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Abstract

Algorithms and Protocols for Wideband Distributed Beamforming

by

Muhammed Faruk Gencel

The potential performance gains from distributed Multiple-Input Multiple-Output

(MIMO) have been established by theory, simulations and experimental demonstrations

over the past decade. By synchronizing their signals in frequency and phase at the

receiver, multiple cooperating transmitters achieve an N -fold increase in received power

compared to noncoherent signal combination, or power pooling, and an N2-fold increase

in received power compared to that for a single transmitter. The first part of this thesis

investigates algorithms for Distributed MIMO (DMIMO). A well-known one-bit feedback

scheme is extended to wideband systems by introducing additional feedback bit to enforce

phase continuity across OFDM subcarriers to utilize available system bandwidth. It is

also shown, however, that low signal to noise ratio (SNR) is a fundamental limitation for

the well-known one-bit feedback algorithm and its variants. This limitation motivates

the development of explicit training strategies that can operate at low SNR while keeping

the number of feedback bits low. Explicit training strategies are extended to wideband

setting by simple interpolation over OFDM subcarriers and sparse time domain modeling

of outdoor channels.

The second part of this thesis presents two concept systems that could be based

around the DMIMO paradigm: distributed base station and distributed 911. The use

of a distributed base station enables distributed transmit beamforming at large carrier

wavelengths to achieve significant range extension and increased downlink data rate, pro-

viding a low-cost infrastructure for applications such as rural broadband. The proposed
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cross-layer design of distributed base station is based on explicit training with heavily

quantized feedback. The feasibility of such a system is explored using outage capacity

analysis for both the downlink and the feedback link. System performance is quantified in

different channel conditions. The distributed 911 concept system enables multiple nodes

to communicate with a distant search-and-rescue vehicle which tries to approach to the

nodes by using radio frequency trail of the periodic beacons transmitted by the nodes.

As an initial step to realize this, an algorithm using Doppler frequency measurements is

devised for a quasi-stationary radio frequency emitting source sought by an unmanned

aerial vehicle (UAV). Our algorithm uses periodic beacons from the emitter to continu-

ously adapt its trajectory by using consecutive frequency measurements and provides a

great improvement over prior received signal strength based source seeking algorithms.
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Chapter 1

Introduction

Over the past decade, Distributed Multiple Input Multiple Output (DMIMO) systems

have received significant attention due to their potential for energy-efficient wireless com-

munications. Distributed transmit beamforming is a subclass of DMIMO and refers to a

class of communication schemes in which a group of nodes cooperate to deliver a com-

mon message to an intended receiver. A cluster of N cooperating transmitter nodes

emulates a virtual antenna array that forms a beam towards a desired receiver. Ideally,

this provides an N -fold increase in the received signal to noise ratio (SNR) due to an in-

crease in transmit power and an additional N -fold beamforming gain in case of coherent

phase synchronization resulting in an N2-fold gain in SNR compared to that for a single

transmitter. The goal in distributed beamforming is to leverage this N2 power gain in ex-

tending the communication range, increasing the data rate, or increasing power efficiency.

The fundamental bottleneck is the timing, frequency, and phase synchronization of the

independent nodes whose signals originate from independent local oscillators. Unlike

classical phased-array antennas, a distributed antenna array has an unknown geometry,

which causes an additional phase offset.

The focus of this thesis is to design and analyze algorithms and protocols that uti-
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Introduction Chapter 1

lize the available bandwidth in wideband distributed transmit beamforming and achieve

phase synchronization through limited explicit feedback. We limit attention to systems

with aggregate feedback, in which the receiver broadcasts feedback that is not directed at

any particular transmitter node. This allows for protocol-level scalability in the number

of transmitter nodes. The key contributions of this thesis are listed as follows. First,

we extend the well-known one bit feedback algorithm to wideband. Second, we show

that the one bit feedback algorithm and its variants are fundamentally limited by noise.

Thus, a near-ideal beamforming gain cannot be obtained by these algorithms. Third, we

propose a distributed orthogonal sequence training (DOST) algorithm that overcomes

receiver noise by suitably averaging over time. We extend this algorithm to wideband

scenarios via a simple interpolation over Orthogonal Frequency Division Multiplexing

(OFDM) subcarriers. Based on the DOST algorithm, we investigate cross layer design

and analysis of a concept system termed distributed base station (DBS), which aims to

increase downlink range and/or spectral efficiency. We analyze the potential gains of a

DBS via outage capacity analysis. We observe that the feedback channel may become

a bottleneck unless sophisticated distributed reception strategies are employed. Fourth,

we propose a trajectory planning algorithm for an unmanned aerial vehicle (UAV) as an

initial step to realize a concept system that we term distributed 911. An emitter broad-

casts a periodic pilot signal from an unknown location which helps an emergency vehicle

determine its trajectory using frequency measurements and subsequently approach the

emitter. We show that the algorithm enables the UAV to head towards the unknown

emitter location.

2
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1.1 Background

Realization of distributed MIMO requires tight synchronization among the virtual an-

tenna array nodes to achieve constructive interference at the receiver. The key to achieve

distributed beamforming which requires tight synchronization is the use of feedback from

the receiver using either closed loop synchronization via aggregate explicit feedback or

open loop synchronization which makes use of channel reciprocity [1, 2].

A direct approach for distributed beamforming in frequency division duplex (FDD)

systems is to estimate forward link channels at the target node and send quantized es-

timates of the channels to each transmit antenna explicitly. This approach works when

there is a limited number of antennas, but the feedback overhead and the coordination

requirement across nodes become excessive as the number of antennas increases. Aggre-

gate feedback in which the receiver is not directed to any specific node can be used to

achieve scalability in the number of antennas.

The one bit feedback algorithm is the first to use aggregate feedback to achieve

distributed beamforming [3]. This algorithm iteratively perturbs the phase of the each

signal randomly and employs one bit of feedback per iteration from the receiver to align

the phases of each signal. It is provably convergent to an ideal beamforming solution in

an ideal setting [4, 5]. This simple and scalable approach has formed the basis of several

prototypes for all-wireless distributed beamforming [6, 7, 8, 9, 10]. The one bit feedback

algorithm is further improved in terms of convergence time by exploiting the knowledge

from the previous iterations [11] and using an additional feedback bit per iteration [12]. In

[13], the authors propose a variable perturbation size to decrease the convergence time,

which improves robustness in time-varying channels. The one bit feedback algorithm

was also extended to wideband dispersive channels by using an additional bit to enforce

phase continuity across frequency [14] with simple interpolation. The performance of the

3



Introduction Chapter 1

original one bit feedback algorithm has been shown to be degraded receiver noise in [15].

A noise resilient training-based distributed beamforming approach was presented in [16]

and extended to wideband systems by exploiting time domain sparsity of the outdoor

environments.

While the focus of this thesis is explicit feedback based systems when channel reci-

procity is not available, it is worth mentioning the reciprocity based time division du-

plexed (TDD) systems, in which downlink and uplink channels operate in the same

frequency band. Reciprocity based protocols for distributed beamforming were proposed

in [17, 18] in which channels from a virtual antenna array are estimated from the sig-

nal emitted from the target node. The non-reciprocal transceiver chain in these links

was addressed in [19] for wideband transmit beamforming. Emulation of the virtual an-

tenna array by pre-synchronized cooperating nodes were experimentally demonstrated

in [20, 21]. Reciprocity based operational 802.11 distributed MIMO system was demon-

strated in [22].

Distributed beamforming systems that rely on a fast wired backhaul among infras-

tructure nodes with WiFi access points [23] and cellular base stations [24, 25, 26] were

studied. However, the emphasis of this thesis is to design all-wireless distributed beam-

forming systems that achieve the potential gains from massive MIMO [27, 28, 29] without

relying on a fast wired backhaul.

1.2 Algorithms for Feedback-Based Distributed Beam-

forming

A well-known approach to distributed transmit beamforming with explicit aggregate

feedback is stochastic ascent, in which the transmitters use small random phase pertur-

4
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bations while the receiver provides a single feedback bit per iteration [3]. For wideband

OFDM systems, application of the one bit feedback algorithm separately to each sub-

carrier results in phase discontinuities in the net received signal across frequency. Phase

continuity is necessary for standard OFDM channel estimation algorithms at the re-

ceiver. We propose a second feedback bit to the one bit feedback algorithm to ensure

phase continuity [14].

Distributed beamforming algorithms are particularly interesting in low-SNR scenarios

where a single node cannot maintain a reliable high-rate link. We show that noise is a

fundamental limitation for the one bit feedback algorithm when the SNR per node is

small [15]. The implication of the noise barrier is that we cannot arbitrarily extend

the communication range by scaling the number of nodes using the one bit feedback

algorithm and its variants.

System Model

We consider a simple narrowband system model to illustrate feedback based dis-

tributed beamforming algorithms. As depicted in Figure 1.1, N transmitters send a

common message to a receiver over a noisy, flat fading channel, with feedback from the

receiver used by the transmitters to adjust their phases so as to align at the receiver.

Frequency synchronization can be achieved by each node synchronizing to the receiver

node (as in prototypes such as [8]) or to a master node within the virtual antenna array

[9], and the effect of small residual frequency offsets can be included within the noise

term. We assume that the nodes in the virtual antenna array are synchronized in timing

and frequency. We focus on the phase synchronization which requires channel state infor-

mation at the transmitter (CSIT). Ignoring the common message, the received baseband

5
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Figure 1.1: System model for distributed beamforming

sample is given by

Z =
N∑
i=1

aie
j(θi+γi+ψi) + w̄, (1.1)

where a channel seen by transmitter i is the complex gain hi = aie
ψi , γi is the receiver’s

phase offset relative to transmitter i, θi is the adjustable phase for transmitter i, and w̄ ∼

CN(0, N0) is the receiver noise. The received signal strength (RSS) is given by Y = |Z|.

The ideal beamforming solution corresponds to θi = −(γi + ψi) (modulo any constant

phase offset independent of i), and yields the maximum possible value of noiseless RSS as

Ymax =
∑N

i=1 ai. Additionally, we use normalized RSS as the performance metric which

is RSS divided by the number of virtual antenna nodes y = Y
N

.

1.3 Concept System: Distributed Base Station

The DBS concept system comprises N low-cost nodes without wired connections

among them. Our goal is to leverage N2-fold SNR gain at the receiver provided by

6
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distributed beamforming to increase downlink range and/or spectral efficiency. While

DBS can be used in existing WiFi and LTE bands, it is particularly interesting for white

space frequencies (e.g., 50-800 MHz). White space frequencies propagate well, and hence

are preferred in long-range applications such as rural broadband. However, good prop-

agation also leads to poor spatial reuse when employing omnidirectional transmission.

Beamforming using multiple antennas can enhance spatial reuse, but centralized antenna

arrays are bulky at large wavelengths. DBS allows the use of low-cost transmit nodes

with moderate transmit power to emulate a powerful transmitter with a highly directional

steerable antenna.

We propose a feedback based adaptation strategy which is robust against the low

per-node SNR at increased range [16]. We extend narrowband distributed beamforming

across OFDM subcarriers using a simple interpolation across a subset of designated pilot

subcarriers, exploiting the continuity across frequency imposed by time domain channel

sparsity. Given the extended range for the DBS concept system, feedback link and

mobility of the channel could be a bottleneck. We show that significant performance

gains can be achieved with standard uplink reception in relatively low mobility scenarios.

We further discuss possible approaches for enhancing the feedback link when the channel

varies more rapidly.

1.4 Concept System: Distributed 911

The distributed 911 (D911) concept system is based on emergency scenarios such as

single or multiple mobile devices trying to reach a distant emergency vehicle for high-

speed communication or to draw the vehicle to the current location.

We focus on RF source seeking as a building block to the D911 concept system. A

quasi-stationary emitter broadcasts a pilot signal, and a mobile UAV tries to approach

7
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the unknown emitter location in the shortest possible time. We propose and evaluate a

trajectory planning algorithm for the UAV. Our algorithm consist of two stages. First,

the UAV estimates the initial direction of the emitter by making a circular motion. Then,

it continuously updates its trajectory with small perturbations on its heading direction

using frequency measurements based on signals coming from the quasi-stationary emitter.

We show that the proposed algorithm converges towards the emitter direction. Simulation

results illustrate that the proposed algorithm significantly reduces the time required to

approach the RF source when compared to prior source seeking methods.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the extension

of the one bit feedback algorithm (in a noiseless setting) to wideband dispersive channels,

presenting an approach for imposing phase continuity across frequency. In chapter 3, we

investigate the one bit feedback algorithm in a noisy scenario and show that there is

a fundamental limitation in low-SNR regimes. Chapter 4 investigates the DBS concept

system. Chapter 5 presents an RF source seeking algorithm for a UAV trying to approach

an unknown emitter location which is a building block for a distributed 911 system.

Chapter 6 presents concluding remarks, open questions, and potential future work on

DBS and RF source seeking.

8



Chapter 2

Wideband Distributed Beamforming

Based on Aggregate Feedback

We investigate distributed transmit beamforming over wideband frequency selective chan-

nels. A cluster of cooperating transmitters sends a common message, while the receiver

is oblivious to the number of transmitters. A naive approach is to use well-known one bit

feedback algorithm [3] over each OFDM subcarrier. This achieves beamforming gain on

each subcarrier, but the effective channel seen by the receiver has severe phase disconti-

nuities across frequency. This is incompatible with standard OFDM channel estimation

techniques, which require phase smoothness across subcarriers [30]. We propose the

use of a second bit feedback per subcarrier to achieve phase continuity in addition to

beamforming gain acquired by the one bit feedback algorithm. The performance of the

proposed algorithm is validated by simulations.

In this chapter, we first describe the one bit feedback algorithm in an ideal narrow-

band scenario. We demonstrate the phase discontinuities created by its application to a

wideband OFDM system. We then propose an addition of a bit for phase continuity. Fi-

nally, simulation results illustrate that the proposed algorithm achieves phase smoothness

9
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across frequency, which enables the use of classical channel estimation algorithms.

2.1 Description of One Bit Feedback Algorithm

The one bit feedback algorithm is a simple iterative procedure that synchronizes the

received signals corresponding to all the transmitters without attempting to explicitly

estimate channel states. The system model is illustrated in Figure 1.1 in which N nodes

cooperate to send a common message. In the one bit feedback procedure, time is divided

into slots and each transmitter i ∈ {1 . . . N} applies a beamforming weight of 1ejθi(k) to

its transmitted signal in slot k and the RSS measured at the ideal receiver is the RSS at

the timeslot k is

Y (k) =

∣∣∣∣∣
N∑
i=1

aie
j(θi(k)+γi(k)+ψi(k))

∣∣∣∣∣ . (2.1)

In each slot k, each transmitter applies a random perturbation if δi to its beamforming

weight as in phase θi(k). At the end of the slot the receiver broadcasts one bit of feedback

indicating whether or not the RSS has improved compared with the previous iteration.

Upon receiving the feedback, transmitters adopt the latest beamforming phase if RSS

has improved and undo the perturbations if it has degraded. This procedure is repeated

until coherence is achieved. The resulting beamforming phases compensate for the phase

of the channel response as well as the phase offsets of the local oscillators. The feedback

from the receiver based on the received power observation in iteration n is formulated as:

F (k) =

 1 Y (k) > Ymax(k)

0 Y (k) < Ymax(k)
, (2.2)
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where Yn(k) is the RSS measured at the reciver in kth slot and Ymax(k) is the maximum

RSS measured so far as

Ymax(k) = max
0<t<k

Y (t).

Each transmitter updates its phase according to the feedback from receiver as follows.

θi(k + 1) =

 θi(k) F (k) = 0

θi(k) + δi F (k) = 1
. (2.3)

In an ideal scenario, one bit feedback algorithm is provably convergent to the optimal

RSS value [5] with the proper selection of distribution to generate δi. While the algorithm

maximizes the RSS, the received complex baseband signal ends up to a random phase as

follows

Z =

(
N∑
i=1

ai

)
ejζ (2.4)

where ζ is uniformly distributed on the [0, 2π).

2.2 System Model in Frequency Selective Channels

As depicted in Figure 2.1, we consider a cluster of N cooperating transmitters that

wish to communicate a common message to a distant destination. The channel between

the ith transmitter and the destination is denoted by Hi(f), i = 1, ..., N . In our simula-

tions, we model these channels as independent realizations from a bandwidth dependent

tapped delay line model with exponential power delay profile [31] and all realizations are

normalized to power of 0 dB. The channel impulse response is modeled as

h(t) =
k∑
l=1

αlδ(t−
l

W
) (2.5)

11
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Figure 2.1: N transmitters beamforming over frequency selective channels, using feed-
back broadcast from the receiver

where W is the bandwith of the transmitted signal and k = τdW assuming there are no

multipath components after the delay spread τd and amplitudes of the taps are

αl ∼ CN(0, abl),

where b = exp(− 1
Wτrms

) and a = 1 − b. Figure 2.2 shows a typical channel realization

with root mean squared delay τrms = 1µs as a typical RMS delay spread value in an

urban area [32], W = 10 MHz, τd = 4.7µs and carrier frequency fc = 2.5 GHz. We note

that that there are several significant fades.

We consider OFDM with M subcarriers, with subcarrier spacing smaller than the

channel coherence bandwidth. We assume that the transmitters are synchronized in

terms of clock and carrier frequency (this can be achieved by a number of mechanisms,

including using a master-slave architecture), but have timing and phase offsets that are

a priori unknown. Assuming that the transmitters are coarsely synchronized in timing

12
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Figure 2.2: Frequency response of realization of a wideband channel with τd = 4.7µs,
over N = 1024 subcarriers, with a total bandwidth of W = 10 MHz and fc = 2.5 GHz

such that residual offsets are significantly smaller than the channel time dispersion, we

can absorb these timing offsets within the OFDM cyclic prefix. Thus, the key problem

that we focus on here is the problem of coherent phase combining for each subcarrier

We are interested in regimes in which the received SNR corresponding to any given

transmitter is too low to permit reliable communication at the desired rates. If the

(loosely synchronized) transmitters emit a common message at an agreed upon time,

13
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then the effective channel seen by the receiver is

Gnc(f) =
N∑
n=1

Hn(f) (2.6)

where the subscript denotes that the channels from different transmitters are being com-

bined noncoherently. Thus, while the net received power increases (assuming each trans-

mitter sends at a fixed power), we still see significant frequency selective behavior, as

shown in Figure 2.3(a), which shows a typical effective channel obtained from such non-

coherent power pooling.

If each transmitter knows its channel to the receiver, the optimal strategy, subject

to a per-transmitter power constraint, is to employ waterfilling. However, we consider a

suboptimal strategy in which each transmitter simply adjusts its phase at each subcar-

rier to compensate for the channel, while keeping its power constant across subcarriers.

Specifically, if the nth transmitter applies a precoder of the form

Pn(f) = e−j∠Hn(f)

then the net channel obtained is

Gc(f) =
N∑
n=1

Pn(f)Hn(f) =
N∑
n=1

|Hn(f)| (2.7)

which is termed as the ideal beamforming solution. Figure 2.3.a benchmark plot shows a

typical effective channel obtained from ideal beamforming. In addition to power pooling

and beamforming gains at each frequency, we also notice a diversity gain resulting in a

significant reduction in frequency selectivity.

As explained in the previous section, the one bit feedback algorithm applied indepen-
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dently to each subcarrier leads to a solution of the form

G1bit(f) = ejζ(f)
N∑
n=1

|Hn(f)| (2.8)

so that we are achieving beamforming gain at each frequency, but with arbitrary frequency-

dependent phase shifts ζ(f) because we are not coordinating across subcarriers. Thus,

the smoothness of phase across frequency that is a characteristic of natural channels, and

is relied upon by receiver estimation algorithms, gets destroyed.

We show that a simple modification which runs in parallel to the one bit feedback

algorithm, in which the receiver sends back 1 additional bit (per subcarrier) to help

enforce phase continuity, can be used to approach the ideal beamforming solution up

to a constant phase offset. This allows the receiver to use standard channel estimation

algorithms that exploit smoothness of phase across frequency once it switches to decision-

directed or pilot-based estimation.

2.3 Extension to Wideband Systems Using 2 bit-

feedback Algorithm

A wideband frequency selective channel is parallelized into flat fading subcarriers

using OFDM, hence we can directly apply the narrowband one bit algorithm. However,

the beamforming phases evolve independently for different subcarriers, which results in

a lack of continuity in the received signal phase across subcarriers. As shown in Figure

2.3, the noncoherent benchmark for 10 transmitters has a smooth phase response at

the receiver, but the phase response after adaptation based on parallel 1-bit feedback

algorithms exhibits severe discontinuities. This can be problematic when using a standard

OFDM receiver, where typically a number of subcarriers are reserved as pilots for channel
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estimation and no data is transmitted on them. The receiver interpolates the channel

response between these pilots to obtain estimates for the channel response of all other

subcarriers. These channel estimates are then used to decode the symbols sent on the

data carrying subcarriers. After the initial training phase, our goal is to treat cluster of

nodes as a single transmitter at the receiver side. We therefore modify the 1-bit algorithm

to provide an effective channel that is smooth across subcarriers.

In order to obtain channel continuity, an additional bit of feedback is sent by the

receiver for each subcarrier demanding all transmitters to either increase the phase of

their beamforming weight by a predefined increment of γ or remain at the same phase

for that subcarrier (on top of their individual random perturbations for the one bit

algorithm). In order to achieve phase continuity at the channel seen by receiver, the

receiver compares the phase of each subcarrier with the average phase of all subcarriers

and send feedback that will bring this phase closer to the average. For iteration k

and subcarrier frequency fm, the feedback decision for the second bit at the receiver is

formulated by defining g[fm, k] such that:

g[fm, k] = Y ∗[fm, k]
M∑
j 6=k

Y [fj, n]

for m = 1, ..,M and Y [fm, k] is the received signal at mth subcarrier. Then, feedback

bit for each subcarrier is decided by comparing ∠g[fm, k] with the predefined constant α

and incrementing beamforming gains accordingly as

θnbest[fm, k + 1] =

 θnbest[fm, k] + γ ∠g[fm, k] > α

θnbest[fm, k] otherwise
. (2.9)

That is, while the one bit feedback algorithm is adapting the phases at each subcarrier

to achieve beamforming gain, we are running a consensus-style algorithm on the received
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phases to attain phase continuity across subcarriers. However, instead of directly com-

paring phases, we work with complex amplitudes in order to avoid phase wrapping issues,

and to provide a soft averaging mechanism in which subcarriers with larger received am-

plitudes have larger weight. The resulting net channel response of the 2-bit feedback

algorithm is shown in Figure 2.3(c) for 10 transmitters beamforming over a dispersive

channel with delay spread of 4.7µs using 1024-subcarrier OFDM with frequency spacing

of 9.76kHz. It can be seen that the channel phase response is smooth. The amplitude

remains equal to the amplitude provided by beamforming (i.e. equal to the sum of the

channel amplitudes of all transmitters), since the one bit feedback algorithm operates

in parallel to the phase smoothing mechanism using the second bit. The diversity pro-

vided by pooling the power of 10 transmitters significantly decreases frequency selectivity

relative to both a single transmitter and noncoherent power pooling

2.4 Performance Analysis

Figure 2.4 shows the progress of net received signal power (summed over subcarriers)

with time for 10 transmitters. We vary the SNR per user at the receiver across curves,

keeping the transmit power the same. The initial condition for the algorithm is non

coherent power pooling, and the progress towards the ideal beamforming solution depends

on the noise level. We see that the 2-bit algorithm is fairly robust to noise, and enables

reliable operation in regimes where a single transmitter would not be able to close the link

without going to very low spectral efficiencies. However, there is some noise threshold

beyond which the algorithm breaks down. For example, even when the SNR per user is

as low as -5 dB, we do attain a significant fraction of the beamforming gain, but when

the SNR per user dips to as low as -10 dB, we barely progress beyond noncoherent power

pooling. We conjecture that this threshold effect is based on how large the power-pooled
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Figure 2.3: Amplitude and phase of net channel response of 10 transmitter for A) non–
coherent combinations, B) coherent combination after convergence of 1-bit feedback,
C) coherent combination and smoothing with 2-bit feedback
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SNR that we bootstrap with is, but more analysis and performance evaluation will be

presented in the next chapter.

The benchmark for perfect beamforming gain is shown in Figure 2.3(c) along with

the net channel amplitude after beamforming for comparison. This value is calculated in

(2.10) for subcarrier frequency fm as:

|Hopt(fm)| =
N∑
n=1

|Hn(fm)| (2.10)

where M is the number of transmitters and m is the transmitter index. In the proposed

scheme, the process of channel smoothing is performed independently from beamforming,

i.e. based on the smoothing feedback all transmitters apply the same phase rotation in

each subcarrier causing a rotation in the net channel phasor but leaving its amplitude

unchanged and beamforming gain unaffected. Consequently, the performance of 2-bit

beamforming with OFDM modulation is identical to the basic 1-bit feedback procedure

in a narrowband link, hence the speed of convergence, as seen in Figure 2.4, is similar to

the predictions of [3] for the basic 1-bit feedback algorithm. For noiseless feedback, using

optimum phase perturbation increment size of 9 degrees (obtained from simulations),

75% of beamforming gain is obtained after 5M = 50 iterations. This step size, however,

may not be optimal in the noisy settings considered here, and analysis of the one bit

feedback algorithm under noise is further investigated in next chapter.

Receiver channel estimation: The resulting channel after convergence is relatively smooth

and can be estimated by the receiver from a subset of subcarriers. In the LTE standard,

channel estimation is performed at the receiver by interpolating the channel measured

from a number of pilot subcarriers. One in six subcarriers are allocated for pilot transmis-

sion and channel sounding and the remaining subcarriers are used for data transmission.

The net channel after convergence of 2-bit feedback is smooth in phase and relatively

19



Wideband Distributed Beamforming Based on Aggregate Feedback Chapter 2

0 100 200 300 400 500 600 700 800 900 1000
8

10

12

14

16

18

20
Total Received Signal Power

Number of iterations

po
w

er
 (

dB
)

 

 

Benchmark value

No noise

SNR per user: 5 dB

SNR per user: 0 dB

SNR per user: −5 dB

SNR per user: −10 dB

Figure 2.4: Convergence of 2-bit feedback with time

smooth in amplitude therefore channel estimations obtained by interpolation between

one every seven subcarriers is low. The variation of interpolation error with iteration

time is shown in Figure 2.5.
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Chapter 3

Analysis of One Bit Feedback

Algorithm in the Presence of Noise

In this chapter, we investigate the effect of the additive white Gaussian noise (AWGN) on

the one bit feedback algorithm, with the goal of answering the following: can we operate

in a regime in which SNR per node is made arbitrarily small by scaling up the number

of nodes N . As illustrated in the previous chapter in Figure 2.4, the one bit feedback

algorithm fails to progress beyond noncoherent power pooling gain at low SNR regimes.

This regime is particularly interesting for distributed beamforming applications aiming

for range extension.

The one bit feedback algorithm perturbs the phases of each transmitter at each step.

The receiver broadcasts feedback based on the noisy received samples. The decision

based on noisy samples requires modification on the one bit feedback algorithm, with

the receiver performing noisy RSS comparisons over a window to avoid deadlocks due to

noise. This iterative process is modeled as a Markov chain with transition probabilities

computed using a Gaussian approximation for random variables associated with the RSS

and its one-step evolution, similar to [33]. We perform a drift analysis on the RSS and
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compute the fraction of the ideal beamforming gain that the algorithm converges to, and

compare these analytical estimates with simulation results. We conclude that the effect

of the noise cannot be countered by simply increasing N .

We use the narrowband system model as in (1.1). It is convenient to express phases

taking as reference the direction of the received sample. Setting φi = θi +γi +ψi−∠(Z),

we can write

Y =

∣∣∣∣∣
N∑
i=1

aie
jφi + w

∣∣∣∣∣ , (3.1)

where w ∼ CN(0, N0): the statistics of the noise are unchanged under the change of

phase reference due to circular symmetry.

3.1 One bit feedback algorithm with memory

The one bit algorithm in a noisy setting is described as follows. The feedback F (k)

broadcast by the receiver at the end of time slot k is generated by comparing the current

RSS with the best RSS from among the last M iterations, as follows.

F (k) =

 1 Y (k) > Ybest(k)

0 Y (k) < Ybest(k)
, (3.2)

where

Ybest(k) = max
k−M≤t<k

Y (t)

Each transmitter updates its phase according to the feedback from receiver as follows.

θi(k + 1) =

 θi(k) F (k) = 0

θi(k) + δi F (k) = 1
. (3.3)

The one bit algorithm originally analyzed in a noiseless setting in [5] considers M =∞
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(i.e., the current RSS is compared against the best RSS seen so far). This can be

problematic in our noisy setting if the receiver observes a noisy RSS value that is higher

than the noiseless RSS from the current set of beamforming phases alone. This can

cause the algorithm to get stuck, with actual improvements in beamformed RSS going

unnoticed unless the improvement is higher than the deviation due to noise. We therefore

require a windowing mechanism to enable forgetting such outliers due to noise.

3.2 Analysis of One Step Progression of Received

Signal Strength

Our goal is to characterize the progression of the RSS in a noisy setting, and to

estimate the value at which it saturates. We do this by estimating the expected change,

or drift, in RSS over a single iteration, and finding the point at which this drift becomes

zero. We model algorithm dynamics associated with windowing as a Markov chain,

depicted in Figure 3.2 and discussed in more detail later, with the state at time t equal

to Si if the maximum RSS over the current window was observed at time t − i. The

transition probabilities for this Markov chain model depend on the statistics of the noisy

and noiseless RSS before and after phase perturbations over one step of the algorithm,

and are characterized using jointly Gaussian approximations (which are found to be

accurate even for moderately large N).

Consider the noisy and noiseless RSS values at a given iteration k (suppressed from

the notation). Assuming channel gains ai = 1 for simplicity, define the noiseless and

noisy normalized RSS values (normalized by the maximum value of N) before phase
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Figure 3.1: Effect of random phase perturbations on the total received signal

perturbation as

y =
1

N
Y =

1

N
|
N∑
i=1

ejφi|

yn =
1

N
Yn =

1

N
|
N∑
i=1

ejφi + w1|

The corresponding noiseless and noisy normalized RSS values after random phase per-

turbations are applied at transmitters are given by

yδ =
1

N
|
N∑
i=1

ej(φi+δi)|

yδn =
1

N
|
N∑
i=1

ej(φi+δi) + w2|,

(3.4)

where w1, w2 are i.i.d. CN(0, N0), and {δi} are i.i.d. (distribution specified later).

Following the approach in [5], conditioned on the normalized noiseless RSS y prior to

phase perturbation, the evolution of normalized RSS is illustrated in Figure 3.1. For large

N , application of the central limit theorem allows us to model the real and imaginary

parts of the increments as independent Gaussian. Furthermore, the imaginary part of the

increment (orthogonal to the current direction of the received sample) can be neglected,
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yielding the approximation [5]

yδ ≈ χδy + xR,δ (3.5)

where χδ = E[cosδi] and xR,δ ∼ N(0, σ2
δ ) with variance

σ2
δ =

1− χ2
δ − ρδκ(y)

2N
(3.6)

where

ρδ = χ2
δ − E[cos(2δi)], κ(y) =

I2(m)

I0(m)
(3.7)

and m is derived from

y =
I1(m)

I0(m)
(3.8)

where I is the modified Bessel function of the first kind.

It now becomes possible to approximate the noisy RSS simply by adding the real part

of the noise sample to the noiseless RSS:

yn ≈ y + wR,1

yδn ≈ χδy + xR,δ + wR,2

(3.9)

where wR,1 wR,2 are the real parts of w1/N and w2/N , and are therefore modeled as i.i.d.

N(0, σ2
n), with variance σ2

n = N0

2N2 .

The receiver knows the one-step change in the noisy RSS, given by U , yδn − yn,

whereas we would like to make decisions based on the one-step change in the noiseless

RSS, given by V , yδ−y. Under our approximations (3.5) and (3.9), U and V are jointly

26



Analysis of One Bit Feedback Algorithm in the Presence of Noise Chapter 3

Gaussian:

U
V

 ∼ N


(χδ − 1)y

(χδ − 1)y


σ2

δ + 2σ2
n σ2

δ

σ2
δ σ2

δ


 . (3.10)

As described shortly, we use such joint Gaussian approximations to compute the transi-

tion probabilities for the Markov chain modeling the algorithm dynamics.

Note that, in [5] it has been shown that the optimal choice for δi is a distribution

with variance scaling as 1/N . Thus, we choose phase rotations from uniform distribution

δi ∼ U(−c/
√
N, c/

√
N ], where c is a constant chosen based on simulation. This is easily

seen to imply that σ2
δ ∼ 1

N2 , which is the same scaling as the noise variance σ2
n. Thus the

entries of the covariance matrix in (3.10) scale with 1/N2, with the relative strengths of

the phase perturbation and noise terms being independent of N .

3.3 Performance Analysis with Received Signal Strength

Memory

In order to compute expected value of the RSS drift given noiseless RSS value y, we

make the simplifying assumption that RSS drift at iteration k is statistically independent

of the feedback before k−M .The RSS drift at the kth step conditioned on current state

Sm and noiseless RSS value y with memory size M can be written as

Drift(RSSk|Sm, y) = E[Vk| feedback since k −m, y]. (3.11)
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Figure 3.2: Markov chain

The total RSS drift with memory size M can be computed as

Drift(RSSk|y) =
M∑
m=1

P(Sm|y) ·Drift(RSSk|Sm, y). (3.12)

The conditional drift in (3.12) can be expressed as:

Drift(RSSk|Sm, y) =

P(Uk > 0|Sm)Drift(RSSk|Sm, Uk > 0, y)

+P(Uk < 0|Sm)Drift(RSSk|Sm, Uk < 0, y).

(3.13)

We model the progress of the algorithm with the Markov chain shown in Figure 3.2.

A positive feedback causes a transition to S1 from any state. Negative feedback causes

a transition from Si to Si+1, except when the final state is SM . When we get negative

feedback in state SM , we assume that we transition to any of the M states with equal
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probability. The state transition probability matrix can therefore be written as

P =



p1 1− p1 0 · · · 0

p2 0 1− p2 · · · 0

...
... 0

. . .
...

pM−1 0
. . . 0 1− pM−1

pM + 1−pM
M

1−pM
M

· · · 1−pM
M

1−pM
M


The state transition probabilities pm are the probabilities of having positive feedback

when the algorithm is in state Sm and can be defined as

pm =P(Uk > 0|Sm, y)

=P(Uk > 0|Uk−1 < 0, ..., Uk−m+1 < 0, y)

(3.14)

which can be computed from multivariate Gaussian random vector [Uk, Uk−1, ..., Uk−m+1]
T .

We define the probability of the algorithm being in state m conditioned on noiseless

RSS value y as P(Sm|y). The steady state stationary distribution of the Markov chain is

computed as the left eigenvector of P corresponding to eigenvalue of 1.

The positive feedback drift term in (3.13) is computed as

Drift(RSSk|Sm, Uk > 0, y))

=E(Vk|Uk > 0, Uk−1 < 0, ..., Uk−m+1 < 0, y).

(3.15)

where we compute this expectation from the multivariate Gaussian distribution of

[Vk, Uk, Uk−1, ..., Uk−m+1].

The negative feedback drift term in (3.13) is 0 except when the algorithm is in state M
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since phase rotations δi are discarded as receiver broadcasts a negative feedback. When

the algorithm is in state M and negative feedback is received then a new RSS value is

considered in the next iteration. RSS drift for state M can be expressed as

Drift(RSSk|SM , Uk > 0, y)) = P[max noisy RSS at k − r]

×E[Vk−r|Uk−r < 0, {Ui < Uk−r},∀i 6=(k−r),i>k−M ]

=E(Vk|Uk < 0, Uk−1 < Uk, ..., Uk−M+1 < Uk, y).

(3.16)

where we compute this expectation from multivariate Gaussian vector [Vk, Uk, Uk−1, ..., Uk−M+1]
T

using Monte Carlo integration.

The total expected RSS drift is computed by combining (3.12) and (3.13) where

we use our computed values for state probabilities, state transition probabilities and

expected drift values for a given state. We estimate the steady state value of the noiseless

normalized RSS y as the value corresponding to the zero crossing point of expected RSS

drift conditioned on y.

3.4 Numerical Results

In this section, we present simulation results for our proposed architecture and com-

pare them with our analytical approximations.

Figure 3.3 shows that the simulated histogram of (U, V ) corresponds closely to our

joint Gaussian analytical approximation. As SNR decreases, the correlation of U and V

decreases, and hence the probabilities of the receiver broadcasting the correct decision

(P [U > 0|V > 0, y] and P [U < 0|V < 0, y]) approach 1/2 (if U becomes conditionally

independent of V , then these approach P [U > 0|y] = P [U < 0|y] = 1
2
.

Analytical computations for expected drift in different noise settings are plotted in
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Figure 3.3: 2D histogram of noiseless versus noisy RSS increments (N = 100 trans-
mitters and window size M = 4) compared against the analytical joint Gaussian
distribution.

Figure 3.4. We see that the algorithm’s progress is faster when the normalized RSS y is

smaller, and that the steady state corresponding to the zero crossing values get worse as

per-node SNR degrades.

Figure 3.5 shows simulation results for the normalized RSS values vs per-node SNR.

These are “steady state” values obtained after 100N iterations, averaged over multiple

runs, for different number of transmitters N . Random phase rotations are generated

from uniform distribution δi ∼ U(−∆,∆) where ∆ = 100/
√
N . We observe that the

normalized steady state RSS values from simulations match with the corresponding zero

crossing values of expected RSS drift in Figure 3.4. The match between our analytical

results and simulations does degrade slightly at lower SNR: the analytical results are

pessimistic. However, the insensitivity of the steady state normalized RSS to N is indeed

as predicted by the analysis.
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Figure 3.4: Theoretical values of RSS drifts with window size M = 4 and for N = 100
transmitters in different noise levels
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Chapter 4

Distributed Base Station

4.1 Introduction

In this chapter, we propose a training based distributed beamforming approach,

termed deterministic orthogonal sequence training (DOST), designed to operate in low

SNR regimes in which the one bit feedback algorithm and its variants fail, as shown in

the previous chapter. We build on this algorithm to design of the DBS concept system,

targeting significant improvements in communication link range and/or data rate. As

shown in Figure 4.1, a DBS comprises N opportunistically placed, low-cost, transmit-

ter nodes, without wired connections between the nodes. Our goal is to leverage the

N2-fold received power gain provided by distributed transmit beamforming to signifi-

cantly enhance downlink range and/or spectral efficiency. We extend the DOST scheme

to wideband system by simple interpolation across pilot subcarriers. We discuss pilot

placement under different channel conditions. We compactly characterize downlink DBS

performance with a outage capacity analysis. Finally, we note that feedback link may

become a bottleneck in terms of the rate of channel time variations that can be sup-

ported. We use outage capacity analysis to provide insight on the system-level impact of
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Figure 4.1: The Distributed Base Station Concept System.

the feedback link.

In practice, N coordinating nodes can obtain N -fold gain without beamforming with

loose timing coordination between the transmitters (e.g., so the delay spread seen by the

receiver across transmitters is smaller than the size of an OFDM cyclic prefix). Therefore,

our proposed algorithm builds on this power pooling gain to bootstrap from a low-SNR

regime to train beamforming weights.

As an example of the system enhancements possible with a 10-node DBS (our running

example), consider a rural broadband link served by a single transmitter node in white

space frequencies (50-800 MHz). For a receiver at the cell edge, which could only sustain

a very low rate control channel at −5 dB SNR with a single base station transmitter, a

10-node DBS boosts the SNR at the receiver to 5 dB with power pooling, and to 15 dB

with ideal beamforming. For typical SNR versus modulation and coding scheme (MCS)

values for LTE adaptive modulation [34], we can sustain QPSK with rate 2/3 coding with

power pooling, and 64QAM with rate 2/3 coding with beamforming. Thus, for a channel

bandwidth of 20 MHz, a DBS makes it possible to provide broadband data rates of 20-80

Mbps at a range where a single transmitter system could barely establish a control link.
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4.1.1 Related Work

With the increasing availability of low-cost front-end elements, architectures that take

advantage of the degrees of freedom offered by massive deployment of antenna elements

have gained in popularity. Acquisition of adequate channel state information at the

transmitter (CSIT) is crucial for FDD massive MIMO systems. Traditional codebooks

for channel feedback [35, 36] require the number of feedback bits to scale linearly with the

number of BS antennas [37]. Efficient codebook design based on the channel statistics [38]

and sparsity inspired approaches are proposed in [39, 40] to reduce feedback overhead.

Explicit and heavily quantized feedback is key to achieve beamforming gain while preserv-

ing downlink resources. For instance, an LTE base station with 64 antennas would use

approximately 48% of the downlink resources to send reference signals [41]. The funda-

mental differences between this body of work and our framework are as follows. First, in

order for the network protocols to scale with the number of distributed transmitters, and

to allow opportunistic expansion of the DBS, we constrain the receiver to be oblivious to

the number and identity of transmitters. Thus, instead of performing channel estimation

and then producing quantized feedback, the feedback must be based on the receiver’s

aggregate measurements. This still allows us to consider standard training strategies, in

which different transmitters send orthogonal or quasi-orthogonal training sequences, but

constrains the form of feedback the receiver can send back. This implies, for example,

that the receiver cannot perform spatial channel estimation followed by codebook-based

quantization, or exploit sparsity, unlike in existing feedback-based techniques in massive

MIMO. Second, the impact of operating in the low per-node SNR regime has not been

considered in prior work on massive MIMO feedback. This limitation on the feedback

rate can fundamentally limit the channel coherence times that can be supported.

Map of this Chapter: We present the system and channel model for DBS in Section
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4.2. In Section 4.3, we present the DOST algorithm, as well as alternative strategies for

beamforming, and compare these algorithms with simulations over narrowband channels.

In Section 4.4, we extend the beamforming algorithms to wideband settings by using a

subset of the OFDM subcarriers as pilots. We discuss selection of pilot resources along

with possible interpolation techniques. Finally, Section 4.5 presents DBS system frame

structure and performance analysis with outage capacity results. It includes a discussion

of the reliability and system-level impact of the feedback link with different possible

feedback link reception techniques.

4.2 System and Channel Model

4.2.1 DBS system model

The nodes in the DBS depicted in Figure 4.1 cooperate to send a common message

to a distant receiver over a noisy multipath channel. We consider OFDM with a set

of subcarriers designated as pilots. The receiver broadcasts explicit aggregate feedback

on the complex signals received on the pilot subcarriers. Each transmitter in the DBS

uses this feedback to estimate its complex channel gains to the receiver on the pilot

subcarriers, and interpolates these to estimate the channel gains on the data subcarriers.

Each transmitter then adjusts its phase on each subcarrier to compensate for the channel

phase, in order to align coherently at the receiver. The transmitters are assumed to be

synchronized in time and frequency as in Chapter 2.2 system model.

4.2.2 Signal Model

We denote the channel from node i to the receiver on subcarrier k by the complex

gain Hi(fk) = aike
jψik , and the receiver’s phase offset relative to transmitter i by γik.
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Transmitter i applies phase control via a beamforming weight of ejθik on its kth subcarrier.

The received signal, after multiplying by the conjugate of the unit-amplitude pilot symbol,

is given by

R[fk] =
N∑
i=1

aike
j(θik+γik+ψik) + w[k] (4.1)

The corresponding normalized received signal strength (RSS) is given by

r[fk] =
|R[fk]|
N

(4.2)

and is used as a performance metric to compare different beamforming algorithms.

The aim of distributed transmit beamforming is to maximize RSS. This is achieved

when each transmitter chooses a beamforming phase that reverses its total offset relative

to the receiver allowing all signals to combine coherently upon reception. The optimal

solution is therefore θik = −(γik + ψik) up to a common constant shift across all nodes.

The received RSS is then equal to

Rmax[fk] =
N∑
i=1

aik (4.3)

and the normalized RSS r[fk] approaches the maximum achievable value.

4.2.3 Channel Model

The multipath channel between a typical transmitter node and the receiver is modeled

as

h(τ) =

Np∑
p=1

αpδ(τ − τp)

where Np denotes the number of paths, τp the delay and αp the complex gain of path p.

For concreteness, we consider Rayleigh fading on each path, setting αp = Apvp where vp
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are i.i.d. complex Gaussian with distribution CN(0, 1) and Ap is the normalized square

root of the power delay profile (PDP) such that
∑

pA
2
p = 1.

The frequency response for such a channel is:

H(fk) =
∑
p

Apvpe
−j2πfkτp

For each frequency fk, H(fk) is zero-mean complex Gaussian with variance
∑

iA
2
p = 1.

Thus, the channel responses of each transmitter at different frequencies are identically

distributed but correlated random variables with distribution H(fk) ∼ CN(0, 1).

In our numerical results, we use the 3GPP Extended Pedesterian A (EPA) channel

model parameters shown in Table 4.1 to generate channels for each node in the DBS

[42]. Different nodes therefore have the same power-delay profile, but different channel

realizations corresponding to i.i.d. draws of the {vp}. We note that this channel model

is not intended to provide a physical model of multipath components, but rather, may

be viewed as a non-uniform tapped delay line representation of a bandlimited channel.

We have also considered dithered versions of the delays for different nodes, and verified

by simulations that the channel statistics in frequency domain do not change. Thus,

the channel model should be viewed as a non-uniform tapped delay line representation,

rather than a model for physical multipath components.

4.3 Narrowband Feedback-based Distributed Beam-

forming Techniques

In this section, we describe and justify our choice of training strategy through numer-

ical comparison against alternative approaches. We focus on a narrowband system which

serves as a model for a single pilot subcarrier in the wideband OFDM framework. As
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Parameters
Path Number Delay (ns) Relative Power (dB) Fading

1 0 0.0 Rayleigh
2 30 -1.0 Rayleigh
3 70 -2.0 Rayleigh
4 90 -3.0 Rayleigh
5 110 -8.0 Rayleigh
6 190 -17.2 Rayleigh
7 410 -20.8 Rayleigh

Table 4.1: EPA channel model

mentioned, we are interested in techniques that scale well, in terms of both performance

and protocol simplicity, as the number of transmitter nodes increases and as the received

SNR per node approaches zero.

4.3.1 Deterministic Orthogonal Sequence Training

In this scheme, each node uses a predefined sequence of beamforming weights over

L training transmissions and the L complex gains measured by the receiver are quan-

tized and broadcast to the transmitters. By using orthogonal or quasi-orthogonal weight

sequences on different nodes, each node can extract its channel from the feedback inde-

pendently from other nodes.

Consider the L × N training matrix A, the i’th column of which is the weight se-

quence used by node i. To design N orthogonal sequences, each sequence must be at

least of length N , meaning the training period, which is equivalent to convergence time

for the iterative approaches, is equal to N and scales linearly with array size. Using

orthogonal sequences is then equivalent to choosing a training matrix for which AHA is

diagonal. This orthogonality requires some coordination between transmitters to ensure

one-to-one assignment of sequences to nodes. This requirement can be relaxed by using

quasi-orthogonal pseudorandom sequences that nodes generate independently; the nor-
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malized interference between sequences gets attenuated as their length grows. While it is

possible to employ completely uncoordinated training by the latter choice, in practice, the

coordination required for implementing truly orthogonal sequences (which provide the

best possible performance for a given training duration and power) is minimal. There are

many possible choices of training sequences, but for concreteness, we consider the DFT

matrix in our results:

A =



1 1 · · · 1 1

1 e−j2π/L · · · e−j2π(N−1)/L

...
...

. . .
...

1

1 e−j2π(L−1)/L · · · e−j2π(N−1)(L−1)/L


This is because DFT sequences are not only orthogonal, but they remain orthogonal

when cyclically shifted by any amount. Thus, a transmitter can use any L-sized block

of feedback to estimate its channel, without incurring interference from the sequences

sent by the other transmitters. A receiver can therefore snoop on the pilot subcarriers

at any time, and generate feedback for the transmitter nodes in the DBS. Similarly, any

transmitter node can join or leave the DBS at any time, assuming basic OFDM frame

alignment and frequency synchronization is maintained. This makes deployment and

operation particularly simple.

The observations at the receiver, collected over times l = 1, ..., L, can be written as

the L× 1 vector

y = Ah + w

where h is the N × 1 channel vector across different transmitters and w ∼ CN(0, N0I)

is the receiver noise.
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The least squares estimate for the channel vector is given by

ĥ =
(
AHA

)−1
AHy (4.4)

assuming that L ≥ N and A has rank N . Each node can thus obtain its channel estimate

by taking the inner product of its corresponding row in the matrix (AHA)−1AH and the

channel measurement feedback vector.

The Cramer-Rao lower bound on error covariance is Ch = N0

(
AHA

)−1
. For each

transmitter, the error covariance is bounded as

Var(ĥn) ≥ (N0(A
HA)−1)n,n ≥

N0

(AHA)n,n

with the bound attained for orthogonal training (diagonal AHA). In this case, each node

can estimate its channel by separately correlating the observations with its own training

sequence:

ĥn =
1

L
aHn y = hn +

1

L
aHn w (4.5)

where an is the nth column of the training matrix. The estimation error covariance

Var(ĥn) = N0/L can be made arbitrarily small by increasing the training interval L.

This also demonstrates the power-pooling advantage of the DOST algorithm; with L

scaling linearly with N , the estimation accuracy improves as array size grows and longer

links with lower RSS can be supported.

Quantization

In practice, the complex received signal amplitude measured at the receiver must be

quantized to a limited number of bits and broadcast by the receiver. The variance of

the received complex amplitude scales as N (the transmitted signals add up incoherently
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during the training period), hence a natural question is whether the quantization resolu-

tion also needs to be enhanced as N increases. Fortunately, the answer is no: as long as

the receiver scales its quantizer step size ∆ as
√
N to accommodate the amplitudes it is

seeing, we can use a fixed number of quantization bins, and average out the quantization

noise across the training period.

The channel estimate at transmitter n with quantized feedback can be written as

ĥn =
1

L
aH
n (y + nq)

=
1

L
aH
n y +

1

L
aH
n nq

where nq is the quantization noise vector. Assuming quantization noise is distributed

uniformly over the span associated to each level, the variance of any element nq[l] of the

quantization noise vector scales as

Var(nq[l]) =
∆2

12
∼ N.

If the quantization noise values can be approximated as independent over time, we have

Var(
1

L
aHn nq) ∼

NL

L2
=
N

L

so that the effect of quantization noise on channel estimation can be made independent

of N by scaling L linearly with N . Thus, we can use a fixed feedback rate even as we

increase the number of transmitters N , as long as the length of the training period scales

linearly with N .
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4.3.2 Alternative Strategies

The goal here is not to be comprehensive, but to show that the proposed DOST

strategy is better matched to the low-SNR regime than methods that have been sug-

gested in the literature, and natural variants thereof. To this end, we consider per-node

deterministic training, the one bit feedback algorithm as described in Chapter 3.1, and

variants of the latter that employ 2 bits per iteration.

4.3.2.1 Successive Deterministic Distributed Beamforming

A special case of deterministic orthogonal training is time-multiplexed training where

only one transmitter is active at a time and the phase offset measured at the receiver is

fed back to individual nodes successively. This procedure, termed Successive Determin-

istic Distributed Beamforming (SDDB) in [43] and such a scheme has been successfully

prototyped [44], corresponds to setting the training matrix to identity, i.e., A = INxN .

As our analysis and numerical results demonstrate, this method is poorly matched to the

low per-node SNR regime of interest to us, since a transmitter is not able to use the en-

tire training period to average out noise. Of course, if the per-node SNR is large enough

SDDB may be preferable in terms of power conservation as only one transmitter is active

at any time during a training period of similar length. This may be the case for shorter

range applications, in which the goal of distributed beamforming is to reduce transmitted

power rather than to obtain range extension for a given transmitted power. On the other

hand, SDDB is more resilient to quantization than DOST, since the dynamic range of

the received signal is smaller when a single node is transmitting at a time.
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4.3.2.2 Randomized two bit feedback algorithm (R2BF)

The authors in [12] propose a modified version of OBF, namely the randomized 2 bit

feedback algorithm (R2BF), in order to speed up convergence. Assuming that the receiver

has knowledge of the maximum possible RSS value obtained by perfect beamforming, the

feedback bits are set as follows:

F [t] =



11 if R[t] > Rbest[t] and close to RSSmax

10 if R[t] > Rbest[t] half way from RSSmax

01 if R[t] > Rbest[t] and far from RSSmax

00 if R[t] < Rbest[t]

(4.6)

and the phase update (3.3) becomes

θi[t+ 1] =

 θi[t] if F [t] = 00

θi[t] + δi[t] otherwise

In the next time slot, δi[t + 1] is chosen from a different distribution depending on the

feedback, i.e. δi[t+ 1] ∼ U [−π
β
, π
β
] where:

β =


β1 if F [t] = 01

β2 if F [t] = 10

β3 if F [t] = 11

where β1 < β2 < β3. This approach increases the convergence speed of 1BF by around

25%, but with the additional requirement of the receiver knowing the maximum RSS,

which in turn requires knowledge of the number of transmitters and the channel statistics.

This method therefore requires a higher level of coordination between nodes and is less

robust and distributed.
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4.3.2.3 Modified two bit feedback algorithm (M2BF)

We propose a different modification of one bit feedback, where the additional bit of

feedback is used to quantify the amount of improvement obtained from the perturbations.

The additional feedback bit relative to (3.2) is generated as follows:

F [t] =



11 if α1 ≤ R[t]−Rbest[t]

10 if 0 ≤ R[t]−Rbest[t] < α1

01 if α2 ≤ R[t]−Rbest[t] < 0

00 if R[t]−Rbest[t] ≤ α2

(4.7)

where α1 and α2 are predefined constants dependent on channel statistics, but indepen-

dent of N . If the RSS improvement from current random phase perturbations is above

threshold α1, all transmitters make use of this knowledge and apply the previous pertur-

bations again in the next iteration. If the degradation caused by the perturbation is more

than threshold α2, the phases are reversed and transmitters perturb their phases in the

opposite direction. Therefore δi[t + 1] becomes dependent on the previous perturbation

δi[t] as follows:

δi[t+ 1] =


new random if F [t] = 10 or 01

δi[t] if F [t] = 11

−δi[t] if F [t] = 00

(4.8)

4.3.3 Numerical results and comparisons

To evaluate and compare the beamforming performance and convergence speed of the

preceding algorithms, we fix the number of feedback bits to 2 and plot the progression of

each algorithm with the number of iterations. We compare DOST with 2-bit quantized

feedback against the 2-bit SDDB, M2BF and R2BF strategies discussed above. While
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our later system-level numerical results are for a DBS with 10 nodes, in this section,

we consider a larger number of nodes (N = 100) in order to stress test the feedback

strategies considered. We investigate the evolution of beamforming gain as a function of

iterations using Monte Carlo simulations.

The distributed beamforming schemes used in the simulations have the following

parameters: the phase perturbations δi[t] are generated from the uniform distribution

U(−10◦, 10◦). R2BF uses β1 = 5◦, β2 = 10◦, β1 = 25◦ and constant thresholds of

ξ1 = 0.3, ξ2 = 0.8 to decide from the Rbest where RSS fits in (4.6). For M2BF, α1,2 = 0.8

and the phase perturbations are designed to decay exponentially from U(−45◦, 45◦) with

the number of iterations.

We first focus on understanding the effect of quantization in a noiseless setting. Fig-

ure 4.2 shows, at each iteration, the RSS level that would be obtained by nodes using

their current channel estimate for beamforming. The curves of Figure 4.2 are the result

of averaging over 2000 realizations of an N = 100 element array in a noiseless setting. For

deterministic algorithms, training is stopped after L = 100 iterations, which constitutes

one “batch” of training. In the absence of noise, the stochastic algorithms, R2BF and

M2BF, converge asymptotically to optimal beamforming, while deterministic algorithms

hit an performance gap of 1 and 2 dB away from optimal beamforming for SDDB and

DOST, respectively, due to feedback quantization. When the feedback link is not a bot-

tleneck, increasing the number of feedback bits can also be used to decrease quantization

loss, but our interest is in the low per-node SNR regime, where this is not a feasible

strategy. Thus, in a noiseless setting with severe feedback quantization, the one bit feed-

back algorithm and its variants actually perform better than deterministic training. And

among the deterministic strategies, time-multiplexing across nodes as in SDDB is better

than DOST, since the dynamic range of the received signal is smaller.

However, the picture is quite different when we consider the low per-node SNR regime
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of interest to us. Figure 4.3 shows the evolution of the beamforming algorithms at per-

node SNR of −5 dB. Since the SDDB scheme does not get the benefit of time averaging,

it falls 7 dB short of the ideal 20 dB beamforming gain after N iterations, whereas

DOST comes to within 2 dB of the ideal beamforming gain. The one bit beamforming

schemes perform very poorly and we do not plot it. Among its two-bit variants, the

M2BF scheme performs better than the R2BF scheme, but falls well short of the ideal

beamforming gain: 8 dB lower after N = 100 iterations, and 5 dB lower even after 500

iterations. Thus, the DOST algorithm is by far the most resilient at low per-node SNR.

0 100 200 300 400 500

Iterations

-20

-15

-10

-5

0

N
o
rm

a
liz

e
d
 R

S
S

 (
d
B

)

Normalized RSS values (Noiseless)

R2BF

M2BF

SDDB

DOST

Figure 4.2: Evolution of the distributed beamforming approaches in a noiseless setting
for N = 100 nodes

Impact of quantization

We now explore the impact of quantization further, by varying the number of bits

of feedback per iteration in the DOST and SDDB algorithms. The number of feedback
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Figure 4.3: Evolution of the distributed beamforming approaches for N = 100 nodes
at SNR per node −5 dB

bits is fixed to 2 for M2BF and R2BF, hence we do not consider those schemes here.

Figure 4.4 shows the performance of the two algorithms with different levels of feedback

quantization for different per-node SNR after 100 iterations of training. We consider 2-bit

feedback quantization to quantize both real and imaginary parts of the received baseband

signal. With 2-bit quantization, DOST is able to achieve within 2 dB of the ideal solution.

Increasing the number of quantization bits to 4 bits improves both algorithms by around

1 dB and further increasing it to 6 bits gives very slight performance improvement.

These results show that DOST can achieve near-optimal beamforming gains with heavily

quantized feedback, as low as 2 bits per iteration, making it competitive with stochastic

ascent approaches like R2BF and M2BF, even in noise-free conditions where they perform

best.
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Figure 4.4: Normalized beamforming gains for SDDB and DOST for different number
of feedback bits

4.4 Extension to Wideband using OFDM

4.4.1 Using simple interpolation

To extend the framework to wideband, an OFDM framework is utilized wherein

DOST is applied on a subset of the OFDM subcarriers by placing training pilots at

known positions in the OFDM symbol grid. Different pilot placements are possible for

the training, including the block type, the comb type, or 2D-grid type [45]. In a block

type arrangement, the pilots are placed on all subcarriers in a few OFDM symbols; in

the comb type, the pilots are present in all OFDM symbols over a subset of subcarriers

as shown in Figure 4.5; and in the 2D-grid type, the pilots are present in a subset of
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Figure 4.5: Proposed comb type pilot arrangement for channel estimation over OFDM grid

OFDM symbols over a subset of subcarriers. Therefore, the number of pilots in the 2D-

grid pattern are less than the block and comb type pilot arrangements. Our goal here is

to learn the channel as quickly as possible, hence for any given subcarrier, it is best to

concentrate our pilot resources in time (over L ≥ N successive OFDM symbols for an

N -node DBS) so as to get the required feedback from the receiver as quickly as possible.

This is particularly important for maximizing the rate of channel time variations a DBS

can support, because of the relatively low rate of feedback available on the uplink (see

Section 4.5). However, by exploiting the continuity of the channel across frequency,

we only need to employ pilots for a subset of subcarriers, and estimate the optimum

beamforming weight for all other subcarriers via interpolation in the frequency domain.

We therefore consider the comb type pilot arrangement shown in Figure 4.5 for the DBS

deployment.

A number of different interpolation strategies can be used to extend the pilot subcar-
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rier channel estimates to the remaining subcarriers, including linear interpolation, second

order interpolation, low pass interpolation, spline cubic interpolation, and time domain

interpolation. We consider lowpass interpolation, which has been shown to work better

with comb type pilots [45].

The typical LTE system parameters shown in Table 4.2 are used in the simulations;

and comb type pilots are placed at all OFDM symbols on a subset of 200 equispaced

subcarriers. The minimum required number of OFDM symbols for training is L ≥ N ,

and the minimum required time for training is 0.71 ms for N = 10 nodes. Note that

a standard 2D grid type pilot arrangement, as illustrated in Figure 4.6, would require

a longer training time. For the system parameters of Table 4.2, the minimum required

number of OFDM symbols for training is also L ≥ N , however, a subset of OFDM

symbols are used as the pilots and the required time for training is 7L OFDM symbols

which corresponds to a minimum training time of 5 ms for N = 10 nodes. This gap

grows linearly with the number of nodes and can become a bottleneck when scaling to

larger arrays.

Variables Parameters
Number of nodes (N) 10

Bandwidth (Downlink) 20 MHz
Bandwidth (Uplink) 20 MHz

Number of subcarriers 1200
Number of pilot subcarriers 200

Size of FFT 2048
Subframe length 1 ms

OFDM symbols per subframe 14
Channel Model EPA
Doppler Spread 5 Hz

Table 4.2: Link Level System parameters
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Figure 4.6: Standard 2D-grid type pilot placement is not well matched to a DBS
OFDM downlink.

4.4.2 Using time-domain sparsity

The DOST algorithm is extended to OFDM over wideband channels by employing

training on a subset of subcarriers, as shown in Figure 4.5. The channel estimates over

the training subcarriers are interpolated to all subcarriers by first performing a sparse

time domain channel reconstruction. In particular, we assume that the time domain

channel is modeled as a discrete multipath channel:

hn(t) =
K∑
k=1

gkδ(t− τk) (4.9)

In the frequency domain, this channel is a mixture of sinusoids with “frequencies”

equal to multipath delays:

Hn(f) =
K∑
k=1

gke
−j2πfτk (4.10)

The problem of reconstructing the channel from estimates at a subset of subcarriers

is therefore equivalent to finding the frequency (τk) and amplitude (gk) of each sinusoid
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in the mixture. In order to solve this problem, we use a dual of a frequency estimation

algorithm developed in [46]. The inputs are the channel measurements Ĥn(fi) on the

training subcarriers. The outputs are estimates of the multipath delays and complex

amplitudes. These estimates are then substituted in (4.10) to obtain channel estimates

(and hence beamforming weights) for all subcarriers.

At low SNR per node and severe quantization, the frequency estimation algorithm

used to detect delay components can overfit by producing spurious low-amplitude taps

with delays larger than the channel delay spread. We find that channel estimates are

improved by a simple denoising procedure which excludes these components. One real-

ization of a 5-tap time domain channel is shown in Figure 4.7 along with the estimated

taps using channel estimates at 32 out of 256 subcarriers. The channel estimates were

obtained using the DOST algorithm in a 20 element array over training time of 100 iter-

ations. The phase of the reconstructed channel, consisting only of the first 5 estimated

taps with estimated delays smaller than the channel delay spread of 1/∆f = 1µs, is

shown in Figure 4.7 alongside the correct channel phase. It can be seen that the channel

phase profile across frequency is estimated accurately even at a low per-node SNR of

−10 dB and drastic quantization of 1 bit per I/Q dimension (or equivalently, four-phase

quantization).

4.4.3 Simulation results

Simulation results using uncorrelated EPA channels with the power delay profile of

Table 4.1 and system parameters of Table 4.2 are reported here for the wideband setting.

The comb type pilot arrangement is used with subcarrier spacing of 6. Figure 4.8 shows

the performance of beamforming algorithms averaged over subcarriers for N = 10 nodes.

DOST achieves within 3 dB of the ideal solution, and works better than SDDB at low
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of subcarriers (32 out of 256) and reconstructed phase of the channel by time domain
estimates
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per-node SNR. The degradation due to interpolation of comb type pilots is only 0.5 dB

compared to a setting in which all subcarriers are used as pilots.

4.5 System Performance

We now provide performance characterization via outage rates for the downlink trans-

mission of pilots and data and for feedback broadcast in the uplink direction. For sim-

plicity, we use the terms “capacity” and “outage rate/capacity” to denote spectral effi-

ciencies, either for a narrowband system (modeling a single subcarrier), or averaged over

subcarriers for a wideband system. We use the term “data rate” when we multiply such

spectral efficiencies by the bandwidth.

The forward link enjoys the benefits of N -fold power pooling gain during training, and
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Figure 4.9: DBS frame structure with a slow feedback link.

N2-fold distributed transmit beamforming gain during post-training data transmission.

The rate of the feedback link depends on the sophistication of its reception strategy, as

well as its allocated resources, which may be less than that of the forward link. There

is no power pooling on the uplink and transmission is at an N -fold disadvantage in

this direction relative to downlink. This asymmetry may be offset by using distributed

receive beamforming in the feedback direction to pool the resources of the array and

allow uplink scaling to keep up with downlink. Different analog and digital receive

beamforming algorithms have been proposed in previous works such as [33, 47]. In the

worst case, however, feedback is delivered over a SISO channel, either by having each node

decode and use the feedback independently or use a single designated node for feedback

reception. In this case, if the downlink power emitted by a single node in the DBS cluster

and the uplink power emitted by the user node are comparable, then the feedback link

may well be the scaling bottleneck and necessitate longer symbol durations to build up

SNR, which will limit the rate of channel time variations that can be supported by the

distributed array.

Figure 4.9 illustrates an example frame structure. During the startup phase, data
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could be sent in power pooling mode at lower spectral efficiency, while sending training

on the pilot subcarriers. Beamforming can be applied once the feedback corresponding

to the pilots has been received. Once continuous communication has been established,

feedback regarding the designated set of pilot subcarriers on the downlink in frame f is

sent back during the next frame f+1, and the results are applied for distributed transmit

beamforming in frame f + 2. With such a scheme, for the first and second frames, data

could still be sent in power pooling mode at lower spectral efficiency, with distributed

beamforming enabled from the third frame onwards. For continuous communication, we

would be beamforming in a given frame based on pilots sent two frames back. If the

feedback link is the bottleneck, then the frame length Tf must be long enough to carry

back the feedback corresponding toMp pilot subcarriers on L ≥ N OFDM symbols, which

amounts to 2MpL bits using 2-bit feedback. For feedback of rate Rf , this corresponds to a

frame length of Tf = 2MpL

Rf
, and a channel coherence time of Tc = 3Tf . If the feedback link

is not the bottleneck, then the minimum frame length can be set to Tf = LTOFDM, where

TOFDM is the OFDM symbol length, which is governed by the channel delay spread and

the overhead allowed for the cyclic prefix. We provide numerical values for our running

example of a 20 MHz downlink over an EPA channel model at the end of this section.

We first discuss achievable performance on the downlink, and then consider the feed-

back link. In both cases, we use outage rates for a compact bottom-line characterization.

4.5.1 Downlink Performance

We assume that each node in the DBS cluster applies a phase correction on each

subcarrier based on its channel estimate, and employs a uniform power distribution across

subcarriers. Since the DBS nodes do not have information regarding the relative channel

strengths across subcarriers or transmitters, more optimal power allocation methods
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such as waterfilling are not possible. Even for a narrowband channel, using multiple

transmitters for distributed beamforming provides spatial diversity, hence we derive a

pessimistic estimate of outage spectral efficiency by ignoring frequency diversity and

focusing on a single subcarrier at frequency fk. The channel seen by node i is denoted as

Hi(fk). Upon ideal phase compensation, the net channel seen at the receiver is given by

‖H(fk)‖1 =
∑N

i=1 |Hi(fk)|, where H(fk) = (H1(fk), ..., HN(fk))
T is the vector of channel

gains corresponding to the N nodes in the DBS cluster. Modeling the channels {Hi(fk)}

as zero mean complex Gaussian normalized as E[|H(fk)|2] = 1, the effective channel

amplitude gain ‖H(fk)‖1 is a sum of i.i.d. Rayleigh random variables, each with mean

squared value of one.

Assuming that each transmitter applies power P to each subcarrier, the outage prob-

ability for a narrowband system operating at fk is given by

pout(R) = P
{

log2

(
1 +

P‖H(fk)‖21
N0

)
< R

}
= P

{
‖H(fk)‖1 <

√
(2R − 1)N0

P

} (4.11)

The ε-outage capacity Cε is the maximum rate R such that pout(R) is less than ε.

Letting F (·) denote the CDF of ‖H(fk)‖1, we see that

Cε = log2

(
1 +

P

N0

F−1(ε)2
)

(4.12)

Since ‖H(fk)‖1 =
∑N

i=1 |Hi(fk)| is a sum of i.i.d. random variables, we get insight, and a

good approximation, by applying the central limit theorem. That is, we can approximate

‖H(fk)‖1 as Gaussian with mean µ = N
√

π/4 and variance σ2 = N(1 − π/4). Using this
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approximation in (4.12), we obtain that

Cε ≈ log2

(
1 +

P

N0

(
N
√

π
4
−
√
N (1−π)

4
Q−1(ε)

)2)
(4.13)

where Q(·) denotes the complementary CDF of a standard Gaussian random variable.

This indicates that that the outage capacity shows a logN growth with the number of

nodes, with O(
√
N) backoff within the argument of the logarithm in order to handle the

tails.

The Gaussian approximation works well for moderately largeN , including our running

example of N = 10, and provides insight into the benefits of both spatial diversity and

beamforming. We note, however, that for small N , the outage capacity approximation

can be improved by using a small argument approximation to the CDF F of a sum of

i.i.d. Rayleigh random variables [48], given by

FSAA(t
√
N) ≈ 1− e−

t2

2b

N−1∑
k=0

( t
2

2b
)k

k!

b =
σ2

N

[ N∏
i=1

(2i− 1)
]1/N (4.14)

where t = x√
N

is a normalized argument for the CDF. This approximation, when used

in (4.12), is excellent for small values of t which is the regime of interest for the outage

probabilty ε.

We compare these approximations with simulations in the next section.

Numerical results

Figure 4.10 shows the ergodic capacity and the outage rate versus the number of

transmitters at −5 dB SNR per node for a narrowband channel with ideal channel state

information. The ergodic capacity and the 1% outage rate curves are obtained with Monte
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Carlo simulations. The analytical outage capacity approximation for sum of Rayleigh

random variables in (4.14) matches Monte Carlo simulations very well and the Gaussian

aprroximation of the sum of Rayleigh random variables (4.13) is slightly pessimistic

for the small number of nodes. The difference between ergodic capacity and outage

rate diminishes as the number of nodes increases because the diversity gain provided by

multiple nodes reduces the variance of the aggregate channel and, in turn, the variance

of spectral efficiency. It can be observed that, with N = 10 nodes, the outage capacity

of 3.5 bps/Hz can be obtained at −5 dB SNR per node.

Figure 4.11 shows Monte Carlo simulation results for outage capacity versus number

of transmitters applied to the wideband setting (i.e., where the spectral efficiency is

averaged over the signal bandwidth) with parameters in Table 4.2 at −5 dB average

SNR. The ideal CSI curve shows the capacity when the channel is known to all nodes

and perfect beamforming is applied over the entire frequency band. The DOST curve

shows Monte Carlo simulation results with 2 bits of feedback per pilot subcarrier. The

heavily quantized DOST algorithm provides significant gains in terms of capacity and is

able to achieve outage rate of 3.1 bps/Hz using 10 nodes. Thus, even while operating at

a per-node SNR of −5 dB, DOST can yield a data rate of about 50 Mbps over a 20 MHz

band, after accounting for the overhead of reserving 1/6 of the subcarriers for pilots, under

the assumption that we would like to be as reactive to channel time variations as possible

and therefore insert comb type pilots into every OFDM symbol. For transmit power of

20 dBm (100 mW) per DBS node, isotropic antennas, and receiver noise figure of 6 dB,

the attainable range using the Hata propagation model at 800 MHz carrier frequency

with 30 m DBS node height and 1.5 m receiver height is about 6.6 km, allowing for a 5

dB implementation margin (we already account for fading in our formulation, hence we

do not require excess link margin to accommodate it). The range that can be attained in

the same setting for the same target data rate is 2.3 km for a single node and 4.2 km with
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Figure 4.10: Ergodic capacity and 1% outage rates (b/s/Hz) versus number of nodes
for narrowband flat fading channel at SNR = −5 dB

power pooling. As expected, the corresponding numbers at a lower carrier frequency of

200 MHz are better: 5 km for a single node, 9 km with power pooling, and 14.3 km with

DOST.

4.5.2 Feedback link

While we do not consider detailed design of the feedback link, we provide insight

into the impact of reception strategy by comparing three different options. The first and

simplest approach is to designate a single node (e.g., one of the DBS nodes) as receiver

for the feedback. In this case, the received SNR is very low (e.g., −5 dB for our running

example, assuming that the emitted power from a DBS and user node are similar), and

the feedback link becomes a significant bottleneck. A second approach is to attempt to
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Figure 4.11: 1% outage rates (b/s/Hz) vs N for wideband channel at average SNR = −5 dB

decode the feedback packet at each DBS node separately, and to assume that successful

decoding at any node will enable all other nodes to obtain the feedback via broadcast

on a fast local area network (LAN). The third, and most complex, is distributed receive

beamforming. Digitization and local transmission of the received signals at the N DBS

nodes to a centralized processor requires that the LAN speed scale with N . It has been

shown in [47] that much of the received beamforming gains (within 2 dB of ideal) can be

obtained even if hard decisions are exchanged: this still requires LAN speed scaling with

N , but at a smaller rate. Amplify-forward approaches for receive beamforming which

sidestep such local communication by enabling on-air combining have also been proposed

and demonstrated [33]. We therefore consider ideal receive beamforming as providing a

performance benchmark for the feedback channel that may be attainable with sufficient

engineering effort.
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The bandwidth on the feedback link may be different (typically smaller, since multiple

user nodes may be sending feedback to the DBS) from that on the downlink. We average

the spectral efficiency across this bandwidth when determining outage rates.

In the first approach, for a discrete set of Mu subcarriers, the spectral efficiency at a

given DBS node, say node k, can be calculated as

Ik =
1

Mu

Mu∑
i=1

log2(1 + SNR|Hk(fi)|2) (4.15)

where Hk(fi) is the uplink channel on the ith subcarrier for the kth DBS node. We can

now define the ε-outage rate Ru as usual

P (Ik < R1) = ε. (4.16)

For the second approach, outage occurs if all of the DBS nodes are unable to decode

the feedback packet:

P (max(I1, I2, ..., IN) < R2) = ε. (4.17)

Assuming that the channel realizations for the different nodes are i.i.d., we infer that the

random variables I1, ..., IN are i.i.d., so that P (max(I1, I2, ..., IN) < R2) = (P (I1 < R2))
N .

Thus, we obtain that the outage rate satisfies

P (I1 < R2) = ε
1
N . (4.18)

which allows the individual outage probability at any DBS node to be much higher.

We have checked via simulations that (4.17) and (4.18) yield the same results for our

channels, which are obtained by independent draws from the EPA model.
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For the third approach (receive beamforming), the spectral efficiency is given by

Ibeam =
1

Mu

Mu∑
i=1

log2

(
1 + SNR(

N∑
k=1

|Hk(fi)|2)

)
(4.19)

and the outage rate satisfies

P (Ibeam < R3) = ε. (4.20)

Figure 4.12 shows the outage rates for the three approaches computed over a Wfb = 2

MHz bandwidth for the feedback link. For a per-node SNR of −5dB, the outage rates are

given by R1 = 0.066, R2 = 0.4, and R3 = 1.5 bps/Hz. These translate to feedback data

rates Rf of 132 Kbps, 0.8 Mbps, and 3 Mbps, respectively. Assuming that the feedback
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link is the bottleneck, and that L = N , we compute the corresponding frame lengths as

Tf =
2NMp

Rf

(4.21)

The minimum channel coherence times Tc = 3Tf that can be supported using the three

approaches are given by 90, 15 and 3.9 ms respectively.

We conclude that, even though the SNR on the feedback link is so low, the first

approach is adequate for quasi-static links typical of rural broadband. However, if more

sophisticated strategies such as the second or third approaches are employed, the DBS

concept can be used to support moderate mobility.
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Chapter 5

Distributed 911: RF Source Seeking

as a Building Block

5.1 Introduction

The D911 concept system is based on search-and-rescue or other emergency applica-

tions in which a cluster of cooperating low-cost and low-power devices try to communicate

with a distant mobile emergency vehicle which a single device may not be able to reach.

Incoherent power pooling gain or beamforming gain from pre-synchronization of multiple

nodes (as done in prototypes such as could potentially be used for range extension to

broadcast a periodic pilot signal to draw mobile emergency vehicle to the vicinity of a

cluster of nodes.

As an initial step to realize a D911 concept system, we consider a scenario where

an unmanned aerial vehicle (UAV) seeks to approach a single RF source, starting from

an initially large distance. The UAV is equipped with a single omnidirectional antenna,

and does not rely on GPS or on being able to decode messages from the emitter. The

source may be surrounded by local scatterers. We propose an approach in which the UAV
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adapts its trajectory towards the emitter using frequency measurements on the received

beacon. In an ideal line of sight (LoS) environment, a single omni-directional antenna

can extract the angle of the arrival θ between the velocity vector of the mobile node

and LoS to the source by measuring the Doppler frequency fd = v cos θ
c
fc, where v is the

velocity and c is the speed of light. Thus, a natural approach is for the UAV to follow

the trajectory that maximizes the Doppler shift (which corresponds to θ = 0). However,

translating this intuition into a working approach requires that we address the following

technical challenges:

1) The scattering environment around the source causes multipath fading, resulting in

large spatial variations of the received signal power. This can often lead to errors in fre-

quency measurements, especially at the low received signal-to-noise ratio (SNR) obtained

at large distances.

2) The local oscillators at the emitter and UAV are not synchronized, and drift over time.

Thus, the frequency measurements made by the UAV are a sum of the Doppler shift and

a slowly drifting carrier frequency offset.

3) Even in ideal LoS settings, Doppler estimates have direction ambiguity: if the trajec-

tory makes an angle θ with the LoS, then the Doppler shift is proportional to cos θ, and

cannot therefore enable us to distinguish between +θ and −θ.

4) Any trajectory adaptation done by the UAV should be feasible, avoiding sharp direc-

tion changes.

The main contribution of this chapter is to show that we can indeed overcome the

preceding difficulties to obtain a scheme that reaches the vicinity of the emitter, with

net distance traversed being only a small fraction (of the order of 10%) larger than the

initial LoS distance between the UAV and the emitter. We consider a small UAV that

flies at around 100 m altitude, listening to a beacon in commercial frequency bands (the

carrier frequency is set to 2 GHz in our numerical examples). The initial distance between
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the UAV and the source is of the order of 5 km. In our proposed approach, the UAV

obtains an initial trajectory estimate by finding the direction of maximum Doppler when

executing a circular motion. Subsequently, it employs feedback control to continuously

adapt its trajectory, using the change in measured frequency offset as it executes designed

piecewise linear deviations in bearing from the nominal trajectory.

The proposed approach performs significantly better than RF source following using

received signal strength (RSS) measurements [49]. While RSS measurements are simpler

to make and do not require coherent processing at the receiver, the sensitivity of RSS

change as a function of range to the emitter is small even in ideal settings, since it is

proportional to the inverse square of the range. In addition, local scatterers around the

emitter lead to slow, and deep, spatial variations in RSS due to fading. The approach in

[49] employs the observation that the rate of change of RSS due to fading is minimum

in the LoS direction, along with a random walk inspired by bacterial chemotaxis. For a

setting similar to ours, the RSS-based scheme requires the UAV to traverse a distance

that is about three times larger than the shortest path between the initial UAV location

and the emitter. Furthermore, the trajectories employed in [49], both for initialization

and for the random walk, are non-smooth and difficult to execute.

RSS measurements are more effective if supplemented with directional information.

A rotating UAV was employed in [50], with the angle of arrival to the emitter estimated

as the direction of maximum RSS. This approach is not applicable to fixed wing UAVs

with omnidirectional antennas as considered here.

While we consider the problem of approaching the emitter, there is a significant lit-

erature on localizing the emitter using a mobile platform [51, 52] or multiple mobile

platforms [53, 54]. Particle filter based algorithms for tracking the posterior distribution

of the emitter are investigated in [55, 56]. In addition to having a different design goal

from ours, it is worth noting that these approaches require that the mobile platform
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always knows its own absolute location, say using GPS. Our problem formulation re-

quires the UAV to track changes in its own bearing, but does not require that it know

its absolute location, and hence is applicable even in GPS-denied environments.

Figure 5.1: System model in 2D, scatterers on a disk around the source

5.2 Channel Model

The problem of drawing the UAV to the emitter location is three-dimensional, but we

restrict the problem to two dimensions for simplicity. As shown in Figure 5.1, the source

is located at the the origin of the 2D plane, and is surrounded by L local scatterers. The

UAV coordinates at any given time are denoted by p = (x, y) with velocity components

vx = v cos(φ) and vy = v sin(φ). The distance between the mobile receiver and the source

is d. The scatterers are inside an annulus with outer radius R and inner radius Rin, and

the angles {αi} are uniformly distributed between −π and π for each scatterer.

We consider a narrowband flat fading channel at carrier frequency fc, and assume
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that the receiver will compute its estimates based on known pilot signals transmitted by

the source. The complex baseband channel seen by the mobile node can be expressed as

the sum of LoS and scattered components and can be written as

h(t) =

√
Kσ2

h

K + 1
ej(2πfd,max cos(α−φ)t+2πfo(t)t+ψ0)+√

σ2
h

K + 1

L∑
i=1

ej(2πfd,max cos(αs
i−φ)t+2πfo(t)t+ψi) + n(t)

(5.1)

where K is the ratio of power between the direct path and the scattered paths, fd,max =

vfc
c

is the maximum Doppler frequency, fo(t) is the carrier frequency offset drifting over

time, ψ0 and ψi are the phase of LoS and scattered signal components respectively, σ2
h is

the received signal power and n(t) represents the additive noise at the receiver with the

variance σ2
n.

The received signal strength σ2
h is governed by the distance between source and mobile

receiver d, along with spatial variations due to multipath fading. The effect of Doppler

frequency on the received signal profile is negligible at these low speeds since fc � fd,max.

We model the received signal strength by modeling the electric field at the mobile node

at a point P in polar coordinates (d, α) as[49]:

EF (d, α) =
e−jβd

d
+

L∑
i=1

Γie
−jβ(di+ri)

di + ri
(5.2)

where β = 2π
λ

and λ is the wavelength, di + ri is the total distance of the path that goes

from the source to receiver through ith scatterer and Γi is the reflection coefficient for the

ith scatterer [32].

Frequency estimation accuracy in a flat fading channel, assuming all paths have the

same frequency offset, is proportional to the received SNR [57]. This assumption is a
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good approximation for our model when d � R. We use low-complexity single tone

frequency estimation [58], selecting the maximum frequency over the DFT grid, and

then interpolating using a quadratic fit. As the UAV gets closer to the source, each

path sees a different frequency offset due to the difference in the reflection angles, and

the frequency estimate degrades. Estimation accuracy in this region could potentially

be further improved with frequency estimates derived from second order statistics [59],

or by employing super-resolution techniques [60]. However, at shorter ranges, more

sophisticated frequency estimation should be coupled with more detailed anisotropic

reflection models, hence we leave this as an interesting topic for future work (e.g., on

how to track a moving emitter in urban canyons).

5.3 The Algorithm for Source Seeking

In this section, we describe and justify the strategy for planning the UAV trajectory

by using frequency measurements and show that the proposed algorithm will converge to

the true source direction with no prior information on the source location. The purpose

is to draw UAV to the vicinity of the emitter as quickly as possible. We set dv � d

as the required distance between UAV and the source at which we declare the tracking

process successful. We assume constant speed through the trajectory of the UAV and

use a feasible trajectory for the motion of UAV. The goal is to minimize flight time.

We assume prior knowledge of the emitted signal carrier frequency fc, but not of

the carrier frequency offset fo, which also drifts over time. The pilot beacon for a given

frequency measurement contains N symbols, with symbol period Ts, so that the mea-

surement interval for frequency estimation is T = NTs. The pilot beacons are repeated

with the period of Tslot.

For the nth received beacon, frequency measurements are obtained by applying FFT
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to the N complex baseband samples of (5.1), and the peak frequency ω̂i i ∈ 1, · · · , NFFT

is refined by using a quadratic interpolation with adjacent samples:

ω̃n = ω̂i +
ω̂i−1 − ω̂i+1

2(ω̂i−1 + ω̂i+1 − 2ω̂i)

2π

TsNFFT

(5.3)

Thus, we obtain a noisy estimate of the sum of carrier frequency offset, Doppler frequency

and the frequency drift. We model this, together with the bearing angle measured by

the UAV sensors, as

ω̃n = ωn + nω,n

φ̃n = φn + nφ,n. (5.4)

where nω,n and nφ,n are frequency measurement and bearing measurement noises, mod-

eled as zero mean independent Gaussian random variables with variances σ2
ω,n and σ2

φ,n,

respectively. The bearing measurement error variance σ2
φ,n is assumed to be constant

throughout the flight. However, the frequency measurement error variance σ2
ω,n can vary:

it increases as RSS drops during fades, and as Doppler spread increases as the UAV

approaches the emitter.

While we do not model the UAV dynamics, we will restrict the algorithm described

in the next section to use trimming trajectories, which have the desirable property that

the tracking error dynamics and kinematics about is time invariant and for which there

are well-developed trajectory tracking controllers [61, 62, 63]. The orientation tracking

error about the desired trimming trajectory is included in error parameter nφ,n.
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5.3.1 Trajectory adaptation

The source tracking algorithm can be divided into two stages, discussed in more detail

below. In the first stage, the UAV gets a rough estimate of the direction of the source

by doing a circular motion. This stage is actually optional, and can be removed at the

expense of some inefficiency in flight time. The second stage involves piecewise linear

trajectories with perturbations of bearing which provide a feedback signal in terms of

change in Doppler to drive continuous trajectory corrections.

Stage 1 - Circular motion for initial trajectory estimate

The UAV picks a random point at a distance Rc and follows a circular trajectory,

as shown in Figure 5.2, saving the frequency measurements ω̃n with corresponding bear-

ing measurements φ̃n. The largest frequency measurement corresponds to the maximum

Doppler fd,max and bearing angle that corresponds to the desired direction is approxi-

mately π + α in an ideal setting. The smallest frequency measurements corresponds to

the −fd,max at the direction of α.

The SNR is low when UAV is very distant, and multipath fading may occasionally

result in large outliers in the frequency measurements ω̃n. We apply outlier rejection to

the frequency measurements as

ω̌n =


ω̃n, |ω̃n − ω̃n−1| < 4π vfc

c

ω̃n−1, otherwise

(5.5)

and apply a moving average filter with length 15 Tslot. Then, the initial direction for
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UAV is determined by finding the direction of maximum frequency estimate as follows

i = argmax
n

ω̌n

θ0 = φ̃i. (5.6)

Figure 5.2: Initial circular motion of the UAV

Stage 2 - Continuous updates

In this stage, the UAV derives information for feedback control of its trajectory in

discrete time steps spanning 2MTslot for each step. If the estimated direction towards

the emitter is θk from the previous direction, the UAV moves in the direction θk + δk for

a time interval with length MTslot, yielding frequency measurements {ω̌m,m = 1, ...,M},

and then in the direction θk− δk for the same duration, yielding measurements {ω̌m,m =

M+1, ..., 2M}. The difference between these two sets of frequency measurements is used

to update θk, as follows:

θk+1 = θk +
1

M

( M∑
m=1

ω̌m −
2M∑

m=M+1

ω̌m
) δk

2πfd,max
. (5.7)
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Taking the difference in this fashion allows significant reduction of the effect of car-

rier frequency offset and drift, which vary slowly relative to the iteration step duration

2MTslot. Additional robustness against measurement noise can be obtained by increasing

the perturbation δk, at the cost of increased travel distance.

The initial estimate θ0 from stage 1 helps improve the convergence time of stage 2,

but the latter also works with a random initialization.

Figure 5.3: Updating the direction of the UAV by perturbing the direction with ±δk

5.4 Analysis

We provide analytical insight for the convergence of the proposed algorithm in stage 2

by showing that the error term for the estimation of true direction θ∗k = π+αk decreases

over time. Straightforward trigonometry shows that the update step in (5.7) with a
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constant δk = δ can be written as

θk+1 = θk + (cos(θk − θ∗k + δ)− cos(θk − θ∗k − δ)) δ

= θk − 2 sin(θk − θ∗k)sin(δ)δ.

(5.8)

Let the error term θ̃k = θk − θ∗k. For d � ||pk+1 − pk||2 (range much larger than the

distance between consecutive iterations), we have θ∗k ≈ θ∗k+1, which enables us to write

the error term as

θ̃k+1 = θ̃k − 2 sin(θ̃k)sin(δ)δ ≈ θ̃k(1− 2δ2), (5.9)

Thus, the estimation error decreases exponentially, by a factor of 1 − 2δ2 over each

iteration. Increasing δ improves the convergence time, but comes at the cost of additional

flight time and sharper turns.

Picking θ̃2k as a Lyapunov function, we conclude that it’s change in one time-step is

given by:

θ̃2k+1 − θ̃2k ≤ −4α sin θ̃k(θ̃k − α sin θ̃k)

where α = δ sin δ. This shows that θ̃2k is a strictly decreasing function as long as sin θ̃k(θ̃k−

α sin θ̃k) remains strictly positive, which is case for every α < 1. This provides a wide

range of choices for δ.

5.5 Simulation Results

The simulation parameters are given in Table 5.1. We apply NFFT = 4096 point

FFT to N = 1000 data chunks in every Tslot = 50ms for frequency estimation. The

average received SNR at the initial distance of 5 km is set to 0 dB. Figure 5.4 shows an

example UAV trajectory. Figure 5.5 shows the estimated frequency in the presence of

77



Distributed 911: RF Source Seeking as a Building Block Chapter 5

multipath, CFO and frequency drift for that particular trajectory. Figure 5.5 also shows

the received signal power profile through the trajectory and the spatial variations at the

received power. We observe that the frequency estimation error increases as the UAV

gets closer to the source due to increased Doppler spread.

Parameters
Parameter Symbol Value

d 5000 m
R 200 m
Rin 100 m
fc 2 GHz
v 10 m/s
σ2
n -70 dB

Tslot 50 ms
T 10 ms
Ts 10 us

NFFT 4096
δ 10o

dv 200m
M 20

Table 5.1: Simulation parameters

Figure 5.6 shows the histogram of the total distance traveled with Monte Carlo sim-

ulations of 1000 runs for the same scenario. The average distance traveled is 5.5 km,

which is 1.15 times the shortest path to get within the desired distance of the target.

This significantly outperforms the RSS based algorithm [49], for which the average dis-

tance traveled is about 3 times of the shortest path. The proposed algorithm works even

if we discard stage 1 and use a random initial direction. Figure 5.7 shows the histogram

of the total distance traveled with Monte Carlo simulations of 1000 runs with only Stage

2 of the algorithm. The average tracking distance is now 6 km, which is 1.25 times the

shortest path approach.
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Figure 5.4: An example trajectory with the 0 dB average SNR with the initial distance
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Figure 5.6: Histogram of the total distance traveled to get the 200m vicinity of the
source (mean ∼ 5.5km)
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Figure 5.7: Histogram of the total distance traveled to get the 200m vicinity of the
source using random initialization, without using stage 1 (mean ∼ 6km)
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Chapter 6

Conclusion and Future Work

6.1 Algorithms and Protocols

We investigated the extension of narrowband distributed beamforming algorithms

to wideband systems in high-SNR scenarios. Applying the one bit feedback algorithm

to each subcarrier independently causes phase discontinuities among subcarriers. We

proposed an algorithm which uses a second feedback bit to ensure phase continuity. We

applied the proposed 2-bit feedback algorithm to a subset of subcarriers in order to keep

feedback overhead low, using linear interpolation for the remaining subcarriers. The

proposed approach enables the target node to be oblivious to the number of virtual

antenna array nodes in a wideband setting. Thus, classical OFDM channel estimation

algorithms via demodulation reference signals can be used at the target node, with the

virtual antenna array acting as a single node. Simulation results using a 2-bit feedback

algorithm showed that the gain beyond power pooling is limited in low-SNR scenarios

due to the vulnerability of the one bit feedback algorithm to the noise.

Motivated by these findings, we analyzed the one bit feedback algorithm in noisy

scenarios. We showed that the virtual antenna array size cannot be scaled indefinitely
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using the one bit feedback algorithm. Only a fraction of ideal beamforming gain can be

attained as the per-node SNR gets small. This is because the progress of RSS over a step

of the algorithm scales in the same manner as receiver noise, as shown by the covariance

computations under our joint Gaussian approximations.

We proposed the DOST algorithm to overcome the noise bottleneck in the previous

beamforming algorithms. The training using the incoherent power pooling gain boosts

the effective SNR, which provides the flexibility to scale down SNR per node, as long as

we are willing to increase the length of the training period correspondingly. The DOST

algorithm can work with quantization as drastic as one bit per real and imaginary dimen-

sion, hence the feedback overhead is similar to those of other distributed beamforming

algorithms. We also showed that the DOST algorithm can be extended to wideband sys-

tems using either linear interpolation across subset of subcarriers or sparse time domain

reconstruction.

6.2 Concept Systems

The DBS concept system using the DOST algorithm is a promising approach to

provide broadband access to remote areas by scaling the array size of the distributed

MIMO on large carrier wavelengths. We compactly characterized DBS performance with

outage capacity analysis. We showed that a significant range extension (e.g., from 2 km

to 6 km by using 10 nodes at 800MHz in a rural setting), can be achieved. We observed

that the feedback link can become a bottleneck since propagation loss due to range

extension also decreases the feedback link SNR. We showed that it is possible to support

DBS system in relatively slow varying links (e.g., with coherence time of the order of

100 ms) with simple uplink reception techniques. Receive beamforming can be employed

to overcome the low SNR on the feedback link. Investigation of distributed reception
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techniques and simultaneous distributed transmit and receive beamforming strategies

are interesting directions for future research. The gains promised by our design and

analysis of the DBS concept system motivate efforts to prototype and experimentally

demonstrate range extension.

As an initial step towards a distributed 911 concept system, we proposed a trajec-

tory planning algorithm for RF source seeking problem by using frequency and heading

measurements. The proposed algorithm continually corrects the heading direction of the

UAV using consecutive frequency measurements, which reduce the uncertainty due to

carrier frequency offset and drift. We showed that the UAV converges to the correct

direction towards the RF source. We showed via simulations that the flight time is sig-

nificantly reduced in our algorithm compared to those of prior RSS-based RF source

seeking algorithms. There are several interesting directions for future work. First, the

algorithm should be further analyzed in more complicated channel models (e.g., if the

LoS is blocked, the UAV may follow a strong reflected path until it sees a LoS path

again). Second, super-resolution frequency estimation algorithms can be used to dis-

tinguish paths and corresponding Doppler frequency in high Doppler spread scenarios.

Third, more detailed accounting of UAV dynamics and fusion of frequency measurements

with other information sources cab be possible future directions for RF source seeking.
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