules is 0. The remaining module, {X(901), . . . , X(1,000)}, consists of independent

features. Once again, γ1 = γ2 = 5 and γ3 = 2. The first 3 independent features

are also non-zero: γ901 = γ902 = 5 and γ903 = 2. As seen in Figure 2.4, when
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Figure 2.3: Fuzzy forests are compared to random forests with p = 100 and
n = 100. The height of each point represents the proportion of times each fea-
ture was selected in 100 simulations. X1, X2, X3, X76, X77, and X78 are important
features. All other features were not important. X1, X2, and X3 are correlated
features. X4 is correlated with X1, X2, and X3 but is not important. X79 is inde-
pendent but is not important. X1, X2 X76, and X77 all have the same importance.
X3 and X78, equally important, have lower importance than the other important
features.

p = 1, 000, random forests permutation VIMs largely ignore the independent fea-

tures.

For the second simulation in which data was generated from a nonlinear model,

we set p = 100 and let n vary from 250 to 500. The correlation structure in this

simulation is identical to correlation structure described above for the linear sim-

ulation with p = 100. The true regression model, given in the equation below,

was designed such that the true VIM for each of the features upon which f de-

pends are approximately equal to 30 (the true VIMs were calculated via Monte

Carlo simulations). Therefore all of the features should be selected with equal

probability.

f(X) = X1+X2+2.92X1X2+
√

15X3+X3
4 +X76+X77+3.74X76X77+

√
15X78+X3

79

(2.18)
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Figure 2.4: Fuzzy forests are compared to random forests with p = 1, 000 and
n = 100. The height of each point represents the proportion of times each feature
was selected in 100 simulations. X1, X2, X3, X901, X902, and X903 are important
features. All other features were not important. X1, X2, and X3 are correlated
features. X4 is correlated with X1, X2, and X3 but is not important. X904 is
independent but is not important. X1, X2, X901, and X902 all have the same
importance. X3 and X903, equally important, have lower importance than the
other important features.

For the nonlinear scenario with n = 250, we were able to compute VIMs for

random forests and fuzzy forests, as well as conditional VIMs. For the scenario

with n = 500, we were unable to compute conditional VIMs as the computational

burden was too great. In our experience, the computational burden of calculating

conditional VIMs increases more quickly with the sample size as opposed to the

number of covariates.

The results of the first nonlinear scenario are displayed in Figure 2.5. First

of all, note that none of the methods select features with equal probability, even

within modules. In general, the features that are part of interaction terms (X1,

X2, X76, and X77), are chosen with lower probability than the other 4 important

features. All of these tree-based method have more difficulty detecting interactions

in comparison to the linear and cubic terms, even conditional inference forests.

As in the first nonlinear simulation scenario, the correlated features are fa-
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vored over the independent features. In particular, although both X5 and X80

have VIM of 0, X5 is selected with higher probability. Random forests are most

heavily biased in favor of the correlated features and were largely unable to de-

tect the interacting features X76 and X77. Fuzzy forests perform slightly worse

than both random forests and conditional inference forest on the correlated fea-

tures, however, they perform comparably to conditional inference forests on the

independent features. Overall, conditional inference forests seem to yield the best

performance.
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Figure 2.5: Fuzzy forests are compared to random forests with p = 100 and
n = 250. The height of each point represents the proportion of times each fea-
ture was selected in 100 simulations. X1, X2, X3, X4, X76, X77,, X78, and X79 are
important features. All other features were not important. X1, X2, X3, X4 are
correlated with one another. X5 is correlated with X1, X2, X3, X4 but is not
important. X80 is independent and not important.

The results of the second scenario with n = 500 are displayed in Figure 2.6.

As previously mentioned, calculation of conditional VIMs are computationally too

burdensome. In this scenario, both random forests and fuzzy forests are able to

select the correlated interacting features with higher probability (fuzzy forests,

with smaller probability). Fuzzy forests also improve in its ability to select the

independent interacting features with n = 500, while random forests are still
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largely unable to select these features.
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Figure 2.6: Fuzzy forests are compared to random forests with p = 100 and
n = 500. The height of each point represents the proportion of times each fea-
ture was selected in 100 simulations. X1, X2, X3, X4, X76, X77,, X78, and X79 are
important features. All other features were not important. X1, X2, X3, X4 are
correlated features. X5 is correlated with X1, X2, X3, X4 but is not important.
X80 is independent but is not important.

2.4.1 Application

We demonstrate an application of fuzzyforest by using it to discover immunologic

profiles that predict if an HIV patient will be able to control the virus without an-

tiretroviral therapy (ART). An immunologic controller is defined as a patient able

to achieve undetectable levels of the virus (< 50 copies/ml) without ART. Simi-

larly, an immunologic responder is an aviremic patient, on ART, with sustained

undetectable levels of the virus and CD4+ T cell counts above 350 cells/mm3.

In this dataset there were 125 immunologic responders, 92 controllers (n =

217), and 313 features (p = 313). The features are derived from flow cytometry

measurements. Flow cytometry may be used to measure the presence of various

markers on the surface of a cell. The presence of up to 14 cell surface markers was

measured. This yields up to 214 possible binary combinations of markers, however,
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not all of these combinations were available. These markers assess immunological

factors such as T cell maturation, activation, dysfunction, senescence, antigen-

specificity and proliferation.

Features derived from flow cytometry measurements typically describe what

proportion of cells in a sample display a subset of the aforementioned 14 markers.

The presence of a cell surface marker is denoted by “ + ” and the absence of the

marker is denoted by “− .” For example, one feature may measure the proportion

of all lymphocytes in a sample that are CD4 positive (CD4+). A second feature

may measure the proportion of lymphocytes that display both CD4 and CD38

(CD4+CD38+). Because the group of CD4+CD38+ T cells is nested within

the group of CD4+ T cells, the proportion of lymphocytes that are CD4+ will

be positively correlated the proportion of lymphocytes that are CD4+CD38+.

The nested nature of different subgroups of lymphocytes leads to high levels of

correlation between features.

For some markers, mean florescence intensity, a continuous measure of the

extent to which a cell displays a particular marker, was also measured using flow

cytometry.

We used WGCNA to partition the features into modules. We used the scale-

free topology criterion to determine the power of the adjacency function. We set

β = 8 based on the elbow of the curves in Figure 2.7. We found 11 modules. Each

module is identified with a color. The choice of color is chosen randomly with

the exception of the grey module. The grey module consists of features that are

independent of the other modules. In our analysis, the largest module was the

grey module with 140 features. It is commonly the case that the grey module is

larger than the other modules. The smallest module, purple, was of size 10.

We used the resulting module memberships as input to the function ff. Be-

cause of the small size of the modules we set keep_fraction to 0.25. We tested

multiple values for number_selected. The ranking of features was robust to
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settings of this parameter. We display the results when selecting 10 features.

The strongest predictors of virologic control without ART were HIV GAG-

specific response and immune activation; see Figure 2.9. The immune systems

of the controllers are highly reactive to proteins specific to HIV, i.e., gag. The

selection of cell surface markers such as PD-1 suggests that controllers may have

a higher percentage of T cells that may be dysfunctional. It is notable that,

while controllers had overall higher levels of immune activation [44], they had

lower activation in CD4+ central memory cells [45], as seen in the feature ranked

4th. These results are consistent with the nature of HIV pathogenesis. Indeed,

it has been shown that limited infection of the central memory compartment is

associated with lack of disease progression even in individuals who have detectable

viremia [46].

2.5 Discussion

In this article we have presented the fuzzy forests algorithm as an extension of

random forests that can provide less biased feature selection in the presence of

correlation between features in a computationally feasible manner, especially when

p >> n. Under these conditions, fuzzy forests are expected to outperform random

forests. We found that, as expected, random forest VIMs were biased in favor

of correlated features. Indeed when p = 1, 000 while n = 100, random forests

essentially ignored the independent variables that were important in the true

model whereas fuzzy forests found them. The fuzzy forests algorithm is useful

for screening large numbers of features or when it is desirable to find the most

important features contributing to the signal.

We introduced an implementation of fuzzy forests in the fuzzyforest package.

The fuzzyforest package has two functions for fitting the fuzzy forests algorithm.

The first implementation, wff automatically carries out a WGCNA analysis to
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partition the features into separate modules. These modules are then used by

fuzzy forests for feature selection. The second implementation, ff lets the user

determine how features should be partitioned before fuzzy forests is used for fea-

ture selection.

We then used fuzzy forests to investigate immunologic phenotypes of patients

who can control the virus without antiretrovirals. The set of important features

was stable with respect to mtry_factor and other tuning parameters. The set

of features found by fuzzy forests is biologically plausible and in part confirms

findings from in vivo and other clinical studies, suggesting that fuzzy forests found

the true underlying signal. It is expected that fuzzy forests will be useful in a wide

variety of applications from gene studies, to flow cytometry to other studies where

the data has high correlation and many potential predictors.
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Figure 2.9: This plot displays the importance of the top 10 selected features after
fitting fuzzy forests. The variables are ranked from top to bottom. Red features
indicate that controllers have higher values for the feature compared to responders.
Black features indicate that responders have lower values for the feature compared
to controllers.
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CHAPTER 3

Kernel Regression in High Dimensions

3.1 Introduction

The Nadaraya-Watson kernel regression estimator [47, 48] is a corner stone of

nonparametric regression with widespread applications. Assume that one observes

n independent and identically (iid) distributed random variables of the form Oi =

(Xi, Yi),∼ P0, i = 1, . . . , n, where Xi ∈ Rp are p-dimensional covariates and Yi is

a real-valued outcome. The Nadaraya-Watson kernel estimator of the multivariate

regression function ψ(x) ≡ E[Y |X = x] is commonly defined as

ψH∗(x) =

∑n
i=1K(H∗−1/2(Xi − x))Yi∑n
i=1 K(H∗−1/2(Xi − x))

, (3.1)

whereH∗ is a p×p symmetric positive definite matrix depending on n, andK(u) is

a kernel function such that
∫
K(u)du = 1. It is well-known that the performance

of nonparametric regression methods degrades as the number of covariates, p,

increases. This degradation in performance is often referred to as the “curse of

dimensionality." For kernel regression, the curse of dimensionality can be seen to

manifest itself when H∗ = h∗nIp by considering results such as Theorem 5.2 of [49]

concerning the rate of the convergence of the kernel regression estimator ψn,h∗n to

ψ:

E

∫
(ψn,h∗n(x)− ψ(x))2dP0,X(x) = O(n−2/(p+2)), (3.2)
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for an appropriately chosen sequence of scalar bandwidths, h∗n. Also see the dis-

cussion at the end of Chapter 4 in [50]. We highlight that the above result is

established under the commonly made assumption that the bandwidth tends to

zero at a certain rate as n grows to infinity, which allows the kernel estimator to

pick up local features and balance the trade-off between its bias and variance.

Although the Nadaraya-Watson kernel regression estimator has been well stud-

ied in the literature, its theoretical properties have been mostly derived for a gen-

eral regression function ψ(x) and require the bandwidth to go to zero along all

p dimensions as n goes to infinity [51, 52, 53, 54, 55, 49]. To the best of our

knowledge, very little is known about its theoretical behavior when there is an

embedded low-rank structure in ψ(x). The primary purpose of this article is to

fill this theoretical gap by showing that as a fully nonparametric estimator, the

Nadaraya-Watson kernel regression estimator indexed by a bandwidth matrix has

an oracle property if ψ(x) is multi-index and the bandwidths are allowed to di-

verge to infinity. Specifically, a multi-index model assumes that ψ(x) = φ(Tx)

where T is a linear orthonormal function from Rp to Rm and φ is a map from Rm

to R, which is referred to as a single-index model when m = 1. We consider the

following reparametrized form of the Nadaraya-Watson kernel estimator

ψH(x) =

∑n
i=1K(H1/2(Xi − x))Yi∑n
i=1 K(H1/2(Xi − x))

. (3.3)

Note that (3.3) is equivalent to the classical definition (3.1) with H∗ = H−1 if H is

positive definite, but we will allow H to be positive semidefinite. Letting H be less

than full rank, theoretically, allows the above estimator to take advantage of the

low-dimensional structure in a multi index model. We will show in Theorem 2 that

if the true regression function is a single or multi-index regression model with index

number m, then K-fold cross-validation can be used to produce an estimator with

rate of convergence that depends onm rather than p. Consequently, the Nadaraya-
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Watson kernel regression estimator no longer suffers the curse of dimensionality

when there exists an embedded low-rank structure in ψ(x). If m is much less than

p, the gain in predictive performance may be substantial.

Our theoretical result on the oracle property of the Nadaraya-Watson kernel

estimator relies on an extension of an oracle inequality concerning sample splitting

and K-fold cross-validation presented in [56] and [49], who considered sample

splitting or cross-validation for selecting the best model from a discrete collection

of models. In practice, for kernel regression with a bandwidth matrix, specifying a

discrete set of bandwidth matrices over which the K-fold cross-validation criterion

is to be minimized is likely to be overly burdensome and can quickly become

formidable as the dimension grows. Our result allows for optimization of the

K-fold cross-validation criterion with respect to H to take place over a bounded

subset of the space of p× p positive semidefinite matrices. This fact is important

because it provides theoretical justification for the use of general optimization

techniques such as gradient descent that rely on selecting the optimal bandwidth

matrix over a continuum of positive semidefinite matrices, rather than a discrete

grid. We refer the reader to [57], [9], and [58] for examples of using optimization

algorithms such as the projected gradient decent algorithm to minimize a non-

convex objective function over the continuum of positive semidefinite matrices in

high-dimensional settings (e.g. p in the range of 10-60).

The abovementioned oracle property provides a theoretical rationale for the

application of the Nadaraya-Watson kernel regression estimator to high dimen-

sional data when ψ(x) follows a multi-index regression model with an unknown

index m. It is worth noting that multiple estimation methods have been stud-

ied for the multiple index model with a pre-specified index m, see, e.g., [59, 60,

10, 11, 12, 61, 62, 63], and [50] among others. Data driven methods such as

cross validation have been commonly used in practice to select the index m. The

oracle property we establish in this paper for the fully nonparametric Nadaraya-
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Watson kernel regression estimator, which does not require any prior knowlege of

m, implies that its rate of convergence is comparable to an estimator based on

the multi index model where m is known in advance. Finally, the application of

the Nadaraya-Watson estimator with a matrix-valued bandwidth is not limited to

multi-index regression models. For example, it has been popularly used in metric

learning, which is a much more general framework for both supervised and unsu-

pervised learning with applications in fields such as computer vision, information

retrieval, and bioinformatics [8].

The rest of the paper is organized as follows. In Section 2, we first discuss some

optimality criteria we use for assessing predictive performance of an estimator

and introduce notations for cross-validation schemes. Then we present a general

oracle inequality for estimators using K-fold cross-validation. This result is later

used to prove an oracle property for the kernel regression estimator defined in

(3.3). In Sections 3 and 4, we illustrate the performance of the cross-validated

kernel regression estimator using a bandwidth matrix in comparison with that

using a scalar bandwidth and with an estimation method for the multi index

model in simulations and on commonly used benchmark data sets from the UC

Irvine Machine Learning repository. Further discussions are provided in Section

5. Sections 6 contains some lemmas and the proofs of the theoretical results in

Section 2.

3.2 Main Results

3.2.1 Preliminaries

3.2.1.1 Optimality Criteria for Predictive Performance

Given an estimator ψ̂ of ψ based on the observed data, consider the squared

error loss, L(Y, ψ̂(X)) = (Y − ψ̂(X))2, for an additional independent observation,
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O = (X, Y ) ∼ P0. Define

θ̃n(ψ̂) = EO[L(Y, ψ̂(X))] =

∫
L(y, ψ̂(x))dP0(x, y), (3.4)

to be the conditional risk [64, 56], which is also referred to as the test error or

generalization error [32] or the integrated squared error (ISE) [65]. We refer to

this measure of performance as the conditional risk because it is conditional on

the training set used to estimate ψ̂(X)).

Note that the conditional risk is a random variable as ψ̂ depends on the ob-

served data. We call Eθ̃n(ψ̂) the marginal risk, or the expected test error, or the

mean integrated squared error (MISE).

Define ψ(X) = E[Y |X] to be the true conditional expectation of Y given X

and θopt = EO[(Y −ψ(X))2]. Then, for any square integrable estimator ψ̂(X), we

have

θ̃n(ψ̂) ≥ θopt,

since ψ(X) = E[Y |X] minimizes EO[(Y − η(X))2] over all square integrable

functions η(X) of X (see, e.g., Corollary 8.17 of [66]). Hence θopt is a lower

bound for both the conditional risk, and the marginal risk, and θopt is the op-

timal conditional risk. Moreover, we note that selecting an estimator ψ̂ that

minimizes the conditional risk is equivalent to minimizing θ̃n(ψ̂) − θopt and that

θ̃n(ψ̂)− θopt =
∫

(ψ̂(x)− ψ(x))2dP0,X(x), where P0,X is the marginal distribution

of X. We refer to θ̃n(ψ̂)− θopt as the conditional excess risk and Eθ̃n(ψ̂)− θopt as

the marginal excess risk.

Because the true distribution P0 of the observations is unknown, the condi-

tional risk must be estimated. A natural estimator of the conditional risk would

be
∫
L(y, ψ̂(x))dPn(x, y), where Pn is the empirical distribution of the observa-

tions. Unfortunately, this estimate may be highly optimistic because the data has

been used twice to first produce the estimator, ψ̂ and then obtain the estimate of
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the conditional risk. A sample splitting procedure, whereby a (training) subset of

the data is set aside to produce ψ̂ and a separate (validation) subset of the data is

used to estimate θ̃n(ψ̂), would produce an estimate of the conditional risk that is

less prone to this negative bias. Cross-validation schemes for estimating the con-

ditional risk are elaborations of the aforementioned sample splitting procedure, in

which observations alternate in their role of training and validation as described

in the next section.

3.2.1.2 A Formal Explication of Cross-Validation

Let {ψk(x) : k ∈ Ξn} denote a collection of estimators of ψ(x) indexed by k, where

Ξn ⊂ Rd for some positive integer d. Below we formally present the concept of

cross-validation, giving attention to the case in which the index k runs through a

continuous range of values.

We denote a split of the data into training and validation sets via the binary

vector Sn = (Sn1, . . . , Snn)T ∈ {0, 1}n, where

Sni =


0, if observation i is in the training set,

1, if observation i is in the validation set,

and the set {0, 1}n represents all possible splits of the data into training and

validation sets. Define P 0
n,Sn

and P 1
n,Sn

as the empirical distribution of the obser-

vations in the training and validation set, respectively. Let ψk = ψk(X|P 0
n,Sn

) be

an estimator produced by applying an estimation procedure to observations in the

training set determined by Sn. Define the conditional expectation, given the obser-

vations in the training set, of a function f(O,ψk(X|P 0
n,Sn

)) by EO[f(O,ψk)|P 0
n,Sn

],

where f is a function depending on an independent observation O ∼ P0 and the

estimator ψk(X|P 0
n,Sn

) .

From now on, we will assume that all data splits devote the same proportion of
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observations, 1−π, to training. A cross-validation scheme is defined by assigning a

set of nsplit probability weights w1, . . . , wnsplit such that wj > 0 and
∑nsplit

j=1 wj =

1 to a subset of nsplit elements of {0, 1}n. The corresponding cross-validation

criterion is then defined as

θ̂CVn(1−π)(k) = ESn

∫
L(y, ψk(x|P 0

n,Sn))dP 1
n,Sn(x, y) (3.5)

=

nsplit∑
j=1

wj

∫
L(y, ψk(x|P 0

n,S
(j)
n

))dP 1

n,S
(j)
n

(x, y). (3.6)

The K-fold cross-validation scheme is defined by splitting the n observations

into K distinct subsets. This partition of the observations results in K binary vec-

tors S(1)
n , . . . , S

(K)
n where S(j)

n is created by letting observations in the jth element

of the partition serve as the validation set. After minor modification, we may take

π = bn/Kc/n. The K-fold cross-validation scheme then puts a probability weight

of wj = 1/K on each of these K binary vectors.

A natural benchmark for a cross-validation scheme is

θ̃CVn(1−π)(k) = ESn

∫
L(y, ψk(x|P 0

n,Sn))dP0(x, y) (3.7)

=

nsplit∑
j=1

wj

∫
L(y, ψk(x|P 0

n,S
(j)
n

))dP0(x, y), (3.8)

which is referred to as the cross-validation benchmark, or the “commensurate opti-

mal benchmark" [56]). The cross-validation benchmark θ̃CVn(1−π)(k) can be regarded

as a cross-validation criterion when an infinite number of observations are avail-

able for validation. Although minimization of the cross-validation benchmark is

not equivalent to minimization of the conditional risk over estimators that use

all n observations, for K-fold cross-validation, the following relationship holds:

Eθ̃CVn(1−π)(k) = Eθ̃n(1−π)(k), where θ̃n(1−π)(k) denotes the conditional risk of ψk.

Thus, the cross-validation benchmark has mean equal to the marginal risk based
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on approximately n(1− π) observations rather than n observations.

If minimization of the cross-validation criterion is carried out over a contin-

uous range Ξn of Rd, there may not exist a k̂n ∈ Ξn such that θ̂CVn(1−π)(k̂n) =

infk∈Ξn θ̂
CV
n(1−π)(k). For this reason, we will consider a γ-suboptimal point k̂n ∈ Ξn

as in [67] such that θ̂CVn(1−π)(k̂n) ≤ inf{θ̂CVn(1−π)(k) : k ∈ Ξn} + γ, for some pre-

specified γ > 0. Note that a γ-suboptimal point is not necessarily unique. If a

minimizer exists in Ξn, then it can be considered as a γ-suboptimal point with

γ = 0.

3.2.2 An Oracle Property of the Kernel Regression Estimator

Our main theoretical result relies on an extension of an oracle inequality presented

in [56] and [49], who considered sample splitting or cross-validation for selecting

the best model from a discrete collection of models. Our extension below allows

for optimization of the K-fold cross-validation criterion to take place over a con-

tinuous bounded subset of the space of p × p positive semidefinite matrices and

consequently enables selecting the best model from a continuum of models.

3.2.2.1 An Oracle Inequality for K-Fold Cross Validation

We now present an oracle inequality that demonstrates thatK-fold cross-validation

produces an estimator that has near optimal performance according to the cross-

validation benchmark.

Let k̂n and k̃n be the γ-suboptimal minimizers of the K-fold cross-validation

criterion θ̂CVn(1−π)(k) and its cross-validation benchmark θ̃CVn(1−π)(k), respectively,

over Ξn.

The following assumptions will be needed.

(A1) There exists a constantM > 0 such that Pr(|Y | < M) = 1 and supX |ψk(X|Pn)| ≤
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M < ∞ almost surely for all k ∈ Ξn, where M does not depend on n and

the supremum is over the support of the marginal distribution of X.

(A2) Ξn is a bounded set.

(A3) Assume that with probability 1, L(Y, ψk(X|Pn))−L(Y, ψ(X)), as a function

of k, is Lipshitz continuous with Lipshitz constant C. This Lipshitz constant,

C, does not depend on the training set, Pn.

(A4) Let c1(nπ, d,Ξn,M, δ) = log
{(

nπ
c2(M,δ)

)d
4(4
√
dC24(1 + 2δ)diam(Ξn))d

}
and

let c2(M, δ) = 8(1 + δ)2(M2

δ
+ M1

3
), where M1 = 8M2 and M2 = 16M2.

Assume δ > 0 is such that 1/c2(M, δ) ≤ M18( 1
(1+2δ)

+ 1
3
) and take n large

enough that c1(nπ, d,Ξn,M, δ) > 1.

The derivation of our result in the theorem below requires that terms of the form

L(Y, ψk(X|Pn)) − L(Y, ψ(X)), where Pn depends on the split, converge to their

expectation uniformly over k ∈ Ξn. Intuitively, if L(Y, ψk(X|Pn)) − L(Y, ψ(X))

converges to its expectation uniformly in k, then the K-fold cross-validation cri-

terion will converge to the K-fold cross-validation benchmark uniformly in k.

Assumptions (A1), (A2), and (A3) ensure this occurs. Assumption (A4) is a

technical condition primarily serving to simplify the result.

Theorem 1. Assume the above assumptions (A1)-(A4) hold. Then,

0 ≤ Eθ̃CVn(1−π)(k̂n)− θopt ≤ (1 + 2δ)(Eθ̃CVn(1−π)(k̃n)− θopt)+ (3.9)

4c2(M, δ)

nπ
c1(nπ, d,Ξn,M, δ)+ (3.10)

(1 + δ)γ. (3.11)

Remark 1. Because Eθ̃CVn(1−π)(k̃n)− θopt is a lower bound for Eθ̃CVn(1−π)(k̂n)− θopt,

the above inequality states that on average cross-validation selects an estimator

with close to optimal performance measured by the cross-validation benchmark if
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nπ large. Note that the tightness of the above inequality depends on n, π, d, and

diam(Ξn). The bound becomes looser for larger values of d and diam(Ξn). As nπ

grows, the bound becomes tighter.

Remark 2. Our finite sample result in Theorem 1 suggests a trade-off with re-

gard to the choice of what proportion of observations to use for validation versus

training for the upper-bound of the above inequality. The expression on the right

hand side of the above inequality depends heavily on the number of observations

used for validation: nπ. If π is too small, the number of observations used for

validation will be small and the term in (3.10) will be large, which signals difficulty

in identifying the model that minimizes the cross-validation benchmark. If π is

large, the expectation of the optimal cross-validation benchmark based on training

sets of size n(1− π) may be a poor approximation for the expectation of the opti-

mal conditional risk based on a training set of size n. A similar trade-off has been

observed with regard to the choice of K in [68, 32, 69]. [70], perhaps providing a

more refined discussion of this issue, suggest that the choice of K should depend,

in part, on the signal-to-noise ratio.

The above oracle inequality in Theorem 1 is derived for any collection of es-

timators indexed by k that ranges over a continuous bounded subset Ξn of Rd,

satisfying (A1)-(A4). In the next section, we apply Theorem 1 to the Nadaraya-

Watsion kernel regression estimator defined in (3.3) with a Gaussian kernelK(u) =

exp(−||u||2), indexed by a bandwidth matrix H. We also show that for this

Nadaraya-Watson kernel regression estimator, a minimizer (corresponding to γ =

0) exists for both the K fold cross-validation criterion and the K-fold cross-

validation benchmark.
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3.2.2.2 An Oracle Property for a Nadaraya-Watson Estimator with a

Matrix Valued Bandwidth

As in [67], we represent the set of symmetric positive semidefinite matrices,

Sp+, as elements in Rp(p+1)/2. Explicitly, we represent a particular matrix H as

(h1,1, h2,2, . . . , hp,p,

h2,1, h3,1, . . . , hp,p−1)′. The Frobenius norm of a symmetric matrix, H, viewed as

an element inRp(p+1)/2, is defined as ||H||F = (
∑p

i=1 h
2
ii+2

∑
j<i h

2
ij)

1/2. To ensure

that Ξn is bounded (A2), we will let Ξn consist of the elements of Sp+ ⊂ Rp(p+1)/2

with Frobenius norm less than or equal to λn for some λn > 0.

Theorem 2. Consider the class of kernel regression estimators ψH , defined in

(3.3), where K(u) = exp(−||u||2) is the Gausian kernel function and H is selected

via K-fold cross-validation. Assume that P (|Y | < M) = 1 and that (A4) holds.

Assume further that there exists a constant B > 0 such that P (||X|| < B) = 1.

Then, we have the following finite sample result.

(a) Minimizers of the K-fold cross-validation criterion and the K-fold cross-

validation benchmark with respect to H exist in Ξn.

(b) Denote by Ĥn ∈ Ξn a minimizer of the K-fold cross-validation criterion

and H̃n ∈ Ξn a minimizer of the K-fold cross-validation benchmark. Then,

the assumptions (A1), (A2), and (A3) are satisfied and consequently the

inequality of Theorem 1 holds, with γ = 0, d = p(p + 1)/2 and C =

64
√
p(p+ 1)/2B2M2.

(c) Let ψn(1−π),Ĥn
(x|P 0

n,S
(j)
n

) be the kernel regression estimator obtained by using

Ĥn from part (b) and the jth training sample for any 1 ≤ j ≤ K. Assume

ψ(X) = φ(Tx) is a multi-index model defined such that φ : Rm → R is

Lipshitz continuous with Lipshitz constant R and T is an m× p orthogonal

matrix. Let λn =
√
pV (log(n)n)1/3, where V > 0 is a positive constant.
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Then, as n→∞,

Eθ̃CVn(1−π)(Ĥn)− θopt = E

∫
(ψn(1−π),Ĥn

(x|P 0

n,S
(j)
n

)− ψ(x))2dP0,X(x)

= O((n(1− π))
−2
m+2 log(n(1− π))

m
m+2 ).

We see that in contrast to the result (3.2), the rate of convergence of the above

estimator in part (c) depends on m ≤ p. The gain in efficiency can be substantial

when m is much smaller than p.

Remark 3. (Optimality of K-fold cross-validation) If

c1(nπ, d,Ξn,M, δ)

(nπ){Eθ̃CVn(1−π)(k̃)− θopt}
→ 0 as n→∞, (3.12)

then it follows, by dividing both sides of the oracle inequality in Theorem 2.1, that

Eθ̃CVn(1−π)(k̂)− θopt
Eθ̃CVn(1−π)(k̃)− θopt

→ 1 as n→∞. (3.13)

This implies that the estimator produced by K-fold cross-validation has asymptot-

ically optimal predictive performance as measured by the cross-validation bench-

mark. Furthermore, assuming that λn grows at the rate specified in Theorem 2, the

above condition (3.12) will then be satisfied if nπ(Eθ̃CVn(1−π)(H̃n) − θopt) increases

at a polynomial rate, nγ, where 0 < γ < 1. As n−1 is a “parametric rate" of

convergence we would expect Eθ̃CVn(1−π)(H̃n)− θopt to decrease at a rate slower than

n−1. Thus, we expect the condition (3.12) to hold in many circumstances. In

fact, Remark 4 of [71] provides an example of a class of distribution within which

distributions can be found such that it holds.

Remark 4. (Computational aspects) The K-fold cross-validation criterion is dif-

ferentiable with respect to H for the Nadaraya-Watson estimator (3.3) we con-

sider. The derivative is presented in the Supplementary material. To find Ĥn,
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we have implemented a variant of the gradient descent algorithm presented in [9].

Our simulation results and the data analysis demonstrate that this algorithm is

capable of finding acceptable local minimizers. Development of more sophisticated

algorithms for finding global minimizers as well as improvement of computational

speed warrants further research.

3.3 Simulations

We present in this section the results of a simulation study to illustrate the oracle

property of the kernel regression estimator using a matrix-valued bandwidth by

comparing its performance with a kernel regression estimator using a scalar valued

bandwidth and a multi-index regression method introduced in [12] and [13] under

multiple scenarios for multi index models. The estimator of [13] is implemented

in the R package EDR and is denoted as EDR. EDR relies on estimation of the

gradient of the regression function. We use 10-fold cross-validation to estimate

the optimal scalar-valued and matrix-valued bandwidth parameters. To find the

matrix-valued bandwidth, we applied a gradient descent algorithm to minimize the

10-fold cross-validation criterion. A grid search was used to find the scalar-valued

bandwidth. Tuning parameters for EDR were chosen via 10-fold cross-validation.

We also demonstrate how the performance of kernel regression, parametrized by

a bandwidth matrix, degrades as the number of covariates increases.

In all simulations, the covariates are independent and standard normal random

variables. For the single index regression model we let

Y = 2X1 + 2X2 +X3 +X4 + ε, (3.14)

where ε ∼ N(0, σ2). The standard deviation of the error term, σ, has been set

to 0.10 and 0.20. Additional “noise" covariates (covariates with coefficient equal

to 0) have been added such that p varies from 5, 10, to 20. For the five-index
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regression model, we let

Y = X3
1 +X3

2 + cos
(π

2
(X1 +X3)

)
+
√
|X4|+

√
|X1 +X5|+ ε, (3.15)

where ε ∼ N(0, σ2). The sample size, n, varies from 250, 500, to 1,000 and σ takes

the values 0.10 and 0.20.

The performance of these estimators is measured by taking the square root

of the mean squared error (RMSE) on a test set of size 10,000. Each simulation

scenario was repeated 100 times. The mean of the RMSEs over the 100 simulations

as well as 95% confidence intervals for each simulation scenario are presented in

Table 3.1.

Both EDR and the kernel regression estimator using a matrix-valued band-

width outperform the kernel regression estimator using a scalar-valued bandwidth

over all simulation scenarios. The rate of convergence of the kernel regression es-

timator using a scalar-valued bandwidth is slow enough that the RMSE changes

only by very small amounts as the sample size increases. We found that the scalar

bandwidth selected by 10-fold cross-validation led to significant over-smoothing

for all simulation scenarios.

For the single-index model, EDR consistently outperforms the kernel regression

estimator indexed by a matrix-valued bandwidth. This is unsurprising as EDR

relies on a local-linear approximation rather than a local constant approximation.

For the five-index regression model, the kernel regression estimator generally out-

performs EDR when the number of covariates is equal to 5 and 10. We believe

that for complex multi-index models EDR has difficulty estimating the gradient.

When p is 20 for the five-index model, we believe that EDR and kernel regres-

sion perform similarly as boundary effects harm the performance of the kernel

regression estimator.
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n p SD m Matrix Bandwidth EDR Scalar Bandwidth
250 5 0.10 1 0.118 (0.118,0.119) 0.105 (0.105,0.106) 1.829 (1.829,1.83)
250 5 0.20 1 0.216 (0.216,0.216) 0.209 (0.208,0.21) 1.837 (1.837,1.838)
250 10 0.10 1 0.119 (0.118,0.119) 0.105 (0.105,0.105) 1.829 (1.828,1.83)
250 10 0.20 1 0.22 (0.22,0.221) 0.209 (0.209,0.21) 1.837 (1.836,1.838)
250 20 0.10 1 0.122 (0.121,0.122) 0.107 (0.107,0.108) 1.829 (1.828,1.83)
250 20 0.20 1 0.25 (0.249,0.251) 0.214 (0.214,0.214) 1.837 (1.836,1.837)
500 5 0.10 1 0.108 (0.108,0.108) 0.103 (0.102,0.104) 1.827 (1.827,1.828)
500 5 0.20 1 0.208 (0.208,0.208) 0.205 (0.204,0.206) 1.836 (1.835,1.837)
500 10 0.10 1 0.109 (0.109,0.109) 0.103 (0.103,0.103) 1.827 (1.827,1.828)
500 10 0.20 1 0.209 (0.209,0.209) 0.206 (0.205,0.206) 1.835 (1.835,1.836)
500 20 0.10 1 0.11 (0.11,0.11) 0.103 (0.103,0.103) 1.827 (1.826,1.828)
500 20 0.20 1 0.218 (0.217,0.219) 0.207 (0.206,0.207) 1.836 (1.835,1.836)
1000 5 0.10 1 0.104 (0.104,0.104) 0.101 (0.101,0.102) 1.826 (1.825,1.827)
1000 5 0.20 1 0.204 (0.204,0.204) 0.202 (0.202,0.203) 1.835 (1.834,1.835)
1000 10 0.10 1 0.104 (0.104,0.104) 0.102 (0.101,0.102) 1.826 (1.825,1.827)
1000 10 0.20 1 0.204 (0.204,0.205) 0.203 (0.202,0.203) 1.835 (1.834,1.836)
1000 20 0.10 1 0.105 (0.104,0.105) 0.102 (0.102,0.102) 1.827 (1.826,1.828)
1000 20 0.20 1 0.206 (0.206,0.206) 0.203 (0.203,0.203) 1.835 (1.834,1.835)
250 5 0.10 5 0.39 (0.388,0.391) 0.54 (0.516,0.564) 0.87 (0.869,0.87)
250 5 0.20 5 0.433 (0.432,0.435) 0.562 (0.552,0.572) 0.886 (0.886,0.887)
250 10 0.10 5 0.448 (0.447,0.45) 0.544 (0.524,0.564) 0.869 (0.869,0.87)
250 10 0.20 5 0.496 (0.495,0.497) 0.56 (0.55,0.57) 0.886 (0.886,0.887)
250 20 0.10 5 0.549 (0.546,0.551) 0.532 (0.528,0.536) 0.869 (0.869,0.87)
250 20 0.20 5 0.602 (0.599,0.604) 0.584 (0.577,0.591) 0.886 (0.886,0.887)
500 5 0.10 5 0.346 (0.345,0.347) 0.488 (0.482,0.495) 0.868 (0.868,0.869)
500 5 0.20 5 0.395 (0.394,0.396) 0.529 (0.521,0.538) 0.885 (0.885,0.886)
500 10 0.10 5 0.372 (0.371,0.373) 0.515 (0.493,0.536) 0.868 (0.868,0.869)
500 10 0.20 5 0.424 (0.423,0.425) 0.546 (0.52,0.573) 0.886 (0.885,0.886)
500 20 0.10 5 0.474 (0.472,0.476) 0.477 (0.472,0.482) 0.869 (0.868,0.869)
500 20 0.20 5 0.524 (0.522,0.525) 0.518 (0.51,0.526) 0.885 (0.885,0.886)
1000 5 0.10 5 0.306 (0.305,0.307) 0.48 (0.463,0.498) 0.868 (0.868,0.868)
1000 5 0.20 5 0.362 (0.361,0.362) 0.51 (0.501,0.519) 0.885 (0.885,0.885)
1000 10 0.10 5 0.315 (0.314,0.315) 0.472 (0.459,0.485) 0.868 (0.867,0.868)
1000 10 0.20 5 0.373 (0.372,0.374) 0.533 (0.499,0.568) 0.885 (0.885,0.885)
1000 20 0.10 5 0.399 (0.398,0.4) 0.419 (0.413,0.424) 0.868 (0.868,0.869)
1000 20 0.20 5 0.455 (0.454,0.456) 0.484 (0.471,0.498) 0.885 (0.885,0.885)

Table 3.1: RMSEs and 95% CIs for kerned regression estimator with matrix band-
width, scalar bandwidth, and EDR under a single index model (Index # =1) and
a five-index model (Index # =5).
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3.4 Real Data Examples

In this section we demonstrate the estimated predictive performance of kernel

regression using a bandwidth matrix versus kernel regression using a scalar band-

width with the goal of understanding whether the asymptotic results presented in

this article are indicative of finite sample performance on commonly explored data

sets. For reference, we also compare the predictive performance of these kernel

regression estimators to that of a linear regression estimator with no interactions

and no nonlinear terms. Large differences in estimated prediction accuracy be-

tween the nonparametric kernel regression methods and the linear model may

provide an indication of whether the linear model is failing to account for any in-

teractions or nonlinearities although this comparison does not constitute a formal

test.

To estimate the predictive accuracy of each method we used testing sets of

approximate size n× 0.25. Observations were split into 4 groups. This yielded 4

splits of the data into a set of size n× 0.75 for training and a set of size n× 0.25

for estimating the RMSE via a testing set. A final estimate of the RMSE was

obtained by averaging the 4 estimates of the RMSE associated with each split.

Within each training set 10-fold cross-validation was used to select the bandwidth

matrix and scalar bandwidth for the two regression estimators.

We tested these methods on 3 data sets: the Boston housing data set, obtained

via the R package MASS, the concrete compressive strength data set, and the

auto-mpg data set, with the latter two being available from the UC Irvine Machine

Learning Repository (https://archive.ics.uci.edu/ml). Continuous covariates were

centered and scaled to have variance equal to 1. The results are presented in Table

3.2.

It is seen from Table 3.2 that the kernel regression estimator indexed by a

bandwidth matrix yielded a smaller estimated RMSE than both the kernel re-
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Data Set n p EDR Matrix BW Scalar BW Linear Regression
Boston housing 506 11 3.54 3.69 9.07 4.96

concrete 1030 8 6.77 6.97 16.60 10.55
auto-mpg 398 5 2.88 2.71 7.72 3.48

Table 3.2: Estimated RMSEs for three commonly used data sets. BW=bandwidth
matrix.

gression estimator indexed by a scalar and the linear regression estimator. The

kernel regression estimator indexed by a scalar bandwidth had the highest RMSE

for all 3 data sets. The improvement in performance from using a bandwidth

matrix over a scalar bandwidth suggests that there is likely a lower-dimensional

structure which the bandwidth matrix is able to take advantage of. The lower

RMSE of the kernel regression estimator indexed by a bandwidth matrix than

linear regression is indicative of possible nonlinear structure or interactions which

the linear regression estimator fails to account for.

3.5 Discussion

Previous theoretical study of cross-validation for the Nadaraya-Watson estimator

has focused on some special bandwidth matrix structure [51, 52, 53, 54, 55, 49]

under various optimality criteria, assumptions about the kernel, and assumptions

about the data distribution. For instance, the results on cross-validation and

kernel regression presented in [52, 53, 54], and [55] concern leave-one-out cross-

validation and all consider the case when H∗ = h∗Ip, where h∗ = 1/h. The kernel

estimator using such a scalar bandwidth, however, does not have the flexibility

to take advantage of any low dimensional structure and thus suffers the curse of

dimensionality. It is also problematic when some of the covariates are measured on

different scales. We have derived a finite sample oracle inequality for the K-fold

cross-validated Nadaraya-Watson kernel regression estimator indexed by a general

bandwidth matrix and demonstrated that the resulting upper bound achieves a

55



lower-dimensional rate of convergence when the true regression model is single or

multi-index. The kernel estimator indexed by a general bandwidth matrix is also

invariant to the scales of the covariates. In addition to the theoretical results,

we have also corroborated the oracle property of the kernel regression estimator

with a matrix-valued bandwidth by demonstrating its significant gain in efficiency

over the kernel regression estimator with a scalar-valued bandwidth in numerical

studies. Lastly, although it is not a primary focus of the article, we have conducted

a simulation study to compare the performance of the kernel regression estimator

using a matrix-valued bandwidth with a multi-index regression method, referred

to as EDR here, introduced in [12] and [13] when the true regression model is single

or multi-index. We have found that there exist scenarios for both estimators where

they significantly outperform one another.

Our oracle inequality in Theorem 2.1 is a nontrivial extension of the result of

[56] and [49] from a discrete set of models to a continuum of models for selecting

the best model using cross validation. Similarly to [56] and [49], our result in

Theorem 2.1 is not specific to kernel regression and thus potentially applies to a

wide variety of estimation procedures in addition to kernel regression. We note

that this generality is obtained with a small price. For example, our proof requires

that the number of folds, K, be constant or grow slowly as a fraction of the sample

size. In particular, this excludes leave-one-out cross-validation. The upper-bound

in Theorem 2 may not be the tightest possible and it is possible that the actual

rate of convergence of the estimator in Theorem 2.2 (c) could be faster without

the log(n) factor.

While the focus of the article is on K-fold cross-validation, our results eas-

ily generalize to other cross-validation schemes. For example, a cross-validation

scheme that may lead to more stable model selection could be obtained by spec-

ifying more than just K splits in which approximately nπ observations are used

for validation. An example of such a scheme is repeated K-fold cross-validation
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([72]), wherein K-fold cross-validation is carried out repeatedly by using a differ-

ent partition of the observations each time. It can be shown that our results also

hold for repeated K-fold cross-validation.

3.6 Proofs

To prove the theorems of Section 2, we need to first discuss the concept of brackets

and bracketing numbers and establish some lemmas.

3.6.1 Definitions and Results Regarding Brackets

Let F be a collection of functions f(O). An L2 ε-bracket determined by a pair of

functions, l and u, such that l(O) ≤ u(O) and E[|l(O) − u(O)|2] ≤ ε2, is defined

as the set of functions f(O) ∈ F such that l(O) ≤ f(O) ≤ u(O). Such a bracket

will be denoted as [l, u]. A minimal ε-covering of F with brackets is a collection of

brackets such that each element of F is in at least one bracket and there exists no

collection of ε brackets of smaller cardinality. The minimum number of brackets

required to cover F is denoted by N[](ε,F).

By Jensen’s inequality, we have ε2 ≥ E[|u− v|2] ≥ (E[|u− l|])2 which implies

that E[|u− l|] ≤ ε.

Let f1, f2 ∈ [l, u]. We show that f1 and f2 have variances that are close to one

another for small values of ε. This result will be used in the proof of Theorem 1.

Lemma 1. Let f1 and f2 be elements of an L2 ε-bracket, [l, u]. Then

|σ2
f1
− σ2

f2
| ≤ ε(σf1 + σf2) (3.16)
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Proof.

E

{[
(f1(O)− E[f1(O)])− (f2(O)− E[f2(O)])

]2}
= E

{[
f1(O)− f2(O)− E[f1(O)− f2(O)]

]2}
≤ E

{[
(f1(O)− f2(O))− (E[f1(O)− f2(O)])

]2}
+ (E[f1(O)− f2(O)])2

= E[(f1(O)− f2(O))2] ≤ ε2.

This implies that

√
E

{[
(f1(O)− E[f1(O)])− (f2(O)− E[f2(O)])

]2} ≤ ε.

By the reverse triangle inequality, we have

∣∣∣∣√E[(f1(O)− E[f1(O)])2]−
√
E[(f2(O)− E[f2(O)])2]

∣∣∣∣ =

∣∣∣∣σf1 − σf2∣∣∣∣ ≤ ε,

where σ2
fi
is the variance of fi(i = 1, 2).

Then |σ2
f1

- σ2
f2
| = |(σf1 − σf2)(σf1 + σf2)| ≤ ε(σf1 + σf2).

3.6.2 Rate of Convergence of a Kernel Regression Estimator with Un-

bounded Support

In this section, we present a result extending Theorem 5.2 of [49] on the rate of

convergence of the kernel regression estimator to handle the case where a Gaussian

kernel is used. This result is used in the proof of Theorem 2.

In the next lemma, we restrict our attention to the special case where a single

bandwidth parameter, h > 0, is used. Therefore, instead of ki,H(x) = exp(−(Xi−

x)′H(Xi− x)), we have ki,h(x) = exp(−h(Xi− x)′(Xi− x)) = exp(−h||Xi− x||22),

where ||Xi − x||2 is the squared Euclidean distance between Xi and x. With h
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fixed, we denote the resulting kernel estimator as ψn.

Consider a class of kernel regression estimators of the form

ψn(x) =

∑n
i=1K((Xi − x)h)Yi∑n
i=1K((Xi − x)h)

, (3.17)

where K : Rd → [0,∞) is the kernel function. Theorem 5.2 of [49] provides

an upper-bound on EO[(ψn(X) − ψ(X))2] when K(x) is a type of kernel with

bounded support called a “boxed" kernel. Letting Sx,r be a ball of radius r,

centered at x, K(x) is a boxed kernel if there exists 0 < r < r′ and b > 0 such

that I{x∈S0,r′} ≥ K(x) ≥ bI{x∈S0,r}. In the case of a Gaussian kernel, there does

exist b and r > 0 such that K(x) ≥ bI{x∈S0,r}. However, the Gaussian kernel has

unbounded support, therefore, there exists no r′ such that I{x∈S0,r′} ≥ K(x).

Lemma 2. Assume X has support such that there exists B > 0 such that P (||X|| <

B) = 1. Assume the true regression function, ψ(x) is Lipshitz continuous over

the support of X, with Lipshitz constant R, and that Var(Y |X = x) ≤ σ2 over the

support of X. Then, we have

E[(ψn(X)− ψ(X))2] ≤ R2 log(n)

h
+

2R2B2c̃hp/2

nb
+

2σ2c̃hp/2

nb
, (3.18)

where c̃ depends on p and B. Furthermore, if h increases to infinity as

h∗n =

(
A1 log(n)n

A2
p
2

) 2
p+2

where A1 = R2 and A2 = 2c̃
b

(R2B2 + σ2), then the above bound yields

E[(ψn(X)− ψ(X))2] ≤ A log(n)
p
p+2n

−2
p+2 ,

where A = A
p
p+2

1 A
2
p+2

2

(
(p/2)

2
p+2 + (p/2)

p
p+2
)
.

The proof of Lemma 2 is given in the supplementary materials.
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3.6.3 Proof of Theorem 1

Proof. To simplify notation, for this finite sample result, we suppress the depen-

dence of k̂n and k̃n on the sample size, thus, let k̂n = k̂ and k̃n = k̃. We begin

with the same decomposition as [56].

0 ≤ θ̃CVn(1−π)(k̂)− θopt

= ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

− (1 + δ)ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

+ (1 + δ)ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

≤ ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

− (1 + δ)ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

+ (1 + δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

+ (1 + δ)γ

= ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

− (1 + δ)ESn

∫
L(y, ψk̂(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

+ (1 + δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

− (1 + 2δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

+ (1 + 2δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

+ (1 + δ)γ

As in [56], denote the sum of the first and second terms above by Rnk̂. Denote the

sum of the third and fourth term as Tn,k̃. The fifth term is the cross-validation
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benchmark. Therefore, we have

0 ≤ θ̃CVn(1−π)(k̂)− θopt ≤ (1 + 2δ){θ̃CVn(1−π)(k̃)− θopt}+Rnk̂ + Tn,k̃ + (1 + δ)γ. (3.19)

The objective is then to find upper bounds for ERnk̂ and ETn,k̃. We will show

that the same bound applies for both ERnk̂ and ETn,k̃. At present, we find an

upper bound for Rnk̂.

Fixing our attention on a particular split into training and validation sets, say

the jth split S(j)
n , let ZS

(j)
n

ki = ZS
(j)
n

ki (Yi, Xi) = L(Yi, ψk(Xi|P 0

n,S
(j)
n

)) − L(Yi, ψ(Xi)),

where i is such that S(j)
ni = 1. Let ZS

(j)
n

k = ZS
(j)
n

k (Y,X) = L(Y, ψk(X|P 0

n,S
(j)
n

)) −

L(Y, ψ(X)) have the same distribution as ZS
(j)
n

ki . Note that |ZS
(j)
n

ki | ≤ M1 a.s. We

also have
∫
ZS

(j)
n

k (x, y)dP0(x, y) = E[ZS
(j)
n

k |P 0

n,S
(j)
n

]− θopt ≥ 0.

For any k, let

Rnk =
1

K

K∑
j=1

Rnk(S
(j)
n ),

where

Rnk(S
(j)
n ) =

∫
ZS

(j)
n

k (x, y)dP0(x, y)− (1 + δ)
{ 1

nπ

∑
{i:S(j)

ni =1}

ZS
(j)
n

ki (Xi, Yi)
}
.

After adding and subtracting δ
∫
ZS

(j)
n

k (x, y)dP0(x, y), we have

Rnk(S
(j)
n ) = (1+δ)

{
1

nπ

∑
{i:S(j)

ni =1}

(

∫
ZS

(j)
n

k (x, y)dP0(x, y)−Zki)
}
−δ
∫
ZS

(j)
n

k (x, y)dP0(x, y).

(3.20)
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Therefore,

P

(
Rnk̂(S

(j)
n ) > s|P 0

n,S
(j)
n

)
= P

(
(1 + δ)

{ 1

nπ

∑
{i:S(j)

ni =1}

E[ZS
(j)
n

k̂i
|P 0

n,S
(j)
n

]− ZS
(j)
n

k̂i

}
− δE[ZS

(j)
n

k̂i
|P 0

n,S
(j)
n

] > s|P 0

n,S
(j)
n

)

≤ P

(
sup
k∈Ξn

{
(1 + δ)

{ 1

nπ

∑
{i:S(j)

ni =1}

E[ZS
(j)
n

ki |P
0

n,S
(j)
n

]− ZS
(j)
n

ki

}
− δE[ZS

(j)
n

ki |P
0

n,S
(j)
n

]

}
> s|P 0

n,S
(j)
n

)

≤ P

(
sup
k∈Ξn

{
(1 + δ)

{ 1

nπ

∑
{i:S(j)

ni =1}

E[ZS
(j)
n

ki |P
0

n,S
(j)
n

]− ZS
(j)
n

ki

}
− δ

V ar(ZS
(j)
n

ki |P 0

n,S
(j)
n

)

M2

}
> s|P 0

n,S
(j)
n

)
,

where in the last inequality we have used the inequality

V ar(ZS
(j)
n

ki |P
0

n,S
(j)
n

)/M2 ≤ E[ZS
(j)
n

ki |P
0

n,S
(j)
n

]

(see Lemma 3 of [56]). We will find an exponential bound for the previous prob-

ability via bracketing numbers.

Let FP 0

n,S
(j)
n

= {ZS
(j)
n

k = ZS
(j)
n

k (X, Y ) : k ∈ Ξn}. Set ε = s/(4(1 + 2δ)). Let

[lv, uv] (v = 1, . . . , N(ε)) be a minimal L2 ε-bracketing of FP 0

n,S
(j)
n

where N(ε) =

N[](ε,FP 0

n,S
(j)
n

). By A1 we may assume without loss of generality that |lv| ≤ M1

and that |uv| ≤M1.

Note that N[](ε,FP 0

n,S
(j)
n

) depends on the training set defined by S(j)
n . Given the

training set used in split S(j)
n , N(ε) = N[](ε,FP 0

n,S
(j)
n

) is a fixed number rather than

a random variable. We will find a bound for N(ε,FP 0

n,S
(j)
n

) that is independent of

the training set. Choose a representative, fv ∈ [lv, uv] from each bracket and let

fvi = fv(Oi). Similarly, let lvi = lv(Oi) and uvi = uv(Oi). If ZS
(j)
n

k ∈ FP 0

n,S
(j)
n

such
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that ZS
(j)
n

k ∈ [lv, uv] we have

1

nπ

∑
{i:S(j)

ni =1}

(ZS
(j)
n

ki − E[ZS
(j)
n

ki |P
0

n,S
(j)
n

])

≤ 1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]|+ (3.21)

1

nπ
|
∑

{i:S(j)
ni =1}

(ZS
(j)
n

ki − fvi)− E[(ZS
(j)
n

ki − fvi)|P
0

n,S
(j)
n

]|. (3.22)

Consider the term in (3.22). By the triangle inequality and the fact that [lv, uv]

is an ε bracket we have

1

nπ
|
∑

{i:S(j)
ni =1}

(ZS
(j)
n

ki − fvi)− E[(ZS
(j)
n

ki − fvi)|P
0

n,S
(j)
n

]|

≤ 1

nπ

∑
{i:S(j)

ni =1}

|ZS
(j)
n

ki − fvi|+ E[|ZS
(j)
n

ki − fvi||P
0

n,S
(j)
n

]

≤ 1

nπ

∑
{i:S(j)

ni =1}

|uvi − lvi|+ E[|uvi − lvi||P 0

n,S
(j)
n

]

=
1

nπ

∑
{i:S(j)

ni =1}

|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|+ 2E[|uvi − lvi||P 0

n,S
(j)
n

]

≤ 1

nπ
(
∑

{i:S(j)
ni =1}

|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|) + 2ε.

Replacing the term in (3.22) by the final term in the above series of inequalities
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yields the inequality

1

nπ
|
∑

{i:S(j)
ni =1}

(ZS
(j)
n

ki − E[ZS
(j)
n

ki |P
0

n,S
(j)
n

])|

≤ 1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]|+ (3.23)

1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|) + 2ε. (3.24)

Using Lemma 1 and the fact that
√
V ar(ZS

(j)
n

ki |P 0

n,S
(j)
n

) ≤M2 and
√
V ar(fv|P 0

n,S
(j)
n

) ≤

M2 , we have

V ar(ZS
(j)
n

ki |P
0

n,S
(j)
n

) ≥ V ar(fv|P 0

n,S
(j)
n

)− 2M2ε. (3.25)

Combining (3.23), (3.24), and (3.25), we have

(1 + δ)
{ 1

nπ

∑
{i:S(j)

ni =1}

E[ZS
(j)
n

ki |P
0

n,S
(j)
n

]− ZS
(j)
n

ki

}
− δ

V ar(ZS(j)

ki |P 0

n,S
(j)
n

)

M2

≤ (1 + δ)
1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|)

+ (1 + δ)
1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
V ar(fv|P 0

n,S
(j)
n

)

M2

+ 2(1 + δ)ε+ 2δε.
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Making use of the fact that s− 2(1 + δ)ε− 2δε = s/2, we have

P

(
sup
k∈Ξn

{
(1 + δ)

{ 1

nπ

∑
{i:S(j)

ni =1}

E[ZS
(j)
n

ki |P
0

n,S
(j)
n

]− ZS
(j)
n

ki

}
− δ

V ar(ZS(j)

ki |P 0

n,S
(j)
n

)

M2

}
> s|P 0

n,S
(j)
n

)

≤ P

(
sup

v∈{1,...,N(ε)}

{
(1 + δ)

1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|)+

(1 + δ)
1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
V ar(fv|P 0

n,S
(j)
n

)

M2

}
>
s

2
|P 0

n,S
(j)
n

)

≤ N(ε) max
v∈{1,...,N(ε)}

P

({
(1 + δ)

1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|)+

(1 + δ)
1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
V ar(fv|P 0

n,S
(j)
n

)

M2

}
>
s

2
|P 0

n,S
(j)
n

)

Fixing a particular value of v, we use the general inequality that for any pair

of random variables A and B, P (A+B > a+ b) ≤ P (A > a) + P (B > b):

P

({
(1 + δ)

1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|)+

(1 + δ)
1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
V ar(fv|P 0

n,S
(j)
n

)

M2

}
>
s

2
|P 0

n,S
(j)
n

)

≤ P

(
(1 + δ)

1

nπ

∑
{i:S(j)

ni =1}

(|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n

]|) > s

4
|P 0

n,S
(j)
n

)
(3.26)

+ P

(
(1 + δ)

1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
V ar(fv|P 0

n,S
(j)
n

)

M2

>
s

4
|P 0

n,S
(j)
n

)
(3.27)

First we obtain an upper-bound for (3.27). For simplicity let V ar(fv|P 0

n,S
(j)
n

) =

65



σ2
fv
. By Bernstein’s inequality we have,

P

(
(1 + δ)

1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
σ2
fv

M2

>
s

4
|P 0

n,S
(j)
n

)

= P

(
1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| > 1

1 + δ
(δ
σ2
fv

M2

+
s

4
)|P 0

n,S
(j)
n

)

= 2 exp

(
− nπ

2(1 + δ)2

(δ
σ2
fv

M2
+ s

4
)2

σ2
fv

+ M1

3(1+δ)
(δ

σ2
fv

M2
+ s

4
)

)

We simplify the following expression in the exponent:

(δ
σ2
fv

M2
+ s

4
)2

σ2
fv

+ M1

3(1+δ)
(δ

σ2
fv

M2
+ s

4
)

=
(δ

σ2
fv

M2
+ s

4
)

σ2
fv

(δ
σ2
fv
M2

+ s
4

)

+ M1

3(1+δ)

≥
(δ

σ2
fv

M2
+ s

4
)

M2

δ
+ M1

3(1+δ)

≥ 1

4

s
M2

δ
+ M1

3

As c2(M, δ) = (1 + δ)28(M2

δ
+ M1

3
), we therefore have

P

(
(1 + δ)

1

nπ
|
∑

{i:S(j)
ni =1}

fvi − E[fvi|P 0

n,S
(j)
n

]| − δ
σ2
fv

M2

>
s

4
|P 0

n,S
(j)
n

)

≤ 2 exp

(
− nπ

c2(M, δ)
s

)
. (3.28)

Now consider the term in (3.26). Using Bernstein’s inequality and the fact
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that V ar(|uvi − lvi|) ≤ E|uvi − lvi|2 ≤ E|uvi − lvi|M1 ≤M1ε, we have

P (
1

nπ
(
∑

{i:S(j)
ni =1}

|uvi − lvi| − E[|uvi − lvi||P 0

n,S
(j)
n
, S(j)

n ]) >
s

4
|P 0

n,S
(j)
n
, S(j)

n )

≤ 2 exp(−1

2

nπ( s
4
)2

M1ε+M1
s
4

1
3

)

= 2 exp(−1

2

nπ( s
4
)2

M1
s

4(1+2δ)
+M1

s
4

1
3

)

= 2 exp(− 1

M18

nπ
1

(1+2δ)
+ 1

3

s).

(3.29)

By A4, δ is taken small enough so that 1/(c2(M, δ)) ≤ M18( 1
(1+2δ)

+ 1
3
) and,

in this case, the upper bound for (3.27) (Inequality 3.28) is larger than the upper

bound for (3.26) (Inequality 3.29) and we have

P (Rn,k̂(S
(j)
n ) > s|P 0

n,S
(j)
n

)

≤ N(ε)4 exp(− nπ

c2(M, δ)
s)

≤ N(
s

4(1 + 2δ)
)4 exp(− nπ

c2(M, δ)
s).

By assumption FP 0

n,S
(j)
n

= {Zk : k ∈ Ξn} are Lipshitz, with Lipshitz constant

C independent of P 0

n,S
(j)
n

. Therefore, by Example 19.7 in [73] and Example 27.1 of

[74],

N(
s

4(1 + 2δ)
) ≤

(4
√
dC24(1 + 2δ)diam(Ξn)

s

)d
.

Thus,

P (Rn,k̂(S
(j)
n ) > s|P 0

n,S
(j)
n

) ≤ 4
(4
√
dC24(1 + 2δ)diam(Ξn)

s

)d
exp(− nπ

c2(M, δ)
s)

67



and this implies that

P (Rn,k̂(S
(j)
n ) > s) ≤ 4

(4
√
dC24(1 + 2δ)diam(Ξn)

s

)d
exp(− nπ

c2(M, δ)
s)

Note that ERn,k̂ = ERn,k̂(S
(j)
n ). In general, for any random variable Z, EZ ≤

EI(Z > 0)Z =
∫∞

0
P (Z > z)dz ≤ u +

∫∞
u
P (Z > z)dz (u > 0). If we assume

u > ( c2(M,δ)
nπ

), we obtain the following upper bound:

ERn,k̂ = ERn,k̂(S
(j)
n ) ≤ u+

∫ ∞
u

4
(4
√
dC24(1 + 2δ)diam(Ξn)

s

)d
exp(− nπ

c2(M, δ)
s)ds

≤ u+
( nπ

c2(M, δ)

)d
4(4
√
dC24(1 + 2δ)diam(Ξn))d

∫ ∞
u

exp(− nπ

c2(M, δ)
s)ds

= u+
( nπ

c2(M, δ)

)d
4(4
√
dC24(1 + 2δ)diam(Ξn))d

c2(M, δ)

nπ
exp(− nπ

c2(M, δ)
u)

If we let

u =
c2(M, δ)

nπ
log
{( nπ

c2(M, δ)

)d
4(4
√
dC24(1 + 2δ)diam(Ξn))d

}
,

we have

ERn,k̂ ≤
c2(M, δ)

nπ
c1(nπ, d,Ξn,M, δ) +

c2(M, δ)

nπ

≤ 2
c2(M, δ)

nπ
c1(nπ, d,Ξn,M, δ)

(by A4, u is indeed larger than (c2(M, δ)/nπ)). The last inequality also follows

by A4 as c1(nπ, d,Ξn,M, δ) is assumed to be larger than 1.

The same bound also holds for ETn,k̃ as Tn,k̃ has the same form as Rn,k̂. This
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is seen by noting that

Tn,k̃ = (1 + δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

− (1 + 2δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

= (1 + δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP 1

n,Sn(x, y)

− (1 + δ)ESn

∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

− δESn
∫
L(y, ψk̃(x|P

0
n,Sn))− L(y, ψ(x))dP0(x, y)

Noting that ZS
(j)
n

k̃
(x, y) = L(y, ψk̃(x|P 0

n,S
(j)
n

))−L(y, ψ(x)), and comparing the above

expression with that in (3.20), we see that the upper bound obtained for ERn,k̂

also holds for ETn,k̃.

Thus, we have

0 ≤ Eθ̃CVn(1−π)(k̂)− θopt ≤ (1 + 2δ){Eθ̃CVn(1−p)(k̃)− θopt}+
4c2(M, δ)

nπ
c1(nπ, d,Ξn,M, δ)+

(1 + δ)γ

3.6.4 Proof of Theorem 2

Proof. The K-fold cross-validation criterion is continuous as a function of H (the

choice of Gaussian kernel is important for this purpose). Note that Ξn is closed

and bounded, therefore Ξn is compact. As Ξn is compact and the cross-validation

criterion is continuous, there exists a minimizer of the K-fold cross-validation cri-

terion in Ξn. The cross-validation benchmark for K-fold cross-validation is pro-

portional to the sum of conditional risks for K kernel regression estimators each
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based off of a training set of size n(1−π). If we can show that one of these condi-

tional risks is continuous as a function of k, it will follow that the cross-validation

benchmark is continuous. Fixing, say, the jth split,
∫
L(y, ψH(x|P 0

n,S
(j)
n

)dP0(x, y),

is continuous as a consequence of the dominated convergence theorem (see Theo-

rem 6.27 of [66]), therefore the cross-validation benchmark is continuous. Again,

because θ̃CVn(1−π)(H) is continuous and Ξn is compact, there also exists a minimizer

of θ̃CVn(1−π)(H) in Ξn. Thus, part (a) of Theorem 2 holds.

A1 holds because the kernel regression estimator is bounded by M . A2 is

satisfied because Ξn is bounded. A4 holds by assumption. This leaves us to show

that A3 holds.

Let ki,H = K(H1/2(Xi−x)). Consider the partial derivative of L(y, ψH(x|Pn))−

L(y, ψ(x)), where x = (x1, . . . , xp)
′ is in the support of X. We have for u 6= v,

∣∣∣∣∂L(y, ψH(x|Pn))− L(y, ψ(x))

∂Huv

∣∣∣∣
=

∣∣∣∣4(ψH(x|Pn)− y)

∑n
i=1(ψH(x|Pn)− Yi)ki,H(x)(Xiu − xu)(Xiv − xv)∑n

i=1 ki,H(x)

∣∣∣∣
≤ 64M

n∑
i=1

ki,H(x)MB2∑n
i=1 ki,H(x)

= 64M2B2,

where, for the inequality, we have used the fact that |(ψH(x|Pn) − y)| ≤ 2M ,

|(Xiu − xu)| ≤ 2B, and |(Xiv − xv)| ≤ 2B.

When u = v we have the same expression as above with the 4 replaced by 2.

Thus, the above derivative is bounded above by a constant and the constant is

independent of the training set. As a function of H, L(y, ψH(x|Pn))− L(y, ψ(x))

is continuously differentiable and has derivative bounded by 64M2B2, therefore

by [75] (Exercise 2.15) it is Lipshitz continuous with Lipshitz constant C =

64
√
p(p+ 1)/2B2M2. Thus, condition A3 is satisfied and part (b) is proven.

Finally, we prove part (c). Let H̃n be a bandwidth matrix that minimizes

the cross-validation benchmark θ̃CVn(1−π)(H). By definition, for any other fixed
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bandwidth matrix, H̆n ∈ Ξn, the below inequality holds:

Eθ̃CVn(1−π)(H̃n)− θopt ≤ Eθ̃CVn(1−π)(H̆n)− θopt.

In addition, because the cross-validation technique being utilized is K-fold cross-

validation and by the properties of conditional risk discussed in the introduction,

it is the case that for H̆n we have,

Eθ̃CVn(1−π)(H̆n)− θopt = EO1,...,On(1−π),X [(ψn(1−π),H̆n
(X)− ψ(X))2]

where the expectation is taken over a training set of size n(1−π), O1, . . . , On(1−π) ∼

P0,X , and a newly observed covariate, X ∼ P0,X . The conditions of Theorem 2

will be met for sufficiently small δ and for sufficiently large n. In this case, we

have the following upper bound for Eθ̃CVn(1−π)(Ĥn)− θopt:

Eθ̃CVn(1−π)(Ĥn)− θopt ≤ (1 + 2δ)(Eθ̃CVn(1−π)(H̆n)− θopt)+ (3.30)

4c2(M, δ)

nπ
c1(nπ, d,Ξn,M, δ).

Given our choice of λn, we will show there exists a sequence of bandwidth

matrices H̆n ∈ Ξn that yields the desired result. Furthermore, λn must go to ∞

at a rate slow enough such that the second term on the right-hand side of the

inequality in (3.30) is of smaller order than the first term.

Define

hn(q) = V (log(n)n)1/(q+2),

where V > 0 is positive constant. Note that

λn =
√
pV (log(n)n)1/3 =

√
p max
q∈{1,...,p}

hn(q)

Choose H̆n = T ′ΛT , where Λ is a diagonal matrix with its m diagonal entries
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equal to hn(m). Let ||H̆n||O be the operator norm or the largest eigenvalue of the

matrix H̆n. As the largest eigenvalue of H̆n is hn(m), ||H̆n||O = hn(m). We have

||H̆n||F ≤
√
p||H̆n||O =

√
phn(m) ≤ λn. Therefore, H̆n ∈ Ξn.

The kernel regression estimator ψn(1−π),H̆n
(X) is equivalent to the kernel re-

gression estimator obtained by regressing the m-dimensional covariate vector TXi

on Yi, using the bandwidth matrix hn(m)Im. Denote this equivalent estimator as

φn(1−π),hn(m)(TX). We have

Eθ̃CVn(1−π)(H̆)− θopt = EO1,...,On(1−π),X [(ψn(1−π),H̆n
(X)− ψ(X))2]

= EO1,...,On(1−π),X [(φn(1−π),hn(m)(TX)− φ(TX))2].

Thus, by using Inequality (3.18) from Lemma 2:

Eθ̃CVn(1−π)(H̆)− θopt ≤ A′ log(n(1− π))
m
m+2 (n(1− π))

−2
m+2 , (3.31)

where A′ = (A1V
−1 + A2V

m
m+2 ). Note that in the application of Lemma 2, there

exists σ2 such that V ar(Y |X = x) ≤ σ2 because Y is a.s. bounded.

Next consider the rate at which diam(Ξn) grows. If H ∈ Ξn then ||H|| ≤

||H||F ≤ λn (||H|| is simply the Euclidean norm of the unique elements in H).

Thus, diam(Ξn) grows at rate O(λn). Therefore, the second term on the right-

hand side of the inequality (3.30) is indeed of smaller order than the first.

By the properties of the conditional risk discussed in the introduction,

Eθ̃CVn(1−π)(Ĥn)− θopt = E

∫
(ψn(1−π),Ĥn

(x|P 0

n,S
(j)
n

)− ψ(x))2dP0,X(x). (3.32)

The desired result then follows by (3.30).
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CHAPTER 4

Metric Learning for Right Censored Survival

Outcomes

4.1 Introduction

Due to the increasing availability of data from medical databases and cancer reg-

istries, there is increasing demand for regression methods in survival analysis able

to take advantage of large, information-rich data sets. In such settings, it is

likely that there is enough information in the data to detect complex interactions

and nonlinear structure. Parametric models such as the accelerated failure time

(AFT) model or semi-parametric models such as the Cox proportional-hazards

(CoxPH) model may fail to capture complex interactions or non-linear structure.

In data rich settings, a fully nonparametric model is often preferable. Nonpara-

metric methods may also be used to check modeling assumptions. In this way,

nonparametric methods serve to complement parametric methods.

Numerous nonparametric regression methods have been developed for survival

data. Under independent right censoring, Beran [76] and Dabrowska [77, 78] devel-

oped estimators of the conditional distribution function and conditional quantile

function and studied the properties of such estimators. Li and Doss [79] extended

Beran’s estimator. Li and Datta [80] and Li and Van Keilegom [81] developed

new inferential procedures for these estimators. Nonparametric methods for the

estimation of the conditional quantile function was studied by Dabrowska [82],

Gannoun [83] and Heuchenne and Van Keilegom [84]. Methods for nonparametric
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estimation of the conditional mean were developed by Doksum and Yandell [85]

and Zheng [86], Carbonez et al [87], and more recently, Kohler et al [88, 89].

Unfortunately, these nonparametric regression methods are subject to the

“curse of dimensionality." When the number of covariates is larger than five or

six, these fully nonparametric regression methods often provide highly unstable

estimates. Parametric methods such as AFT models are more stable but can be

biased if the parametric assumptions are violated. While semiparametric methods

such as the Cox’s proportional hazards model (CoxPh) or Aalen’s additive regres-

sion model [90, 91] relax certain parametric assumptions, they still make strong

assumptions about the form of the hazard function. In this article, we introduce a

fully nonparametric regression method that maintains stability when the number

of covariates is larger than five or ten.

Metric learning is an area of active research in the machine learning commu-

nity [92, 93, 57, 9, 7]. Metric learning is used for regression as well as multi-class

classification. It has been successfully utilized in such applications as facial recog-

nition and image retrieval [94, 95]. Metric learning is a general framework for

local nonparametric classification and regression. As the name suggests, a met-

ric learning algorithm begins by defining a distance metric, known up to a finite

number of parameters. Subjects that are “close" to one another according to this

distance metric will have similar predicted outcomes. Metric learning uses the

data to estimate the unknown parameters defining this distance metric. Often

this optimal distance metric is determined by solving a constrained optimization

problem that has been set up to balance the bias and variance of the resulting

regression estimate.

In the case of regression, the optimal distance metric may be defined as the

minimizer of a regularized sum of squared errors. In the setting of right censored

survival data, the sum of squared errors is unobserved. We address this issue by

applying the transformation of Koul et al [14] to the censored survival times. If
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the censoring times and survival times are independent, the relationship between

the covariates and the outcome is preserved by this transformation procedure. To

improve the efficiency of our method, an algorithm similar to that of Buckley and

James [16] is used to iteratively impute censored survival times. These imputed

survival times are then used to re-estimate the optimal distance metric.

In section 2, we introduce metric learning and, in the case of regression, we

discuss the relationship between metric learning and kernel regression. In section

3, we discuss synthetic variables and use synthetic variables to extend metric

learning to right censored survival data. In sections 4 and 5, we compare our metric

learning algorithm to the semiparametric CoxPH model and the parametric AFT

model in simulations and on a subset of early-stage non-small-cell lung cancer

cases from the SEER (Surveillance, Epidemiology, and End Results) database.

We conclude with a discussion of limitations and further directions for research.

4.2 Extending Metric Learning to Right-Censored Survival

Data

4.2.1 Metric Learning

In the setting of regression we assume our data is independent and identically

distributed (iid): (Yi, Xi) for i = 1, . . . , n and Yi = f(Xi) + εi, where Yi ∈ R

and Xi ∈ Rp. The error terms, εi, are assumed to be iid and independent of

Xi with mean 0. Our objective is to estimate the conditional mean, f(Xi). To

this end, many nonparametric estimation methods rely on some form of local

averaging. Intuitively, these methods work because subjects with similar values

of X should have similar values of Y . A local estimator of f(x) may take the

form f̂(x) =
∑n

i=1Wx(Xi)Yi, where the weights Wx(Xi) are nonnegative and sum

to 1. Certain kernel regression estimators and partition based estimators, such
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as regression trees, are of this form. Informally, Wx(Xi) can be thought of as

representing how close Xi and x are.

For kernel regression, Wx(Xi) = k(Xi, x)/
∑n

i=1 k(Xi, x), where k is a ker-

nel function. When p = 1, common choices of kernel include the Epinech-

nikov kh(Xi, x) =
.75(1−|x−Xi

h
|2)

h
I(|x−Xi

h
| ≤ 1) or Gaussian kernel kh(Xi, x) =

1√
2πh

e−
1
2

(
x−Xi
h

)2 where h, the bandwidth, controls the bias and variance of the

resulting estimator of f . When p is larger than 1, kh may take the form of a

product kernel kh(Xi, x) = Πp
j=1khj(Xij, xj), where X ′i = (Xi1, . . . , Xip), x′ =

(x1, . . . , xp) and h′ = (h1, . . . , hp) is a vector of bandwidth parameters controlling

the bias-variance trade-off. When, for all j = 1, . . . , p, khj is a Gaussian ker-

nel, k(Xi, x) depends on Xi and x only through the weighted Euclidean distance:

d(Xi, x) = (Xi − x)′D(Xi − x), where D is a diagonal matrix with Djj = h−1
j for

j = 1, . . . , p. Kernel regression methods often perform worse when the number

of covariates is large because, in higher dimensions, data points may be far away

from one another according to the usual Euclidean distance.

In the case of regression, metric learning can be seen as a generalization of

kernel regression in which the data is used to estimate the optimal bandwidth ma-

trix. In this case, the estimator is defined as above, f̂(x) =
∑n

i=1Wx(Xi)Yi, where

Wx(Xi) = kM(Xi, x)/
∑n

i=1 kM(Xi, x) and kM is multivariate kernel function de-

pending on a semi-positive definite matrix, M , to be estimated using the data. In

this paper, we use the Gaussian kernel: kM(Xi, x) = exp(−(Xi − x)′M(Xi − x)).

If the multivariate Gaussian kernel with invertible bandwidth matrix, H, is used,

the matrix M is equivalent to the inverse of the bandwidth matrix, H−1 [96],

however, relaxing M so that it may be less than full rank allows greater control

of model complexity and interpretability.

The optimal value of M is determined by minimizing the leave-one-out cross-

validation criterion s(M) =
∑n
i=1(yi−ŷi)2

n
, where ŷi =

∑n
i 6=j Yjkij/

∑n
i 6=j kij, where

kij(M) = kij = exp((Xi−Xj)
′M(Xi−Xj)). The complexity of the model can be
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summarized by trace of M , Tr(M) or Frobenius norm ||M ||2 =
∑

i

∑
jm

2
ij where

mij element ofM in the ith row and jth column. As Tr(M) or ||M ||2 become large

the bias of the resulting estimator decreases and variance increases. However, M

does more than control the variance and bias; in addition, it allows the estimator

to take advantage of lower-dimensional structure.

We now present the details of the computational methods used to minimize the

objective function. This algorithm is presented in [9]. One apparent issue is that

the matrixM is constrained to be positive semidefinite. We solve the minimization

problem using an iterative gradient descent algorithm with a projection step to

ensure M is positive semidefinite. In our implementation, a grid of step-sizes,

α = (α1, . . . , αm), is pre-specified and the best step size is chosen at each iteration

of the algorithm. Start out with an initial value M (0). Given M (l), M (l+1) is

obtained by the following algorithm:

1. Given M (l), calculate the matrix K(l) with (u, v)th entry equal to kuv(M (l))

and calculate the predicted outcomes ŷ(l)
i using K(l).

2. The gradient∇s(M) is evaluated atM (l). Letting P =
∑n

i=1 Pi =
∑n

i=1(ŷi−

yi)
∑n

j 6=i(ŷi−yj)
kij∑n
j 6=i kij

(Xi−Xj)(Xi−Xj)
′, the gradient is equal to R where

Ruv = 4Puv for u 6= v and Ruv = 2Puv.

3. For each step-size αr in α, calculate L = M (l) − αr∇s(M (l)), then project

L onto the space of all positive semidefinite matrices, yielding a candidate

M
(l+1)
r for M (l). This projection is done first by calculating the eigendecom-

position of L = QΛQT . Letting Λ+ be the diagonal matrix with diagonal

entries max(Λii, 0), the projection is QΛ+QT .

4. M (l+1) is defined as the matrix M
(l+1)
r that yields the lowest value of the

objective function.

The iterative algorithm continues until the relative improvement in the objective
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function is less than a prespecified level ε: |1− s(M (l+1))/s(M (l))| < ε.

When n or p is large, metric learning can be computationally intensive. The

calculation of the gradient can be computationally intensive because all outer

products (Xi − Xj)(Xi − Xj)
′ must be calculated for i 6= j. Calculation of K(l)

also requires that all pairwise Mahalanobis distances be calculated. As in [9],

we employ the heuristic of setting kij∑
i 6=j kij

equal to 0 if it is extremely small,

as is often the case, for the sake of avoiding calculation of the outer product

(Xi −Xj)(Xi −Xj)
′ can be avoided.

4.2.2 Metric Learning for Right-Censored Outcomes

Assume survival times, censoring times, and covariates for all subject are iid:

(Ti, Ci, Xi). In the presence of right censoring, we do not observe Ti for all in-

dividuals, rather, we observe T̃i = min(Ti, Ci) along with δi = I(Ti < Ci) and

the vector of covariates of Xi. We assume that Ti is independent of Ci. For

the sake of reducing heteroscedasticity, we will analyze the log survival times:

Yi = log(Ti), Ỹi = log(T̃i). We will assume that, on the log-scale, the regression

model above holds so that Yi = f(Xi) + εi.

The metric learning algorithm described above is not directly applicable in

the presence of right censoring. As noted earlier, the objective function s(M) =∑n
i=1(yi−ŷi)2

n
cannot be minimized because yi is not observed for those individuals

whose survival times have been censored. To overcome this issue, we replace the

right-censored survival times Ỹi by so-called synthetic variables that allow for the

recovery of the true regression function, f(X).

The synthetic variable approach was introduced in Koul [14] under the as-

sumption of a linear regression model with fixed rather than random covari-

ates, xi : Yi = β′xi + εi. According to Koul’s approach, the right censored

(log transformed) survival times, Ỹi, are replaced by synthetic survival times
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Y ∗i = Ỹiδi/V (Ỹi), where V (t) = P (Ci > t). Under the assumption that the

survival times Ti are independent of the censoring times we have E[Y ∗i |Xi] = β′xi.

Thus, regression of the synthetic survival times on the covariates xi yields an un-

biased estimate of β. Of course, V (t) is unknown in most situations. In practice,

V is replaced by its Kaplan-Meier estimate, V̂ (t).

We propose addressing the issue of right censoring by first applying Koul’s

method to the right censored survival times. Then the metric learning algorithm

described above is applied with the synthetic times replacing the censored times.

Kohler [88] extended the synthetic variable approach to nonparametric regression.

It is generally true of the above synthetic variables that E[Y ∗i |Xi] = E[Yi|Xi] =

f(Xi). The assumption that f(Xi) be linear is not required.

Kohler [88] prove consistency results for a simple class of local averaging esti-

mators. They assume the covariates and survival time, (Xi, Yi), are random and

independent of Ci. Further extensions have also been developed under the assump-

tion that Yi is conditionally independent of Ci given Xi. In addition to this inde-

pendence assumption, additional assumptions about the support of the survival

times and support of censoring times must be made. Letting U(t) = P (Ti > t),

TV = sup{t : V (t) > 0} and TU = sup{t : U(t) > 0}, they assume TU < ∞, U

is continuous, and V (TU) > 0. Intuitively, this condition prevents the censoring

process from obscuring the tails of the distribution of the survival times. For met-

ric learning to perform well, we believe that similar assumptions must hold. It is

important to note that the latter assumption usually fails when a type-1 censoring

scheme is used.

If the above condition does not hold, it is possible to use our metric learning

algorithm to estimate the conditional restricted mean rather than the conditional

mean. The conditional τ−restricted mean is defined as E[min(Yi, τ)|Xi], where

τ > 0 [97]. The procedure for estimating the conditional (unrestricted) mean

can be adapted to estimating the conditional restricted mean by replacing the
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outcome Yi with min(Yi, τ). In particular, our method can be adapted by treating

censored observations such that Ci > τ as observations that have experienced an

event.

4.2.3 Further Refinements

In practice, we have found that the metric learning algorithm for right censored

data described above can perform poorly because of the heteroscedasticity induced

by the synthetic variable transformation. Although the relationship between the

synthetic variables and covariates preserves the original regression relationship

the error structure is not preserved. Metric learning has particular difficulty with

heteroscedasticity because it uses a single distance metric and this single distance

metric uniformly controls the level of regularization across the entire covariate

space. In the presence of heteroscedasticity, it would be ideal to apply heavier

regularization over parts of the covariate space where the variability is higher.

To improve the performance of metric learning in the presence of right censor-

ing, we apply a Buckley-James [16] type iterative algorithm which reduces the level

of heteroscedasticity. Let Y̌i = E[Yi|Ỹi, Xi, δi]. Then we have E[Y̌i|Xi] = f(Xi)

and Y̌i = f(Xi) + ε∗i , where the ε∗i are idendepent. It can then be shown that

Y̌i = δiỸi + (1− δi)(f(Xi) +

∫ ∞
ẽi

εd{1−W (ε)

W (ẽi)
}), (4.1)

where W is the survival function of the residuals εi. If f(Xi) and W were known,

we could could calculate Y̌i; if the Y̌i were known, we would be able to estimate

f(Xi). This suggests an iterative algorithm, whereby we obtain an estimate f̂(Xi)

and then impute the Y̌i. Once the Y̌i are imputed, we obtain a new estimate of

f̂(Xi). To impute Y̌i, we need an estimate of W . We use the Kaplan-Meier

estimator. This iterative algorithm is continued until the estimated value of M

has stabilized: ||M (l+1)||2/||M (l)||2 < ε.
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4.3 Simulations

In this section, we investigate the performance of metric learning in a variety of

simulation scenarios. It is of great interest whether metric learning is able detect

lower dimensional structure and utilize it for improved predictive performance. In

particular, if the true regression function f(Xi) is a single index regression model,

g(X ′iθ), we would hope thatM would be approximately rank 1 so that the resulting

local averages are taken roughly along the level curves of f . These simulations

also demonstrate the extent to which metric learning performs well when the

number of covariates is moderately large and how metric learning performs as

the censoring rate varies. We compare metric learning to the CoxPH model in

one scenario where the proportional-hazards assumption is satisfied to see how

much efficiency is lost by assuming a fully nonparametric model. Then we make

the same comparison in a scenario where the proportional hazards assumption

fails and demonstrate the gains of metric learning over the CoxPH model when

modeling assumptions are incorrect.

For all simulation scenarios, we vary the sample size, n, between 500 and 1000.

The covariates were independent of one another with uniform distribution between

-2 and 2, Unif [−2, 2]. The number of covariates is varied between p = 5, 10, and

20. The censoring times Ci are distributed according to the marginal distribution

of Ti plus a constant, c, where c is chosen to achieve a desired censoring rate.

Each simulation scenario was repeated 100 times. In both simulation scenarios, f

depends on the first five covariates. Additional independent Unif [−2, 2] covariates

were added to test how metric learning performs when the dimensionality of the

model grows. In applications, the user may not know which of a given set of

covariates f depends upon.
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In the first simulation scenario, we assume a log-linear model:

Yi = .2X1 + .4X2 + .6X3 + .8X4 +X5 + εi

where εi ∼ .5S and S has standard extreme value distribution. This error distribu-

tion leads to Weibull distributed survival times, therefore the proportional-hazards

assumption is satisfied.

As a comparator to metric learning, a CoxPH model and a log-normal AFT

model were fit to the data. Then the predictive performance of metric learning and

the other two models was evaluated on a test set of the same size by calculating

the root-mean squared error,

R̂MSE f̂ =

√∑n
i=1(f̂(Xi)− Yi)2

n

As can be seen from Tables 4.1 and 4.2, metric learning is less accurate than the

CoxPH model when the censoring rate low, however, it is clearly able to pick up a

good portion of the signal. The performance of metric learning suffers most when

the censoring rate is high, especially when the number of covariates is 20.

In the second simulation scenario the Yi =
√∑5

m=1Xm + εi, where εi ∼

N(0, 0.5), normal with mean 0 and standard deviation 0.5. Thus, f is of the form

g(X ′θ), with g(t) =
√
t and θ = c(1, 1, 1, 1, 1) as described above. In this case,

we expect the CoxPH model to perform worse than metric learning. First, the

CoxPH model requires that the user specify the functional form of f . Even if

the functional form for f is correctly specified, the error distribution of εi may be

such that the proportional-hazards assumption is not met. Even if the form of f is

specified correctly, normal errors will violate the proportional-hazards assumption.

In this simulation, we fit a CoxPH model using only the main effects, as this is

often the starting point when conducting an analysis using the CoxPH model.
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n p Censoring Rate Rounds of Imputation Metric Learning CoxPH
500 5 0.15 0 0.907 0.650
500 5 0.15 1 0.703 0.649
500 5 0.15 5 0.686 0.651
500 5 0.25 0 1.153 0.653
500 5 0.25 1 0.739 0.651
500 5 0.25 5 0.704 0.652
500 5 0.50 0 1.688 0.668
500 5 0.50 1 0.899 0.664
500 5 0.50 5 0.791 0.664
500 10 0.15 0 1.159 0.651
500 10 0.15 1 0.796 0.652
500 10 0.15 5 0.754 0.655
500 10 0.25 0 1.522 0.656
500 10 0.25 1 0.831 0.651
500 10 0.25 5 0.772 0.655
500 10 0.50 0 2.531 0.669
500 10 0.50 1 1.010 0.668
500 10 0.50 5 0.884 0.670
500 20 0.15 0 1.581 0.656
500 20 0.15 1 1.132 0.659
500 20 0.15 5 1.095 0.657
500 20 0.25 0 2.004 0.660
500 20 0.25 1 1.185 0.660
500 20 0.25 5 1.135 0.660
500 20 0.50 0 3.106 0.680
500 20 0.50 1 1.437 0.680
500 20 0.50 5 1.268 0.678

Table 4.1: Simulation results for linear Weibull model, n = 500

The results are displayed in Tables 4.3 and 4.4.

We see that the CoxPH model performs no better than ignoring the covariates

and estimating the marginal mean of the Yi. Meanwhile, metric learning performs

quite well when the number of covariates when the censoring rate is below fifty

percent. Again, heavy censoring and a large number unimportant covariates leads

to serious degradation of performance.
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n p Censoring Rate Rounds of Imputation Metric Learning CoxPH
1000 5 0.15 0 0.804 0.648
1000 5 0.15 1 0.684 0.647
1000 5 0.15 5 0.674 0.649
1000 5 0.25 0 1.042 0.648
1000 5 0.25 1 0.709 0.647
1000 5 0.25 5 0.687 0.647
1000 5 0.50 0 1.445 0.655
1000 5 0.50 1 0.858 0.654
1000 5 0.50 5 0.763 0.653
1000 10 0.15 0 1.068 0.648
1000 10 0.15 1 0.721 0.649
1000 10 0.15 5 0.692 0.649
1000 10 0.25 0 1.343 0.650
1000 10 0.25 1 0.759 0.649
1000 10 0.25 5 0.706 0.649
1000 10 0.50 0 2.286 0.657
1000 10 0.50 1 0.913 0.656
1000 10 0.50 5 0.797 0.659
1000 20 0.15 0 1.496 0.652
1000 20 0.15 1 0.994 0.654
1000 20 0.15 5 0.952 0.651
1000 20 0.25 0 1.932 0.652
1000 20 0.25 1 1.059 0.651
1000 20 0.25 5 0.963 0.653
1000 20 0.50 0 3.249 0.661
1000 20 0.50 1 1.355 0.664
1000 20 0.50 5 1.129 0.661

Table 4.2: Simulation results for linear Weibull model, n = 1, 000

4.4 Data Analysis

In this section we apply metric learning to two popular benchmark data sets.

First, we discuss measures of predictive performance for right-censored survival

data to assess various methods on these data sets. We will utilize two measures of

predictive performance, each with different properties. First we utilize, Harrell’s

c-index [98] is a widely used measure of predictive performance for survival data.

Second, we obtain an estimate of the RMSE by using the K-fold cross-validation
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n p Censoring Rate Rounds of Imputation Metric Learning CoxPH
500 5 0.15 0 1.747 1.619
500 5 0.15 1 0.622 1.617
500 5 0.15 5 0.600 1.614
500 5 0.25 0 2.204 1.618
500 5 0.25 1 0.660 1.619
500 5 0.25 5 0.640 1.619
500 5 0.50 0 2.892 1.624
500 5 0.50 1 0.877 1.622
500 5 0.50 5 0.799 1.626
500 10 0.15 0 2.225 1.627
500 10 0.15 1 0.698 1.621
500 10 0.15 5 0.644 1.626
500 10 0.25 0 2.932 1.628
500 10 0.25 1 0.727 1.625
500 10 0.25 5 0.676 1.626
500 10 0.50 0 4.723 1.637
500 10 0.50 1 0.914 1.639
500 10 0.50 5 0.817 1.638
500 20 0.15 0 3.061 1.649
500 20 0.15 1 1.183 1.644
500 20 0.15 5 1.206 1.644
500 20 0.25 0 3.679 1.651
500 20 0.25 1 1.254 1.648
500 20 0.25 5 1.249 1.648
500 20 0.50 0 5.466 1.664
500 20 0.50 1 1.480 1.669
500 20 0.50 5 1.443 1.664

Table 4.3: Simulation results for nonlinear model, n=500

method of [64], which is adapted to right-censored survival data.

Harrell’s c-index is calculated by considering appropriately chosen pairs of ob-

servations and assessing the proportion of times an estimator correctly determines

which of the pair of observations should experience the event of interest first. An

estimator that is able to correctly rank observations in terms of event times would

be perform well according to Harrell’s c-index. However, accurate rankings are not

equivalent to accurate predictions of survival times. Crucially, Harrell’s c-index

does not directly compare the predicted survival times with the observed survival
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n p Censoring Rate Rounds of Imputation Metric Learning CoxPH
1000 5 0.15 0 1.603 1.616
1000 5 0.15 1 0.603 1.612
1000 5 0.15 5 0.591 1.611
1000 5 0.25 0 1.753 1.612
1000 5 0.25 1 0.641 1.614
1000 5 0.25 5 0.629 1.614
1000 5 0.50 0 2.243 1.618
1000 5 0.50 1 0.818 1.617
1000 5 0.50 5 0.775 1.620
1000 10 0.15 0 2.052 1.617
1000 10 0.15 1 0.617 1.620
1000 10 0.15 5 0.592 1.616
1000 10 0.25 0 2.631 1.615
1000 10 0.25 1 0.659 1.622
1000 10 0.25 5 0.629 1.620
1000 10 0.50 0 4.187 1.628
1000 10 0.50 1 0.832 1.622
1000 10 0.50 5 0.764 1.622
1000 20 0.15 0 2.873 1.625
1000 20 0.15 1 0.931 1.625
1000 20 0.15 5 0.954 1.625
1000 20 0.25 0 3.764 1.627
1000 20 0.25 1 0.974 1.628
1000 20 0.25 5 0.993 1.630
1000 20 0.50 0 5.970 1.638
1000 20 0.50 1 1.213 1.643
1000 20 0.50 5 1.157 1.638

Table 4.4: Simulation results for nonlinear model, n=1,000

times. In contrast, the method of [64] uses an inverse-probability of censoring

weighted estimate of the RMSE. The method of [64] may also be deemed more

appropriate than Harrell’s c-index as the conditional mean ,which we are esti-

mating, minimizes the expected squared error. We use both of these methods to

evaluate the predictive performance of metric learning, as well as the AFT model

and CoxPH model, on data sets.
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4.4.1 Serum Free Light Chain Data Set

We apply metric learning to the subset of the flchain data set from the R

package, survival for which creatinine measurements were available. Subjects

with reported survival time of 0 were also removed as the log-survival survival

time of such observations would be −∞. The event of interest was all-cause

mortality. We chose to estimate the conditional mean restricted to 5 years. The

sample size was 6521. 24% of the restricted survival times were censored. Our

analysis will use serum free light chain tests, creatinine, age, and year at which

the test was taken to predict survival time.

To calculate Harrell’s c-index and the RMSE we divided the data set into 5

groups. Each of the 5 divisions of the data set was used once as a test set and

four times as a training set. This same procedure was followed to evaluate the

predictive performance of the CoxPH model and a log-normal AFT model.

Estimates of the RMSE are displayed in Table 4.5. The CoxPH model yields

the best performance according to Harrell’s c-index. This result is perhaps to be

expected as the CoxPH’s partial likelihood itself depends on the survival times

through the ranks of the survival times. On the other hand, metric learning with

5 rounds of imputation yielded the lowest estimated RMSE.

Method Harrell’s c-Index RMSE
CoxPH Model 0.21 0.83
Log Normal AFT Model 0.21 1.43
Metric Learning (No Imputation) 0.69 10.56
Metric Learning (Imputation) 0.23 0.82

Table 4.5: RMSE and Harrell’s c-Index of methods for flchain data set.
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4.4.2 Sample of Non-small-cell Lung Cancer Cases from the SEER

Database

We now examine the performance of metric learning on a subset of subjects from

the Surveilance, Epidemiology, and End Results (SEER) database. We considered

a subset of patients diagnosed with non-small-cell lung cancer. Non-small-cell lung

cancer is the most commonly diagnosed type of lung cancer. In particular, we

considered malignant neoplasm of the main bronchus from the years 2004-2014.

The sample size was 5889 with a censoring rate of 11%. Covariates included race,

sex, age at diagnosis, year of birth, year of diagnosis, and stage (adjusted AJCC

6th edition).

As seen in Table 4.6, metric learning without imputation is competitive with

the CoxPH and AFT model according to its estimated RMSE, although in this

case the estimated RMSE for the CoxPH model and AFT model were slightly

lower. The AFT model had the strongest performance as measured by both

Harrell’s c-index and RSME. Interestingly enough, metric learning performs worse

with imputation than without imputation. In some cases when metric learning

without imputation performs well, we have found that iterative imputation can

lead to overfitting.

Method Harrell’s c-Index RMSE
CoxPH Model 0.37 1.09
Log Normal AFT Model 0.37 1.09
Metric Learning (No Imputation) 0.37 1.10
Metric Learning (Imputation) 0.42 1.20

Table 4.6: RMSE and Harrell’s c-Index of methods for subset of SEER data set.

4.4.3 Time Until Weaning for Breast-fed Newborns

Finally, we compared metric learning to the CoxPH model and AFT model on

a data set from [99] in which the time until weaning from breast-fed newborns
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was recorded for a sample of 927 woman. The censoring rate is 4%. The data

was obtained via the R package KMsurv on CRAN. See Section 1.14 of [99]

and documentation for the data set bfeed in the KMsurv package for details

concerning each covariate. We used all explanatory covariates in the data set.

Method Harrell’s Index RMSE
CoxPH Model 0.21 0.86
Log Normal AFT Model 0.23 0.85
Metric Learning (No Imputation) 0.39 2.60
Metric Learning (Imputation) 0.23 0.78

Table 4.7: RMSE and Harrell’s c-Index of methods for subset of data set on time
until weaning for breast-fed newborns.

4.5 Discussion

In this article, we introduced an extension of metric learning to right censored

survival data. The algorithm involves applying a synthetic variable transforma-

tion to the right-censored survival times. Metric learning is applied using these

synthetic times, producing an initial estimator of f . Given this initial estimator,

we impute the right-censored survival times. This process is carried out until the

estimate of M has converged.

We have seen in simulations and on data sets that metric learning performs

well when the sample size is large, the number of covariates is small to moderate

in comparison, and when the censoring rate is low to moderate. Our simulations

indicate that performance seriously degrades when the censoring rate is high.

Computational speed is a primary drawback of metric learning. Each iteration

of gradient descent requires calculation of the Mahalanobis distance between all

pairs of observation. Each observation’s contribution to gradient also requires the

calculation n outer-products of p dimensional vectors. When either n or p is large,

metric learning can become prohibitively slow. Further research into increasing
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computational time is required.
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CHAPTER 5

Discussion

5.1 Further Extensions of Random Forests and Fuzzy Forests

5.1.1 Correcting the Bias in Fuzzy Forests VIMs

As demonstrated in the above simulations, fuzzy forests select features in such

a way that correlated covariates are much less likely to be unfairly favored over

independent covariates. In terms of feature selection, fuzzy forests perform com-

parably to conditional inference forests and do so within computationally feasible

times. However, for reasons discussed in Chapter 2, within the selected group of

covariates, correlated VIMs may be unduly large.

Once again, the target estimand of the random forest VIM is given by the

following expression:

V IM(v) = E(f(X
(1)
i , . . . , X

(v)
i , . . . , X

(p)
i )− f(X

(1)
i , . . . , X̃

(v)
i , . . . , X

(p)
i ))2. (5.1)

Noting that the estimate of the VIM relies on an estimate of f , if the estimator f̂

is biased, the estimate for the VIM will be biased as well. We suspect that VIMs

given by fuzzy forests are biased for two primary reasons. First, if important

features are left out of the final set of selected features and these features are

correlated with features that have been selected, the VIMs of the selected features

will be biased due to confounding. Second, even if the correct features are selected,

regression trees still yield biased estimates of f . Our simulations demonstrate
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this to be the case when the true regression model is linear and covariates are

correlated.

To explore the extent to which regression trees are biased and to look for a

possible solution, we carried out a simulation study with two variants of regression

trees. The first variant of regression trees splits each node along the coordinate

axes. In particular, the trees were fit using the ctree function of the party

package. The second variant splits nodes along hyperplanes. A hyperplane in p

dimensions is a set of the form {
∑p

k=1 akXk = c} for constants ak(k = 1, . . . , p)

and c. Consider a node, τ ⊂ {1, . . . , n}, representing a subset of n observations.

The node τ is said to be split along a hyperplane if it is split into two nodes

τl = {i :
∑p

k=1 akX
(k)
i ≤ c, i ∈ τ} and τr = {i :

∑p
k=1 akX

(k)
i > c, i ∈ τ}.

The strategy of splitting along hyperplanes was proposed early in the literature

on CART, largely in the context of classification [100]. More recently, splitting

along hyperplanes has been presented as a successful strategy for increasing pre-

dictive performance in [43]. Choosing which hyperplane to split a node along is

more complex than simply splitting along coordinate axes.

In this section, we test an algorithm that splits nodes along hyperplanes in the

spirit of the one presented in [43] and test its ability to estimate VIMs. Namely,

the hyperplane is determined by fitting the LASSO to all observations in a given

node. Ten fold cross-validation was used to determine the size of the L1 penalty.

Once the hyperplane was determined by the LASSO, nodes were split until a

minimum split size was reached.

In this simulation, to eliminate potential effects due to sparse data at the tails

of the distribution of covariates, the covariates were derived by first generating

data uniformly distributed between 0 and 1. The first 4 covariates were linearly

transformed and re-scaled to have compound symmetry covariance matrix with

correlation 0.8. The additional covariates were independent and were re-scaled to

have variance 1. The true model was linear Yi = X
′
γ with γ1 = γ2 = γ4 = γ5 = 5
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and γ3 = γ7 = 2. The other elements of γ were equal to 0. The sample size

was varied from 500, 1,000, to 2,000. In each simulation, p− 7 independent noise

covariates were included. We display the VIMs for the first 8 covariates. The true

VIMs are displayed in the Table 5.1.

The results of the simulations are split by sample size across Tables 5.2, 5.3,

and 5.4. The type of regression tree used is given in the column labeled “methods",

where “lmtree" denotes trees with splits along hyperplanes and “ctree" with splits

along coordinate axes. In nearly all settings, trees with splits along hyperplanes

provided better estimates of the VIMs than trees with splits along coordinate

axes. The trees split along hyperplanes were much closer to estimating the VIMs

of covariates with coefficients 2. This was particularly the case when the minimum

sample size required to split a node was at 50. It is also important to note that

the VIMs for the trees split along hyperplanes do not appear to be biased in favor

of the correlated covariates.

These simulations suggest that cutting nodes along hyperplanes rather than

coordinate axes leads to less biased estimates of VIMs. We plan on further in-

vestigating computationally efficient methods for growing trees with splits along

hyperplanes. Along the same lines, we will explore the performance of regression

trees with a linear model fit to each leaf. Using a single index regression model

to determine the hyperplanes on which to split or fitting a single index regression

model within leaves may also perform well. It will also be important to decide

on a set of simulations that appropriately reflect advantages and disadvantages

of these regression trees methods. For example, this simulation assumed a linear

model, therefore, it should be expected that splitting nodes along hyperplanes will

lead to more accurate estimates of VIMs.
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Feature True VIM
X1 50
X2 50
X3 8
X4 0
X5 50
X6 50
X7 8
X8 0

Table 5.1: True VIMs for simulation study

n p min_split method X1 X2 X3 X4 X5 X6 X7 X8
500 12 50 lmtree 50.4 50.5 10.2 0.0 49.9 50.1 10.2 0.0
500 12 50 ctree 87.8 100.2 2.8 0.1 37.9 40.9 0.1 0.0
500 12 100 lmtree 57.5 56.7 15.5 0.0 54.4 54.7 15.1 0.0
500 12 100 ctree 87.0 104.4 1.2 0.0 21.9 23.5 0.0 0.0
500 12 250 lmtree 75.7 73.5 24.9 0.0 66.7 66.7 24.2 0.0
500 12 250 ctree 91.6 83.8 0.0 0.0 1.0 0.2 0.0 0.0
500 20 50 lmtree 50.3 50.0 10.2 0.0 49.6 49.5 10.0 0.0
500 20 50 ctree 88.6 97.9 2.9 0.2 38.4 39.2 0.1 0.0
500 20 100 lmtree 57.4 56.2 15.5 0.0 54.9 55.1 15.0 0.0
500 20 100 ctree 96.3 94.6 1.1 0.0 24.1 23.7 0.0 0.0
500 20 250 lmtree 77.3 73.7 25.0 0.0 67.8 66.6 24.9 0.0
500 20 250 ctree 96.9 80.4 0.7 0.0 1.5 0.6 0.0 0.0
500 30 50 lmtree 50.4 50.2 10.4 0.0 49.8 50.0 10.2 0.0
500 30 50 ctree 94.9 95.0 2.1 0.2 39.0 39.6 0.0 0.0
500 30 100 lmtree 57.0 55.9 15.3 0.0 54.2 55.0 15.1 0.0
500 30 100 ctree 101.9 84.2 2.7 0.3 23.2 22.6 0.0 0.0
500 30 250 lmtree 76.7 73.8 25.0 0.0 66.0 65.4 24.0 0.0
500 30 250 ctree 100.3 71.6 1.3 0.0 0.5 0.8 0.0 0.0

Table 5.2: Regression tree VIMs with splits along coordinate axes versus regression
tree VIMs with splits along hyperplanes, n = 500
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n p min_split method X1 X2 X3 X4 X5 X6 X7 X8
1000 12 50 lmtree 48.8 48.8 9.1 0.0 48.3 48.6 9.3 0.0
1000 12 50 ctree 95.9 81.0 2.0 0.1 45.8 46.6 0.5 0.0
1000 12 100 lmtree 50.4 50.7 10.3 0.0 49.9 50.1 10.2 0.0
1000 12 100 ctree 91.6 88.9 0.9 0.0 38.7 37.8 0.0 0.0
1000 12 250 lmtree 58.8 58.1 15.7 0.0 55.1 54.9 15.4 0.0
1000 12 250 ctree 91.5 90.4 0.1 0.0 17.2 12.2 0.0 0.0
1000 20 50 lmtree 48.4 48.9 9.2 0.0 49.0 48.5 9.2 0.0
1000 20 50 ctree 90.0 82.3 2.3 0.2 45.3 45.2 0.4 0.0
1000 20 100 lmtree 50.6 50.7 10.2 0.0 50.0 50.4 10.0 0.0
1000 20 100 ctree 89.3 90.5 0.4 0.0 38.8 39.2 0.0 0.0
1000 20 250 lmtree 58.6 57.5 15.9 0.0 54.9 54.8 15.5 0.0
1000 20 250 ctree 91.7 88.9 0.3 0.0 14.5 12.8 0.0 0.0
1000 30 50 lmtree 48.6 48.9 9.2 0.0 48.5 48.5 9.3 0.0
1000 30 50 ctree 93.1 84.0 2.0 0.1 45.4 45.9 0.4 0.0
1000 30 100 lmtree 50.7 50.3 10.1 0.0 50.1 50.1 10.0 0.0
1000 30 100 ctree 90.7 88.2 0.5 0.0 37.5 39.5 0.0 0.0
1000 30 250 lmtree 58.7 57.3 15.6 0.0 55.0 55.2 15.2 0.0
1000 30 250 ctree 87.5 93.1 0.4 0.0 15.5 13.4 0.0 0.0

Table 5.3: Regression tree VIMs with splits along coordinate axes versus regression
tree VIMs with splits along hyperplanes, n = 1, 000

5.2 Future Work on Cross-Validation and Model Selection

5.2.1 Further Application of General Optimization Techniques to Min-

imizing the Cross-Validation Criterion

The idea of using general optimization techniques to minimize the cross-validation

may have application outside of Nadaraya-Watson kernel regression estimator.

First, it may be possible to extend the method to case of a local linear kernel

regression estimator. Beyond kernel regression, a similar gradient descent algo-

rithm could be applied to ridge regression estimators and certain estimators of

generalized additive models have analytic forms. Optimization methods for si-

multaneous estimation of tuning parameters have been introduced in the context

of minimizing the generalized cross-validation criterion [101, 102, 103, 104].

The ridge regression estimator is defined as β̂(λ) = argminβ(
∑n

i=1(Yi−X ′iβ)+
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n p min_split method X1 X2 X3 X4 X5 X6 X7 X8
2000 12 50 lmtree 48.4 48.6 8.8 0.0 48.1 48.3 8.8 0.0
2000 12 50 ctree 94.0 77.8 1.8 0.1 47.9 48.6 1.0 0.0
2000 12 100 lmtree 48.6 48.7 9.1 0.0 48.6 48.5 9.0 0.0
2000 12 100 ctree 94.3 78.9 0.9 0.0 44.5 44.2 0.1 0.0
2000 12 250 lmtree 51.5 51.3 10.8 0.0 50.5 50.1 10.7 0.0
2000 12 250 ctree 92.2 83.7 0.0 0.0 31.7 33.3 0.0 0.0
2000 20 50 lmtree 48.5 48.3 8.8 0.0 48.2 48.2 8.7 0.0
2000 20 50 ctree 98.0 76.7 1.7 0.1 49.0 48.2 1.1 0.0
2000 20 100 lmtree 49.0 48.5 9.1 0.0 48.7 48.5 9.1 0.0
2000 20 100 ctree 95.7 76.7 0.9 0.0 44.1 44.5 0.1 0.0
2000 20 250 lmtree 51.6 51.1 11.0 0.0 50.5 50.7 10.8 0.0
2000 20 250 ctree 91.2 86.6 0.0 0.0 33.2 33.1 0.0 0.0
2000 30 50 lmtree 48.6 48.7 8.9 0.0 48.1 48.2 8.7 0.0
2000 30 50 ctree 99.7 76.5 1.8 0.0 48.3 48.4 1.1 0.0
2000 30 100 lmtree 49.0 49.1 9.2 0.0 48.6 48.9 9.1 0.0
2000 30 100 ctree 100.9 73.8 0.7 0.0 43.7 45.1 0.1 0.0
2000 30 250 lmtree 51.4 51.2 10.9 0.0 50.3 50.8 10.8 0.0
2000 30 250 ctree 97.1 79.1 0.0 0.0 32.9 32.6 0.0 0.0

Table 5.4: Regression tree VIMs with splits along coordinate axes versus regression
tree VIMs with splits along hyperplanes, n = 2, 000

∑p
j=1 λβ

2
j )[105]. The ridge regression estimator depends on a single tuning param-

eter λ which controls the bias-variance tradeoff. Intuitively, the ridge regression

estimator could be improved by letting each covariate have its own penalty, λj.

Unimportant covariates should receive higher penalties than important covariates.

This ridge regression estimator is defined as β̂(λ) = argminβ(
∑n

i=1(Yi − X ′iβ) +∑p
j=1 λjβ

2
j ). When p is moderately large, perhaps greater than 10, specifying a

grid of potential values λj and minimizing the cross-validation criterion over this

grid may be impractical. In this case, the use of a more sophisticated algorithm for

optimizing the cross-validation criterion is necessary. As certain estimators of gen-

eralized additive models (GAMs) are closely related to ridge regression estimators

[33], the same principle applies to GAMs.

Direct application of Theorem 1 to the ridge regression estimator or a closely

related generalized additive model is not possible as the condition supX |φk(X|Pn)| ≤
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M <∞ and condition A3 no longer hold. Adjusting the arguments of Theorem 1

so that it applies to a wider variety of estimators is another avenue of research I

am interested in. Extending Theorem 1 to right-censored survival data is another

possible direction in which to generalize Theorem 1.
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Appendix A

Further Technical Results for Chapter 3

This supplemetary material contains the proof of Lemma 2 as well as the derivative

of K-fold cross-validation criterion with respect to the bandwidth matrix H.

A.1 Proof of Lemma 2

Proof. For brevity, let ki,H(x) = K(H1/2(Xi − x)). Let

ψ̃n(x) =

∑n
i=1 ki,h(x)ψ(Xi)∑n

i=1 ki,h(x)
.

We have the following decomposition (obtained by adding and subtracting ψ̃n(x),

expanding, and noting that the cross-product term is 0)

E[(ψn(X)− ψ(X))2|X1, . . . , Xn]

= E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn] + (ψ̃n(x)− ψ(x))2.

Letting µ be the distribution of the covariates, by the above decomposition, we

have
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E[(ψn(X)− ψ(X))2]

= E{X1,...,Xn}[

∫
E[(ψn(x)− ψ(x))2|X1, . . . , Xn]µ(x)]

= E{X1,...,Xn}[

∫
E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn]µ(x)]

+ E[

∫
(ψ̃n(x)− ψ(x))2µ(dx)]

=

∫
E{X1,...,Xn}

[
E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn]

]
µ(x) (A.1)

+ E[

∫
(ψ̃n(x)− ψ(x))2µ(dx)] (A.2)

Consider the second term (A.2): E[
∫

(ψ̃n(x)− ψ(x))2µ(dx)]. We have

(ψ̃n(x)− ψ(x))2

=
(∑n

i=1(ψ(Xi)− ψ(x))ki,h(x)∑n
i=1 ki,h(x)

)2

≤
∑n

i=1(ψ(Xi)− ψ(x))2ki,h(x)∑n
i=1 ki,h(x)

≤ R2

∑n
i=1 ||Xi − x||2ki,h(x)∑n

i=1 ki,h(x)
,

where the first inequality is due to Jensen’s inequality and the second is due

to the assumption that ψ is Lipshitz continuous with Lipshitz constant R. We

now consider the class of truncated Gaussian kernels, kTni,h(x) = exp(−h||x −

Xi||2)I{
√
h||x−Xi||≤Tn}, where we will take Tn =

√
log(n). Note that kTni,h(x) ≤ ki,h(x)

and ki,h(x)− kTni,h(x) ≤ exp(−T 2
n).
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We then have

(ψ̃n(x)− ψ(x))2

≤ R2

∑n
i=1 ||Xi − x||2ki,h(x)∑n

i=1 ki,h(x)

= R2

∑n
i=1 ||Xi − x||2ki,h(x)∑n

i=1 ki,h(x)
−R2

∑n
i=1 ||Xi − x||2kTni,h(x)∑n

i=1 k
Tn
i,h(x)

(A.3)

+R2

∑n
i=1 ||Xi − x||2kTni,h(x)∑n

i=1 k
Tn
i,h(x)

. (A.4)

The second term in the above expression, in (A.4), can be bound as follows:

R2

∑n
i=1 ||Xi − x||2kTni,h(x)∑n

i=1 k
Tn
i,h(x)

≤ R2T
2
n

h
, (A.5)

because ||Xi − x||2kTni,h(x) ≤ (T 2
n/h)kTni,h(x).

Now consider the term in (A.3). We have

R2

∑n
i=1 ||Xi − x||2ki,h(x)∑n

i=1 ki,h(x)
−R2

∑n
i=1 ||Xi − x||2kTni,h(x)∑n

i=1 k
Tn
i,h(x)

≤
R2
∑n

i=1 ||Xi − x||2(ki,h(x)− kTni,h(x))∑n
i=1 ki,h(x)

≤ R2B2

∑n
i=1(ki,h(x)− kTni,h(x))∑n

i=1 ki,h(x)

= R2B2 min{1,
∑n

i=1(ki,h(x)− kTni,h(x))∑n
i=1 ki,h(x)

}

≤ R2B2 min{1, n exp(−T 2
n)∑n

i=1 ki,h(x)
}

≤ R2B2

b
min{1, 1∑n

i=1 I{Xi∈Sx,r/√h}
}

≤ R2B2

b

2

1 +
∑n

i=1 I{Xi∈Sx,r/√h}
.

The last inequality can be seen by observing that 1/u ≤ 2/(1 + u) for u ≥ 1.
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By the previous inequality and (A.5), we have

E[

∫
(ψ̃n(x)− ψ(x))2µ(dx)]

=

∫
E[(ψ̃n(x)− ψ(x))2]µ(dx)

≤ R2T
2
n

h
+
R2B2

b

∫
E[

2

1 +
∑n

i=1 I{Xi∈Sx,r/√h}
]µ(dx)

≤ R2T
2
n

h
+

2R2B2

b

∫
1

(n+ 1)µ(Sx,r/
√
h)
µ(dx)

≤ R2T
2
n

h
+

2R2B2

b

c̃hp/2

n+ 1
= R2 log(n)

h
+

2R2B2

b

c̃hp/2

n+ 1
(A.6)

≤ R2 log(n)

h
+

2R2B2

b

c̃hp/2

n
, (A.7)

The second and third inequalities follow by Lemma 4.1 of [49] and a result in the

middle of page 76 (5.1) of [49], respectively. Here, c̃ is a constant depends on B

as in the result on page 76 of [49].

Next we calculate an upper-bound for (A.1)

∫
E{X1,...,Xn}

[
E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn]

]
µ(x)

Considering the inner most expectation, we have

E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn]

= E

[(∑n
i=1(Yi − ψ(Xi))ki,h(x)∑n

i=1 ki,h(x)

)2

|X1, . . . , Xn

]
=

∑n
i=1 Var(Yi|Xi)k

2
i,h(x)

(
∑n

i=1 ki,h(x))2

≤ σ2

∑n
i=1 k

2
i,h(x)

(
∑n

i=1 ki,h(x))2

= σ2

n∑
i=1

W 2
i,h(x),

where we define Wi,h(x) = ki,h(x)/(
∑n

i=1 ki,h(x)). Note that 0 < Wi,h(x) < 1,
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thus,
∑n

i=1W
2
i,h(x) ≤

∑n
i=1 Wi,h(x) = 1.

An upper bound for
∑n

i=1 W
2
i,h(x) is found in a manner analogous to that of

(A.3):

n∑
i=1

W 2
i,h(x)

= min{1,
∑n

i=1 k
2
i,h(x)

(
∑n

i=1 ki,h(x))2
}

≤ min{1,
∑n

i=1 ki,h(x)

(
∑n

i=1 ki,h(x))2
}

= min{1, 1

(
∑n

i=1 ki,h(x))
}

≤ 1

b
min{1, 1∑n

i=1 I{Xi∈Sx,r/√h}
}

≤ 2

b

1

1 +
∑n

i=1 I{Xi∈Sx,r/√h}
.

Thus, we have an upper bound for (A.1)

∫
E{X1,...,Xn}

[
E[(ψ̃n(x)− ψ(x))2|X1, . . . , Xn]

]
µ(x)

≤
∫
E{X1,...,Xn}

[
2

b

σ2

1 +
∑n

i=1 I{Xi∈Sx,r/√h}

]
µ(dx)

≤
∫

2σ2

b(n+ 1)µ(Sx,r/
√
h)
µ(dx)

≤ 2σ2c̃hp/2

nb
. (A.8)

Combining (A.1), (A.2), (A.7) and (A.8), we have

∫
E[(ψn(x)− ψ(x))2]µ(dx) ≤ R2 log(n)

h
+

2R2B2c̃hp/2

nb
+

2σ2c̃hp/2

nb
(A.9)

Setting the derivative of the right hand side of (A.9) to 0 and solving for h, we
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find that the minimizer of the above expression is

h∗n =

(
A1 log(n)n

A2
p
2

) 2
p+2

,

where A1 = R2 and A2 = 2c̃
b

(R2B2 + σ2). If we let the bandwidth increase at the

above rate, by plugging h∗n back into (A.9), we obtain the following upper-bound

on the rate of convergence of the kernel regression estimator

∫
E[(ψn(x)− ψ(x))2]µ(dx) ≤ A log(n)

p
p+2n

−2
p+2 ,

where

A = A
p
p+2

1 A
2
p+2

2

(
(p/2)

2
p+2 + (p/2)

p
p+2
)
.

A.2 Derivation of Gradient for Kernel Regression

This section gives a derivation of the gradient of L(y, ψH(x|Pn))− L(y, ψ). First

let the covariates for the ith observation be X ′i = (Xi1, . . . , Xip) and let x =

(x1, . . . , xp). First of all we have

∂L(y, ψH(x|Pn))− L(y, ψ)

∂Huv

=
∂(ψH(x|Pn)− y)2

∂Huv

.

We have
∂(ψH(x|Pn)− y)2

∂Huv

= 2(ψH(x|Pn)− y)
∂ψH(x|Pn)

∂Huv

.

And so we calculate ∂ψH(x|Pn)
∂Huv

.

Again, for brevity, let ki,H(x) = K(H1/2(Xi − x)). We use the quotient rule:

∂ψH(x|Pn)

∂Huv

=
(
∑n

i=1
∂ki,H(x)

∂Huv
Yi)(

∑n
i=1 ki,H(x))− (

∑n
i=1 ki,H(x)Yi)(

∑n
i=1

∂ki,H(x)

∂Huv
)

(
∑n

i=1 ki,H(x))2
.
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Thus, we have

∂ψH(x|Pn)

∂Huv

=
(
∑n

i=1 Yi
∂ki,H(x)

∂Huv
)− (

∑n
i=1

∂ki,H(x)

∂Huv
)ψH(x|Pn)

(
∑n

i=1 ki,H(x))

=

∑n
i=1(Yi − ψH(x|Pn))

∂ki,H(x)

∂Huv∑n
i=1 ki,H(x)

.

Then we calculate ∂ki,H(x)

∂Huv
. We first have

∂ki,H(x)

∂Huv

= − exp(−(Xi − x)′H(Xi − x))
∂(Xi − x)′H(Xi − x)

∂Huv

.

This then equals

∂ki,H(x)

∂Huv

= −ki,H(x)
∂(Xi − x)′H(Xi − x)

∂Huv

,where

∂(Xi − x)′H(Xi − x)

∂Huv

= 2(Xiu −Xju)(Xiv −Xjv) for u 6= v

and

(Xiu −Xju)
2 for u = v.

Thus we have

∂L(y, ψH(x|Pn))− L(y, ψ(x))

∂Huv

= 4(ψH(x|Pn)− y)

∑n
i=1(ψH(x|Pn)− Yi)ki,H(x)(Xiu − xu)(Xiv − xv)∑n

i=1 ki,H(x)

for u 6= v and when u = v the above 4 is replaced 2.
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