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Abstract
Summary: Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex disease risk;
however, most of these associations are non-coding, complicating identifying their proximal target gene. Transcriptome-wide association studies
(TWASs) have been proposed to mitigate this gap by integrating expression quantitative trait loci (eQTL) data with GWAS data. Numerous meth-
odological advancements have been made for TWAS, yet each approach requires ad hoc simulations to demonstrate feasibility. Here, we pre-
sent twas_sim, a computationally scalable and easily extendable tool for simplified performance evaluation and power analysis for TWAS
methods.

Availability and implementation: Software and documentation are available at https://github.com/mancusolab/twas_sim.

1 Introduction

Genome-wide association studies (GWASs) have identified
numerous genetic variants associated with complex traits and
diseases (Visscher et al. 2017). However, most associated var-
iants fall within non-coding regions, which makes identifying
the target gene challenging (Hindorff et al. 2009; Edwards
et al. 2013). Furthermore, functional evidence suggests that
most GWAS hits are involved in regulatory processes
(Maurano et al. 2012; Vierstra et al. 2020), which implies
that causal variants regulate the expression of nearby genes.
Transcriptome-wide association studies (TWASs) have been
proposed to address this limitation by integrating expression
quantitative trait loci (eQTL) data with GWAS data to iden-
tify functionally informed gene-level associations (Gamazon
et al. 2015; Gusev et al. 2016). A growing ecosystem of meth-
ods have been developed around TWAS, each relying on dif-
ferent statistical assumptions (Mancuso et al. 2019; Nagpal
et al. 2019; Bhattacharya et al. 2021; Liu et al. 2021; Tang
et al. 2021; Lu et al. 2022; Parrish et al. 2022). Prior method-
ological work evaluated performance through a combination

of ad hoc simulations and real data analysis. However, vali-
dating and assessing model performance requires researchers
to implement custom simulations, which duplicates effort and
can result in subtle differences in how baselines are defined.

To address this, we developed twas_sim, a computa-
tionally scalable and easily extendable tool for downstream
TWAS method evaluation and comparison (e.g., statistical
power, false positive rate, etc.). It leverages real genetic data
to capture typical linkage disequilibrium (LD) patterns and
can simulate gene expression levels and complex traits un-
der a variety of feasible genetic architectures. Importantly, it
is capable of dynamically loading custom code (e.g.,
Python, R, and Julia) to evaluate independently developed
TWAS methods. It is freely available at https://github.com/
mancusolab/twas_sim.

2 Implementation

twas_sim is a python-based tool that uses real genotype data
to generate TWAS test statistics by simulating complex traits
as a function of latent expression levels, fitting eQTL weights

Received: November 18, 2022. Revised: April 6, 2023. Accepted: April 13, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(5), btad288
https://doi.org/10.1093/bioinformatics/btad288

Advance access publication 26 April 2023

Applications Note

https://orcid.org/0000-0001-9670-3939
https://orcid.org/0000-0002-9352-5927
https://github.com/mancusolab/twas_sim
https://github.com/mancusolab/twas_sim
https://github.com/mancusolab/twas_sim


in independent reference data, and performing genome- and
predicted transcriptome-association testing on the simulated
complex trait (see Supplementary Fig. S1). twas_sim accepts
optional arguments to vary eQTL/GWAS sample sizes, ge-
netic architectures (e.g., h2

g , h2
ge, and sparsity of eQTL effects),

horizontal pleiotropy through linkage, and reference genotype
datasets for each step in the pipeline (e.g., GWAS, eQTL refer-
ence, and TWAS testing). For details on parameters and
options, see Supplementary Tables S1 and S2 and
Supplementary Note.
twas_sim supports simulating GWAS summary data

through two possible modes. Standard mode simulates geno-
types for GWAS individuals using multivariate normal
approximations parameterized by LD at the genomic region,
simulates phenotypes under a fixed eQTL and trait architec-
ture, and finally performs marginal regression at each approx-
imate SNP to obtain GWAS summary statistics. When GWAS
sample size, NGWAS, is large, this process requires large
amounts of memory (i.e., OðNGWAS � PÞ, where P is the num-
ber of genetic variants. As a workaround, twas_sim sup-
ports fast mode, which simulates GWAS summary statistics
directly using the multivariate normal distribution parameter-
ized by LD (Pasaniuc and Price 2017). By making distribu-
tional assumptions of the underlying summary statistics, this
setting bypasses the need for individual-level genotype data
and requires memory only proportional to OðP2Þ, which can
vastly reduce the memory footprint and vastly speed up simu-
lation times (see Supplementary Note). Importantly, to model
LD misspecification, twas_sim supports the option to use
different LD reference panels across GWAS and eQTL simula-
tions in addition to TWAS testing. To predict gene expression
levels into GWAS data, twas_sim supports internally fitting
least absolute shrinkage and selection operator (LASSO),
elastic net and genomic best linear unbiased prediction
(GBLUP) linear prediction models from simulated reference
gene expression data; in addition, it also allows users to use
true eQTL effect sizes for TWAS calculation instead of regu-
larization method (Searle et al. 1992; Tibshirani 1996;
Zou and Hastie 2005). The dynamic import feature enables
twas_sim to include external prediction tools easily.
It requires only that users define a simple Python interface
with a function named “fit” (see Supplementary Note and
Supplementary Algorithms S1 and S2). To illustrate the sim-
plicity of our dynamic import approach, we have provided
two example scripts in the repository to perform Ordinary

Least Square (OLS) regression using sklearn and the Sum of
Single Effects (SuSiE) sparse regression from susieR (Wang
et al. 2020).

3 Application

To illustrate the utility of twas_sim, we performed simulations
using genetic data from 1000Genomes (1000 Genomes Project
Consortium 2015) across a variety of gene expression and com-
plex trait architectures, and genotype reference panels (see
Supplementary Note). First, we investigated unbiasedness under
null simulations (i.e., a¼ 0) under three metrics: Kolmogorov–
Smirnov test on TWAS Z-scores, family-wise error rate (FWER)
on TWAS P-value, and inflation (see Supplementary Note). We
found TWAS test statistics computed using Elastic Net are
largely consistent with the null (P¼ 0.26) and observed similar
patterns for other linear models (see Fig. 1A). Focusing on
Elastic Net prediction models, we observed similar results under
various eQTL architectures, eQTL/GWAS sample sizes, and
simulation modes (see Supplementary Table S3). Next, we
evaluated FWER with found calibrated results across prediction
models, eQTL architecture, eQTL/GWAS sample sizes, and
simulation modes (see Supplementary Fig. S2). Similarly, we
found no inflation across all settings (see Supplementary
Fig. S3). Together, these results suggest that TWAS test statistics
are robust to model assumptions.

Next, we evaluated the power of each prediction model
when a causal relationship between eQTL and complex trait
exists (i.e., a 6¼0). We observed Elastic Net (power¼ 0.66)
outperformed GBLUP (power¼ 0.64), LASSO (power-
¼ 0.62), and SuSiE (power¼ 0.44; see Supplementary Figs S4
and S5). We assessed power under various simulation settings
and observed power increased with increasing h2

ge, GWAS
and eQTL sample sizes, eQTL and sparsity of eQTL architec-
tures (see Fig. 1B; Supplementary Figs S4 and S5).

To assess the degree to which LD misspecification affects
TWAS test statistics, we performed simulations splitting 1000G
EUR individuals into two subsets (N¼ 244, 245). The first sub-
set was used to simulate GWAS test statistics, whereas the sec-
ond was used for eQTL simulation and downstream TWAS
testing. Under the null, we found TWAS test statistics com-
puted using the same reference panel (P¼ 0.26) and the misspe-
cified reference panel (P¼ 0.57) were largely consistent (see
Supplementary Table S3), with similar estimates inflation
(P¼ 0.049) and moderately reduced FWER (P¼ 0.005). In

Figure 1. TWAS simulation results. (A) QQ plot for TWAS v2 under the null hypothesis. Each point reflects the v2 statistic under null simulations based

on different predictive models. (B) TWAS power analysis. Each point reflects the proportion of simulations where the null was rejected at P< 2.27E–06.

X-axis reflects the proportion of trait variability explained by gene expression (C) Memory usage by simulation mode. Height of bars reflects the average

memory usage for fast/standard simulation modes. All error bars reflect 95% confidence interval.
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simulations under a causal model, we observed LD misspecifi-
cation reduced power significantly compared with the correctly
specified model (P¼2.2E–16; see Supplementary Fig. S6A–L).

To highlight the scalability of twas_sim to extremely large
GWAS sample sizes, we evaluated its performance under stan-
dard and fast simulation modes. We found fast mode required
6� and 36� less memory and 8� and 41� less CPU time com-
pared with standard mode, for GWAS sample sizes of 100K and
500K, respectively (see Fig. 1C and Supplementary Fig. S7).

Lastly, to assess how horizontal pleiotropy through linkage
(i.e., genes whose eQTLs are in LD with eQTLs for a causal
gene) inflates TWAS test statistics, we simulated GWAS effect
sizes independently from eQTLs and performed TWAS testing.
Overall, we found that while TWAS test statistics at tagging
genes were not as large as those computed using the causal gene
(see Supplementary Fig. S8A), we observed significantly inflated
test statistics resulting in an elevated FWER (P¼ 0.02), which is
consistent with previous works (Mancuso et al. 2019; Wainberg
et al. 2019; Lu et al. 2022) emphasizing the need for joint testing
of multiple nearby genes or statistical fine-mapping (see
Supplementary Note and Supplementary Fig. S8B).

4 Conclusion

Here, we present twas_sim, a flexible and scalable computa-
tional simulation tool of TWAS test statistics. It simulates ex-
pression levels and complex traits under a variety of feasible
genetic architectures. Simulation results are easily interpret-
able for downstream model evaluation. The simulator cur-
rently supports fitting LASSO, Elastic Net, and GBLUP
prediction models to predict gene expression into GWAS. It is
easily extendable with dynamic import function to include ad-
ditional linear models to accommodate TWAS methods.
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