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ABSTRACT OF THE DISSERTATION

Scalable Fault-Tolerant Elastic Data Ingestion in AsterixDB

By

Raman Grover

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2015

Professor Michael J. Carey, Chair

In this thesis, we develop the support for continuous data ingestion in AsterixDB, an open-source

Big Data Management System (BDMS) that provides a platform for storage and analysis of large

volumes of semi-structured data. Data feeds are a mechanism for having continuous data arrive

into a BDMS from external sources and incrementally populate a persisted dataset and associated

indexes. The need to persist and index “fast-flowing” high-velocity data (and support ad hoc

analytical queries) is ubiquitous. However, the state of the art today involves ‘gluing’ together

different systems. AsterixDB is different in being a unified system with “native support” for data

ingestion.

We discuss the challenges and present the design and implementation of the concepts involved

in modeling and managing data feeds in AsterixDB. AsterixDB allows the runtime behavior, al-

location of resources, and the offered degree of robustness to be customized (by associating an

ingestion policy) to suit the application(s) that wish to consume the ingested data. Results from

experiments that evaluate the scalability and fault-tolerance of the AsterixDB data feeds facility

are reported. We include an evaluation of the built-in ingestion policies and study their effect as

well on throughput and latency. An evaluation and comparison with a ‘glued’ together system

formed from popular engines — Storm (for streaming) and MongoDB (for persistence) — is also

included.

xi



Chapter 1

Introduction

A large volume of data is being generated on a “continuous” basis, be it in the form of click-

streams, output from sensors, log files or via sharing on popular social websites [4]. Encouraged

by low storage costs [43], data-driven enterprises today are aiming to collect and persist the avail-

able data and analyze it over time to extract hidden insightful information. Marketing departments

use Twitter feeds to conduct sentiment analysis to determine what users are saying about the com-

pany’s products. Location data combined with customer preference data from social networks

enable retailers to target marketing campaigns based on buying history. Furthermore, utility com-

panies have rolled out smart meters that measure the consumption of water, gas, and electricity and

generate huge volumes of interval data that is required to be analyzed over time.

Data that is being generated at a high rate in a continuous fashion is typically referred to as Fast

Data across academia and industry [26]. The act of collecting and persisting the data can be

envisioned as producing a data repository that reaches the terabyte scale (Big Data) in due time

and continues to grow beyond. Such a data repository is often classified as an example of Big

Fast Data [34]. It is desired to subject the collected data to ad hoc queries that involve a mix of

join, aggregation, group-by and sort operations. Such ad hoc analysis in a typical setting drives

1



overlying applications that generate reports and summaries, provide visualization over time, and

facilitate complex tasks such as data mining and detecting anomalies. Such analyses go beyond

the typical analysis done as part of “stream processing”, which restricts analysis to smaller sets of

data (e.g., a five minute window of data) and does not provide an opportunity for offline ad hoc

processing.

The conventional way of doing ad hoc analysis over data is to use a data management system

(database) and express the required analysis in a high-level language (SQL). However, traditional

data management systems require data to be loaded and indexes to be created before data can be

subjected to such ad hoc analysis. To keep pace with “fast-moving” high-velocity data, a Big Data

Management System (BDMS) must be able to ingest and persist data on a continuous basis. A flow

of data from an external source into persistent (indexed) storage inside a BDMS will be referred to

here as a data feed. The task of maintaining the continuous flow of data is hereafter referred to as

data feed management.

A simple way of having data being put into a Big Data Management System on a continuous basis

is to have a single program (or process) fetch data from an external data source, parse the data,

and then invoke an insert statement per record or per batch of records. This solution is limited

to a single machine’s computing capacity. Ingesting multiple data feeds would potentially require

running and managing multiple individual programs/processes. The task of continuously retrieving

data from external source(s), applying some pre-processing for cleansing, filtering or transforming

the data may amount to ‘gluing’ together different systems (e.g., [44]). For the task at hand, it may

suffice to employ a streaming engine that is efficient at routing data in a continuous fashion and use

it in conjunction with a persistent data store that provides for the storage, indexing and querying of

semi-structured data. A popular choice made within the open-source community is to use Storm

[8] as a streaming engine coupled with MongoDB [7] as a data store.

A combination of individual systems that are otherwise efficient may not always prove to be opti-

mal. (A thorough discussion with results from rigorous experimentation is deferred until Chapter 7
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of this document.) As we will see later, it is harder to reason about the data consistency, scalability

and fault-tolerance offered by such a ‘glued’ together assembly of individual systems. Traditional

data management systems have evolved to provide native support for services if the service offered

by an external system is inappropriate or may cause substantial overheads [37, 17]. Responding

to the need of the hour, then, it is natural for a BDMS to provide “native” support for data feed

management.

1.1 Challenges in Data Feed Management

We begin by enumerating the challenges involved in building a data ingestion facility and dis-

cussing on the desirable features of such a system.

1.1.1 Genericity and Extensibility

A data ingestion facility must be generic enough to work with a variety of data sources and data-

driven applications. A tight-coupling with a data source or an application thereof is likely to result

in a rigid system that is not adaptable to other scenarios or combinations of data sources and

applications.

It is expected that a given data source may send data in its (proprietary) format that needs to

be translated into a different format for data to be processed, stored and accessed within a data

management system. The protocol for the transfer of data and the handshake and subsequent

messages may be unique to a given data source. The transfer of data itself may occur in a push- or

a pull-based manner. A push-based data source requires an initial handshake (message) that acts

as a request for data and sets the necessary parameters (e.g. receiver’s IP address) that are specific

to the data transfer protocol. Data is then sent (pushed) at its regular rate thereafter without any

subsequent requests. In contrast, a pull-based data source requires a separate request each time
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(additional) data is required. A data source may be durable in the sense that it allows the receiver

to selectively fetch a specific record. It may additionally offer a throttling mechanism that allows

data to be sent at an adaptive rate in accordance with the rate at which data can be inserted into

the data management system. The nature of the data source and the offered protocols/APIs have

implications on how the flow of data can be managed. The properties of the data source, together

with the set of APIs offered to facilitate data transfer, need to be taken into account when setting

and managing the flow of data from the source to a data management system. A single strategy

based on a set of assumptions about an external data source may not work or may be sub-optimal

with respect to a given data source.

An application wishing to consume the fetched data may require it to be further processed, trans-

formed, and persisted in a different form to suit the specific data analysis requirements of the

application. Examples of such pre-processing include filtering of unwanted records or attributes,

extraction of additional features for content-based classification, or performing sentiment analysis

on text data. The application may further require QoS guarantees on the delivery of data and dic-

tate the degree of robustness required in the handling of failures. As in the case of a data source,

in order to avoid restricted usability, the properties or requirements of an application should not be

assumed.

It is desired for a data ingestion facility to offer a plug-and-play model wherein individual modules

can be custom-built and incorporated into the system to extend the offered functionality.

1.1.2 Fetch-Once Compute-Many Model

A data feed could simultaneously drive multiple applications that each require the arriving data

to be processed/persisted differently. A naive way to achieve this is to independently fetch data

for each application. Each such independent path would then need to perform the necessary step

of translating the received data into the required format and optionally subjecting the translated

4



data to additional pre-processing prior to persistence. This strategy has multiple pitfalls. At first,

it potentially employs additional resources (network bandwidth and CPU cycles) in setting and

maintaining the flow of data across multiple paths between the external data source as the sender

and the data management system as the receiver. Secondly, it leads to a loss of opportunity in

optimizing the data flow wherein the common sequence of steps (e.g. translating the received

records into a target format) is performed just once and subsequent pre-processing operations are

built on top of each other to avoid any redundancy. Moreover, it causes additional overhead at the

data source for disseminating data across multiple paths and/or handling of an increased number

of requests (from multiple paths), particularly when the ingestion is pull-based.

It is desirable to have a single flow of data from an external source and yet be able to transform it

in multiple ways to drive different applications concurrently.

1.1.3 Scalability and Elasticity

A data ingestion facility may involve multiple concurrent feeds each with their own demand for

resources. A resource-constrained environment can offer a significant challenge in maintaining

pace with an external data source that continues to generate data at its regular rate while the system

load varies. In the case of a pull-based ingestion, the data management system can regulate the

rate of arrival of data by limiting its requests for additional data. In contrast, push-based ingestion

offers little or no control whatsoever on the rate of arrival of data. The inability to process data at

its arrival rate translates to a potential data loss and/or a delay in persisting data. Such a scenario

might be unacceptable for the overlying application. The uncertainty in the demand for resources

can be further increased by the un-scheduled arrival of ad hoc queries that execute in parallel and

compete for resources with concurrent data feeds.

It is hard to properly provision a system upfront prior to the initiation of data flow or the submission

of queries. Provisioning a system requires the availability of known attributes related to each
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data source that is sourcing a feed, a well-predicted rate of arrival of data, and a ‘fixed’ schedule

of queries. Moreover, it is likely for a configured system to be either under-provisioned or be

over-provisioned with respect to the workload at a given point in time. Given the possibility of

subsequent addition of resources, a data ingestion facility must at a minimum, exhibit (linear)

scalability in being able to handle an increasingly large number of data feeds by leveraging added

resources.

A somewhat related aspect of a system is the ability to autonomously scale in or out with respect

to the demand for resources; this is often referred to as elasticity of the system. An elastic system

is particularly suitable in a cloud-based environment with a pay-as-you-consume model where

relinquishing resources during lighter workloads can help save dollars.

Building a scalable data ingestion facility requires exploiting parallelism in managing the flow of

data along a feed. As a pre-requisite for offering elasticity, the system must be able to monitor the

demand and allocation of resources to detect any resource bottlenecks and form a corrective action

by determining the level of resources required to handle the current workload.

1.1.4 Fault Tolerance

Systems in the Big Data era typically employ off-the-shelf commodity hardware as opposed to

beefed up costly boutique hardware. Commodity computing, as it is widely known, offers the

greatest amount of useful computation at low cost. Data ingestion is thus expected to run on a

large cluster of commodity hardware. The down-side of using commodity hardware is the vulner-

ability to hardware failures, which become more probable given that data ingestion is a potentially

never-ending activity. To emphasize the importance of handling and recovering from failures, con-

sider the case of push-based ingestion wherein the external data source continues to send data

irrespective of any failures that have occurred inside the data management system.
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Failures can be categorized as hard and soft failures. The loss or crash of a physical node due to

a network or disk failure is an example of a hard failure. Data ingestion involves translating and

pre-processing the arriving data prior to persistence. A formatting error in the content or a runtime

exception in processing a record (e.g., due to an expected or missing value for an attribute inside

the record) may lead to runtime exceptions that are counted as soft failures. Data ingestion must

be able to circumvent such soft failures and continue processing of arriving records.

It is worth noting that the desired degree of robustness in handling failures is dictated by the over-

lying application. Consider an application that intends to amass tweets to discover popular trends.

Losing a small fraction of tweets may still be acceptable without producing erroneous results from

analysis. In contrast, consider an application that aggregates clickstream data to compute hourly

revenue contributed by clicks. The inability to process a record in such a scenario translates to loss

of revenue or error(s) in reporting. It is worth noting that a single strategy to handling of failures

can be a misfit or an overfit to the needs of the overlying application. It is desirable to offer the

desired degree of robustness in handling failures i(in accordance with application requirements)

while minimizing data loss.

1.2 Contributions

In this thesis, we describe the support for data feeds and data feed management in AsterixDB. As-

terixDB is a Big Data Management System (BDMS) that provides a platform for the scalable stor-

age and analysis of very large volumes of semi-structured data. We discuss the approach adopted

to address the aforementioned challenges. The thesis offers the following contributions.

(1) Concepts involved in Data Feed Management: The thesis introduces the concepts involved in

defining a data feed and managing the flow of data into a target dataset and/or to other dependent

feeds to form a cascade network. It details the design and implementation of the involved concepts

7



in a complete system.

(2) Policies for Data Feed Management: The thesis describes how a data feed is managed by

associating an ingestion policy that controls the system’s runtime behavior in response to events

such as software/hardware failures and resource bottlenecks. Users may also opt to provide a

custom policy to suit special application requirements.

(3) Scalable/Elastic Data Feed Management: The thesis describes a dataflow approach that ex-

ploits partitioned-parallelism to scale and ingest increasingly large amounts of data. The dataflow

exhibits elasticity by being able to monitor and dynamically re-structure itself to adapt to the rate

of arrival of data. The system is fault-tolerant and provides at least once semantics as the strongest

guarantee, if required.

(4) Contribution to Open-Source: The AsterixDB system, including data feeds, is available as

open source [3, 2]. The support for data ingestion in AsterixDB is extensible to enable future

contributors to provide custom implementations of different modules and form custom-designed

policies to suit specific requirements.

(5) Experimental Evaluation The thesis provides an experimental evaluation that studies the role

of different ingestion policies in determining the behavioral aspects of the system including the

achieved throughput and latency. We also report on experiments that evaluate scalability and our

approach to fault-tolerance.

(6) Comparison with the State-of-the-Art: We include an evaluation of a custom-created system

created by coupling Storm (a popular streaming engine) and MongoDB (a popular persistence

store) to draw a comparison with AsterixDB in terms of the flexibility and scalability achieved in

data feed management. We demonstrate and analyze the inefficiencies involved in gluing together

otherwise efficient systems, which is a widely followed practice in open-source community today.
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1.3 Organization

The remainder of the thesis is organized as follows. We discuss related work in Chapter 2 and

provide an overview of the AsterixDB and Hyracks systems in Chapter 3. Chapter 4 describes

how a feed is modeled and defined at the language level in AsterixDB. The design aspects and

implementation details involved in managing a data feed are then described in Chapter 5. Chapter

6 describes the support for handling failures. The mechanisms to deal with resource bottlenecks

and sustaining the flow of data are described in Chapter 7. Chapter 8 covers some of the real-world

use cases involving the use of data feeds. We conclude the thesis in Chapter 9.
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Chapter 2

Related Work

In this chapter, we describe how the AsterixDB data ingestion facility compares with other systems

that involve the handling and processing of high-velocity data and are faced with seemingly similar

challenges. More detailed comparisons will be provided as appropriate in subsequent chapters.

Related systems fall into several distinct categories – Stream Processing Engines (SPEs), Data

Routing Engines, Extract Transform Load (ETL) systems.

2.1 Stream Processing Engines

Much work has been done on systems to support data stream processing [10, 12, 20, 24, 31]. On

the surface, data feeds may seem similar to streams from the data streams literature. There are

important differences, however. Data feeds are a “plumbing” concept; they are a mechanism for

having data flow in from external sources that produce data continuously and to incrementally

populate and persist it in a data management system. Stream Processing Engines (SPEs) do not

persist data; instead they provide a sliding window on data (e.g., a 5 minute view of data), but

the amount, or the time window, is usually limited by the velocity of the data and the available
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memory. The windowing operations performed on in-flight data are different from the ad hoc

analysis that is enabled by queries running over persisted data. The requirement that the data needs

to be processed only once and is to be discarded thereafter drives the design and implementation

aspects of a typical SPE. As such, an SPE does not deal with providing storage capabilities or

transactional semantics with respect to maintaining indexes over such data.

With respect to providing fault-tolerance, an SPE faces the challenge of providing highly available

parallel data-flows, SPE researchers have proposed several techniques (e.g., [36, 13]) for tackling

them. These techniques rely on replication; the state of an operator is replicated on multiple

servers and/or have multiple servers simultaneously process identical input streams (also referred

to as process-pairing). Fault-tolerance is thus provided at a high cost as the number of required

nodes are roughly doubled. Moreover, offering a single strategy (e.g. process-pairing) for fault-

tolerance can be wasteful of resources in scenarios where the offered degree of robustness exceeds

the requirements laid down by the overlying application that wishes to consume the arriving data.

Such mechanisms are resource intensive and, as we shall describe later (Chapter 6) in detail, are

not the preferred approach adopted in AsterixDB.

2.2 Data Routing Engines

Data routing engines can route, transform, and analyze a stream of data. Such systems do not

provide a high-level language for expressing queries over the data, nor do they allow windowing

operations similar to those supported by a stream processing engine. Prominent examples from the

open-source community include Twitter’s Storm [8], Yahoo!’s S4 [32] and LinkedIn’s Samza [1].

A data routing engine typically allows constructing an arbitrary dataflow that resembles a directed

acyclic graph (DAG) that consists of nodes connected together using edges, and it is typically

constructed using APIs provided by the system. In such a dataflow, the nodes represent custom

logic that is applied to data arriving at the node. The logic contained in a node is provided by the
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end-user and is treated as a black box by the system. Edges represent the flow of data between a

pair of nodes. A data routing engine such as Storm runs in a distributed manner on a cluster of

commodity hardware. Storm also deals with the challenges involved in successfully moving data

across the DAG in a fault-tolerant manner.

A typical use of a data routing engine (a use that overlaps with a data ingestion facility) is to receive

data from an external source and have it processed through a data flow. Although a data routing

engine does not provide for storage and indexing of data, it can still be used in conjunction with a

data store (e.g., MongoDB) or a database (e.g., MySQL) such that the routed data output from the

data routing engine can be re-directed to the data store (or a database) using its prescribed APIs.

Such a setting then allows running ad hoc analytical queries over the persisted data, but with the

underlying assumption that the data store can handle high-velocity data. On the surface, it seems

that ‘gluing’ together a data routing engine with a data persistence store obviates the need for

native support for data ingestion inside a data management system. However, building a combined

system from otherwise efficient systems is not always optimal and does not offer a desirable end-

user experience. Data ingestion is not treated as a first-class citizen in such a ‘glued’ together

system. A detailed description of the pitfalls of ‘glue’ together with an experimental evaluation is

deferred until Chapter 6.

2.3 Extract Transform Load (ETL) Systems

Extract Transform Load [40] (commonly referred as ETL) systems (e.g., [6, 11]) evolved naturally

from the need to consolidate data residing across different homogeneous or heterogeneous data

sources into a single common repository – a Data Warehouse. Data residing across systems may

differ in representation, contained attributes, and format. Intuitively, ETL systems involve fetching

data from these data sources (extraction), resolving any conflicts related to data representation

and translating it into common format (transformation) and then putting the data into the data
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warehouse (loading). A survey covering different ETL systems and the state-of-the-art can be

found in [39].

ETL systems operate in a “batchy” mode, with a ‘finite’ amount of data transferred at periodic

intervals coinciding with off-peak hours. Data the gets loaded via an ETL data flow is thus typically

stale. The “batch” nature of such systems makes them inappropriate to the task at hand today -

‘continuous’ ingestion of data. Furthermore, ETL systems typically involve the use of high-end

servers unlike a large cluster of commodity hardware, and are thus form an expensive solution.

ETL tools are not known to exhibit linear scalability and their performance measured as rows

inserted per second saturates at rates like 60k rows/second. As we are in the era of Big Data, ETL

tools too have jumped on the bandwagon with an attempt to improve performance by employing

MapReduce as the programming model and deploying a re-architect-ed ETL design on a cluster of

commodity hardware. Xu et. al in [44] described a Map-Reduce based approach for populating a

parallel database system with data arriving from an external source. However, the system formed

a tight coupling with MapReduce and required the data to be initially put into the distributed file

system (HDFS). Such an approach adds to storage costs and introduces additional delays due to

the staging of data.

2.4 Other Systems

It is common in an industrial setting to have a large number of data sources that produce data

in a continuous fashion. A typical example of continuously arriving data are the logs that are

produced by web-servers and that need to be analyzed to detect anomalies or trigger alerts. Such

logs are typically analyzed using batch-processing enabled by MapReduce. However, Hadoop

(MapReduce) itself does not provide for the efficient and reliable collection of data from different

sources. That limitation has resulted in the development of a multitude of systems (including Flume

[21], Chukwa [19], Kafka [30] and Sqoop [29]) that support the reliable fault-tolerant collection of
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data in a distributed/parallel manner and can scale the facility via the addition of resources. Such

systems help bridge the gap between continuously arriving logs and their processing via Map-

Reduce and avoid a repetition of effort in building a great deal of infrastructure to connect data

sources with processing tools.

Such systems do not provide for the persistence, indexing, or ad hoc querying of continuously

arriving data, but they do face a common subset of challenges in dealing with a wide variety

of sources and constructing an arbitrary dataflow for movement of data. Next, we give a brief

overview of these systems.

2.4.1 Flume

Flume [21] is a distributed system for efficiently collecting, aggregating and moving large amounts

of data from many different sources to a centralized data store. As data sources in Flume are

customizable, Flume can be used to transport massive quantities of event data (network traffic data

or social media-generated data) from a variety of data sources. Flume is designed to be reliable

and highly available while providing a simple, flexible, and intuitive programming model based on

streaming data flows.

Figure 2.1: Dataflow inside a Flume Agent

A Flume data flow consists of one or more agents, with each agent configured with a source, a

sink, and a channel. Inside an agent, data moves from the source to the sink via the channel (as
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shown in Figure 2.1).

Similar to a data routing engine such as Storm, Flume enables the setting up of an arbitrary data

flow but does not provide storage and indexing abilities natively. As such, it too needs to be glued

together with a data store for persistence and providing ad hoc querying support, and it suffers

from similar inefficiencies and limitations as were observed with a combination of systems such as

Storm and MongoDB. Flume does not provide for the elastic scaling in or scaling out of any part

of the dataflow to account for potentially dynamic demand for resources that vary in accordance

with the rate of arrival of data.

2.4.2 Chukwa

Large distributed systems that are deployed over hundreds of nodes and constantly generate logs

add to the complexity of the manual analysis and debugging of logs. Automated log-analysis is

increasing the amount of information that can be extracted from logs, thus increasing their value.

Large internet services companies use the Map Reduce programming model to process log data, so

a number of log collection systems have been built to copy data into HDFS. These systems often

lack a unified approach to failure handling, with errors being handled separately by each piece of

the collection, transport, and processing pipeline. Apache Chukwa [19] is a scalable system for

collecting logs and other monitoring data and processing the data with MapReduce.

Apache Chukwa is built on top of the Hadoop Distributed File System (HDFS) and MapReduce

framework and inherits Hadoops scalability and robustness. Chukwa also includes a flexible and

powerful toolkit for displaying, monitoring and analyzing results to make the best use of the col-

lected data. Although Chukwa is not closely related with the data ingestion facility provided by

AsterixDB, it still shares the spirit of providing a unified approach with an end-to-end delivery

model for continuously generated data (logs) from multiple data sources (processes running in a

distributed environment, each producing logs).
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2.4.3 Kafka

Apache Kafka [30] is a distributed publish-subscribe messaging system. It was originally devel-

oped at LinkedIn and later on became an Apache project. Kafka is designed as a distributed system

that is easy to scale out and offers high throughput for both publishing and subscribing. Dataflow

in Kakfa involves a set of producers, message brokers, and consumers. A producer is anyone who

can publish messages, which are a payload of bytes. Each message has an associated topic, which

is a category or feed name to which messages are published. A consumer can subscribe to one or

more topics and consume the published messages by pulling data from brokers. The brokers col-

lectively constitute the Kafka cluster. Figure 2.2 shows the dataflow between the different entities

in Kafka.

Figure 2.2: Dataflow inside Kafka

Kafka, by design, does not provide support for persistence, indexing, or querying of data. It is

actually used in conjunction with Storm, wherein data from external source is pushed to Kafka

and is subsequently pulled by Storm. Note that Storm does not support receiving data from push-

based data sources, so pairing with Kafka is a popular method for overcoming this limitation.

The ‘glued’ together system still needs further gluing with a data store to provide persistence and

querying support.
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2.4.4 Sqoop

Apache Sqoop [29] is a tool designed for efficiently transferring bulk data between Apache Hadoop

and structured datastores such as relational databases. One can use Sqoop to import data from a

relational database management system (RDBMS) such as MySQL or Oracle into the Hadoop

Distributed File System (HDFS), transform the data in Hadoop MapReduce, and then export the

transformed data back into an RDBMS. Sqoop automates most of this process, relying on the

database to describe the schema for the data to be imported. Sqoop uses MapReduce to import and

export the data, which provides for parallel operation as well as fault tolerance.

Sqoop, in a way, facilitates the execution of ad hoc analytical queries over data accumulated in

HDFS by moving the data to an RDBMS. However, continuous ingestion of data from an external

source would require persisting it into HDFS and creating an additional copy before it can be

moved by Sqoop. Nonetheless, such creation of shadow data and batchy movement of introduces

delays and involves large amounts of resources.

2.5 Summary

The need to be able to persist and index fast-flowing data is ubiquitous. This chapter has briefly

reviewed a wide-spectrum covered the wide-spectrum of related systems that dealt with high-

velocity data. However, these systems offered only a subset of the desired functionality, as none

of them involved persistence of data or supported ad hoc analysis via queries. As such, these

systems must be coupled with other systems to form an end-to-end solution1. Instead of ‘gluing’

together different systems, AsterixDB is different in being a unified system with “native”, i.e.,

built-in support for data feed ingestion.

1The trade-offs and limitations of coupled systems in the context of data ingestion is described in greater detail in
Chapter 7.
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AsterixDB offers a generalized fault-tolerance approach that can be customized as per the applica-

tion requirements and the expected degree of robustness. Furthermore, AsterixDB does not require

data to be first staged to external storage (e.g., HDFS) before being ingested. To the best of our

knowledge, AsterixDB is the first system to explore the challenges involved in building a data in-

gestion facility that is fault tolerant and employs partitioned parallelism to scale the facility and to

couple it with high-volume and parallel external data sources.
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Chapter 3

Background and Preliminaries

In this Chapter, we present a brief overview of AsterixDB and its execution layer – Hyracks – with

an emphasis on the most important aspects and features from the perspective of this work. For a

detailed description, the reader is referred to [2] and [18].

3.1 AsterixDB

Initiated in 2009, the AsterixDB project has been developing new technologies for ingesting, stor-

ing, indexing, querying, and analyzing vast quantities of semi-structured data. The project drew

ideas from three distinct areas — semi-structured data management, parallel databases, and first

generation Big Data platforms — to create an open-source software platform that scales by running

on large, shared-nothing commodity computing clusters. The effort targeted a wide range of semi-

structured use cases, ranging from “data” use cases — whose data is well-typed and highly regular

— to “content” use cases — whose data is irregular, involves more text, and whose schema may

be hard to anticipate a priori or may never exist. The initial results were released as an AsterixDB

beta release in June of 2013, and the current open source release is available at [2].
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To distinguish AsterixDB from current Big Data analytics platforms, which query but don’t store

or manage data, we classify AsterixDB as a Big Data Management System (BDMS). One of the

project’s mottos is “one size fits a bunch”, and the hope is that AsterixDB will prove useful for

a wider range of use-cases than are addressed by any one of the current Big Data technologies

(e.g., Hadoop-based query platforms or key-value stores). We aim to reduce the need for “bubble

gum and bailing wire” constructions involving multiple narrower systems and corresponding data

transfers and transformations.

3.1.1 AsterixDB Architecture

Figure 3.1: AsterixDB Architecture

Figure 3.1 provides an overview of how the various software components of AsterixDB map to

nodes in a shared-nothing architecture. The topmost layer of AsterixDB is a parallel data manager,

with a full, flexible data model (ADM) and query language (AQL) for describing, querying, and

analyzing data. ADM and AQL support both native storage and indexing of data as well as analysis

of external data (e.g., data in HDFS). The bottom-most layers from 3.1 provide storage facilities for

datasets, which can be targets of ingestion. These datasets are stored and managed by AsterixDB

as partitioned LSM-based B+-trees with optional LSM-based secondary indexes [33].

20



AsterixDB uses Hyracks [18] as its execution layer. Hyracks allows AsterixDB to express a com-

putation as a DAG of data operators and connectors. Operators operate on partitions of input data

and produce partitions of output data, while connectors repartition operators’ outputs to make the

newly produced partitions available at the consuming operators.

3.1.2 AsterixDB Data Model

AsterixDB defines its own data model (ADM) [16] designed to support semi-structured data with

support for bags/lists and nested types. Listing 3.1 shows how ADM can be used to define a record

type for modeling a raw tweet. The RawTweet type is an open type, meaning that its instances

will conform to its specification but can contain extra fields that vary per instance. Listing 3.1

also defines a ProcessedTweet type. A processed tweet replaces the nested user field inside a raw

tweet with a primitive string value (userId) and adds a nested collection of strings (referred topics)

to each tweet. Additionally, derived attributes about the tweet (e.g., sentiment and language) are

included. The primitive location field types (latitude, longitude) and created at are now expressed

as their respective spatial (point) and temporal (datetime) datatypes. Note that ADM also allows

specifying optional fields with known types (e.g., the location attribute in the ProcessedTweet

type).

Data in AsterixDB is stored in datasets. Each record in a dataset conforms to the datatype asso-

ciated with the dataset. Data is hash-partitioned (by primary key) across a set of nodes that form

the nodegroup for a dataset. By default, all nodes in an AsterixDB cluster form the nodegroup

for a dataset. Listing 3.2 shows the AQL statements for creating a pair of datasets—Tweets and

ProcessedTweets. We create a secondary index on the location attribute of a processed tweet for

more efficient retrieval of tweets on the basis of spatial location.
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use dataverse feeds ;
create type TwitterUser as open {

screen name: string ,
lang : string ,
friends count : int32 ,
statuses count : int32 ,

name: string ,
followers count : int32

};

create type Tweet as open {
id : string ,
user : TwitterUser ,
latitude : double?,
longitude : double?,
created at : string ,
message text : string ,
country : string?

};

create type ProcessedTweet as open {
id : string ,
user name: string ,
location : point?,
created at : datetime,
message text : string ,
country : string ?,
topics : [ string ],
sentiment : double

};

Listing 3.1: Defining datatypes

use dataverse feeds ;

create dataset Tweets(Tweet)
primary key id;

create dataset ProcessedTweets(ProcessedTweet)
primary key id;

create index locationIndex on
ProcessedTweets( location ) type rtree ;

Listing 3.2: Creating datasets and associated indexes
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3.1.3 Querying Data

AsterixDB queries are written in AQL, a declarative query language that was designed by borrow-

ing the essence from XQuery [9]. As an example, consider the AQL query in Listing 3.3, which

spatially aggregates tweets collected in the dataset ProcessedTweets. The query defines a bound-

ing rectangle that spans over the geographic region covered by the US. It specifies the latitude and

longitude increments to sub-divide this bounding rectangle into a grid-structure. The query begins

by constraining the tweets to the bounding rectangle and those containing the hashtag “Obama”.

This step can be executed efficiently by using the secondary R-tree index on the location attribute

(from Listing ??). The location of each qualifying tweet together with the origin of the bounding

rectangle and the latitude and longitude increments (to specify the resolution of the grid) are given

to the spatial-cell function. The function returns the grid cell that the tweet belongs to. Tweets

are then grouped according to their containing grid cells and the count function is applied to each

cell. The result can be used draw a heat map showing the relative volume of tweets over a selected

geographic region (Figure 3.2).

for $tweet in dataset ProcessedTweets
let $searchHashTag := ”Obama”
let $leftBottom := create−point(33.13,−124.27)
let $rightTop := create−point(48.57,−66.18)
let $latResolution := 3.0
let $longResolution := 3.0
let $region := create rectangle ($leftBottom , $rightTop)
where spatial intersect ($tweet . location , $region) and
some $hashTag in $tweet . topics
satisfies ($hashTag = $searchHashTag)

group by $c := spatial cell ($tweet . location ,
$leftBottom , $latResolution , $longResolution ) with $tweet
return { ” cell ”: $c, ”count” : count($tweet) }

Listing 3.3: AQL query for spatial aggregation of tweets
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Figure 3.2: A visualization of the results of spatial aggregation query. The color of the cell indicates
the tweet count.

3.2 Hyracks

Hyracks is a generalized alternative to infrastructures such as MapReduce [23], Hadoop [5] and

Dryad [28] for solving data-parallel problems. It balances the need for expressiveness beyond Map-

Reduce, which offers a very limited programming model based on a few user-provided functions,

while providing out-of-the-box support for many commonly occurring communication patterns and

operators needed in data-oriented tasks, which are absent in Dryad. Hyracks has been designed to

work with a cluster of commodity computers. To do so in a robust manner, it has built-in support

to detect and recover from possible system failures that might occur during the evaluation of a job

through the use of heartbeats.

3.2.1 High-Level Architecture

Figure 3.3 provides an overview of the basic architecture of a Hyracks installation. Every Hyracks

cluster is managed by a Cluster Controller process. The Cluster Controller accepts job execution

requests from clients, plans their evaluation strategies (e.g., computing stages), and then sched-

ules the job’s tasks (stage by stage) to run on selected machines in the cluster. In addition, it is
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Figure 3.3: Hyracks Architecture

responsible for monitoring the state of the cluster to keep track of the resource loads at the vari-

ous worker machines. The Cluster Controller is also responsible for re-planning and re-executing

some or all of the tasks of a job in the event of a failure. Turning to the task execution side, each

worker machine that participates in a Hyracks cluster runs a Node Controller process. The Node

Controller accepts task execution requests from the Cluster Controller and also reports on its health

(e.g., resource usage levels) via a heartbeat mechanism.

3.2.2 Execution Model

Hyracks provides a programming model and an accompanying infrastructure to efficiently divide

computations on large data collections (spanning multiple machines) into computations that work

on each partition of the data separately. A Hyracks job (the unit of work in Hyracks), submitted by

a client, processes one or more collections of data to produce one or more output collections (also in

the form of partitions). The job is a dataflow DAG comprising of operators (nodes) and connectors

(edges). Operators represent job’s partitioned-parallel computation steps and connectors represent

the (re)-distribution of data from step to step. Internally, an individual operator consists of one or

more activities (internal sub-steps or phases). At runtime, each activity of an operator is realized
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as a set of (identical) tasks that are clones of the activity and that operate on individual partitions

of the data flowing through the activity.

In Hyracks, the data flows between operators over connectors in the form of data frames containing

physical records that can have an arbitrary number of fields. Hyracks provides support for express-

ing data-type-specific operations such as comparisons and hash functions. The type of each field is

specified by providing an implementation of a descriptor interface that allows Hyracks to perform

serialization and deserialization. For most basic types, e.g., numbers and text, the Hyracks library

contains the required pre-existing type descriptors.

When Hyracks begins to execute a job, it takes the job specification and internally expands each

operator into its constituent activities. This expansion of operators into constituent activities reveals

to Hyracks the phases of each operator along with any sequencing dependencies among them.

Activities that are transitively connected to other activities in a job only through dataflow edges

are said to together form a stage. Intuitively, a stage is a set of activities that can be co-scheduled

(to run in a pipelined manner, for example). A job’s parallel execution details are planned in the

order in which stages become ready to execute. (A given stage in a Hyracks job is ready to execute

when all of its dependencies, if any, have successfully completed execution.)

A more detailed description of the execution model together with examples and an experimental

evaluation can be found in [18].

3.3 Summary

AsterixDB is a Big Data Management System (BDMS) that provides for the storage, indexing and

querying of semi-structured data. It uses a flexible data model – ADM – that supports rich data

types such as bags, lists and nested types. Data analysis is expressed in a high-level language –

the AsterixDB Query Language (AQL). AsterixDB employs a cluster of commodity hardware and
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uses Hyracks as its runtime execution layer. An AQL (DDL) statement or a query is compiled into

a single Hyracks job and scheduled to run on a cluster in a distributed manner.

In this chapter, we have covered sufficient ground to get a basic understanding of the data model

and architecture used within AsterixDB. We shall next shift our focus towards the concepts in-

volved in building a data ingestion facility. In subsequent chapters, we will describe how the data

and execution model are leveraged to build a data ingestion facility that addresses the challenges

enumerated in Chapter 1.
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Chapter 4

Data Feed Basics

To provide support for continuous data ingestion, the AsterixDB query language (AQL) should

have built-in support for data feeds. In this Chapter, we describe how an end-user may model a

data feed and have its data be persisted and indexed in an AsterixDB dataset.

4.1 Collecting Data: Feed Adaptors

The first and foremost task in building a data ingestion facility is providing the ability to con-

nect with an external data source and set up the required flow of data with the external source as

the sender and the data management system (AsterixDB in the current context) as the receiver.

As noted in Chapter 1, data sources are expected to use proprietary protocol(s) to facilitate data

exchange and may send data in a specific format that requires parsing and translation into the As-

terixDB Data Format (ADM). The functionality of establishing a connection with an external data

source, receiving, parsing, and translating data into ADM records (for analysis and storage inside

AsterixDB) is contained in a Feed Adaptor. AsterixDB does not concern itself with the semantics

and connection parameters involved in initiating the flow of data from the external source; as such,
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the Feed Adaptor is treated by the rest of the as a black box that outputs ADM records that are

ready to be processed and stored within AsterixDB.

A Feed Adaptor is simply an implementation of a prescribed interface, and its details are specific to

a given data source. An implementation of the interface provides AsterixDB with necessary details

including the kind of data source (push versus pull) and the data type associated with the ADM

records that are output by the adapter. To use a custom data source, an end-user simply needs to

provide an implementation of the interface1. AsterixDB currently provides built-in adaptors for

several popular data sources – namely Twitter, CNN, and RSS feeds. We are in the process of

expanding the set to cover other popular data sources. AsterixDB additionally provides a generic

socket-based feed adaptor that can be used to ingest data that is directed at a specified socket

address.

We next illustrate how a feed adaptor is used to define a data feed. A data feed is defined in AQL

using the create feed statement. Listing 4.1 illustrates the use of built-in adaptors in AsterixDB

to define a pair of feeds. Note that an adaptor may optionally be given configuration parameters

that are used in interfacing with the external source (establishing a connection) and parsing the

received content. In Listing 4.1, the built-in pull-based Twitter adaptor is provided with a set of

keywords that are used in filtering the set of received tweets. As configured, the pull-based Twitter

adaptor will make a request for data every minute and make use of the Twitter search API. The

CNN adaptor is used in constructing a feed that will consist of news articles from CNN that are

related to any of the topics that are specified as part of its configuration.

It is possible that the protocol for data exchange between the external source and its feed adaptor

allows for the transfer of data in parallel across multiple channels. The degree of parallelism

in receiving data from an external source is determined by the feed adaptor in accordance with

the data exchange protocol. The pull-based TwitterAdaptor uses a single degree of parallelism,

1Custom feed adaptors together with any dependencies are packaged into an AsterixDB library and installed into an
AsterixDB instance using the AsterixDB management tool — Managix. The details for this are described in Appendix
A.
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create feed TwitterFeed using TwitterAdaptor
(”query”=”Obama”, ” interval”=60);

create feed CNNFeed using CNNAdaptor
(” topics ”=” politics , sports ”) ;

Listing 4.1: Defining a feed using some of the built-in adaptors in AsterixDB

whereas the CNNAdaptor uses a degree of parallelism determined by the number of topics that are

passed as configuration. Corresponding to each topic (politics, sports, etc.) is an RSS feed that is

fetched by an individual instance of the CNNAdaptor. Multiple instances of a feed adaptor may

run as parallel threads on a single machine or on multiple machines across an AsterixDB cluster.

4.2 Pre-Processing Collected Data

A feed adaptor outputs ADM-formatted records that can be processed and stored within AsterixDB

as part of a dataset. However, the incoming records, in terms of their content (contained attributes),

may not be appropriate for storage or querying as per the requirements of the overlying application.

The incoming records may require pre-processing that includes (but is not limited to) filtering

of unwanted attributes (or even records), transforming content such as removing whitespaces or

rounding up to certain precision, sampling or applying sophisticated processing such as sentiment

analysis, or feature extraction for content-based classification.

A feed definition (create feed statement) may optionally include the specification of a user-defined

function (UDF) that needs to be applied to each feed record prior to its persistence. The pre-

processing is expressed as a user-defined function (UDF) that can be defined in AQL or in a

programming language like Java. An AQL UDF is a good fit when pre-processing a record is

very simple or requires the result of a query (join or aggregate) over data contained in AsterixDB

dataset(s). More sophisticated processing such as sentiment analysis of text is better handled by
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providing a Java UDF. A Java UDF has an initialization phase that allows the UDF to access any

resources it may need to initialize itself prior to being used in a data flow. It’s computation is

assumed by the AsterixDB compiler to be stateless and thus usable as an embarassingly parallel

black box (similar to the map function in Map Reduce). In contrast, the AsterixDB compiler can

reason about an AQL UDF and even involve the use of indexes during its invocation. The pre-

processing function for a feed is specified using the apply function clause at the time of creating

the feed. This is illustrated in Listing 4.3.

The tweets collected by the TwitterAdaptor (Listing 4.1) conform to the Tweet datatype (Listing

3.1). The processing required in transforming a collected tweet to its lighter version (of type

ProcessedTweet) involves extracting hash tags2 (if any) in a tweet and collecting them under the

referred-topics attribute for the tweet. This can be expressed as an AQL function as shown in

Listing 4.2. More sophisticated pre-processing might require implementation in a programming

language like Java. As an example, the CNNAdaptor (Listing 4.1) outputs records that each contain

the fields - item, link, and description. The link field provides the URL of the news article on the

CNN website. Parsing the HTML source provides additional information such as tags, images and

outgoing links to other related articles. The extracted information could then be added to each

record as additional fields to form an augmented version prior to persistence. Note that the return

type of the function associated with a feed must conform to the datatype of the target dataset where

the feed is to be persisted.

A feed adaptor and a UDF act as pluggable components that contribute towards providing a generic

model for data ingestion and help to address challenge C1 from in Section 1.1. By providing an im-

plementation of prescribed interfaces, the internal details of data feed management are abstracted

from the end-user. These pluggable components can be packaged and installed as part of an As-

terixDB library and subsequently be used in AQL statements. A detailed description of the steps

involved in building a custom adaptor or a Java UDF and installing it within an AsterixDB instance

2Hash tags are words that begin with a #. In Twitter’s jargon, these represent the topics associated with the tweet.
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use dataverse feeds ;

create function addHashTags($x){
let $topics := ( for $token in word−tokens($x.message text)

where starts−with($token, ”#”)
return $token)

return {”id”:$x. id ,
”user”: $x.user ,
” latitude ”: $x. latitude ,
” longitude ” : $x. longitude ,
” created at ” : $x. created at ,
”message text”: $x. message text ,
”country”: $x.country ,
” topics ”: $topics}

};

Listing 4.2: An AQL function to extract hash tags contained in a tweet’s text and collect them into
an ordered list that is added to the tweet as an additional attribute (topics)

create feed ProcessedTwitterFeed using TwitterAdaptor
(”query”=”Obama”, ” interval”=60)
apply function addHashTags;

create feed ProcessedCNNFeed using CNNAdaptor
(” topics ”=” politics , sports ”)
apply function extractInfoFromCNNWebsite;

Listing 4.3: Defining a feed that involves pre-processing of collected data
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is provided in Appendix A.

4.3 Building a Cascade Network of Feeds

Multiple overlying applications may wish to consume the data ingested from a given data feed.

Each such application might perceive the feed in a different way and require the arriving data

to be processed and/or be persisted differently. Building a separate flow of data from the external

source for each application would be wasteful of resources as the pre-processing or transformations

required by each application might overlap and could be done together in an incremental fashion

to avoid redundancy. A single flow of data from the external source could provide data for multiple

applications. To achieve this and address challenge C2 from Section 1.1, we introduce the notion

of primary and secondary feeds in AsterixDB.

A feed in AsterixDB is considered to be a primary feed if it gets its data from an external data

source. The records contained in a feed (subsequent to any pre-processing) are directed to a des-

ignated AsterixDB dataset. Alternatively or additionally, these records can be used to derive other

feeds known as secondary feeds. A secondary feed is similar to its parent feed in every other as-

pect; it can have an associated UDF to allow for any subsequent processing, can be persisted into a

dataset, and/or can be used to derive other secondary feeds to form a cascade network (see Figure

4.2). A primary feed and its dependent secondary feeds form a hierarchy.

create secondary feed ProcessedTwitterFeed from
feed TwitterFeed apply function addFeatures ;

create secondary feed ProcessedCNNFeed from
feed CNNFeed apply function addInfoFromCNNWebsite;

Listing 4.4: Defining a secondary feed

As an example, Listing 4.4 shows the AQL statements that redefine the previously defined feeds
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Figure 4.1: Building a cascade network of feeds. The solid lines represents the flow of data
as constructed by creating a primary feed and additional secondary feeds that apply additional
processing to form a cascade network. The dotted lines indicate example additions to the network
with data flowing into newer secondary feeds and data sets.

— ProcessedTwitterFeed and ProcessedCNNFeed — in terms of their respective parent feeds from

Listing 4.1. If a specific application needs to subject the tweets contained in the feed — Pro-

cessedTwitterFeed — to additional processing (prior to persistence), it may do so by defining

another secondary feed using ProcessedTwitterFeed as a parent feed and associating a UDF that

does the additional processing.

4.4 Lifecycle of a Feed

A feed is a logical concept and is brought to life (i.e., its data flow is initiated) only when it is

connected to a dataset using the connect feed AQL statement (Listing 4.5). Subsequent to a connect

feed statement, the feed is said to be in the connected state. Multiple feeds can simultaneously be

connected to a dataset such that the dataset represents the union of the connected feeds. In a

possible but unlikely scenario, a feed may also be simultaneously connected to different datasets.
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Note that connecting a secondary feed does not require the parent feed (or any ancestor feed) to

be in the connected state. The order in which feeds that are related in a hierarchy are connected to

their respective datasets is not important. Furthermore, additional secondary feeds can be added to

an existing hierarchy and connected to a dataset at any time without impeding or interrupting the

flow of data along a connected ancestor feed.

The connect feed statement in Listing 4.5 directs AsterixDB to persist the ProcessedTweets feed

in the ProcessedTweets dataset. If it is required (by the high-level application) to retain the raw

tweets obtained from Twitter, the end-user may additionally choose to connect the TwitterFeed to a

different dataset. Having a set of primary and secondary feeds offers the the end-user the flexibility

to do so. Let us assume that the high-level application indeed needs to persist TwitterFeed and that,

to do so, the end-user makes use of the connect feed statement. A logical view of the continuous

flow of data established by connecting the feeds to their respective target datasets is shown in

Figure 4.2.

Referring to Figure 4.2, it is worth noting that data may not flow along the different paths (primary

feed and secondary feed) at the same rate. For example, the application of a UDF along the

secondary feed introduces an additional overhead that may have the effect of slowing the movement

of data along that path. It is important that data feeds in a cascade network be isolated from

each other in a way that guarantees a continuous flow of data independent of the rate of flow of

data along other related feeds. AsterixDB provides such isolation by the mechanism of creating

Feed Joints, as described in greater detail in Chapter 5 where we cover the physical aspects and

implementation details of feeds.

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets;

disconnect feed ProcessedTwitterFeed from
dataset ProcessedTweets;

Listing 4.5: Managing the lifecycle of a feed using connect and disconnect AQL statements
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Contrary to the connect feed statement, the flow of data from a feed into a dataset can be terminated

explicitly by use of the disconnect feed statement (Listing 4.5). Note that disconnecting a feed from

a particular dataset does not interrupt the flow of data from the feed to any other dataset(s); neither

does it impact other connected feeds in the lineage.

Figure 4.2: Logical view of the flow of data from external data source into AsterixDB datasets

The notion of a primary and a secondary feed allows the end-user to derive a feed from an existing

feed and form a cascade network with data flowing from one feed to another and so on and so forth.

This ability, coupled with the flexibility to connect each feed in a cascade network to a different

dataset, helps in achieving the “Fetch-Once, Compute-Many” model described in Chapter 1. Fur-

thermore, a cascade network can be structurally modified by connecting or disconnecting feeds in

a non-disruptive manner wherein other connected feeds are isolated from structural changes occur-

ring in the cascade network. Figure 4.2 illustrates the Fetch-Once, Compute-Many model where

a record (tweet) is retrieved from the external source (Twitter) once but is pushed along multiple

paths to be processed and persisted differently.
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4.5 Policies for Feed Ingestion

Multiple feeds may be concurrently operational on an AsterixDB cluster, each competing for re-

sources (including CPU cycles, network bandwidth, and disk IO) to maintain pace with their re-

spective data sources. A data management system must be able to manage a set of concurrent feeds

and make dynamic decisions related to the allocation of resources, resolving resource bottlenecks

and the handling of failures. Each feed has its own set of constraints, influenced largely by the na-

ture of its data source and the application(s) that intend to consume and process the ingested data.

Consider an application that intends to discover the trending topics on Twitter by analyzing the

ProcessedTwitterFeed feed. Losing a few tweets may be acceptable. In contrast, when ingesting

from a data source that provides a click-stream of ad clicks, losing data would translate to a loss of

revenue for an application that tracks revenue by charging advertisers per click.

AsterixDB allows a data feed to have an associated ingestion policy that is expressed as a collec-

tion of parameters and associated values. An ingestion policy dictates the runtime behavior of the

feed in response to resource bottlenecks and failures. Note that during push-based feed ingestion,

data continues to arrive from the data source at its regular rate. In a resource-constrained envi-

ronment, a feed ingestion framework may not be able to process and persist the arriving data at

the rate of its arrival. AsterixDB provides a list of policy parameters (Table 4.1) that help to cus-

tomize the system’s runtime behavior when handling excess records. AsterixDB provides a set of

built-in policies, each constructed by setting appropriate value(s) for the policy parameter(s) from

Table 4.1.

The handling of excess records by the built-in ingestion policies of AsterixDB is summarized in

Table 4.2. Buffering of excess records in memory under the ‘Basic’ policy has clear limitations

given that memory is bounded and may result in a termination of the feed if the available memory

or the allocated budget is exhausted. The ‘Spill’ policy resorts to spilling the excess records to

the local disk for deferred processing until resources become available again. Spilling is done
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intermittently during ingestion when required, and the spillage is processed as soon as resources

(memory) are available. In contrast, the ‘Discard’ policy causes the excess records to be discarded

altogether until the existing backlog is cleared. However, this results in periods of discontinuity

when no records received from the data source are persisted. This behavior may not be acceptable

to an application wishing to consume the ingested data. A best-effort alternative is provided by the

‘Throttling’ policy, wherein records are randomly filtered out (sampled) to effectively reduce their

rate of arrival. In addition, AsterixDB also provides the ‘Elastic’ policy, which attempts to scale-

out/in by increasing/decreasing the degree of parallelism involved in processing of records. We

shall revisit the built-in policies in Section 7.3 (Chapter 6) where we discuss the physical aspects

and implementation details and evaluate the the impact of the chosen ingestion policy on ingestion

throughput and latency.

Note that Listing 4.7 shows an example where a primary feed (TwitterFeed) and a dependent sec-

ondary feed (ProcessedTwitterFeed) are both connected using a common policy (Basic), but this

is not a requirement. The ability to form a custom policy allows the runtime behavior to cus-

tomized as per the specific needs of the high-level application(s) and helps address challenge C1

from Section 1.1.

A given end-user may choose to form a custom policy. E.g., it is possible in AsterixDB to cre-

ate a custom policy that spills excess records to disk and subsequently resorts to throttling if the

spillage crosses a configured threshold. In the example shown in Listing 4.6, a custom policy —

Spill then Throttle — is created by extending the built-in Spill policy and overriding the appro-

priate parameters. The parameter “max.spill.size.on.disk” limits the spillage size in terms of bytes

written to disk while the parameter “excess.records.throttle” allows the system to regulate the rate
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Table 4.1: A few important policy parameters and their corresponding default value
Policy Parameter Description Default

Value
excess.records.spill Set to true if records that cannot be processed by

an operator for want of resources (referred to as
excess records hereafter) should be persisted to the
local disk for deferred processing.

false

excess.records.discard Set to true if excess records should be discarded. false
excess.records.throttle Set to true if rate of arrival of records is required to

be reduced in an adaptive manner to prevent having
any excess records.

false

excess.records.elastic Set to true if the system should attempt to re-
solve resource bottlenecks by re-structuring and/or
rescheduling the feed ingestion pipeline.

false

recover.soft.failure Set to true if the feed must attempt to survive any
runtime exception. A false value permits an early
termination of a feed in such an event.

true

recover.hard.failure Set to true if the feed must attempt to survive a
hardware failure (loss of AsterixDB node(s)). A
false value permits the early termination of a feed
in the event of a hardware failure.

true

Table 4.2: Approach adopted by different policies in handling of excess records
Policy Approach to handling of excess records
Basic Buffer excess records in memory
Spill Spill excess records to disk for deferred processing
Discard Discard excess records altogether
Throttle Randomly filter out records to regulate the rate of arrival
Elastic Scale out/in to adapt to the rate of arrival

of inflow (throttle) in the event when the spillage crosses the configured threshold. In all cases,

the desired ingestion policy is specified as part of the connect feed statement (Listing 4.7) or else

the ‘Basic’ policy will be chosen as the default. Chapter 5 includes an evaluation of the built-in

policies to study the impact of policy parameters on the runtime behavior during feed ingestion.

use dataverse feeds ;

create ingestion policy Spill then Throttle from policy Spill
(( ”max. spill . size .on.disk”=”512MB”, ”excess.records . throttle ”=”true”) ) ;

Listing 4.6: Specifying the ingestion policy for a feed
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use dataverse feeds ;

connect feed TwitterFeed to dataset RawTweets
using policy Basic;

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets using policy Basic;

Listing 4.7: Specifying the ingestion policy for a feed

4.6 Summary

In this chapter, we have described the built-in support for data feeds in AQL We focused on the

logical concepts involved in modeling a data feed and how these can be leveraged in building an

extensible data flow that contains pluggable components (feed adaptors and UDFs) to cater to a

wide variety of data sources and data-driven applications. We emphasized the level of abstraction

provided to the end-user, whereby the runtime behavior for a data ingestion pipeline can be defined

in a declarative manner by choosing or forming new ingestion policies. Such a design allows an

end-user to customize the data ingestion task in accordance with the requirements of the overlying

application(s).

We shall next focus on the physical aspects and describe the implementation details in building a

data ingestion facility.
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Chapter 5

Runtime for Data Ingestion

So far we have described, at a logical level, the user model and built-in support in AQL that

enables the end-user to model a feed, manage its lifecycle, and dictate its runtime behavior by

choosing an ingestion policy. In this chapter, we discuss the physical aspects and implementation

details involved in building and managing the flow of data when a feed is connected to a dataset.

We also describe how a feed cascade network is constructed and how its structure is dynamically

modified when additional feeds are connected or active feeds are disconnected. We conclude

the chapter with an experimental evaluation that compares data ingestion with batch inserts as

mechanisms for putting data into indexed storage. We demonstrate the linear scalability offered by

the data ingestion facility in terms of ingesting increasingly large volumes of data with additional

of resources (hardware); in addition, we demonstrate the performance benefits gained from using

a cascade network of feeds in maintaining a single flow of data from an external source while

processing and persisting the collected data in different ways.
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5.1 Feeds Metadata

Like a more conventional database system, AsterixDB has a system catalog (referred to as Aster-

ixDB Metadata, hereafter) that contains definitions of different database objects including datasets,

datatypes, indexes, data feeds, datasource adaptors, user-defined functions, etc. Instead of man-

aging the Metadata outside the system, AsterixDB stores Metadata natively as a collection of

AsterixDB datasets contained in a system-defined dataverse – the Metadata dataverse. Physically,

the AsterixDB Metadata is stored at a chosen AsterixDB node, also known as the MetadataNode.

All information related to the set of defined feeds and datasource adaptors is stored in the Feeds

dataset and the DatasourceAdapter dataset respectively. In addition, information related to the set

of user-defined functions is stored in the Function dataset.

The DatasourceAdapter dataset is pre-populated with the set of built-in adaptors. For each data-

source adaptor, the corresponding dataset record captures the adaptor’s factory class and the alias.

The information contained per feed in the Feed dataset varies in accordance with the type of the

feed (primary or secondary). In the case of a primary feed, the captured information includes the

name (alias) of the associated adaptor together with the configuration parameters specified as part

of the create feed AQL statement. In contrast, a secondary feed does not have any associated

feed adaptor as it derives its data from another (primary or secondary) feed. The metadata for a

secondary feed includes the name of the parent feed. For either kind of feed, the metadata also

includes the name of the associated UDF (if any).

A data feed (defined using the create feed AQL statement) by itself is a logical concept and is not

associated with any sort of runtime dataflow. The create feed AQL statement is only a Metadata

operation that puts an additional record into the Feeds dataset. The actual flow of data is initiated

only when the feed is connected to a target dataset using the connect feed AQL statement. Next,

we describe in detail how the connect feed AQL statement is processed by the AsterixDB compiler

to produce a dataflow that is referred to as a data ingestion pipeline.
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5.2 Basic Runtime Components

AsterixDB uses Hyracks as its runtime execution engine. Hyracks allows AsterixDB to execute

a directed acyclic graph (DAG) of operators and connectors (described in more detail below) that

together form a dataflow. In this section, we discuss briefly the basic building blocks of a data

ingestion pipeline. These are essentially the tools at hand for the AsterixDB compiler when pro-

cessing a connect feed AQL statement and constructing the required data ingestion pipeline.

1. Operator: A Hyracks operator represents custom logic or a computation that may be applied

in parallel to partitions of input data to produce partitions of output data. An operator can

have an associated set of constraints (count or location constraints) that determine the degree

of parallelism (number of parallel instances) at runtime and the specific location(s) where

each instance may be scheduled to run. AsterixDB includes a set of built-in operators that

apply specific logic to partitions of input data. As an example, the IndexInsert operator is

used to insert data records into a primary or a secondary index.

2. Connector: A Hyracks connector represents the mode of exchange of data between a pair of

operators that act as producers and consumers of data. Examples of connectors used in build-

ing a data ingestion pipeline include the OneToOneConnector, HashPartitioningConnector,

and RandomPartitioningConnector.

3. Feed Joint: In addition to operators and connectors, a new building block for a data ingestion

pipeline is the feed joint. At a high-level, a feed joint, when located at the output side

of an operator, offers a mechanism for the output to be directed along multiple paths in a

concurrent fashion. A feed joint is similar in spirit to a connector in the sense that it facilitates

transfer of data between a pair of operator instances. However, unlike a connector, a feed

joint allows for the transfer of data between operators that belong to different Hyracks jobs.

This property makes it critical for use within a data ingestion pipeline. Furthermore, a feed

joint allows an operator to (un)register itself dynamically for receiving data from a source
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operator, a property that helps in constructing a cascade network of feeds and allowing it to

expand or shrink dynamically.

A feed joint can be considered to loosely resemble a network tap that makes the data flowing

through the data ingestion pipeline accessible and routable. In a Hyracks job, data is ex-

changed between a pair of operators in the form of fixed-size chunks known as data frames.

Each operator in a Hyracks job is provided with an IFrameWriter handle that it uses to send

output data frames downstream to the next operator in the data flow. Implementation-wise,

a feed joint implements the IFrameWriter interface that provides the nextFrame() API. This

allows the operator to remain agnostic of the internal implementation of the IFrameWriter

and how its output data frames are being handled and sent downstream. Feed joints and

their internal mechanism for transferring data to multiple recipient operator instances are

discussed in greater depth in Section 5.4.

5.3 Building the Data Ingestion Pipeline

It is important for a data ingestion pipeline to offer flexibility in having the data be routed along

multiple paths and enabling construction of a cascade network that involves multiple ingestion

pipelines. Furthermore, in a cascade network, it is essential to insulate each pipeline from the

other such that failure(s) or congestion (slow movement of data) along any path does not impede

the flow of data through the rest of the network. Additionally, the cascade network must exhibit

the ability to expand or contract by addition or removal of individual ingestion pipelines. In order

to form such a flexible network, we designed a data ingestion pipeline to consist of a head section

and a tail section, each constructed as a separate Hyracks job.1

The head section of a data ingestion pipeline provides the mechanism for collecting the set of

1The benefits of having a pair of Hyracks jobs instead of a single job are discussed in detail in later sections of this
chapter and in the discussion of fault tolerance in Chapter 6.
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data records that constitute the feed. To collect the records, the head section makes use of the

feed adaptor to interface with the external data source. Output records from the head section are

handled by the tail section that is responsible for directing the records to specific partitions of the

target dataset. The specific target partition for a given data record is chosen by hashing the primary

key contained in the record. The tail section also handles the pre-processing of records, if required,

via the application of a UDF (specified as part of create feed statement) to each data record prior to

persistence. A high-level view of a data ingestion pipeline with its head and tail sections is shown

in Figure 5.1.

Figure 5.1: A high-level view of a data ingestion pipeline showing the head and tail sections and
the functionality provided by each

Figure 5.1 represents the bare-bone skeleton structure of a data ingestion pipeline. It is worth

noting that an ingestion pipeline can be fed with data that is moving across an existing ingestion

pipeline to form a cascade network.This obviates the need of having a head section to retrieve

records from the external source. The data ingestion pipeline then shares the head section but has

a tail section of its own. Figure 5.2 shows a high-level view of a cascade network that involves a

pair of data ingestion pipelines with a shared head section.

In order to understand the different steps involved in building and scheduling an ingestion pipeline,

it is important to study different example scenarios. The differences in the structure of the con-

structed ingestion pipeline arise from the involvement of UDFs (Java or AQL) and the existing set

of feeds that are currently in the connected state which can act as a source of data.
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Figure 5.2: A high-level view of a cascade netowrk that involves a pair of ingestion pipelines with
a shared head section and separate tail sections

In the discussion that follows, we assume an AsterixDB cluster where initially no feeds are actively

running on the cluster. An AsterixDB cluster consists of a master node (Cluster Controller) and a

set of worker nodes (Node Controllers). Each Node Controller additionally hosts a FeedManager

that communicates with a single Central Feed Manager that is hosted by the Cluster Controller.

The part played by the per node Feed Manager and the Central Feed Manager is further discussed,

when appropriate, in subsequent sections of this chapter. We define and connect feeds in a step-

wise manner.

• Step 1: Primary Feed without a UDF

We start with a basic example of a primary feed that does not have an associated UDF.

• Step 2: Secondary Feed with an AQL UDF

Subsequently, we define a secondary feed that extends our primary feed (from Step 1) and

has an associated pre-processing that is expressed as an AQL UDF. Our choice of example

allows us to describe in detail how the connected state of the parent primary feed is leveraged

in building the data ingestion pipeline for a secondary feed.

• Step 3: Secondary Feed with a Java UDF
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use dataverse feeds ;

create feed TwitterFeed using TwitterAdaptor
(( ”type name” = ”Tweet”), (”query” = ”Obama”));

connect feed TwitterFeed to dataset Tweets;

Listing 5.1: An example AQL statement to connect a primary feed (without an associated UDF) to
a target dataset

Eventually, we define and connect another secondary feed that extends the secondary feed

from Step 2. We use this example to describe how a secondary feed may act as a parent feed

for another. To make things a bit different and emphasize the differences in handling of a

Java UDF (as against an AQL UDF), we chose to associate a Java UDF with our secondary

feed.

Following the steps above, we shall be constructing a cascade network of feeds in an incremental

manner, starting with an idle cluster. At each step, we emphasize the methodology involved in

building a data ingestion pipeline and how existing connected feeds are leveraged.

5.3.1 Primary Feed without a UDF

We begin by considering a basic example of a primary feed that does not have an associated UDF

and is connected to a target dataset. Listing 5.1 shows the set of AQL statements that define and

connect our example feed to a target dataset. We describe next, how the specific sections — head

and tail — are constructed to build the ingestion pipeline.
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Head Section

Given that we started with an idle cluster and that no other feeds are in the connected state, the

records that constitute the TwitterFeed would need to be retrieved from the datasource (Twitter)

using the feed adaptor associated with the TwitterFeed. As per the definition of our example feed,

obtaining the data records for the feed requires the use of the TwitterAdaptor with the configuration

parameters specified as part of the create feed statement (Listing 5.1). AsterixDB remains agnostic

of the data transfer protocol followed by the data source (Twitter in the context of our example

feed). The task of establishing a connection with the external source and parsing and translating

data into ADM format is done by the feed adaptor (TwitterAdaptor in the case of our example feed).

In doing so, the adaptor may choose to run as some number of parallel instances (by defining a

count constraint) and may choose specific location(s) (AsterixDB node(s)) by defining a location

constraint. Each feed adaptor has an associated factory class that allows AsterixDB to instantiate

and configure an adaptor instance. The factory class also provides an API that is used by Aster-

ixDB to obtain the constraints (count or location) for the adaptor. Writing a feed adaptor requires

providing the associated factory class that includes an implementation of the getConstraints() API.

In our current example, the TwitterAdaptor requires a single instance that may be scheduled on

any node in the AsterixDB cluster.

The head section of a data ingestion pipeline corresponds to a Hyracks job, hereafter referred to

as the Feed Collect job, and is shown in Figure 5.3. The FeedCollect job consists of FeedCollect

operator that connects with a NullSink operator using a one-to-one connector.2 A FeedCollect

operator instance is responsible for housing an adaptor instance, managing its lifecycle, and using

it to retrieve data from the external source. The count and location constraints for the FeedCollect

operator are thus identical to those of the feed adaptor and they are obtained using the adaptor’s

factory class. Each FeedCollect operator instance is additionally provided with a handle to the

factory class to enable the creation and configuring of an instance of the feed adaptor. The NullSink

2Each instance of FeedCollect operator is connected with a corresponding instance of the NullSink operator.
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Figure 5.3: An example Feed Collect job that involves a pair of feed adaptor instances

operator in Figure 5.3 is a no-op in the sense that it doesn’t process any data records at runtime.

At the output side of each FeedCollect operator instance is a feed joint. An operator instance with

an associated feed joint at its output is known as a subscribable instance. A subscribable instance

offers a simple subscription service for its output data and registers itself with the local Feed

Manager using a unique ID. The unique ID (a string value) is chosen to symbolically represent the

data records output by the subscribable instance. In general, a subscribable instance that outputs

the result of the application of a sequence of functions f1(), fi(), .., fN() on a feed is assigned the

ID – <name of the feed>: f1 : f2, ...., fN−1 : fN . In our current example (refer to Figure 5.3),

each FeedCollect operator instance is a subscribable instance that outputs records that represent

the TwitterFeed. These instances are registered with the ID - “TwitterFeed”. Our current example

does not involve an associated UDF. In subsequent sections, when we discuss example feeds with

an associated UDF, we shall look at other examples of IDs that have function name(s) embedded in

them. Their use will also be discussed later in this chapter in the right context. Here, we continue

our discussion using the ID “TwitterFeed”.

The Feed Manager maintains a mapping between these unique IDs and their respective subscrib-
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able operator instances, and it makes these discoverable by providing a simple search API. Any

co-located operator instance may invoke the search API with an appropriate ‘ID’ to retrieve a

handle to a co-located subscribable instance. The operator instance may then register itself as a

recipient with the subscribable instance and begin receiving the output records from the subscrib-

able instance. Note that a FeedCollect operator instance initially does not have any subscribers

for its data. The creation and use of an adaptor instance by the FeedCollect operator instance is

deferred until there is a request for the operator’s output data to be routed (via the feed joint) to a

recipient operator instance. The constructed head section of the data ingestion pipeline transits to

the ‘active’ state when the tail section has been setup. The construction of the tail section of a data

ingestion pipeline is described next. To begin with, the feed joint will not have a registered set of

recipient operators and will be marked as being in the inactive state.

Tail Section

While the head section is responsible for the collection of feed records, their subsequent processing

to deposit them into the target dataset is handled by the tail section of the data ingestion pipeline.

This task can be considered as similar to putting records into a dataset using the conventional insert

statement supported in AQL, which is well understood by the AsterixDB compiler. In constructing

the tail section, the AsterixDB compiler first rewrites the connect feed statement into an equivalent

insert statement. The rewritten form is then compiled to generate a Hyracks job that contains the

right set of operators and connectors to process and move data into the target dataset and update

its indexes (if any).

Continuing with our example connect feed statement from Listing 5.1, we look at how the equiv-

alent insert statement is generated by the compiler. Later in this section,we will describe the

differences that arise from the use of different kinds of UDFs (Java or AQL) associated with a

feed. Listing 5.2 shows the basic template for constructing the equivalent insert statement. The

actual insert statement after substituting the appropriate values into the template for our example
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insert into dataset < target dataset > (
for $x in feed intake (”<source feed>”)
return $x

)

Listing 5.2: Basic template followed for rewriting a connect feed statement when the feed does not
have an associated UDF

use dataverse feeds ;

insert into dataset Tweets (
for $x in feed intake (”TwitterFeed”)
return $x

)

Listing 5.3: An equivalent insert statement constructed by the AsterixDB compiler following the
template from Listing 5.2

is shown in Listing 5.3.

Optimized Physical Plan

The insert statement shown in Listing 5.3 is processed by the AsterixDB compiler to produce an

optimized physical plan that is shown in Listing 5.4. The plan can be sub-divided into distinct

stages — intake and store. We describe these stages next.

• Intake Stage: The intake stage at the beginning of the tail section involves retrieving the

feed data records from the head section of the data ingestion pipeline. This task is performed

by the FeedIntake operator. In order to retrieve data records produced by the head section

of the ingestion pipeline, the FeedIntake operator requires its instances to be co-located

with the respective instances of the FeedCollect operator that belong to the head section of

the pipeline. Recall that the FeedCollect operator instances are subscribable and, as such,

allow their output to be routed along multiple paths. Being co-located with a respective

FeedCollect operator instance allows the FeedIntake operator instance to retrieve a handle
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commit
−− COMMIT |PARTITIONED|

project ([$$3])
−− STREAM PROJECT |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

insert into feeds :Tweets
−− INSERT DELETE |PARTITIONED|

exchange

−−−−−−−−−−STORE STAGE −−−−−−−−−−−−−−−−−−−−−−−−−−−−
HASH PARTITION EXCHANGE [$$5] |PARTITIONED|

−−−−−−−−−−−−−−INTAKE STAGE −−−−−−−−−−−−−−−−−−−−−−−

assign [$$3] <− [function−call: asterix : field −access−by−index
−− ASSIGN |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

data−scan []<−[$$0] <− feeds:TwitterFeed
−− DATASOURCE SCAN |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

empty−tuple−source
−− EMPTY TUPLE SOURCE |PARTITIONED|

Listing 5.4: Optimized plan for a connect feed statement when the feed has no associated UDF
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(using the local Feed Manager’s search API) to the respective FeedCollect operator instance

and to register itself as a recipient of data frames it outputs.

• Store Stage: Subsequently, as part of the store stage, the records output by the preceding

intake stage are hash-partitioned on the basis of primary key and put into the target dataset;

secondary indexes, if any, are also updated accordingly.3

Figure 5.4 provides a pictorial representation of tail section of the data ingestion pipeline. Our

current example does not involve any pre-processing of feed records prior to their persistence. As

such, the output from FeedIntake operator connects with the IndexInsert operator using an M:N

hash-partitioning connector.

Figure 5.4: Tail section of a data ingestion pipeline

So far we have described the individual construction of the head and tail sections of a data ingestion

pipeline in terms of their corresponding Hyracks jobs. Scheduling the tail section of the pipeline

requires careful selection of its location constraints. Figure 5.5 shows the data ingestion pipeline

wherein data is collected by the head section and processed thereafter by the connected tail section.

The FeedIntake operator instances from the tail section are set with location constraints that are

identical to the FeedCollect operator instances from the head section. Being co-located with a

FeedCollect operator instance allows the instance to discover the instance by querying the local

Feed Manager and subsequently invoking the subscribe API provided by the subscribable instance.

3Note that secondary indexes in AsterixDB are partitioned and co-located with the corresponding primary index
partition. The insert of a record into the primary and any secondary indexes uses write-ahead logging and offers
record-level ACID semantics.
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Figure 5.5: Data ingestion pipeline showing the flow of data between the head and the tail sections.

The remaining part of the tail section is the store stage, which is a set of IndexInsert operator

instances. Each of these instances is co-located with a stored partition of the target dataset. In

AsterixDB, the partition for a dataset exists on each AsterixDB node by default.4

Figure 5.6 shows an example physical layout of the data ingestion pipeline that involves 3 nodes

from our example AsterixDB cluster. In this example, the FeedIntake operator instance is located at

Node A and forms the head section or the intake stage for the data ingestion pipeline. An instance

of the IndexInsert operator is located at each of the nodes B and C such that each is co-located

with a dataset partition. Together these instances form the store stage and are a part of the tail

section of the data ingesstion pipeline. The transfer of data between the head and the tail sections

is facilitated by the FeedCollect operator instance that is co-located with the FeedIntake operator

instance at Node A.

5.3.2 Secondary Feed with AQL UDF

Recall that different overlying data-driven applications may require the data from a feed to be

processed differently and persisted in different datasets. To this effect, AsterixDB has the notion

4The set of AsterixDB nodes that store partitions of a dataset are collectively referred to as the nodegroup of the
dataset.
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Figure 5.6: An example physical layout of the constructed data ingestion pipeline that involves 3
AsterixDB nodes

of a secondary feed that derives its data from another feed and can be independently processed

and targeted at a different dataset. Previously, we described the construction of a data ingestion

pipeline when a primary feed is connected to a dataset. Continuing with our example, we next

define a secondary feed, one that derives its data from the primary feed, which involves additional

pre-processing of data and requires the resulting data records to be persisted into a different target

dataset. We first consider the case when an AQL function is required to be applied on each feed

data record. Our example AQL function looks for the hashtags (if any) contained in the text of the

tweet and collects them as an additional attribute (an ordered list) that is appended to the tweet.

The required processing is contained in a user-defined AQL function, as shown in Listing 5.5.

Note that we have created a secondary feed ProcessedTwitterFeed and associated the created UDF

using the apply function clause. We describe here, how the components – head and tail – for this

data ingestion pipeline are constructed.
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use dataverse feeds ;

create function processTweet($x){
let $topics := ( for $token in word−tokens($x.message text)

where starts−with($token, ”#”)
return $token)

return {”id”:$x. id ,
”user”: $x.user ,
” latitude ”: $x. latitude ,
” longitude ” : $x. longitude ,
” created at ” : $x. created at ,
”message text”: $x. message text ,
”country”: $x.country ,
” topics ”: $topics}

};

create secondary feed ProcessedTwitterFeed from feed TwitterFeed
apply function processTweet;

connect feed ProcessedTwitterFeed to dataset ProcessedTweets;

Listing 5.5: An example of a feed with an associated AQL UDF.

Constructing the Head

Typically, the head section of a data ingestion pipeline involves the use of the feed adaptor to

retrieve records from the external data source. However, given that the parent feed TwitterFeed

is already in the connected state (from Figure 5.6), the task of interfacing with the external data

source and retrieving data records need not be repeated. Thus, the head section does not need

to be re-constructed. Instead, the data records flowing through the head section of the ingestion

pipeline for TwitterFeed can be simultaneously routed to an additional path. These records can then

flow through the newly constructed tail section for ProcessedTwitterFeed where they are processed

further and eventually inserted into the target dataset, which is ProcessedTweets in our example.

We thus reuse the existing head section of the parent feed pipeline and construct only the tail

section for our secondary feed ingestion pipeline.
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Constructing the Tail

In processing a connect feed statement that connects a secondary feed, the AsterixDB compiler

identifies a source feed that can be used to derive the records constituting the secondary feed.

In general, if feedm+1 denotes a secondary feed that is a child of feedm, then a feed feedi can

be obtained from an ancestor feed feedk (k < i) by subjecting each record from feedk to the

sequence of UDFs associated with each child feed feedj (j = k+1, ..., i). Note that i−k denotes

the ‘distance’ from feedk to feedi and is indicative of the additional processing steps (UDFs)

required to produce feedi from feedk. To minimize the processing involved in forming a feed,

it is desired to source the feed from the nearest ancestor feed that is in the connected state. The

feed joint(s) available along the ingestion pipeline of an ancestor feed are then used to access the

flowing data and subject it to the additional processing needed to form the desired feed. AsterixDB

keeps track of the available feed joints and uses them in preference over creating a new feed adaptor

instance in sourcing a feed.

The AsterixDB compiler traverses the hierarchy of the secondary feed to find the closest ancestor

feed that is in a connected state. In the case when none of the ancestor feeds are in a connected

state, the source feed defaults to the primary feed that is at the root of the hierarchy. The AsterixDB

compiler additionally constructs an ordered list of UDFs that need to be applied to the records

from the source feed in order to obtain the desired secondary feed. We denote this ordered set of

functions as fi(), i = 1, ..N, where f1() is the UDF associated with the source feed, fN() is the

UDF associated with the secondary feed that is being connected, and fj(), 1 < j < N are the

UDFs corresponding to the other parent feeds in hierarchical order. The template followed is a

slightly modified version of the template followed for a primary feed (shown earlier in Listing 5.2)

and is shown in Listing 5.6.

As a first step towards constructing the tail section, the connect feed AQL statement is rewritten

as an equivalent insert statement that is based on the template from Listing 5.6. The body of any
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use dataverse feeds ;

insert into dataset < target dataset > (
for $x in feed intake (”<name of the source feed>”)
let $y{i}:= f{i}($x)
let $y{i+1} := f{i+1}($y{i})
...
...
let $y{N} := f{N}($y{N−1})
return $y{N}

)

Listing 5.6: Generic template followed for constructing an equivalent insert statement in the case
when a secondary feed is connected to a dataset.

AQL function is looked up from the AsterixDB Metadata and ‘inlined’ in the template to form the

required insert statement, as shown in Listing 5.7. Note that the argument to the feed intake built-in

function is the parent feed - TwitterFeed. The insert statement from Listing 5.7 is compiled by the

AsterixDB compiler to produce an optimized physical plan. Besides having an intake and a store

stage, the resulting plan includes a compute stage that involves the application of the associated

UDF to each feed record. Listing 5.8 illustrates the stages in the optimized plan.

Figure 5.7: Tail section of a data ingestion pipeline when a feed involves a preprocessing UDF

Figure 5.7 gives a simplified representation of the constructed tail section. Output data from the

FeedIntake operator is randomly partitioned across a set of Assign operator instances that form the

compute stage. Each input record received by an Assign operator instance is processed by a subplan

(not shown in the Figure) that corresponds to the body of the AQL function. The result from the

58



use dataverse feeds ;

insert into dataset ProcessedTweets (
for $x in feed intake (”TwitterFeed”)
let $y:= let $topics :=

( for $token in word−tokens($x.message text)
where starts−with($token, ”#”)
return $token)

return {”id”:$x. id ,
”user”: $x.user ,
” latitude ”: $x. latitude ,
” longitude ” : $x. longitude ,
” created at ” : $x. created at ,
”message text”: $x. message text ,
”country”: $x.country ,
” topics ”: $topics}

return $y
)

Listing 5.7: Equivalent ProcessedTweets insert statement for a connect feed statement (Listing 5.5)
as constructed by the AsterixDB compiler

invocation of the function is hash-partitioned across a set of IndexInsert operator instances that

form the store stage. At the store stage, records are inserted into the primary index partition and

its secondary indexes (if any) are also updated.

The Hyracks job representing the feed’s tail section of the data ingestion pipeline is subsequently

scheduled to run in a distributed fashion on an AsterixDB cluster. Note that the data ingestion

pipelines for the parent Twitter feed and the descendant ProcessedTwitterFeed share a common

head section but have separate tail sections to account for the differences in the way that records

need to be processed prior to persistence. To facilitate data transfer and build a cascade network

spanning the pair of ingestion pipelines, the count and location constraints for the FeedIntake

operator instances are chosen carefully to coincide with the FeedCollect operator instances from

the head section of the data ingestion pipeline for the parent TwitterFeed. The resulting cascade

network is shown in Figure 5.8(a). Figure 5.8(b) shows an example physical layout of the cascade

network that involves nodes A-G in our AsterixDB example cluster.
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commit
−− COMMIT |PARTITIONED|

project ([$$18])
−− STREAM PROJECT |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

insert into feeds :ProcessedTweets
−− INSERT DELETE |PARTITIONED|
−−−−−−STORE STAGE −−−−−−−−−−−
−− HASH PARTITION EXCHANGE [$$18] |PARTITIONED|
−−−−−−COMPUTE STAGE −−−−−−−−−−−

assign [$$18] <− [function−call: asterix : field −access−by−index]
−− ASSIGN |PARTITIONED|

project ([$$20])
−− STREAM PROJECT |PARTITIONED|

assign [$$20] <− [function−call: asterix : cast−record,
−− ASSIGN |PARTITIONED|

project
−− STREAM PROJECT |PARTITIONED|

subplan {
subplan {

aggregate [$$8] <− [function−call: asterix : listify ]
−− AGGREGATE |LOCAL|

select ( function−call : asterix : starts −with)
−− STREAM SELECT |LOCAL|

unnest $$1 <− function−call: asterix :scan−
collection , Args:[ function−call : asterix :word−tokens]

−− UNNEST |LOCAL|
−− NESTED TUPLE SOURCE |LOCAL|

}
−− SUBPLAN |LOCAL|

nested tuple source
−− NESTED TUPLE SOURCE |LOCAL|

}
−− SUBPLAN |PARTITIONED|

assign <− [function−call: asterix : field −access−by−index]
−− ASSIGN |PARTITIONED|
−−−−−−COMPUTE STAGE −−−−−−−−−−−
−− RANDOM PARTITION EXCHANGE |PARTITIONED|
−−−−−−−−−INTAKE STAGE−−−−−−−−−−

data−scan []<−[$$0] <− feeds:TwitterFeed
−− DATASOURCE SCAN |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

empty−tuple−source
−− EMPTY TUPLE SOURCE |PARTITIONED|

Listing 5.8: Optimized plan to the tail section of a data ingestion pipeline when a feed involves an
AQL UDF (from Listing 5.5)
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(a) Cascade network constructed from a shared head section and separate tail sections
for TwitterFeed and ProcessedTwitterFeed

(b) An example physical layout of the cascade network (from Figure 5.8(a)) that in-
volves given AsterixDB nodes

Figure 5.8: Physical Layout: Cascade network involving the TwitterFeed and ProcessedTwitter-
Feed with a shared head section and separate tail sections

Note that the output from the compute stage constitutes the records that define the ProcessedTwit-

terFeed. This secondary feed could itself be used as a parent for other descendant feeds. It is thus

required that the output feed records from the compute stage are made accessible for a possible

routing, in the event that the end-user chooses to create and connect a descendant of ProcessedTwit-
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terFeed. The Assign operator instances use a feed joint at their output and register themselves with

the local Feed Manager using the ID - “TwitterFeed:processTweets”. In a data ingestion pipeline,

a feed joint is placed at a location where records that constitute the feed are being output. For a

data ingestion pipeline that does not involve a UDF, this happens at the output of the intake stage.

In the other case, a feed’s records are produced at the output of its compute stage.5

5.3.3 Feed with a Java UDF

A secondary feed is similar to a primary feed in the sense that it too can act as a parent feed for other

feeds. The data ingestion pipeline for the secondary ProcessedTwitterFeed (refer to Figure 5.8(a))

offers subscribable instances at its compute stage. To illustrate how these subscribable instances

may be used to route data along multiple paths, we define an example secondary feed, Senti-

mentFeed that extends the ProcessedTwitterFeed and subjects the records to additional processing

before persisting them in a target dataset. The additional pre-processing involves computing a sen-

timent (a double value ∈ [0, 1]) associated with the text of the tweet and adding it as an additional

attribute to the tweet. Such pre-processing is not feasible via AQL but is expressed by composing

a UDF in a programming language such as Java and plugging-in the function (a.k.a. installing the

function) via the AsterixDB external library feature. A detailed tutorial on using Java UDFs with

AsterixDB is provided in Appendix A. For now, we assume the availability of such a UDF and

associate it with our secondary feed, SentimentFeed. The set of AQL statements that define our

secondary feed and connect it to a target dataset is shown in Listing 5.9. Note that a Java UDF is

referred to by its fully qualified name, which includes the name of the containing library (tweetlib

in the example shown in Listing 5.9).

By definition, the records for the SentimentFeed can be obtained by accessing the parent feed —

ProcessedFeed — and applying the Java UDF (sentimentAnalysis) to each record. As the Pro-

5Figure 5.8(b) shows a generic case. However, the default placement in an AsterixDB cluster would have a partition
of the target dataset at each worker node and a co-located instance of the store operator.
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use dataverse feeds ;

create secondary feed SentimentFeed from ProcessedTwitterFeed (
apply function ” tweetlib #sentimentAnalysis”;

connect feed SentimentFeed to dataset TwitterSentiments ;

Listing 5.9: An example of a feed with an associated Java UDF.

cessedFeed is already in a connected state, building the data ingestion pipeline for SentimentFeed

does not require constructing a separate head section. We shift our focus to construction of the

tail section of the data ingestion pipeline and bring out the subtle differences introduced due to the

involvement of a Java UDF as against an AQL UDF.

Tail Section

In translating the connect feed statement to an equivalent insert statement, the AsterixDB compiler

uses the template, described earlier in Listing 5.6. The resulting insert statement is shown in

Listing 5.11. Note that the secondary feed ProcessedTwitterFeed acts as the source feed and is

passed as the argument to the feed intake built-in function. The optimized plan is shown in Figure

5.9. Note that the Java UDF is treated as a black box as the compiler has very limited understanding

of its semantics. Unlike the case of an AQL function, the AsterixDB compiler does not have an

opportunity to optimize application of a Java UDF by the use of indexes etc. The tail section of the

data ingestion pipeline for SentimentFeed can be pictorially represented in a similar way, as shown

in Figure 5.7.

The tail section for the data ingestion pipeline is fed with data that is being produced at the output

side of the compute stage of its parent ProcessedTwitterFeed. A logical view of this flow of data

and the state of the cascade network is show in Figure 5.9(a). Figure 5.9(b) presents a physical

view showing an example placement of different operator instances across the nodes in our ex-
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use dataverse feeds ;

insert into dataset TwitterSentiments (
for $x in feed intake (”ProcesseedTwitterFeed”)
let $y:= tweetlib #sentimentAnalysis ($x)
return $y

)

Listing 5.10: An equivalent TwitterSentiments insert statement for the connect feed statement
shown in Listing 5.9

commit
−− COMMIT |PARTITIONED|

project ([$$5])
−− STREAM PROJECT |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

insert into feeds :SentimentTweets
−− INSERT DELETE |PARTITIONED|

−−−−−−−−−−−−−−STORE STAGE −−−−−−−−−−−−−−−−−−−−−−−−−
−− HASH PARTITION EXCHANGE [$$5] |PARTITIONED|

−−−−−−−−−−−−−−COMPUTE STAGE −−−−−−−−−−−−−−−−−−−−−−−

assign [$$5] <− [function−call: asterix : field −access−by−index
−− ASSIGN |PARTITIONED|

project ([$$1])
−− STREAM PROJECT |PARTITIONED|

assign [$$1] <− [function−call: feeds : tweetlib #sentimentAnalysis
−− ASSIGN |PARTITIONED|

−−−−−−−−−−−−−−COMPUTE STAGE −−−−−−−−−−−−−−−−−−−−−−−
−− RANDOM PARTITION EXCHANGE |PARTITIONED|

−−−−−−−−−−−−−−INTAKE STAGE −−−−−−−−−−−−−−−−−−−−−−−−−

data−scan []<−[$$0] <− feeds:ProcessedTwitterFeed
−− DATASOURCE SCAN |PARTITIONED|

exchange
−− ONE TO ONE EXCHANGE |PARTITIONED|

empty−tuple−source
−− EMPTY TUPLE SOURCE |PARTITIONED|

Listing 5.11: Optimized plan for the tail section of the data ingestion pipeline when the feed
involves a Java UDF (Listing 5.9)
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ample AsterixDB cluster.6 The FeedIntake job, as constructed by the AsterixDB compiler, has

its FeedIntake operator instances strategically co-located with the subscribable Assign operator

instances from the compute stage of ProcessedTwitterFeed. Recall that the Assign operator in-

stances are discoverable by the search API provided by the local Feed Manager. Note that each

Assign operator instance on the ingestion pipeline for SentimentFeed has a feed joint at its output

side. The feed joint makes the data records constituting the SentimentFeed to be accessible and

allows these records to be routed along additional path(s) when the cascade network is expanded.

For example, if an end-user creates a secondary feed as a descendant of SentimentFeed, then the

constructed ingestion pipeline will use the this set of feed joints as their source(s) of data.

5.4 Inside a Feed Joint

A feed joint has loose similarity to a subscription service that allows interested subscribers to regis-

ter interest in data, i.e., feed records, and subsequently receive and process them. Implementation-

wise, a feed joint is a shared queue attached at the end of an operator such that all data frames

output by the operator are deposited into the queue. These data frames are required to be routed

to a set of recipient operator instances that have registered as ‘subscribers’ and act as a bridge for

data to flow from an ingestion pipeline to another. Each Node Controller (NC) has an associated

Feed Manager, a data structure that holds all runtime metadata about the active components of a

data ingestion pipeline that are hosted by the NC. This metadata includes the set of operator in-

stances and the available feed joints. An intake operator instance uses the Feed Manager API to

gain access to an available feed joint and register itself as a subscriber using an API provided by

the feed joint. Thereafter, data flowing through the feed joint begins to be routed to the subscriber

operator instance.

6The default placement puts a store operator instance at each worker node such that it is co-located with a respective
partition of the target dataset. Recall that, by default, a dataset has a partition on each worker node.
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(a) Logical View: Cascade network showing a shared head section and separate tail
sections for TwitterFeed, ProcessedTwitterFeed and SentimentFeed

(b) Physical View: Physical layout of the cascade network (Figure 5.9(a)) involving
eleven AsterixDB nodes

Figure 5.9: Logical and physical view of a cascade network involving TwitterFeed, ProcessedTwit-
terFeed and SentimentFeed
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5.4.1 Modes of Operation

A feed join may operate in two possible modes, namely — Shared mode and Short-Circuited

mode, which are described next.

1. Shared Mode:

A feed joint operates in a shared mode when the data flowing through it is required to be

routed to multiple paths in a concurrent fashion. Recall that records output by an operator are

packaged into fixed-size chunks known as data frames. When operating in a shared mode, a

feed joint must ensure the following:

• Guaranteed Delivery:

A feed joint must ensure that a data frame is received by each subscribing operator

instance. In providing such guarantee it must not require the subscribers to operate in

a synchronized lock-step mode, but should instead allow each consuming operator to

operate at its own pace.

• Congestion Isolation:

A feed just must ensure that sluggish or slow movement of data7 along a particular path

does not impede the flow of data across other path(s).

In order to achieve the above objectives (Guaranteed Delivery and Congestion Isolation), a

feed joint tracks a data frame by wrapping it in a holder object (referred hereafter as a Data

Bucket). A Data Bucket additionally contains a counter that is initialized to the number of

registered subscribers that must consume the content (data frame) inside the bucket. Each

subscriber has an associated input queue that delivers the next data frame to be consumed.

Subsequent to wrapping a data frame in a data bucket, the feed joint deposits the data bucket

to the input queue associated with each subscriber. Note that a single instance of Data

7Sluggish of slow movement of data along a path is typically the result of resource-intensive computation or
processing being applied along any of the downstream operator instances on the path.
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Bucket is being ‘shared’ by all subscribers. Consumption of a Data Bucket (processing of

its content) by the subscriber is done in an asynchronous manner. This ensures congestion

isolation, as delays in the processing of a Data Bucket by a subscriber does not prevent

other subscribers from consuming other Data Buckets from their respective input queues.

Each subscriber extracts the data frame contained inside the data bucket at its own pace

and decrements the associated counter when it is done processing the data frame. The Data

Bucket continues to stay in the queue until it has been processed by all the subscribers, i.e.,

the counter reaches zero. This ensures guaranteed delivery. Subsequently, the Data Bucket is

reclaimed and returned to a pool only to be retrieved later and initialized with another output

frame from the producing operator.

2. Single or Short-Circuited Mode:

In the case when a feed joint has a single subscriber, it doesn’t need to do any sort of book-

keeping or tracking of data frames to ensure Congestion Isolation or Guaranteed Delivery.

Thus, the working of a feed joint is significantly simplified. A feed joint then does not use a

Data Bucket to wrap a data frame; instead, data frames are sent to the receiving operator in

a synchronous manner. This mode is also known as the Short-Circuited mode.

The mode of operation (single or short-circuited) for a feed joint is dynamically determined

in accordance with the number of associated subscribers, which may increase or decrease

dynamically.

5.5 Disconnecting a feed

So far, we have described in detail the methodology adopted for constructing a data ingestion

pipeline when a given feed is connected to a target dataset. We illustrated the Fetch Once, Com-

pute Many Model and described how the AsterixDB compiler optimizes the construction of a data

ingestion pipeline by reusing computations done as part of ingestion of other feeds related in hier-
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archy. Next, we shift our focus to what is semantically the opposite task – terminating the flow of

data by disconnecting a feed from its target dataset. This task is supported by the disconnect feed

AQL statement.

Let us assume that our example set of feeds (TwitterFeed, ProcessedTwitterFeed, and Sentiment-

Feed) are all in the connected state. Beginning with the cascade network that was shown in Figure

5.9(a), we disconnect the feed TwitterFeed from the dataset Tweets. The AQL statement is shown

in Listing 5.12. At the time of submission of a disconnect statement, the operator instances on

a data ingestion pipeline are involved in continuous processing of arriving records and pushing

them downstream. As the system is not at rest, we expect in-flight data records traveling across the

wire to reach destination operator instances for further processing until they eventually reach the

dataset index. Disconnecting a feed essentially translates to terminating this flow of data from the

external source to the target dataset. Disconnecting a feed is designed to be graceful in the sense

that AsterixDB will stop receiving data from external source but allow the already received but

unprocessed records to traverse the length of the ingestion pipeline and reach the target dataset.

AsterixDB keeps track of the set of locations (AsterixDB nodes) where operators from each stage

are running. The task of disconnecting a feed requires the FeedIntake operator instances for the

ingestion pipeline to discontinue receiving any more data and convey the end of the data flow to

the downstream operator instances. Recall that FeedIntake operator instances receive data from a

co-located subscribable operator instance, which is either a FeedCollect operator instance (from

the intake stage of the source feed) or an Assign operator instance (from the compute stage of

the source feed). Contrary to the subscribe API, a subscribable operator instance also provides

the unsubscribe API to allow registered subscribers to discontinue receiving data. The FeedIntake

operator instances invoke this method but ensure that records in their respective input buffers have

been pushed downstream. Subsequently each FeedIntake operator instance invokes the close()

method on the downstram operator instance, indicating the intent to terminate the flow of data.

This sequence of processing the input buffer, sending records downstream, and invoking the close()
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method is repeated by each successive operator instance in the ingestion pipeline. Subsequent to a

invocation of the close() method, an operator instance terminates.

It is worth noting that disconnecting TwitterFeed from dataset Tweets does not impact the flow of

data along other pipelines in the cascade network. This is because the subscribers that receive data

from a shared feed joint operate in an independent manner without the need of any synchronization

amongst each other. As such, the registered set of subscribers continue to receive data frames

(each wrapped inside a Data Bucket) while the unregistered subscriber simply ceases to receive

any additional Data Buckets in its input queue.

The resulting cascade network, after disconnecting TwitterFeed, is shown in Figure 5.10(a). At this

stage, let us assume that the secondary feed ProcessedTwitterFeed needs to be disconnected as well

now. This is achieved by the use of a disconnect feed AQL statement that is similar to Listing 5.12.

Recall that ProcessedTwitterFeed is the parent feed for SentimentFeed, so the Assign operator

instances on the ingestion pipeline are serving as the source of data records that are consumed

by the ingestion pipeline for SentimentFeed. Disconnecting ProcessedTweets causes only partial

dismantling of its ingestion pipeline, as the IndexInsert operator instances are allowed to terminate

but the Assign operator instances continue to stay alive and process records. The resulting flow of

data is shown in Figure 5.10(b).

Note that if at this stage, we choose to connect ProcessedTwitterFeed to its respective target dataset

(ProcessTweets) as before, the head section for the ingestion pipeline would not have to be re-

constructed. For feeds that are form a hierarchy, connecting any feed along the lineage to a dataset

results in constructing the head section that provides a feed joint for the arriving records to be

routed along multiple paths. For example, if we do connect ProcessedTwitterFeed to a dataset

again, the resulting cascade network would be identical to one shown in Figure 5.10(a).
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use dataverse feeds ;

disconnect feed TwitterFeed from dataset Tweets;

Listing 5.12: AQL statement for disconnecting TwitterFeed from its target dataset.

(a) Data flow after disconnecting the primary feed TwitterFeed

(b) Data flow after disconnecting the secondary feed ProcessedTwitterFeed

Figure 5.10: Runtime modifications to a cascade network when participant feeds are diconnected
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5.6 At Least Once Semantics

An application may demand stronger guarantees on the processing of records by requiring each

arriving record to be processed at least once through the ingestion pipeline, despite any failures.

Such a requirement is expressed through the at.least.once.enabled policy parameter. To provide

at least once semantics, each record arriving from the data source is augmented with a tracking

id at the intake stage. Subsequent to persisting a record (log record has been written to the local

disk), the store operator instance constructs an ack message with the tracking id. Over a fixed-

width time-window, the ack messages for all records that were sourced from a given feed adaptor

instance (identified from the tracking id) are grouped and encoded together as a single message by

each store operator instance. Grouping of multiple ack messages and subsequent encoding reduces

the number of bytes exchanged over the network. A record that has been output by the intake stage

is held at its intake node until an ack message for the record is received from the store stage. When

an ack is received, the record is dropped and memory is reclaimed. On a timeout, the records

without an ack are replayed. At least once semantics are not guaranteed if throttling or discarding

of records is enabled by the policy.

5.7 Experimental Evaluation

Next, we present an experimental evaluation of the support for data ingestion in AsterixDB. Our

evaluation begins by emphasizing the benefits derived from continuous ingestion over the alter-

native approach of batch inserts. We then shift focus to the flexibility offered by AsterixDB in

constructing a cascade network of feeds and demonstrate the performance benefits thereof. We

conclude our evaluation by measuring the ability of our system to scale and ingest an increasingly

larger volume of data through the addition of resources.

Experimental Setup: We ran experiments on a 10-node IBM x3650 cluster. Each node had one
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<workload xmlns=”workload”>
<repeat>
< iterations >5</ iterations>
<pattern>

<duration>400</duration>
<rate>300</rate>

</pattern>
<pattern>

<duration>400</duration>
<rate>600</rate>

</pattern>
</repeat>
</workload>

Listing 5.13: An example pattern descriptor that defines the specific pattern to be followed for
generation of data by TweetGen

Intel 2.26GHz processor, 8GB of RAM, and a 300GB hard disk. The following were the steps

taken to prepare the experimental setup.

• Modeling a Continuous External Data Source: We wrote a custom tweet generator, here-

after referred to as TweetGen. TweetGen runs as a standalone process (JVM) and can be

configured to output synthetic but meaningful tweets (in JSON format). TweetGen allows

configuring the pattern for data generation with a predefined rate of generation of tweets

(tweets/sec or twps) and respective time intervals. The Tweet datatype from Listing 3.2

from Chapter 3 showed the ADM representation for a tweet output by TweetGen. TweetGen

listens for a request for data at a pre-determined port that is passed as an argument. Addi-

tionally, an XML file (referred to as a ‘pattern descriptor’) that describes the pattern to be

followed for generating tweets is provided as an argument. Listing 5.13 shows an example

of a pattern description XML file. The example pattern described there defines a cycle with

two 400 second intervals with the respective rates of generation of tweets being 300 twps

and 600 twps. As defined in the descriptor, the cycle is repeated 5 times. In our experiments,

we shall use different versions of the pattern descriptor XML to vary the workload.

Initiating the generation and the flow of data requires an initial handshake (by an interested
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receiver) subsequent to which data is “pushed” to the receiver at a constant rate (twps).

• Creating a feed: To ingest data from TweetGen, we used a custom socket-based adaptor,

TweetGenAdaptor. The adaptor is configured with the location(s) (socket addresses) where

instance(s) of TweetGen is/are running.

5.7.1 Batch Inserts versus Data Ingestion

An alternative mechanism for putting a large amount of data into a data store is to use the con-

ventional insert statement on a batch of records and do so in a repeated fashion at an application

level to achieve continuous ingestion. This is what database applications must do today in lieu of

a feed facility. Such an approach is likely to incur delays due to overheads associated with the

execution of each standalone insert statement which includes the costs of statement compilation

and execution. We experimentally evaluated the two mechanisms — batch inserts and continuous

data ingestion. Our goal was to experimentally determine the more efficient method in terms of

time consumed in putting a given set of records into a target dataset inside AsterixDB.

We used ADM to model an end-user of a social networking website. For the scenario in this

experiment, Listing 5.14 shows the AQL statements that define the end-user type (UserType) and

a dataset to hold data about each user. For the target dataset, we generated a total of 590 million

records that measured 162 GB in terms of size. These records were loaded into the target dataset

(Users from Listing 5.14) up front using the load dataset AQL statement. The experiment itself

then aimed at continuously ingesting a total of 2.2 GB worth of additional ADM records (8,185,185

records) into the pre-populated dataset. The ingestion task can be performed by using (batch)

inserts or by defining and creating a data feed that consists of records to be inserted:

• Batch Inserts: A given number of records n, which is the batch-size, is read and an insert

statement is constructed that follows the template shown in Listing 5.15. The insert statement
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use dataverse feeds ;

create type EmploymentType as {
organization name : string ,
start date : date ,
end date : date?
}

create type UserType as {
id : int64 ,
id copy : int64 ,
alias : string ,
name: string ,
user since : datetime,
user since copy : datetime,
friend ids : {{ int64 }},

employment: [EmploymentType]
}

create dataset Users(UserType)
primary key id;

create index usrSinceIdx on Users( user since ) ;

Listing 5.14: AQL statements to define datatypes and datasets for experimental evaluation and
comparison of batch inserts and continuous data ingestion
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use dataverse feeds ;

insert into dataset Users
(
for $t in [
<FULL ADM REC1>,
<FULL ADM REC2>,
. . .,
<FULL ADM RECn>

]
return $t

) ;

Listing 5.15: A template for insert statement that includes a batch of records

is executed and a new statement is constructed using a fresh batch of records. This cycle is

repeated until all records have been processed. The number of iterations is dependent on the

batch-size, n. Each iteration incurs the cost of compilation of the insert statement to produce

the required Hyracks job and the execution cost (setup and cleanup, etc.) of the job. The cost

involved in creating the insert statement per batch is increasingly amortized as the batch size

is increased.

Method for Experimentation:

The records to be inserted were generated a priori and stored as a single file on disk. We

wrote a synthetic stand-alone Java application that parsed the file to produce a fixed-size

batch of records, construct and submit an insert statement, and wait for its execution before

constructing the next batch and so on until all records contained in the file are processed.

• Continuous Data Ingestion: The records to be inserted are received by a feed adaptor and

pushed downstream along a data ingestion pipeline into the target dataset. This method

incurs the initial cost of setting up the data ingestion pipeline which is amortized over the

entire set of records received and inserted.

Method for Experimentation:

In practice, a data feed is obtained from an external source that generates data in a continuous
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use dataverse feeds ;

create feed UsersOnDisk using file based feed (
(”type name’’= ”UserType”),
(”format”= ”adm”),
(”path”= ”<absolute path of source file >”)
}

connect feed UsersOnDisk to dataset Users;

Listing 5.16: AQL statements to define and connect our example feed used for experimental
evaluation

manner and provides a push- or a pull-based method for retrieving the data records. For

experimental evaluation, we created a simulated feed that utilized the disk-resident data file

as an external data source and required writing a custom adaptor that received records by

parsing the content of a given file.8 The set of AQL statements that define and connect the

feed to a target dataset is shown in Listing 5.16. The adaptor (referred to in Listing 5.16 by its

alias – file based feed) accepts the path of the file containing data records as a configuration

parameter. We defined the feed to make use of the built-in adaptor in ingesting the set of 8

million records (2.2 GB worth of data) that formed the insert workload for the experiment.

Table 5.1: Execution time for different methods for insertion of records
Method Avg time per record (msec)

Batch Insert (Batch Size = 1) 73.75
Batch Insert (Batch Size = 20) 6.2

Data Feed 0.03

We measured the average time taken to insert a record using a batch insert method (with varying

batch size) or using a feed. Table 5.1 summarizes the results. The tasks of compiling an insert

8The adaptor served the purpose of simulating a data feed and was written strictly for experimental evaluation.
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statement to form a Hyracks job, scheduling the job, and performing the job cleanup after comple-

tion represent a significant overhead. A batch size of 1 is the worst case since as many individual

insert statements are required as the number of records, maximizing the negative impact of the

per-statement overhead involved in the insert approach. As the batch size is increased to 20, the

number of individual insert statements required reduces by that factor thus reducing the overhead

via amortization. In principle, setting the batch size to as high as the number of records to be

inserted should result in minimum execution time as a single Hyracks job needs to be constructed

and scheduled. The overhead is minimal. However, this is not feasible, as in practice, the set of

records that need to be inserted is derived from a continuously generating data source and is thus

not finite. Furthermore, it is not practical or efficient to form large-sized batches from continuously

arriving records as these would need to be held in memory to form a batch before it is complete

and can be processed.

The data feeds mechanism provides the most efficient alternative to ingest data with an average

execution time per record of less than a tenth of a millisecond which improves over the insert via

batch (size = 20) approach by two orders of magnitude. The data feeds mechanism gains by

incurring an initial fixed-cost for setting up a data ingestion pipeline and then using it to insert

a potentially never-ending sequence of records. Such an approach eliminates the intermediate

costs involved in compiling an insert statement, scheduling the resulting job, and cleaning up the

job after its execution. Data sources that generate data in a continuous manner are ubiquitous,

and the conventional way of batch-inserts does not fit well with such sources of data, and these

performance results make it clear that that a data management system should provide a mechanism

for “continuous inserts” vias a built-in support for data feeds.
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5.7.2 Fetch Once, Compute Many Model

The support for data ingestion in AsterixDB provides a flexible Fetch Once, Compute Many model

that allows routing data arriving from given data feed along multiple paths, applying different

computations or transformations along each path to form additional secondary feeds that can be

persisted in different datasets. Such a dataflow is referred to as a “cascade network and its net

effect is to transform and persist data from a given data source in different ways and do so with

sharing and in parallel. An alternate way of achieving the same end-result would be to establish

multiple independent connections with the external source, apply transformations to data arriving

on each connection, and persist the result into a separate dataset. Such a basic dataflow is referred

to as an independent network as data flows between the external source and target datasets along

independent paths. We provide here an experimental evaluation that demonstrates the performance

benefits of having and using the ‘Fetch Once Compute Many’ model by comparing a cascade

network of feeds to feeding data from an external source along multiple independent paths.

Figure 5.11 shows a cascade network configuration with the pair of feeds (FeedA and FeedB), each

applying the required transformation, prior to persistence of records. The alternate configuration

(an independent network) that is logically equivalent to the cascade network configuration from

Figure 5.11 is shown in Figure 5.12. In either configuration, the goal is to receive data records from

an external source in a continuous manner, pre-process the records using two different sequences

of computations, and persist the resulting records from each sequence into the respective target

dataset. Note that the figure’s different sets of computations have an overlap such that one can be

considered as an extension of the other.

Method for Experimentation:

We modeled an external data source using our custom data generator, TweetGen and defined FeedA

in the figures as a primary feed that makes use of the TweetGen adaptor to retrieve data from

TweetGen. FeedA involved the application of a UDF, f1(), prior to persistence of records. FeedB
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Figure 5.11: Cascade Network: Dataflow constructed using a cascade network with common con-
nection to external data source

Figure 5.12: Indpendent Network: Dataflow constructed using separate connections to the external
data source

required the output records to be subjected to further processing, which is expressed as f2(). Note

that in the cascade network (Figure 5.11), FeedA and FeedB share the computation of f1(). For

each record emitted by TweetGen, f1() and f2() are each invoked once. In contrast, for a given

record emitted by TweetGen, the independent network from Figure 5.12 involves the invocation of

f1() twice (once for each FeedA and FeedB) and an additional invocation of f2() along FeedB.

The potential performance gain due to the sharing of computation in Figure 5.11 is dependent on

the relative complexity of f1() in comparison to f2().

For our experiment here, the functions f1() and f2() were modeled to have a varying degree of

computational intensity. One extreme case is when f1() is an extremely lightweight function while

f2() is computationally expensive and can potentially bottleneck on the availability of CPU cycles.

The opposite case is when f1() is computationally intensive and f2() is extremely lightweight; this

scenario forms the other extreme end of the sharing opportunity spectrum. To alter the computa-

tional complexity of a UDF (f1() or f2()), we defined a synthetic Java UDF to involve a busy spin
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use dataverse feeds ;

create feed Feed A using TweetGen
((” server ”=”10.1.0.1:9000”) )
apply function tweetlib #f1;

create secondary feed Feed B from feed Feed A
apply function tweetlib #f2;

connect feed Feed A to dataset D1 using policy Discard;
connect feed Feed B to dataset D2 using policy Discard;

Listing 5.17: AQL statements to construct the cascade network configuration from Figure 5.11

use dataverse feeds ;

create feed Feed A using TweetGen
((” server ”=”10.1.0.1:9000”) )
apply function tweetlib #f1;

create feed Feed B using TweetGen
((” server ”=”10.1.0.1:9000”) )
apply function tweetlib #f3; // f3 is semantically equivalent to f2(f1)

connect feed Feed A to dataset D1 using policy Discard;
connect feed Feed B to dataset D2 using policy Discard;

Listing 5.18: AQL statements to construct the cascade network configuration from Figure 5.12

loop that runs for a given number of iterations and increments a long value in each iteration. A

higher number of iterations yields an increased computational cost and a longer delay introduced

per invocation of the function.

For the experimental environment, our test cluster involved a set of 10 worker nodes, each having

two physical cores. We configured TweetGen to generate data at a sufficiently high rate such that

at each compute node, the data arrival rate exceeds the rate at which the records can be processed.

To ensure that the excess records on each node do not increase the memory footprint and intro-

duce non-determinism (via arbitrary triggering of garbage collection), we selected the ‘Discard’

ingestion policy (refer to Table 4.2 from Chapter 4) to discard the excess records. As a result, our
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performance metric is the number of records successfully ingested in a given fixed time window

during which the data source (TweetGen) emitted records in a continuous fashion. Recall that the

compute stage in a data ingestion pipeline applies the associated UDF in an embarrassingly paral-

lel manner. The default degree of parallelism used is the same as the number of available worker

nodes. Each node then hosted an instance of the compute operator that applied the UDF to each

input record.

Listing 5.17 shows the set of AQL statements used to construct the cascade network configura-

tion from Figure 5.11. The corresponding set of AQL statements for constructing the independent

network configuration is shown in Listing 5.18. TweetGen was configured to run for a fixed dura-

tion of 400 seconds and generated tweets at 5000 twps. At the end of the 400 second period, we

measured the number of records persisted in each of the target datasets D1 and D2. We varied the

relative computational complexity of f1() and f2() as shown in Table 5.2. Recall that by definition,

FeedA is formed by applying f1() on each record received from TweetGen, while FeedB is formed

by applying f2(f1()) per record. We represent the composition f2(f1()) as yet another function –

f3() – as seen in Figure 5.12. Notice that the ratio f1()/f3() is the fraction of the computation

that can be shared and applied just once when forming the cascade network of feeds (Figure 5.11).

Table 5.2 reports this fraction, which we vary, as a percentage value that is hereafter referred to as

%OV ERLAP .

Table 5.2: Execution time for functions in milliseconds and the % computation that can be shared
when constructing the feeds – FeedA and FeedB in a cascade network

f1() f2() f2(f1())orf3() % f1()/f3() or %OV ERLAP

10 40 50 20
20 30 50 40
30 20 50 60
40 10 50 80

We repeated our workload sharing experiment for different values of %OV ERLAP (20, 40, 60 and
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(a) A comparison of the total number or records persisted via FeedA in
the independent and cascade network configurations

(b) A comparison of the total number or records persisted via FeedB in
the independent and cascade network configurations

Figure 5.13: A comparison of the total number of records persisted (and indexed) from each feed
(Feed A and Feed B) in a Cascade network (Figure 5.11) and an Independent network (Figure
5.12) configuration. The %OV ERLAP between the preprocessing required by each feed forms the x
axis.

80 %). For each given value of %OV ERLAP between the pre-processing required by FeedA and

FeedB, we measured the total number of records persisted via each feed in the case of the indepen-

dent network (Figure 5.11) and the cascade network (Figure 5.12) configurations. A sufficiently
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high rate of generation of tweets by TweetGen (5000 twps) caused maximum utilization of CPU at

each worker node across all runs of our workload experiment. Figure 5.13 summarizes the results.

The following are the most noteworthy observations:

• Records persisted by FeedA:

As shown in Figure 5.13(a), for each value of %OV ERLAP , the records persisted via FeedA

in a cascade network configuration exceeds the corresponding value for the independent net-

work configuration. The cascade configuration reduces the amount of computation required

for producing the secondary FeedB as the computation done as part of ingestion in FeedA

is not repeated. This shared computation includes the parsing and translation of received

records at the intake stage and the application of the UDF f1() at the compute stage of the

data ingestion pipeline for FeedA. The reduced computation required in producing FeedB

in a cascade network lowers the demand for resources (CPU cycles) at each worker node.

This allows a greater number of records from FeedA to be processed per unit time.

• Records persisted by FeedB:

By definition, constructing FeedB requires subjecting each record received from TweetGen

to the functions f1() and f2() in that sequence. In a cascade network configuration (Figure

5.11), the required computation is reduced to just applying the function f2() on records that

are being output by the compute stage of the ingestion pipeline for FeedA. As described

earlier, the experimental setup involved a sufficiently high rate of arrival of data together

with computationally expensive UDFs placed along the ingestion pipeline for each feed.

Each worker node operated in a resource-constrained environment with CPU cycles forming

the bottleneck. The cascade network configuration demands less CPU cycles because of the

reduced computation. The records persisted by FeedB thus increases in such a configuration.

• Shared Computation (%OV ERLAP ):

The %OV ERLAP parameter determines the fraction of computation that is applied as part

of producing FeedA and that need not be repeated in producing FeedB. As %OV ERLAP
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use dataverse feeds ;

create feed TweetGenFeed using TweetGenAdaptor
(( ”datasource” = ” 10.1.0.1:9000,

10.1.0.2:9000, 10.1.0.3:9000,
10.1.0.4:9000, 10.1.0.5:9000, 10.1.0.6:9000 ”) )

apply function addFeatures ;

connect feed TweetGenFeed to dataset ProcessedTweets;

Listing 5.19: AQL to create a pair of primary and secondary feeds used in evaluating scalability

is increased from 20 to 80 (percentage value), the gap between the cascade network and

an independent network configuration also widens, as measured in terms of the number of

records persisted. This is observed for each of the feeds – FeedA and FeedB. A higher value

of %OV ERLAP , by definition, signifies a greater amount of resource-savings in a cascade

network configuration, which manifests as an increase in the number of records persisted.

5.7.3 Evaluating Scalability

In our final experiment in this chapter, we provide an experimental evaluation of the scalability

offered by the AsterixDB feed ingestion facility. We again used TweetGen as an external data

source and defined a primary feed, TweetGenFeed, that made use of the TweetGenAdaptor to re-

ceive tweets generated by TweetGen. We associated a custom UDF (Java) with TweetGenFeed

that collects the hash tags contained in the tweet in an ordered list and appends it as an additional

attribute to the tweet. The set of AQL statements to define and connect our experimental feed is

shown in Listing 5.19, and the logical flow of data is shown in Figure 5.14. The adaptor is config-

ured with the location(s) (socket address) where instances of TweetGen are running. Each instance

of TweetGen receives a request for data from a corresponding instance of TweetGenAdaptor, thus

enabling ingestion of data in parallel.

Referring to Figure 5.14, if the record arrival rate exceeds the rate at which they can be processed
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Figure 5.14: Scalability: Number of records (tweets) successfully ingested (persisted and indexed)
as the cluster size is increased.

and ingested in AsterixDB, the ‘excess’ records are handled as dictated by the ingestion policy

associated with the feed (Table 4.2 from Chapter 4). Through initial experiments, we determined

the ingestion capacity offered by a single node AsterixDB cluster as 20k twps. For this data

source and UDF, we used six parallel instances of TweetGen and configured each such that the

aggregate rate of generation of tweets (20k ∗ 6, 120k twps) far exceeded the ingestion capacity that

we measured experimentally. Initiating the flow of data from TweetGen at an aggregate rate that is

higher than the ingestion capacity of the recipient AsterixDB cluster results in ‘excess’ records and

cause maximum CPU utilization across the worker nodes. We selected the Discard ingestion policy

to discard the excess records; this again makes the persisted % data volume a good performance

metric.

Figure 5.15: Evaluating Scalability: A physical view of the flow of data through the intake, com-
pute, and store stages of the data ingestion pipeline. The degree of parallelism at the compute and
store stages is determined by the number of nodes in the AsterixDB cluster.

We evaluated the ability of the AsterixDB feed facility to scale and ingest an increasingly large

volume of data as additional resources are added. To do so, we varied the size of our AsterixDB
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Figure 5.16: Measring Scalability: Number of records (tweets) successfully ingested (persisted
and indexed) as the cluster size is increased.

cluster (1 to 10 nodes) and measured the total number of records that were successfully persisted

in the 20 minute time window during which the TweetGen instances continued to push data into

AsterixDB. Figure 5.15 shows the physical data flow and the parallelism involved at the compute

and store stages for the data ingestion pipeline. As we add more resources (AsterixDB nodes) to

the cluster, the degree of parallelism at the compute and store stage increases accordingly, as each

node hosts a pair of compute and store operator instances. Note that the parallelism at the intake

stage remains fixed at 6, which is the number of TweetGen instances.

The experimental results are shown in Figure 5.14. A significant proportion of records were dis-

carded for lack of resources on a small size cluster of 1 to 4 nodes. On a bigger cluster, the propor-

tion of discarded tweets declines, indicating that the system that can indeed ingest an increasingly

high volume of data as additional resources (nodes and cores) are added to the system. The results

in Figure 5.16 indicate linear scaleup characteristics. Linear scale-up is one of the most critical

features required of a data ingestion facility as it allows the system to handle an increased workload

simply by addition of resources.
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5.8 Summary

In this chapter, we have described the basic internals of the data ingestion support in AsterixDB

with an emphasis on the physical aspects and underlying design considerations. We described

the methodology adopted for constructing the runtime for a data ingestion pipeline and covered

various example scenarios to illustrate the different steps involved in constructing the head and the

tail sections of the pipeline separately. We also described how a cascade network is constructed to

involve two or more data ingestion pipelines and how it is dynamically modified when active feeds

are disconnected or additional feeds are connected.

The chapter evaluated the basic promise of this thesis – that data ingestion can and should be an

effective new feature in BDMS. We compared feeds in AsterixDB with the conventional approach

of inserting batches of records, a major improvement that feeds provide. We demonstrated the

benefits of having and using the Fetch Once, Compute Many model, and the scalability offered by

the data ingestion facility in AsterixDB.

A wide variety of sources of data emit records in a continuous fashion; examples include sen-

sors, electrical meters, social media, clickstreams, processes that generate logs, etc. In order to

ingest data from such sources, it is required to have a built-in mechanism for continuous insert of

records, which at minimum, performs better than conventional batch inserts and offers scalabil-

ity. In subsequent chapters, we will discuss other desirable features of such a system that include

fault-tolerance and elasticity.

88



Chapter 6

Fault-Tolerant Data Ingestion

Data ingestion is a long running task, so it is bound to encounter hardware failure(s) as it contin-

ues to run “forever” on a cluster of commodity hardware. Furthermore, parts of a data ingestion

pipeline include pluggable user-provided modules (feed adaptor and a pre-processing function)

that may cause soft failures in the form of runtime exceptions. Sources of such runtime exceptions

include unexpected data format, unexpected null values for an attribute, or simply inherent bugs in

the user-provided source code that show up for certain kind(s) of data values. We categorize the

failures occurring from processing of data as soft failures, and those arising from loss of a physical

machine either due to a disk, network or power failure as hard failures. In this chapter, we describe

how a data ingestion pipeline may recover from soft and hard failures and particularly address the

challenge C4 from Section 1.1 of Chapter 1. Note that the kind of failures that a data ingestion

pipeline must attempt to handle and survive is dictated by its associated ingestion policy.
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6.1 Soft Failures

A runtime exception encountered by an operator in processing an input record in a typical Hyracks

job carries non-resumable semantics and causes the dataflow to cease and the job to terminate. It

is essential to guard the data ingestion pipeline from such exceptions by executing each participant

operator in a sandbox-like environment, such that the data ingestion pipeline is insulated from any

runtime exception(s) that a participant operator instance may throw. It is equally important that

any mechanism to handle and recover from failures need not be embedded into the definition of

the operator itself. This adheres to the popular Separation of Concerns (SoC) [41] design principle

and ensures that operators remain simple to build and reusable as part of other Hyracks jobs. Next,

we introduce the MetaFeed operator and describe its role in handling soft failures.

6.1.1 Executing An Operator in a Sandbox

Each operator in a data ingestion pipeline is an implementation of an interface that provides to

the Hyracks runtime, a set of APIs to initialize the operator, pass data frames for processing, and

manage the operator’s lifecycle. The MetaFeed operator was introduced as a wrapper operator

that mimics it’s enclosed operator (hereafter referred to as the core operator) in implementing

an identical interface. The Hyracks runtime remains agnostic of such wrapping provided by the

MetaFeed operator and continues to invoke the (identical) interface methods (API), as before. The

MetaFeed operator delegates invocation of all methods to the core operator but provides additional

functionality to enable fault-tolerance.

The runtime of a core operator receives input data as a sequence of frames each comprising of

records. An exception thrown by the core operator in processing an input record is caught by

the wrapping MetaFeed operator. The MetaFeed operator slices the original input frame to form a

subset frame that excludes the processed records and the exception generating record. The remnant
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subset frame is then passed to the core-operator as the next frame to be processed. The operator

has, in effect skipped past the exception-generating record. If a record in the truncated frame

causes an exception, the act of slicing and weeding out the error generating tuple is repeated as

many times as required.

6.1.2 Logging of an Exception

A runtime exception may be indicative of the inability of the core operator in handling a given

kind of record, e.g., one that has null values for an attribute, or may even reflect a bug in the source

code or invalidate an assumption made about the external data source. It is important to allow the

end-user to revisit the exception(s) thrown during data ingestion for diagnosis and take subsequent

corrective action, if any, or simply report data that could not be persisted and indexed.

The MetaFeed operator provides different options for logging a runtime exception. At minimum,

the exception and the causing record are appended to the standard AsterixDB error log file. Alter-

natively, the information may also be persisted into a dedicated AsterixDB dataset. The logging

support for a feed is determined from the ingestion policy1 that is specified as part of the connect

feed AQL statement.

In a possible scenario, every record may result in a similar exception; this situation would be

indicative of a bug or an invalid assumption made about the external data source. A cycle of

handling and logging an exception in such a case would be never-ending and wasteful of resources.

To avoid such a situation, a feed ingestion policy can be configured with an upper bound on the

number of consecutive records that can be “skipped” by an operator. Upon reaching the limit, an

exception raised on the next incurring record causes the faulty feed to end.

1Persisting the details about a soft exception in a dedicate ddataset is enabled by setting the parameter
“soft.failure.log.data” to “true” in the ingestion policy.
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6.2 Hard Failures

In this section, we describe the mechanism by which AsterixDB handles the loss of one or more of

the AsterixDB nodes involved in a data ingestion pipeline. The operators participating in a data in-

gestion pipeline operate in a pipelined fashion such that an upstream operator ‘pushes’ data frames

downstream to a consuming operator. For a long running task such as data ingestion that runs in a

distributed environment built from commodity hardware, the failure of a node can be considered as

a norm rather than an exception. Loss of a participating node in a typical Hyracks job setting car-

ries non-resumable semantics. Such semantics are unacceptable for a data ingestion pipeline. Any

interruption in the flow of data from an external source into AsterixDB can potentially introduce a

lag wherein external source continues to generate records but these cannot flow into AsterixDB. In

the worst case, such a period of discontinuity can potentially result in a loss of data, as the ability

to request old data may not be supported by the external data source. AsterixDB as a receiver of

data may never catch pace with an external data source that continues to generate and send records

agnostic and irrespective of the failures happening inside an AsterixDB cluster.

6.2.1 Detecting and Identifying a Failure

As as a distributed execution engine, Hyracks allows for subscribing to events and being notified of

their occurrence. These events are broadly classified as job-events that are related with the lifecycle

of a job (examples include creation and termination of a job) and cluster-events that are related to

cluster membership (examples include joining and leaving of nodes). Recall that an AsterixDB

clsuter operates in a master-slave configuration, with a central Cluster Controller (master) or CC

and a set of worker nodes referred to as Node Controllers or NCs. Co-located with the Cluster

Controller is a Central Feed Manager (referred to as CFM, hereafter) that oversees the execution

of each active data inegstion pipeline in the cluster. The CFM also subscribes to job-events and

cluster-events. In addition, an AsterixDB cluster also includes a set of Feed Managers (FMs), one
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per each Node Controller. The FMs can communicate with the CFM but do not communicate with

each other. The communication with the CFM is via control messages that travel separate from any

data path and are exchanged as bytes sent at designated (but configurable) socket address where

the CFM listens.

Hyracks requires each Node Controller (NC) to heartbeat its ‘live’ status to the Cluster Controller

(CC) with a configurable periodicity. A failure in receiving a heartbeat for a configurable threshold

duration is assumed by the CC as a node failure. A cluster-event with information of the failed

set of node(s) is dispatched to the set of interested subscribers including the Central Feed Manager

(CFM). The CFM keeps track of the location for each operator instance that is participating in a

data ingestion pipeline. On being notified of a node failure, the CFM identifies the set of data inges-

tion pipelines that are affected by the loss of the node. The affected data ingestion pipelines (if any)

include those that had a participating operator instance running on the a failed node. Subsequent to

detecting a failed node, a fault-tolerance protocol is triggered. At a high-level, the protocol works

by substituting the failed node with another live node and re-scheduling the ingestion pipeline to

involve the substitute node. When restructuring an ingestion pipeline, care is taken to prevent or

minimize the loss of data. Next, we describe the fault-tolerance protocol in detail and emphasize

the physical aspects and intricacies involved. We include a set of example scenarios and describe

their handling using the protocol.

6.2.2 The Fault-Tolerance Protocol

When an AsterixDB node fails, its operator instances are lost and are referred to as dead instances.

Subsequently, the other operator instances in the same pipeline that are running on other (alive)

AsterixDB nodes are notified of the pipeline failure. The fault-tolerance protocol defines the set

of actions that are required to be taken by each kind of operator instance (collect, intake, assign,

store) upon receiving such notification. Before describing the set of actions, we define the possible
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states that an operator instance may transit into as part of the fault-tolerance protocol.

1. Zombie Instance

An operator instance may be allowed to terminate, but prior to termination, its runtime state

(which consists of the input buffer) is saved with the local Feed Manager by the wrapping

MetaFeed operator. The operator instance is referred to as a Zombie, as it is not alive as

a thread processing data frames, but its state is available for retrieval when the pipeline is

resurrected and dataflow is resumed.

2. Alive Instance

An operator instance may be allowed to continue to process arriving data frames irrespective

of the failures that have occurred elsewhere in the ingestion pipeline. Such an instance is

referred to as an alive instance, and it may operate in either of two modes, namely – forward

and buffer. In forward mode, the alive instance sends or forwards its output data frames

to the downstream consuming operator. In the buffer mode, the output data frames from

an operator are instead held in memory and not yet sent downstream to the next operator

instance in the pipeline.

Next, we describe the precise behavior for each kind of operator when a data ingestion pipeline is

handling a failure.

1. Collect: A collect operator instance continues to stay alive and operates in the ‘forward’

mode wherein output data frames are pushed downstream.

2. Intake: An intake operator instance continues to stay alive and receives data from the cor-

responding collect operator instance. However it transits to operate in the ‘buffer’ mode,

meaning that records received are held in memory and not sent downstream.

3. Assign (or Compute): An assign operator instance transits to a zombie instance.
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4. Store: A store operator instance behaves similar to an assign operator instance and transits

to a zombie instance.

When each operator instance has transitioned into the prescribed state, the local Feed Manager on

each participant node notifies the Central Feed Manager (CFM) running at the master node. The

CFM chooses a node to substitute each failed node. Being a substitute implies that each operator

instance at a failed node will need to be rescheduled to run at the substitute node. The CFM creates

a revised structure of the ingestion pipeline wherein the failed node is replaced with its substitute.

The revised pipeline is subsequently scheduled to run on the cluster. In order to describe the

mechanism for restructuring and resumption of flow of data subsequent to a failure, we consider

an example cascade network that involves a pair of ingestion pipelines. We discuss different failure

scenarios and illustrate how the above described protocol works to overcome node failures.

6.2.3 Example Failure Scenarios

Figure 6.1(a) shows a cascade network involving a pair of data ingestion pipelines — the primary

TwitterFeed — and its descendant secondary ProcessedTwitterFeed. The pipelines share a common

head section that retrieves raw tweets from the external source (Twitter in the current context). We

assume a 10 node AsterixDB cluster that includes a master node (where Cluster Controller and

Central Feed Manager run) and a set of nine worker nodes – nodes [A-I]. An example physical

layout of the cascade network showing the operator locations on our example cluster is shown in

Figure 6.1(b). Note that nodes H and I are not used initially and not shown in Figure 6.1(b). Next,

we describe different failure scenarios.

95



(a) A logical view of the flow of data across an example cascade network

(b) Physical view of the flow of data showing the placement of operator
instances across an AsterixDB clusters

Figure 6.1: An example cascade network to describe the fault-tolerance protocol

External Source Failure

The external data source runs on just another physical machine outside the AsterixDB cluster.

A power or disk failure at the external machine or lost network connectivity would interrupt the

regular flow of data into an ingestion pipeline. For example, Twitter or CNN as a data source

may itself experience an outage. AsterixDB doesn’t understand the semantics of the data transfer

protocol and remains agnostic of the set of APIs offered by the external source. The recovery logic

subsequent to a failure at an external source is required to be provided by the feed adaptor.
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An adaptor may resort to reconnecting after a wait or connecting to a different server/machine

offered as part of agreed communication protocol. However, if the adaptor discovers reconnecting

as a futile or infeasible exercise, it must convey this to AsterixDB by throwing an exception,

in which case AsterixDB terminates the feed and relinquishes any involved resources. On the

contrary, if the adaptor is able to recover from the failure (via reconnecting, switching to a different

source node etc.), the flow of data resumes. It is worth noting that in this case, AsterixDB remains

agnostic of the failure and the recovery action taken by the feed adaptor. The individual operator

instances may simply not receive additional data records to process and this may manifest as a

transient drop in the data ingestion throughput.

Collect or Intake Operator Failure

Referring to our example data flow shown in Figure 6.1(b), we assume the loss of node A while the

feeds — TwitterFeed and ProcessedTwitterFeed — are active. Node A houses the intake operator

instance from the tail section of each of the two ingestion pipelines. Additionally the co-located

collect operator instance from the shared head section of each pipeline is also lost. This interrupts

the flow of data into AsterixDB as the connection between the source (as the producer) and the

collect operator instance (as the receiver) is broken. The remaining operator instances (assign

and store) on each ingestion pipeline, which are running elsewhere on healthy nodes, are notified.

Subsequently these transition into zombie instances, as dictated by the fault-tolerance protocol.

This state is shown in Figure 6.2(a).

Next, the Central Feed Manager must choose a node as a substitute for the failed node (A). To

illustrate, we show node H as being the chosen substitute for node A, but any of the nodes (B-I)

could be chosen. The FeedCollect Hyracks job is rescheduled with a FeedCollect operator instance

placed at the substitute node (H). This resurrects the head section. The respective FeedIntake jobs

that represent the tail sections for TwitterFeed and ProcessedTwitter are then revived. In doing

so, the location constraints for each operator instance are carefully chosen to be identical to the
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(a) State of the data ingestion pipeline subsequent to loss of intake node.
The zombie instances on alive node remain to register their state with the
local Feed Manager

(b) Recovery Phase: A revised ingestion pipeline is scheduled with loca-
tion for each operator instance chosen carefully. The head section is yet
to connect with the external source and resume the flow of data

(c) Post Recover: Revised data ingestion pipeline showing resumed
dataflow

Figure 6.2: Handling of the loss of an intake node in a cascade network
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previous execution. Thus, the assign and store instances are co-located with the respective zombie

instances from the previous execution. Such a placement allows a newly created live instance of

an operator to retrieve the state (input buffer containing unprocessed data) corresponding to its

zombie instance from the local Feed Manager. These live instances shall process the unprocessed

data records from the previous execution in an effort to minimize the loss of data from pipeline

failure.

Figure 6.2(b) shows a transient state showing opreator instances as being co-located with their

respective zombie counterparts. The tail section for each reconstructed pipeline is able to subscribe

to the output of the shared head section. This happens at the substitute node H. At this stage, the

collect operator instances at the head make use of the feed adaptor to establish connection with

the external source and resume the flow of data. The recovered state is shown in Figure 6.2(c). It

is similar to the state shown in Figure 6.1(b) except that Node A has been replaced with Node H.

Note that the loss of FeedCollect operator instance results in a period when AsterixDB is unable

to receive data from the external source.

Assign Operator Failure

Next, we assume the failure of node D that is part of the compute stage for ProcessedTwitterFeed.

Following the fault-tolerance protocol, other operator instances belonging to the data ingestion

pipeline transition to the prescribed states. This intermediate state is shown in Figure 6.3(a). The

intake operator instance at the head section continues to stay alive but transitions to the buffer

mode, that is, it holds the arriving data in memory instead of sending downstream. Loss of node

D does not impact the flow of data along the data ingestion pipeline for TwitterFeed, although

the pipelines share a head section. This behavior is an example of the fault isolation principle that

keeps other ingestion pipelines that are part of a common cascade network insulated and functional

despite failures elsewhere in the cascade network.
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Once the state shown in Figure 6.3(a) is achieved, the Central Feed Manager is notified and a

substitute for the failed node is chosen. For illustration, we chose node I as the substitute, but

any of the other nodes could be chosen. Figure 6.3(b) shows a transient state with Node I as

the substitute and alive operator instances from the revised pipeline being co-located with their

respective zombie instances from previous pipeline. The intake operator instance takes ownership

of the input buffer used by the alive instance from previous execution and continues to send the

arriving data downstream. The previous intake operator instance is then allowed to terminate. The

revised cascade network is shown in Figure 6.3(c). It is similar to 6.1(b) except that node D has

been replaced with Node I.

Store Operator Failure

The loss of a store node translates to the loss of a partition of the dataset that is receiving the

feed. AsterixDB does not yet support data replication. In absence of the replica(s), there does

not exist a substitute for the lost dataset partition. In the current implementation, a store node

failure therefore results in an early termination of an associated feed. As and when the failed

store node re-joins the cluster and becomes available2, the data ingestion pipeline is rescheduled.

New operator instances in the rescheduled pipeline take ownership of the state left behind by their

respective zombie instances from the previously failed execution. Data replication is on the road

map of AsterixDB. An AsterixDB node hosting an in-sync replica of the lost data partition would

become the preferred choice for being an immediate substitute; the recovery phase would then

involve rescheduling the pipeline to involve the replica.

With respect to data preservation midst hardware failures, AsterixDB does not guarantee lossless

ingestion of data. Although, operator instances save the frames from their input buffers with the

local feed manager following a pipeline failure, termination of the pipeline results in the loss of

2In AsterixDB, a failed node upon re-joining the cluster undergoes log-based recovery to ensure that all hosted
dataset partitions are in a consistent state.
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(a) State of a data ingestion pipeline subsequent to the loss of a compute
node. The zombie instances remain to register their state with the local
Feed Manager. The shared head section continues to receive data.

(b) Recovery phase: The impacted data ingestion pipeline is revised to
involve a substitute for the lost node.

(c) Post Recovery: The impacted data ingestion pipeline resumes receiv-
ing data from the head section.

Figure 6.3: Handling the loss of a compute node in a cascade network

101



the in-flight records that failed to reach their destination. It would be possible to preserve the

in-flight records by use of checkpointing to coordinate the flow of data between operators [36].

Such support could then be conditionally incorporated in a data ingestion pipeline if the associated

ingestion policy requested lossless movement of data.

6.2.4 Under the Hood

The operators participating in a data ingestion pipeline are reusable components that can be em-

ployed as part of other Hyracks jobs. It is essential to keep these operators simple and generic

so that data concerns are kept separate from fault-tolerance concerns. The MetaFeed operator that

was introduced in Section 5.7.2 provides much of the functionality that makes an ingestion pipeline

tolerant of hardware failures. As a MetaFeed operator instance wraps around a core operator in-

stance, it can intercept all invocations (made by Hyracks runtime) of the core operator’s runtime

API. Subsequent to a failure in a normal Hyracks job, the Hyracks runtime notifies the job’e other

alive operator instances. This is done via the invocation of the close() method that is implemented

by each operator, which instructs the operator to terminate. In a data feed job, the invocation of

the close() method on an operator interface is intercepted by the wrapping MetaFeed operator. The

MetaFeed operator instance implements the fault-tolerance protocol and transitions the core oper-

ator into the required state, as prescribed by the protocol. The functionality of retrieving the state

from the previous zombie instance and handling of the unprocessed records is also provided by the

MetaFeed operator instances.

6.3 Experimental Evaluation

We have evaluated the ability of the AsterixDB feed subsystem to recover from single and multiple

hardware failures while continuing to ingest data. Earlier, in Section 5.7.2 from Chapter 5, we
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use dataverse feeds ;

connect feed ProcessedTweetGenFeed to
dataset ProcessedTweets using policy FaultTolerant ;

connect feed TweetGenFeed to
dataset RawTweets using policy FaultTolerant ;

Listing 6.1: AQL statemens that connect each feed to its respective dataset

described the use of a custom-built data generator – TweetGen – to act as an external data source

that could generate synthetic tweets at a prescribed rate. We reuse TweetGen here as an external

source in setting up a cascade network that involves a pair of feeds – TweetGenFeed (primary) and

ProcessedTweetGenFeed (secondary). ProcessedTweetGenFeed involves the use of a Java UDF

that collects the hash-tags in a tweet’s text in to an ordered list and appends it to the tweet as an

extra field.

This experiment involved having a pair of TweetGen instances configured to generate data at 5000

tweets/sec (twps). Each instance ran on a separate machine outside the AsterixDB cluster. We con-

nected the feeds –TweetGenFeed and ProcessedTweetGenFeed – to their respective target dataset

and used the built-in policy Fault-Tolerant when doing so. Figure 6.1 shows the set of AQL state-

ments. The nodegroup associated with each dataset included a pair of nodes each. To make things

interesting and show that the order of connecting related feeds is not important, we connected

ProcessedTweetGenFeed prior to connecting its parent feed TweetGenFeed. In this scenario, as

the primary feed (TweetGenFeed) is not active at first, building the ingestion pipeline for Pro-

cessedTweetGenFeed requires constructing the head section that would interface with the external

source (pair of TweetGen instances). Data begins to flow with the construction of the tail section.

The ingestion pipeline offers feed joints (labelled as ‘A’ and ‘B’ in Figure 6.4). Subsequently, in

building the data ingestion pipeline for the primary feed, the head section from ProcessedTweet-

GenFeed is reused and the output data flowing through feed joints ‘A’ is routed to the tail section

for TweetGenFeed (Figure 6.4).
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Figure 6.4: Feed cascade network for fault-tolerance experiment

We measured the number of records inserted into each target dataset during consecutive two-second

intervals to obtain the instantaneous ingestion throughput for the associated feed. We introduced

a compute node failure (node C in Figure 6.4) at time t=70 seconds. This was followed by a

concurrent failure of both an intake node (node A) and a compute node (node D) at time t=140

seconds. The instantaneous ingestion throughput for each feed as plotted on a timeline is shown in

Figure 6.5.

The following are the most noteworthy observations:

(i) Recovery Time: The failures are reflected as a drop in the instantaneous ingestion throughput

at the respective times. Each failure was followed by a recovery phase that reconstructed the in-

gestion pipeline and resumed the flow of data into the target dataset within 2-4 seconds.

(i) Fault Isolation: Data continues to arrive from the external source at the regular rate, irrespec-

tive of any failures in an AsterixDB cluster. During the recovery phase for ProcessedTweetGen-

Feed, the FeedIntake operator instances buffer the records until the pipeline is resurrected. The

FeedIntake operator instances corresponding to TweetGenFeed continue to receive and send the

data records downstream at the regular rate. Fault isolation helps in “localizing” the impact of a

pipeline failure and is a desirable feature of the system. The ingestion pipeline for TweetGen feed

remains insulated from the failure of Node C. As shown in Figure 6.5(a), TweetGenFeed is not
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(a) TweetGenFeed

(b) ProcessedTweetGenFeed

Figure 6.5: Instantaneous ingestion throughput with interim hardware failures: Node C fails at
t=70 seconds; Node A and Node D fail at t=140 seconds

impacted by the failure of node C at t = 70 seconds.
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6.4 Other Approaches to Fault-Tolerance

Stream processing work in the past also faced challenges related to availability and sustaining the

flow of data, irrespective of node failures. In this section, we look at some of the known methods

that provide fault-tolerance in Stream Processing Engines (referred to as SPEs hereafter). We dis-

cuss their different approaches and provide comparisons with the approach adopted in AsterixDB.

6.4.1 Replication-Based Approach

The replication-based method, also known as Process Pairs approach [27], involves replicating

each participating operator in a given dataflow to form cloned versions that are scheduled to run in

parallel. An operator instance is chosen as being primary, whereas its replica instances are referred

to as secondary. The Process Pairs approach is further classified as involving a ‘passive standby’

or an ‘active standby’.

• Passive Standby:

In the ‘passive standby’ approach, a primary operator instance periodically checkpoints its

state and sends that checkpoint to secondary replica instance(s). The state includes any

data maintained by the operator instance and any records stored in queues between operator

instances. In practice, sending the entire state at every checkpoint is not necessary. Instead,

each primary operator instance periodically performs only a delta-checkpoint. During a

delta-checkpoint, the primary operator instance updates the backup by copying only the

difference between its current state and the state at the time of the previous checkpoint.

Because of these periodic checkpoints, a backup (secondary operator instance) always has

its primarys state as of the last checkpoint.

To detect failures, each replica operator instance sends heartbeat requests to its primary and

assumes that the primary has failed if the number of consecutive attempts that do not return
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within a timeout period crosses a pre-configured threshold. If the primary fails, the secondary

recovers by restarting from its saved copy of the primary’s state and reprocessing the input

records that the primary processed since the last checkpoint. To enable backups to reprocess

such input tuples, all primary operator instances log their output records. If a downstream

primary fails, each upstream primary instance re-sends its output records to the downstream

backup.

• Active Standby:

In the case of active standby, the replica operator instances actually process all records in

parallel. An upstream operator instance logs its output and forwards the output to its cur-

rent set of downstream operator instances. Each recipient operator instance sends periodic

acknowledgments to its upstream operator instance to indicate that it has received the input

stream up-to a certain point. An acknowledgment indicates that the input need not be resent

in the case of a failure; this allows producers to truncate their output logs.

6.4.2 Upstream Backup Approach

In the upstream-backup approach, the upstream nodes act as backups for the downstream nodes by

logging tuples in their output queues until all downstream nodes process their tuples completely.

The upstream log is trimmed periodically using acknowledgments sent by downstream primaries.

In case of failure, the upstream primaries replay their logs, and the secondary nodes rebuild the

missing state before serving other downstream nodes. Compared to the Passive Standby approach,

upstream backup does not involve creating replicas of an operator instance, neither does it require

operator instances to take periodic checkpoints. In comparison to the Passive Standby approach,

this strategy requires longer recovery, but has lower runtime overheads.
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6.4.3 Flux

The Flux system [36] presented a technique for correctly coordinating replicas of individual op-

erator partitions within a larger parallel dataflow. The proposed method address the challenges of

avoiding long stalls and maintaining exactly-once, in-order delivery of the input to these replicas

during failure and recovery.

The goal of Flux was to make the in-flight data and transient operator state fault-tolerant and highly

available. In-flight data consists of all records in the system from acknowledged input from the

source to unacknowledged output to the client. This in-flight data includes intermediate output

generated from operators within the dataflow that may be in local buffers or within the network

itself. Inspired by the process-pairs technique [27], this approach provides fault-tolerance and high

availability by properly coordinating redundant copies of the dataflow computation. Redundant

computation allows quick fail-over and thus gives high availability.

However, consistency is difficult to maintain during failure and after recovery, as connections can

lose in-flight data and operators may not be perfectly synchronized. Thus, the Flux techniques

sought to maintain the following two invariants to achieve this goal.

1. Loss-Free: No tuples in the input stream sequence are lost.

2. Duplicate-Free: No tuples in the input stream sequence are duplicated.

To maintain these invariants, the Flux method introduced intermediate operators that connect exist-

ing operators in a replicated dataflow. Between every producer-consumer operator pair that com-

municate via a network connection, intermediate operators were introduced to coordinate copies of

the producer and consumer. Abstractly, the protocol is as follows: To keep track of in-flight tuples,

each tuple was assigned a sequence number. The intermediate operator on the consumer side re-

ceived input from its producer, and acknowledged the receipt of input (with the sequence number)

to the producers copy. The intermediate operator at the producer’s copy stored in-flight tuples in an
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internal buffer and ensured the invariants in case the original producer failed. Acknowledgements

tracked the consumers progress and were used to drain the buffer and filter duplicates.

6.4.4 Borealis Stream Processing Engine

The Borealis Stream Processing Engine used the Process-Pairs approach in providing fault-tolerance.

In a Process-Pairs approach, it is assumed that each operator is deterministic in nature in the sense

that a given set of input records shall always produce identical output irrespective of the time of

arrival of the input records. The Process-Pairs approach requires that each of the N − 1 replicas

for an operator receives and processes the arriving records in an identical order. To compute an

order without the overhead of inter-replica communication, the Borealis system introduced a data

serializing operator – SUnion – that could receive multiple input streams, order tuples on an em-

bdedded time stamp value and place each in statically-sized buckets. An operator is required to

emit a boundary tuple. Arrival of a boundary tuple at a receiving operator signifies that all tuples

with a timestamp less than that of the boundary tuple have been received. All participating nodes

and the data source(s) in the distributed execution of the dataflow are required to be synchronized

with respect to time. Furthermore, the data sources are required to implement the fault-tolerance

protocol by embedding time stamp values in output tuples and inserting boundary tuples in the

output stream. The tuples arriving at an operator are buffered. It is assumed that an input buffer

is large enough to hold all of the records that arrive during the window when a failure is being

repaired.

The Process-Pairs approach is expensive in terms of the requirement for resources; each operator

now has N − 1 replicas that need to be scheduled, thus increasing the demand for resources.

The requirement of the datasource implementing the prescribed fault-tolerance protocol (use of

time stamp and boundary tuples) cannot be assumed. It is actually unlikely that a source like

Twitter would opt to provide a customized stream. The approach thus cannot be termed as being
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generic and extensible and capable of catering to a wide variety of data sources.

The Process Pairs approach, as implemented in Borealis, does offer the end-user a trade-off be-

tween consistency and availability. The Borealis approach assigns to each node a maximum delay

that it may introduce to ensure a bounded overall delay in processing a record received from the

data source. It is unclear how the delay, X , is determined per node. A non-blocking operator is

allowed to continue processing of records even if a subset of its receiving only a subset of its input

streams subsequent to a node failure. The records produced are termed as tentative in Borealis’

terminology. An uninterrupted flow of records through the dataflow offers higher availability at the

cost of consistency. As and when the failure is repaired and the operator begins to receive its miss-

ing set of input streams, it must send output records that are reconciled at the receiving operator to

amend the state produced from earlier processing of tentative records.

The Process-Pairs approach is in contrast to the approach followed in AsterixDB. AsterixDB does

not have a notion of tentative records and does not actually aim at maintaining an uninterrupted

flow of data while a failure is being repaired. An interrupted flow of data is acceptable if the mean

time to repair a failure is small enough to not violate any QoS guarantees required by the overlying

application. Instead of using an increased amount of resources in running replicated versions and

using of additional operators to enforce ordered processing of records, AsterixDB’s approach is

generic as it does not require the data source(s) to adhere to a specific protocol or to use special

tuples (punctuation marks) in their respective output streams.

6.5 Summary

Large-scale computing today typically involves commodity hardware that is prone to failures. In

an extensible system that involves use of pluggable components written by end-users, the presence

of software bugs cannot be ignored either. Interfacing with a variety of external sources and any
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assumptions made regarding the format or presence of certain attributes in the received data con-

tribute towards soft runtime exceptions. It is thus highly desirable to build a fault-tolerant data

ingestion facility. In this chapter, we have described the fault-tolerance protocol implemented in

AsterixDB to safeguard a data ingestion pipeline from both soft and hard failures.

We described the feed fault-tolerance protocol in view of different example scenarios involving

single and multiple node failures. An experimental evaluation emphasized two important proper-

ties of the protocol - “fault-isolation” and “mean time to recovery”. We also provided a qualitative

comparison of our approach to fault-tolerance with alternate mechanisms developed for distributed

systems and adapted for stream processing engines.
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Chapter 7

Dealing with Data Indigestion

Data ingestion is a potentially long running task that is likely to experience a dynamic environment

with varying demand and availability of resources. Each data feed has an associated uncertainty in

terms of the rate of arrival of records and the computational complexity of pre-processing involved,

particularly in the case when the pre-processing is done by means of a Java UDF.1 Furthermore,

the number of connected feeds and queries that may execute concurrently on shared hardware

cannot be statically fixed. In a resource-constrained environment, a data management system such

as AsterixDB may not be able to process data at its rate of arrival. This results in congestion, or

data indigestion, wherein the movement of data along an ingestion pipeline is slowed or stalled.

Table 4.2 from Chapter 4 described the user-level choices for dealing with data indigestion. In

this chapter, we study the effects of congestion and evaluate the alternate approach as offered in

AsterixDB to resolve resource bottlenecks and facilitate continuous movement of data.
1A Java UDF is considered as a black box by AsterixDB, and as such its computational complexity and require-

ments for resources remains hidden from AsterixDB. This is in contrast to an AQL UDF whose definition is visible to
the AsterixDB compiler and can potentially be optimized by use of indexes.
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7.1 Congestion or Data Indigestion

An expensive UDF or an increased rate of arrival of data may lead to an excessive demand for re-

sources leading to delays in the processing of records. Left unchecked, the created back-pressure at

an operator instance can cascade upstream to completely ‘lock’ the flow of data along the ingestion

pipeline.

To illustrate the potential ill effects of congestion, we consider an example cascade network that

involves a pair of primary and secondary feeds, as shown in Figure 7.1(a). We assume that the UDF

associated with the secondary feed is computationally expensive and that under a given resource-

constrained environment, the records arriving from the external data source cannot be processed

via the UDF at their rate of arrival. Under such a scenario, the operators in the secondary compute

stage (where the UDF is applied) become ‘overloaded’ in the sense that the input buffer associated

with each operator instance fills up. This precludes the parent operator instances (from the intake

stage) from pushing data downstream and causes their respective input buffers to fill up; as a result

the shared parent operator instances will soon be in a similar ‘overloaded’ state. At this stage,

the data ingestion pipeline for the secondary feed is in a ‘locked’ state, wherein the intake and

compute stages are ‘overloaded’. The secondary store stage may still have a backlog from the set

of records that are being sent downstream by the compute stage. However, as the compute stage is

not receiving additional input, the finite backlog at the compute stage gets processed in due time,

subsequent to which, the compute stage discontinues sending data. This causes the downstream

secondary store operator instances to become ‘idle’ with no data to process.

Note that ‘locked’ state of the data ingestion pipeline for the secondary feed increases memory

pressure at the source feed joints (labeled ‘A’ in Figure 7.1(a)), as data frames at the feed joint are

required to be held in memory until consumed. If the external data source is pull-based, AsterixDB

can regulate the rate of arrival of data at the intake stage by not requesting data.2 In contrast, in the

2Note that such a strategy is not optimal, as it restricts the flow of data to every other data ingestion pipeline that is
receiving data from the source.
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case of push-based ingestion, the data source continues to send data at its regular rate irrespective

of the ability of the receiver (AsterixDB in the current context) to consume or digest the data.

Popular data sources such as Twitter follow a policy of disconnecting the receiver if it is unable to

receive data at the required rate.

(a) Store Stage

(b) Intake Stage

Figure 7.1: Congestion in a Data Ingestion Pipeline

As shown in Figure7.1(b), the congestion created from application of an expensive UDF along a

data ingestion pipeline has cascaded across the other ingestion pipeline and resulted in a ‘locked’
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state with no flow of data into AsterixDB. To avoid such an undesirable situation, AsterixDB

takes a different approach by resolving congestion at the overloaded operator and preventing it

from escalating upstream as back-pressure. This isolates other operators in the pipeline or in the

cascade network from the created congestion. However, to take a corrective action, it is important

to be able to detect congestion and locate its origin. This requires monitoring the dataflow.

7.2 Monitoring a Data Ingestion Pipeline

In this section, we describe the methodology for monitoring a data ingestion pipeline to detect and

locate a resource bottleneck, which is a pre-requisite to taking corrective action (challenge C3 from

Section 1.1). An AsterixDB node runs as a Java process (JVM) that is configured with a limit to

the amount of available memory. Besides supporting the flow of data along an ingestion pipeline,

an AsterixDB node also participates in execution of queries that involve aggregation, joining, and

sorting of data and manages their memory usage. The total available memory is shared by operators

serving multiple concurrent feeds or queries. Operators participating in a data ingestion pipeline

are collectively referred to as feed operators. To ensure sufficient resources for concurrent queries,

a fixed (but configurable) limit is imposed on the total memory that can be allocated to the operators

(intake, collect, store, etc.) at each worker node (Node Controller)3 that is participating in a data

ingestion pipeline.

During normal operation, when the rate of arrival of records is lower than what an ingestion

pipeline can consume and persist, the participant operator instances use a limited amount of mem-

ory as each stores input and output frames in reusable buffers. However, feed records may be

pushed to AsterixDB at a rate that is higher than what the ingestion pipeline may consume. To pre-

vent data loss in such a situation, additional memory is required by the intake operator instances

3Parameter feed.memory.budget defined in AsterixDB configuration defines the memory budget in terms of number
of bytes.
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to hold the arriving records in memory-resident buffers until the preceding records are processed

and sent downstream. Each operator in a data ingestion pipeline is provided with an in-memory

buffer (referred to as input buffer, hereafter) that is used to stage the arriving records before these

are picked up for processing by the operator. The input buffer associated with each operator is ex-

pandable as long as the total memory allocation across all feed input buffers is below the configured

threshold.

We define RP as the rate of processing of records by an operator measured as records/sec. RP

is a function of the computational complexity of the task being performed by the operator and is

influenced by the availability of resources at the node hosting the operator instance. Additionally,

we denote the rate of arrival of records at an operator’s input as RA, measured as records/sec. In

the scenario when the rate of arrival of records (RA) at an operator’s input exceeds the rate of

processing of records (RP ) by the operator, additional memory is required to hold the arriving data

frames. This may require the input buffer to be expanded. Exhaustion of the memory budget is

a symptom of congestion or the inability of the operator to process data frames at the required

rate, an undesirable situation that needs to be detected early. An operator is thus monitored to

periodically measure RA, RP , and the length of its input buffer. The monitoring functionality at an

operator is provided by a MetaFeed operator that wraps around the actual operator (also known as

the core operator).

Data shall continue to flow along a data ingestion pipeline as long as for every pair of a sender

(upstream) and receiver (downstream) operator, there is sufficient memory at the receiver to al-

low the sender to continue to push data at its regular rate. The data arrival rate for a given feed

may not be statically determined. AsterixDB does not attempt to forecast the data arrival rate or

the demand for additional memory. It introduces a notion of a congested state. An operator for

which, the length of the input buffer increases beyond a configured threshold and stays above for

a threshold duration, is marked to be in a congested state. A congested state of an operator, if left

unchecked can potentially exhaust the memory budget, preclude the corresponding sender opera-
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tor from pushing data downstream and thus lock of the data flow along the pipeline, in a fashion

similar to the example shown earlier in Figure 7.1(b).

7.3 Ingestion Policies

In a congested state, the records that are staged in the input buffer of an operator cannot be pro-

cessed for lack of resources and are referred to as excess records. On detecting a congested state of

an operator, the corrective action to be taken with respect to the excess records is determined by the

ingestion policy associated with the data feed. To study the different alternatives and evaluate the

benefits and downsides of each in terms of their impact on throughput and latency, we constructed

an experiment that involved creating an ‘artificial’ bottleneck in a data ingestion pipeline.

The experiment involved a 10 node AsterixDB cluster. Additionally, a pair of physical machines,

located outside the AsterixDB cluster, ran our custom data generating application – TweetGen,

that emulated the Twitter service by allowing clients to request and have artificial tweets streamed

to a configured socket address. TweetGen allowed configuring a pattern for generation of tweets

wherein the rate of sending tweets (tweets/sec or twps) could be varied during defined intervals of

time. We configured the pair of instances of TweetGen to collectively generate and send tweets (to

a requesting client) such that the aggregate rate of generation of tweets followed the pattern shown

in Figure 7.2. The pattern involves equi-width workload-phases with mid, high and low activity

in terms of the rate of arrival of tweets. These workload-phases are referred to as WMID, WHIGH

and WLOW respectively and the corresponding rate (twps) is denoted by RMID, RHIGH and RLOW.

Tstart and Tstop denote the time when data source starts and stops pushing data respectively. In our

experiment, Tstop was 1200 seconds.

In order to retrieve data from our example external source (TweetGen), we wrote a custom data

feed adaptor – TweetGenAdaptor. We created a target dataset – Tweets to persist the retrieved
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Figure 7.2: Rate of Arrival of Data

data. For the AQL statements for defining the dataset and the associated datatype, the reader is

referred back to Listing 3.1 from Section 3.1.2 of Chapter 3. Additionally, we associated with the

feed, a Java UDF (introduceDelay that involved a busy-spin loop to introduce a delay of ∼3ms per

invocation. Listing 7.1 shows the create feed AQL statement. The intake stage of the data ingestion

pipeline involved two instances of TweetGenAdaptor, each running at different AsterixDB nodes.

The target dataset had a partition on a disk at each node. The store stage thus involved a store

operator instance on each node. The AQL statement for connecting the TweetGen feed to the target

dataset followed the template shown in Listing 7.2.

The compute stage (as constructed by the AsterixDB compiler) offered a similar degree of par-

allelism and involved a compute operator instance on each node. Application of the UDF (with

its ∼3ms execution time ) by a compute operator instance gave each one a maximum processing

capacity of ∼300 twps. The aggregate capacity from 10 parallel instances was thus limited to 3000

twps (referred to as ComputeLIMIT). In the workload (Figure 7.2), we have RHIGH > Compute LIMIT

during WHIGH. This leads to congestion, a situation where records cannot be processed at their rate

of their arrival. We repeated the experiment using each of the built-in ingestion policies (Table 4.2
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use dataverse feeds ;

create feed TwitterFeed using ” tweetlib #TweetGenAdaptor”
(( ” server ” = ”server1 :9001, server2 :9002”) ,
(”type name” = ”Tweet”))
apply function tweetlib #includeBusySpinLoop;

Listing 7.1: Definition of the feed used in the workload experiment

use dataverse feeds ;

connect feed TwitterFeed to dataset Tweets
using policy <name of ingestion policy >;

Listing 7.2: A template for a connect feed statement that uses a given ingestion policy

from Section 4.5 under Chapter 4) in the template shown in Listing 7.2.

Table 7.1 lists the symbols and metrics we use when describing this experiment and its results.

The intake stage involved a pair of feed adaptor instances each receiving records from a separate

TweetGen instance located outside the AsterixDB cluster. Each TweetGen instance pushed data for

a continuous duration of 1200 seconds (Tstart−Tstop). We measured the instantaneous throughput

as the number of tweets persisted in each 2 second interval over the duration of the experiment.

We also measured the ingestion latency (Table 7.1(b)) for each tweet received by the feed adaptor

during each workload-phase (WMID, WHIGH and WLOW). Next, we discuss the results.

7.3.1 Basic Policy

The Basic policy dictates that the input buffer at an operator be expanded to accommodate the

arriving records until the total memory allocated reaches the configured memory budget. Under
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Table 7.1: Symbols and Metrics
(a) Symbol Definitions

Symbol Definition
Tstart, Tstop Time when data source starts/stops pushing data
Tintake(i) Time when Tweet(i) is received by the feed adaptor
Tindexed(i) Time when Tweet(i) is indexed in storage
Ntotal Total number of tweets received by feed adaptor
Nindexed Total number of tweets indexed
Tdone Time when ingestion activity completes.

(b) Metric Definitions

Metric Definition
Instantaneous
Throughput (t)

(Nindexed(t)−Nindexed(t− w))/w,
w = 2 seconds

Ingestion Latency
(i)

Tindexed(i)− Tintake(i)

Ingestion Coverage Nindexed/Ntotal

this policy, if the rate of arrival of records (RA) does not decrease or the rate or processing (RP )

does not increase, the operator continues to be in the congested state, and its memory footprint

continues to increase. When the memory footprint reaches the threshold, the arriving records

cannot be staged in the operator’s input buffer and are required to be discarded, thus resulting in

data loss. Note that the upstream sender operator remains agnostic of the congested state of the

downstream operator and continues to send records at the regular rate. As such, it is isolated from

the congestion occurring downstream.

Figure 7.3 shows the instantaneous throughput plotted on a timeline for the Basic policy. The fig-

ure also cites the average ingestion latency (LAvg) during each workload-phase. It is desirable to

maximize the ingestion coverage (Table 7.1(b)), minimize the average ingestion latency for each

workload-phase and have TDONE ∼ TSTOP. During WMID, the rate of arrival of records at the com-

pute stage is ∼3000 twps, which is within the Compute LIMIT offered by the data ingestion pipeline.

As such, no excess records are created during this workload phase. This is also evident from a

low value of Average Latency (LAvg (WMID) = 0.65 seconds). However, with the beginning of the

WHIGH phase, the data arrival rate doubles to ∼6000 twps, which is twice the ComputeLIMIT offered
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Figure 7.3: Basic Policy

by the cluster. As RA is twice of RP , the excess records begin to accumulate (and wait) in the input

buffer associated with each operator belonging to the compute stage. This behavior results in an

increased value of Average Latency (LAvg(WHIGH) = 227.74 seconds) for records belonging to this

heavy-traffic high activity phase. During the final workload phase (WLOW), RA drops by a factor

of 4 and becomes half of RP . As RA < RP , the congested operator instances are able to pro-

cess the accumulated excess records and clear the backlog from the previous phase. As the excess

records from WHIGH are processed prior to the records arriving in WLOW phase, the records re-

ceived during the WLOW phase incur a longer waiting period resulting in a higher Average Latency

(LAvg(WLOW) = 396.49 seconds).

The Basic policy was able to ingest all records (ingestion coverage = 1.0) which is attributed to

the drop in RA during WLOW that provided an opportunity to process previous backlog, reclaim the

input buffer and thus reduce the memory footprint. In an adverse situation, if RA did not decrease,

the Basic policy would have resulted in crossing the memory budget threshold thus leading to data

loss arising from discarding of the excess records. Also note that TDONE exceeded TSTOP due to the

excess records created during WHIGH.
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7.3.2 Spill Policy

The Spill policy requires an operator to ‘spill’ to the local disk the excess records when the in-

memory input buffer has been exhausted and cannot be expanded further. As arriving records are

redirected to the local disk, the operator is given an opportunity to clear its backlog by processing

records from its input buffer thus reducing its memory footprint. As and when the input buffer has

empty slots, records from the spillage on disk are fetched into the input buffer for processing. Note

that the arriving records are processed in their order of arrival. The Spill policy allows the end-user

to limit the amount of spillage (measured as bytes on disk) to limit disk usage.

Figure 7.4: Spill Policy

Figure 7.4 shows the instantaneous throughput plotted on a timeline for the Spill policy. Excess

records are generated during the WHIGH workload phase when rate of arrival of records at the

compute stage exceeds the Compute LIMIT. As these are spilled to disk and thus made to wait, the

average ingestion latency – LAvg(WHIGH) – increases (123.78 seconds). The spillage also causes

TDONE to exceed TSTOP. Note that unlike the Basic policy, the Spill policy uses a cheaper resource

(local disk) for storage of excess records. This allows the operator to maintain a low memory

footprint and additionally provides a greater capacity for storage of excess records before a limit is
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reached, subsequent to which records would need to be discarded.

7.3.3 Discard Policy

The Discard policy follows a simplistic strategy of not processing any excess records by discarding

them altogether. Intuitively this can result in data loss resulting in a lower Ingestion Coverage .

Figure 7.5 plots the instantaneous throughput over a timeline when Discard policy was in use.

Figure 7.5: Discard Policy

During WMID, the rate of arrival of records is within the cluster ComputeLIMIT. This phase observes

a low value for ingestion latency (LAvg = 2.15 sec). In contrast the WMID results in generation of

excess records as rate of arrival of records far exceeds the cluster ComputeLIMIT. These records

are not made to staged in memory or the local disk. The average ingestion latency (LAVG remains

low during each of the workload phases. However the flip side is a low ingestion coverage of

0.66 which is indicative of a loss of a third of the ingested records. Note that since there isn’t any

backlog created during the heavy traffic WHIGH workload phase, TDONE equals TSTOP.
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7.3.4 Throttle Policy

The Throttle policy requires the rate of arrival of data at an operator to be dynamically regulated in

accordance with the processing capacity of the operator such that no excess records are generated.

This is achieved by periodic monitoring of the processing capacity of an operator (records/sec) and

sampling each arriving input data frame to effectively reduce the data arrival rate. Considering our

example workload, the processing capacity (RP ) for an operator belonging to the compute stage

is ∼ 300 records/sec . During the heavy traffic WHIGH phase, the rate of arrival of records at each

operator instance is 600 records/sec. The sampling rate (R′A) is determined by RP / RA, which is

0.5 in our example workload. This for each data frame, only one half of the records are retained

for processing via random selection.

Figure 7.6: Throttle Policy

Figure 7.6 shows the instantaneous throughput plotted on a timeline for the Throttle policy. The

average ingestion latency during each workload phase remains low, as operators are able to process

the input records without introducing any waiting delays.
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7.3.5 Elastic Policy

So far, we have described the use of buffering, spilling, discarding or throttling as mechanisms

for dealing with congestion. These mechanisms constitute ‘local’ resolution and remain hidden

from the upstream operators that continue to send data seamlessly. The downside of the described

mechanisms is a delay in processing of records (buffering/spilling) or a loss of some of them

altogether (discarding/throttling).

Congestion that occurs specifically due to application of an expensive UDF at the compute stage

can be cleared in yet another way – ‘global’ resolution. Congestion at an operator can be con-

sidered as a performance failure and recovering from it then involves increasing the degree of

parallelism at the operator. This requires re-structuring the ingestion pipeline. In an opposite sce-

nario, the data arrival rate at an operator can be less than the rate at whcih operator can consume

records (a.k.a processing capacity measured in terms of records/sec). In such a case, the degree of

parallelism for the operator (number of concurrent instances) can be reduced without causing any

congestion. The act of increasing the degree of parallelism is referred to as scaling-out whereas

the opposite act of reducing the degree of parallelism is referred to as scaling-in.

The Elastic policy allows for re-structuring of an ingestion pipeline in accordance with the rate of

arrival of data. Increasing or decreasing the parallelism during application of an UDF exploits the

stateless and therefore embarrassingly parallel nature of the UDF. Next we describe the mechanism

for such dynamic re-structuring (scaling in and scaling out) in both kinds of scenarios and study

the result obtained from running our test workload.

Elastic Scale-out Protocol

Recall that each operator in a data ingestion pipeline is an instance of the MetaFeed operator that

wraps around an inner operator a.k.a the core operator. Arriving data frames are processed by the
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core operator while the MetaFeed operator provides the functionality for dynamic monitoring of

data arrival rate, the input buffer and the data processing capacity of the enclosed core operator.

Such a design ensures that core operators remain simple and reusable for other Hyracks jobs, while

the common functionality (monitoring) is abstracted out and not repeated when implementing core

operators.

The MetaFeed operator reports a congested state of a compute operator to the local Feed Manager

(FM) together with the last measured values for RA and RP . Congested states occurring across the

cluster are reported by the FM at each worker node (Node Controller) to the Central Feed Manager

(CFM) located at the master node (Cluster Controller). The Central Feed Manager uses reported

values of RA and RP , to compute the required degree of parallelism at the compute stage, N ′, as

(avg(RA)/avg(RP )); such evaluation ensures that with the adjusted degree of parallelism (N ′), the

rate of arrival of records at an operator instance (at compute stage) is ∼ RP and thus the arriving

data can be processed without causing any congestion.

Subsequently, the Central Feed Manager forms a revised Hyracks job specification for the inges-

tion pipeline to reflect the increased degree of parallelism at the compute stage. In doing so, the

additional compute operator instances may run on idle nodes from the cluster or be scheduled on

the current set of nodes to utilize additional cores. The location constraints for other operators are

set in a way to ensure that the instances are located at their respective locations from the previous

run. The Central Feed Manager sends a message — STALL — to the respective Feed Manager

on each of the worker nodes (Node Controllers). The STALL message indicates the intention to

restructure the ingestion pipeline and is forwarded by each Feed Manager to each of the (local)

MetaFeed operator instances that are a part of the ingestion pipeline.

The responsive action taken by a MetaFeed operator instance differs based on the stage (intake,

compute, store) that it’s part of. At the intake stage, the MetaFeed operator instance switches to a

buffer-only mode where data records are held in memory and not forwarded to the compute stage.

This cuts off the flow of records downstream. At the compute and the store stages, the MetaFeed
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operator instances continue to consume the (existing) records from their respective input buffers.

The goal here is to drain the pipeline of any data frames such that the operators at the compute

and store stage become idle and are left with no pending data frames to process. At this stage,

the Central Feed Manager is notified and a revised pipeline is scheduled to run on the AsterixDB

cluster. Next, we describe how the revised pipeline resumes the flow of data.

Let Op
old(i)
stg denote the i′th instance of an operator that belongs to stage - stg - from the previous

(old) run. The corresponding operator from the restructured pipeline is denoted by Op
new(i)
stg . Note

that the location for Op
old(i)
stg is same as that for Op

new(i)
stg ∀stg ∈ (intake, compute, store). Further-

more, Op
old(i)
intake ∀i is in the buffer-only mode and Op

old(i)
compute and Op

old(i)
store ∀i do not have any pending

data frames to process. These instances are allowed to end gracefully and release any resources

(input buffers) back to the local pool for reuse. At the intake stage, Op
new(i)
intake takes ownership of

the input buffer associated with Op
old(i)
intake such that the records flowing into Op

old(i)
intake are now acces-

sible to Op
new(i)
intake . Op

new(i)
intake begins to forward the records downstream to the compute stage which

now has an increased degree of parallelism. In the event that the rate of arrival of records further

increases and causes a congestion at the compute stage, the Central Feed Manager is notified with

meta-information (RA and RP ) and the pipeline is revised using the mechanism, we just described.

Elastic Scale-in Protocol

Contrary to dynamically scaling out an operator, AsterixDB also provides for auto-scaling-in at

the compute stage, if the current degree of parallelism is greater than that required to handle the

flow of data. The possibility of reducing the degree of parallelism at the compute stage is evaluated

by monitoring of the arrival rate (RA), the processing rate (RP ) and the size of the input buffer at

each of the operator instances belonging to the compute stage. If RA < RP , then the degree of

parallelism at the compute stage can be reduced by a factor – NREDUCTION = RP/RA. However

scaling-in at the compute stage should only be triggered if it offers significant benefit by a sub-

stantial reduction in the number of employed operator instances. In AsterixDB, we follow a basic
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heuristic that triggers a scale-in only if NREDUCTION > 1.33. Expressed otherwise, scale-in is

triggered only if the degree of parallelism can be reduced by at least 25%. The threshold value for

NREDUCTION can be set as an ingestion policy parameter.

The mechanism for scaling-in is similar in part to the mechanism followed for scaling-out. The

Central Feed Manager sends a STALL message to the Feed Manager at each of the worker nodes

(Node Controllers). This message is then forwarded to each of the MetaFeed operator instances

running on each Node Controller by the local Feed Manager. As in the case of scaling-out, the data

ingestion pipeline is made to process all pending records while the intake stage restricts forwarding

of any received records downstream. At the stage when the compute and store stage are idle

(operators have empty input buffers), the Central Feed Manager is notified and a revised ingestion

pipeline (a Hyracks job) is scheduled to run on the cluster. The location for operators in the revised

pipeline is set in way such that intake and store stage completely overlap with the corresponding

locations in previous ingestion pipeline. The intake stage operator instances in the revised pipeline

take ownership of the input buffer from their corresponding instances from the previous execution.

Note that these input buffers are continuously being appended with records received from the

external data source. These records are now allowed to be sent downstream for processing at the

compute stage thus resuming normal flow of data, but with lesser degree of parallelism at the

compute stage.

Experimental Evaluation

We revisit our multi-phase workload experiment described in Section 7.3 and repeat it using ‘Elas-

tic’ as the feed ingestion policy. Figure 7.7 shows the instantaneous throughput plotted on a time-

line when the Elastic policy is in use. The figure also cites the average ingestion latency (LAvg)

during each workload-phase (WMID, WHIGH and WLOW) and the achieved ingestion coverage from

running the complete workload. During the initial phase (WMID) of the workload , the data arrival

rate is within digestible limit (Compute LIMIT) of the cluster with no observed congestion. However,
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as the data arrival rate increases (becomes twice) to 6000 twps, the degree of parallelism (10) at

the compute stage is insufficient to keep pace with the arriving data. The Elastic policy triggers

scale-out at this stage. The required degree of parallelism at compute stage is increased by a factor

that is given by dRA/RP e (which evaluates to d(6000/3000)e = 2).

Figure 7.7: Elastic Policy

The ingestion pipeline is restructured to have 20 compute operator instances at the compute stage

raising the Compute LIMIT of the cluster to 6000 twps. Each node then had two compute operator

instances that provided a better utilization of the cores (4) on each node. This change is observed

in Figure 7.7 at the beginning of WHIGH workload phase. Unlike any other policy, the instantaneous

throughput matches the rate of arrival of data during this phase. As the workload enters the low

traffic phase (WLOW), the data arrival rate falls much below the Compute LIMIT offered by the cluster.

In the quest to relinquish resources, the Elastic policy triggers a scaling-in at the compute stage

such that the offered Compute LIMIT (6000 twps) matches the data arrival rate (1500 twps). The

degree of parallelism at the compute stage is thus decreased by a factor of 4 with only 5 compute

operator instances at the compute stage.

The Elastic policy was evaluated to be superior to the rest. Dynamic scaling out of the compute
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stage to match the data arrival rate helped provide a complete ingestion coverage (1.0) as no data

records were required to be discarded. The average ingestion latency observed for each workload-

phase did not vary across the different workload phases, while the workload was still completed

with TDONE ∼ TSTOP.

7.4 Discard versus Throttle

The Discard policy and the Throttle policy are both closely related in the sense that both may result

in data loss and provide a lower value for ingestion coverage. However, there is a subtle difference.

With respect to the external data source, use of Discard policy can result in a continuous period

when none of the records received by AsterixDB are persisted. To understand and demonstrate

the difference, we conducted an experiment that involved a single instance of TweetGen and a 3

node AsterixDB cluster. We chose each stage of the data ingestion pipeline to not involve any

parallelism.

We configured the single instance of TweetGen to generate data as per the pattern shown in Figure

7.8. This pattern is similar to the workload pattern from our earlier experiment (Figure 7.2), but

with different values for the rate of arrival of data during the three workload phases – WMID, WHIGH

and WLOW. To cause congestion, we made use of a UDF that involved a busy spin loop to introduce

a per-invocation delay of ∼3 ms. Application of the UDF (with its ∼3ms execution time ) by a single

compute operator instance gave it a maximum processing capacity of ∼300 twps (which was also

the ComputeLIMIT), given that the compute stage did not have any parallelism. In the workload

(Figure 7.8), we have RHIGH > Compute LIMIT during WHIGH. This leads to congestion, a situation

where records cannot be processed at their rate of their arrival.

Each tweet was appended at the intake stage with an additional attribute – record ID – which was

chosen to be a monotonically increasing integer starting with 1. Following the data generation
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Figure 7.8: Rate of arrival of data

pattern, the TweetGen instance discontinued sending records at t = 180 secs. At this stage, we

examined the set of record IDs that were successfully persisted. We conducted the experiment

using both Discard and Throttle as the ingestion policy. Figure 7.9 illustrates the pattern formed

by plotting a value of 1 corresponding to a record ID (a monotonically increasing integer value) if

the record was persisted and 0 vice versa.

Next, we discuss the results.

• Discard:

During the workload phase – WMID, the rate of arrival of data (RA) is less than Compute LIMIT.

There is no congestion and as such all records received during this period are persisted.

Record IDs corresponding to the workload phase WMID belonged to the range (1-15000).

This resulted in a straight-line pattern till record ID – 15000. However, as we enter the

high-activity workload phase – WHIGH, RA increases beyond the Compute LIMIT resulting in

congestion. As dictated by the Discard policy, the excess records are discarded. The action

of discarding records results in period of time when no records are persisted. Discarding
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the arriving records also provides an opportunity to clear the existing backlog. Clearing the

backlog allows the arriving records to be processed and be persisted. However, as RA con-

tinues to exceed the Compute LIMIT during this workload phase, the lack of resources causes

records to be discarded. A repeated pattern is produced, as shown in Figure7.9.

Figure 7.9: Handling of excess records by Discard policy: Pattern formed by plotting a value of 1
for a persisted record ID and 0 otherwise

• Throttle:

The effects of the chosen ingestion policy come to play only during the high-activity work-

load phase — WHIGH, when the rate of arrival of data RA exceeds the ComputeLIMIT of the

cluster. Figure 7.10(a) summarizes the behavior when Throttle policy is chosen. During

WHIGH, the Throttle policy works by regulating the rate of arrival of data at the compute

stage (Note that data continues to arrive at the intake stage at its regular rate – 500 twps).

Each data frame is reduced to a smaller-sized random sample of the contained records to

effectively match the rate of arrival of data with ComputeLIMIT (300 twps) offered by the

cluster. The throttling behavior appears as persisted record IDs interspersed with the dis-

carded ones, as shown in the region – (10000 - 30000) on the record ID horizontal axis in
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Figure 7.10(a). The exact pattern is visible only when viewed under a higher resolution. Fig-

ure 7.10(b) illustrates the pattern, depicting it for a small range of record IDs (22000-22500)

to bring out the hidden detail.

(a) Pattern formed by plotting a value of 1 for a persisted record ID and 0
otherwise

(b) A high-resolution view of Figure 7.10(a) showing a smaller range of
records

Figure 7.10: Handling of excess records by Throttle Policy

Loss of data that corresponds to a continuous stretch of time may not be acceptable to the

overlying application that wishes to consume the persisted data. In contrast, the Throttle
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policy ensures that for every data frame, a fraction of the contained records (as determined

by RP/RA) are persisted. The different between Discard and Throttle policies in treatment of

excess records becomes less significant when the stages (compute, store) in a data ingestion

pipeline involve a higher degree of parallelism. This is because, the individual operator

instances at the compute or store stage apply the policy (Discard or Throttle) to their local

input and do so independently of other instances. There is no correlation between the set of

record IDs dropped across the multiple operator instances.

To demonstrate the subtle difference between the Discard and Throttle policies, we chose to

run the data ingestion pipeline without any parallelism at the intake, compute or the store

stage.

7.5 Comparison with Storm + MongoDB

An alternative way of supporting data ingestion is to ‘glue’ together a streaming engine (e.g.,

Storm) with a persistent store (e.g., MongoDB) that supports queries over indexed semi-structured

data. While Storm and MongoDB are popular for their respective functionality of streaming and

persisting/indexing data. However using systems together to combine their functionality doesn’t

necessarily translate to an efficient system. In this subsection, we intend to explore the combined

system and evaluate it using our artificial workload from Figure 7.2.

We begin by giving a brief overview of Storm and MongoDB and how the systems can be combined

to support data ingestion. A Storm dataflow offers spouts (that act as sources of data) and bolts

(that act as operators) that can be connected to form a dataflow. A spout implements a method,

nextTuple() that is invoked by Storm in a ‘pull-based’ manner for obtaining the next record from a

data source. However, this method is not compatible with the common scenario of a ‘push-based’

ingestion where data continues to arrive from the data source at its natural rate. To support push-

based ingestion, it is necessary to buffer the arriving records from the data source and then forward

134



them to Storm on each invocation of the nextTuple() method. Another strategy commonly used

by the community is to use yet another system — Redis, Thrift, or Kafka — as services (more

‘gluing’!) so that records can be pushed to them and then a spout can pull them.

The data records output by Storm can be directed to a persistent store such as MongoDB, that

forms a preferred choice in the open-source community for its support for semi-structured data

and the ability to construct indexes for faster query execution. In contrast to our declarative

support for defining/managing feeds, where the AsterixDB compiler constructs the dataflow, a

Storm+MongoDB user must programmatically connect together spouts and bolts and statically

specify the degree of parallelism for each. Storm does not offer elasticity, nor does it allow asso-

ciating ingestion policies to customize the handling of congestion and failures. Interfacing with

MongoDB requires the bolts to be parameterized with the locations of MongoDB Query Routers,

which are processes running on specific nodes in a MongoDB cluster that accept insert statements/-

queries. The end-user is thus required to understand the layout of the cluster and include specific

information in the source code.

Experimental Evaluation

We used our 10 node cluster to host Storm and MongoDB. Our ‘glued’ solution emulated the stages

from an AsterixDB ingestion pipeline. The constructed dataflow involves a pair of spouts, each

receiving records from a separate TweetGen instance. Each spout’s output is randomly partitioned

across a set of 10 bolts, one on each node. Each node also hosted a MongoDB Query Router to

allow the co-located bolt to submit an insert statement to the local Query Router. Each node also

hosted a MongoDB partition server. The MongoDB collection (dataset) was sharded (hashed by

primary key) across the partition servers.

MongoDB provides a varying level of durability for writes. The lowest level (non-durable) al-

low submitting records for insertion asynchronously with no guarantees or notification of success.
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The Storm+MongoDB coupling then acts as a pure streaming engine with minimal overhead from

(de)serialization of records. However, it becomes hard to reason about the consistency and dura-

bility offered by the system. The durable-write mode in MongoDB is a fair comparison with

AsterixDB, as it provides ACID semantics for data ingestion. However, to provide a complete

picture, we ran the workload of Figure 7.2 using both kinds of writes for MongoDB.

Figure 7.11: Instantaneous Throughput for Storm+MongoDB: Durable Write

The durable-write mode (Figure 7.5) in the Storm+MongoDB coupling provides complete inges-

tion coverage. However, when compared to Basic, Spill and Elastic policies from AsterixDB

(with similar ingestion coverage), the time taken for the ingestion activity to complete (TDONE -

TSTART) increased by a factor of ten — meaning that Storm+MongoDB coupling was unable to

keep up with the workload. The average ingestion latency observed in each workload-phase for

Storm+MongoDB compared with the Elastic policy was worse by two orders of magnitude. To iso-

late the cause, we switched to using non-durable writes (Figure 7.12) wherein the system behaves

like a pure streaming engine with a de-coupled unreliable persistent store (asynchronous writes).

We then obtained TDONE ∼ TSTOP. This ruled out inefficient streaming of records within Storm as

a possible reason for the low throughput.
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To better understand the results, we must consider the processing strategy used by MongoDB.

MongoDB optimized for maximum single-record throughput and write-concurrency but at the cost

of an increased wait time (∼50ms) per write when full durability is requested. This created conges-

tion at the output of the compute stage of our Storm+MongoDB combination and contributed to

the high latency and low ingestion throughput. The situation is expected to worsen when ‘at least

once semantics’ are required. Storm achieves such semantics by replaying a record if it does not

traverse the dataflow within a specified time threshold. Owing to an increased wait time per write,

additional failures would be assumed and records would begin to be replayed; this cycle can repeat

endlessly, leading to system instability.

Figure 7.12: Instantaneous Throughput for Storm+MongoDB: Non-Durable Write

7.6 Other Approaches to Dealing with Congestion

A data ingestion pipeline is similar to a stream processing dataflow in the sense that each represents

a directed acyclic graph with operators that represent computation and connectors that represent

different modes of exchange of data across operator instances. Congestion introduced in a data
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ingestion pipeline can also occur in a stream dataflow given the similar dynamic nature in terms

of fluctuating rate of arrival of data and application of expensive computations. Stream processing

engines (SPEs) too resort to elastic scale out of operators when the data cannot be processes at its

current rate of arrival. The elastic reconfiguration protocols can be classified as being operational

at an operator-level or at cluster-level. We discuss both strategies and compare with the approach

adopted in AsterixDB.

7.6.1 Load Shedding

As we have discussed, the rate of arrival of data may fluctuate in an unexpected manner, raising

the demand for resources and putting the system under stress where the available resources are no

longer sufficient. The ideal resolution in such a scenario is to add more resources in a dynamic

fashion. However, in general, adding more resources may not be feasible at runtime because of

multiple reasons. At first, one may not have additional hardware at disposal that could be added

to create additional worker nodes (e.g., Node Controllers in AsterixDB). Secondly, it may not be

financially feasible even in a cloud setting that offers a flexible ‘pay as you go’ model. Moreover,

the system used for processing of data may itself not have the ability to add worker nodes on the fly

and incorporate them in redistributing the load. Finally, the overlying data-driven application that

wishes to consume the ingested data may permit data loss and consider the error from executing

queries over incomplete data as being acceptable.

A popular method that is useful in such scenarios is Load Shedding, which in general terms is

defined as the process of dropping excess load from the system. The basic idea there is to not

process each and every data record. Data records could be dropped at different stages in a data

flow, but of course dropping them earlier reduces the wasted effort. AsterixDB offers two built-

in ingestion policies – Discard and Throttle – that allow an end-user to configure load shedding

as the method for resolving congestion. Load shedding is not a new idea. It has been widely
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studied in the fields of networking [45] and multimedia [22]. Adaptation of the method has also

been applied to Stream Processing Engines (e.g., [38]). The use of load shedding as a congestion

control mechanism in SPEs is worthy of a discussion given that both stream processing and data

ingestion involve dealing with ‘push-based’ data sources that do not offer an option to regulate the

rate of arrival of data from the source.

An SPE workload typically involves a known set of standing queries that are evaluated in a continu-

ous fashion over streams of moving data. In a scenario, where the queries are fixed, the requirement

for resources as a function of data arrival rate can be worked out using repeated experimentation

[38]. Each continuous query dataflow is then annotated with load coefficients that provide a method

to quantify the load on the system and compare it against the known capacity of the system ex-

pressed in similar units.

The overlying data-driven applications (that are also statically known) may express their require-

ments (QoS guarantees) in terms of bounds on fraction of data dropped and even declare what

kinds of data are not important for the application. For e.g., a sensor-driven application that mon-

itors heart-beats of patients in a hospital may assign more importance to outliers that represent

abnormal behavior. Such records may be required to preserve when choosing to discard records

during congestion. The load shedding approach adopted in [38] makes use of the inputs provides

by the overlying application in statically constructing a list of load-shedding plans (referred to as

Load Shedding Road Map – LSRM). Each LSRM describes the placement of drop operators in

the dataflow whose only purpose is to selectively drop records during periods of congestion. The

data arrival rate measured dynamically is used as input to determine the existing load and derive

the desired structure of the dataflow that would help resolve congestion.

In dealing with congestion in a data ingestion pipeline, AsterixDB does not assume static knowl-

edge of the workload in terms of number of feeds that would be active or the set of concurrent

queries that would compete for resources. In absence of any assumptions or knowledge gained

via controlled experimentation, the approach adopted in AsterixDB differs significantly as being
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dynamic in nature. AsterixDB resorts to runtime monitoring of each operator in a data ingestion

pipeline, the length of input buffers and the amount of memory allocated to each operator from the

configured budget.

7.6.2 Operator-Level Elasticity

Operator-level elasticity is targeted at dynamically tweaking the degree of parallelism used within

each instance of a given operator in processing the input. The total number of operator instances

executing across a cluster remains fixed in this strategy. An operator is modeled to have an input

queue for holding the arriving data, a set of worker threads that can do apply an embarrassingly

parallel task independently on each data record, a dispatcher thread that distributed input records

across the worker threads and an alarm thread that wakes up periodically to measure the processing

rate and determine if it is required to alter the degree of parallelism. The operator allocates a pool

of worker threads that remain suspended unless they are woken up when the operator needs more

threads, that is when it needs to increase the degree of parallelism. In an opposite act of scaling-in,

currently active worker threads may be suspended and returned to the pool.

An operator is periodically monitored to measure its performance measured as its rate of process-

ing of records (records/sec) at a given thread-level. The degree of parallelism (number of active

threads) is increased by one and the performance is re-evaluated. This cycle of increasing paral-

lelism and evaluating performance is repeated until a further increases causes the performance to

not change or decline. At this stage, the operator is said to be performing at its stable peak rate.

Any change in the workload or availability of resources results in drop in performance which is

detected in the next evaluation cycle. The elastic reconfiguration protocol does not attempt to in-

crease/decrease the number of operator instances that are running across a cluster. Instead it only

concerns itself in determining the optimal number of threads for each operator instance. As such,

the protocol does not benefit from idle machines lying elsewhere which are not hosting an instance
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of the operator, as it does not attempt to create new instances of the operator and restructure the

dataflow. A detailed description of this approach can be found in [? ].

7.6.3 Cluster-Level Elasticity

An alternate approach to elastic reconfiguration of a dataflow is to increase/decrease the number

of operator instances executing across a given cluster. This approach, also known as cluster-level

elasticity, allows for creating additional operator instances on nodes or relinquishing nodes by

eliminating operator instances and is also the approach adopted in AsterixDB. Another system

that follows a similar approach is StreamCloud [25]. StreamCloud is a stream processing engine

that support elastic scale-out/in of data flows that correspond to the execution of a continuous

query on streaming data. The elastic reconfiguration protocol in StreamCloud deals with stateless

operators (map, filter etc.) and stateful operators (aggregation, windowing etc.). Data ingestion

in AsterixDB does not involve the use of stateful operators such as aggregation. As such, the

common ground between the elastic configuration protocol followed by each system is the handling

of stateless operators. StreamCloud attempts to maintain the CPU utilization at each node within

statically configured upper and lower limits. An elastic scale-out is triggered when the average

CPU utilization across multiple nodes that are participating in a continuous query, increases beyond

the threshold. Likewise, the opposite action of scaling-in is triggered when the average CPU

utilization falls below the lower limit.

Triggering of a scale-out/in action on the basis of measurement of CPU utilization assumes that

there is a single query or data flow and that CPU is the bottleneck in its execution. In a dynamic

environment, where multiple queries are actively running, measuring of CPU utilization alone does

not provide sufficient information as to which particular query and its specific operator needs to

be elastically scaled-out (or scaled-in). Furthermore, a query may involve a user-defined-function

(UDF) that is blocked on network or disk. Tracking CPU utilization may actually give false alarms
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that trigger reconfiguration or may defer reconfiguration at times when it is required to alter the

degree of parallelism.

7.7 Summary

In this chapter, we discussed the undesirable scenario of data congestion wherein data arrival rate

exceeds the consumption capacity of the data ingestion pipeline. The inability of a data ingestion

facility to auto-detect and take corrective action can result in an unacceptable delay in persisting

data and making it available for querying by the overlying application. In the worst scenario, the

data store may never be able to catch pace with the external data source and may even cause the

external source to discontinue sending data (a policy followed by Twitter).

The strategy to deal with data congestion is largely determined by the requirements laid down by

the overlying application that wishes to consume the ingested data. In the case when ingesting

each received record is not a strict requirement, the end-user may choose the ‘Discard’ or ‘Throt-

tle’ policy and have a subset of the data be ingested with minimal delay (ingestion latency). In

contrast, for an application that does not permit losing records, an end-user can opt to use the

‘Spill’ or the ‘Basic’ policy, but with a downside of an increased ingestion latency. However, if the

introduced delays thereof are not acceptable, the ‘Elastic’ policy acts as a superior alternative that

provides for complete ingestion coverage with minimal ingestion latency. The caveat here is that

there is a limit to the achieved degree of parallelism, as determined by the number of cores in a

given cluster. However, in a pay as you go cloud-based environment, the ‘Elastic’ policy can pro-

vide the required scale-out by having the data ingestion facility add additional nodes dynamically.

AsterixDB, currently does not support dynamic addition of nodes to benefit from a cloud-based

environment.

In this chapter, we also brought to surface, an interesting result with respect to ‘gluing’ of other-
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wise efficient system to form an combined system that is capable of ingesting data. However, as

we observed, the combined uber system loses efficiency arising from the optimization techniques

adopted by involved systems that tend to work contrary to each other. We also looked at other

strategies for elastic reconfiguration that worked at the level of an operator and allowed a dynamic

number of threads to be utilized in the computation performed by each instance of the operator.
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Chapter 8

Use Cases

In this chapter, we briefly describe how the data ingestion facility in AsterixDB enables some of

the real-life scenarios that involve real-time data ingestion and that require ad hoc analyses of the

persisted data via queries. The goal of this chapter is to bring to light some of the practical use

cases for data ingestion.

8.1 Knowledge Base Acceleration

Knowledge bases (KB) ([14, 15]) have become indispensable sources of information. Specifically,

Wikipedia has been widely used in various information access contexts, including named entity

recognition and disambiguation, query modeling and expansion, question answering, entity link-

ing, and entity retrieval. In many of these cases, the role of a knowledge base, such as Wikipedia,

is to serve as a “semantic backbone”, a repository of entities and their relations.

Keeping up with changes and maintaining up-to-date knowledge is in everyone’s best interest.

However, this requires a continuous effort by the editors and content managers, and keeping up is

becoming increasingly demanding as information is being produced at an ever-growing rate. With
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this context in mind, Knowledge Base Acceleration (KBA) systems seek to help humans expand

knowledge bases like Wikipedia by automatically recommending edits based on incoming content

streams. Identifying content items, such as news articles, blog posts and other document sources,

that may imply modifications to the attributes or relations of a given target entity is one of the basic

steps to be performed by any KBA system.

As a prerequisite, a KBA system requires ingesting data from a variety of data sources, processing

and consolidating the collected data into a persisted indexed form. The data ingestion facility in

AsterixDB provides this required functionality and enables ad hoc analysis of the collected data

via its query language – AQL.

8.2 Publish-Subscribe

A Publish-Subscribe system allows messages from a sender to be delivered to interested receivers

where the set of receivers are not known to the senders and may grow and shrink dynamically.

Messages are characterized into classes, without knowledge of what, if any, subscribers there may

be. Similarly, subscribers express interest in one or more classes, and only receive messages that

are of interest, without knowledge of what, if any, publishers there are.

Consider a publish-subscribe system with end-users interfacing with the system using a mobile

device and creating and registering subscriptions using the device. The system will also have a set

of registered senders or data sources. The system is required to continuously ingest data from the

set of sources and have it be persisted and indexed. Querying the collected data allows retrieving

the required information that needs to be matched and disseminated to the set of interested sub-

scribers. In an extended version of such a system, the data arriving from external sources could be

augmented with additional information that adds value to the message. Such enriched data is also

referred to as “actionable data”, as it contains information that enables receiver to take necessary
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action. As an example, a user could subscribe to ‘events’ like accidents, fire, earthquakes, disas-

ters nearby. An augmented version of such a message would also include detours, information on

medical services etc.

The data ingestion support provided by AsterixDB can play a key role by enabling the collection

of data from external sources. Requests for registration and subscription for specific interests can

also be received and persisted as a data feed, as can dynamic situational information such as users’

locations. Such a “Big Active Data” system is currently under construction at UC Irvine and UC

Riverside, and feeds are providing the required “input side” functionality.

8.3 Analysis of a Twitter Feed

Twitter has proved to be a great data resource for a multitude of data analysis tasks ranging from

studying general user sentiment to predicting elections, crime, and flu trends across the globe. The

support for data ingestion in AsterixDB can enable continuous collection and storage of tweets.

The persisted and indexed data then allows for potential data analyses to train models and carry

out predictions for real-world applications.

Some applications being currently considered as part of ongoing project at UC Irvine include (1)

identifying and predicting high stress geographical areas over the United States, and (2) investi-

gating the usefulness of Twitter in predicting traffic accidents. After narrowing down to a specific

application, machine learning models (e.g., classification models) can be trained on the Twitter

data in AsterixDB to make future predictions on new incoming Twitter data. After a sufficient

time period, these models should be re-trained on the newly arrived twitter data to ensure that the

prediction models are current and have sufficiently high accuracy. As the data arrives via a feed,

the output from the prediction will be added to the tweets via a UDF and stored in AsterixDB

twitter datasets as additional fields of the same record, for future access and viewing.
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The requirement to maintain a reference state (the model) at each UDF and refresh the state dy-

namically introduces the need to support stateful functions and a mechanism that triggers the state

to refresh across each worker node in the compute tier (where the UDF is being applied) to be

reloaded.

8.4 Event Shop

Event Shop is a system being developed at UC Irvine that aims at enabling the real time detection of

events by analysis of social data feeds (Twitter), and environmental data such as weather, rainfall,

pollen count, wind speed, road traffic, and air quality data over different geographical areas of

interest. Additional sources of data include news articles, and personal activities such as sharing

of location on social media, etc.

The data of interest in Event Shop is spatio-temporal in nature and can be grouped into a buckets

in the time domain or into a two-dimensional grid structure based on latitude and longitude. Fur-

thermore, data sources often emit data at different granularities – (city, state, country) – along the

spatial domain and along the time domain (mins, hourly, daily). AsterixDB has built-in support for

spatio-temporal data, thus providing rich querying capability. The data ingestion support of As-

terixDB allows for interfacing with external sources and continuous collection of data. The Event

Shop project is now beginning to explore the use of AsterixDB in order to scale their system to

“Big Data” settings.

8.5 Summary

The amount of data that gets generated on a continuous basis has grown significantly, and it is

being further propelled by the notion of the Internet of Things (IoT) that enables devices to emit
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data and add to the ever-going data repository. The ability to be able to ingest data in real time and

offer rich querying support appears to have become the need of the hour. In this chapter, we have

provided a brief overview of only a few of the many data driven applications that can benefit from

the continuous ingestion support now provided by AsterixDB.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

We are living in an era of “Big Data”, which is a broad term for data sets being so large or complex

that traditional data processing applications are inadequate. Challenges include analysis, capture,

curation, search, sharing, storage, transfer, and visualization. The past decade has seen a phe-

nomenal rise in the quest to collect and analyze increasingly larger volumes of data. Data-driven

enterprises today view the ability to extract useful information from this influx of data as the key

to their success. A multitude of systems have been developed across industry and academia to

address the challenges imposed by the volume of data that needs to be processed and mined.

Apart from volume, data also has an associated velocity aspect as it continues to be generated from

a wide variety of sources in an uninterrupted fashion. Data that is being generated at a high rate

in a continuous fashion is typically referred to as Fast Data. The act of collecting and persisting

the data can be envisioned as producing a data repository that reaches the many terabyte scale (Big

Data) in due time and continues to grow beyond. Such a data repository is often classified as an

example of Big Fast Data. It is desired to subject the collected data to ad hoc queries that involve
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a mix of joins, aggregation, group-by and sort operations. Such ad hoc analyses in a typical setting

enables overlying applications that generate reports and summaries, provide visualizations over

time, and facilitate complex tasks such as data mining and detecting anomalies. Such analyses

go beyond the typical analysis done as part of “stream processing”, which restricts the analysis to

smaller sets of data (e.g., a five-minute window of data) and does not provide an opportunity for

offline ad hoc retrospective processing.

To enable efficient analysis of Big Fast data, it is required for a data management system to allow

for continuous ingestion of data such that there is minimal delay introduced in making the data

queryable via indexes. In this thesis, we have described the support for continuous data ingestion

in AsterixDB, a Big Data Management System (BDMS) that allows storage and analysis of semi-

structured data. AsterixDB has a built-in notion of a data feed, which is defined as the flow of data

from an external source into indexed storage inside a data management system. The thesis provided

a detailed description of the concepts involved in data feed management and efficiently and reliably

managing the flow of data. It included a detailed description of the design, implementation, and

physical aspects involved in building a scalable, fault-tolerant, and elastic data ingestion facility.

In this work, we have emphasized the need for the genericity and flexibility offered by a data in-

gestion facility in interfacing with a wide variety of data sources and formats. We have shown how

a data feed can be managed by associating an ingestion policy that controls the systems runtime

behavior in response to failures and resource bottlenecks. We have included an experimental eval-

uations that studied the role of different ingestion policies in determining the behavioral aspects

of the system, including the achieved, throughput latency, and effectiveness at data capture We

also reported experiments to evaluate scalability and our approach to fault-tolerance. The thesis

also included a brief evaluation of a “current day” solution created by coupling Storm (a popular

streaming engine) and MongoDB (a popular persistent store) to draw a comparison with Aster-

ixDB in terms of flexibility and scalability achieved in data feed management. We demonstrated

and described the inefficiencies involved in gluing together such otherwise efficient systems.
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Throughput this thesis, we have emphasized the need for “native” (built-in) support for data in-

gestion in a data management system; a thought that is contrary to the currently accepted practice

of ‘gluing’ together multiple systems as a means to achieve similar result. AsterixDB treats data

ingestion as a first class citizen. It abstracts the underlying details and intricacies involved in data

flow management and presents only a logical view to the end-user that allows modeling and man-

aging data feed(s) in a declarative way at a language-level. AsterixDB is available as open-source

software [2] and all of the work describe here will be released in that form in second quarter of

2015. The support for data ingestion in AsterixDB is extensible to enable future contributors to

provide custom implementations of different modules.

9.2 Future Work

We have developed end-to-end support for data ingestion that is scalable and fault-tolerant. In this

section, we present some of the natural extensions to our work.

9.2.1 Continuous Queries

The data ingestion facility is AsterixDB in scalable and fault-tolerant and allows ad hoc analysis

of persisted (indexed) data via its query language (AQL). AQL supports analytical queries thay

may involve aggregation, joining or sorting of data. Analytical queries over data peristed by data

feeds enable historical analysis of data as old data is not discarded and thus remains visible for

processing by queries. Such a model is in contrast to the stream processing model, where data is

considered transient and retained in memory for a short (typically fixed) duration where it can be

included as part of the result for a query. The queries in that model are often termed as standing

continuous queries that constitute a pre-defined query set.

Data ingestion involves constructing a data flow that allows data from an external source to flow in
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a continuous manner prior to being persisted into an indexed storage. The AsterixDB data ingestion

framework provides an opportunity for both models – continuous standing queries on moving data

and ad hoc queries over persisted indexed data – to co-exist and address diverse analysis allows

treating data differently as it moves through the data flow and gets deposited into indexed storage.

Such architecture is popularly known as the Lambda Architecture [42] and is designed to handle

massive quantities of data by taking advantage of both batch- and stream-processing methods. This

approach to architecture attempts to balance latency, throughput, and fault-tolerance by providing

comprehensive and accurate analysis of persisted data, while simultaneously using real-time stream

processing to provide views of online data.

The AsterixDB Query Language (AQL) offers a rich support for ad hoc analytical queries. A

natural extension to it would be the support for continuous queries and windowing queries.

9.2.2 Data Replication

AsterixDB does not yet support data replication. Data native to AsterixDB – the target for feeds

– is stored in datasets that are horizontally partitioned on the basis of their primary key (hash).

Having a single replica of each partition of a dataset adds vulnerability, as a node failure translates

to unavailability of data. Data replication is a necessity in typical large deployments which involve

commodity hardware that is prone to failures. Data replication of course is faced with the challenge

of synchronizing the replicas to present a consistent view of data. Solutions to replication come in

two variants – synchronous replication and asynchronous replication. The former strives to keep

replicas in sync at all times by having each write request to be propagated to all replicas and mark-

ing an operation as complete when all replicas have successfully recorded the change. In contrast,

asynchronous replication completely decouples the replicas, and as each is allowed to be out-of-

sync and process write requests at their own pace without impacting other replicas. Synchronous

replication favors consistency over write-latency, whereas asynchronous replication offers a loose
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definition of consistency (aka eventual consistency) and optimizes for write-throughput.

The challenges faced when replicating data (synchronously or asynchronously) are aggravated in

an environment that involves continuously arriving high-velocity data. A high rate of arrival of

data requires highly optimized writes. Asynchronous replication is expected to offer a higher

write-throughput when compared to synchronous replication. However substituting a lost dataset

partition by an in-sync replica becomes a challenge as replicas are allowed to diverge during normal

operation. As part of future work, we wish to support data replication and address the aforemen-

tioned challenges that surface when ingesting high-velocity data into AsterixDB datasets via data

feeds. Also of interest are the opportunities that replication and its infrastructure might offer for

extending the elasticity of data feeds into the storage layer.
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Appendices

A Feed Management Console

AsterixDB provides a Feed Management Console that enlists the set of connected feeds in As-

terixDB. For each listed field, the console shows information that includes the start timestamp,

target dataset, set of nodes participating at each stage (intake, compute, store) of the data inges-

tion pipeline. In addition the aggregate rate of inflow of data records at the intake stage (referred

hereafter as intake rate) and the rate of persistence of records at the store stage (referred hereafter

as store rate), each measured in terms of records/sec. Figure A.1 shows a screen shot of the Feed

Management Console that lists a pair of feeds in the connected state.

A part of the information shown per connected feed is static and includes the name of the feed and

the target dataset. The scheduling information that shows the location for each operator instance

may change over time if the parts of the data ingestion pipeline are re-structured (to resolve con-

gestion) or re-located (to resolve hard failures). Other dynamic information includes the intake

rate and store rate. Each operator at the intake and the store stage reports these metrics to the local

Feed Manager, which subsequently forwards them to the Central Feed Manager, where these are

aggregated.

The Feed Management Console simply provides a read-only view of the connected feeds. We are

currently working on enabling the end-user to manage lifecycle for a feed using the console.
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Figure A.1: A screen shot of the Feed Management Console that shows a pair of connected feeds.
The primary TwitterFeed retrieved records from Twitter using the streaming API which offers a
low rate of arrival of data. For each feed, the physical nodes participating at the intake compute and
store stages are shown. The respective instantaneous rates at which data is received and persisted
are also shown.

B Writing a Custom Adaptor

Feed adaptors in AsterixDB are pluggable components that can be custom built by end-users to

cater to their specific needs. In this section, we illustrate how an end-user can write a custom

adaptor, package it as being part of an AsterixDB library and install it with an AsterixDB instance.

The basic API implemented by each adaptor is shown in Listing B.1. The API is low-level and

requires understanding of the binary format used within AsterixDB to represent a data record.

To abstract away the low-level details and ease the task of writing a custom adaptor, AsterixDB

provides default implementation of the API that only requires the end-user to implement high-

level APIs that do not require significant knowledge of the internals of AsterixDB. We discuss this

abstraction next in context of a push and pull based feed adaptor. Recall that we classify a feed

adaptor as being push or pull based depending upon how it communicates with the data source for

transfer of data.
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/**
* Triggers the adapter to begin ingesting data from the external source .
*
* @param partition
* The adapter could be running with a degree of parallelism .
* partition corresponds to the i ’ th parallel instance .
* @param writer
* The instance of frame writer that is used by the adapter to
* write frame to . Adapter packs the fetched bytes (from
* external source) , packs them into frames and forwards
* the frames to an upstream receiving operator using the
* instance of IFrameWriter.
* @throws Exception
*/

public void start ( int partition , IFrameWriter writer ) throws Exception;

Listing B.1: Basic API required to be implemented by a Feed Adaptor

B.1 Push-Based Adaptor

A push-based adaptor makes an initial request to the data source to establish a connection and

provide any configuration parameters for the connection. Thereafter, the data source begins to send

data to the adaptor instance without requiring any additional requests. Data from a push-based data

source is typically made available via a channel (an instance of InputStream) that provides access

methods to retrieve the next byte. The sequence of bytes delivered on the InputStream needs to

be parsed to construct the equivalent representation of data records in ADM format. AsterixDB

provides a collection of built-in data parsers for popular formats that include delimited-text (e.g.,

CSV), ADM and JSON. If the data source uses a different format, AsterixDB allows end-users

to use a custom parser implementation. The format for data and the parser implementation (in

case when specified format is not natively supported by AsterixDB) are specified as configuration

parameters alongside the feed adaptor as part of the create feed AQL statement.

To cater to this common case where data is received on an instance of InputStream, AsterixDB

provides an abstract class – StreamBasedAdaptor that hides away much of the complexity involved
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public class MyPushBasedAdaptor extends StreamBasedAdaptor {

@Override
public InputStream getInputStream( int partition ) throws IOException {
InputStream in = /*code to obtain input stream from data source*/ ;

return inputStream;
}

}

Listing B.2: An example implementation of a push-based feed adaptor that extends the built in
StreamBasedAdaptor

in retrieving and parsing bytes from the stream and translating them to ADM formatted records.

Listing B.2 shows a custom adaptor that extends StreamBasedAdaptor and is required to override

the method getInputStream(). The base class StreamBasedAdaptor takes care of constructing ADM

records, packing them as data frames and sending the frames downstream.

B.2 Pull-Based Adaptor

A pull-based adaptor works by polling the data source for additional data and thus involves re-

peated request messages exchanged between the adaptor and the source. Similar to the case of a

push-based adaptor, AsterixDB provides much of the functionality contained in the abstract class

-PullBasedFeedAdapter. In pull-based data ingestion, AsterixDB as a receiver needs to initiate

a request it wishes to receive data. As AsterixDB remains agnostic of the intricacies involved in

interfacing with the external source, it relies on a IFeedClient implementation that contains the

required functionality of creating a request and receiving data as a response from the external

source. Note that the IFeedClient implementation is specific to the data source. Listing B.3 shows

the IFeedClient interface. End-users may simply write a custom implementation for IFeedClient

interface and use it in a custom adaptor. Listing B.4 shows an example pull-based adaptor that uses

a custom implmentation (Listing B.3) of IFeedClient.
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public interface IFeedClient {

public enum InflowState {
/** all data from the data source has been received **/

NO MORE DATA,

/** new data was received from the data source **/
DATA AVAILABLE,

/** no more data is expected from data source ; end of feed **/
DATA NOT AVAILABLE

}

/**
* Writes the next fetched tuple into the provided instance of DatatOutput .
* Invocation of this method blocks until new tuple has been written or
* the specified time has expired .
*
* @param dataOutput
* the output channel used by a feed client to write ADM
* records .
* @return InflowState
* the state of the data source
* @throws AsterixException
*/

public InflowState nextTuple(DataOutput dataOutput) throws AsterixException ;

}

Listing B.3: The IFeedClient interface

public class MyPullBasedAdaptor extends PullBasedAdaptor {

@Override
public IFeedClient getFeedClient ( int partition ) throws Exception{

return new MyFeedClient(..) ;
}
}

Listing B.4: An example implementation of a pull-based adaptor that extends the built-in
PullBasedAdaptor and provides the required implmentation of the abstract method - getFeedClient.
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public class MyFeedClient implements IFeedClient {

public InflowState nextTuple(DataOutput dataOutput , int timeout) throws AsterixException
{
/** construct the next tuple (ADM Record) and write its

serialized form to the DataOutput instance
**/
return /* instance of Inflow state as appropriate */
}

}

Listing B.5: An example implementation of the IFeedClient interface (Listing B.3)

B.3 AdaptorFactory

Following the factory design pattern, an adaptor has an associated AdaptorFactory that allows

creation and configuration of an adaptor instance. The factory is an implementation of the IAdap-

torFactory interface and contains getters that provide AsterixDB with the following information.

• Alias or Name of the Adaptor: This is the unique name for the adaptor by which it will be

referred to in AQL statements.

• Count/Location Constraints: The number of parallel instance (count constraint) and any

specific set of locations (AsterixDB nodes) where the adaptor instances are required to run.

• Output Datatype: The datatype that is representative of the data received from the data

source.

In addition, an adaptor factory also provides the configure method that allows AsterixDB to initial-

ize an adaptor instance with the set of configuration parameters, passed as part of the create feed

AQL statement.
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C Writing an External Java Function

AsterixDB allows pluuging in an external Java function for its use within AQL statements or

queries. In this section, we provide an overview of the support for Java UDFs and illustrate how

one may define a custom UDF with an example.

A Java UDF has a lifecycle and is required to implement the IExternalScalarFunction interface.

The specific methods required to be implemented are initialize(), evaluate() and deinitialize() that

allow AsterixDB to manage the lifecycle of a Java UDF and invoke it with the required set of

arguments.

• initialize(): The initialize() method is called only once prior to any invocation of the UDF by

AsterixDB. This method allows the UDF to perform any sort of initialization that is required

before it becomes usable for invocations.

• evaluate(): The evaluate() function contains the actual computation that the function per-

forms on each input record.

• deinitialize() The deinitialize() method is invoked as part of cleanup or tear down where any

resources (e.g. file handle(s), connection(s), etc.) used by the function are relinquished.

The lifecycle of a Java UDF consists of an invocation of the initialize() method followed by one

or more invocations of the evaluate() method and eventually the invocation of the deinitialize()

method. As described before, a Java UDF forms a pluggable component that is installed with

an AsterixDB instance by packaging into an AsterixDB library. Relevant information about the

UDF including the type associated with its arguments and return value is captured as an entry

in the descriptor XML that is associated with the library. Listing D.14 shows an example UDF

implemented in Java.

The relevant information about the UDF as included in the library descriptor XML is shown in
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Listing D.7. As defined in the descriptor, the function operates on an input record of type Tweet

and returns as output, a record of similar type. The function collects the hash tags contained in the

message-text attribute of the input tweet and collects them into an ordered list that is appended as an

additional attribute to the tweet. Note that the data in AsterixDB is represented using the AsterixDB

Data Model (ADM) which is different from the data model followed in Java. AsterixDB provides a

binding that includes a one-to-one mapping between ADM data types (records, lists, and primitive

types such as int, long, string etc.) and their equivalent representative types that are meant to be

used when implementing an external UDF. The binding ensures backward compatibility wherein

existing UDFs need not be recompiled to work with future versions of AsterixDB that may bring

changes to the AsterixDB data model.

D Installing a Pluggable - Adaptor/Function

Pluggable components such as a user-defined feed adaptor or a java function need to be packaged

as an AsterixDB library and installed with an AsterixDB instance before these can be used in AQL

statements. This section describes the steps for packaging and installation of an AsterixDB libary.

An AsterixDB library has a pre-defined structure which has the following components.

• Jar File: The source code for the user-defined function or feed adaptor is compiled into class

files that need to packaged as jar file.

• Library Descriptor An AsterixDB library contains a descriptor document (XML file) that

contains essential information about the contents of the library, that is the set of functions

and/or feed adaptors that will be installed. As part of installation, relevant information about

each installed artifact is extracted and put into the AsterixDB Metadata. Listing D.7 shows

an example library descriptor that describes a pair of library function (hashTags) and a feed

adaptor (MyAdaptor) as the components that need to be installed.
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package edu.uci . ics . asterix . external . library ;

import edu.uci . ics . asterix . external . library . java . JObjects .JRecord;
import edu.uci . ics . asterix . external . library . java . JObjects . JString ;
import edu.uci . ics . asterix . external . library . java . JObjects . JUnorderedList ;
import edu.uci . ics . asterix . external . library . java .JTypeTag;

public class HashTagsFunction implements IExternalScalarFunction {

private JOrderedList list = null ;

@Override
public void initialize ( IFunctionHelper functionHelper ) {

list = new JOrderedList( functionHelper . getObject (JTypeTag.STRING));
}

@Override
public void evaluate ( IFunctionHelper functionHelper ) throws Exception {

JRecord inputRecord = (JRecord) functionHelper .getArgument(0);
JString text = ( JString ) inputRecord.getValueByName(”message−text”);

String [] tokens = text . getValue () . split (” ”) ;
for ( String tk : tokens) {

if ( tk . startsWith (”#”)) {
JString newField = ( JString ) functionHelper .

getObject (JTypeTag.STRING);
newField. setValue ( tk ) ;
list .add(newField);

}
}
inputRecord. addField(” topics ” , list ) ;
functionHelper . setResult (inputRecord) ;

}

@Override
public void deinitialize () {
}

}

Listing C.6: An example Java UDF
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<externalLibrary xmlns=”library”>
< libraryFunctions>

< libraryFunction>
<language>JAVA</language>
<function type>SCALAR</function type>
<name>hashTags</name>
<arguments>Tweet</arguments>
<return type>ProcessedTweet</return type>
< definition>edu.uci. ics . asterix . external .udf .HashTagsFunctionFactory
</ definition >

</ libraryFunction>
</ libraryFunctions >
<libraryAdapters>
<libraryAdapter>

<name>tweetgen adaptor</name>
< factory class >edu.uci. ics . asterix . external . library . adaptor .TweetGenAdaptorFactory

</factory class>
</ libraryAdapter>

</ libraryAdapters>
</ externalLibrary >

Listing D.7: An example library descriptor XML. The library contains a Java UDF and a feed
adaptor as the components that get installed as part of the library.

• Dependency Jars If the user-defined component requires additional dependency jars, these

are added a “lib” directory and are made available at runtime.

A library is a zip archive with contents as described above. Listing D.8 shows the contents of an

example library (tweetlib.zip) that contains a Java UDF and a feed adaptor as the components that

need to be installed. The library contains the class files packaged as twitter components.jar and a

library descriptor xml (tweet.xml) which is identical to the XML shown in Listing D.7.

Next, we describe the steps involved in installing a library archive (zip bundle) with an AsterixDB

instance. We assume here that an AsterixDB instance by the name “my asterix” exists. A detailed

description on how to set up an AsterixDB instance is beyond the sceope of this document, but the

reader may find the instructions at Managix - Creating and Managing an AsterixDB instance.

AsterixDB offers a management tool – Managix that allows end-user to create an AsterixDB in-
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$ unzip −l ./ tweetlib . zip
Archive: ./ tweetlib . zip

Length Date Time Name
−−−−−−−− −−−− −−−− −−−−

760817 04−23−14 17:16 twitter components . jar
405 04−23−14 17:16 tweet.xml

−−−−−−−− −−−−−−−
761222 2 files

Listing D.8: Contents of an external library zip bundle as listed using the unzip command

stance, manage its lifecycle and perform management operations that includes (un)installation of

AsterixDB library. The steps to install a library are as follows.

• Step 1: Stop the AsterixDB instance if it is in the ACTIVE state.

$ managix stop −n my asterix

Listing D.9: Stopping an AsterixDB instance using the managix stop command

• Step 2: Install the library using Managix install command.

For illustration purpose, we use the help command to look up the syntax.

$ managix help −cmd install
Installs a library to an asterix instance .

Arguments/Options
−n Name of Asterix Instance
−d Name of the dataverse under which the library will be installed
−l Name of the library
−p Path to library zip bundle

Listing D.10: Using the managix help command to output the usage of any managix comman. In
the current listing we use the install command as an example.

Above is a sample output and explains the usage and the required parameters. Each library

has a name and is installed under a dataverse. We provide a name for our library - ”tweetlib”,
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but ofcourse, you may choose another name. To install the library, use the Managix install

command. An example is shown below.

$ managix install −n my asterix −d feeds −l tweetlib −p <put the absolute path of the
library zip bundle here>

Listing D.11: Using the managix install command to install an external library into an AsterixDB
instance

You should see the following message:

INFO: Installed library tweetlib

Listing D.12: Example output obtained on using the managix install command to install a library

We shall next start our AsterixDB instance using the start command as shown below.

$ managix start −n my asterix

Listing D.13: Starting an AsterixDB instance using the managix start command

You may now use the AsterixDB library in AQL statements and queries. To look at the installed

artifacts, you may execute the following query at the AsterixDB web-inerface.

for $x in dataset Metadata.Function
return $x

for $x in dataset Metadata.Library
return $x

Listing D.14: A set of queries to extract the metadata information on the installed functions and
libraries.
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