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ABSTRACT OF THE THESIS

Compact Factorization of Matrices Using Generalized Round-Rank

By

Pouya Pezeshkpour

Master of Science in Electrical Engineering

University of California, Irvine, 2018

Professor Sameer Singh, Chair

Matrix factorization is a popular machine learning technique, with applications in

variety of domains, such as recommendation systems [16, 28], natural language pro-

cessing [26], and computer vision [10]. Due to this widespread use of these models,

there has been considerable theoretical analysis of the various properties of low-rank

approximations of real-valued matrices, including approximation rank [1, 5] and sample

complexity [2].

Rather than assume real-valued data, a number of studies (particularly ones on prac-

tical applications) focus on more specific data types, such as binary data [23], integer

data [17], and ordinal data [12, 30]. For such matrices, existing approaches have used

different link functions, applied in an element-wise manner to the low-rank represen-

tation [21], i.e. the output Ŷ is ψ(UTV) instead of the conventional UTV. These

link functions have been justified from a probabilistic point of view [4, 27], and have

provided considerable success in empirical settings. However, theoretical results for

linear factorization do not apply here, and thus the expressive power of the factoriza-

tion models with non-linear link functions is not clear, and neither is the relation of

the rank of a matrix to the link function used.
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In this work, we first define a generalized notion of rank based on the link function ψ,

as the rank of a latent matrix before the link function is applied. We focus on a link

function that applies to factorization of integer-valued matrices: the generalized round

function (GRF), and define the corresponding generalized round-rank (GRR). After

providing background on GRR, we show that there are many low-GRR matrices that

are full rank1. Moreover, we also study the approximation limitations of linear rank, by

showing, for example, that low GRR matrices often cannot be approximated by low-

rank linear matrices. We define uniqueness for GRR-based matrix completion, and

derive its necessary and sufficient conditions. These properties demonstrate that many

full linear-rank matrices can be factorized using low-rank matrices if an appropriate

link function is used.

We also present an empirical evaluation of factorization with different link functions for

matrix reconstruction and completion. We show that using link functions is efficient

compared to linear rank, in that gradient-based optimization approach learns more

accurate reconstructions using a lower rank representation and fewer training samples.

We also perform experiments on matrix completion on two recommendation datasets,

and demonstrate that appropriate link function outperform linear factorization, thus

can play a crucial role in accurate matrix completion.

1We will refer to rank of a matrix as its linear rank, and refer to the introduced generalized rank
as link -rank.
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Chapter 1

Matrix Factorization and

Recommendation Systems

Matrix factorization is a commonly used method to represent data in a very compact

form and simply defined as finding out two (or more) matrices such that when you

multiply them together you will get back the original matrix. The intuition behind

using matrix factorization to represent data in a compact form is that there should be

some latent features that determine how rows and columns of the matrix related to

each other. Accordingly, if we decompose a matrix Y ∈ Rn×m as:

Y = UVT (1.1)

Where U ∈ Rn×r and V ∈ Rn×r, we can represent all of the n ×m entries of matrix

Y with only r × (n+m) entries of matrices U and V which result in a very compact

representation if we consider a small enough value for r. The only Achilles’ heel of

this approach is the fact that although choosing a smaller value for r will provide a
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more compact representation, but will increase the error in the predictions as well.

Accordingly, since real world matrices are very big and sparse representing them with

a small r will produce a very erroneous prediction. As a result, providing a more

compact representation, without increasing the error is of high importance. The goal

of this work is to provide this very compact representation.

In this work, after studying the back ground of matrix factorization to provide a more

compact representation, we define a generalized notion of rank based on the link func-

tion ψ, as the rank of a latent matrix before the link function is applied. We focus on

a link function that applies to factorization of integer-valued matrices: the generalized

round function (GRF), and define the corresponding generalized round-rank (GRR).

Accordingly, the goal is instead of applying matrix factorization to the high rank orig-

inal matrix, firstly map this matrix to a lower rank matrix (using GRF−1 function).

Then, after applying matrix factorization on the new matrix, use GRF function to

attain the original matrix. The idea of using GRR-based factorization is comming

from the fact that we can show there are many low-GRR matrices that are full rank.

Furthermore, to better understand the essence of our model, we define uniqueness for

GRR-based matrix completion, and derive its necessary and sufficient conditions.

We also present an empirical evaluation of factorization for matrix reconstruction and

completion. We show that using link functions is efficient compared to linear rank, in

that gradient-based optimization approach learns more accurate reconstructions using a

lower rank representation and fewer training samples. We also perform experiments on

matrix completion on two recommendation datasets, and demonstrate that appropriate

link function outperform linear factorization, thus can play a crucial role in accurate

matrix completion.
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Figure 1.1: Representation of matrix factorization

1.1 Matrix Factorization: Linear Rank and Matrix

Completion

Matrix factorization, broadly defined, is a decomposition of a matrix as a multiplication

of two matrices. A simple representation of matrix factorization is depicted in figure 1.1.

Accordingly, rank of a matrix Y ∈ Rn×m defined as the smallest natural number r such

that:

Y = UVT , or,Yij =
∑
k

UikVjk (1.2)

where U ∈ Rn×r and V ∈ Rn×r. We use r(Y) to indicate the rank of a matrix Y.

Accordingly, one of the most important applications of matrix factorization is matrix

completion problem which is defined as follows.

3



Figure 1.2: Example of matrix completion

1.1.1 Matrix Completion

Matrix completion is the task of filling in the missing entries of a partially observed

matrix. Thus matrix completion often seeks to find the lowest rank matrix or, if the

rank of the completed matrix is known, a matrix of rank r that matches the known

entries. A simple example of matrix completion is presented in figure 1.2 with the

assumption that the rank of the matrix is equal to one. Accordingly, to be able to

complete the original matrix we consider a number of assumptions on the observed

entries.

Uniform sampling of observed entries: To simplify the analysis of matrix com-

pletion problem, it is often assumed that the set of observed entries of the matrix is

sampled using Bernoulli sampling, i.e. each entry being observed with the probability

of p. Accordingly, by choosing p = N/(nm) (where N is desired expected cardinality

of observed entries) we can have a good approximation of uniform sampling.

Lower bound on number of observed entries: Along the same line, we can prove

the following known information theoretic lower bound on the number of observed
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entries so the matrix can be uniquely reconstructed.

Theorem 1.1.1. For a given matrix Y ∈ Rn×m with rank r and and assuming that

r � {m,n}, the lower bound on the number of observed entries to be able to uniquely

reconstruct matrix Y is on the order of O(nr log n).

Proof. We first need to find the number of degrees of freedom (the number of param-

eters of the matrix that may vary independently) of the matrix. To do so, let’s fill

the first r columns of the matrix with n degrees of freedom for each column, which

result in linearly independent columns. We can now choose the remaining columns to

be linear combinations of the first r columns. This gives r degrees of freedom for each

column, namely the r coefficients of the linear combinations. As a result, the degrees

of freedom will be equal to:

nr + r(m− r) ≤ 2nr − r2 (1.3)

with assumption that m ≤ n.

Secondly, there must be at least one observed entry per row and column of Y. The

Singular Value Decomposition of Y is given by UΣVT . If row i does not have any

observed entry, it is easy to see the ithe row of V, Vi, can be changed to some arbitrary

value and still yield a matrix matching Y over the set of observed entries. The same

argument is applicable to any column of Y as well. Furthermore, if we assume Bernoulli

sampling of the observed entries, the Coupon collector effect implies that entries on

the order of O(n log n) must be observed to ensure that there is an observation from

each row and column with high probability.

Combining these necessary conditions we can prove the theorem.

5



1.1.2 Gradient-Based Algorithm for Matrix Completion

Having discussed the intuition behind matrix factorization, we can now provide a

gradient-based algorithm for matrix completion. Let’s assume we want to complete a

matrix Y ∈ Rn×m with a set of N observed entries E and rank r. Approximating Y

as multiplication of two matrices U ∈ Rn×r and V ∈ Rm×r we will have:

Ŷij = Ui ×VT
j =

r∑
k=1

UikVjk (1.4)

Now to approximate Y we just need to find U and V. To do so, we first initialize the

two matrices with some values, calculate how different their product is to Y, and then

try to minimize this difference iteratively using gradient descent method. Accordingly,

The difference here can be calculated by the following equation:

e2ij = (Yij − ˆY ij)2 = (Yij −
r∑

k=1

UikVjk)
2 (1.5)

To minimize this error, we have to modify the values of Uik and Vkj in a direction

which has the most reduction. In other words, we need to know the gradient at the

current values, and therefore we differentiate the above equation with respect to these

two variables separately:

σ

σUik

e2ij = −2eijVjk (1.6)

σ

σVjk

e2ij = −2eijUik (1.7)

6



Figure 1.3: Representation of recommendation system model as matrix completion
task.

Having obtained gradient, we can now formulate the update rules for Uik and Vjk:

Unew
ik = Uik + 2αeijVjk (1.8)

Vnew
jk = Vjk + 2αeijUik (1.9)

Where α is a constant which determine the size of our steps in each iteration.

1.2 Recommendation Systems

The goal in the recommendation systems is to predict a rating that a user (customers,

visitors, app users, readers) may give to an item (products, movies, events, articles) or

vice versa. To do this prediction, our model needs to utilize all the information from the

ratings that this user gave to other items and the ratings that this item achieved from

other users. Accordingly, one method to solve this problem is treating it as a matrix

completion task. As a result, we can demonstrate the ratings as a matrix Y with users

representing the rows and items representing the columns. A simple demonstration of

matrix factorization on recommendation systems is provided in figure 1.3.

7



There exist many recommendation systems tasks but here we mainly focus on two

movie-user rating datasets. The first one is smallnetflix which is movie ratings data for

95526 users and 3561 movies, where the training dataset contains 3, 298, 163 ratings

and validation contains 545, 177 ratings, while each one of ratings is an integer in

{1, 2, 3, 4, 5}. We also consider another movie recommendation dataset, Movielens

100k, with 100, 000 ratings from 1000 users on 1700 movies, with the same range as

smallnetflix.

8



Chapter 2

Link Functions and Generalized

Matrix Rank

In this chapter using our notation for matrix factorization which presented in previous

chapter, we introduce link functions and generalized link-rank. We will focus on the

round function and round-rank, introduce their generalized versions, and present their

properties.

2.1 Generalized Link-rank

In this work we will focus on the round function and round-rank, introduce their

generalized versions, and present their properties.

Link Functions and Link-Rank: Since the matrix Y may be from a domain Vn×m

different from real matrices, link functions can be used to define an alternate factor-

9



ization:

Y = ψτ (X),X = UVT , (2.1)

where Y ∈ Vn×m, ψ : R→ V (applied element-wise), X ∈ Rn×m, U ∈ Rn×r, V ∈ Rn×r,

and τ represent parameters of the link function, if any. Examples of link functions

that we will study in this paper include the round function for binary matrices, and its

generalization to ordinal-valued matrices. Link functions were introduced for matrix

factorization by [29], consequently [30] presented their generalization to loss functions

and regularization for abstract data types.

Definition 2.1.1. Given a matrix Y and a link function ψτ parameterized by τ , the

link-rank rψ of Y is defined as the minimal rank of a real-matrix X such that, Y =

ψτ (X),

rψ(Y) = min
X∈Rn×m,τ

{r(X); Y = ψτ (X)} (2.2)

Note that with ψ ≡ I, i.e. ψ(x) = x, rψ(Y) = r(Y).

Sign and Round Rank: If we consider the sign function as the link function, where

sign(x) = {0 if x < 0, 1 o.w.} (applied element-wise to the entries of the matrix),

the link-rank defined above corresponds to the well-known sign-rank for binary matri-

ces [20]:

sign-rank(Y) = min
X∈Rn×m

{r(X); Y = sign(X)} . (2.3)

A variation of the sign function that uses a threshold τ , Roundτ (x) = {0 if x <

τ, 1 o.w.} when used as a link function results in the round-rank for binary matrices,

10



i.e.

round-rankτ (Y) = min
X∈Rn×m

{r(X); Y = Roundτ (X)} , (2.4)

as shown in [20]. Thus, our notion of link-rank not only unifies existing definitions of

rank, but can be used for novel ones, as we will do next.

Generalized Round-Rank (GRR): Many matrix factorization applications use

ordinal values, i.e V = {0, 1, . . . , N}. For these, we define generalized round function

(GRF):

GRFτ1,...,τN (x) =



0 x ≤ τ1

1 τ1 < x ≤ τ2

...

N − 1 τN−1 < x ≤ τN

N o.w.

(2.5)

where its parameters τ ≡ {τ1, ..., τN} are thresholds (sorted in ascending order).A sim-

ple representation of GRF is depicted in figure 2.1. Accordingly, we define generalized

round-rank (GRR) for any ordinal matrix Y as:

GRRτ (Y) = min
X∈Rn×m

{r(X); Y = GRFτ (X)} . (2.6)

Here, we are primarily interested in exploring the utility of GRR and, in particu-

lar, compare the representation capabilities of low-GRR matrices to low-linear rank

matrices. To this end, we present the following interesting property of GRR.

11



Figure 2.1: Generalized round function representation

Theorem 2.1.1. For a given matrix Y ∈ {0, . . . , N}n×m, let’s assume τ ∗ is the set of

optimal thresholds, i.e. GRRτ?(Y ) = argminτGRRτ (Y ), then for any other τ ′:

GRRτ ′(Y) ≤ N ×GRRτ?(Y) + 1 (2.7)

Proof. To prove above inequality we first need two following lemmas:

Lemma 2.1.1. We have the following inequality for GRR:

GRRτ1+c,...,τN+c(Y) ≤ GRRτ1,...,τN (Y) + 1 (2.8)

Where c is a real number.

12



Proof. We define B and B′ as follows:

B = {B|GRFτ1,..,.τN (B) = Y} (2.9)

B′ = {B′|GRFτ1+c,...,τN+c(B
′) = Y} (2.10)

For an arbitrary B ∈ B let’s assume we have matrix U and V in a way that, B =

U×VT . If we add a column to the end of U and a row to the and of V and call them

U′ and V′ as follows:

U ′ =


c

U
...

c

 , V ′ =


1

V
...

1

 (2.11)

It is clear that B′ = U′×V′T ∈ B′. Furthermore, by using the fact that r(B′) ≤ r(B)+1

we can complete the proof.

Lemma 2.1.2. For arbitrary k ∈ R, the following equality holds:

GRRkτ1,...,kτN (Y) = GRRτ1,...τN (Y) (2.12)

Proof. Similar to previous Lemma, if we define B and B′ as follows:

B = {B|GRFτ1,...τN (B) = A} (2.13)

B′ = {B′|GRFkτ1,...,kτN (B′) = A} (2.14)

For any B ∈ B it is clear that k×B ∈ B′. On the other hand, for any B′ ∈ B′ we know

that B′/k ∈ B.In result, by considering the fact that r(kB) = r(B), we can complete

the proof .

13



base on These lemmas and the fact that for any i ∈ {1, ..., N − 1}, there exist an εi

which will satisfies the following equality:

GRRτ1,...,τi−εi,...,τN (Y) = GRRτ1,...τN (Y) (2.15)

We can show that there exists a set of εi (i ∈ {1, ..., N − 1}), that transform (τ1, ...τN)

in to (τ ′1, ..., τ
′
N) with a set of linear combinations. In another word, it means we have

k0, ..., kN−1 in a way that:

T ′ = k0T0 + ...+ kN−1TN−1 (2.16)

Where T ′ = (τ ′1, ...τ
′
N), T0 = (τ1, ...τN) and Ti = (τ1, ..., τi − εi, ..., τN) in vector format.

Therefore, if we define Bi as follows:

Bi = {Bi|GRFTi(Bi) = A} (2.17)

And considering the fact that:

r(k0B + ...+ kN−1BN−1) ≤
N−1∑
j=0

r(kjBj) (2.18)

=
N−1∑
j=0

r(Bj) (2.19)

Finally, with Lemma 2.1.1 equation 2.15 we can complete the theorem.

This theorem shows that even though using a fixed set of thresholds is not optimal,

the rank is still bounded in terms of N , and does not depend on the size of the matrix

(n or m). Other complementary lemmas are provided in appendix.

Remark 2.1.1. The upper bound in the theorem 2.1.1 matches the upper bound found

14



in [21] for the case where N = 1, GRRτ ′(Y) ≤ GRRτ∗(Y) + 1.

2.2 Comparing Generalized Round Rank to Linear

Rank

Matrix factorization (MF) based on linear rank has been widely used in lots of ma-

chine learning problems like matrix completion, matrix recovery and recommendation

systems. The primary advantage of matrix factorization is its ability to model data in

a compact form. Being able to represent the same data accurately in an even more

compact form, specially when we are dealing with high rank matrices, is thus quite

important. Here, we study specific aspects of exact and approximate matrix recon-

struction with GRR. In particular, we introduce matrices with high linear rank but

low GRR, and demonstrate the inability of linear factorization in approximating many

low-GRR matrices.

2.2.1 Exact Low-Rank Reconstruction

To compare linear and GRR matrix factorization, here we identify families of matrices

that have high (or full) linear rank but low (or constant) GRR. Such matrices demon-

strate the primary benefit of GRR over linear rank: factorizing matrices using GRR

can be significantly beneficial.

As provided in [20] for round-rank (a special case of GRR), GRRτ (Y) ≤ r(Y) for any

matrix Y ∈ Vn×m. More importantly, there are many structures that lower bound the

linear rank of a matrix. For example, if we define the upper triangle number nU for

15



matrix Y ∈ Vn×n as the size of the biggest square block which is in the form of an

upper triangle matrix, then r(Y) ≥ nU . If we define the identity number nI similarly,

then r(Y) ≥ nI , and similarly for matrices with a band diagonal submatrix. None

of these lower bounds that are based on identity, upper-triangle, and band-diagonal

structures apply to GRR. In particular, as shown in [20], identity matrices (of any size)

have a constant round-rank of 2, upper triangle matrices have round-rank of 1, and

band diagonal matrices have round-rank of 2 (which also holds for GRR). Moreover, we

provide another lower bound for linear rank of a matrix, which is again not applicable

to GRR.

Theorem 2.2.1. If a matrix Y ∈ Rn×m contains k rows, k ≤ n, k ≤ m, such that

R = {YR1 , ..., YRk
}, two columns C = {j0, j1}, and:

1. rows in R are distinct from each other, i.e, ∀i, i′ ∈ R, ∃j, Yij 6= Yi′j,

2. columns in C are distinct from each other, i.e, ∃i, Yij0 6= Yij1, and

3. matrix spanning R and C are non-zero constants, w.l.o.g. ∀i ∈ R, Yij0 = Yij1 = 1,

then r(Y) ≥ k.

Proof. Let us assume r(Y) < k, i.e. ∃k′ < k,U ∈ Rk′×n,V ∈ Rk′×m such that

Y = UT ×V. Since the rows R and the columns in C are distinct, their factorizations

in U and V have to also be distinct, i.e. ∀i, i′ ∈ R, i 6= i′,Ui 6= Ui′ and Vj0 6= Vj1 .

Furthermore, ∀i, i′ ∈ R, i 6= i′, 6 ∃a,Ui = aUi′ and 6 ∃a,Vj0 = aVj1 for a 6= 0, it is clear

that Ui ·Vj0 = Ui ·Vj1 = 1 (and similarly for i, i′ ∈ R).

Now consider a row i ∈ R. Since ∀j ∈ C,Yij = 1, then Ui ·Vj = 1. As a result, Vj

are distinct vectors that lie in the hyperplane spanned by Ui ·Vj = 1. In other words,

the hyperplane Ui · Vj = 1 defines a k′-dimensional hyperplane tangent to the unit

16



hyper-sphere.

Going over all the rows in R, we obtain constraints that Vj are distinct vectors that

lie in the intersection of the hyperplanes spanned by Ui ·Vj = 1 for all i ∈ R. Since

all Uis are distinct, there are k distinct k′-dimensional hyperplanes, all tangent to the

unit sphere, that intersect at more than one point (since Vjs are distinct).

Since k hyper-planes tangent to unit sphere can intersect at at most one point in k′ < k

dimensional space, Vj cannot be distinct vectors. Hence, our original assumption

k′ < k is wrong, therefore, r(Y) ≥ k.

So far, we provide examples of high linear-rank structures that do not impose any

constraints on GRR. We now provide the following lemma that, in conjunction with

above results, indicates that lower bounds on the linear rank can be really high for

matrices if they contain low-GRR structures (like identity and upper-triangle), while

the lower bound on GRR is low.

Lemma 2.2.1. For any matrix A, if there exists a submatrix A′ in a way that r(A′) = R

and GRRτ (A′) = r, then GRRτ (A) ≥ r and r(A) ≥ R.

Proof. If we consider the linear rank as the number of independent row (column) of

the matrix, consequently having a rank of R for submatrix A′ means there exist at

least R independent rows in matrix A. Using this argument we can simply prove above

inequalities.
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2.2.2 Approximate Low-Rank Reconstruction

Apart from examples of high linear-rank matrices that have low GRR, we can further

show that many of these matrices cannot even be approximated by a linear factorization.

In other words, we show that there exist many matrices for which not only their linear

rank is high, but further, that the linear rank approximations are poor as well, while

their low GRR reconstruction is perfect. In order to measure whether a matrix can be

approximated well, we describe the notion of approximate rank (introduced by [1], we

rephrase it here in our notation).

Definition 2.2.1. Given ε, approximate rank of a matrix X is:

ε-rank(X) = min{r(X′) : X′ ∈ Rn×m, ||X−X′||2F ≤ ε} (2.20)

We extend this definition to introduce the generalized form of approximate rank as

follows:

Definition 2.2.2. Given ε and a link function ψ (e.g. GRF), the generalized ap-

proximate rank of a matrix Y is defined as:

ε-rankψ(Y) = min{rψ(Y′) : Y′∈Vn×m, ||Y −Y′||2F ≤ ε} (2.21)

For an arbitrary matrix, we can evaluate how well a linear factorization can approxi-

mate it using SVD, i.e.:

Theorem 2.2.2. For a matrix X = UΣVT , where diag(Σ) are the singular values,

and U and V are orthogonal matrices, then
∑n

i=k+1 |Σii|2 = minY,r(Y)=k ||X−Y||2F .
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Figure 2.2: Comparison of the optimal linear factorization approximation as the rank k
is varied for a number of matrices (of size n×n), demonstrating that linear factorization
is unable to approximate these matrices with low-rank. All of these matrices have a
constant generalized round-rank (≤ 2).

Proof. This was first introduced in [7], and recently presented again in [30]. We omit

the detailed proof, but the primary intuition is that the PCA decomposition minimizes

the Frobenius norm, and Y = U′V′, with U′ = UΣ
1
2 and V′ = Σ

1
2 VT .

For an arbitrary binary matrix Y, recall that Roundτ=0(Y) is equal to sign-rank(Y).

Using above theorem, we want to show that there are binary matrices that cannot be

approximated by low linear-rank matrices (for non-trivial ε), but can be approximated

well by low round-rank matrices. Clearly, these results extend to ordinal matrices and

their GRR approximations, the generalized form of binary case.
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Let us consider Y, the identity binary matrix of size n, for which the singular values of

Y are all 1s. By using Theorem 2.2.2, any linear factorization Y′ of rank k will have

||Y − Y′||2F ≥ (n − k). As a result, the identity matrix cannot be approximated by

any rank-k linear factorization for ε < n− k. On the other hand, such a matrix can

be reconstructed exactly with a rank 2 factorization if using the round-link function,

since round-rank(Y) = 2. In Figure 2.2, we illustrate a number of other such matrices,

i.e. they can be exactly represented by a factorization with GRR of 2, but cannot be

approximated by any compact linear factorization.
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Chapter 3

Matrix Completion with

Generalized Round-Rank

Factorization

So far, we show that there are many matrices that cannot be represented compactly us-

ing conventional matrix factorization (linear), either approximately or exactly, whereas

they can be reconstructed using compact matrices when using GRF as the link function.

In this section, we study properties of completion of ordinal-valued matrices based on

GRF (and the notion of rank from GRR). In particular, given a number of noise-free

observations Ω from Y ∈ {0, . . . , N}n×m and its GRR(Y) = r, r � min(n,m), the

goal here is to identify U ∈ Rn×r,V ∈ Rm×r such that GRF(UVT ) completes the

unobserved entries of Y accurately.
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3.1 Theoretical Results for Uniqueness

Uniqueness in matrix completion is defined as the minimum number of entries required

to recover the matrix Y with high probability, assuming that sampling of the set of

observed entries is based on an specific distribution. To obtain uniqueness in GRR

based factorization, we first need to introduce the interval matrix X̄. Based on def-

inition of generalized round function (GRF) and a set of fixed thresholds, we define

matrix X̄ to be a matrix with interval entries calculated based on entries of matrix Y

and thresholds (τ1, ...τN). As an example, if an entry Yij is k ∈ {0, ..., N}, X̄ij would

be equal to the interval [τk, τk+1]. When entries of Y are equal to 0 or N , w.l.o.g. we

assume the corresponding entries in matrix X̄ are bounded. Thus, each one of matrix

X̄’s entries must be one of the N + 1 possible intervals based on GRF’s thresholds.

Definition 3.1.1. A target matrix Y ∈ {0, . . . , N}n×m with 1) observed set of entries

Ω = {(i, j),Yijis observed}, 2) set of known thresholds (τ1, ...τN), and 3) GRRτ1,...,τN (Y) =

r, is called uniquely recoverable, if we can recover its unique interval matrix X̄ with

high probability.

Similar to X̄, we introduce X ? to be a set of all matrices that satisfy following two

conditions: 1) For the observed entries Ω of Y, Yij = GRFτ1,...,τN (X?
ij), and 2) linear

rank of X ? is r. If we consider a matrix X ∈ X ? then for an arbitrary entry Xij we

must have Xij ∈ X̄ij, where X̄ij is an interval containing Xij. Given a matrix X ∈ X ?,

the uniqueness conditions ensure that we would be able to recover X̄, using which we

can uniquely recover matrix Y.

In the next theorems, we first find the necessary condition on the entries of matrix X for

satisfying uniqueness of matrix Y. Then, we derive the sufficient condition accordingly.

In our calculations, we assume the thresholds to be fixed and our target matrix Y be
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noiseless, and further, there is at least one observed entry in every column and row of

matrix Y.

Theorem 3.1.1. (Necessary Condition) For a target matrix Y ∈ Vn×m with few ob-

served entries and given GRR(Y) = r, we consider set of {Yi1j, ...,Yirj} to be the r ob-

served entries in an arbitrary column j of Y . Given any matrix X ∈ X ?, X = U×VT ,

and taking an unobserved entry Yij, we define aikj as: Ui =
∑r

k=1 aikjUik , where Ud

(d ∈ {1, ..., n}) is the dth row of matrix U and ik represents the index of observed

entries in jth column. Then, the necessary condition of uniqueness of Y is:

r∑
k=1

|aikj| ≤ ε

(
Tmin

Tmax

)
(3.1)

Where r = GRR(Y), Tmin and Tmax are the length of smallest and largest intervals and

ε is a small constant.

Proof. To better understand the concept of uniqueness in GRR benchmark, let’s first

look at the uniqueness in fixed value matrix factorization (traditional definition(MF)).

In fixed value matrix factorization, it is proved that to achieve uniqueness, we need

at least r = r(X) observation in each column(other than the independent columns).

Therefore, if we decompose X as X = UVT , and plan to changed only unobserved

entries of Y in column j (in opposed to uniqueness), we need to change the jth row of

matrix V. To do so, let’s assume we change the jth row to:

[Vj1 + c1, ...,Vjr + cr] (3.2)

Now since we know r(U) = r and assume the respective rows of U to observed entries of

column j in matrix X are independent (this is a required assumption for uniqueness),
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we can show that only possible value for c1, ..., cr which does not change the observed

entries of X is 0, which confirm the uniqueness.

The biggest difference between MF based on GRR and traditional MF is the fact that

the observed entries of matrix X are not fixed in GRR version, and can change through

the respective interval. In result, to achieve uniqueness we need to find a condition

which for any column of X, by changing respective row of V, while the value of observed

entries stay in the respected intervals, the value of unobserved ones wouldn’t change

dramatically which result in moving to other intervals. To do so, we will calculate

the maximum of the possible change for an arbitrary unobserved entry of column j in

matrix Y.

Let’s call the r observed entries of column’s j of matrix Y, Yi1j, ...,Yirj. Similar to

MF case, we assume that the respective rows of U to these entries are independent. In

result, if we represent the change in entries of jth rows of V by ci, we should have:


Ui1

...

Uir

×

c1
...

cr

 =


εi1j
...

εirj

 (3.3)

Where Uik is the ikth row of U, and εikj is the possible change for Xikj, based on the

observed interval. Therefore:

εikj ∈ (τikj ↓ −Xikj, τikj ↑ −Xikj) = (ε−ikj, ε
+
ikj

) (3.4)

Now let’s assume we want to find the maximum possible change for Xsj considering

that Ysj is and unobserved entry. Since Uik ’s are independent, there exist a1, ..ar
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which:

Us =
r∑

k=1

aikjUik (3.5)

Therefore, we can show the change in entry Xsj as:

A =
r∑

k=1

aikjεikj (3.6)

In result, for the maximum possible change we have:

max|A| = max(
r∑

k=1

aikjε
sign(aikj)

ikj
, |

r∑
k=1

aikjε
−sign(aikj)

ikj
|) (3.7)

Where sign(.) is the sign function. On the other hand we know:

r∑
k=1

aikjε
sign(aikj)

ikj
+ |

r∑
k=1

aikjε
−sign(aikj)

ikj
| =

r∑
k=1

|aikj|Tikj (3.8)

⇒ max|A| > 1

2

r∑
k=1

|aikj|Tikj (3.9)

Where Tikj is the length of the interval entry of X̄ikj. Clearly, to achieve the uniqueness

we need max|A| ≤ Tsj. But, since the entry Xsj is unobserved we don’t know the value

of Tsj. In result, for sake of uniqueness in the worst case we need:

r∑
k=1

|aikj|Tmax ≤ εTmin (3.10)

⇒
r∑

k=1

|aikj| ≤ ε
Tmin
Tmax

(3.11)

Where Tmin and Tmax are the smallest and the biggest interval, and ε is a small real
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constant.

The same condition is necessary for matrix V as well. The necessary condition must

be satisfied for all columns of matrix X. Moreover, if the necessary condition is not

satisfied, we cannot find a unique matrix X, and hence a unique completion, i.e. Y =

GRFτ1,...,τN (X) where X ∈ X ?.

Theorem 3.1.2. (Sufficient Condition) Using above necessary condition, for any un-

observed entry Yij of matrix Y we define ε̄ as minimum distance of Xij with its re-

spected interval’s boundaries. Then, we will have the following inequality as sufficient

condition of uniqueness:

ε̄ ≥ max

(
r∑

k=1

aikjε
sign(aikj)

ik
,

∣∣∣∣∣
r∑

k=1

aikjε
−sign(aikj)

ik

∣∣∣∣∣
)

(3.12)

where r and aikj are defined as before, ε+ikj is defined as the distance of Xikj to its upper

bound, and ε−ikj is defined as negative of the distance of Xikj to its lower bound.

Above sufficient condition is a direct result of necessary condition proof. Although not

tight, it guarantees the existence of unique X̄, and thus the complete matrix Y.

3.2 Gradient-Based Algorithm for GRR Factoriza-

tion

Although previous studies have used many different paradigms for matrix factorization,

such as alternating minimization [9, 11] and adaptive sampling [13], stochastic gradient

descent-based (SGD) approaches have gained widespread adoption, in part due to their
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flexibility, scalability, and theoretical properties [6]. For linear matrix factorization, a

loss function that minimizes the squared error is used, i.e. Llinear =
∑

(Yij − UiVj)2,

where the summation is over the observed entries. In order to prevent over-fitting, L2

regularization is often incorporated.

Round: We extend this framework to support GRR-based factorization by defining

an alternate loss function. In particular, with each observed entry Yij and the current

estimate of τ , we compute the b↓ij and b↑ij as the lower and upper bounds for Xij with

respect to the GRF. Given these, we use the following loss, LRound =
∑

(b↓ij−UiVj)+ +

(UiVj − b↑ij)+, where (.)+ = max(., 0). Considering the regularization term as well, we

apply stochastic gradient descent as before, computing gradients using a differentiable

form of max with respect to U, V, and τ .

Multi-Sigmoid: Although the above loss captures the goal of the GRR-based factor-

ization accurately, it contains both discontinuities and flat regions, and thus is difficult

to optimize. Instead, we also propose to use a smoother and noise tolerant approxima-

tion of the GRF function. The sigmoid function, σ(x) = 1
1+e−x , for example, is often

used to approximate the sign function. When used as a link function in factorization,

we can further show that it approximates the sign-rank well.

Theorem 3.2.1. For any ε > 0 and matrix Y, sign-rank(Y) = ε-rankσ(Y).

Proof. Let Bεσ(k) = {B ∈ {0, 1}n×m; ε-rankσ(B) = k}, i.e. the set of binary matrices

whose ε-rankσ is equal to k, and B+(k) = {B ∈ {0, 1}n×m; sign-rank(B) = k}. We

prove the theorem by showing both directions. B+ ⊆ Bσ: Any U,V that works for +

should work with σ if multiplied by a very large number, i.e. take a sufficiently large

η, and Uσ = ηU+,Vσ = ηV+. Then, Xσ = η2X+ and if we set θσ = η2θ+, then
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(Xσ − θσ) = η2(X+ − θ+), therefore will have the same sign, and Yσ = σ(Xσ) will be

arbitrarily close to 0 and 1 in Y+. Bσ ⊆ B+: Any U,V that works for σ will directly

work with +.

Remark 3.2.1. To extend Theorem 4.3 to multi-ordinal cases, we need to show that

for any arbitrary set of thresholds in GRR, there exists another set of thresholds for

multi-sigmoid function which will satisfy the condition in theorem 4.3 for multi-ordinal

matrices. The procedure of proof is similar to binary cases. The only difference is the

fact that after multiplying our matrices into a big enough constant, we need to choose

multi-sigmoids thresholds in a way that will guarantee the multi-sigmoid(X) is close

enough of to GRF(X)(which is equal to Y).

We can similarly approximate GRF using a sum of sigmoid functions that we call

Multi-sigmoid defined as ψmστ (x) =
∑N

d=1 σ(x−τd), for which the above properties also

hold. The resulting loss function that minimizes the squared error is Lmulti-sigmoid =∑
(Yij − ψmστ (UiVj))

2.

In our experiments, we evaluate both of our proposed loss functions, and compare their

relative performance. We study variations in which the thresholds τ are either pre-

fixed or updated (using ∂
∂τ
L) during training. All the parameters of the optimization,

such as learning rate and early stopping, and the hyper-parameters of our approaches,

such as regularization, are tuned on validation data.

28



Chapter 4

Experiments

In this chapter we evaluate the capabilities of our proposed GRR factorization rela-

tive to linear factorization first through variety of simulations, followed by considering

smallnetflix and MovieLens 100K 1 datasets. Unless otherwise noted, all of evaluations

are based on Root Mean Square Error (RMSE).

4.1 Matrix Recovery

We first consider the problem of recovering a fully known matrix Y from its factor-

ization, thus all entries are considered observed. We create three matrices in order to

evaluate our approaches for recovery: (a) Random 10 × 10 matrix with N = 5 that

has GRR ≤ 2 (create by randomly generating τ , U, and V), (b) Binary upper triangle

matrix with size 10 (GRR of 1), and (c) Band-diagonal matrix of size 10 and band-

width 3, which has the linear rank of 8 and GRR of 2. Figures 4.1, 4.2, and 4.3 present

1The codes available at: https://github.com/pouyapez/GRR-Matrix-Factorization
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Figure 4.1: Band Diagonal matrices that are reconstructed using their k = 2-
dimensional factorization with different representations. We plot RMSE of the recon-
struction vs the number of training iterations, demonstrating the efficiency of GRR-
based methods, especially without fixed thresholds.

the RMSE comparison of these three matrices as training progresses. For the upper

triangle and the band diagonal, we fix threshold to τ = 0.5. The results show that

Round works far better than others by converging to zero. Moreover, linear approach

is outperformed by the Multi-sigmoid without fixed thresholds in all, demonstrating it

cannot recover even simple matrices.

4.2 Matrix Completion

Instead of fully-observed matrices, we now evaluate completion of the matrix when

only a few of the entries are observed. We consider 50 × 50 upper-triangle and band-
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Figure 4.2: Random matrices that are reconstructed using their k = 2-dimensional
factorization with different representations. We plot RMSE of the reconstruction vs
the number of training iterations, demonstrating the efficiency of GRR-based methods,
especially without fixed thresholds.

diagonal (bandwidth 10) matrices, and sample entries from them, to illustrate how

well our approaches can complete them. Results on held-out 20% entries are given in

Tables 4.1 and 4.2. In addition, we build a random matrix with size 50 and GRR 2, and

present the results for this matrix in Table 4.3. As we can see, linear factorization in

all three cases is outperformed by our proposed approaches. In band-diagonal, because

of over-fitting of the Round approach, Multi-sigmoid performs a little better, and for

upper-triangle, we achieve the best result for Round method by fixing τ = 0.5.
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Figure 4.3: Upper Triangle matrices that are reconstructed using their k = 1-
dimensional factorization with different representations. We plot RMSE of the recon-
struction vs the number of training iterations, demonstrating the efficiency of GRR-
based methods, especially without fixed thresholds.

4.3 Matrix Completion on Real Data

In this section we use the smallnetflix movie ratings data for 95526 users and 3561

movies, where the training dataset contains 3, 298, 163 ratings and validation contains

545, 177 ratings, while each one of ratings is an integer in {1, 2, 3, 4, 5}. We also evalu-

ate on a second movie recommendation dataset, Movielens 100k, with 100, 000 ratings

from 1000 users on 1700 movies, with the same range as smallnetflix. For this recom-

mendation systems, in addition to RMSE, we also consider the notion of accuracy that

is more appropriate for the task, calculated as the fraction of predicted ratings that

are within ±0.5 of the real ratings. As shown in Figure 4.6, for smallnetflix, linear fac-

torization is better than Round approach from RMSE perspective, probably because
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Table 4.1: Matrix completion for Upper Triangular Matrices (k = 1)

Proportion of Observations 10% 20% 30% 40% 50% 60% 70% 80%

Linear 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Multi-Sigmoid 0.51 0.30 0.25 0.25 0.26 0.25 0.23 0.23
Multi-Sigmoid, τ = 0.5 0.58 0.37 0.36 0.36 0.35 0.35 0.34 0.34
Round 0.46 0.34 0.27 0.25 0.26 0.21 0.20 0.16
Round, τ = 0.5 0.38 0.26 0.23 0.19 0.15 0.13 0.15 0.13

Table 4.2: Matrix completion for Band Diagonal Matrices (k = 2)

Proportion of Observations 10% 20% 30% 40% 50% 60% 70% 80%

Linear 0.49 0.46 0.46 0.46 0.46 0.46 0.46 0.46

Multi-Sigmoid 0.39 0.26 0.23 0.23 0.22 0.21 0.20 0.20
Multi-Sigmoid, τ = 0.5 0.48 0.49 0.33 0.31 0.30 0.29 0.29 0.29
Round 0.71 0.41 0.35 0.29 0.29 0.27 0.23 0.22
Round, τ = 0.5 0.61 0.57 0.39 0.52 0.58 0.30 0.29 0.34

linear is more robust to noise. On the other hand, Multi-sigmoid achieves better RMSE

than linear method. Furthermore, both Round and Multi-sigmoid outperform the lin-

ear factorization in accuracy. Movielens results for the percentage metric shows similar

behavior as smallnetflix, demonstrating that GRR-based factorization can provide ben-

efits to real-world applications. Furthermore, a comparison of our models with existing

approaches on Movielens dataset is provided in Table 4.4. We choose the RMSE result

for smallest k presented in those works. As we can see, our Multi-sigmoid method

Table 4.3: Matrix completion with different number of samples for Random low-
GRR Matrices

Proportion of Observations 10% 20% 30% 40% 50% 60% 70% 80%

Linear 1.73 1.06 0.97 0.90 0.85 0.85 0.87 0.83

Multi-Sigmoid 1.92 0.53 0.48 0.42 0.39 0.38 0.36 0.35
Multi-Sigmoid (Fixed τ) 1.96 1.54 1.37 1.32 1.29 1.28 1.25 1.23
Round 1.49 0.92 0.60 0.48 0.48 0.39 0.30 0.28
Round (Fixed τ) 2.44 1.50 1.50 1.43 1.36 1.39 1.44 1.34
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Figure 4.4: Performance of percentage accuracy on smallnetflix datasets, as k in in-
crease.

appear very good in comparison with other methods, while our Round approach result

suffer from existence of noise in the dataset as before.
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Figure 4.5: Performance of RMSE on smallnetflix datasets, as k in increase.
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Figure 4.6: Performance of percentage accuracy on movielens datasets, as k in increased
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Table 4.4: RMSE on Movielens-100k for a variety of models with different low-rank
approximation (k).

Models Low-rank approximation RMSE
APG [14] k=70 1.037
AIS-Impute [14] k=70 1.037
CWOCFI [18] k=10 1.01
our Round k=10 1.007
our Linear k=10 0.995
UCMF [31] - 0.948
our Multi-sigmoid k=10 0.928
SVDPlusPlus [8] k=10 0.911
SIAFactorModel [8] k=10 0.908
GG [15] k=30 0.907
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Chapter 5

Related Work

There is a rich literature on matrix factorization and its applications. To date, a number

of link functions have been used, along with different losses for each, however here we

are first to focus on expressive capabilities of these link functions, in particular of the

ordinal-valued matrices [29, 12, 25, 30]. [23] addressed tensor factorization problem

and showed improved performance when using a sigmoid link function. [19] introduced

the concept of matrix factorization based on interval uncertainty, which results in a

similar objective as our algorithm. However, not only is our proposed algorithm going

beyond by updating the thresholds and supporting sigmoid-based smoothing, but we

present results on the representation capabilities of the round-link function.

A number of methods have approached matrix factorization from a probabilistic view,

primarily describing solutions when faced with different forms of noise, resulting, in-

terestingly, in link functions as well. [4] introduced a generalization of PCA method to

loss function for non real-valued data, such as binary-valued. [27] focused on Bayesian

treatment of probabilistic matrix factorization, identifying the appropriate priors to
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encode various link functions. On the other hand, [16] have analyzed non-linear ma-

trix factorization based on Gaussian process and used SGD to optimize their model.

However, these approaches do not explicitly investigate the representation capabili-

ties, in particular, the significant difference in rank when link functions are taken into

account.

Sign-rank and its properties have been studied by [22, 3, 5], and more recently, [20]

provides in-depth analysis of round-rank. Although these have some similarity to

GRR, sign-rank and round-rank are limited to binary matrices, while GRR is more

suitable for most practical applications, and further, we present extension of their

results in this work that apply to round-rank as well. Since we can view matrix

factorization as a simple neural-network, research in understanding the complexity of

neural networks [10], in particular with rectifier units [24], is relevant, however the

results differ significantly in the aspects of representation we focus on.
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Chapter 6

Conclusions and Future Work

In this work, we demonstrated the expressive power of using link functions for ma-

trix factorization, specifically the generalized round-rank (GRR) for ordinal-value ma-

trices. We show that not only are there full-rank matrices that are low GRR, but

further, that these matrices cannot even be approximated by low linear factorization.

Furthermore, we provide uniqueness conditions of this formulation, and provide gradi-

ent descent-based algorithms to perform such a factorization. We present evaluation

on synthetic and real-world datasets that demonstrate that GRR-based factorization

works significantly better than linear factorization: converging faster while requiring

fewer observations. In future work, we will investigate theoretical properties of our

optimization algorithm, in particular explore convex relaxations to obtain convergence

and analyze sample complexity. We are interested in the connection of link-rank with

different probabilistic interpretations, in particular, robustness to noise. Finally, we

are also interested in practical applications of these ideas to different link functions

and domains.
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Appendices

A Complementary Lemmas on GRR

Lemma A.1. For matrices A,B ∈ {0, ..., N}n×m:

GRRτ1,...τN (A) ≤ min(n,m) (A.1)

GRRτ1,...τN (A) = GRRτ1,...τN (AT ) (A.2)

GRRτ1,...τN (A+B) ≤ GRRτ1,...τN (A) + GRRτ1,...τN (B) (A.3)

Where + is in the real numbers and A+B ∈ {0, ..., N}n×m.

Proof. According to definition of GRR and the fact that if A = GRF(C) then r(C) ≤

min(n,m) we can conclude the first inequality. Furthermore, Since we know for any

matrix C, r(C) = r(CT ) and use the fact that if A = GRF(C) then AT = GRF(Ct)

we can show the second inequality as well. And the third inequality is the direct result

of following famous inequality:

r(A+ b) ≤ r(A) + r(B) (A.4)
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Lemma A.2. the following decomposition holds for Generalized Round function:

GRFτ1,...,τN (A) =
N∑
i=1

Roundτi(A) (A.5)

Proof. Base on definition of Round Function
N∑
i=1

Roundτi(A) , counts the number of

thresholds which are smaller than A, and this number is clearly equal to GRFτ1,...,τN (A).

Lemma A.3. For any arbitrary subset of thresholds T = {τi1 , ..., τir}:

GRRτ1,...τN (A) ≥ GRRT (Ā) (A.6)

Where Ā attained by the following transformation in matrix A:

Ā = [bij]n×m (A.7)

bij =



0, if aij ∈ {0, .., i1 − 1}

1, if aij ∈ {i1, .., i2 − 1}

...

r − 1, if aij ∈ {ir, .., N − 1}

(A.8)

Proof. We define B and B̄ as follows:

B = {B|GRFτ1,...,τN (B) = A} (A.9)

B̄ = {B̄|GRFT (B̄) = A} (A.10)

In result for any B ∈ B, it is clear that B ∈ B̄
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Lemma A.4. Following inequality holds for GRR:

GRRτ1,...,τN (A) ≤ GRRτ1,...,τN ,τN+1
(A) (A.11)

Proof. Similar to previous Lemma, if we define B and B̄ as follows:

B = {B|GRFτ1,...,τN (B) = A} (A.12)

B̄ = {B̄|GRFτ1,..,.τN ,τN+1
(B̄) = A} (A.13)

Then it is clear that for any B̄ ∈ B̄, we have B̄ ∈ B

Lemma A.5. Lets define the function F : RN → N as follows:

F (τ1, ..., τN) = GRRτ1,...,τN (A) (A.14)

Where A is a fix matrix in {0, ..., N}n×m. Then we have the following inequality:

F ((τ1 + τ ′1)/2, ..., τN) ≤ F (τ1, ..., τN) + F (τ ′1, ..., τN) (A.15)

Proof. We define B, B′ and B̄ as follows:

B = {B|GRFτ1,...,τN (B) = A} (A.16)

B′ = {B′|GRFτ ′1,...,τN (B′) = A} (A.17)

B̄ = {B̄|GRF(τ1+τ ′1)/2,...,τN
(B̄) = A} (A.18)

Accordingly, for any B ∈ B and B′ ∈ B′ we know B+B′

2
∈ B̄. Furthermore, since

r(B+B′

2
) = r(B+B′) and r(B+B′) ≤ r(B) + r(B′) we can clearly prove the inequality.
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Lemma A.6. We have the following inequality:

F (τ1 + τ ′1, ..., τN + τ ′N) ≤ F (τ1, ..., τN) + F (τ ′1, ..., τ
′
N) (A.19)

Proof. Similar to previous Lemma, if we define B, B′ and B̄ as follows:

B = {B|GRFτ1,...,τN (B) = A} (A.20)

B′ = {B′|GRFτ ′1,...,τ ′N (B′) = A} (A.21)

B̄ = {B̄|GRFτ1+τ ′1,...,τN+τ ′N
(B̄) = A} (A.22)

For any B ∈ B and B′ ∈ B′ we know B +B′ ∈ B̄. And since r(B +B′) ≤ r(B) + r(B′)

we can clearly prove the inequality.
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