
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Sketches and Traces

Permalink
https://escholarship.org/uc/item/9wq0j3rw

Author
Ban, Frank

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wq0j3rw
https://escholarship.org
http://www.cdlib.org/

Sketches and Traces

by

Frank Ban

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Prof. Christos Papadimitriou, Co-chair
Prof. Luca Trevisan, Co-chair

Prof. Sanjam Garg
Prof. Nikhil Srivastava

Summer 2019

Sketches and Traces

Copyright 2019
by

Frank Ban

1

Abstract

Sketches and Traces

by

Frank Ban

Doctor of Philosophy in Mathematics

University of California, Berkeley

Prof. Christos Papadimitriou, Co-chair

Prof. Luca Trevisan, Co-chair

In this dissertation, we study two problems that have the theme of extracting infor-
mation from lower dimensional samples.

A number of recent works have studied algorithms for entrywise `p-low rank ap-
proximation, namely algorithms which given an n×d matrix A (with n ≥ d), output
a rank-k matrix B minimizing ‖A − B‖pp = ∑

i,j |Ai,j − Bi,j|p when p > 0; and
‖A − B‖0 = ∑

i,j[Ai,j 6= Bi,j] for p = 0, where ‖A − B‖0 denotes the number of
entries (i, j) for which Ai,j 6= Bi,j.

For p = 1, this is often considered more robust than the SVD, while for p = 0
this corresponds to minimizing the number of disagreements, or robust PCA. This
problem is known to be NP-hard for p ∈ {0, 1}, already for k = 1, and while there
are polynomial time approximation algorithms, their approximation factor is at best
poly(k). It was left open if there was a polynomial-time approximation scheme
(PTAS) for `p-approximation for any p ≥ 0. We show the following:

1. On the algorithmic side, for p ∈ (0, 2), we use a technique called sketching to
give the first npoly(k/ε) time (1 + ε)-approximation algorithm. For p = 0, there
are various problem formulations, a common one being the binary setting for
which A ∈ {0, 1}n×d and B = U · V , where U ∈ {0, 1}n×k and V ∈ {0, 1}k×d.
For this setting, we obtain an algorithm with time n · dpoly(k/ε).

2. On the hardness front, for p ∈ (1, 2), we show under the Small Set Expansion
Hypothesis and Exponential Time Hypothesis (ETH), there is no constant fac-
tor approximation algorithm running in time 2kδ for a constant δ > 0, showing
an exponential dependence on k is necessary. We also show for finite fields of

2

constant size, under the ETH, that any fixed constant factor approximation
algorithm requires 2kδ time for a constant δ > 0.

Population recovery is the problem of learning an unknown distribution over an
unknown set of n-bit strings, given access to independent traces from the distribution
that have been independently corrupted according to some noise channel. Recent
work has intensively studied such problems both for the bit-flip noise channel and
for the erasure noise channel.

In this dissertation we initiate the study of population recovery under the deletion
channel, in which each bit b is independently deleted with some fixed probability and
the surviving bits are concatenated and transmitted. This is a far more challenging
noise model than bit-flip noise or erasure noise; indeed, even the simplest case in
which the population is of size 1 (corresponding to a trivial probability distribution
supported on a single string) corresponds to the trace reconstruction problem, which
is a challenging problem that has received much recent attention.

In this work we give algorithms and lower bounds for population recovery un-
der the deletion channel when the population size is some value ` > 1. As our
main sample complexity upper bound, we show that for any population size ` =
o(log n/ log log n), a population of ` strings from {0, 1}n can be learned under dele-
tion channel noise using 2n1/2+o(1) samples. On the lower bound side, we show that
at least nΩ(`) samples are required to perform population recovery under the deletion
channel when the population size is `, for all ` ≤ n1/2−ε.

i

To my family and to Joy.

ii

Contents

Contents ii

1 Overview 1
1.1 Low Rank Approximations . 1
1.2 Population Recovery . 3

I Low Rank Approximations 7

2 Introduction 8
2.1 Our Results . 8
2.2 Our Techniques . 10

3 Preliminaries 19

4 `p-Approximation Algorithms 25
4.1 `1-Approximation Algorithm . 26
4.2 1 < p < 2 . 32
4.3 0 < p < 1 . 34
4.4 p > 2 . 36
4.5 Finite Fields . 37

5 Hardness 47
5.1 `p-Low Rank Approximation and minp∗→p(A) 49
5.2 Reducing ‖ · ‖2→p∗ to minp∗→p(·) . 50
5.3 Hardness of 2→ q norm for all q ∈ (2,∞) 51
5.4 Hardness of minp∗→p(·) . 56
5.5 Hardness for Finite Fields . 62

6 Additional Results 63

iii

6.1 Bicriteria Algorithm . 63
6.2 Weighted Low Rank Approximation 64

II Population Recovery 67

7 Introduction 68
7.1 Our techniques . 69

8 Preliminaries 77

9 Upper bounds 79

10 Lower bounds 94
10.1 Total Variation Distance Upper Bound 99

Bibliography 105

1

Chapter 1

Overview

Massive datasets in areas such as machine learning, numerical linear algebra, and
computational biology require algorithms that can deal with high dimensions, offer
robustness, and tolerate noise. A common theme in the design of these algorithms
is the use of randomized methods such as sketching, sampling, and hashing.

In this dissertation we apply these techniques to get improved results in two prob-
lems in theoretical computer science: low rank approximation under a non-Frobenius
norm (an NP-complete problem) and population recovery under the deletion channel
(a generalization of the trace reconstruction problem).

Parts I (on low rank approximations) and II (on population recovery) of this
dissertation are based on [3] and [4] respectively.

1.1 Low Rank Approximations
Low rank approximation is a common way of compressing a matrix via dimensionality
reduction. The goal is to replace a given n× d matrix A by a rank-k matrix A′ that
approximates A well, in the sense that ‖A−A′‖ is small for some measure ‖.‖. Since
we can write the rank-k matrix A′ as U ·V , where U is n×k and V is k×d, it suffices
to store the k(n+d) entries of U and V , which is a significant reduction compared to
the nd entries of A. Furthermore, computing A′x = U(V x) takes time O(k(n+ d)),
which is much less than the time O(nd) for computing Ax.

Low rank approximation is extremely well studied, see the surveys [47, 60, 91]
and the many references therein. In this Part, we study the following two variants of
entrywise `p-low rank approximation. Given a matrix A and an integer k, one seeks
to find a rank-k matrix A′, minimizing ‖A − A′‖pp = ∑

i,j |Ai,j − A′i,j|p when p > 0

CHAPTER 1. OVERVIEW 2

and ‖A− A′‖0 = ∑
i,j[Ai,j 6= A′i,j] for p = 0, where [·] is the Iverson bracket, that is,

‖A− A′‖0 denotes the number of entries (i, j) for which Ai,j 6= A′i,j.
When p = 2, this coincides with the Frobenius norm error measure, which can be

solved in polynomial time using the singular value decomposition (SVD); see also [91]
for a survey of more efficient algorithms based on the technique of linear sketching.

Recently there has been considerable interest in obtaining algorithms for p 6= 2.
For 0 ≤ p < 2, this error measure is often considered more robust than the SVD,
since one pays less attention to noisy entries as one does not square the differences,
but instead raises the difference to a smaller power. Conversely, for p > 2, this error
measure pays more attention to outliers, and p = ∞ corresponds to a guarantee on
each entry. This problem was shown to be NP-hard for p ∈ {0, 1} [22, 34, 69].

`p-Low Rank Approximation for p > 0. A number of initial algorithms for
`1-low rank approximation were given in [13–15, 49, 50, 53, 56, 63–65, 67, 75, 95].
There is also related work on robust PCA [16, 17, 72, 73, 92, 94] and measures which
minimize the sum of Euclidean norms of rows [21, 29, 32, 33, 85], though neither
directly gives an algorithm for `1-low rank approximation. Song et al. [86] gave the
first approximation algorithms with provable guarantees for entrywise `p-low rank
approximation for p ∈ [1, 2). Their algorithm provides a poly(k log n) approximation
and runs in polynomial time, that is, the algorithm outputs a matrix B for which
‖A−B‖p ≤ poly(k log n) minrank-k A′ ‖A−A′‖p. This was generalized by Chierichetti
et al. [18] to `p-low rank approximation, for every p ≥ 1, where we also obtained a
poly(k log n) approximation in polynomial time.

In Song et al. [86] it is also shown that if A has entries bounded by poly(n)
then an O(1) approximation can be achieved, albeit in npoly(k) time. This algorithm
depends inherently on the triangle inequality and as a result the constant factor of
approximation is greater than 3. Improving this constant of approximation requires
techniques that break this triangle inequality barrier. This is a real barrier, since
the algorithm of [86] is based on a row subset selection algorithm, and there exist
matrices for which any subset of rows contains at best a 2(1−Θ(1/n))-approximation
(Theorem G.8 of [86]), which we discuss more below.

`0-Low Rank Approximation. When p = 0, one seeks a rank-k matrix A′ for
which ‖A − A′‖0 is as small as possible, where for a matrix C, ‖C‖0 denotes the
number of non-zero entries of C. Thus, in this case, we are trying to minimize the
number of disagreements between A and A′. Since A′ has rank k, we can write it as
U · V and we seek to minimize ‖A− U · V ‖0. This was studied by Bringmann et al.
[12] when A,U, and V are matrices over the reals and U · V denotes the standard

CHAPTER 1. OVERVIEW 3

matrix product, and the work of [12] provides a poly(k log n) bicriteria approximation
algorithm. See also earlier work for k = 1 giving a 2-approximation [44, 84]. `0-low
rank approximation is also well-studied when A, U , and V are each required to be
binary matrices. In this case, there are a number of choices for the ground field (or,
more generally, semiring). Specifically, for A′ = U · V we can write the entry A′i,j as
the inner product of the i-th row of U with the j-th column of V – and the specific
inner product function 〈., .〉 depends on the ground field.

Besides the abovementioned upper bounds, which coincide with all of these mod-
els when k = 1, the only other algorithm we are aware of is by Dan et al. [22], who for
arbitrary k presented an nO(k)-time O(k)-approximation over F2, and an nO(k)-time
O(2k)-approximation over the Boolean semiring.

Although `p-low rank approximation is NP-hard for p ∈ {0, 1}, a central open
question is if (1 + ε)-approximation is possible, namely: Does `p-low rank approx-
imation have a polynomial time approximation scheme (PTAS) for any constant k
and ε?

We answer this question in the affirmative in Part I and prove lower bounds as
well.

1.2 Population Recovery
In recent years the unsupervised learning problem of population recovery has emerged
as a significant focus of research attention in theoretical computer science [6, 26, 28,
31, 59, 70, 77, 90]. In the population recovery problem there is an unknown distribu-
tion X over an unknown set of n-bit strings from {0, 1}n, and the learner’s job is to
reconstruct a high-accuracy approximation of X given access to noisy independent
draws from X (so each data point which the learning algorithm receives is indepen-
dently generated as follows: an n-bit string is drawn from X and corrupted by some
noise process, and the result is provided to the learning algorithm). The two noise
models which have chiefly been studied to date are the bit-flip noise model, in which
each coordinate is independently flipped with some fixed probability, and the erasure
noise model, in which each coordinate is independently replaced by ‘?’ with some
fixed probability.

Since the population recovery problem was first introduced in [31, 90], a number of
positive results and lower bounds have been obtained for different variants of the
problem. In one popular version of the problem [28, 70, 77], for a particular noise
model (bit-flip or erasure) the distribution X may be an arbitrary distribution over
{0, 1}n, and the goal is to learn the distribution X with respect to `∞ distance (i.e. to
output a list of strings x1, . . . , xr ∈ {0, 1}n and associated weights X̃(xi) such that

CHAPTER 1. OVERVIEW 4

|X(xi)− X̃(xi)| ≤ ε for all i ∈ [r] and X(x) ≤ ε for all x ∈ {0, 1}n \ {x1, . . . , xr}). In
another well-studied version of the problem [26, 59, 90], which is closely related to the
problems we shall consider, the distribution X is promised to be supported on at most
` strings in {0, 1}n (i.e. the “population size” is promised to be at most `), and the
goal is to output a hypothesis distribution X̃ over {0, 1}n which has total variation
distance at most ε from X. Significant progress has been made on determining the
sample complexity of population recovery for both of these variants under the bit-flip
and erasure noise models; we refer the interested reader to [26, 28, 77] for the current
state of the art.
This work: Population recovery from the deletion channel and its relation
to trace reconstruction. In both the bit-flip noise model and the erasure noise
model, all of the challenge in the population recovery problem stems from the fact
that given a noisy draw from X it is a priori not clear which element of X’s support
was corrupted by noise to produce the noisy draw. Putting it another way, if the
population size is promised to be ` = 1, then under either of these two noise models
it is trivially easy to learn a single unknown string from noisy examples.

In this work we study population recovery under the deletion noise model, which
is far more challenging to handle than either bit-flip noise or erasure noise. The
deletion channel is defined as follows: when a string x is passed through the deletion
channel with deletion parameter δ, each coordinate xi is independently deleted with
probability δ, the surviving coordinates are concatenated, and the resulting string
(of length n′ ≤ n, where n′ is distributed as Bin(n, 1− δ)) is the output of the noise
process. Intuitively, the deletion channel is challenging because given a received
word obtained by passing x through the δ-deletion channel (often referred to as
a trace of x, and denoted by z ← Delδ(x)), it is not clear which coordinate of
x gave rise to which coordinate of z. Indeed, in contrast with the bit-flip and
erasure noise models, even if the population size is guaranteed to be ` = 1, the
problem of recovering a single unknown string from independent traces is a well-
known and challenging open problem, known as the trace reconstruction problem
[7, 27, 38, 41, 42, 48, 57, 58, 66, 71, 76, 89].

There are several motivations for the study of population recovery under the
deletion noise model. One motivation is the considerable recent research interest
both in the trace reconstruction problem (the ` = 1 case of population recovery under
the deletion channel) and in population recovery problems under bit-flip and erasure
models. Further motivation comes from potential relevance of the deletion channel
population recovery problem both to recovery problems in computational biology and
to other topics such as DNA data storage. Regarding biological recovery problems,
considering population recovery (the ` > 1 case) rather than trace reconstruction (the

CHAPTER 1. OVERVIEW 5

` = 1 case) relaxes the potentially unrealistic assumption that all of the received
samples (of a protein sequence, DNA sequence, etc.) are derived from a single
unknown target sequence rather than from multiple unknown sequences. Heuristic
algorithms for population recovery-type problems have also been applied to DNA
storage (see e.g., [93] and [74]). In these settings, each string in the population
comes from a DNA sequence and the noisy channel can inflict a variety of errors
including bit-flips and deletions.

Thus, we feel that the time is ripe for a theoretical study of population recovery
under the challenging deletion model. In this Part we initiate such a study, obtaining
sample complexity upper and lower bounds when the population is of size ` > 1. Be-
fore describing our results for populations of size ` (equivalently, target distributions
supported on at most ` strings), we first recall known upper and lower bounds for
the trace reconstruction problem (` = 1) below.
Known bounds on trace reconstruction. The trace reconstruction problem was
raised more than fifteen years ago [7, 57, 58], though in fact some variants of the
problem go back at least to the 1970s [45]. The first algorithm that provably succeeds
with high probability in reconstructing an arbitrary x ∈ {0, 1}n using subexponen-
tially many traces is due to Mitzenmacher et al. [42], who showed that 2Õ(

√
n) many

traces suffice for any constant deletion rate δ bounded away from 1. This result
was improved in recent simultaneous and independent works of De et al. [27] and
Nazarov and Peres [71]; these papers each showed that for any constant δ bounded
away from 1, at most 2O(n1/3) traces suffice to reconstruct any x ∈ {0, 1}n.1

Due to the seeming difficulty of the worst-case trace reconstruction problem (re-
constructing an arbitrary x ∈ {0, 1}n), an average-case version of the problem (recon-
structing a randomly chosen string x ∈ {0, 1}n), which turns out to be significantly
easier in terms of sample complexity, has also received considerable attention. A
number of early works [7, 48, 89] gave efficient algorithms that succeed for trace
reconstruction of almost all x ∈ {0, 1}n when the deletion rate δ is sufficiently low
(on(1) as a function of n). In [42] Mitzenmacher et al. gave an algorithm which uses
poly(n) traces to perform average-case trace reconstruction when the deletion rate δ
is at most some sufficiently small constant. Recently the best results on average-case
trace reconstruction have been significantly strengthened in works of Peres and Zhai
[76] and Holden, Pemantle and Peres [41] which build on the worst-case trace recon-
struction results of [27, 71]. The latter of these papers [41] gives an algorithm which
uses exp((log n)1/3) traces to reconstruct a random x ∈ {0, 1}n when the deletion
rate is any constant bounded away from 1.

1Hartung, Holden and Peres [38] have recently extended this result to certain more general
regimes where there can be different deletion probabilities for different coordinates and symbols.

CHAPTER 1. OVERVIEW 6

In terms of lower bounds, it is easy to see that if the deletion rate δ is at least
some positive constant, then until Ω(log n) draws have been received there will be
some bits of the target string x about which no information has been received.
Improving on this simple Ω(log n) lower bound, McGregor et al. [66] established a
sample complexity lower bound of Ω(n) traces for any constant deletion rate. This
was recently improved by Holden and Lyons [40] to Ω̃(n5/4).

Summarizing, for any constant deletion probability 0 < δ < 1 there is currently an
exponential gap between the best lower bound of Ω̃(n5/4) samples and the best upper
bound of 2O(n1/3) samples for trace reconstruction of an arbitrary string x ∈ {0, 1}n.

In this work, we provide the first known upper and lower bounds for population
recovery over the deletion channel.

Outline: Our work on low rank approximation variants is covered in Part I. Our
work on population recovery over the deletion channel is covered in Part II.

7

Part I

Low Rank Approximations

8

Chapter 2

Introduction

2.1 Our Results
We give the first PTAS for `p-low rank approximation for 0 ≤ p < 2 in the unit
cost RAM model of computation. We also give time lower bounds, assuming the
Exponential Time Hypothesis (ETH) [43] and in some cases the Small Set Expansion
Hypothesis [78], providing evidence that an exponential dependence on k, for p > 0,
and a doubly-exponential dependence on k, for p = 0, may be necessary.

Algorithms
We first formally define the problem we consider for 0 < p < 2. We may assume
w.l.o.g. that n ≥ d, and thus the input size is O(n).

Definition 2.1.1. (Entrywise `p-Rank-k Approximation:) Given an n × d
matrix A with integer entries bounded in absolute value by poly(n), and a positive
integer k, output matrices U ∈ Rn×k and V ∈ Rk×d minimizing ‖A − UV ‖pp :=∑
i=1,...,n,j=1,...,d |Ai,j − (U · V)i,j|p. An algorithm for Entrywise `p-Rank-k Approx-

imation is an α-approximation if it outputs U and V for which ‖A − UV ‖pp ≤
α ·minU ′∈Rn×k,V ′∈Rk×d ‖A− U ′V ′‖pp.

Our main result for 0 < p < 2 is as follows.

Theorem 2.1.1 (PTAS for 0 < p < 2). For any p ∈ (0, 2) and constant ε ∈ (0, 1),
there is a (1 + ε)-approximation algorithm to Entrywise `p-Rank-k Approximation
running in time npoly(k/ε).

CHAPTER 2. INTRODUCTION 9

For any constants k ∈ N and ε > 0, Theorem 2.1.1 computes in polynomial
time a (1 + ε)-approximate solution to Entrywise `p-Rank-k Approximation. This
significantly strengthens the approximation guarantees in [18, 86].

We next consider the case p = 0. In this setting, the base field is the finite field
Fq (where q is a prime power and A, U , and V have entries belonging to Fq). We
obtain an algorithm running in time n ·dpoly(k/ε), which is an improvement for certain
super-constant values of k and ε. We formally define the problem and state our result
next.

Definition 2.1.2. (Entrywise `0-Rank-k Approximation over Fq:) Given an
n× d matrix A with entries that are in Fq for any constant q, and a positive integer
k, output matrices U ∈ Fn×kq and V ∈ Fk×dq minimizing ‖A − UV ‖0. An algorithm
for Entrywise `0-Rank-k Approximation over Fq is an α-approximation if it outputs
matrices U and V such that ‖A− UV ‖0 ≤ α ·minU ′∈Fn×kq ,V ′∈Fk×dq

‖A− U ′V ′‖0.

Our main result for Entrywise `0-Rank-k Approximation over Fq is the following:

Theorem 2.1.2 (Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1+ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in time n·dpoly(k/ε).

Hardness
We first obtain conditional time lower bounds for Entrywise `p-Rank-k Approxima-
tion for p ∈ (1, 2). Our results assume the Small Set Expansion Hypothesis (SSEH).
Originally conjectured by Raghavendra and Stuerer [78], it is still the only assump-
tion that implies strong hardness results for various graph problems such as Uniform
Sparsest Cut [80] and Bipartite Clique [61]. Assuming this hypothesis, we rule out
any constant factor approximation α.

Theorem 2.1.3 (Hardness for Entrywise `p-Rank-k Approximation). Fix p ∈ (1, 2)
and α > 1. Assuming the Small Set Expansion Hypothesis, there is no α - approxi-
mation algorithm for Entrywise `p-Rank-k Approximation that runs in time poly(n).

Consequently, additionally assuming the Exponential Time Hypothesis, there ex-
ists

δ := δ(p, α) > 0

such that there is no α-approximation algorithm for Entrywise `p-Rank-k Approxi-
mation that runs in time 2nδ .

This shows that assuming the SSEH and the ETH, any constant factor approx-
imation algorithm needs at least a subexponential dependence on n (and thus k).

CHAPTER 2. INTRODUCTION 10

We also prove hardness of approximation results for p ∈ (2,∞) (see Theorem 5.0.2)
without the SSEH. They are the first hardness results for Entrywise `p-Rank-k Ap-
proximation other than p = 0, 1.

Next we obtain conditional lower bounds for Entrywise `0-Rank-k Approximation
over Fq for any fixed q:

Theorem 2.1.4 (Hardness for Entrywise `0-Rank-k Approximation over Fq). Let Fq
be a finite field and α > 1. Assuming P 6= NP, there is no α-approximation algorithm
for Entrywise `0-Rank-k Approximation over Fq that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists δ := δ(α) >
0 such that there is no α-approximation algorithm for Entrywise `0-Rank-k Approx-
imation over Fq that runs in time 2nδ .

This shows that assuming the ETH, any constant factor approximation algorithm
needs at least a subexponential dependence on n (and thus k).

Additional Results
We obtain several additional results on `p-low rank approximation. We summarize
our results below and defer the details to Chapter 6.

`p-low rank approximation for p > 2 Let g be a standard Gaussian random
variable and let γp := Eg[|g|p]1/p. We note that γp > 1, for any p > 2. Then, under
ETH no (γpp − ε)-approximation algorithm runs in time O(2kδ). On the algorithmic
side, we give a simple (3 + ε)-approximation algorithm running in time npoly(k/ε).

Weighted `p-low rank approximation for 0 < p < 2 We also generalize The-
orem 2.1.1 to the following weighted setting. Given a matrix A, an integer k and a
rank-r matrix W , we seek to find a rank-k matrix A′ such that

‖W ◦ (A− A′)‖pp ≤ (1 + ε) min
rank-k Ak

‖W ◦ (A− Ak)‖pp.

Our algorithm runs in time nr·poly(k/ε). We defer the details to Theorem 6.2.2.

2.2 Our Techniques
We give an overview of our techniques, separating them into those for our algorithms
for 0 < p < 2, those for our algorithms for p = 0, and those for our hardness proofs.

CHAPTER 2. INTRODUCTION 11

Algorithms for 0 < p < 2
We illustrate the techniques for p = 1; the algorithms for other p ∈ (0, 2) follow
similarly. Consider a target rank k. One of the surprising aspects of our (1 + ε)-
approximation result is that for p = 1, it breaks a potential lower bound from [86].
Indeed, in Theorem G.8, they construct (n− 1)×n matrices A such that the closest
rank-k matrix B in the row span of A provides at best a 2(1−Θ(1/n))-approximation
to A!

This should be contrasted with p = 2, for which it is well-known that for any
A there exists a subset of k/ε rows of A containing a k-dimensional subspace in
its span which is a (1 + ε)-approximation (these are called column subset selection
algorithms; see [91] for a survey). In fact, for p = 1, all known algorithms [18, 86]
find a best k-dimensional subspace in either the span of the rows or of the columns
of A, and thus provably cannot give better than a 2-approximation. To bypass this,
we therefore critically need to leave the row space and column space of A.

Our starting point is the “guess a sketch” technique of [81], which was used in
the context of weighted low rank approximation. Let us consider the optimization
problem minV ‖U∗V − A‖1, where U∗ is a left factor of an optimal `1-low rank
approximation for A. Suppose we could choose a sketching matrix S with a small
number r of rows for which ‖SU∗V −SA‖1 = (1± ε)‖U∗V −A‖1 for all V . Then, if
we somehow knew U∗, we could optimize for V in the sketched space to find a good
right factor V .

Of course we do not know U∗, but if S had a small number r of rows, then we
could consider instead the ‖ · ‖1,2-norm optimization problem minV ‖SU∗V −SA‖1,2,
where for a matrix C, ‖C‖1,2 is defined as ∑d

i=1 ‖C:,i‖2, the sum of the ‖ · ‖2-norms
of its columns. The solution V to minV ‖SU∗V − SA‖1,2 is a

√
r-approximation to

the original problem minV ‖SU∗V − SA‖1.
In the ‖ · ‖1,2 norm, the solution V can be written in terms of the so-called

normal equations for regression, namely, V = (SU∗)†SA, where C† denotes the
Moore-Penrose pseudoinverse of C. The key property exploited in [86] is then that
although we do not know U∗, (SU∗)†SA is a k-dimensional subspace in the row span
of SA providing a

√
r-approximation, and one does know SA. This line of reasoning

ultimately leads to a poly(k)-approximation.
The approach above fails to give a (1 + ε)-approximation for multiple reasons:

(1) we may not be able to find a (1 + ε)-approximation from the row span of A, and
(2) we lose a

√
r factor when we switch to the ‖ · ‖1,2 norm.

Instead, suppose we were instead just to guess all the values of SU∗. These values
might be arbitrary real numbers, but observe that we can assume there is an optimal
solution U∗V ∗ for which V ∗ is a so-called `1-well conditioned basis, which loosely

CHAPTER 2. INTRODUCTION 12

speaking means that ‖yV ∗‖1 ≈ ‖y‖1 for any row vector y. Also, we can show that
if U∗V ∗ 6= A, then ‖U∗V ∗ − A‖1 ≥ n−Θ(k). Furthermore, we can assume that the
entries of A are bounded by poly(n). These three facts allow us to round the entries
of U∗ to an integer multiple of n−Θ(k) of absolute value at most nO(k). Now suppose
we could also discretize the entries of S to multiples of n−Θ(k) and of absolute value
at most nO(k). Then we would actually be able to guess the correct SU∗ after nΘ(k2r)

tries, where recall r is the number of rows of S. We will show below that r can be
poly(k/ε), so this will be within our desired running time.

In general, ifA(Ux) = (1±ε)‖Ux‖ for all x, then we say thatA defines a subspace
embedding. At this point, we can use the triangle inequality to get a constant factor
approximation. If S is a subspace embedding, then

‖U∗V − A‖1

≤ ‖U∗(V − V ∗)‖1 + ‖U∗V ∗ − A‖1

≤ (1 +O(ε))‖SU∗(V − V ∗)‖1 + ‖U∗V ∗ − A‖1

and
‖SU∗(V − V ∗)‖1 ≤ ‖SU∗V − SA‖1 + ‖SU∗V ∗ − SA‖1

so by taking V to be a minimizer for ‖SU∗V − SA‖1 we can get an approximation
factor close to 3. The triangle inequality was useful here because S had a small
distortion on the subspace defined by U∗. To improve this result, we would need
a mapping that has small distortion on the affine space defined by U∗V − A, as V
varies.

Given SU∗ and SA, if in fact S has the property that ‖SU∗V − SA‖1 = (1 ±
ε)‖U∗V − A‖1 for all V , then we will be in good shape. At this point we can solve
for the optimal V to minV ‖SU∗V −SA‖1 by solving an `1-regression problem using
linear programming. Notice that unlike [81], the approach described above does
not create “unknowns” to represent the entries of SU∗ and set up a polynomial
system of inequalities. For Frobenius norm error, this approach is feasible because
‖SU∗V − SA‖2

F = ∑n
i=1 ‖SU∗V:,i − SA:,i‖2

F can be minimized over each column V:,i
using the normal equations for regression. However, we do not know how to set up
a polynomial system of inequalities for `1-error (which define V in terms of the SU∗
variables).

Unfortunately the approach above is fatally flawed; there is no known sketching
matrix S with a small number r of rows for which ‖SU∗V −SA‖1 = (1±ε)‖U∗V −A‖1
for all V . Instead, we adapt a “median-based” embedding with a non-standard
subspace embedding analysis that appeared in the context of sparse recovery [2].
In Lemma F.1 of that paper, it is shown that if L is a d-dimensional subspace
of Rn, and S is an r × n matrix of i.i.d. standard Cauchy random variables for

CHAPTER 2. INTRODUCTION 13

r = O(dε−2 log(d/ε)), then with constant probability, (1 − ε)‖x‖1 ≤ med(Sx) ≤
(1 + ε)‖x‖1 simultaneously for all x ∈ L. Here for a vector y, med(y) denotes the
median of absolute values of its entries. For a matrix M , med(M) denotes the sum
of the medians of its columns ∑imed(M:,i).

In our context, this gives us that for a fixed column A:,i of A and i-th column V:,i
of V , if S is an i.i.d. Cauchy matrix with O(kε−2 log(k/ε)) rows, then with constant
probability med(SU∗V:,i−SA:,i) = (1±ε)‖U∗V:,i−A:,i‖1 for all vectors V:,i. Since V:,i
is only k-dimensional, and one can show that its entries can be taken to be integer
multiples of n−poly(k) bounded in absolute value by npoly(k), we can enumerate over
all V:,i and find the best solution. We need, however, to adapt the argument in [2] to
argue that if we take a (1/2 ± ε)-quantile (rather than a median), we still obtain a
subspace embedding. We do this in Lemma 3.0.6 and explain why this modification
is crucial for the argument below.

Unfortunately, this still does not work. The issue is that S succeeds only with
constant probability in achieving med(SU∗V:,i − SA:,i) = (1 ± ε)‖U∗V:,i − A:,i‖1 for
all vectors V:,i. Call this property, of an index i ∈ [n] := {1, 2, . . . , n}, good. A naïve
amplification of the probability to 1− 1/n would allow us to union bound over all i,
but this would require S to have Ω(log n) rows. At this point though, we would not
obtain a PTAS since enumerating the entries of SU∗ would take nΩ(logn) time. Nor
can we use different S for different columns of A, since we may guess different SU∗
for different i and not obtain a consistent solution V .

Before proceeding, we first relax the requirement that med(SU∗V − SA) = (1±
ε)‖U∗V − A‖1 for all V . We only need med(SU∗V − SA) ≥ (1− ε)‖U∗V − A‖1 for
all V , and med(SU∗V ∗ − SA) ≤ (1 + ε)‖U∗V ∗ − A‖1 for the fixed optimum U∗V ∗.
We can prove med(SU∗V ∗ − SA) ≤ (1 + ε) minV ‖U∗V − A‖1 by using tail bounds
for a Cauchy random variable; we do so in Lemma 3.0.5.

Moreover, we next argue that it suffices to have the properties: i) a (1−poly(ε/k))-
fraction of columns are good, and ii) the error introduced by bad columns is small.
We can achieve (i) by increasing the number of rows of S by a log(k/ε) factor, which
still allows for an enumeration in time npoly(k/ε). The main issue is to control the
error from bad columns. In particular, it is possible to have a matrix V and a column
A:,i such that ‖U∗V:,i − A:,i‖1 is large and yet med(SU∗V:,i − SA:,i) is small, which
results in accepting a bad solution V . While for an average matrix V , the expected
value of ∑i is bad ‖U∗V:,i − A:,i‖1 is small, we need to argue that this holds for every
matrix V .

In order to control the error from bad columns, we first show that med(SU∗V ∗−
SA) = (1± ε)‖U∗V ∗−A‖1 for the fixed matrix U∗V ∗−A, and then we demonstrate
that the total contribution to ‖U∗V ∗−A‖1 from bad columns, is small. We show the
latter using Markov’s bound for the fixed matrix U∗V ∗−A. Combining this with the

CHAPTER 2. INTRODUCTION 14

former, yields that the total contribution of med(SU∗V ∗:,i−SA:,i) to ‖SU∗V ∗−SA‖1
from bad columns (in the original, unsketched space) is small.

We convert the preceding argument for bad columns of the fixed matrix U∗V ∗−A,
into an argument for bad columns of a general matrix U∗V −A. Inspired by ideas for
‖ · ‖1,2 norm, established in [21], we partition the bad columns of a given matrix V
into classes, using the following measurement, which differs substantially from [21].
We look at quantiles to handle the median operator, and we say that a bad column
A:,i is large if

‖U∗V:,i − A:,i‖1 ≥
1
ε

(
‖U∗V ∗:,i − A:,i‖1 + 1

1−O(ε)q1−ε/2(S(U∗V ∗ − A):,i)
)
, (2.1)

where q1−ε/2 is the (1 − ε/2)-th quantile of coordinates of column S(U∗V ∗ − A):,i
arranged in order of non-increasing absolute values. Otherwise, a bad column A:,i is
small.

We show that small bad columns can be handled by applying the preceding
argument for the fixed matrix U∗V ∗ − A, since intuitively, the error they introduce
is dominated by the contribution of the corresponding columns of matrix U∗V ∗−A,
and we can control this contribution.

Our analysis for the large bad columns uses a different approach, which we sum-
marize in Claim 4.1.2. The key insight is to use the additivity of a sketch matrix S,
and to write

S(U∗V − A):,i = S(U∗V − U∗V ∗):,i + S(U∗V ∗ − A):,i. (2.2)

Then, by applying our “robust” version (Lemma 3.0.3) of median-based subspace
embedding [2], it follows that at least a (1/2 + ε)-fraction of the entries of column
vector S(U∗V − U∗V ∗):,i have absolute value at least

(1−O(ε)) · ‖U∗(V − V ∗):,i‖1
(a)
≥ (1−O(ε)) ·

(
‖(U∗V − A):,i‖1 − ‖(U∗V ∗ − A):,i‖1

)
(b)
≥ (1−O(ε)) · ‖(U∗V − A):,i‖1 + q1−ε/2(S(U∗V ∗ − A):,i),

where (a) follows by triangle inequality, and (b) by (2.1) since the bad column A:,i is
large. Thus, at least a (1/2+ε)-fraction of entries of S(U∗V −U∗V ∗):,i have absolute
value at least

(1−O(ε)) · ‖(U∗V − A):,i‖1 + q1−ε/2(S(U∗V ∗ − A):,i). (2.3)

CHAPTER 2. INTRODUCTION 15

Since at most an ε/2 fraction of entries of S(U∗V ∗ − A):,i have absolute value
at least q1−ε/2(S(U∗V ∗ − A):,i), by definition of quantile, it follows by (2.3) that in
equation (2.2) at most an ε/2-fraction of entries of S(U∗V − A):,i can have their
absolute value reduced to less than (1−O(ε)) · ‖(U∗V −A):,i‖1. Further, by (2.3) at
least (1/2 + ε/2)-fraction of entries of S(U∗V − U∗V ∗) have absolute value at least
(1−O(ε))‖(U∗V −A):,i‖1. Therefore, the median of absolute value of the entries of
S(U∗V − A):,i) is at least (1−O(ε))‖(U∗V − A):,i‖1, as desired.

Our analysis for 0 < p < 2 uses similar arguments, but in contrast relies on
p-stable random variables. In the case when 0 < p < 1, special care is needed since
the triangle inequality does not hold.

Algorithms for p = 0
In the case when p = 0 and the entries of matrix A belong to a finite field Fq for
constant q, we use similar arguments as in the case for p = 1. Here, instead of
p-stable random variables we apply a linear sketch for estimating the number of
distinct elements, established in [46]. We show that it suffice to set the number of
rows of the sketching matrix S to poly(k/ε) · log d. Further, since each entry of S
has only q possible values, it is possible to guess matrix S by enumeration in time
qpoly(k/ε)·log d = dpoly(k/ε), which will lead to a total running time of n · dpoly(k/ε). This
yields a PTAS for constant q. We defer the details to Chapter 4.

Hardness
Our hardness results for the `p norm for p ∈ (1, 2) in Theorem 2.1.3 and p ∈ (2,∞)
in Theorem 5.0.2 are established via a connection to the matrix p→ q norm problem
and its variants. Given a matrix A ∈ Rn×d, ‖A‖p→q is defined to be ‖A‖p→q :=
maxx∈Rd,‖x‖p=1‖Ax‖q.

Approximately computing this quantity for various values of p and q has been
known to have applications to the Small Set Expansion Hypothesis [5], quantum
information theory [37], robust optimization [87], and the Grothendieck problem [35].
After active research [5, 8, 9, 39], it is now known that computing the p→ q norm of
a matrix is NP-hard to approximate within some constant c(p, q) > 1 except when
p = q = 2, p = 1, or q = ∞. (Hardness of the case p < q with 2 ∈ [p, q] is only
known under stronger assumptions such as the Small Set Expansion Hypothesis or
the Exponential Time Hypothesis.) See [9] for a survey of recent results on the
approximability of these problems.

We also introduce the problem of computing the following quantity minp→q(A) :=
minx∈Rd,‖x‖p=1‖Ax‖q as an intermediate problem. Recall that p∗ = p/(p − 1) is the

CHAPTER 2. INTRODUCTION 16

Hölder conjugate of p for which 1/p + 1/p∗ = 1. The following lemma shows that
computing `p-low rank approximation when k = d − 1 is equivalent to computing
minp∗→p(·).

Lemma 2.2.1. Let p ∈ (1,∞). Let A ∈ Rn×d with n ≥ d and k = d− 1. Then

min
U∈Rn×k,V ∈Rk×d

‖UV − A‖p = min
x∈Rd,‖x‖p∗=1

‖Ax‖p = minp∗→p(A).

A simple but crucial observation for the above lemma is that if we let a1, . . . , an ∈
R
d be the rows of A, computing the best (d − 1)-rank approximation of A in the

entrywise `p norm is equivalent to computing the (d− 1)-dimensional subspace S ⊆
R
d (i.e., rowspace(V) = S) that minimizes ‖(ρ1, . . . , ρn)‖p, where ρi := miny∈S‖y −

ai‖p denotes the `p-distance between S and ai.
If x ∈ Rd is a vector orthogonal to S, Hölder’s inequality shows that

ρi = min
y∈S
‖y − ai‖p = min

〈x,z+ai〉=0
‖z‖p ≥

|〈x, z〉|
‖x‖p∗

= |〈x, ai〉|
‖x‖p∗

.

Taking z to be the Hölder dual of x, we can show that indeed ρi = |〈x, ai〉|/‖x‖p∗ .
Then ‖(ρ1, . . . , ρn)‖p = ‖Ax‖p/‖x‖p∗ , finishing the lemma.

This new connection allows us to prove a number of new hardness results for low
rank approximation problems. Previously, even exact hardness results were known
only for p = 0, 1 and there was no APX-hardness result.

`p norm with 1 < p < 2. For p ∈ (1, 2), we reduce computing ‖·‖2→p∗ to computing
minp∗→p(·).

If A is an invertible matrix, then

minp→p∗(A−1) = minx 6=0
‖A−1x‖p
‖x‖p∗

=
(
maxx 6=0

‖x‖p∗
‖A−1x‖p

)−1

=
(
maxy 6=0

‖Ay‖p∗
‖y‖p

)−1
= 1
‖A‖p→p∗

,

and thus computing minp∗→p(·) is equivalent to computing ‖·‖p→p∗ .
By appropriately perturbing and padding 0’s, we can show that computing the

latter can be reduced to computing the former modulo arbitrarily small error. Stan-
dard facts from Banach spaces additionally show that ‖AAT‖p→p∗ = ‖A‖2

2→p∗ , prov-
ing the following lemma.

Lemma 2.2.2. For any ε > 0, p ∈ (1,∞), there is an algorithm that runs in
poly(n, log(1/ε)) time and on a non-zero input matrix A, computes a matrix B sat-
isfying

(1− ε)‖A‖−2
2→p∗ ≤ minp∗→p(B) ≤ (1 + ε)‖A‖−2

2→p∗ .

CHAPTER 2. INTRODUCTION 17

To finish Theorem 2.1.3 for `p-low rank approximation for p ∈ (1, 2), we use the
hardness of approximating the 2 → q norm of a matrix proved by Barak et al. [5]
assuming the Small Set Expansion Hypothesis when q = p∗ > 2. Given a d-regular
graph G = (V,E) and size bound δ ∈ (0, 1/2), the Small Set Expansion problem
asks to find a subset U ⊆ V with |U |/|V | ≤ δ that minimizes Φ(U) = |E(U,V \U)|

d|U | =
1 − (1U)TA(1U), where A and 1U are the normalized adjacency matrix of G and
the normalized indicator vector of U , respectively. Consequently, the problem is
equivalent to finding a sparse indicator vector v with high Rayleigh quotient vTAv,
and one natural approach is to find a sparse vector in a subspace corresponding to
large eigenvalues of A. For q > 2, since ‖v‖q/‖v‖2 is maximized when v is supported
on only one coordinate and minimized when all entries of v are equal in magnitude,
‖v‖q/‖v‖2 is a natural analytic notion of sparsity, so if we let P be the orthogonal
projection on to the subspace corresponding to large eigenvalues, a high ‖P‖2→q
seems to indicate that G has a non-expanding small set. Barak et al. formalized
this and proved the following theorem when q ≥ 4 is an even integer, but the same
proof essentially works for q ∈ (2,∞). For completeness, we present the proof in
Chapter 5.

Theorem 2.2.1 ([5]). Assuming the Small Set Expansion Hypothesis, for any q ∈
(2,∞) and r > 1, it is NP-hard to approximate the ‖·‖2→q norm within a factor r.

`p norm with 2 < p. Our hardness results for p ∈ (2,∞) are proved directly from
the above intermediate problem. The following hardness result for minp∗→p(·) implies
our hardness result for p ∈ (2,∞). It follows from a similar result by Guruswami et
al. [36], which proves the same hardness for the min2→p(·) norm, with some modifi-
cations that connect the 2 norm and the p∗ norm. Recall that γp := Eg[|g|p]1/p where
g is a standard Gaussian, which is strictly greater than 1 for p > 2.

Theorem 2.2.2. For any p ∈ (2,∞) and ε > 0, it is NP-hard to approximate the
minp∗→p(·) norm within a factor γp − ε.

Finite Fields. Our hardness results for finite fields rely on the following lemma.

Lemma 2.2.3. Let F be a finite field and A ∈ Fn×d with n ≥ d and k = d − 1.
Then, we have

min
U∈Fn×k,V ∈Fk×d

‖UV − A‖0 = min
x∈Fd,x 6=0

‖Ax‖0.

The proof has a similar structure to Lemma 2.2.1 for the `p norm in R. We can
still identify a subspace S ⊆ Fd with codimension 1 with a vector x with 〈v, x〉 = 0

CHAPTER 2. INTRODUCTION 18

for every v ∈ S. In finite fields, x can be possibly in S, but it does not affect the
proof. Then for each row ai of A, if 〈ai, x〉 = 0, then ai ∈ S and we incur no error
on the ith row. If 〈ai, x〉 6= 0, changing one entry of ai will ensure that it will be
contained in S, so the total number of errors given S is exactly ‖Ax‖0.

The quantity in the right-hand side, minx∈Fd,x 6=0‖Ax‖0, is exactly the minimum
Hamming weight of any non-zero codeword of the code that has AT as a generator
matrix, or the minimum distance of the code. Then Theorem 2.1.4 above immediately
follows from the following theorem by Austrin and Khot [1].

Theorem 2.2.3 ([1]). For any finite field F and r > 1, unless P = NP, there is
no r-approximation algorithm for computing the minimum distance of a given linear
code in polynomial time.

Outline: In Chapter 3 we give preliminaries. In Chapter 4 we give our algorithms
for `p-low rank approximation, 0 < p < 2, and since it is technically similar, our
algorithm for p = 0 over finite fields. In Chapter 5 we give all of our hardness
results. In Chapter 6 we mention various additional results.

19

Chapter 3

Preliminaries

For a matrix A we write Ai,j for its entry at position (i, j), Ai,: for its i-th row, and
A:,i for its i-th column.

For 0 ≤ p ≤ ∞, we will let ‖A‖p denote the entrywise `p-norm of A. That
is, ‖A‖0 equals the number of non-zero entries of A, ‖A‖∞ = maxi,j‖Ai,j‖, and
‖A‖p = (∑i,j A

p
i,j)

1
p .

For two matrices A,B the value ‖A − B‖0 is a measure of similarity that is
sometimes called their Hamming distance.

We will typically give the dimensions of a matrix A as n× d when A has entries
from a field such as R or Fq. When the entries of A are binary, we will typically give
its dimensions as m× n.

We first recall some basic results about Cauchy variables. These have the property
that if x ∈ Rn and Z,Ci are i.i.d standard Cauchy variables (for i = 1, . . . , n) then
it holds that ∑n

i=1 xiCi ∼ ‖x‖1Z.

Fact 3.0.1. If C is a Cauchy variable with scale γ, then

1. For τ > 1, Pr[|C| > τγ] ≤ 1
τ

2. For small ε > 0, Pr[|C| > (1 + ε)γ] < 1
2 −Θ(ε)

3. For small ε > 0, Pr[|C| < (1− ε)γ] < 1
2 −Θ(ε)

The following results are adapted from [2]. We want to analyze the quantiles of
the entries of a vector after a dense Cauchy sketch is applied to it.

Definition 3.0.1. Let 0 < α < 1. Let v ∈ Rm. We let qα(v) denote the 1
α
-

quantile of |v1|, |v2|, . . . , |vm|, or the minimum value greater than dαne of the values
|v1|, |v2|, . . . , |vm|. For M ∈ Rm×n, we let qα(M) = ∑n

i=1 qα(M:,i).

CHAPTER 3. PRELIMINARIES 20

We will be particularly interested in the median of the entries of a sketched vector.

Definition 3.0.2. For v ∈ Rn, we write med(v) as shorthand for q 1
2
(v). For M ∈

R
m×n, we let med(M) = ∑n

i=1 med(M:,i).

Lemma 3.0.2. Let S ∈ Rm×n have entries that are i.i.d. standard Cauchy variables
and let x ∈ Rn. Then

1. Pr[q 1
2−Θ(ε)(Sx) < (1− ε)‖x‖1] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx) > (1 + ε)‖x‖1] < exp(−Θ(ε2)m)

3. For M > 2, Pr[q1− ε2 (Sx) > M
ε
‖x‖1] < exp(−Θ(ε)Mm)

4. For M > 2, Pr[med(Sx) > M‖x‖1] < exp(−Θ(m)M)

Proof. Note that for each 1 ≤ i ≤ m, (Sx)i is distributed as a Cauchy variable
with scale ‖x‖1. By Fact 3.0.1, Pr[|(Sx)i| < (1 − ε)‖x‖1] < 1

2 − Θ(ε). We want
to bound the probability that more than a 1

2 − Θ(ε) fraction of the (Sx)i’s are
smaller than (1 − ε)‖x‖1. The desired upper bound follows from Chernoff’s bound
as exp(−Θ(m)(1

2 − Θ(ε) − (1
2 − Θ(ε)))2), from which (i) follows. We can prove (ii)

using a similar argument.
For (iii), we know from Fact 3.0.1 that Pr[(Sx)i > M

ε
] < ε

M
. Thus a Chernoff

bound gives Pr[q1− ε2 (Sx) > M
ε
‖x‖1] < exp(−Θ(m)(ε2 −

ε
M

)2(ε
M

)−1) and the result
follows. For (iv), a similar proof holds using Pr[(Sx)i > M‖x‖1] < 1

M
.

Lemma 3.0.3. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. Cauchy entries with scale parameter γ = 1.
Then with probability at least 1−Θ(δ), for all x ∈ X,

(1−Θ(ε))‖x‖1 ≤ q 1
2−ε

(Sx) ≤ q 1
2 +ε(Sx) ≤ (1 +O(ε))‖x‖1

Proof. Let N be an εδ
k3 -net for the intersection of X and the unit `1 ball. Then

|N | = exp(O(k log k
εδ

))
By Lemma 3.0.2, Pr[q 1

2−Θ(ε)(Sy) < (1 − ε)‖y‖1] < exp(−Θ(k log k
εδ

)). Thus, for
all y ∈ N , q 1

2−Θ(ε)(Sy) ≥ 1− ε holds with probability 1−Θ(δ) by a union bound.
Let X ′ be a matrix whose columns form an Auerbach basis ([68]) for the subspace

X. That is, each column of X ′ has `1 norm 1 and ‖z′‖∞ ≤ ‖X ′z′‖1 for all z′. By Fact
3.0.1, each entry of SX ′ is greater than Θ(k2

δ
) with probability at most O(δ

k2) because

CHAPTER 3. PRELIMINARIES 21

each column of X ′ has `1 norm 1. A union bound tells us that ‖SX ′‖∞ ≤ O(k2

δ
)

with probability at least 1− δ
2 .

For arbitrary z ∈ X, we can write z = X ′z′. Thus

‖Sz‖∞ = ‖SX ′z′‖∞ ≤ ‖SX ′‖∞ · ‖z′‖1 ≤ O(k2/δ) · k‖z′‖∞
≤ O(k3/δ) · ‖X ′z′‖1 = O(k3/δ) · ‖z‖1.

Given any x in the intersection of the unit `1 ball and X, we can write x = y+ z
where y ∈ N , z ∈ X, and ‖z‖1 ≤ εδ

k3 . By the above argument, we know ‖Sz‖∞ ≤
O
(
k3

δ

)
‖z‖1 ≤ O(ε). Since Sx = Sy+Sz, then (1−Θ(ε)) ≤ q 1

2−Θ(ε)(Sx) for any unit
x. We can scale x and ε by the appropriate constants to get the desired statement.

The RHS inequality follows from a similar argument.

We immediately have the following corollary about medians of Cauchy sketches
over subspaces.

Corollary 3.0.4. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. Cauchy entries with scale parameter γ = 1.
With probability at least 1−Θ(δ), for all x ∈ X,

(1− ε)‖x‖1 ≤ med(Sx) ≤ (1 + ε)‖x‖1

We can also bound the median and the (1− ε/2)-quantile of a Cauchy sketch of
a fixed matrix.

Lemma 3.0.5. Let S be an m × n matrix (m = Θ(1/poly(ε))) with i.i.d. standard
Cauchy entries and let M be an n× d matrix. For ε > 0, with probability 1−O(1),

(1− ε)‖M‖1 ≤ med(SM) ≤ (1 + ε)‖M‖1

Proof. Lemma 3.0.2 tells us that we can choose m so that Pr[med(SM:,i) = (1 ±
ε)‖M:,i‖1] ≥ 1 − Θ(ε) for each i. Say i is good if med(SM:,i) ≥ (1 − ε)‖M:,i‖1
and bad otherwise. Then E[∑bad i‖M:,i‖1] ≤ ε‖M‖1 so Markov’s inequality tells
us ∑bad i‖M:,i‖1 ≤ O(ε)‖M‖1 with probability 1 − O(1) and also ∑good i‖M:,i‖1 ≥
(1−Θ(ε))‖M‖1.

This implies that

med(SM) ≥
∑

good i

med(SM:,i) ≥ (1− ε)
∑

good i

‖M:,i‖1 ≥ (1− ε)(1−Θ(ε))‖M‖1

which gives our first desired inequality.

CHAPTER 3. PRELIMINARIES 22

Now say that column i is small if med(SM:,i) < (1 + ε)‖M:,i‖1 and (for k ≥ 1)
k-large if

(k + 1 + ε)‖M:,i‖1 > med(SM:,i) ≥ (k + ε)‖M:,i‖1.

For k ≥ 3, we can bound

E

∑
k≥1

k
∑

k-large i
‖M:,i‖1

 ≤ Θ(ε)‖M‖1 + 2Θ(ε)‖M‖1 +
∑
k≥3

kε exp(−Θ(m)k)‖M‖1

≤ O(ε)‖M‖1
∑
k≥3

k

exp(Θ(m)k) ≤ O(ε)‖M‖1

where the second inequality comes from Lemma 3.0.2 and the third inequality comes
from choosing m = Θ(1/poly(ε)).

For k = 1 or k = 2, note that if i is k-large, then med(SM:,i) ≥ (1 + ε)‖M:,i‖1
which occurs with probability at most Θ(ε) as mentioned earlier.

This lets us bound

E

∑
k≥1

k
∑

k-large i
‖M:,i‖1

 ≤ Θ(ε)‖M‖1 + 2Θ(ε)‖M‖1 +
∑
k≥3

kε exp(−Θ(m)k)‖M‖1

≤ O(ε)‖M‖1
∑
k≥3

k

exp(Θ(m)k) ≤ O(ε)‖M‖1

where the last inequality occurs because the given infinite series converges by the
ratio test.

Therefore

med(SM) =
∑

small i
med(SM:,i) +

∑
k≥1

∑
k-large i

med(SM:,i)

≤ (1 + ε)‖M‖1 +
∑
k≥1

(k + 1 + ε)
∑

k-large i
‖M:,i‖1

≤ (1 + ε)‖M‖1 +
∑
k≥1

3k
∑

k-large i
‖M:,i‖1

≤ (1 +O(ε)) · ‖M‖1

where the first inequality holds by the definition of k-large and the third inequality
holds with probability 1−O(1) by Markov’s inequality.

Lemma 3.0.6. When S is an m × n matrix with i.i.d Cauchy entries, m equals
Θ(1/poly(ε)), and M is n× d, then with probability 1−O(1),

q1−ε/2(SM) ≤ O
(1
ε

)
‖M‖1

CHAPTER 3. PRELIMINARIES 23

Proof. Say that column i is small if q1−ε/2(SM:,i) < 3
ε
‖M:,i‖1 and (for k ≥ 3) k-large

if
k + 1
ε
‖M:,i‖1 > q1−ε/2(SM:,i) ≥

k

ε
‖M:,i‖1.

We can bound

Pr[i is k-large] ≤ Pr[q1−ε/2(SM:,i) ≥
k

ε
‖M:,i‖1]

< exp(−Θ(ε)k
ε
m) < exp(−Θ(m)k),

where the second inequality comes from Lemma 3.0.2.
This lets us bound

E

∑
k≥3

k

ε

∑
k-large i

‖M:,i‖1

 ≤∑
k≥3

k

ε
exp(−Θ(m)k)‖M‖1

≤ 1
ε
‖M‖1

∑
k≥3

k

exp(Θ(m)k)

≤ O
(1
ε

)
‖M‖1

where the last inequality occurs because the given infinite series converges by the
ratio test.

Therefore

q1−ε/2(SM) =
∑

small i
q1−ε/2(SM:,i) +

∑
k≥3

∑
k-large i

q1−ε/2(SM:,i)

≤ 3
ε
‖M‖1 +

∑
k≥3

k + 1
ε

∑
k-large i

‖M:,i‖1

≤ 3
ε
‖M‖1 +

∑
k≥3

2k
ε

∑
k-large i

‖M:,i‖1

≤ O
(1
ε

)
‖M‖1

where the first inequality holds by the definition of k-large and the third inequality
holds with probability 1−O(1) by Markov’s inequality.

Chebyshev’s inequality. We record some basic facts. Let Z1, . . . , Zn be indepen-
dent Bernoulli random variables, with Zi ∼ Ber(pi). Let Z := Z1 + . . . + Zn and
µ := E[Z].

CHAPTER 3. PRELIMINARIES 24

Lemma 3.0.7. For any ∆ > 0, we have Pr[|Z − µ| > ∆] ≤ µ/∆2.

Proof. By independence, we have Var(Z) = ∑n
i=1 Var(Zi) = ∑n

i=1 pi(1 − pi) ≤∑n
i=1 pi = µ. By Chebyshev’s inequality, for any ∆ > 0 we have Pr[|Z − µ| > ∆] ≤

Var(Z)/∆2. With Var(Z) ≤ µ we thus obtain the claim.

Lemma 3.0.8. For any ∆ > 0, we have Pr[|Z − µ| > ∆] ≤
√
n/∆.

Proof. As in the previous lemma’s proof, we have Pr[|Z − µ| > ∆] ≤ Var(Z)/∆2,
where Var(Z) ≤ µ ≤ n, and thus Pr[|Z − µ| > ∆] ≤ n/∆2. It also follows that
Pr[|Z−µ| > ∆] ≤

√
n/∆, since if

√
n/∆ < 1 we have n/∆2 ≤

√
n/∆, and otherwise

the inequality is trivial.

25

Chapter 4

`p-Approximation Algorithms

Recall that in the Entrywise `p-Rank-k Approximation problem (for 0 < p < 2)
we are given an n × d matrix A with integer entries bounded in absolute value by
poly(n), a positive integer k, and we want to output matrices U ∈ Rn×k and V ∈ Rk×d

minimizing
‖A− UV ‖pp :=

∑
i=1,...,n,j=1,...,d

|Ai,j − (U · V)i,j|p.

In this chapter, we prove Theorem 2.1.1, restated here for convenience.

Theorem (PTAS for 0 < p < 2). Let p ∈ (0, 2) and ε ∈ (0, 1). There is a (1 + ε)-
approximation algorithm to Entrywise `p-Rank-k Approximation running in npoly(k/ε)

time.

In Section 4.1, we prove in Corollary 4.1.3 our core algorithm result which solves
the Entrywise `p-Rank-k Approximation problem for p = 1. In Section 4.2, we
give an algorithm for the case when 1 < p < 2, and we prove its correctness in
Corollary 4.2.7. In Section 4.3, we prove in Corollary 4.3.6 the correctness of our
algorithm for 0 < p < 1. We conclude the proof of Theorem 2.1.1 by combining
Corollary 4.1.3, Corollary 4.2.7 and Corollary 4.3.6.

In Section 4.4, we give a (3 + ε)-approximation algorithm for the Entrywise `p-
Rank-k Approximation problem in the case when p > 2.

Recall that in the Entrywise `0-Rank-k Approximation over Fq problem we are
given an n × d matrix A with entries in Fq, a positive integer k, and we want to
output matrices U ∈ Fn×kq and V ∈ Fk×dq minimizing ‖A− UV ‖0. In Section 4.5, we
prove Theorem 2.1.2 and for the reader’s convenience we restate here our result.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 26

Theorem (Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1 + ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in n · dpoly(k/ε)

time.

4.1 `1-Approximation Algorithm
In this section, Ak will denote the rank k matrix closest to A in the entrywise `1-norm.
We will need a claim adapted from [20].

Claim 4.1.1. If A is n by d and has integer entries bounded by γ = poly(n) and
rank r > k, then we have

min
rank k Ak

‖A− Ak‖1 ≥
1

poly(n)k

Proof. Note that it suffices to lower bound σk+1, the (k + 1)-th singular value of A,
because ‖A − Ak‖1 ≥ ‖A − Ak‖F ≥ σk+1. This is clear if σk+1 ≥ 1 so we assume
otherwise.

Since A has integer entries, then so does ATA and its characteristic polynomial
has integer coefficients. Now ATA has eigenvalues σ2

i so its characteristic polyno-
mial’s last term is ∏r

i=1 σ
2
i which is at least 1 because it is a positive integer. For any

j, σ2
j ≤ ‖A‖2

F ≤ ndγ2.
We have

σ
2(r−k)
k+1 ≥

∏
k<i≤r

σ2
i ≥

∏
1≤i≤r σ

2
i

(ndγ2)k ≥
1

(ndγ2)k

so σk+1 ≥ 1
(ndγ2)k because r − k ≥ 1.

We can now describe our (1 + ε)-approximation algorithm. For the rest of this
section, let U∗ and V ∗ be minimizers for ‖UV −A‖1 with OPT = ‖U∗V ∗−A‖1. The
quantities θ, ψ will be bounded above by poly(n). The quantity q will be bounded
above by poly(k). The specifics of how these values are chosen will be described in
the algorithm’s proof of correctness. The validity of the specific sampling described
in Step 1 of Algorithm 1 will be proved in Corollary 4.1.3.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 27

Algorithm 1 (1 + ε)-`1 low rank approximation
Input: A n× d matrix A with integer entries bounded by γ = poly(n). An integer
k ∈ [d] and a real ε ∈ (0, 1).
Output: Matrices U ∈ Rn×k and V ∈ Rk×d satisfying ‖UV − A‖1 ≤ (1 + ε)OPT .
1. If A has rank at most k, then return a rank k decomposition U, V of A.
2. Sample an m × n matrix S satisfying the conditions of Theorem 4.1.1 (e.g.
by taking m = poly(k/ε) and sampling each entry of S from a standard Cauchy
distribution).
3. Round the entries of S to the nearest multiple of ε2

(θψ)k where θ, ψ ≤ poly(n) are
chosen as described in the proof of Theorem 4.1.1.
4. Set U and V to be zero matrices as a default.
5. Exhaustively guess all possible values of SU∗ with entries rounded to the nearest
multiple of ε

qnkθk
ε2

(θψ)k , where q ≤ poly(k) is chosen as described in the proof of
Theorem 4.1.1.

6. For each guessed SU∗, set Ṽ = arg minV med(SU∗V − SA) s.t. ‖V ‖∞ ≤
2ndγqnkθk

ε
.

7. For each Ṽ , set Ũ = arg minU‖UṼ − A‖1.
8. If ‖Ũ Ṽ − A‖1 < ‖UV − A‖1, then set U = Ũ , V = Ṽ .

9. Return U, V .

Theorem 4.1.1. Let A be an n × d matrix with integer entries such that ‖A‖∞ is
bounded by γ = poly(n). Let ε > 1/poly(n). Suppose S is an m × n random matrix
such that with probability 1−O(1), med(SU∗V −SA) ≥ (1−ε)‖U∗V −A‖1 for all V
and for a fixed V ∗, med(SU∗V ∗−SA) ≤ (1+ε)‖U∗V ∗−A‖1 with probability 1−O(1).
Suppose further that ‖S‖∞ ≤ poly(n). Then Algorithm 1 is a (1 + ε)-approximation
algorithm for rank k low rank approximation in the entrywise `1 norm and runs in
time poly(n)mk.

Proof. First, if A has rank at most k, then we can just use Gaussian elimination to
deduce that its optimal low rank approximation has value 0. We will assume its rank
is greater than k.

We can assume V ∗ is an `1 well-conditioned basis since we can replace U∗ and
V ∗ with U∗R and R−1V ∗ respectively for an invertible R. Thus for all x we have
‖x‖1
q′
≤ ‖xTV ∗‖1 ≤ q‖x‖1 where q′, q = poly(k). Using this well-conditioned basis

property we see that each entry of U∗ is at most 2ndγq′ ≤ poly(n) because otherwise
‖U∗V ∗ − A‖1 ≥ ‖U∗V ∗‖1 − ‖A‖1 ≥ 2ndγ − ‖A‖1 ≥ ‖A‖1 and we could improve the
`1 error by taking U∗ = 0.

Claim 4.1.1 says that there exists θ ≤ poly(n) such that OPT ≥ 1
θk
. By using

the well-conditioned basis property of V ∗ and Claim 4.1.1, we can also assume that

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 28

each entry of U∗ is rounded to nearest integral multiple of ε
qnkθk

as this will incur an
additive error of at most εOPT .

Thus U∗ has discretized and bounded entries. Note that there are at most
ε−1poly(n)k possible values for each entry of U∗.

Since the entries of U∗ are discretized by ε
qnkθk

, then the entries of V ∗ can be
bounded above by 2ndγqnkθk

ε
because otherwise ‖U∗V ∗−A‖1 ≥ 2ndγ −‖A‖1 ≥ ‖A‖1

and we might as well have set V ∗ = 0.
The well-conditioned basis property shows that ‖V ∗‖∞ ≤ q. We will be interested

in matrices V where ‖V ‖∞ ≤ 2ndγqnkθk
ε

(note that this includes V ∗ because q is less
than the RHS).

We have ‖U∗V − A‖1 ≤ ε−1ψk where ψ ≤ poly(n). We will round each entry of
S to the nearest multiple of ε2

(θψ)k , so we can write S = S̃ + ∆ where S̃ is discretized
and ‖∆‖∞ ≤ ε2

(θψ)k . Note that ‖∆(U∗V − A)‖1 ≤ ε
θk
≤ εOPT .

Now we will prove the correctness of our algorithm. We can sample S = S̃ + ∆.
Note that S̃U∗ will have entries that are multiples of ε

qnkθk
ε2

(θψ)k ≥ poly(ε
n
)k and

bounded by poly(n
ε
)k because S̃ is discretized and bounded. Since S̃U∗ is m × k,

then in poly(n
ε
)k time we can exhaustively search through all possible values of S̃U∗

and one of them will be correct.
For each guess of S̃U∗ and each i we minimize med(S̃U∗V:,i−S̃A:,i) over ‖V:,i‖∞ ≤

2ndγqnkθk
ε

1 to get Ṽ:,i. We have med(S̃U∗Ṽ − S̃A) ≤ med(S̃U∗V ∗ − S̃A).
Now

med(S̃U∗V ∗ − S̃A) = med(S(U∗V ∗ − A)−∆(U∗V ∗ − A))
≤ med(S(U∗V ∗ − A)) + ε ·OPT
≤ (1 + ε)‖U∗V ∗ − A‖1 + ε ·OPT
≤ (1 +O(ε)) ·OPT.

We choose Ũ to minimize ‖Ũ Ṽ − A‖1, so

med(S̃U∗Ṽ − S̃A) = med(S(U∗Ṽ − A)−∆(U∗Ṽ − A))
≥ med(S(U∗Ṽ − A))− ε ·OPT
≥ (1− ε)‖U∗Ṽ − A‖1 − ε ·OPT
≥ (1− ε)‖Ũ Ṽ − A‖1 − ε ·OPT

It follows that the best Ũ and Ṽ will satisfy ‖Ũ Ṽ −A‖1 ≤ (1 +O(ε)) ·OPT .
1Observe that there are at most m! orderings of the entries of S̃U∗V:,i − S̃A:,i and we are

minimizing a linear function over V:,i subject to a linear constraint. This can be solved with linear
programming, so it will be done within the poly(n)mk runtime.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 29

Note that if m = Θ(poly(k log d
ε

)), then the above algorithm is a quasipolynomial
time (1 + ε)-approximation scheme (treating k like a constant). This is because we
can use Corollary 3.0.4 (with δ = poly(1/d)) to see that

med(S
[
U∗ A:,i] [V:,i 1]T

]
) = (1± ε)‖[U∗ A:,i] [V:,i 1]T‖1

(when V:,i is arbitrary) with probability at least 1−poly(1/d) for each i. By a union
bound, med(S(U∗V − A)) = (1 ± ε)‖U∗V − A‖1 for arbitrary V with probability
1−Θ(1). Furthermore, Fact 3.0.1 tells us that Pr[Si,j ≥ poly(n)] ≤ poly(n)−1 so by
a union bound, all entries of S are bounded by poly(n) with probability 1−Θ(1).

Of course, if we could reduce m to Θ(poly(k
ε
)), then we would have a PTAS. With

the target bound for m, we would still have a (1 ± ε)-embedding for each column
index i with probability 1−O(1), but we need all d embeddings to be valid at once
because a simple union bound would not suffice. We accomplish this in the next
result which is a variant of Lemma 27 from [21].

Theorem 4.1.2. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ −
A‖1. Suppose S is an m× n matrix satisfying

(i) q 1
2−ε

(SUx) ≥ (1−Θ(ε))‖Ux‖1 for all x

(ii) For each i with probability at least 1−ε3, med(S[U A:,i]x) ≥ (1−ε3)‖[U A:,i]x‖1
for all x

(iii) med(SUV ∗ − SA) ≤ (1 + ε3)‖UV ∗ − A‖1

(iv) q1−ε/2(S(UV ∗ − A)) ≤ O
(

1
ε

)
‖UV ∗ − A‖1

Then med(SUV − SA) ≥ (1−O(ε))‖UV − A‖1 for arbitrary V .

Proof. We say a column index i is good if

med(S([U A:,i]y)) ≥ (1− ε3)‖[U A:,i]y‖1

for all y ∈ Rk+1, and bad otherwise. We say a bad column index is large if

ε‖(UV − A):,i‖1 ≥
1

1− εq1−ε/2(S(UV ∗ − A):,i) + ‖(UV ∗ − A):,i‖1

and small otherwise.
By (ii), we know that E[∑bad i‖(UV ∗ − A):,i‖1] ≤ ε3‖UV ∗ − A‖1. By Markov’s

inequality, we know that with probability 1−O(1),∑
bad i

‖(UV ∗ − A):,i‖1 ≤ O(ε3)‖UV ∗ − A‖1. (4.1)

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 30

Since we were only using the probability that a column i was bad in the bound
above, then by a similar Markov’s inequality argument we know that with probability
1−O(1), ∑

bad i

q1−ε/2(S(UV ∗ − A):,i) ≤ O(ε3)q1−ε/2(S(UV ∗ − A)). (4.2)

By (iii)

(1 + ε3)‖UV ∗ − A‖1 ≥ med(S(UV ∗ − A))
≥ (1− ε3)

∑
good i

‖(UV ∗ − A):,i‖1 +
∑

bad i

med(S(UV ∗ − A):,i)

≥ (1− ε3)(1−Θ(ε3))‖UV ∗ − A‖1 +
∑

bad i

med(S(UV ∗ − A):,i),

where the second inequality comes from the definition of good, and the third
inequality comes from (4.1).

Thus ∑
bad i

med(S(UV ∗ − A):,i) ≤ O(ε3)‖UV ∗ − A‖1 (4.3)

We also have
∑

small i
‖(UV − A):,i‖1 ≤

1
ε(1− ε)

∑
small i

q1−ε/2(S(UV ∗ − A):,i) + 1
ε

∑
small i

‖(UV ∗ − A):,i‖1

≤ 1
ε(1− ε)

∑
bad i

q1−ε/2(S(UV ∗ − A):,i) +O(ε2)‖UV ∗ − A‖1

≤ O
(
ε2
)
q1−ε/2(S(UV ∗ − A)) +O(ε2)‖UV ∗ − A‖1

≤ O(ε)‖UV ∗ − A‖1 +O(ε2)‖UV ∗ − A‖1

≤ O(ε)‖UV ∗ − A‖1 (4.4)

where the first inequality comes from the definition of small, the second inequal-
ity comes from (4.1) and the fact that small columns are bad columns, the third
inequality comes from (4.2), and the fourth inequality comes from (iv).
Claim 4.1.2.∑

large i
med(S(UV − A):,i) ≥ (1−O(ε))

∑
large i
‖(UV − A):,i‖1

Proof. Let i be large. We can write S(UV −A):,i = SU(V − V ∗):,i + S(UV ∗ −A):,i.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 31

By (i), we know at least 1
2 + ε entries of SU(V − V ∗):,i are larger than (1 −

O(ε))‖U(V − V ∗):,i‖1 which is at least

(1−O(ε))(‖(UV − A):,i‖1 − ‖(UV ∗ − A):,i‖1)

by the triangle inequality. By the definition of large, this is at least

(1−O(ε))((1− ε)‖(UV − A):,i‖1 +
(1

1− ε

)
q1−ε/2(S(UV ∗ − A):,i))

or
(1−O(ε))2‖(UV − A):,i‖1 + q1−ε/2(S(UV ∗ − A):,i).

By definition, less than an ε/2 fraction of the entries of S(UV ∗−A):,i are greater
than q1−ε/2(S(UV ∗ −A):,i) so at least half of the entries of S(UV −A):,i are greater
than (1−O(ε))2‖(UV − A):,i‖1. The result follows.

Finally

med(S(UV − A)) ≥
∑

good i

med(S(UV − A):,i) +
∑

large i
med(S(UV − A):,i)

≥ (1− ε3)
∑

good i

‖(UV − A):,i‖1 + (1−O(ε))
∑

large i
‖(UV − A):,i‖1

≥ (1−O(ε))‖UV − A‖1 − (1−O(ε))
∑

small i
‖(UV − A):,i‖1

≥ (1−O(ε))‖UV − A‖1 − (1−O(ε))O(ε)‖UV ∗ − A‖1

≥ (1−O(ε))‖UV − A‖1

where the first inequality occurs because large i are bad i, the second inequality
comes from the definition of good and Claim 4.1.2, the third inequality comes from
the definition of small, the fourth inequality comes from (4.4), and the last inequality
holds because V ∗ is a minimizer.

Corollary 4.1.3. Let A be an n× d matrix with integer entries bounded by poly(n)
and let k be a constant. There is a PTAS for finding the closest rank k matrix to A
in the entrywise `1 norm.

Proof. Let U∗ ∈ Rn×k, V ∗ ∈ Rk×d be minimizers for ‖U∗V ∗ − A‖1. It suffices to
prove that an m×n (m = Θ(poly(k

ε
))) matrix S with i.i.d. standard Cauchy entries

satisfies the conditions of Theorem 4.1.2 with U = U∗, then use Theorem 4.1.1.
Indeed, S satisfies (i) through Lemma 3.0.3 and (ii) with probability 1 − O(1)

through Corollary 3.0.4. S satisfies (iii) with probability 1− O(1) via Lemma 3.0.5
and (iv) with probability 1−O(1) via Lemma 3.0.6.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 32

4.2 1 < p < 2
We can extend these `1 results to `p for 1 < p < 2 by using p-stable variables
(with scale 1) instead of Cauchy variables (or 1-stable variables). These have the
property that if x ∈ Rn and Z,Zi are i.i.d p-stable variables (for i = 1, . . . , n) then∑n
i=1 xiZi ∼ ‖x‖pZ.

Definition 4.2.1. We let medp denote the median of the absolute value of a p-stable
variable.

There is no convenient closed form expression for medp unless p = 1, in which case
med1 = 1. However, in Appendix A.2 of [46] it is shown that a 1±ε approximation of
medp can be computed efficiently. Since we are only interested in ε approximations,
then this will suffice for our purposes. Our main sketch will be med

(
(Sx)
medp

)
(S has

i.i.d p-stable entries with scale 1) which will concentrate around (1± ε)‖x‖p.
We can cite similar concentration / tail bounds for p-stable variables like the ones

we used for Cauchy variables. We can also state a series of claims analagous to the
ones we used in the `1 case.

Fact 4.2.1. If Z is a p-stable variable with scale γ, then

1. For τ > 1, Pr[|Z| > τγmedp] ≤ Θ(1
τp

)

2. For small ε > 0, Pr[|Z| > (1 + ε)γmedp] < 1
2 −Θ(ε)

3. For small ε > 0, Pr[|Z| < (1− ε)γmedp] < 1
2 −Θ(ε)

Lemma 4.2.2. Let S ∈ Rm×n have entries that are i.i.d. p-stable variables with
scale 1 and let x ∈ Rn. Then

1. Pr[q 1
2−Θ(ε)(Sx) < (1− ε)‖x‖pmedp] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx) > (1 + ε)‖x‖pmedp] < exp(−Θ(ε2)m)

3. For M > 3, Pr[q1− ε2 (Sx) > M
ε
‖x‖pmedp] < exp(−Θ(ε)Mm)

4. For M > 3, Pr[med(Sx) > M‖x‖pmedp] < exp(−Θ(m)M)

Proof. The proof follows the same structure as the proof for Lemma 3.0.2. We use
Fact 4.2.1 in combination with Chernoff bounds.

Since 1 < p, then we can take advantage of Minkowski’s inequality and use the
triangle inequality with ‖·‖p.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 33

Lemma 4.2.3. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. p-stable entries with scale 1. Then with
probability at least 1−Θ(δ), for all x ∈ X,

(1−Θ(ε))‖x‖p ≤ q 1
2−ε

(Sx/medp) ≤ q 1
2 +ε(Sx/medp) ≤ (1 +O(ε))‖x‖p

Proof. The proof follows the same structure as the proof for Lemma 3.0.3 except we
use Fact 4.2.1 and p-well conditioned bases ([23]) to bound ‖(Sz)/medp‖∞ for any
z ∈ X. We also use the `p ball (which is still convex) instead of the `1 ball.

This automatically gives us the following corollary.

Corollary 4.2.4. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. p-stable entries with scale 1. With proba-
bility at least 1−Θ(δ), for all x ∈ X,

(1− ε)‖x‖p ≤ med(Sx/medp) ≤ (1 + ε)‖x‖p

We also have analogous versions of our bounds on fixed matrices. The proof
structures are the same as those of Lemmas 3.0.5 and 3.0.6.

Lemma 4.2.5. Let S be an m × n matrix (m = Θ(1/poly(ε))) with i.i.d. standard
p-stable entries and let M be an n× d matrix. For ε > 0, with probability 1−O(1),

(1− ε)
∑
i

‖M‖p ≤ (
∑
i

med(SM:,i)p)1/p/medp ≤ (1 + ε)
∑
i

‖M‖p

Lemma 4.2.6. When S is an m × n matrix with i.i.d standard p-stable entries,
m = Θ(1/poly(ε)), and M is n× d, then with probability 1−O(1),

(
∑
i

q1−ε/2(SM:,i)p)1/p/medp ≤ O
(1
ε

)∑
i

‖M‖p

Finally, we have an `p form of Theorem 4.1.2 and it is proved analogously.

Theorem 4.2.1. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ −
A‖p. Suppose S is an m× n matrix satisfying

1. q 1
2−ε

(SUx/medp) ≥ (1−Θ(ε))‖Ux‖p

2. For each i with probability at least 1− ε3,

med(S[U A:,i]x/medp) ≥ (1− ε3)‖[U A:,i]x‖p

for all x

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 34

3. (∑imed(SUV ∗:,i − SA:,i)p)1/p/medp ≤ (1 + ε3)‖UV ∗ − A‖p

4. (∑i q1−ε/2(S(UV ∗ − A):,i)p)1/p/medp ≤ O
(

1
ε

)
‖UV ∗ − A‖p

Then (∑imed(SUV:,i−SA:,i)p)1/p/medp ≥ (1−O(ε))∑i‖UV −A‖p for arbitrary
V .

It follows that we have a PTAS for rank k `p low rank approximation.

Corollary 4.2.7. Let A be an n × d matrix with entries bounded by poly(n) and
let k be a constant. There is a PTAS for finding the closest rank k matrix to A in
entrywise `p norm for 1 < p < 2.

Proof. The algorithm is analogous to Algorithm 1. Correctness follows from the
fact that there exist `p well-conditioned bases and that `p regression is a convex
optimization problem.

Indeed, if p > 1 then ‖UV:,i−A:,i‖p is convex over vectors V:,i and we can calculate
minima in polynomial time.

4.3 0 < p < 1
For v ∈ Rn we will denote vp to mean we raise each entry of v to the pth power, i.e.
(vp)i = vpi .

We can extend these results to `p for 0 < p < 1 as well, but more care needs to
be taken for this range of p because among other issues, ‖·‖p is no longer a norm.
However, ‖·‖pp satisfies the triangle inequality which will be enough for our purposes.
We will prove that med

(
(Sx)p
medpp

)
(S has i.i.d p-stable entries) will concentrate around

(1± ε)‖x‖pp.

Lemma 4.3.1. Let S ∈ Rm×n have entries that are i.i.d. p-stable variables with
scale 1 and let x ∈ Rn. Then

1. Pr[q 1
2−Θ(ε)(Sx)p < (1− ε)‖x‖ppmedpp] < exp(−Θ(ε2)m)

2. Pr[q 1
2 +O(ε)(Sx)p > (1 + ε)‖x‖ppmedpp] < exp(−Θ(ε2)m)

3. For M > 3, Pr[q1− ε2 (Sx)p > M
ε
‖x‖ppmedpp] < exp(−Θ(ε)Mm)

4. For M > 3, Pr[med(Sx)p > M‖x‖ppmedpp] < exp(−Θ(m)M)

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 35

Proof. These results follow from Lemma 4.2.2 and the fact that for 0 < p < 1, we
have (1− ε)p > 1− ε and (1 + ε)p < 1 + ε.

Using the above quantile results we can prove an embedding result similar to
Lemma 4.2.3 by using the fact that ‖·‖pp satisfies the triangle inequality.

Lemma 4.3.2. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. p-stable entries with scale 1. Then with
probability at least 1−Θ(δ), for all x ∈ X,

(1−Θ(ε))‖x‖pp ≤ q 1
2−ε

((Sx)p/medpp) ≤ q 1
2 +ε((Sx)p/medpp) ≤ (1 +O(ε))‖x‖pp

This automatically gives us the following corollary.

Corollary 4.3.3. Let X ⊂ Rn be a k-dimensional space and ε, δ > 0. Let S have
O(1

ε2k log k
εδ

) rows, n columns, and i.i.d. p-stable entries with scale 1. With proba-
bility at least 1−Θ(δ), for all x ∈ X,

(1− ε)‖x‖pp ≤ med((Sx)p/medpp) ≤ (1 + ε)‖x‖pp

We also have analogous versions of our bounds on fixed matrices. Again, the
proof structures are the same as those of Lemmas 3.0.5 and 3.0.6.

Lemma 4.3.4. Let S be an m × n matrix (m = Θ(1/poly(ε))) with i.i.d. standard
p-stable entries and let M be an n× d matrix. For ε > 0, with probability 1−O(1),

(1− ε)‖M‖pp ≤
∑
i

med((SM:,i)p/medpp) ≤ (1 + ε)‖M‖pp

Lemma 4.3.5. When S is an m × n matrix with i.i.d standard p-stable entries,
m = Θ(1/poly(ε)), and M is n× d, then with probability 1−O(1),

∑
i

q1−ε/2((SM:,i)p/medpp) ≤ O
(1
ε

)∑
i

‖M:,i‖pp

As expected, we have an `p form of Theorem 4.1.2 and it is proved analogously.

Theorem 4.3.1. Let U ∈ Rn×k, A ∈ Rn×d. Let V ∗ be chosen to minimize ‖UV ∗ −
A‖pp. Suppose S is an m× n matrix satisfying

1. q 1
2−ε

((SUx)p/medpp) ≥ (1−Θ(ε))‖Ux‖pp

2. For each i with probability at least 1 − ε3, med((S[U A:,i]x)p/medpp) ≥ (1 −
ε3)‖[U A:,i]x‖pp for all x

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 36

3. ∑imed((SUV ∗ − SA)p:,i/medpp) ≤ (1 + ε3)∑i‖(UV ∗ − A):,i‖pp

4. ∑i q1−ε/2(S(UV ∗ − A)pi /medpp) ≤ O
(

1
ε

)∑
i‖(UV ∗ − A)i‖pp)

Then ∑imed((SUV − SA)p:,i/medpp) ≥ (1−O(ε))‖(UV − A)‖pp for arbitrary V .

The results above can give us the desired PTAS.

Corollary 4.3.6. Let A be an n × d matrix with entries bounded by poly(n) and
let k be a constant. There is a PTAS for finding the closest rank k matrix to A in
entrywise `p norm when 0 < p < 1.

Proof. The algorithm is slightly different from Algorithm 1, because `p regression
is no longer a convex optimization problem when 0 < p < 1. Thus after sketching
to find a minimizing V , we need a different approach to find a minimizing U . We
accomplish this by sketching UV − A again, but from the right and guessing the
sketched V . We use the guessed V to solve for U .

Besides the above modification, we rely on the fact that ‖·‖pp satisfies the triangle
inequality. We also note that for 0 < p < 1, we may not have a well-conditioned basis.
However, we know that an `1 well-conditioned basis exists so there exist q, r = poly(k)
such that ‖x‖1

q
≤ ‖xTV ∗‖1 ≤ r‖x‖1. By Holder’s inequality, we know ‖xTV ∗‖pp ≤

d1−p‖xTV ∗‖p1 ≤ d1−prp‖x‖pp and ‖xTV ∗‖pp ≥ ‖xTV ∗‖
p
1 ≥ ‖x‖

p
1/q

p ≥ dp−1‖x‖pp/qp so
we can get a similar well-conditioned basis result saying there exist q̃, r̃ = poly(d)
such that ‖x‖p

q̃
≤ ‖xTV ∗‖p ≤ r̃‖x‖p which will suffice for our proof.

4.4 p > 2
There are no p-stable random variables when p > 2 so any `p-approximation algo-
rithms in this setting will need to rely on a different technique. Our sketch will be
lifted from [23]. Rather than a matrix of p-stable random variables, we use a sam-
pling matrix that samples m rows of A with each row i having some probability pi of
being sampled. Furthermore, each sampled row is reweighted by 1/pi. The following
claim (adapted from Theorem 5 of [23]) says we can get a subspace embedding from
the right sampling matrix.

Claim 4.4.1. Suppose U is an n × k matrix. Then there exists a m × n sampling
matrix S with m = poly(k/ε) such that ‖SUx‖p = (1± ε)‖Ux‖p for all x.

Theorem 4.4.1. If A is an n×d matrix with entries bounded by poly(n), then there
is a (3 + ε)-approximation algorithm running in time npoly(k/ε) for finding the closest
rank k matrix to A in the entrywise `p norm for p > 2.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 37

Proof. Let S be the sampling matrix of the above claim. Let V̂ be a minimizer for
the expression ‖SU∗V̂ − SA‖p. Again, by a similar argument as that of the proof of
Theorem 4.1.1, we can guess SU∗ using poly(n) tries. We can round the sampling
probabilities and the entries of U∗ to the nearest 1/poly(n) value.

We know that

‖U∗V̂ − A‖p ≤ ‖U∗(V̂ − V ∗)‖p + ‖U∗V ∗ − A‖p
≤ (1 +O(ε))‖SU∗(V̂ − V ∗)‖p + ‖U∗V ∗ − A‖p
≤ (1 +O(ε))‖SU∗V̂ − SA‖p + (1 +O(ε))‖SU∗V ∗ − SA‖p

+ ‖U∗V ∗ − A‖p
≤ 2(1 +O(ε))‖SU∗V ∗ − SA‖p + ‖U∗V ∗ − A‖p
≤ (3 + ε)‖U∗V ∗ − A‖p

where the second inequality follows from the embedding property of S and the fourth
inequality comes from the definition of V̂ as a minimizer.

The final inequality comes from a Markov bound on S. More specifically, since
S is a sampling matrix, then for an arbitrary matrix M , E[SM] = ‖M‖p. Thus
Markov’s Inequality says that with probability 1−O(1), we have SM ≤ O(1)‖M‖p.
This concludes the proof.

4.5 Finite Fields
We can also study low rank approximation over finite fields. The `p metrics are not
defined over finite fields for p > 0, but we can look at low rank approximation over
the entrywise `0 metric (where ‖M‖0 = |{(i, j) : Mi,j 6= 0}|). For the rest of this
section we will work over a finite field Fq, for some prime power q.

The structure of the algorithm will be similar to that of the case 0 < p < 2 but our
sketch will be based on hashing rather than p-stable random variables. Furthermore,
we will be able to sketch in the dimension d row space rather than the dimension n
column space and get a running time better than that of the 0 < p < 2 algorithms.
We now describe a (1 + ε)-approximation sketch for the `0 metric, where ε will be
sufficiently small. This sketch is inspired by the L0 streaming algorithm in [46].
Throughout this section, we will refer to constants C and C ′ that are sufficiently
large.

Let Si denote a n × n matrix where column i is the standard basis column ei
with probability pi = 1

2i or the all zeroes column otherwise. In other words, Si is a

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 38

sampling matrix that takes x and preserves each coordinate with probability pi and
otherwise maps the coordinate to 0. Note that p0 = 1. We can generate our matrices
Si by uniformly sampling n integers between 0 to n and sampling column j in Si if
the leading 1 in the jth integer (written in binary, with indexing starting from 1)
is before the ith position. Observe that under this procedure, our subsampling is
nested so that if Si does not sample entry j, then neither will Si′ for any i′ > i.

Note that by this nestedness property, we have ‖x‖0 = ‖S0x‖0 ≥ ‖S1x‖0 ≥

‖S2x‖0 ≥ · · · ≥ ‖Slogn−1x‖0. Let S denote the n log n× n block matrix



S0
S1
S2
...

Slogn−1

.

Let h be a pairwise independent hashing function from [n] to [C′
ε8] and let H0

denote a C′

ε8 × n hashing matrix where each column equals eh(i). Let H denote the

C′

ε8 log n× n block matrix



H0S0
H0S1
H0S2
...

H0Slogn−1

 with H(i) = H0Si.

Suppose that x =


x(0)

x(1)

...
x(logn−1)

 is a block vector. Then we let ñnz(x) denote


‖x(0)‖0
‖x(1)‖0

...
‖x(logn−1)‖0

.
We will abuse notation and let CS(x) = ñnz(Sx) and C(x) = ñnz(HSx) with

the understanding that HSx and Sx are of different dimensions but have the same
number of blocks.

The main idea of the sketch is that if ‖x‖0 is less than a small constant and
the coordinates of x are hashed into a number of buckets that is a large constant,
then with high probability it will be a perfect hash. Thus the number of non-zero
buckets will equal ‖x‖0. If x is subsampled with a low enough probability, then the
subsampled vector will have an `0 value that is sufficiently small and it can be hashed
as we described.

We should note that the hash is needed for dimensionality reduction, not for the

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 39

sketch to be an accurate estimator. For certain proofs we will analyze properties of
the sketch without the hashing step (as in CS(x)).

So S will sample x with different subsampling probabilities and we will expect
that one will be small enough. We can then hash that subsampled vector, count the
number of non-zero entries, and rescale by the sampling probability to approximate
‖x‖0. It then suffices to identify a suitably subsampled vector.

To do so, we will let τ := C
ε4 and define estimation functions estj : Rlogn → R,

where estj(v) = vj
pj
. If j∗ denotes the maximum index such that vj∗ > γ (for a value

of γ to be specified later) then est(v, γ) = estj∗(v). If such an index does not exist,
then est(v, γ) = est0(v). We let E(x, γ) = est(C(x), γ) and Ej(x) = estj(C(x)). We
will also let ES(x, γ) = est(CS(x), γ) and ESj (x) = estj(CS(x)).

Note that we can replace all instances of n in the above definitions with d and
our algorithm will just sketch the row space rather than the column space. We use
n in our discussion just to keep the exposition similar to the case of 0 < p < 2 and
to emphasize the similarities in technique.

For ease of notation in our proofs, we will omit the parameter γ in E(x), ES(x),
Ei(x), and ESi (x) if it is clear that γ = τ .

The idea is that past j∗ we can be confident that we are subsampling x with so
small of a probability that we barely sample any elements. On the other hand, if all
the subsampled values are too small, then we can be confident that ‖x‖0 itself was
small.

To sketch a vector it is enough to show that at the index j∗, a pj∗ fraction of x is
sampled up to a relative error of ε. For the purposes of our low rank approximation
algorithm, we will want a slightly stronger condition that the indices around j∗ will
be sampled “as expected” and that the value of j∗ will be approximately log(‖x‖0/γ).

Throughout this section, we will let Lj denote ‖Sjx‖0 so
E[Lj] = pj‖x‖0 and Var[Lj] = pj(1− pj)‖x‖0 ≤ E[Lj].

Definition 4.5.1. Given a threshold γ, let j = max(0, blog2(‖x‖0/γ)c), so γ ≤
‖x‖0
2j < 2γ. Let j∗ be the maximum index such that C(x)j∗ ≥ γ, or 0 if none exists.
We say that E(x, γ) is a well-behaved sampling if

1. j∗ = j − 1, j, or j + 1

2. If ‖x‖0 ≥ γ, then Ei(x, γ) = (1±Θ(ε))‖x‖0 for i = j − 1, j, j + 1, and j + 2

3. If ‖x‖0 < γ, then L1 < 3γ/4

To prove the correctness of our sketch, it will suffice to prove that with high
probability our samplings are well-behaved samplings. We will need a folklore fact
about pairwise independent hashing (the proof is included for completeness).

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 40

Fact 4.5.1. If h : [n] → [m] is a pairwise independent hash function and m ≥
Ω(n2/ε), then with probability at least 1−Θ(ε), h will perfectly hash [n].

Proof. For i 6= j ∈ [n] let Ii,j be an indicator variable for the event h(i) = h(j).
Then I = ∑

i 6=j Ii,j is the total number of collisions. We have E[I] = ∑
i 6=j E[Ii,j] =∑

i 6=j
1
m
≤ n2

m
≤ O(ε). By Markov’s Inequality, Pr

[
I ≥ 1

]
≤ O(ε) and the result

follows.

To make use of this fact we will set C ′ to be significantly larger than C2. These
hash sizes are chosen such that they are at least Ω(γ2). Thus any subsampling past
level j∗ will likely result in a perfect hashing.

Lemma 4.5.2. If O(1/ε4) > γ > Ω(1/ε3), then with probability at least 1 − Θ(ε)
over the randomness of S and H, E(x, γ) is a well-behaved sampling.

In particular, this holds when γ = τ or γ = ετ .

Proof. We let j∗ and v be as given in the definition of well-behaved. First we consider
the case when ‖x‖0 ≥ γ.

Note that for i = j− 1, j, j+ 1, or j+ 2, we have E[Li] ≥ ‖x‖0/2j+2 ≥ γ/4. Since
Var[Li] ≤ E[Li], then by Chebyshev’s Inequality, we know

Pr
[
Li /∈ (1± ε)E[Li]

]
≤


√
Var[Li]
εE[Li]

2

≤ 1
ε2E[Li]

≤ 4
ε2γ
≤ O(ε).

For the given values of i, we have E[Li] ≤ ‖x‖0/2j−1 ≤ 4γ. Since H0 hashes to a
range of size C ′/ε8 > (4γ)2, then by Fact 4.5.1, H0 will perfectly hash the non-zero
entries of Six for the given values of i with probability at least 1−Θ(ε).

By a union bound, C(x)i = (1 ± ε)E[Li] for i = j − 1, j, j + 1, or j + 2 with
probability at least 1−Θ(ε). Thus

Pr
[
Ei(x) = (1± ε)‖x‖0

]
= Pr

[
C(x)i = (1± ε)Li

]
≥ 1−Θ(ε)

which satisfies (ii).
As we argued above, with probability at least 1 − Θ(ε) both C(x)j−1 ≥ (1 −

ε)E[Lj−1] ≥ 3γ/2 and C(x)j+2 ≤ (1 + ε)E[Lj+2] ≤ 3γ/4 hold. By the nestedness of
our sampling procedure, for any i > j + 2 we have C(x)i ≤ 3γ/4. Thus j∗ = j − 1, j,
or j + 1 which satisfies (i).

Now suppose ‖x‖0 < γ. This implies j = 0 and j∗ = 0 by definition which
satisfies (i). If ‖x‖0 ≥ γ/2, then by our reasoning above, L1 < 3γ/4 with probability
at least 1 − Θ(ε). If ‖x‖0 < γ/2, then L1 < γ/2 by the nestedness property of our
sampling procedure. Therefore (iii) is satisfied.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 41

It follows that for a given x, with probability at least 1−Θ(ε), E(x) = (1±ε)‖x‖0.
We can also get tail bounds for Ej(x) (j = 1, . . . , log n) and E(x).

Lemma 4.5.3. Let M be a large constant. Then Pr
[
Ei(x) > M‖x‖0

]
≤ 1

M
(for

arbitrary i) and Pr
[
E(x) > M‖x‖0

]
≤ O

(
1
M

+ ε
)
. Furthermore, Pr

[
ESi (x) >

M‖x‖0

]
≤ 1

M
and Pr

[
ES(x) > M‖x‖0

]
≤ O

(
1
M

+ ε
)
.

Proof. Let j∗ be chosen so that E(x) = Cj∗ (x)
pj∗

.
By Markov’s Inequality, we have

Pr
[
Ei(x) > M‖x‖0

]
= Pr

[
Ci(x)/pi > M‖x‖0

]
≤ Pr

[
Li/pi > M‖x‖0

]
≤ E[Li]
piM‖x‖0

= 1
M

for an arbitrary index i as desired. Let W denote the event that E(x) is well-
behaved. Then Lemma 4.5.2 tells us that

Pr
[
E(x) > M‖x‖0

]
= Pr

[
W
]
Pr
[
E(x) > M‖x‖0 | W

]
+ Pr

[
W
]
Pr
[
E(x) > M‖x‖0 | W

]

≤
Pr
[
Ei(x) > M‖x‖0 for i = j − 1, j, j + 1

]
Pr
[
W
] +O(ε)

≤ O
(1
M

+ ε
)

and the result follows.

Let K = poly(k, 1/δ, 1/ε) for some δ > 0 and E (1), . . . , E (K) be independent

instances of the sketching procedure E . Let A(x) =


E (1)(x)

...
E (K)(x)

.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 42

For a matrix M , we let A(M) denote the matrix whose ith column is A(M:,i).
We can also define AS(M) the natural way.
We can study medians and quantiles of A(M) like we did the medians and quan-

tiles of our sketches based on p-stable variables.

Lemma 4.5.4. 1. Pr[q 1
2−Θ(ε)(A(x)) < (1− ε)‖x‖0] < exp(−Θ(ε2)K)

2. Pr[q 1
2 +O(ε)(A(x)) > (1 + ε)‖x‖0] < exp(−Θ(ε2)K)

3. For T > 2, Pr[q1− ε2 (A(x)) > T
ε
‖x‖0] < exp(−Θ(ε)TK)

4. For T > 2, Pr[med(A(x)) > T‖x‖0] < exp(−Θ(T)K)
The analagous bounds for AS(x) also hold.

Proof. We can use Chernoff bounds, Lemma 4.5.2, and Lemma 4.5.3 to prove this
in a similar way to how the proof of Lemma 3.0.2 used Chernoff bounds and the tail
bounds on Cauchy sketches.

We can now deduce a finite field subspace embedding result.

Corollary 4.5.5. Let X ⊂ Fnq be a k-dimensional space. With probability at least
1−Θ(δ), for all x ∈ X,

(1− ε)‖x‖0 ≤ q 1
2−Θ(ε)(A(x)) ≤ q 1

2 +O(ε)(A(x)) ≤ (1 + ε)‖x‖0

and
(1− ε)‖x‖0 ≤ q 1

2−Θ(ε)(AS(x)) ≤ q 1
2 +O(ε)(AS(x)) ≤ (1 + ε)‖x‖0

Proof. We can use Lemma 4.5.4 and the fact that |X| = qk to deduce the result with
a union bound.

We can also bound the median of an `0 sketch of a fixed matrix.

Lemma 4.5.6. Let M be an n× d matrix. For ε > 0, with probability 1−O(1),

(1− ε)‖M‖0 ≤ med(A(M)) ≤ (1 + ε)‖M‖0

and
(1− ε)‖M‖0 ≤ med(AS(M)) ≤ (1 + ε)‖M‖0

Proof. The proof follows the same structure as the proof of Lemma 3.0.5 where we
bound the expected sum of med(A(M:,i)) over values of i where med(A(M:,i)) is large
and conclude with Markov’s Inequality. Instead of Fact 3.0.1 and Lemma 3.0.2, we
use Lemma 4.5.2 and Lemma 4.5.4.

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 43

We can also bound the (1− ε/2)-quantile of an `0 sketch and we can bound the
(1− ε/2)-quantile of a fixed index `0 sketch of a fixed matrix.

Lemma 4.5.7. Let M be an n × d matrix. Let J be a set of indices with |J | = d.
With probability 1−O(1),

q1−ε/2(A(M)) ≤ O
(1
ε

)
‖M‖0

and
q1−ε/2(AS(M)) ≤ O

(1
ε

)
‖M‖0

Proof. These inequalities can be proved using the same argument that was used to
prove Lemma 3.0.6, but using Lemma 4.5.4 instead of Lemma 3.0.2.

Theorem 4.5.1. Let U ∈ Fn×kq , A ∈ Fn×dq . With probability 1−O(1),

med(A(UV − A)) ≥ (1−O(ε))‖UV − A‖0

for arbitrary V .

Proof. Let V ∗ be chosen to minimize ‖UV ∗ − A‖0.
For column indices i, let Ji = max(0, log(‖(UV ∗ − A):,i‖0/γ))
By Lemmas 4.5.2, 4.5.6, and 4.5.7, the following statements hold with probability

1−O(1):

(i) E is well-behaved on Ux for all x

(ii) For each i with probability at least 1− ε3,

med(A([U A:,i]x)) ≥ (1− ε3)‖[U A:,i]x‖0

for all x

(iii) med(A(UV ∗ − A)) ≤ (1 + ε3)‖UV ∗ − A‖0

(iv) q1−ε/2(AS(UV ∗ − A, ετ)) ≤ O
(

1
ε

)
‖UV ∗ − A‖0

We say a column index i is good if

med(A([U A:,i]y)) ≥ (1− ε3)‖[U A:,i]y‖0

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 44

for all y ∈ Rk+1, and bad otherwise. Let Qi = q1−ε/2(AS(UV ∗ − A, ετ):,i)). We say
a bad column index is large if

ε‖(UV − A):,i‖0 ≥
2

1− εQi + ‖(UV ∗ − A):,i‖0.

By (ii), we know that E[∑bad i‖(UV ∗ − A):,i‖0] ≤ ε3‖UV ∗ − A‖0. By Markov’s
inequality, we know that with probability 1−O(1),∑

bad i

‖(UV ∗ − A):,i‖0 ≤ O(ε3)‖UV ∗ − A‖0 (4.5)

By (iii)

(1 + ε3)‖UV ∗ − A‖0 ≥ med(A(UV ∗ − A))
≥ (1− ε3)

∑
good i

‖(UV ∗ − A):,i‖0 +
∑

bad i

med(A(UV ∗ − A):,i)

≥ (1− ε3)(1−Θ(ε3))‖UV ∗ − A‖0 +
∑

bad i

med(A(UV ∗ − A):,i),

where the second inequality comes from the definition of good, and the third
inequality comes from (4.5).

Thus ∑
bad i

med(A(UV ∗ − A):,i) ≤ O(ε3)‖UV ∗ − A‖0 (4.6)

We also have
∑

small i
‖(UV − A):,i‖0 ≤

2
ε(1− ε)

∑
small i

Qi + 1
ε

∑
small i

‖(UV ∗ − A):,i‖0

≤ O

(
1

ε2(1− ε)

)(∑
small i

‖(UV ∗ − A):,i‖0

)
+O(ε2)‖UV ∗ − A‖0

≤ O(ε)‖UV ∗ − A‖0 (4.7)

where the first inequality comes from the definition of small, the second inequality
comes from (iv) and (4.5) and the third inequality comes from (4.6).
Claim 4.5.8.∑

large i
med(A(UV − A):,i) ≥ (1−O(ε))

∑
large i
‖(UV − A):,i‖0

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 45

Proof. Let column i be large. We haveH(UV −A):,i = HU(V −V ∗):,i+H(UV ∗−A):,i.
By the triangle inequality, we have

(1−Θ(ε))‖U(V − V ∗):,i‖0

≥(1−Θ(ε))(‖(UV − A):,i‖0 − ‖(UV ∗ − A):,i‖0)

≥(1−Θ(ε))((1− ε)‖(UV − A):,i‖0 + 2
1− εQi)

≥(1−Θ(ε))‖(UV − A):,i‖0 +Qi

≥(1−Θ(ε))‖(UV − A):,i‖0

where the second inequality follows from the definition of large.
Since ‖U(V − V ∗):,i‖0 ≥ (1 − Θ(ε))‖(UV − A):,i‖0 and ε‖(UV − A):,i‖0 ≥ Qi,

then Qi/ε ≤ ‖U(V − V ∗):,i‖0.
If we run K independent instances of H, then by (i), we know that at least 1

2 + ε
of those instances will have estimations E(U(V − V ∗):,i) that are well-behaved and
satisfy E(U(V − V ∗):,i) ≥ (1−Θ(ε))‖U(V − V ∗):,i‖0.

At least 1 − ε/2 of those instances will satisfy Qi > estS((UV ∗ − A):,i, ετ). In
each of these instances, there is some index t which is the maximum index where
CS((UV ∗ − A):,i) > ετ . This index t satisfies est((UV ∗ − A):,i, ετ) ≥ 2tετ which
implies that

t ≤ log2

(
estS((UV ∗ − A):,i, ετ)

ετ

)
< log2

(
Qi

ετ

)
≤ log2

(
‖U(V − V ∗):,i‖0

τ

)
≤ Ji

and by the nestedness property of S, for every index l ≥ Ji − 1 we have CS((UV ∗ −
A):,i)l < ετ . Furthermore, C((UV ∗ − A):,i)l < ετ because ‖H0y‖0 ≤ ‖y‖0 for all y.

Thus, for at least 1
2 + ε/2 instances of H, it is true that E(U(V − V ∗):,i) is well-

behaved and for every index l ≥ Ji − 1 we have C((UV ∗ − A):,i)l < ετ . We first
consider the case that ‖U(V − V ∗):,i‖0 > τ .

We know that for l = Ji−1, Ji, or Ji+1, one of those values will be the maximum
value such that the lth block of HU(V −V ∗):,i has at least τ non-zero entries, and all
the later blocks will have at most 3τ/4 non-zero entries. Each block of H(UV ∗−A):,i
after the Ji−1th one will have fewer than ετ non-zero entries. By well-behavedness, it
follows that E(UV −A):,i = E(U(V −V ∗):,i+(UV ∗−A):,i) ≥ (1−Θ(ε))‖U(V −V ∗):,i‖0
because the salient blocks of H(UV − A):,i will have a number of non-zero entries
differing from those blocks of HU(V − V ∗):,i by an additive Θ(ε) error.

If ‖U(V −V ∗):,i‖0 ≤ τ , then by well-behavedness we know that block 1 ofHU(V −
V ∗):,i will have fewer than 3τ/4 non-zero entries. In this case all blocks of H(UV ∗−
A):,i will have fewer than ετ non-zero entries so all blocks of H(UV − A):,i besides

CHAPTER 4. `p-APPROXIMATION ALGORITHMS 46

the zeroth block will have fewer than τ non-zero entries. Thus, E(UV − A):,i ≥
(1−Θ(ε)) ≥ ‖U(V − V ∗):,i‖0.

Therefore in a majority of the instances of H, we have E(UV − A):,i ≥ (1 −
Θ(ε))‖U(V − V ∗):,i‖0 ≥ (1−Θ(ε))‖(UV − A):,i‖0 and the result follows.

Finally,

med(A(UV − A)) ≥
∑

good i

med(A(UV − A):,i) +
∑

large i
med(A(UV − A):,i)

≥ (1− ε3)
∑

good i

‖(UV − A):,i‖0 + (1−O(ε))
∑

large i
‖(UV − A):,i‖0

≥ (1−O(ε))‖UV − A‖0 − (1−O(ε))
∑

small i
‖(UV − A):,i‖0

≥ (1−O(ε))‖UV − A‖0 − (1−O(ε))O(ε)‖UV ∗ − A‖0

≥ (1−O(ε))‖UV − A‖0

where the first inequality occurs because large i are bad i, the second inequality
comes from the definition of good and Claim 4.5.8, the third inequality comes from
the definition of small, the fourth inequality comes from (4.7), and the last inequality
holds because V ∗ is a minimizer.

Theorem (Fq PTAS for p = 0). For ε ∈ (0, 1) there is a (1 + ε)-approximation
algorithm to Entrywise `0-Rank-k Approximation over Fq running in n · dpoly(k/ε)

time.

Proof. Suppose U∗ and V ∗ (n×k and k×d respectively) are minimizers for ‖UV−A‖0.
By Theorem 4.5.1, med(A(U∗V −A)) = (1±ε)‖U∗V −A‖0. Since H is a C′

ε4 log n×n
block matrix, then HU∗ has C′

ε4 k · log n entries and we need K instances of HU∗
for a total of (log n) · poly(k/ε) entries each having q possible values. Thus we can
exhaustively guess all possible values of HU∗ in npoly(k/ε) time.

For each guess of HU∗ and each column i, we can try all qk possible vectors Vi and
choose the minimizer. Once a V has been identified, we can solve for its optimal U
and throughout this whole process keep the best U and V that minimize ‖UV −A‖0.
Since there are d rows, the algorithm will have a total runtime of d · npoly(k/ε).

As we stated in the opening exposition of this section, we could have sketched
over the dimension d row space instead. In this case we would be guessing values
for H(V ∗)T , a C′

ε4 log d× k matrix, which would take dpoly(k/ε) time. We would then
minimize over each of the n rows of U for a total runtime of n · dpoly(k/ε).

47

Chapter 5

Hardness

In this chapter, we prove hardness of approximately computing the best rank k-
approximation of a given n × d matrix A, where n ≥ d. Indeed all hardness results
in this chapter hold when k = d−1, indicating that reducing the rank by 1 is indeed
hard to even approximate. This complements our efficient approximation schemes
when k = O(1).

Our results for p ∈ (1, 2) assume the Small Set Expansion Hypothesis. Originally
conjectured by Raghavendra and Stuerer [78], it is still the only assumption that
implies strong hardness results for various graph problems such as Uniform Sparsest
Cut [80] and Bipartite Clique [61]. Assuming this hypothesis, we prove even stronger
results than above that rules out any constant factor approximation in poly(n, k).
The following theorem immediately implies Theorem 2.1.3 in the introduction.

Theorem 5.0.1. Fix p ∈ (1, 2) and r > 1. Assuming the Small Set Expansion
Hypothesis, there is no r-approximation algorithm for rank k approximation of a
matrix A ∈ Rn×d with n ≥ d and k = d − 1 in the entrywise `p norm that runs in
time poly(n).

Consequently, additionally assuming the Exponential Time Hypothesis, there ex-
ists δ := δ(p, r) > 0 such that there is no r-approximation algorithm for rank k
approximation of a matrix A ∈ Rn×d with n ≥ d and k = d − 1 in the entrywise `p
norm that runs in time 2nδ .

For p ∈ (2,∞), we do not rely on the Small Set Expansion Hypothesis though
the hardness factor is bounded by a constant. Recall that γp := Eg[|g|p]1/p where g
is a standard Gaussian, which is strictly greater than 1 for p > 2.

CHAPTER 5. HARDNESS 48

Theorem 5.0.2. Fix p ∈ (2,∞) and ε > 0. Assuming P 6= NP, there is no (γpp−ε) -
approximation algorithm for rank k approximation of a matrix A ∈ Rn×d with n ≥ d
and k = d− 1 in the entrywise `p norm that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists

δ := δ(p, ε) > 0

such that there is no (γpp − ε) - approximation algorithm for rank k approximation of
a matrix A ∈ Rn×d with n ≥ d and k = d− 1 in the entrywise `p norm that runs in
time 2nδ .

We also prove similar hardness results for `0-low rank approximation in finite
fields. The following theorem immediately implies Theorem 2.1.4 in the introduction.

Theorem 5.0.3. Fix a finite field F and r > 1. Assuming P 6= NP, there is no r-
approximation algorithm for rank k approximation of a matrix A ∈ Fn×d with n ≥ d
and k = d− 1 in the entrywise `0 metric that runs in time poly(n).

Consequently, assuming the Exponential Time Hypothesis, there exists δ > 0
(dependent on r) such that there is no r-approximation algorithm for rank k approx-
imation of a matrix A ∈ Fn×d with n ≥ d and k = d− 1 in the entrywise `0 metric
that runs in time 2nδ .

Section 5.1 proves Lemma 2.2.1, showing that computing minp∗→p(A) is equivalent
to finding the best rank k approximation of A ∈ Rn×d when n ≥ d and k = d − 1.
Section 5.2 proves Lemma 2.2.2, reducing ‖·‖2→p∗ to minp∗→p(·). Section 5.3 presents
the Barak et al. [5]’s proof of hardness of ‖·‖2→p∗ with modifications for all q > 2,
finishing the proof of Theorem 5.0.1 for p ∈ (1, 2). Section 5.4 proves the hardness of
minp∗→p(·) for p > 2, using the result of [36], and finishes the proof of Theorem 5.0.2.
Finally, Theorem 5.0.3 is proved in Section 5.5.

Numerical issues. In the proofs of Theorem 5.0.1 and Theorem 5.0.2, we consider
our matrices as having real entries for simplicity, but our results will hold even
when all entries are rescaled to polynomially bounded integers. The instance in
Theorem 5.0.2 is explicitly constructed and it can be easily checked that all entries are
polynomially bounded integers. For Theorem 5.0.1, our hard instance B for ‖·‖p→p∗
is simply a projection matrix and the final instance A is obtained by (εI + B)−1,
so by ensuring that ε ≥ 1/poly(n), we can ensure that eigenvalues of A are within
[1, poly(n)].

CHAPTER 5. HARDNESS 49

5.1 `p-Low Rank Approximation and minp∗→p(A)
In this section, we prove the following lemma showing that computing minp∗→p(A)
is equivalent to finding the best rank k approximation of A ∈ Rn×d when n ≥ d and
k = d− 1.

Lemma (Restatement of Lemma 2.2.1). Let p ∈ (1,∞). Let A ∈ Rn×d with n ≥ d
and k = d− 1. Then

min
U∈Rn×k,V ∈Rk×d

‖UV − A‖p = min
x∈Rd,‖x‖p∗=1

‖Ax‖p.

Proof. Assume that the rank of A is d; otherwise the lemma becomes trivial. We first
prove (≥). Given V ∗ ∈ Rk×d that achieves the best rank k approximation, assume
without loss of generality that the rank of V ∗ is k = d−1. Let x ∈ Rd be the unique
vector (up to sign) that is orthogonal to the rowspace of V ∗ and ‖x‖p∗ = 1. Let
a1, . . . , an be the rows of A. For fixed V ∗, for i ∈ [n], the ith row u∗i ∈ Rk of U∗ must
be obtained by computing

min
u∗i∈Rk

‖u∗iV ∗ − ai‖p = min
y∈rowspace(V ∗)

‖y − ai‖p = min
z∈Rd:〈x,z〉=−〈x,ai〉

‖z‖p.

Note that by Hölder’s inequality, the last quantity is at least

|〈x, z〉|/‖x‖p∗ = |〈x, ai〉|/‖x‖p∗ = |〈x, ai〉|.

Indeed, taking z ∈ Rd with zj := (−〈x, ai〉) · (sgn(xj)|xj|p
∗/p) for each j ∈ [d] implies

〈x, z〉 = −〈x, ai〉 ·
∑
j∈[d]

sgn(xj)|xj|p
∗/p · xj = −〈x, ai〉 · ‖x‖p

∗

p∗ = −〈x, ai〉,

and
‖z‖p = |〈x, ai〉| · (

∑
j∈[d]
|xj|p

∗)1/p = |〈x, ai〉| · ‖x‖p
∗/p
p∗ = |〈x, ai〉|,

so we can conclude ‖u∗iV ∗ − ai‖p = minz∈Rd:〈x,z〉=−〈x,ai〉‖z‖p = |〈x, ai〉|. Summing
over i ∈ [n],

‖U∗V ∗ − A‖p =
(∑
i∈[n]
‖u∗iV ∗ − ai‖pp

)1/p
=
(∑
i∈[n]
|〈x, ai〉|p

)1/p
= ‖Ax‖p.

This proves that minU∈Rn×k,V ∈Rk×d‖UV −A‖p ≥ minx∈Rd,‖x‖p∗=1‖Ax‖p. For the other
direction, given x ∈ Rd with ‖x‖p∗ = 1, let V ∗ ∈ Rk×d be a matrix whose rowspace
is a k-dimensional subspace orthogonal to x, and compute U∗ as above. The above
analysis shows that ‖U∗V ∗ − A‖p = ‖Ax‖p, which completes the proof.

CHAPTER 5. HARDNESS 50

5.2 Reducing ‖ · ‖2→p∗ to minp∗→p(·)
In this section, we show that computing minp∗→p(·) is as hard as computing ‖·‖2→p∗ ,
proving the following lemma.

Lemma (Restatement of Lemma 2.2.2). For any ε > 0, p ∈ (1,∞), there is an
algorithm that runs in poly(n, log(1/ε)) and on a non-zero input matrix A, computes
a matrix B satisfying

(1− ε)‖A‖−2
2→p∗ ≤ minp∗→p(B) ≤ (1 + ε)‖A‖−2

2→p∗ .

The lemma is proved in the following two steps.

Reducing ‖ · ‖2→p∗ to ‖ · ‖p→p∗. We first prove the following claim. This follows
from standard tools from Banach space theory that factor an operator from `p to `∗p
via `2.

Claim 5.2.1. ‖AAT‖p→p∗ = ‖A‖2
2→p∗.

Proof. By the definitions of p→ q norms,

‖AAT‖p→p∗ = supx
‖AAT x‖p∗
‖x‖p

≤ supx
‖A‖2→p∗‖AT x‖2

‖x‖p

≤ ‖A‖2→p∗‖AT‖p→2

= ‖A‖2
2→p∗ ,

where the last line follows from the fact that

‖A‖2→p∗ = sup
‖y‖p=1

sup
‖x‖2=1

〈y, Ax〉 = sup
‖x‖2=1

sup
‖y‖p=1

〈ATy, x〉 = ‖AT‖p→2.

For the other direction,

‖AAT‖p→p∗ = sup
‖x‖p=1

sup
‖y‖p=1

〈y, AATx〉 = sup
‖x‖p=1

sup
‖y‖p=1

〈ATy, ATx〉

≥ sup
‖x‖p=1

‖ATx‖2
2 = ‖AT‖2

p→2 = ‖A‖2
2→p∗ ,

which completes the proof.

CHAPTER 5. HARDNESS 51

Reducing ‖ · ‖p→p∗ to minp∗→p(·). We now relate two quantities ‖A‖p→p∗ and
minp∗→p(B) for two related matrices A and B. If A is invertible, this can be seen
easily.

Fact 5.2.2. If A is an invertible matrix, then minp→q(A−1) = (‖A‖q→p)−1

Proof. First observe that the condition A−1x 6= 0 is equivalent to the condition x 6= 0
since A is invertible. Then we have,

inf
x 6=0

‖A−1x‖q
‖x‖p

= inf
Ax 6=0

‖A−1x‖q
‖x‖p

=
(

sup
A−1x 6=0

‖x‖p
‖A−1x‖q

)−1

=
(

sup
y 6=0

‖A−1y‖p
‖y‖q

)−1

.

The leftmost quantity is minp→q(A−1) and the rightmost quantity is (‖A‖q→p)−1.

Even if A is not invertible, there is an invertible matrix B whose p→ q norm is
close to that of A for any p and q.

Claim 5.2.3. Let A be a non-zero n × d matrix. For any p, q ∈ (1,∞) and any
ε > 0, there is an invertible and polynomial time computable max(n, d)×max(n, d)
matrix B such that (1− ε)‖A‖p→q ≤ ‖B‖p→q ≤ (1 + ε)‖A‖p→q.

Proof. Let ⊕ denote vector concatenation. We start by exhibiting a square matrix
with the same norm. If d ≥ n, we pad 0’s to the bottom of A to obtain an d×dmatrix
A′. Now for any x ∈ Rd, ‖A′x‖q = ‖Ax⊕ 0d−n‖q = ‖Ax‖q. So ‖A‖p→q = ‖A′‖p→q.

If d ≤ n, we pad 0’s to the right of A to obtain an n × n matrix A′. Consider
any y ∈ Rn and let x ∈ Rd, z ∈ Rn−d be such that y = x ⊕ z. Then we have
‖A′y‖q = ‖Ax‖q. Now since ‖y‖p ≥ ‖x‖p, we have ‖A‖p→q ≥ ‖A′‖p→q. On the other
hand, ‖A‖p→q ≤ ‖A′‖p→q since ‖A′(x⊕ 0n−d)‖q = ‖Ax‖q and ‖x⊕ 0n−d‖p = ‖x‖p.

Next to obtain an invertible matrix, we set B := A′+ε′ ·I where ε′ := ε·M/‖I‖p→q
and M is the max magnitude of an entry of A which must be non-zero since A is
non-zero. First we observe that ‖A‖p→q ≥ M since one can substitute x = ei where
i is the index of the column containing the max magnitude entry. Lastly, applying
triangle inequality (since ‖·‖p→q is a norm) implies the claim.

5.3 Hardness of 2→ q norm for all q ∈ (2,∞)
In this section, we prove Theorem 2.2.1 for hardness of ‖·‖2→q for q ∈ (2,∞). Barak
et al. [5] proved that under the Small Set Expansion Hypothesis, for any r > 1
and an even integer q ≥ 4, it is NP-hard to approximate the 2 → q norm problem
within a factor r. The same proof essentially works for all q ∈ (2,∞) with slight
modifications. For completeness, we present their proof here, with additional remarks
when we generalize an even integer q ≥ 4 to all q ∈ (2,∞).

CHAPTER 5. HARDNESS 52

Preliminaries for Small Set Expansion. For a vector x ∈ Rd, every p-norm in
this section denotes the expectation norm defined as ‖x‖Lp := (Ei∈[d][|xi|p])1/p. For
a regular graph G = (V,E) and a subset S ⊆ V , we define the measure of S to
be µ(S) = |S|/|V | and we define G(S) to be the distribution obtained by picking
a random x ∈ S and then outputting a random neighbor y of x. We define the
expansion of S to be

ΦG(S) = Pry∈G(S)[y /∈ S].

For δ ∈ (0, 1), we define ΦG(δ) = minS⊆V :µ(S)≤δ ΦG(S). We identify G with its
normalized adjacency matrix. For every λ ∈ [−1, 1], we denote by V≥λ(G) the
subspace spanned by the eigenvectors of G with eigenvalue at least λ. The projector
into this subspace is denoted P≥λ(G). For a distribution D, we let cp(D) denote
the collision probability of D (the probability that two independent samples from
D are identical). The Small Set Expansion Hypothesis, posed by Raghavendra and
Steurer [78] states the following.

Conjecture 5.3.1. For any ε > 0, there exists δ > 0 such that it is NP-hard to
decide whether ΦG(δ) ≤ ε or ΦG(δ) ≥ 1− ε.

This implies strong hardness results for various graph problems such as Uniform
Sparsest Cut [80] and Bipartite Clique [61]. The main theorem of this section is the
following, which corresponds to Theorem 2.4 of [5].

Theorem 5.3.1. For every regular graph G, λ ∈ (0, 1), and q ∈ (2,∞),

1. For all δ > 0, ε > 0, ‖P≥λ(G)‖L2→Lq ≤ ε/δ(q−2)/2q implies that ΦG(δ) ≥ 1 −
λ− ε2.

2. There is a constant a = a(q) such that for all δ > 0, ΦG(δ) > 1− aλ2q implies
‖P≥λ(G)‖L2→Lq ≤ 2/

√
δ.

Given this theorem, the hardness of 2 → q norm can be proved as follows. This
corresponds to Corollary 8.1 of [5].

Proof of Theorem 2.2.1. Using [79], the Small Set Expansion Hypothesis implies that
for any sufficiently small numbers 0 < δ ≤ δ′, there is no polynomial time algorithm
that can distinguish between the following cases for a given graph G:

• Yes case: ΦG(δ) < 0.1.

• No case: ΦG(δ′) > 1− 2−a′ log(1/δ′). (a′ is a fixed universal constant.)

CHAPTER 5. HARDNESS 53

In particular, for all η > 0, if we let δ′ = δ(q−2)/8q and make δ small enough, then in
the No case ΦG(δ(q−2)/8q) > 1− η. (Since q > 2, δ′ → 0 as δ → 0.)

Using Theorem 5.3.1, in the Yes case we know ‖P≥1/2‖L2→Lq ≥ 1/(10δ(q−2)/2q),
while in the No case, if we choose δ sufficiently small so that η is smaller than a(1/2)2q,
then we know that ‖P≥1/2‖L2→Lq ≤ 2/

√
δ′ = 2/δ(q−2)/4q. The gap between the Yes

case and the No case is at least δ−(q−2)/4q/20, which goes to ∞ as δ decreases.

We now prove Theorem 5.3.1. The first part that proves small set expansion of
G given a 2→ q norm bound indeed follows from older work (e.g., [52]).

Lemma 5.3.1 (Lemma B.1 of [5]). For all δ > 0, ε > 0, ‖P≥λ(G)‖L2→Lq ≤ ε/δ(q−2)/2q

implies that ΦG(δ) ≥ 1− λ− ε2

Proof. Let q∗ = q/(q − 1) be the Hölder conjugate of q such that 1/q + 1/q∗ = 1.
Since P≥λ is a projector,

‖P≥λ(G)‖Lq∗→L2 = ‖P≥λ(G)T‖Lq∗→L2 = ‖P≥λ(G)‖L2→Lq .

Given S ⊆ V with µ(S) = µ ≤ δ, let f = 1S/
√
µ be the normalized indicator vec-

tor of S so that ‖f‖L2 = 1. Let f = f ′+f ′′ where f ′ is its projection to the eigenvalues
at least λ (i.e., f ′ = P≥λf) and f ′′ is its projection to the eigenvalues strictly less than
λ. Since ‖1S‖Lq∗ = µ1/q∗ = µ(q−1)/q, we have ‖f‖Lq∗ = µ((q−1)/q)−1/2 ≤ δ((q−1)/q)−1/2

(since q > 2 and δ ≥ µ), and

‖f ′‖L2 ≤ ‖f‖Lq∗ · ‖P≥λ(G)‖Lq∗→2 ≤ δ((q−1)/q)−1/2 · (ε/δ(q−2)/2q) = ε.

Then
〈f,Gf〉 = 〈f ′, Gf ′〉+ 〈f ′′, Gf ′′〉 ≤ ‖f ′‖2

L2 + λ‖f ′′‖2
L2 ≤ ε2 + λ.

Since ΦG(S) = 1− 〈f,Gf〉, the lemma follows.

The second part of Theorem 5.3.1 requires more technical proofs.

Lemma 5.3.2 (Lemma 8.2 of [5]). There is a constant a = a(q) such that for all
δ > 0, ΦG(δ) > 1− aλ2q implies ‖P≥λ(G)‖L2→Lq ≥ 2/

√
δ.

Proof. Let f be a function in V≥λ with ‖f‖L2 = 1 that maximizes ‖f‖Lq . We write
f = ∑m

i=1 αiχi where χ1, . . . , χm denote the eigenfunctions ofG with values λ1, . . . , λm
that are at least λ. Assume towards contradiction that ‖f‖Lq < 2/

√
δ. We will prove

that g = ∑m
i=1(αi/λi)χi satisfies ‖g‖Lq ≥ 5‖f‖Lq/λ. Note that g is defined such that

f = Gg. This is a contradiction since (using λi ∈ [λ, 1]) ‖g‖L2 ≤ ‖f‖L2/λ, and we
assumed f is a function in V≥λ with a maximal ratio ‖f‖Lq/‖f‖L2 .

CHAPTER 5. HARDNESS 54

Let U ⊆ V be the set of vertices such that |f(x)| ≥ 1/
√
δ for all x ∈ U .

Using the Markov inequality and the fact that Ex∈V [f(x)2] = 1, we know that
µ(U) = |U |/|V | ≤ δ. On the other hand, because ‖f‖qLq ≥ 2q/δq/2, we know that U
contributes at least half of the term ‖f‖qLq = Ex∈V [|f(x)|q]. That is, if we define α
to be µ(U) Ex∈U [|f(x)|q] then α ≥ ‖f‖qLq/2. We will prove the lemma by showing
that ‖g‖qLq ≥ (10λ−1)qα.

Let c = c(q) and d = d(c, q) be sufficiently large constants that will be determined
later, and e = d · λ−q. By the variant local Cheeger bound obtained in Theorem 2.1
of [88], there exists a = a(d, q) such that ΦG(δ) > 1− aλ2q implies that cp(G(S)) ≤
1/(e|S|) for all S with µ(S) ≤ δ.

We define Ui to be the set {x ∈ U : f(x) ∈ [ci/
√
δ, ci+1/

√
δ]}, and let I be the

maximal i such that Ui is non-empty. Thus, the sets U0, . . . , UI form a partition of
U (where some of these sets may be empty). We let αi be the contribution of Ui to
α. That is, αi = µi Ex∈Ui [|f(x)|q], where µ = µ(Ui). Note that α = α0 + · · · + αI .
We will show that there are some indices i1, . . . , iJ such that

1. αi1 + · · ·+ αiJ ≥ α/(2cq).

2. For all j ∈ [J], there is a non-negative function gj : V → R such that
Ex∈V [|gj(x)|q] ≥ eαij/(10c2)q/2.

3. For every x ∈ V , g1(x) + · · ·+ gJ(x) ≤ |g(x)|.

Showing these will complete the proof, since it is easy to see that for non-negative
functions g′, g′′ and q ∈ [1,∞)

E[(g′(x) + g′′(x))q] ≥ E[g′(x)q] + E[g′′(x)q],

and hence 2. and 3. imply that

‖g‖qLq = E[|g(x)|q] ≥ (e/(10c2)q/2)
∑
j

αij . (5.1)

Using 1., we conclude that for e ≥ 2cq · (10c2)q/2 · (10/λ)q, the right-hand side of (5.1)
will be larger than (10/λ)qα. In particular, we set d = d(c, q) = 2cq · (10c2)q/2 · 10q.

We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0, ..., I} of
all indices. For j = 1, 2, . . . , we do the following as long as I is not empty:

• Let ij be the largest index in I.

• Remove from I every index i such that αi ≤ cqαij/2i−ij .

CHAPTER 5. HARDNESS 55

We let J denote the step we stop. Note that our indices i1, . . . , iJ are sorted in
descending order. For every step j, the total of the αi’s for all indices we removed
is less than cqαij and hence we satisfy 1. We use the following claim, whose proof
is omitted here since it does not involve q at all. This follows from the fact that
cp(G(S)) ≤ 1/(e|S|) for all S with µ(S) ≤ δ.
Claim 5.3.3 (Claim 8.3 of [5]). Let S ⊆ V and β > 0 such that µ(S) ≤ δ and
|f(x)| ≥ β for all x ∈ S. Then there is a set of size at least e|S| such that
Ex∈T [g(x)2] ≥ β2/4.

We will construct the functions g1, . . . , gJ by applying iteratively Claim 5.3.3. We
do the following for j = 1, . . . , J :

1. let Tj be the set of size e|Uij | that is obtained by applying Claim 5.3.3 to the
function f and the set Uij . Note that Ex∈Tj [g(X)2] ≥ β2

ij
/4, where we let

βi = ci/
√
δ (and hence for every x ∈ Ui, βi ≤ |f(x)| ≤ cβi).

2. Let g′j be the function on input x that outputs γ·|g(x)| if x ∈ Tj and 0 otherwise,
where γ ≤ 1 is a scaling factor that ensures that Ex∈Tj [g′(x)2] equals exactly
β2
ij
/4.

3. We define gj(x) = max(0, g′j(x)−∑k<j gk(x)).

Note that the second step ensures g′j(x) ≤ |g(x)|, while the third step ensures
that g1(x)+ · · ·+gj(x) ≤ g′j(x) for all j, and in particular g1(x)+ · · ·+gJ(x) ≤ |g(x)|.
Hence the only thing left to prove is the following.
Claim 5.3.4 (Claim 8.5 of [5]). Ex∈V [|gj(x)|q] ≥ eαij/(10c2)q/2.

Proof. Recall that for every i, αi = µi Ex∈Ui [|f(x)|q], and hence (using f(x) ∈ [βi, cβi)
for x ∈ Ui):

µiβ
q
i ≤ αi ≤ µic

qβqi . (5.2)

Now fix T = Tj. Since Ex∈V [|gj(x)|q] = µ(T) ·Ex∈T [|gj(x)|q] and µ(T) = eµ(Uij), we
can use (5.2) and Ex∈T [|gj(x)|q] ≥ (Ex∈T [gj(x)2])q/2 (since q > 2), to reduce proving
the claim to showing the following:

Ex∈T [gj(x)2] ≥ (cβij)2/(10c2) = β2
ij
/10. (5.3)

We know that Ex∈T [g′j(x)2] = β2
ij
/4. We claim that (5.3) will follow by showing

that for every k < j,
Ex∈T [g′k(x)2] ≤ 100−i′ · β2

ij
/4, (5.4)

CHAPTER 5. HARDNESS 56

where i′ = ik − ij. (Note that i′ > 0 since in our construction the indices i1, . . . , iJ
are sorted in descending order.)

Indeed, (5.4) means that if we let momentarily ‖gj‖L2 denote
√

Ex∈T [gj(x)t] then

‖gj‖L2 ≥ ‖g′j‖L2−‖
∑
k<j

gk‖L2 ≥ ‖g′j‖L2−
∑
k<j

‖gk‖L2 ≥ ‖g′j‖L2(1−
∞∑
i′=1

10−i′) ≥ 0.8‖g′j‖L2 .

(5.5)
The first inequality holds we can write gj as g′j − hj, where hj = min(g′j,

∑
k<j gk).

Then, on the other hand, ‖gj‖L2 ≥ ‖g′j‖L2−‖hj‖L2 , and on the other hand, ‖hj‖L2 ≤
‖∑k<j gk‖L2 since g′j ≥ 0. The second inequality holds because ‖gk‖L2 ≤ ‖g′k‖L2 . By
squaring (5.5) and plugging in the value of ‖g′j‖2

L2 we get (5.3).

Proof of (5.4). By our construction, it must hold that

cqαik/2i
′ ≤ αij , (5.6)

since otherwise the index ij would have been removed from the I at the kth step.
Since βik = βijc

i′ , we can plug (5.2) in (5.6) to get

µikc
q+qi′/2i′ ≤ cqµij

or
µik ≤ µij · 2i

′ · c−qi′ .

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | ≤ 2i′ · c−qi′ . On the other hand,
we know that Ex∈Tk [g′k(x)2] = β2

ik
/4 = c2i′β2

ij
/4. Thus,

Ex∈T [g′k(x)2] ≤ 2i′c2i′−qi′β2
ij
/4 = (2/cq−2)i′β2

ij
/4,

and we now just choose c sufficiently large so that 2/cq−2 > 100.

5.4 Hardness of minp∗→p(·)
In this section, we prove Theorem 2.2.2 that for any ε > 0 and p ∈ (2,∞), it is
NP-hard to approximate minp∗→p(·) within a factor (γp − ε), where

γp = (Eg∼N (0,1)[|g|p])1/p > 1

CHAPTER 5. HARDNESS 57

is the absolute pth moment of the standard Gaussian.
Our result is obtained by using the result of Guruswami et al. [36] that proved

the same hardness of min2→p(·). When ‖·‖Lp denotes expectation p-norm defined
by ‖x‖Lp := Ei[|xi|p]1/p, since p∗ < 2, any x satisfies ‖x‖Lp∗ ≤ ‖x‖L2 . This implies
that for any matrix A, the optimal value of minp∗→p(A) is at least the optimal
value of min2→p(A). We modify the reduction of [36] slightly such that in the Yes
case, x that minimizes min2→p(A) has either +1 or −1 in each coordinate. This
implies ‖x‖L2 = ‖x‖Lp∗ , and certifies that minp∗→p(A) = min2→p(A). In the No case,
minp∗→p(A) is always at least min2→p(A), so the gap between the Yes case and the
No case for minp∗→p(·) is at least as large as the gap for min2→p(·).

Our presentation closely follows the recent work by Bhattiprolu et al. [9].

Fourier Analysis. To present the reduction, we first introduce some basic facts
about Fourier analysis.

Let R ∈ N be a positive integer, and consider a function f : {±1}R → R. For
any subset S ⊆ [R] let χS := ∏

i∈S xi. Then we can represent f as

f(x1, . . . , xR) =
∑
S⊆[R]

f̂(S) · χS(x1, . . . xR), (5.7)

where
f̂(S) = Ex∈{±1}R [f(x) · χS(x)] for all S ⊆ [R]. (5.8)

The Fourier transform refers to a linear operator F that maps f to f̂ as defined
as (5.8). We interpret f̂ as a 2R-dimensional vector whose coordinates are indexed
by S ⊆ [R]. In this section, we let ‖·‖`p to denote the counting p-norm and ‖·‖Lp to
denote the expectation p-norm. Endow the expectation norm and the expectation
norm to f and f̂ respectively; i.e.,

‖f‖Lp :=
(
Ex∈{±1}R |f(x)|p

)1/p
and ‖f̂‖`p :=

 ∑
S⊆[R]

|f̂(S)|p
1/p

.

as well as the corresponding inner products 〈f, g〉 and 〈f̂ , ĝ〉 consistent with their
2-norms. We also define the inverse Fourier transform F T to be a linear operator
that maps a given f̂ : 2R → R to f : {±1}R → R defined as in (5.7). We state the
following well-known facts from Fourier analysis.

Observation 5.4.1 (Parseval’s Theorem). For any f : {±1}R → R, ‖f‖L2 =
‖Ff‖`2 .

CHAPTER 5. HARDNESS 58

Observation 5.4.2. F and F T form an adjoint pair; i.e., for any f : {±1}R → R

and ĝ : 2R → R,
〈ĝ, Ff〉 = 〈F T ĝ, f〉.

Observation 5.4.3. F TF is the identity operator.

Smooth Label Cover. An instance of Label Cover is given by a quadruple L =
(G, [R], [L],Σ) that consists of a regular connected graph G = (V,E), a label set [R]
for some positive integer n, and a collection Σ = ((πe,v, πe,w) : e = (v, w) ∈ E) of
pairs of maps both from [R] to [L] associated with the endpoints of the edges in E.
Given a labeling ` : V → [R], we say that an edge e = (v, w) ∈ E is satisfied if
πe,v(`(v)) = πe,w(`(w)). Let OPT(L) be the maximum fraction of satisfied edges by
any labeling.

The following hardness result for Label Cover, given in [36], is a slight variant
of the original construction due to [51]. The theorem also describes the various
structural properties, including smoothness, that are identified by the hard instances.

Theorem 5.4.4. For any ξ > 0 and J ∈ N, there exist positive integers R =
R(ξ, J), L = L(ξ, J) and D = D(ξ), and a Label Cover instance (G, [R], [L],Σ) as
above such that

• (Hardness): It is NP-hard to distinguish between the following two cases:

– Yes case: OPT(L) = 1.
– No case: OPT(L) ≤ ξ.

• (Structural Properties):

– (J-Smoothness): For every vertex v ∈ V and distinct i, j ∈ [R], we have

Pre3v
[
πe,v(i) = πe,v(j)

]
≤ 1/J.

– (D-to-1): For every vertex v ∈ V , edge e ∈ E incident on v, and i ∈ [L],
we have |π−1

e,v(i)| ≤ D; that is at most D elements in [R] are mapped to
the same element in [L].

– (Weak Expansion): For any δ > 0 and vertex set V ′ ⊆ V such that
|V ′| = δ · |V |, the number of edges among the vertices in |V ′| is at least
(δ2/2)|E|.

CHAPTER 5. HARDNESS 59

Reduction. Let L = (G, [R], [L],Σ) be an instance of Label Cover with G =
(V,E). Our reduction will construct a linear operator A : RN → R

M with N = |V | ·
2R andM = 2|V | ·2R−|V |+ |E| · |L|. The space RN will be endowed the expectation
norm (and call its elements functions) and RM will be endowed the counting norm
(and call its elements vectors). We define A by giving a linear transformation from
a function f : V ×{±1}R → R to a vector a ∈ RM . Let C := M3. Given f , a vertex
v ∈ V induces fv ∈ R2R defined by fv(x) := f(v, x) for x ∈ {±1}R. Let ĝ ∈ V × [R]
be the vectors of linear coefficients; ĝ(v, i) = f̂v(i) for v ∈ V, i ∈ [R]. Given f (that
determines {f̂v}v ∈ V and ĝ), a = Af is defined as follows.

• For v ∈ V and x ∈ {±1}R, a(v, x) = ∑R
i=1 ĝ(v, i)xi.

• For v ∈ V and S ⊆ [R] with |S| 6= 1, a(v, S) = C · f̂v(S).

• For e = (u, v) ∈ E and i ∈ [L], a(e, i) = C ·
(∑

j∈π−1
e,u(i) f̂u(i)−

∑
j∈π−1

e,v(i) f̂v(i)
)
.

Since ĝ and a are all linear in f , the matrix A that satisfies a = Af is well-defined,
which is our instance of minp∗→p(·). Intuitively, C will be chosen large enough so
that every f̂v has almost all Fourier mass on its linear coefficients, and their linear
coefficients correctly indicate the labels that satisfy all constraints of the Label Cover
instance.

Completeness. We prove the following lemma for the Yes case.

Lemma 5.4.1 (Completeness). Let ` : V → [R] be a labeling that satisfies every
edge of L. There exists a function f ∈ RV×2R such that f(v, x) is either +1 or −1
for all v ∈ V, x ∈ {±1}R and ‖Af‖`p = (|V | · 2R)1/p. In particular, ‖Af‖`p/‖f‖Lp∗ =
(|V | · 2R)1/p.

Proof. Let f(v, x) := x`(v) for every v ∈ V, x ∈ {±1}R. Consider a = Af . Since
every f̂v is linear, for each v ∈ V and S ⊆ [R] with |S| 6= 1, a(v, S) = 0. For each
v ∈ V and i ∈ [R], ĝ(v, i) = 1 if and only if i = `(v) and 0 otherwise. Since ` satisfies
every edge of L, a(e, i) = 0 for every e ∈ E and i ∈ [L]. This implies that for every
v ∈ V, x ∈ {±1}R, a(v, x) = x`(v) = f(v, x). Therefore, ‖Af‖`p = (|V | · 2R)1/p.

Soundness. We prove the following lemma for the soundness. Combined with
Theorem 5.4.4 for hardness of Label Cover and observing that ‖f‖Lp∗ ≤ ‖f‖L2 , it
finishes the proof of Theorem 2.2.2.

CHAPTER 5. HARDNESS 60

Lemma 5.4.2. For any η > 0, there exists ξ > 0 (that determines D = D(ξ) as in
Theorem 5.4.4) and J ∈ N such that if OPT(L) ≤ ξ, L is D-to-1 and L is J-smooth,
for every f with ‖f‖L2 = 1, ‖Af‖`p ≥ (γp − η)(|V | · 2R)1/p.

Proof. We will prove contrapositive; if ‖Af‖`p ≤ (γp − η)(|V | · 2R)1/p for some f
is small then OPT(L) ≥ ξ with the choice of the parameters that will determined
later. Fix such an f with ‖f‖L2 = 1 that determines fv and f̂v for each v ∈ V .
Let a = Af . Suppose that there is v ∈ V and S ⊆ [R] with |S| 6= 1 such that
|f̂v(S)| > 1/M2. It means that |a(v, S)| > C/M2. Since C = M3, it already implies
‖a‖`p ≥M � (γp − η)(|V | · 2R)1/p, so suppose that there is no such v and S.

Let ĝ ∈ V × [R] be defined as above; ĝ(v, i) = f̂v(i) for v ∈ V, i ∈ [R]. By
Parseval, ∑

v∈V
‖f̂v‖2

`2 =
∑
v∈V
‖fv‖2

L2 = |V | · Ev∈V ‖fv‖2
L2 = |V | · ‖f‖2

L2 = |V |.

and the fact that |f̂v(S)| < 1/M2 for every v ∈ V , S ⊆ [R] with |S| 6= 1, we have
‖ĝ‖`2 ∈ [

√
|V | − 1/M,

√
|V |].

Furthermore, suppose that there is e = (u, v) ∈ E and i ∈ [L] such that∣∣∣∣∣ ∑
j∈π−1

e,u(i)

ĝ(u, i)−
∑

j∈π−1
e,v(i)

ĝ(v, j)
∣∣∣∣∣ ≥ 1/M2.

This implies that |a(e, i)| ≥ C/M2. Since C = M3, it already implies ‖a‖`p ≥M �
(γp − η)(|V | · 2R)1/p, so we can assume that there is no such e and i.

To bound ‖a‖`p , it only remains to analyze
∑
v∈V

∑
x∈{±1}R

∣∣∣∣∣a(v, x)
∣∣∣∣∣
p

=
∑
v∈V

∑
x∈{±1}R

∣∣∣∣∣ ∑
i∈[R]

ĝ(v, i)xi
∣∣∣∣∣
p

. (5.9)

The rest of the proof closely follows [36], and we explain high-level intuitions and
why their proofs work in our settings. First, let us assume that ‖ĝ‖`2 =

√
|V |. It

involves a multiplicative error of (1 − 1/M), which is negligible in our proof. To
simplify notations, let ĝv ∈ RR be such that ĝv(i) := f̂v({i}) = ĝ(v, i) for each
v ∈ V and i ∈ [R]. Call a vertex v ∈ V τ -irregular if there exists i ∈ [R] such
that |ĝ(v, i)| > τ‖ĝv‖2

`2 . If not, v is τ -regular. Also, call a vertex v ∈ V small if
‖ĝv‖`2 < 1/M . Otherwise, call it big.

For each v ∈ V , we consider∑x∈{±1}R
∣∣∣∑i∈[R] ĝ(v, i)xi

∣∣∣p. By Khintchine inequality,
it is at most 2R · γpp · ‖ĝ‖

p
`2 . The following lemma, based on standard applications of

the Berry-Esseen theorem, shows that the converse is almost true when v is τ -regular,
implying the contribution from irregular vertices to (5.9) is large.

CHAPTER 5. HARDNESS 61

Lemma 5.4.3 ([54]). For sufficiently small τ (depending only on p), if v ∈ V is
τ -regular, then

∑
x∈{±1}R

∣∣∣∣∣ ∑
i∈[R]

ĝ(v, i)xi
∣∣∣∣∣
p

≥ 2R · γpp · ‖ĝ‖
p
`2(1−

√
τ).

Let S be the set of big τ -irregular vertices. Based on the above, the following
lemma shows that S must be a large set. Originally, [36] only argued for τ -irregular
vertices. (The notion of big and small vertices does not appear there.) However, since
the contribution of small vertices to (5.9) is negligible, the same proof essentially
works.
Lemma 5.4.4 (Lemma 4.4 of [36]). There are τ and θ, depending only on p and η,
such that S, the set of big τ -irregular vertices, satisfies |S| ≥ θ|V |.

By the weak expansion property of L guaranteed in Theorem 5.4.4, S induces
at least θ2|E| edges of L. To finish the proof, [36] showed that we can satisfy a
significant fraction of the edges from L. The only difference in their setting and our
setting is that

• [36]: S is the set of all τ -irregular veritces. For each e = (u, v) and i ∈ [L],∑
j∈π−1

e,u(i)

ĝu(j) =
∑

j∈π−1
e,v(i)

ĝv(j). (5.10)

• Here: S is the set of all big τ -irregular veritces. For each e = (u, v) and i ∈ [L],∣∣∣∣∣ ∑
j∈π−1

e,u(i)

ĝu(j)−
∑

j∈π−1
e,v(i)

ĝv(j)
∣∣∣∣∣ < 1/M2. (5.11)

These differences do not affect their proof since in the only place (5.10) was used
for e = (u, v) and i ∈ [L], they indeed used the fact the left-hand side of (5.11)
is at most 0.3τ · max(‖ĝu‖`2 , ‖ĝv‖`2). Since we additionally assumed that S is big,
‖ĝu‖`2 ≥ 1/M for each u ∈ S, so it is always satisfied from (5.11).
Lemma 5.4.5 ([36]). Let β := 10000D4/τ 4J . Then OPT(L) ≥ (τ 4/16)(θ2 − 2/β).

Since θ and τ only depend on η and p, fixing small enough ξ (that determines
D) and large enough J will ensure OPT(L) ≥ (τ 4/16)(θ2 − 2/β) ≥ ξ, finishing the
proof of the lemma.

CHAPTER 5. HARDNESS 62

5.5 Hardness for Finite Fields
In this section, we prove Lemma 2.2.3, which in turn finishes the proof of Theo-
rem 5.0.3 for hardness of `0-row lank approximation for matrices whose entries are
from a finite field F.

Lemma (Restatement of Lemma 2.2.3). Let F be a finite field and A ∈ Fn×d with
n ≥ d and k = d− 1. Then

min
U∈Fn×k,V ∈Fk×d

‖UV − A‖0 = min
x∈Fd,x 6=0

‖Ax‖0.

Proof. Assume that the rank of A is d; otherwise the lemma becomes trivial. We
first prove (≥). Given V ∗ ∈ Fk×d that achieves the best rank k approximation,
assume without loss of generality that the rank of V ∗ is k = d − 1. Let x ∈ Fd be
a nonzero vector that is orthogonal to the rowspace of V ; i.e., 〈v, x〉 = 0 if and only
if v ∈ rowspace(V). Note that unlike in R, x can be in rowspace(V), but it does
not affect the proof. Let a1, . . . , an be the rows of A. For fixed V ∗ and i ∈ [n], if
ai ∈ rowspace(V), then we can compute the ith row of U∗ (denoted by u∗i) such that
u∗iV

∗ = ai. Otherwise, 〈ai, x〉 = b for some b 6= 0, since x is nonzero, there is u∗i
such that ‖u∗iV ∗ = ai‖0 = 1. Therefore, ‖U∗V ∗ − A‖0 = ‖Ax‖0, which implies that
minU∈Fn×k,V ∈Fk×d‖UV − A‖0 ≥ minx∈Fd,x 6=0‖Ax‖0.

For the other direction, given x ∈ Fd \ {0}, the set of vectors u with 〈u, x〉 = 0
forms a k-dimensional subspace. (Again, this space may contain x unlike in R, but
it does not matter.) Let V ∗ ∈ Rk×d be a matrix whose rows span that space, and
compute U∗ as above. The above analysis shows that ‖U∗V ∗ −A‖0 = ‖Ax‖0, which
completes the proof.

63

Chapter 6

Additional Results

Here we list some additional results on variants of the `p low rank approximation
problem.

6.1 Bicriteria Algorithm
In this section we show that we can develop low rank approximations that apply to
matrices whose entries are not bounded by poly(n) so long as we accept bicriteria
algorithms. That is, instead of a target rank k approximation, the algorithm will
output an approximating matrix of rank 3k.

Theorem 6.1.1. If A is an n × d matrix, our target rank k is a constant, and
1 ≤ p < 2, then there exists a polynomial time algorithm that outputs a matrix M of
rank at most 3k such that ‖M − A‖p ≤ (1 + ε)OPT where OPT is the best rank k
`p-low rank approximation value for A with probability 1−O(1).

Proof. Let Cl denote the best rank l approximation to a matrix C in the `p norm
(i.e. the matrix that minimizes ‖Cl − C‖p).

Let B be the best rank k approximation to A in the Frobenius norm. Then

‖A−B‖p ≤ poly(n)‖A−B‖F ≤ poly(n)‖A− Ak‖F ≤ poly(n)OPT.

We can find a rank 2k (1 + ε)-approximation to A−B using the same techniques
as in Theorem 4.1.1, where we sample a matrix S of p-stable variables, guess values
for SU∗, and then minimize ‖SU∗V ∗−S(A−B)‖p. Now the entries of A−B are not
necessarily bounded by poly(n) so we need to justify that it suffices to guess poly(n)
values for SU∗.

CHAPTER 6. ADDITIONAL RESULTS 64

Indeed, by a well-conditioned basis argument, no entry of U∗ has absolute value
greater than poly(n)‖A−B‖p. Furthermore, we can round each entry of U∗ (similar
to the proof of Theorem 4.1.1) to the nearest multiple of ε‖A−B‖ppoly(n) and incur an additive
error of at most εOPT because ‖A−B‖p ≤ poly(n)OPT . This error is small enough
for the purposes of our approximation.

Let (A−B)∗2k = U∗V ∗ and let M = (A−B)∗2k +B. We have

‖M − A‖p = ‖(A−B)∗2k +B − A‖p
= ‖(A−B)∗2k − (A−B)‖p
≤ (1 + ε)‖(A−B)2k − (A−B)‖p + εOPT

≤ (1 + ε)‖Ak −B − (A−B)‖p + εOPT

≤ (1 + ε)OPT

where the first inequality follows from our argument above and the second inequality
follows because Ak −B has rank at most k + k = 2k.

Since M has rank at most 2k + k = 3k, then the result follows.

6.2 Weighted Low Rank Approximation
For 0 < p < 2, we can also design a PTAS for the weighted `p low rank approximation
problem. In this setting we have a matrix A, a weight matrix W of rank r, and we
want to output a rank k matrix A′ such that, for ε > 0,

‖W ◦ (A− A′)‖pp ≤ (1 + ε) min
rank k Ak

‖W ◦ (A− Ak)‖pp.

Our main tool will be a multiple regression concentration result based on that of
[81].

Theorem 6.2.1. Let S be a poly(k/ε) × n matrix whose entries are i.i.d p-stable
random variables with scale 1. Let M (1),M (2), . . . ,M (m) be n × d matrices and let
b(1), b(2), . . . , b(m) ∈ Rn. Let

x(i) = arg min
x
‖M (i)x− b(i)‖pp

and
y(i) = arg min

y
med(SM (i)y − Sb(i))/medp.

Then w.h.p we have∑
i

‖M (i)y(i) − b(i)‖pp ≤ (1 +O(ε))
∑
i

‖M (i)x(i) − b(i)‖pp

CHAPTER 6. ADDITIONAL RESULTS 65

Proof. By Lemmas 4.2.5 and 4.3.4, w.h.p.

∑
i

med(S(M (i)x(i) − b(i)))p
medpp

≤ (1 +O(ε))
∑
i

‖M (i)x(i) − b(i)‖pp.

Let T be the set of all i such that

med(S[M (i) b(i)]y)p
medpp

≥ (1−Θ(ε))‖[M (i) b(i)]y‖pp

for all y. By Corollary 4.2.4, we know that for each i, the probability that i ∈ T is
at least 1−Θ(ε).

Thus
E[
∑
i/∈T
‖[M (i) b(i)]y‖pp] ≤ Θ(ε)

∑
i

‖[M (i) b(i)]y‖pp

so by Markov’s inequality, w.h.p we have∑
i/∈T
‖[M (i) b(i)]y‖pp ≤ Θ(ε)

∑
i

‖[M (i) b(i)]y‖pp.

Let y be arbitrary. Since

∑
i

med(S[M (i) b(i)]y)p
medpp

≥
∑
i/∈T

med(S[M (i) b(i)]y)p
medpp

≥ (1−Θ(ε))
∑
i/∈T
‖[M (i) b(i)]y‖pp,

it follows that for all y we have

∑
i

med(S[M (i) b(i)]y)p
medpp

≥ (1−Θ(ε))
∑
i

‖[M (i) b(i)]y‖pp.

Therefore w.h.p we have

(1−Θ(ε))
∑
i

‖M (i)y(i) − b(i)‖pp ≤
∑
i

S(M (i)y(i) − b(i))
medpp

≤
∑
i

S(M (i)x(i) − b(i))
medpp

≤ (1 +O(ε))
∑
i

‖M (i)x(i) − b(i)‖pp

because 0 < p < 2. The result follows.

CHAPTER 6. ADDITIONAL RESULTS 66

Theorem 6.2.2. Suppose A and W are n × d matrices with entries bounded by
poly(n), and r = rank(W). There is an algorithm that for any integer k, p ∈ (0, 2)
and ε ∈ (0, 1), outputs in time nr·poly(k/ε) a n× k matrix U∗ and a k × d matrix V ∗
such that

‖W ◦ (A− U∗V ∗)‖pp ≤ (1 +O(ε)) min
rank-k Ak

‖W ◦ (A− Ak)‖pp.

Proof. To achieve a relative-error low rank approximation W ◦ (UV − A), for each
column i we can guess sketches forW:,i ◦UVi using a similar argument as in Theorem
4.1.1. Indeed, we can apply Theorem 6.2.1 with M (i) = W:,i ◦ U∗V ∗i and b(i) =
W:,i ◦ A:,i. To do so, we need to be able to guess SW:,i ◦ U∗, a poly(k

ε
) × k matrix,

in poly(n) tries. We will follow the same reasoning as in the proof of Theorem 4.1.1.
Since the entries of W and A are bounded by poly(n), then we can bound the entries
of U∗ by poly(n) using a well-conditioned basis. Furthermore, we can round each
entry of U∗ to the nearest multiple of poly(n−1) while incurring an error factor of
only (1 +O(ε)). Thus, we need only npoly(k/ε) guesses.

Of course, there d columns so this is not enough to achieve a PTAS. However, we
only need to guess sketches for r values of j because W has rank r so we can express
any column of W as a linear combination of those r columns. That is, we choose a
subset S of the columns such that |S| = r and guess the sketches of W:,i ◦ UVi for
each i ∈ S as described in the previous paragraph. Therefore, we require nr·poly(k/ε)

time in total for a (1 +O(ε)) approximation algorithm. Since k and r are constants
this results in a PTAS.

67

Part II

Population Recovery

68

Chapter 7

Introduction

Our results
Positive result. As our main positive result, we obtain an algorithm which learns
any unknown distribution X supported on at most ` strings under the deletion chan-
nel. For any constant ` (and in fact even for ` as large as o(log n/ log log n), its sample
complexity is exponential in n1/2+o(1). In more detail, our main positive result is the
following:

Theorem 7.0.1 (Learning an arbitrary mixture of ` strings under the deletion
channel). There is an algorithm with the following performance guarantee: Let X
be an arbitrary distribution over at most ` strings in {0, 1}n. For any deletion rate
0 < δ < 1 and any accuracy parameter ε, if the algorithm is given access to inde-
pendent draws from X that are independently corrupted with deletion noise at rate
δ, then the algorithm uses

1
ε2 ·

(2
1− δ

)√n · (logn)O(`)

many samples and with probability at least 0.99 outputs a hypothesis X̃ which is
supported over at most ` strings and has total variation distance at most ε from the
unknown target distribution X.

It is easy to see that if the target distribution is promised to be uniform over (a
multi-set of) at most ` strings, then the algorithm of Theorem 7.0.1 can be used to
exactly reconstruct the unknown multi-set.

As we explain in Section 7.1, while Theorem 7.0.1 extends prior results on trace
reconstruction (the ` = 1 case), it is proved using very different techniques from
recent works [27, 38, 41, 42, 71, 76] on trace reconstruction.

CHAPTER 7. INTRODUCTION 69

We note that for deletion rates δ that are bounded away from 1 by a constant,
the 2O(n1/3) sample complexity bounds of [27, 71] for trace reconstruction are better
than the ` = 1 case of our result. However, our bounds apply even if the deletion rate
δ is very close to 1; in particular, [27, 71] give no results for very high deletion rates
δ = 1− o(1/

√
n), while Theorem 7.0.1 gives a 2Õ(

√
n) bound for δ = 1− 1/2polylog(n)

and a 2o(n) bound even for δ as large as 1− 1/2
√
n/polylog(n). Of course, the main

feature of Theorem 7.0.1 is that it applies when ` > 1 (unlike [27, 71]).
Negative result. Complementing the sample complexity upper bound, we obtain
a lower bound on the sample complexity of population recovery. Our lower bound
shows that for a wide range of values of `, at least nΩ(`) samples are required when
the population is of size at most `. An informal version of our lower bound is as
follows (see Theorem 10.0.1 in Chapter 10 for a detailed statement):

Theorem 7.0.2 (Sample complexity lower bound, informal statement). Let 0 < δ <
1 be any constant deletion probability and suppose that A is an algorithm which, when
run on samples drawn from the δ-deletion channel over an arbitrary distribution X
supported over at most ` ≤ n0.499 many strings, with probability at least 0.51 outputs
a hypothesis distribution X̃ that has total variation distance at most 0.49 from the
unknown target distribution X. Then A must use nΩ(`) many samples.

7.1 Our techniques
As noted earlier, our positive result (Theorem 7.0.1) gives a sample complexity upper
bound for the original (` = 1) trace reconstruction problem as a special case. We
remark that both of the recent 2O(n1/3) sample complexity upper bounds for the
trace reconstruction problem [27, 71], as well as the earlier work of [42], employed
essentially the same algorithmic approach, which is referred to in [27] as a “mean-
based algorithm.” At a high level, mean-based algorithms use their samples (traces)
only to compute empirical estimates of the n expectations1

Ez←Delδ(x)[z0], · · · ,Ez←Delδ(x)[zn−1] (7.1)

corresponding to the coordinate means of the received traces; they then only use those
n estimates to reconstruct the unknown target string x. Both of the algorithms in [27,
71], as well as the algorithm from [42] for trace reconstruction from an arbitrary string

1In this context, the original unknown target string x is viewed as belonging to {−1, 1}n, and
a trace z obtained from Delδ(x) is viewed as a string in {−1, 1}n′ for some n′ ≤ n with n−n′ zeros
appended to the end. We use [0 : n− 1] = {0, . . . , n− 1} to index entries of a string of length n.

CHAPTER 7. INTRODUCTION 70

x, are mean-based algorithms. (Both [27] and [71] show that their sample complexity
upper bounds are essentially best possible for any mean-based trace reconstruction
algorithm.)

While mean-based algorithms have led to state-of-the-art results for trace re-
construction of a single string, this approach breaks down even for the simplest
non-trivial cases of population recovery under the deletion channel. Indeed, even
when ` = 2 and the unknown distribution X is promised to be uniform over two
strings, it is easy to see that the coordinate means do not provide enough informa-
tion to recover X. For example, if (x1, x2) and (y1, y2) are two pairs of strings whose
sums (as vectors in Rn) x1 + x2 and y1 + y2 are equal (such as x1 = 0n, x2 = 1n,
y1 = 0n/21n/2, y2 = 1n/20n/2), it is easy to see that the coordinate means of received
traces will match perfectly:

E
j∈{1,2}

E
z←Delδ(xj)

[zi] = E
j∈{1,2}

E
z←Delδ(yj)

[zi], for every i ∈ {0, . . . , n− 1}.

Thus the mean-based approach of [27, 42, 71] does not suffice for even the simplest
version of the population recovery problem when ` = 2. Indeed, our sample com-
plexity upper bounds are obtained using a completely different approach, which we
explain below.

Warm-up: A different approach to trace reconstruction (the
` = 1 case)
As a warm-up to our main results, we first give a high-level explanation of how
our approach can be used to obtain a simple 2Õ(

√
n)-sample algorithm for the trace

reconstruction problem. While this is a higher sample complexity than the state-of-
the-art mean-based approach of [27, 71] (though our approach does better for very
high deletion rates, as noted earlier), our approach has the crucial advantage that
it can be adapted to go beyond the ` = 1 case, whereas the mean-based approach
cannot handle ` > 1 as described above.

In a nutshell, the essence of our approach is to work with subsequence frequencies
in the original string x (in contrast, note that the mean-based approach uses single-
coordinate frequencies in the received traces). To explain further we introduce some
useful terminology: the k-deck of a string x ∈ {0, 1}n, denoted Dk(x), is the multi-set
of all

(
n
k

)
subsequences of x with length exactly k. Thus, the k-deck encapsulates all

frequency information about length-k subsequences of x.
A question that arises naturally in the combinatorics of words is the following:

what is the smallest value of k (as a function of n) so that for every string x ∈ {0, 1}n,
the k-deck of x uniquely identifies x? Despite significant investigation dating back

CHAPTER 7. INTRODUCTION 71

to the 1970s [45], this basic quantity is still poorly understood. Improving on earlier
k ≤ n/2 bounds of Kalashnik [45] and Manvel et al. [62] and a simultaneous k =
O(
√
n log n) bound of Scott [83], Krasikov and Roddity [55] showed that k = O(

√
n)

suffices. On the lower bounds side, the best lower bound known is k = 2Ω(
√

logn), due
to Dudík and Schulman [30] (improving on earlier k = Ω(log n) lower bounds of [62]
and [19]).

The relevance of upper bounds on k to the trace reconstruction problem is intu-
itively clear, and indeed, McGregor et al. [66] observed that if the deletion rate δ is at
most 1−c

√
(log n)/n, then it is trivially easy to extract a random length-O(

√
n log n)

subsequence of x from a typical trace of x. Combining this with the k = O(
√
n log n)

upper bound of Scott [83] and a straightforward sampling-based procedure (which
estimates the frequency of each string in {0, 1}k to high enough accuracy to deter-
mine its exact multiplicity in the k-deck), they obtained an information-theoretic
sample complexity upper bound on trace reconstruction: for δ ≤ 1− c

√
(log n)/n, at

most nO(
√
n logn) traces suffice to reconstruct any x ∈ {0, 1}n with high probability.

As an initial observation, we slightly strengthen the [66] result by showing that for
any value of δ < 1, an algorithm which combines sampling and dynamic programming
can exactly infer the k-deck of an unknown string x ∈ {0, 1}n with high probability
using (n/(1− δ))O(k) traces from Delδ(x). (See Theorem 9.0.2 for a detailed statement
and proof of a more general version of this result.) Combining this with the [55] upper
bound k = O(

√
n), we get that any string x can be reconstructed from δ-deletion

noise using (n/(1− δ))O(
√
n) samples.

The above-outlined approach to trace reconstruction (the ` = 1 case of population
recovery) is the starting point for our main positive result, Theorem 7.0.1. In the
next subsection we give a high-level description of some of the challenges that arise
in dealing with multiple strings and how this work overcomes them.

Ingredients in the proof of Theorem 7.0.1
Recall that in the setting of Theorem 7.0.1 the unknown X is an arbitrary distribution
supported on at most ` strings x1, . . . , x` in {0, 1}n. Viewing X as a mixture of
individual strings, there is a natural notion of the k-deck of X, which we denote by
Dk(X) and which is the weighted multi-set corresponding to the X-mixture of the
decks Dk(x1), . . . ,Dk(x`).2

2By a weighted-multiset we mean a multiset in which each element has a weight. Alternatively,
one can interpret (after normalization) Dk(x) as a probability distribution over the 2k strings in
{0, 1}k and in this case, Dk(X) can be viewed as a probability distribution that is the X-mixture
of Dk(x1), . . . ,Dk(x`).

CHAPTER 7. INTRODUCTION 72

As a result, Theorem 7.0.1 will follow if we can show the following: if two distri-
butions X,Y over {0, 1}n (each supported on at most ` strings) have dTV(X,Y) > ε,
then for a not-too-large value of k, the k-decks Dk(X) and Dk(Y) (note that these
are two weighted multi-sets of strings in {0, 1}k) must be “noticeably different.” This
is established in Lemma 9.0.6, which is the technical heart of our upper bound.

To explain our proof of Lemma 9.0.6 it is useful to revisit the ` = 1 setting;
the analogous (and much easier to prove) statement in this context is that given
any two strings x 6= y ∈ {0, 1}n, the k-decks Dk(x) and Dk(y) are not identical
when k ≥ C

√
n for some large enough constant C. This is the main result of [55]

(and a similar statement, with a slightly weaker quantitative bound on k, is also
proved in [83]). Since the k-deck in and of itself is somewhat difficult to work with
(being a multi-set over {0, 1}k), both [55] and [83] work instead with the summed
k-deck, which we denote by SDk(x) and which is simply the vector in Nk obtained
by summing all

(
n
k

)
elements of the k-deck Dk(x) (recall that each element of Dk(x)

is a vector in {0, 1}k). Both [55] and [83] actually show that for a suitable value
of k, the summed k-deck SDk(x) uniquely identifies x among all strings in {0, 1}n.
(Both papers also observe that by a simple counting argument, the smallest such k
is at least Ω̃(

√
n).) The [55] proof reduces the analysis of the summed k-deck to an

extremal problem about univariate polynomials. The key ingredient of their proof
is the following result about univariate polynomials, which was established in [10] in
their work on the Prouhet-Tarry-Escott problem:

Given any nonzero vector δ ∈ {−1, 0, 1}n, there is a univariate
polynomial p of degree O(

√
n) such that∑
0≤i<n

δi · p(i) 6= 0. (†)

Setting δ = x − y 6= 0, to finish the proof of SDk(x) 6= SDk(y) when x 6= y and
k ≥ C

√
n, [55] shows that choosing k to be deg(p) + 1, the inequality (†) implies

that SDk(x) 6= SDk(y).
Returning to our `-string setting, we remark that several challenges arise which

are not present in the one-string setting. To highlight one of these, due to the
difficulty of analyzing the entire k-deck of X it is natural to try to work with the
summed k-deck SDk(X) (a nonnegative vector in Rk), which is obtained by summing
all elements of the weighted multi-set Dk(X). Indeed it can be shown via a rather
straightforward extension of the [55] analysis that, when X is uniform over x1, . . . , x`,
the summed k-deck with k = O(

√
n log `) suffices to exactly reconstruct the sum

x1 + · · ·+ x` (a vector in Nn).

CHAPTER 7. INTRODUCTION 73

But even for uniform distributions, a difficulty which arises is that the summed
k-deck (even with k = n) cannot distinguish between two uniform distributions over
x1, . . . , x` versus y1, . . . , y` that have the same coordinate-wise sums, i.e. that satisfy
x1 + · · · + x` = y1 + · · · + y`.3 Indeed, considering the same example as earlier, in
which ` = 2 and x1 = 0n, x2 = 1n, y1 = 0n/21n/2 and y2 = 1n/20n/2, the summed
k-deck is (

(
n
k

)
, . . . ,

(
n
k

)
)/2 ∈ Rk in both cases.

At a high level our Lemma 9.0.6 can be viewed as a robust generalization of the
[55] result. A key technical ingredient in its proof is a robust generalization of the [10]
result to multivariate polynomials. (The summed k-deck corresponds to univariate
polynomials, so at a high level our analysis involving multivariate polynomials can
be viewed as how we get around the obstacle noted in the previous paragraph.) The
proof of Lemma 9.0.6 consists of three steps which we outline below.

The first conceptual step of our argument is to show that if two support-` dis-
tributions X and Y over {0, 1}n satisfy dTV(X,Y) ≥ ε, then there exists a subset
T ⊂ [0 : n − 1] of size d = blog(2`)c such that X and Y “differ significantly”
just on the coordinates in T . In particular, there is some |T |-bit string c such that
Prx∼X[xT = c] is significantly different from Pry∼Y[yT = c], where we use xT to
denote the restriction of a string x ∈ {0, 1}n on coordinates in T . (This is made
precise in Lemma 9.0.1.) Let ∆ :

(
[0:n−1]

d

)
→ R be the following function over size-d

subsets of [0 : n− 1]:

∆(S) = Prx∼X
[
xS = c

]
−Pry∼Y

[
yS = c

]
. (7.2)

Then Lemma 9.0.1 implies that ‖∆‖∞ is not too small.
The second (and central) conceptual step of our argument can be viewed as a

robust generalization of the [10] result to d-variate polynomials, as alluded to earlier.
The key result giving this step, Lemma 9.0.7, roughly speaking states the following:

Given the ∆ as defined in (7.2), there is a d-variate polynomial φ of
not-too-high degree (roughly

√
n) such that4∣∣∣∣∣∣

∑
0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(
{t1, . . . , td}

)∣∣∣∣∣∣ (††)

can be lower bounded in terms of ‖∆‖∞, which is not too small by
Lemma 9.0.1.

3This is conceptually similar to the inability of mean-based algorithms to handle multiple strings
noted earlier.

4The reader who has peeked ahead to the statement of Lemma 9.0.7 may have noticed that the
lemma statement also bounds the magnitudes of coefficients of the polynomial φ. This is done for
technical reasons, and we skip these technical details in the high-level description here.

CHAPTER 7. INTRODUCTION 74

The technical details of this step are deferred to [4].
The third conceptual step relates (††) to the distance between the k-decks Dk(X)

and Dk(Y), by showing that if (††) is not too small then Dk(X) and Dk(Y) must
be “noticeably different” when k is chosen to be deg(φ) + d. We refer the reader to
Lemma 9.0.8.

At a high level this is analogous to, but technically more involved than, the [55]
proof that the inequality (†) for δ = x − y implies that SDk(x) 6= SDk(y) with
k = deg(p) + 1.

Lemma 9.0.6 then follows by combining all three steps, i.e. dTV(X,Y) being large
implies that Dk(X) is “noticeably different” from Dk(Y) for k that is roughly

√
n.

Our lower bounds
We begin by recalling the Ω(n) lower bound of McGregor et al. [66]. This lower bound
is obtained via a simple analysis of the two distributions of traces resulting from the
two strings x1 = 0n/210n/2−1 and x2 = 0n/2−110n/2. The starting point of the [66]
analysis is the observation that under the δ-deletion channel, conditioned on the sole
“1” coordinate being retained, the distribution of a trace of x1 corresponds to (a, b)
where a and b are independent draws from Bin(n/2, 1− δ) and Bin(n/2− 1, 1− δ)
respectively, whereas the distribution of a trace of x2 corresponds to (b,a). [66] used
this to show that the squared Hellinger distance between these two distributions of
traces is O(1/n), and in turn use this squared Hellinger distance bound to infer an
Ω(n) sample complexity lower bound for determining whether a collection of received
traces came from x1 or from x2.

Our lower bound approach may be viewed as an extension of the [66] lower bound
to mixtures of distributions similar to the ones they consider. The high-level idea of
our lower bound proof is as follows: we show that there exist two distributions X,Y
over {0, 1}n (in fact, over n-bit strings with precisely one 1) which have disjoint
supports, each of size at most 2`, but are such that the total variation distance
dTV(Delδ(X),Delδ(Y)), between traces of strings drawn from X versus traces of
strings drawn from Y, is very small. This is easily seen to imply Theorem 7.0.2.

For simplicity in introducing the main ideas of our analysis, in this expository
overview we will first consider an “n = +∞” version of our population recovery
scenario. We begin by considering the distribution Delδ(ẽm+i) where m is some fixed
value and ẽm+i is an infinite string with a single 1 in position m + i and all other
coordinates 0. A δ fraction of the outcomes of Delδ(ẽm+i) are the infinite all-0 string,
which conveys no information. The other 1 − δ fraction of the outcomes each have
precisely one 1, occurring in position 1 + a where a is distributed according to the
binomial distribution Bin(m + i, 1 − δ). In this infinite-n setting, two distributions

CHAPTER 7. INTRODUCTION 75

X,Y over strings of the form ẽm+i with disjoint supports correspond to two mixtures
of distinct binomial distributions (all with second parameter 1− δ, but with a set of
first parameters in the first mixture that is disjoint from the set of first parameters
in the second mixture). The animating idea behind our construction and analysis is
that it is possible for two distinct mixtures of binomials like this to be very close to
each other in total variation distance.5

In order to show that two distinct mixtures of binomial distributions as described
above can be very close to each other in total variation distance, our lower bounds
employ technical machinery due to Roos [82] and Daskalakis and Papadimitriou [25].
Roos [82] developed a “Krawtchouk expansion” which provides an exact expression
for the probability that a Poisson binomial distribution (a sum of n independent
Bernoulli random variables with expectations p1, . . . , pn) puts on any given outcome
in {0, 1, · · · , n}. Daskalakis and Papadimitriou [25] used Roos’s Krawtchouk ex-
pansion to show that under mild technical conditions, low-order moments of any
Poisson binomial distribution essentially determine the entire distribution. In more
detail, their main result is that if X,Y are two Poisson binomial distributions (sat-
isfying mild technical conditions) whose t-th moments match, i.e. E[Xt] = E[Yt] for
t = 1, . . . , O(log(1/ε)), then the total variation distance between X and Y is at most
ε.

Our analysis proceeds in two main steps. In the first step, we show that there
exist two mixtures of pairs of binomial distributions, which we denote by DS and DT ,
with certain desirable properties. S and T are both subsets of {0, . . . , 2`}, and DS

is a certain mixture of pairs of binomial distributions (Bin(n/2 + i, 1− δ),Bin(n/2−
i, 1 − δ)) for i ∈ S while DT is a certain mixture of pairs of binomial distributions
(Bin(n/2 + j, 1 − δ),Bin(n/2 − j, 1 − δ)) for j ∈ T . We establish the existence of
disjoint sets S, T such that the resulting mixtures DS and DT have matching t-th
moments for all t = 1, . . . , `. This is proved using known algebraic expressions for
the moments of binomial distributions and simple linear algebraic arguments. In the
second main step, we extend the analysis of Daskalakis and Papadimitriou [25] and
apply this extension to our setting, in which we are dealing with mixtures of (pairs of)
binomial distributions (as opposed to their and Roos’s setting of Poisson binomial
distributions). We show that the matching first ` moments of DS and DT imply

5We remark that our actual scenario is more complicated than this idealized version because n
is a finite value rather than +∞. For n = 2m + 1, this means that a received trace 0a10b which
contains a 1 and came from Delδ(em+i) provides a pair of values (a, b) where a is distributed
according to Bin(m + i, ρ) and b is independently distributed according to Bin(m − i, ρ) where
ρ = 1− δ is the retention probability. This second value b provides additional information which is
not present in the n = +∞ version of the problem, and this makes it more challenging and more
technically involved to prove a lower bound. We deal with these issues in Section 10.1.

CHAPTER 7. INTRODUCTION 76

that the distributions Delδ(X) and Delδ(Y) are very close, where X corresponds to
the mixture of Hamming-weight-one strings in {0, 1}n corresponding to DS and Y
likewise corresponds to the mixture of Hamming-weight-one strings corresponding
to DT . (In fact, in our setting having ` matching moments leads to n−Ω(`)-closeness
in total variation distance, whereas in [25] the resulting closeness from ` matching
moments was 2−Ω(`).)

We close this subsection by observing that while the results of [25, 82] were
used in a crucial way in subsequent work of Daskalakis et al. [24] to obtain a sample
complexity upper bound on learning Poisson binomial distributions, in our context we
use these results to obtain a sample complexity lower bound for population recovery.
Intuitively, the difference is that in the [24] scenario of learning an unknown Poisson
binomial distribution, there is no noise process affecting the samples: the learning
algorithm is assumed to directly receive draws from the underlying Poisson binomial
distribution being learned. In such a noise-free setting, the existence of a small ε-
cover for the space of all Poisson binomial distributions (which is established in [25]
as a consequence of their moment-matching result) means, at least on a conceptual
level, that a learning algorithm “need only search a small space of candidates” to
find a high-accuracy hypothesis. In contrast, in our context of deletion-channel
noise, our arguments show that it is possible for two underlying true distributions
X,Y over {0, 1}n to be very different (indeed, to have disjoint supports) but to
be such that their deletion-noise-corrupted versions have low-order moments which
match each other exactly. In this scenario, the [25, 82] results can be used to show
that the variation distance between the two distributions of noisy samples received
by the learner is very small, and this gives a sample complexity lower bound for
distinguishing X and Y on the basis of such noisy samples.

Outline: In Chapter 8, we give preliminaries. In Chapter 9, we present our popu-
lation recovery algorithm. In Chapter 10, we prove our lower bounds.

77

Chapter 8

Preliminaries

Notation. Given a nonnegative integer n, we write [n] to denote {1, . . . , n}. Given
integers a ≤ b we write [a : b] to denote {a, . . . , b}. It will be convenient for us to
index a binary string x ∈ {0, 1}n using [0 : n − 1] as x = (x0, . . . , xn−1). Given a
vector v = (v1, . . . , vd) ∈ Rd, we write ‖v‖∞ to denote maxi∈[d] |vi|. Given a function
∆ : A → R over a finite domain A, we write ‖∆‖∞ = maxa∈A |∆(a)|. Given a
polynomial p (which may be univariate or multivariate), we write ‖p‖1 to denote the
sum of magnitudes of p’s coefficients. All logarithms and exponents are binary (base
2) unless otherwise specified.
Distributions. We use bold font letters to denote probability distributions and
random variables, which should be clear from the context. We write “x ∼ X” to
indicate that random variable x is distributed according to distribution X. The total
variation distance between two distributions X and X̃ over a finite set X is defined
as

dTV(X, X̃) = 1
2
∑
x∈X

∣∣∣X(x)− X̃(x)
∣∣∣,

where X(x) denotes the amount of probability mass that the distribution X puts on
outcome x.
Population recovery from the deletion channel. Throughout this Part the
parameter 0 < δ < 1 denotes the deletion probability. Given a string x ∈ {0, 1}n,
we write Delδ(x) to denote the distribution of a random trace of x after it has been
passed through the δ-deletion channel (so the distribution Delδ(x) is supported on
{0, 1}≤n). Recall that a random trace y ∼ Delδ(x) is obtained by independently
deleting each bit of x with probability δ and concatenating the surviving bits. 1

1For simplicity in this work we assume that the deletion probability δ is known to the learning

CHAPTER 8. PRELIMINARIES 78

We now define the problem of population recovery from the deletion channel that
we will study in this Part. In this problem the goal is to learn an unknown target
distribution X supported on at most ` strings from {0, 1}n.

The learning algorithm has access to independent samples, each of which is gen-
erated independently by first drawing a string x ∼ X and then outputting a trace
from Delδ(x). For conciseness we write Delδ(X) to denote this distribution.

The goal for the learning algorithm is to output with high probability (say at
least 0.99) a hypothesis distribution X̃ for X which is ε-accurate in total variation
distance: dTV(X, X̃) ≤ ε. We are interested in the number of samples needed for
this learning task in terms of n, `, ε and δ.
Decks. Given a subset T = {t1, . . . , tk} ⊆ [0 : n−1] of size k with t1 < · · · < tk, and
two strings v ∈ {0, 1}k, x ∈ {0, 1}n, we say that v matches x at T if xT = v, where
xT = (xt1 , . . . , xtk) ∈ {0, 1}k denotes the string x restricted to positions in T . We say
that the number of occurrences of v in x is the number of size-k subsets T ⊆ [0 : n−1]
such that v matches x at T , and we write #(v, x) to denote this quantity. Given
a distribution X over {0, 1}n, we write #(v,X) to denote the expected number of
occurrences of v in x ∼ X, i.e.

#(v,X) = E
x∼X

[
#(v,x)

]
.

Given a string x ∈ {0, 1}n, we write Dk(x) to denote the (normalized2) k-deck of
x.

This is a 2k-dimensional vector indexed by strings v ∈ {0, 1}k such that(
Dk(x)

)
v

= #(v, x)(
n
k

) .

So Dk(x) is a nonnegative vector that sums to 1.
Similarly, for a distribution X over strings from {0, 1}n, we write Dk(X) to denote

the (normalized3) k-deck of X, given by(
Dk(X)

)
v

= #(v,X)(
n
k

) ,

for each v ∈ {0, 1}k. So Dk(X) is also a 2k-dimensional nonnegative vector that sums
to 1.
algorithm. We note that it is possible to obtain a high-accuracy estimate of δ simply by measuring
the average length of traces received from the deletion channel.

2It will be more convenient for us to use the notion of (normalized) k-decks defined here; note
that we can recover from it the multi-set of all subsequences of x with length k, and vice versa.

3Similarly, the (normalized) k-deck here is equivalent to the weighted multi-set version used in
the introduction up to a simple rescaling.

79

Chapter 9

Upper bounds

Our goal is to prove Theorem 9.0.1, which is restated below:

Theorem 9.0.1. There is an algorithm A which has the following performance guar-
antee: For any distribution X supported over at most ` strings in {0, 1}n, if A is given

1
ε2 ·

(2
1− δ

)√n · (logn)O(`)

(9.1)

many samples from Delδ(X), then with probability at least 0.99 the algorithm outputs
a probability distribution X̃ supported over at most ` strings such that dTV(X, X̃) ≤ ε.

In Section 9 we introduce the notion of a restriction, which is a “local view” of a
distribution X confined to a specific subset of coordinates and a specific outcome for
those coordinates. We then provide some terminology and prove three useful lemmas
about restrictions in Section 9.

Next in Section 9 we describe the algorithm A, state our main technical lemma,
Lemma 9.0.6, and use it to prove the correctness of algorithm A.

We prove Lemma 9.0.6 in Sections 9 and 9.
Notational convention. Our argument below involves many integer-valued index
variables which take values in a range of different intervals. To help the reader keep
track, we will use the following convention (the values L and m will be defined later):

• s, t, s1, t1, . . . will denote an index ranging over [0 : n− 1];

• j, j1, . . . will denote an index ranging over [0 : k − 1];

• a, a′, a1, . . . will denote an index ranging over [L];

• b, b′, b1, . . . will denote an index ranging over [0 : m];

CHAPTER 9. UPPER BOUNDS 80

• i, i1, . . . , α, α1, . . . and β, β1, . . . will denote an index in all other places.

Restrictions
Let X be a distribution over strings from {0, 1}n and let d ∈ [n] be a parameter
(which should be thought of as quite small; we will set d = O(log `) below). Given
a size-d subset T = {t1, . . . , td} of [0 : n− 1] with 0 ≤ t1 < · · · < td < n and a string
c ∈ {0, 1}d, we define

restrict(X, T, c) := Prx∼X
[
(xt1 , . . . ,xtd) = c

]
,

the probability that a draw of x ∼ X matches c in the coordinates of T .
Let X and Y be two distributions, each supported over at most ` strings from

{0, 1}n. Our first lemma shows that if dTV(X,Y) is large, then there are a size-d
subset T and a string c ∈ {0, 1}d with d = blog(2`)c such that there is a reasonably
big gap between restrict(X, T, c) and restrict(Y, T, c).

Lemma 9.0.1. Let X and Y be two distributions, each supported over at most `
strings from {0, 1}n. Then there exist a size-d subset T of [0 : n − 1] and a string
c ∈ {0, 1}d with d = blog(2`)c such that∣∣∣∣restrict(X, T, c)− restrict(Y, T, c)

∣∣∣∣ ≥ dTV(X,Y)
`O(`) .

Proof. Let supp(X) ∪ supp(Y) = {z1, . . . , z`
′} for some `′ ≤ 2`. For each i ∈ [`′], let

pi ≥ 0 be the magnitude of the difference between the probabilities of zi in X and
in Y. Let ε = dTV(X,Y). Then by definition we have ∑i pi = 2ε. Without loss of
generality we assume that p1 ≥ · · · ≥ p`′ ≥ 0 and prove the following claim (where
we set p`′+1 = 0 by default for convenience):
Claim 9.0.2. There exists an i∗ ∈ [`′] such that pi∗ ≥ ε/(4`)`′ and pi∗+1 ≤ pi∗/(4`).

Proof. First we notice that p1 ≥ ε/` given that ∑i pi = 2ε and `′ ≤ 2`. Now given
that the pi’s are nonnegative, there exists an i ∈ [`′] (e.g., by taking i = `′) such that
pi+1 ≤ pi/(4`). Take i∗ to be the smallest such index i. Then we have

pi∗

p1
= pi∗

pi∗−1
· · · p2

p1
>

1
(4`)i∗−1

by the choice of i∗ as the smallest such index. As a result, we have

pi∗ ≥
ε

(4`)i∗ ≥
ε

(4`)`′ .

This finishes the proof of the claim.

CHAPTER 9. UPPER BOUNDS 81

Let i∗ ∈ [`′] be the integer given by the claim above, and we consider the first i∗
strings z1, . . . , zi

∗ . Given that i∗ ≤ `′ ≤ 2`, there exist a d-subset T of [0 : n − 1]
with d = blog(2`)c, a string c ∈ {0, 1}d and an i′ ≤ i∗ such that the restriction of zi′

matches c but the restriction of zi does not match c for any other i ≤ i∗. (This can be
achieved by repeatedly selecting a coordinate that splits the remaining strings into
two nonempty subsets and setting c to reduce the size by at least half each time.)
Using properties of i∗ given in the claim above, we have

∣∣∣∣restrict(X, T, c)− restrict(Y, T, c)
∣∣∣∣ ≥ pi∗ −

∑
i>i∗

pi ≥ pi∗ − 2` · pi
∗

4` = pi∗

2 ≥
ε

`O(`) .

This finishes the proof of the lemma.

Given two size-d subsets S = {s1, . . . , sd} and T = {t1, . . . , td} of [0 : n− 1] with
s1 < · · · < sd and t1 < · · · < td, we say that S is dominated by T if si ≤ ti for every
i ∈ [d]. Let ∆ :

(
[0:n−1]

d

)
→ R be a function over size-d subsets of [0 : n − 1]. We

use supp(∆) to denote the set of subsets T with ∆(T) 6= 0. We need the following
definitions of a cover and a group cover of such a function ∆.

Definition 9.0.1 (Covers and group covers). We say that a function ∆ :
(

[0:n−1]
d

)
→

R has an L-cover {(Ta,Sa) : a ∈ [L]} for some L ≥ 0 if

1. S1, . . . ,SL form an L-way partition of supp(∆);

2. Ta ∈ Sa for each a ∈ [L];

3. ∆(T) = ∆(Ta) for every T ∈ Sa; and

4. Ta is dominated by every T ∈ Sa.

We refer to the set Ta as the anchor set of the collection Sa.
Furthermore we say that ∆ has an (L, q, λ)-group cover if ∆ has an L-cover

{(Ta,Sa) : a ∈ [L]} and a q-way partition of [L] into A1, . . . , Aq such that for each
i ∈ [q], for all a, a′ ∈ Ai we have

|∆(Ta)|
|∆(Ta′)|

≤ λ.

Given distributions X and Y over strings from {0, 1}n and a string c ∈ {0, 1}d,
we write ∆X,Y,c to denote the function over size-d subsets of [0 : n− 1] that maps a
size-d subset T to

∆X,Y,c(T) := restrict(X, T, c)− restrict(Y, T, c).

CHAPTER 9. UPPER BOUNDS 82

The second lemma shows that when d and the supports of X,Y are small, the
function ∆X,Y,c has a small cover for any string c ∈ {0, 1}d. Taking as an ex-
ample when ` = d = 2 and supp(X) = {x1, x2}, we have that restrict(X, S, c) =
restrict(X, T, c) if x1

S = x1
T and x2

S = x2
T (note that this is a sufficient but not nec-

essary condition in general). Letting S = {s1, s2} for some s1 < s2 and T = {t1, t2}
for some t1 < t2, this condition can be written equivalently as

(x1
s1 , x

2
s1) = (x1

t1 , x
2
t1) and (x1

s2 , x
2
s2) = (x1

t2 , x
2
t2).

This implies that restrict(X, ·, c), as a function over size-2 subsets, has the following
combinatorial “rectangular” structure: one can partition indices t ∈ [0 : n − 1] into
four types 00,01,10,11 according to values of x1

t and x2
t ; this induces a partition of all

size-2 subsets into 16 “rectangles,” 1 where S = {s1 < s2} and T = {t1 < t2} belong
to the same “rectangle” iff the type of s1 is the same as that of t1 and the type of s2
is the same as that of t2. It follows that all T in the same “rectangle” share the same
value restrict(X, T, c). We use this observation to obtain a small cover for ∆X,Y,c.

Lemma 9.0.3. Let X and Y be two distributions, each supported over at most `
strings from {0, 1}n. For any d ∈ [n] and any string c ∈ {0, 1}d, ∆X,Y,c has an
L-cover for some L ≤ 22d`.

Proof. Suppose that X is supported on x1, . . . , x`
′ and Y is supported on y1, . . . , y`

′′

with `′, `′′ ≤ `. We say an index t ∈ [0 : n − 1] is of type-(u, v), where u ∈ {0, 1}`′

and v ∈ {0, 1}`′′ , if

(x1
i , . . . , x

`′

i) = u and (y1
i , . . . , y

`′′

i) = v.

This allows us to classify size-d subsets of [0 : n−1] into at most (2`′+`′′)d ≤ 22d` many
equivalence classes: S ∼ T if S = {s1, . . . , sd} with s1 < · · · < sd and T = {t1, . . . , td}
with t1 < · · · < td are such that si and ti are of the same type for all i ∈ [d].

Let Sa be a nonempty equivalence class of ∼ such that S = {s1, . . . , sd} ∈ Sa if
s1 < · · · < sd and si has type-(u(i), v(i)) for each i ∈ [d]. It follows from the definition
of ∼ that all S ∈ Sa have the same restrict(X, S, c) and restrict(Y, S, c), and hence
the same value of ∆X,Y,c(S). Moreover, we let Ta = {t1, . . . , td} be the following set:
t1 is the smallest index of type-(u(1), v(1)) and for each i from 2 to d, ti is the smallest
index that is larger than ti−1 and has type-(u(i), v(i)). Because Sa is nonempty, Ta
is well defined and it is easy to verify that Ta is dominated by every S ∈ Sa. As a
result, ∆X,Y,c has the following L-cover:{

(Ta,Sa) : Sa is nonempty and ∆X,Y,c(Ta) 6= 0
}
,

1Strictly speaking, these are not rectangles since we always need to order indices of a subset in
ascending order.

CHAPTER 9. UPPER BOUNDS 83

for some L ≤ 22d`. This finishes the proof of the lemma.

The last lemma shows that the function ∆X,Y,c actually has an (L, q, λ)-group
cover, for some parameters L ≤ 22d`, q ≤ ` and λ ≤ `O(`).

Lemma 9.0.4. Let X and Y be two distributions, each supported over at most `
strings from {0, 1}n. For any d ∈ [n] and c ∈ {0, 1}d, ∆X,Y,c has an (L, q, `O(`))-
group cover for some L ≤ 22d` and q ≤ `.

Proof. First we apply Lemma 9.0.3 to obtain an L-cover {(Ta,Sa) : a ∈ [L]} of
∆ := ∆X,Y,c for some L ≤ 22d`. It suffices to show that the L positive numbers
|∆(Ta)|, a ∈ [L], can be divided into at most ` groups such that any two in the same
group have the ratio bounded from above by `O(`).

Let p1, . . . , p`′ > 0 be probabilities of strings in X for some `′ ≤ ` and q1, . . . , q`′′ >
0 be probabilities of strings in Y for some `′′ ≤ `. The observation is that every
number |∆(Ta)| is a linear form over the pi’s and qi’s with coefficients −1, 0 or 1.
This motivates the following claim:
Claim 9.0.5. Let u1, . . . , ug > 0 be g (not necessarily distinct) positive numbers. Let

V =
{
v > 0 : v = c1u1 + · · ·+ cgug for some c1, . . . , cg ∈ {−1, 0, 1}

}
.

Then there cannot exist g + 1 numbers v1, . . . , vg+1 in V satisfying vg+1 > · · · > v1
and

vi+1

vi
≥ (g + 2)!, for all i ∈ [g].

Proof. Assume for a contradiction that such g + 1 numbers v1, . . . , vg+1 exist in V
and let

vi = ci,1u1 + · · ·+ ci,gug

where ci,j ∈ {−1, 0, 1} for each i ∈ [g + 1]. Given that these are g + 1 many g-
dimensional vectors ci = (ci,1, . . . , ci,g), let i∗ ≤ g+1 be the smallest integer such that
ci∗ can be written as a linear combination of c1, . . . , ci∗−1: ci∗ = α1c1+· · ·+αi∗−1ci∗−1,
which implies that

vi∗ = α1v1 + · · ·+ αi∗−1vi∗−1 ≤ |α1| · v1 + · · ·+ |αi∗−1| · vi∗−1. (9.2)

We show below that the magnitude of coefficients α1, . . . , αi∗−1 is relatively small,
which leads to a contradiction because we assumed that vi∗ is much bigger than
vi∗−1, . . . , v1.

To see this, note that (α1, . . . , αi∗−1) is the solution to a (i∗ − 1)× (i∗ − 1) linear
system Ax = b where A is a {−1, 0, 1}-valued (i∗ − 1) × (i∗ − 1) full-rank matrix

CHAPTER 9. UPPER BOUNDS 84

and b is a {−1, 0, 1}-valued vector. (In more detail, one can take A to be a full-rank
(i∗ − 1) × (i∗ − 1) submatrix of the matrix that consists of c1, . . . , ci∗−1 as columns
and take the vector b to be the corresponding entries of ci∗ .) It follows from Cramer’s
rule that each entry of A−1 has magnitude at most (i∗ − 1)! and thus, each entry of
A−1b has absolute value at most (i∗ − 1) · (i∗ − 1)! < i∗! ≤ (g + 1)! This contradicts
with (9.2) and the assumption that v1 < . . . < vi∗−1 ≤ vi∗/(g + 2)!.

Claim 9.0.5 gives us the following procedure to partition [L] into A1, . . . , Aq for
some q ≤ `:

1. Set i = 1 and L = [L].

2. While L is nonempty do

3. Let v be the smallest |∆(Ta)|, a ∈ L.

4. Remove from L and add to Ai every a ∈ L with |∆(Ta)| ≤ (2`+ 2)! · v, and
increment i.

It follows from Claim 9.0.5 that when L becomes empty at the end, the number of
Ai’s we created can be no more than `. Furthermore, every a and a′ that belong to
the same Ai have the ratio of |∆(Ta)| and |∆(Ta′)| bounded by (2`+2)! = `O(`). This
finishes the proof of the lemma.

Main Algorithm
We start with an algorithm, based on dynamic programming, for estimating the
k-deck of a distribution X over {0, 1}n.

Theorem 9.0.2. Let k ∈ [n]. There is an algorithm with the following perfor-
mance guarantee: for any distribution X over strings in {0, 1}n, if the algorithm is
given

M = O

(
k

ξ2(1− δ)2k

)
many samples from Delδ(X) then with probability at least 0.99 the algorithm outputs
a nonnegative 2k-dimensional vector Q with ‖Q−Dk(X)‖∞ ≤ ξ. Its running time is
2kM · poly(n).

Proof. Let x1, . . . , xp be the support of X. Then for each string v ∈ {0, 1}k, we have

CHAPTER 9. UPPER BOUNDS 85

E
z∼Delδ(X)

[
#(v, z)

]
= (1− δ)k ·

(
X(x1) ·#(v, x1) + · · ·+ X(xp) ·#(v, xp)

)
= (1− δ)k · E

x∼X

[
#(v,x)

]
= (1− δ)k ·#(v,X)

= (1− δ)k ·
(
n

k

)
·
(
Dk(X)

)
v
.

The first equation is because for a given size-k subset S ⊆ [0 : n − 1] of indices at
which v matches xi, all of the positions in S “survive” into a string z ∼ Delδ(xi)
with probability exactly (1− δ)k.

As a result, it suffices to estimate E[#(v,z)] to additive accuracy ±ξ(1− δ)k
(
n
k

)
for every string v ∈ {0, 1}k. For any fixed string v ∈ {0, 1}k, by a standard Chernoff
bound, using

M = O

(
k

ξ2(1− δ)2k

)
samples the empirical estimate of E[#(v,z)] will have the desired additive ξ(1 −
δ)k
(
n
k

)
accuracy except with failure probability 0.01/2k. The success probability of

0.99 follows from union bound.
The running time of the algorithm uses the following simple observation: given

z ∈ {0, 1}n′ and v ∈ {0, 1}k, there is a poly(n′, k)-time procedure that computes
#(v, z). The procedure works by straightforward dynamic programming: For each
j ∈ [0 : k − 1] and i ∈ [0 : n′ − 1], the algorithm maintains a count of the number
#(v0 . . . vj, z0 . . . zi). This then implies that the running time of the overall algorithm
is M · 2k · poly(n). This finishes the proof of the lemma.

We prove the following main technical lemma in Sections 9 and 9. Intuitively, this
lemma says that if the total variation distance between X and Y is not too small,
then for a suitable (not too large) value of k∗, the distance between the k∗-decks of
X and Y also cannot be too small.

Lemma 9.0.6. Let ` be a positive integer with ` ≤ log n. Let X and Y be two
distributions, each supported over at most ` strings from {0, 1}n. Then there is a
positive integer

k∗ =
√
n · (log n)O(`) (9.3)

such that

dTV(X,Y) ≤ exp
(√

n · (log n)O(`)
)
· ‖Dk∗(X)− Dk∗(Y)‖∞.

CHAPTER 9. UPPER BOUNDS 86

We now present our algorithm A and use Lemma 9.0.6 to prove Theorem 9.0.1:

Proof of Theorem 9.0.1. The bound (9.1) we aim for holds trivially when ` ≥ log n.
To see this, we first notice that when ` ≥ log n, the sample complexity bound (9.1)
we aim for is at least

poly(`)
ε2 ·

(1
1− δ

)n
. (9.4)

With (1/(1 − δ))n samples from Delδ(X), we expect to see a full string of length n
where no bits are deleted and we know that such a string is drawn directly from
X. This means that, with (9.4) many samples, we receive poly(`)/ε2 draws from X
with high probability. When the latter happens, the empirical estimation X̃ of X
satisfies dTV(X, X̃) ≤ ε with high probability. This allows us to focus on the case
when ` ≤ log n in the rest of the proof (so Lemma 9.0.6 applies).

Let ε be the total variation distance we aim for in Theorem 9.0.1. Let k∗ be the
parameter in (9.3). Let ξ be a parameter to be specified later. By Theorem 9.0.2,
the algorithm A can first use

M∗ = O

(
k∗

ξ2(1− δ)2k∗

)
(9.5)

samples to obtain an estimate Q of Dk∗(X) such that

‖Q− Dk∗(X)‖∞ ≤ ξ, (9.6)

and it succeeds in obtaining such an estimate with probability at least 0.99.
With Q in hand the algorithm A computes ‖Q−Dk∗(Y)‖∞ for every distribution

Y supported on at most ` strings such that the probability of each string in Y is
an integer multiple of ξ/`. Finally the algorithm outputs the distribution X∗ that
minimizes the distance (breaking ties arbitrarily).

We show that when Q satisfies (9.6), X∗ must be close to X. We start with
a simple observation that one can round X to get a distribution X′ in which the
probability of each string is an integer multiple of ξ/` and dTV(X,X′) ≤ ξ. This can
be done by rounding the probability of every string except one to the nearest multiple
of ξ/` and setting the last probability as required so that the total probability is 1.
We have ∥∥∥Q− Dk∗(X′)

∥∥∥
∞
≤
∥∥∥Q− Dk∗(X)

∥∥∥
∞

+
∥∥∥Dk∗(X)− Dk∗(X′)

∥∥∥
∞

≤
∥∥∥Q− Dk∗(X)

∥∥∥
∞

+ dTV(X,X′) ≤ 2ξ.

CHAPTER 9. UPPER BOUNDS 87

By definition of X∗ and X′, we have ‖Q− Dk∗(X∗)‖∞ ≤ ‖Q− Dk∗(X′)‖∞ ≤ 2ξ. As
a result, ∥∥∥Dk∗(X)− Dk∗(X∗)

∥∥∥
∞
≤
∥∥∥Q− Dk∗(X∗)

∥∥∥
∞

+
∥∥∥Q− Dk∗(X)

∥∥∥
∞
≤ 3ξ.

It follows from Lemma 9.0.6 that

dTV(X,X∗) ≤ 3ξ · exp
(√

n · (log n)O(`)
)
.

Finally we choose ξ so that the RHS becomes ε. The number of samples needed in
(9.5) becomes (1

ε

)2
·
(2

1− δ

)√n · (logn)O(`)

.

This finishes the proof of Theorem 9.0.1.

We use the following two lemmas to prove Lemma 9.0.6. They are proved in
Section 9 and 9.

Lemma 9.0.7. Let d, q, L and λ be positive integers satisfying

d, q ≤ log n and L, λ ≤ (log n)O(logn).

Let ∆ :
(

[0:n−1]
d

)
→ R be a function that is not identically zero and has an (L, q, λ)-

group cover. Let m = d(n − 1)L2. Then there exists a d-variate polynomial φ with
degree at most O(

√
m · log4q+1m) and ‖φ‖1 = exp(O(

√
m · log4q+3m)) such that∣∣∣∣∣∣

∑
0≤t1<···<td<n

φ(t1, . . . , td) ·∆
(
{t1, . . . , td}

)∣∣∣∣∣∣ ≥ ‖∆‖∞
exp(O(

√
m · log4q−1m))

.

We note that the following lemma holds for any two distributions X,Y over
{0, 1}n regardless of their support size.

Lemma 9.0.8. Let d, k ∈ [n] with k ≥ d. Let X,Y be distributions each supported
over strings from {0, 1}n. Then for any string c ∈ {0, 1}d and d-variate polynomial
φ of degree at most k − d,∣∣∣∣∣∣

∑
0≤t1<···<td<n

φ(t1, . . . , td) ·∆X,Y,c
(
{t1, . . . , td}

)∣∣∣∣∣∣ ≤ ‖φ‖1 · nO(k) · ‖Dk(X)− Dk(Y)‖∞.

CHAPTER 9. UPPER BOUNDS 88

Proof of Lemma 9.0.6. Let X and Y be two distributions each supported over at
most ` strings from {0, 1}n. It then follows from Lemma 9.0.1 and Lemma 9.0.4 that
there exists a string c ∈ {0, 1}d with d = blog(2`)c such that ∆ := ∆X,Y,c satisfies
‖∆‖∞ ≥ dTV(X,Y)/`O(`) and has an (L, q, λ)-group cover for some L ≤ 22d`, q ≤ `,
and λ = `O(`). As we assumed that ` ≤ log n, both d and q are at most log n and
L, λ ≤ `O(`) ≤ (log n)O(logn) (so Lemma 9.0.7 applies).

Let m = d(n − 1)L2 and φ be the polynomial given in Lemma 9.0.7. Let k∗ =
deg(φ)+d (we set k = k∗ in Lemma 9.0.8; the choice of k∗ ensures that deg(φ) ≤ k∗−d
as required in Lemma 9.0.8) with

k∗ = O(
√
m · log4q+1m) =

√
n · (log n)O(`).

Combining Lemma 9.0.7 and Lemma 9.0.8, we have

‖∆‖∞
exp(
√
n · (log n)O(`)) ≤ exp

(√
n · (log n)O(`)

)
· n
√
n · (logn)O(`) · ‖Dk∗(X)− Dk∗(Y)‖∞.

The lemma follows from the fact that ‖∆‖∞ ≥ dTV(X,Y)/`O(`).

Proof of Lemma 9.0.7
We defer this proof to [4].

Proof of Lemma 9.0.8
Let X and Y be two distributions each supported over strings from {0, 1}n.

Given 0 ≤ j1 < · · · < jd ≤ k − 1, we use gj1,...,jd to denote the following d-variate
polynomial,

gj1,...,jd(t1, . . . , td) :=
(
t1
j1

)
·
(
t2 − t1 − 1
j2 − j1 − 1

)
· · ·

(
td − td−1 − 1
jd − jd−1 − 1

)
·
(
n− td − 1
k − jd − 1

)
. (9.7)

To see the relevance of this polynomial to the k-deck, we note that given any 0 ≤
t1 < · · · < td < n the quantity gj1,...,jd(t1, . . . , td) is the number of ways to pick k
indices from [0 : n− 1] such that each ti is the (ji + 1)th smallest index picked.

We first show that the following sum∑
0≤t1<···<td<n

gj1,...,jd(t1, . . . , td) · restrict
(
X, {t1, . . . , td}, c

)
(9.8)

can be written as a low-weight linear combination of entries of Dk(X).

CHAPTER 9. UPPER BOUNDS 89

Lemma 9.0.9. For any 0 ≤ j1 < · · · < jd ≤ k−1 and any c ∈ {0, 1}d, the sum (9.8)
can be written as a linear combination of entries of Dk(X) in which each coefficient
is either 0 or

(
n
k

)
.

Proof. Recall the combinatorial interpretation of gj1,...,jd(t1, . . . , td) given after (9.7).
We see that if we divide the sum in (9.8) by

(
n
k

)
, the result is precisely the probability

that (zj1 , . . . ,zjd) = c when we draw x ∼ X, draw a size-k subset T of [0 : n − 1]
uniformly at random, and then set z = xT.

The latter probability can also be expressed using entries of Dk(X) as∑
z∈{0,1}k

(zj1 ,...,zjd)=c

(
Dk(X)

)
z
,

as (Dk(X))z is the probability of xT = z with x and T drawn as above. This finishes
the proof.

Next we show that, for every monomial tr1
1 · · · trdd of degree r1 + · · ·+ rd ≤ k − d,

there exists a low-weight linear combination of polynomials gj1,...,jd that agrees with
tr1
1 · · · trdd over t1, . . . , td that satisfy 0 ≤ t1 < · · · < td < n.

Lemma 9.0.10. For any nonnegative integers r1, . . . , rd with r1 + · · ·+ rd ≤ k − d,
we have that

tr1
1 · · · t

rd
d =

∑
0≤j1<···<jd<k

wj1,...,jd · gj1,...,jd(t1, . . . , td), for all 0 ≤ t1 < · · · < td < n,

where the coefficients wj1,...,,jd satisfy ∑ |wj1,...,jd | ≤ kO(k).

Before proving Lemma 9.0.10, we use Lemma 9.0.9 and Lemma 9.0.10 to prove
Lemma 9.0.8.

Proof of Lemma 9.0.8. Combining Lemma 9.0.9 and Lemma 9.0.10, we have that∑
0≤t1<···<td<n

tr1
1 · · · t

rd
d · restrict

(
X, {t1, . . . , td}, c

)
=

∑
0≤j1<···<jd<k

wj1,...,jd
∑

0≤t1<···<td<n
gj1,...,jd(t1, . . . , td) · restrict

(
X, {t1, . . . , td}, c

)
can be written as a linear combination of entries of Dk(X) in which each coefficient
has magnitude at most kO(k) ·

(
n
k

)
= nO(k). As a result, we have∣∣∣∣∣∣

∑
0≤t1<···<td<n

tr1
1 · · · t

rd
d ·∆X,Y,c

(
{t1, . . . , td}

)∣∣∣∣∣∣ ≤ nO(k) · ‖Dk(X)− Dk(Y)‖∞.

This finishes the proof of the lemma.

CHAPTER 9. UPPER BOUNDS 90

Finally we prove Lemma 9.0.10. We follow a three-step approach. We say that a
quasimonomial is a polynomial of the form

tα1
1 · (t2 − t1 − 1)α2 · (t3 − t2 − 1)α3 · · · (td − td−1 − 1)αd

for some nonnegative integers α1, . . . , αd; the degree of this quasimonomial is α1 +
· · ·+αd. And we say that a PBC (Product of Binomial Coefficients) is a polynomial
of the form (

t1
β1

)(
t2 − t1 − 1

β2

)
· · ·

(
td − td−1 − 1

βd

)
for some nonnegative integers β1, . . . , βd; the degree of this PBC is β1 + · · · + βd.
We observe that, compared to PBCs, the polynomials gj1,...,jd have an extra binomial
coefficient that involves td at the end. The three steps of our approach are as follows:

• First step: Express each d-variable monomial tr1
1 · · · trdd with

r1 + · · ·+ rd ≤ k − d as a low-weight linear combination of quasimonomials of
degree at most k − d.

• Second step: Express each quasimonomial of degree at most k − d as a
low-weight linear combination of PBCs of degree at most k − d.

• Third step: Finally, express each PBC of degree at most k − d as a
low-weight linear combination of polynomials gj1,...,jd .

We elaborate on each of these three steps below. For each step, we bound the sum
of magnitudes of coefficients in the linear combination.
First step. Consider the change of variables: s1 = t1, s2 = t2 − t1 − 1, . . . , sd =
td − td−1 − 1. Then

tr1
1 t

r2
2 · · · t

rd
d = sr1

1 (s2 + s1 + 1)r2 · · · (sd + sd−1 + · · ·+ s1 + d− 1)rd .

Each monomial of s1, . . . , sd on the RHS corresponds to a quasimonomial of degree
at most r1 + · · · +rd ≤ k − d so this gives us an expression of tr1

1 · · · trdd as a linear
combination of quasimonomials of degree at most k − d. Moreover, the sum of
magnitudes of the coefficients is bounded by

3r2 · 5r3 · · · (2d− 1)rd ≤ (2d− 1)
∑d

i=2 ri ≤ kO(k). (9.9)

Second step. We start with a one-dimensional version of the second step.

CHAPTER 9. UPPER BOUNDS 91

Claim 9.0.11. For each r ≥ 0 and t ≥ 0, we have

tr =
r∑

β=0

 β∑
i=0

(−1)β−i ·
(
β

i

)
· ir
(t

β

)
. (9.10)

Proof. We can write tr = ∑r
β=0 vβ

(
t
β

)
with v ∈ Rr+1 by changing bases in the space

of polynomials in t. Let P be the (r + 1)× (r + 1) Pascal matrix with Pi,j =
(
i
j

)
,

and define u ∈ Rr+1 by ui = ir. Then u = Pv so v = P−1u. By Theorem 2 of [11],
we have

vβ =
β∑
i=0

(−1)β−i ·
(
β

i

)
· ir

as desired.

We use Claim 9.0.11 d times to re-express each of tα1
1 , (t2 − t1 − 1)α2 , . . . , (td −

td−1 − 1)αd as a linear combination of binomial coefficients. As a result, when 0 ≤
t1 < · · · < td < n we have

tα1
1 · (t2 − t1 − 1)α2 · · · (td − td−1 − 1)αd

=
 α1∑
β1=0

 β1∑
i1=0

(−1)β1−i1

(
β1

i1

)
iα1
1

(t1
β1

)
·

 α2∑
β2=0

 β2∑
i2=0

(−1)β2−i2

(
β2

i2

)
iα2
2

(t2 − t1 − 1
β2

)
· · ·

 αd∑
βd=0

 βd∑
id=0

(−1)βd−id
(
βd
id

)
iαdd

(td − td−1 − 1
βd

)
=

∑
β1,...,βd

cβ1,...,βd ·
(
t1
β1

)(
t2 − t1 − 1

β2

)
· · ·

(
td − td−1 − 1

βd

)

for coefficients cβ1,...,βd that we will proceed to bound. Note that the final sum
is over 0 ≤ βi ≤ αi, so this is a linear combination of PBCs of degree at most
α1 + · · ·+ αd ≤ k − d.

Now we bound the sum of magnitudes of coefficients. For 0 ≤ β ≤ α we have∣∣∣∣∣∣
β∑
i=0

(−1)β−i ·
(
β

i

)
· iα

∣∣∣∣∣∣ ≤
β∑
i=0

βiiα ≤
β∑
i=0

(βi)α ≤ βO(α),

CHAPTER 9. UPPER BOUNDS 92

which implies (using α1 + . . .+ αd ≤ k − d ≤ k)∑
β1,...,βd

|cβ1,...,βd | ≤
∑

β1,...,βd

β
O(α1)
1 · · · βO(αd)

d ≤
∑

β1,...,βd

kO(k) = kO(k). (9.11)

Third step: The next claim gives an expression of a PBC as a linear combination
of gj1,...,jd ’s.

Claim 9.0.12 (Third step: d-variable combinatorial identity). Given any 0 ≤ t1 <
· · · < td < n and any nonnegative integers β1, . . . , βd with β1 + · · ·+ βd ≤ k − d, we
have

∑
0≤j1<···<jd<k

gj1,...,jd(t1, . . . , td) ·
(
j1

β1

)(
j2 − j1 − 1

β2

)
· · ·

(
jd − jd−1 − 1

βd

)

=
(
t1
β1

)(
t2 − t1 − 1

β2

)
· · ·

(
td − td−1 − 1

βd

)
·
(
n− β1 − · · · − βd − d
k − β1 − · · · − βd − d

)
.

Proof. Assume that 0 ≤ t1 < · · · < td < n. We first consider the following combi-
natorial experiment with n balls numbered [0 : n − 1]: (1) Mark k of the n balls,
including balls t1, . . . , td; (2) Color red β1 + · · ·+βd+d of the k marked balls, includ-
ing balls t1, . . . , td, in such a way that for each i ∈ [d], the (β1 + · · ·+ βi + i)-th red
one is ti (i.e., there are β1 red balls before t1, β2 red balls between t1 and t2, ..., and
βd red balls between td−1 and td). Below we count the total number of outcomes of
this experiment (including which balls are marked and which balls are colored red)
in two different ways to obtain the desired identity.

In the first way, we note that at the end of this experiment there are β1 balls
that are marked and red within the t1 balls {0, . . . , t1−1} (and also t1 is marked and
red), and for each i ∈ [2 : d] there are βi balls that are marked and red within the
ti− ti−1− 1 balls {ti−1 + 1, . . . , ti− 1} (and also ti is marked and red); and there are
k − β1 − · · · − βd − d other balls that are marked within the n − β1 − · · · − βd − d
other balls. So the total number of outcomes of the experiment is precisely(

t1
β1

)
·
(
t2 − t1 − 1

β2

)
· · ·

(
td − td−1 − 1

βd

)
·
(
n− β1 − · · · − βd − d
k − β1 − · · · − βd − d

)
.

We can also count the number of outcomes of the experiment in a different way,
by viewing the experiment as being carried out as follows: (a) For some numbers
0 ≤ j1 < · · · < jd < k, mark k balls such that for each i ∈ [d], the (ji + 1)-th marked
ball is ti; note that as mentioned earlier, gj1,...,jd(t1, . . . , td) is precisely the number
of ways to do this. (b) Color red β1 of the j1 marked balls before ball t1 (and also
color red ball t1; there are

(
j1
β1

)
ways to do this), and for each i ∈ [2 : d], color red βi

CHAPTER 9. UPPER BOUNDS 93

of the ji − ji−1 − 1 marked balls that lie in {ti−1 + 1, . . . , ti − 1} (and also color red
ti; there are

(
ji−ji−1−1

βi

)
ways to do this). From this perspective, the total number of

outcomes is

∑
0≤j1<···<jd<k

gj1,...,jd(t1, . . . , td) ·
(
j1
β1

)(
j2 − j1 − 1

β2

)
· · ·

(
jd − jd−1 − 1

βd

)
,

and we have established the identity as desired.

Observe that when β1 + · · ·+ βd ≤ k − d, we have∣∣∣∣∣
(
j1

β1

)(
j2 − j1 − 1

β2

)
· · ·

(
jd − jd−1 − 1

βd

)∣∣∣∣∣ ≤ kβ1+···+βd ≤ kk−d,

which implies that the sum of magnitudes of coefficients in the linear combination is
∑

0≤j1<···<jd<k

∣∣∣(j1
β1

)(
j2−j1−1

β2

)
· · ·

(
jd−jd−1−1

βd

)∣∣∣(
n−β1−···−βd−d
k−β1−···−βd−d

) ≤
∑

0≤j1<···<jd<k
kk−d ≤ kk. (9.12)

We can now combine the three steps to prove Lemma 9.0.10.

Proof of Lemma 9.0.10. We express tr1
1 · · · trdd as a linear combination of polynomials

gj1,...,jd via the three steps as described above, with coefficients wj1,...,jd .
The sum of magnitudes of coefficients in the linear combination used in the First,

Second, and Third steps are bounded from above using inequalities (9.9), (9.11), and
(9.12) respectively. These bounds give us∑

0≤j1<···<jd<k
|wj1,...,jd | ≤ kO(k) · kO(k) · kk ≤ kO(k)

as desired. This finishes the proof of the lemma.

94

Chapter 10

Lower bounds

Our main result in this section is Theorem 10.0.1, given below, which establishes
a lower bound on the sample complexity of population recovery under the deletion
channel which is exponential in the population size for a wide range of population
sizes:

Theorem 10.0.1. Fix any constant deletion probability δ ∈ (0, 1). Suppose that A
is an algorithm which, when run on i.i.d. samples drawn from a distribution Delδ(X)
with |supp(X)| ≤ 2`, outputs a hypothesis X̃ which satisfies dTV(X, X̃) ≤ 0.49 with
probability at least 0.51. Then A must use

Ω (n/`2)
`+1

2

`
3
2

many samples.

If the population size upper bound 2` is a constant this gives a lower bound of
Ω(n(`+1)/2) samples, and for any ` < n0.499 this gives a lower bound of nΩ(`).

For the rest of this section fix δ ∈ (0, 1) and let ρ denote 1 − δ. The high-level
idea of the proof is as follows: We show that there exist two distributions X,Y over
{0, 1}n which have disjoint supports, each of size at most 2`, but satisfy

dTV(Delδ(X),Delδ(Y)) = O

(
`2

n

) `+1
2

· `
3
2 · (1− δ) (10.1)

which clearly implies Theorem 10.0.1.
For simplicity throughout this section we assume that n is odd, and we write m

to denote (n− 1)/2. The following notation will be useful: For 0 ≤ i ≤ 2` we write

CHAPTER 10. LOWER BOUNDS 95

em+i to denote the string 0m+i10m−i. The two distributions X and Y that we consider
will be supported on disjoint subsets of {em+i}i∈[0:2`] (and hence each distribution
has support size at most 2` + 1, but in our proofs neither will have full support so
their support size will be at most 2`).
Notation and setup. For notational convenience, let B(r) denote the binomial
distribution Bin(r, ρ).

Let S be a set of indices, πS be a distribution over S, and {Vi}i∈S be a set of
random variables indexed by S. We write Mix(πS; {Vi}i∈S) to denote the mixture
over {Vi}i∈S with each Vi weighted by πS(i).

For conciseness we write Zn to denote a random variable which is distributed
according to the binomial distribution B(n). We recall the following convenient ex-
pression for the falling moments of the binomial distribution: for any t = 0, 1, . . .,
we have

E[Zn(Zn − 1) · · · (Zn − t)] = Pt(n), where Pt(n) = n(n− 1) · · · (n− t)ρt+1.
(10.2)

For completeness we include the derivation below:

E[Zn(Zn − 1) · · · (Zn − t)] =
n∑
i=0

i(i− 1) · · · (i− t) ·
(
n

i

)
ρi(1− ρ)n−i

=
n∑

i=t+1

n!
(n− i)!(i− t− 1)! · ρ

i · (1− ρ)n−i

= Pt(n) ·
n−t−1∑
j=0

(
n− t− 1

j

)
ρj(1− ρ)n−t−1−j

= Pt(n).

The key lemmas. The first main lemma makes precise the moment-matching
property of πS and πT that we require:

Lemma 10.0.1 (Matching moments of mixtures of disjointly supported binomial
distributions). Let ` ≤ O(

√
n).1 There are two disjoint subsets S, T ⊂ [0 : 2`] and

two distributions πS, πT supported on {em+i}i∈S and {em+j}j∈T respectively with the
following property (which we call the “matching moment property”):

Let D̃S be a random variable whose distribution is the mixture of {Zm+i}i∈S in
which distribution Zm+i has mixing weight πS(em+i), and likewise D̃T be a random

1Note that if ` = ω(
√
n) then Theorem 10.0.1 holds trivially, so this assumption is without loss

of generality.

CHAPTER 10. LOWER BOUNDS 96

variable whose distribution is the mixture of {Zm+j}j∈T in which distribution Zm+j
has mixing weight πT (em+j). Then the first ` moments of D̃S and D̃T match each
other, i.e. for all t ∈ [`], we have

E[(D̃S)t] = E[(D̃T)t]. (10.3)

The second main lemma (statement given in Lemma 10.1.1 below) gives the
desired upper bound on total variation distance. To prove Theorem 10.0.1 it suffices
to prove Lemmas 10.0.1 and 10.1.1.

Proof of Lemma 10.0.1
Proof. The proof is by a linear algebraic argument. Let r = m + `. Consider the
mixtures

D̃S = Mix({a|i|}i∈[−`:`]; {Zr+i}i∈[−`:`])

and
D̃T = Mix({b|j|}j∈[−`:`]; {Zr+j}j∈[−`:`])

where all ai, bi ∈ [0, 1] and ∑`
i=−` a|i| =

∑`
j=−` b|j| = 1. Let ci = ai − bi for 0 ≤ i ≤ `.

We will prove the existence of a non-trivial solution ai, bi (i.e., such that ai 6= bi
for some i) such that the following system holds:

E[D̃S] = E[D̃T]
E[D̃S(D̃S − 1)] = E[D̃T (D̃T − 1)]

· · ·
E[D̃S(D̃S − 1) · · · (D̃S − `+ 1)] = E[D̃T (D̃T − 1) · · · (D̃T − `+ 1)].

(10.4)

Observe that this is the same as requiring that E[D̃t
S] = E[D̃t

T] for t ≤ `. In (10.4),
we will be viewing E[Q(D̃S)] and E[Q(D̃T)] (for polynomials Q) as polynomials in
n. We want the equations in (10.4) to hold as polynomial equalities.

Note that for t ≥ 0, by (10.2) we can rewrite the condition E[D̃S(DS−1) · · · (D̃S−
t)] = E[D̃T (D̃T − 1) · · · (D̃T − t)] as the condition

c0Pt(r) +
∑̀
i=1

ci (Pt(r + i) + Pt(r − i)) = 0, (10.5)

viewing both sides as formal polynomials in r. Since Pt(x) has degree t+ 1 in x, for
0 ≤ ` ≤ t+ 1 the coefficient of r` in the polynomial on the LHS of (10.5) is zero, and
consequently we get a system of t+ 2 homogeneous linear equations in c0, c1, . . . , c`.

CHAPTER 10. LOWER BOUNDS 97

Naively, it seems that (10.4) gives us 2 + 3 + · · · + ` + 1 =
(
`+2

2

)
− 1 many

homogeneous linear equations, which is far more than the ` + 1 variables c0, . . . , c`
that are in play. At this point it is unclear that (10.4) necessarily has a nonzero
solution in the ci’s. We will show that (10.4) is actually comprised of at most `
equations and hence it must have a nonzero solution.

Thus, to prove the existence of a non-trivial solution to (10.4) phrased in terms
of D̃S and D̃T , it suffices to prove the existence of a non-trivial solution to (10.4)
phrased in terms of polynomial equalities.

To do this, we observe that equation (10.5) is also true when we replace r by r+1
and get the condition

c0Pt(r + 1) +
∑̀
i=1

ci (Pt(r + 1 + i) + Pt(r + 1− i)) = 0 (10.6)

as a polynomial in r. (Note that the initial assumption ` ≤ Ω(n) still holds if we
increase n.)

Observe that
Pt(r + 1) = Pt(r) + ρ · (t+ 1)Pt−1(r),

so if we subtract (10.5) from (10.6) and divide by ρ(t+ 1), then we get the condition

c0Pt−1(r) +
∑̀
i=1

ci (Pt−1(r + i) + Pt−1(r − i)) = 0

as a polynomial in r. Since this is true for all t, then we have derived the condition
E[D̃S(D̃S − 1) · · · (D̃S − t+ 1)] = 0. It follows by induction that all of (10.4) follows
from the condition E[D̃S(D̃S − 1) · · · (D̃S − `+ 1)] = 0.

Thus we have reduced (10.4) to a system of ` + 1 homogeneous linear equations
over ` + 1 variables, but the first equation (which comes from observing that the
coefficient of r` in the LHS of (10.5) is 0) will be

2c` + 2c`−1 + · · ·+ 2c1 + c0 = 0 (10.7)

and a second equation (which comes from observing that the coefficient of r`−1 in
the LHS of (10.5) is 0) will be

−`(`− 1)c` − `(`− 1)c`−1 − · · · − `(`− 1)c1 − (`/2)(`− 1)c0 = 0

because the coefficient of r`−1 in P`(r) is −(`/2)(`− 1). This is just equation (10.7)
times −(`/2)(` − 1). So there are actually at most ` distinct equations in ` + 1
variables, and hence there is (at least) a line of non-trivial solutions in the ci’s.

CHAPTER 10. LOWER BOUNDS 98

Given a satisfying assignment to the ci’s, for each i with ci = 0 we set ai = bi = 0.
If ci > 0, then we set ai = ci and bi = 0. If ci < 0, then we set ai = 0 and bi = −ci.
Note that

0 = 2c`+2c`−1+· · ·+2c1+c0 = 2a`+2a`−1+· · ·+2a1+a0−(2b`+2b`−1+· · ·+2b1+b0)

and that by homogeneity, we can scale all the ci’s by any multiplicative constant and
still get a valid solution to (10.4). We scale the ci’s so that 2a`+2a`−1+· · ·+2a1+a0 =
1. The above equation implies that 2b` + 2b`−1 + · · ·+ 2b1 + b0 = 1 as well.

This results in the coefficients ai and bi satisfying (10.4) and D̃S and D̃T being
valid distributions that are disjointly supported. Since the ci’s were non-trivial, then
at least one coefficient ci is non-zero and by equation (10.7), there exist coefficients
cj and ck of opposite sign. Thus, both D̃S and D̃T have support sizes at most 2`.

We take πS(em+t) = a|t−`| and πT (em+t) = b|t−`| to conclude the proof.

We will use the following corollary of Lemma 10.0.1:

Corollary 10.0.2. Let S, T, πS, πT be as in Lemma 10.0.1. Then for any polynomial
p of degree at most `, we have

∑
i∈N

πS(em+i)p(m+ i) =
∑
j∈N

πS(em+j)p(m+ j). (10.8)

Proof. Equation (10.3) can be rewritten as∑
i∈N

πS(em+i) E[(Zm+i)t] =
∑
j∈N

πS(em+j) E[(Zm+j)t],

which holds for all t ≤ `. This is equivalent to having equal falling moments, i.e. for
all t ∈ [`], ∑

i∈N
πS(em+i) E[Pt−1(Zm+i)] =

∑
j∈N

πS(em+j) E[Pt−1(Zm+j)].

Indeed, for a random variable Z, E[Pt−1(Z)] can be written as a linear combination
of 1,E[Z],E[Z2], . . . , E[Zt] and since 1, P0(Z), P1(Z), . . . , P`−1(Z) form a set of `
polynomials in Z with degrees 0, 1, 2, . . . , `, then they form a basis for polynomials
in Z with degree at most `.

By (10.2), this is in turn equivalent to having, for all t ∈ [`],∑
i∈N

πS(em+i) · Pt−1(m+ i) =
∑
j∈N

πS(em+j) · Pt−1(m+ j),

which is in turn equivalent to (10.8) by the reasoning in the above paragraph.

CHAPTER 10. LOWER BOUNDS 99

10.1 Total Variation Distance Upper Bound
We state Lemma 10.1.1 below. Informally, it says that if πS, πT have the matching
moment property, then the variation distance between two corresponding mixtures
of two-dimensional vector-valued random variables is small. (In the following, the
notation (B(a),B(b)) stands for a vector-valued random variable in which the two
coordinates are independently drawn from B(a) and B(b) respectively.)

Lemma 10.1.1. Let X,Y be two distributions with disjoint supports {em+i}i∈S and
{em+j}j∈T respectively, where S ∪ T ⊂ [0 : 2`], with the matching moment property
from Lemma 10.0.1 above. Then

dTV(Delδ(X),Delδ(Y)) ≤ O

(
`2

n

) `+1
2

· `
3
2 ·(1− δ). (10.9)

Setup and useful results. Our proof of Lemma 10.1.1 is based on “moment-
matching” results for Poisson binomial distributions which were proved by Roos [82]
and subsequently used by Daskalakis and Papadimitriou [25]. Our approach is similar
to the approach used in [25]. To state these results, recall that a Poisson binomial
distribution (PBD) is a sum U = A1 + · · · + An of independent Bernoulli random
variables (so each Ai is a random variable taking value 1 with some probability
pi ∈ [0, 1] and taking value 0 with probability 1− pi).

In [25], it is shown that if two PBDs satisfy some mild technical condition and
have matching first `moments, then they have total variation distance at most 2−Ω(`).
We show that two mixtures of pairs of suitable binomially distributed variables that
have matching first ` moments will have total variation distance at most n−Ω(`).

We recall Theorem 1 of [25], which gives a “Krawtchouk expansion” for any
Poisson binomial distribution. This provides an expression for the exact probability
that the Poisson binomial distribution puts on any outcome in its support. (We state
the theorem for PBDs which are a sum of n′ many random variables, as when we
apply it later it will be for such PBDs where n′ = m+ ` = (n− 1)/2 + `.)

Theorem 10.1.1 (Theorem 1 of [82], see also Theorem 7 of [25]). Let U = A1 +
· · · + An′ be a Poisson binomial distribution in which each Ai takes value 1 with
probability pi ∈ [0, 1]. Then for all r ∈ [n′] and all p ∈ [0, 1], we have

Pr[U = r] =
n′∑
t=0

αt(p1, . . . , pn′ ; p) ·∆tBn′−t,p(r), (10.10)

where

CHAPTER 10. LOWER BOUNDS 100

• α0(p1, . . . , pn′ ; p) = 1 and for t ∈ [0 : n′],

αt(p1, . . . , pn′ ; p) :=
∑

1≤u(1)<···<u(t)≤n′

t∏
r=1

(pu(r) − p),

• and for all t ∈ [0 : n′],

∆tBn′−t,p(r) := (n′ − t)!
n′! · d

t

dpt
Bn′,p(r),

where in the last expression Bn′,p(r) denotes the value
(
n′

r

)
pr(1−p)n′−r, the prob-

ability that the binomial distribution Bin(n′, p) puts on the outcome r, viewed
as a function of p.

We highlight the fact that ∆tBn′,p(r) has no dependence on the parameters p1, . . .,
pn′ . This will be important for us later.

The following result, deduced from [82], is very useful in analyzing (10.10). It
bounds each of the n′ + 1 summands in (10.10) which add up to Pr[U = r].

Theorem 10.1.2. Let (p1, . . . , pn′) ∈ [0, 1]n′, p ∈ [0, 1], and αt(·, ·) be as in the
statement of Theorem 10.1.1. Define

θ(p1, . . . , pn′ ; p) := 2∑n′

i=1(pi − p)2 + (∑n′

i=1(pi − p))2

2n′p2(1− p)2 . (10.11)

For t ∈ [n′],

|αt(p1, . . . , pn′ ; p)| · ‖∆tBn′−t,p(·)‖1 ≤
√
e · θ(p1, . . . , pn′ ; p)

t
2 t

1
4 (10.12)

where ‖∆tBn′−t,p(·)‖1 denotes the 1-norm of ∆tBn′−t,p(·) when viewed as an (n′ + 1)
- dimensional vector, i.e.

‖∆tBn′−t,p(·)‖1 :=
n′∑
r=0

∣∣∣∆tBn′−t,p(r)
∣∣∣

Proof. Inequality (30) in [82] gives

|αt(p1, . . . , pn′ ; p)| ≤ p
t
2 (1− p) t2 θ(p1, . . . , pn′ ; p)

t
2

(
n′

n′ − t

)n′−t
2

for t ∈ [n′].

CHAPTER 10. LOWER BOUNDS 101

Inequality (38) in [82] gives

‖∆tBn′−t,p(·)‖1 ≤
√
e · t

1
4

(
n′ − t
n′

)n′−t
2
(

t

n′p(1− p)

) t
2

for t ∈ [n′].
By multiplying the above two inequalities together we get the desired result be-

cause t ≤ n′.

For conciseness we now let DS denote

Mix(πS; ((Bin(m+ i, ρ),Bin(m− i, ρ)))i∈S)

where in each component two-dimensional distribution the two distributions Bin(m+
i, ρ) and Bin(m− i, ρ) are independent, and similarly we let DT denote

Mix(πT ; ((Bin(m+ j, ρ),Bin(m− j, ρ)))j∈T).

In the rest of the proof we will argue that

dTV(DS,DT) ≤ O

(
`2

n

) `+1
2

· `
3
2 (10.13)

This establishes the claimed upper bound on dTV(Delδ(X),Delδ(Y)) given in (10.9).
To see this, observe that for any outcome in supp(X) or supp(Y), with probability δ
the one 1-coordinate is deleted under Delδ (in which case the distributions resulting
from Delδ(X) and Delδ(Y) are identical), and that with the remaining 1 − δ prob-
ability (when the one 1-coordinate is not deleted) there is an exact correspondence
between Delδ(X) and DS and between Delδ(Y) and DT .

For an index c ≤ n′, let v(c) denote the n′-dimensional real vector whose first c
values are ρ and whose remaining values are 0.

For t, t′ ∈ [0 : n′] we define

Ct,t′(p) =
∑
i∈N

πS(em+i) · αt(v(m+i); p) · αt′(v(m−i); p),

Dt,t′(p) =
∑
j∈N

πT (em+j) · αt(v(m+j); p) · αt′(v(m−j); p).

The following lemma is crucial for us. Recall that n′ = m+ `.

Lemma 10.1.2. Let πS, πT be as in the statement of Lemma 10.1.1. Then for any
p ∈ [0, 1], the values Ct,t′(p) and Dt,t′(p) are identical for t, t′ ≥ 0 and t+ t′ ≤ `.

CHAPTER 10. LOWER BOUNDS 102

Proof. Let p be any value in [0, 1]. If t + t′ = 0, then t = t′ = 0. Recalling that
α0(·, ·) ≡ 1 we have that

C0,0(p) =
∑
i∈N

πS(em+i) = 1 =
∑
j∈N

πT (em+j) = D0,0(p)

as desired.
For an integer k, let Γk =

(
m+k
c

)(
n′−m−k
t−c

)(
m−k
c′

)(
n′−m+k
t′−c′

)
.

For t+t′ ≥ 1, we observe that αt(v(m+i); p)·αt′(v(m−i); p) is composed of summands
of the form (ρ− p)c+c′(−p)t+t′−c−c′ for c ∈ [0, t], c′ ∈ [0, t′].

In particular, we have

Ct,t′(p) =
∑
i∈N

πS(em+i) ·
t∑

c=0

t′∑
c′=0

Γi (ρ− p)c+c
′
(−p)t+t

′−c−c′ ,

in which each πS(em+i) is multiplied by a polynomial inm of degree at most t+t′ ≤ `.
Similarly, we have

Dt,t′(p) =
∑
j∈N

πT (em+j) ·
t∑

c=0

t′∑
c′=0

Γj (ρ− p)c+c
′
(−p)t+t

′−c−c′

and by Corollary 10.0.2, we see that Ct,t′(p) = Dt,t′(p).

Now we proceed to prove Lemma 10.1.1. Our argument is similar to the proof of
Theorem 3 in [25].

Let p ∈ [0, 1] and r, s ∈ [0 : n′]. We have

Pr[DS = (r, s)]−Pr[DT = (r, s)] =
n′∑

t,t′=0
∆tBn′,p(r) ·∆t′Bn′,p(s) (Ct,t′(p)−Dt,t′(p))

=
n′∑

t+t′>`
∆tBn′,p(r) ·∆t′Bn′,p(s) (Ct,t′(p)−Dt,t′(p))

where the two lines are by Theorem 10.1.1 and Lemma 10.1.2 respectively. As a
result, for any p ∈ [0, 1] we have

dTV(DS,DT) = 1
2

n′∑
r,s=0
|Pr[DS = (r, s)]−Pr[DT = (r, s)]|

≤ 1
2

n′∑
t+t′>`

|Ct,t′(p)−Dt,t′(p)| · ‖∆tBn′,p(·)‖1 · ‖∆t′Bn′,p(·)‖1

≤ 1
2

n′∑
t+t′>`

(|Ct,t′(p)|+ |Dt,t′(p)|) · ‖∆tBn′,p(·)‖1 · ‖∆t′Bn′,p(·)‖1

CHAPTER 10. LOWER BOUNDS 103

and expanding out definitions gives

dTV(DS,DT) ≤ 1
2

n′∑
t+t′>`

(∣∣∣∣∣∑
i∈S

πS(em+i) · αt(v(m+i); p) · αt′(v(m−i); p)
∣∣∣∣∣

+

∣∣∣∣∣∣
∑
j∈T

πT (em+j) · αt(v(m+j); p) · αt′(v(m−j); p)

∣∣∣∣∣∣
 · ‖∆tBn′,p(·)‖1 · ‖∆t′Bn′,p(·)‖1

≤ 1
2
∑
i∈S

πS(em+i)
n′∑

t+t′>`

∣∣∣αt(v(m+i); p)
∣∣∣ ∣∣∣αt′(v(m−i); p)

∣∣∣ · ‖∆tBn′,p(·)‖1 · ‖∆t′Bn′,p(·)‖1

+ 1
2
∑
j∈T

πT (em+j)
n′∑

t+t′>`

∣∣∣αt(v(m+j); p)
∣∣∣ ∣∣∣αt′(v(m−j); p)

∣∣∣ · ‖∆tBn′,p(·)‖1‖∆t′Bn′,p(·)‖1.

By Theorem 10.1.2,

dTV(DS,DT) ≤ e

2
∑
i∈S

πS(em+i)
n′∑

t+t′>`
θ(v(m+i); δ) t2 · θ(v(m−i); δ) t

′
2 · t

1
4 t′

1
4

+ e

2
∑
j∈T

πT (em+j)
n′∑

t+t′>`
θ(v(m+j); δ) t2 · θ(v(m−j); δ) t

′
2 · t

1
4 t′

1
4

≤ e

2
√

2
∑
i∈S

πS(em+i)
n′∑

t+t′>`
θ(v(m+i); δ)

t
2 θ(v(m−i); δ)

t′
2
√
t+ t′

+ e

2
√

2
∑
j∈T

πT (em+j)
n′∑

t+t′>`
θ(v(m+j); δ)

t
2 θ(v(m−j); δ)

t′
2
√
t+ t′

where the second inequality can be deduced from the AM-GM inequality.
Fix any i ∈ S, j ∈ T . Let p = ρ in Theorem 10.1.2. Since ρ is a constant in (0, 1)

we get that

θ(v(m+i); ρ) = 2(`− i)ρ2 + (`− i)2 · ρ4

2(m+ `)ρ2(1− ρ)2 ≤ O

(
`2

n

)
.

and similarly
θ(v(m−i); ρ), θ(v(m±j); ρ) ≤ O

(
`2/n

)
because ` ≤ O(

√
n) (and we may assume that ` ≤ O(

√
n) since otherwise the total

variation distance bound claimed in the lemma is trivial).
By choosing sufficiently large n and appropriate constants, we can upper bound

the RHS by some θ < 1/2. This gives

CHAPTER 10. LOWER BOUNDS 104

dTV(DS,DT) ≤ O

 n′∑
t+t′>`

θ
t+t′

2
√
t+ t′

 ≤ O

 n′∑
i>`

θ
i
2 i

3
2

 ≤ O(`+ 1)
−1
2
∑
i>`

θ
i
2 i2

where the second inequality comes from the fact that there are i + 1 pairs of non-
negative integers t, t′ that sum to i, and the third inequality comes from the fact
that i 3

2 ≤ (`+ 1)−1
2 i2 when i > `.

Observe that

∑
i>`

xii2 = x · d
dx

(x · d
dx

∑
i>`

xi) = x · d
dx

(x · d
dx

x`+1

1− x)

for 0 < x < 1, so

∑
i>`

xii2 = x`+1

(1− x)3 ·(`
2(1−x)2+2`(1−x)+1+x) ≤ O(`+1)2· x`+1

(1− x)3 ≤ O(`+1)2·x`+1

for 0 < x < 1/2. This means

dTV(DS,DT) ≤ O(`+ 1) 3
2 θ

`+1
2 ≤ O

(
`2

n

) `+1
2

· `
3
2

giving (10.13) as desired and concluding the proof of Lemma 10.1.1.

105

Bibliography

[1] Per Austrin and Subhash Khot. A simple deterministic reduction for the gap
minimum distance of code problem. In International Colloquium on Automata,
Languages, and Programming, pages 474–485. Springer, 2011. 2.2, 2.2.3

[2] Arturs Backurs, Piotr Indyk, Ilya P. Razenshteyn, and David P. Woodruff.
Nearly-optimal bounds for sparse recovery in generic norms, with applications
to k-median sketching. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 318–337, 2016. 2.2, 2.2, 3

[3] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee,
and David P. Woodruff. A ptas for `p-low rank approximation. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 747–766, 2019. 1

[4] Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha.
Beyond trace reconstruction: Population recovery from the deletion channel. In
Foundations of Computer Science (FOCS), 2019 IEEE 56th Annual Symposium
on, 2019. 1, 7.1, 9

[5] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their
applications. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 307–326. ACM, 2012. 2.2, 2.2, 2.2.1, 5, 5.3, 5.3, 5.3,
5.3.1, 5.3.2, 5.3.3, 5.3.4

[6] Lucia Batman, Russell Impagliazzo, Cody Murray, and Ramamohan Paturi.
Finding heavy hitters from lossy or noisy data. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques - 16th Inter-
national Workshop, APPROX 2013, and 17th International Workshop, RAN-
DOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages 347–
362, 2013. 1.2

BIBLIOGRAPHY 106

[7] T. Batu, S. Kannan, S. Khanna, and A. McGregor. Reconstructing strings from
random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, pages 910–918, 2004. 1.2

[8] Aditya Bhaskara and Aravindan Vijayaraghavan. Approximating matrix p-
norms. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pages 497–511. SIAM, 2011. 2.2

[9] Vijay Bhattiprolu, Mrinalkanti Ghoshi, Venkatesan Guruswami, Euiwoong Lee,
and Madhur Tulsiani. Inapproximability of matrix p → q norms. Electronic
Colloquium on Computational Complexity (ECCC), 2018. TR18-037. 2.2, 5.4

[10] Peter Borwein, Tamás Erdélyi, and Géza Kós. Littlewood-type problems on
[0, 1]. Proceedings of the London Mathematical Society, 3(79):22–46, 1999. 7.1,
7.1, 7.1

[11] Robert Brawer and Magnus Pirovino. The linear algebra of the pascal matrix.
Linear Algebra and its Applications, 174:13–23, 1992. 9

[12] Karl Bringmann, Pavel Kolev, and David P. Woodruff. Approximation al-
gorithms for `0-low rank approximation. In NIPS, 2017. To appear. http:
//arxiv.org/abs/1710.11253. 1.1

[13] J. Paul Brooks and José H. Dulá. The `1-norm best-fit hyperplane problem.
Appl. Math. Lett., 26(1):51–55, 2013. 1.1

[14] J. Paul Brooks, José H. Dulá, and Edward L Boone. A pure `1-norm principal
component analysis. Computational statistics & data analysis, 61:83–98, 2013.

[15] J. Paul Brooks and Sapan Jot. Pcal1: An implementation in r of three methods
for `1-norm principal component analysis. Optimization Online preprint, 2012.
1.1

[16] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):11, 2011. 1.1

[17] Kai-Yang Chiang, Cho-Jui Hsieh, and Inderjit S Dhillon. Robust principal com-
ponent analysis with side information. In Proceedings of The 33rd International
Conference on Machine Learning, pages 2291–2299, 2016. 1.1

http://arxiv.org/abs/1710.11253
http://arxiv.org/abs/1710.11253

BIBLIOGRAPHY 107

[18] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina
Panigrahy, and David P. Woodruff. Algorithms for ℓ_p low-rank approxi-
mation. In Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 806–814,
2017. 1.1, 2.1, 2.2

[19] Christian Choffrut and Juhani Karhumäki. Combinatorics of words. In Hand-
book of Formal Languages, Volume I, pages 329–438. Springer, 1997. 7.1

[20] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the
streaming model. In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 02, 2009, pages
205–214, 2014. 4.1

[21] Kenneth L Clarkson and David P Woodruff. Input sparsity and hardness for
robust subspace approximation. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 310–329. IEEE, 2015. 1.1, 2.2,
4.1

[22] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou.
On low rank approximation of binary matrices. CoRR, http://arxiv.org/abs/
1511.01699, 2015. 1.1, 1.1

[23] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W.
Mahoney. Sampling algorithms and coresets for `p regression. SIAM J. Comput.,
38(5):19, 2009. 4.2, 4.4

[24] C. Daskalakis, I. Diakonikolas, and R. A. Servedio. Learning Poisson Binomial
Distributions. Algorithmica, 72(1):316–357, 2015. 7.1

[25] Constantinos Daskalakis and Christos Papadimitriou. Sparse covers for sums of
indicators. Probability Theory & Related Fields, 162:679–705, 2015. 7.1, 10.1,
10.1.1, 10.1

[26] A. De, M. Saks, and S. Tang. Noisy population recovery in polynomial time.
Technical Report TR-16-026, Electronic Colloquium on Computational Com-
plexity, 2016. To appear in FOCS 2016. 1.2

[27] Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based
algorithms for trace reconstruction. In Proceedings of the 49th ACM Symposium
on Theory of Computing (STOC), pages 1047–1056, 2017. 1.2, 7, 7.1, 7.1, 7.1

http://arxiv.org/abs/1511.01699
http://arxiv.org/abs/1511.01699

BIBLIOGRAPHY 108

[28] Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Sharp bounds for popu-
lation recovery. CoRR, abs/1703.01474, 2017. 1.2

[29] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension re-
duction for subspace approximation. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pages 641–650, 2007. 1.1

[30] Miroslav Dudík and Leonard Schulman. Reconstruction from subsequences.
Journal of Combinatorial Theory, Series A, 103(2):337–348, 2003. 7.1

[31] Z. Dvir, A. Rao, A. Wigderson, and A. Yehudayoff. Restriction access. In
Innovations in Theoretical Computer Science, pages 19–33, 2012. 1.2

[32] Dan Feldman and Michael Langberg. A unified framework for approximating
and clustering data. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 569–578,
2011. 1.1

[33] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff.
Coresets and sketches for high dimensional subspace approximation problems.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 630–
649, 2010. 1.1

[34] Nicolas Gillis and Stephen A. Vavasis. On the complexity of robust PCA and `1-
norm low-rank matrix approximation. CoRR, http://arxiv.org/abs/1509.
09236, 2015. 1.1

[35] Alexandre Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Soc. de Matemática de São Paulo, 1956. 2.2

[36] Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypass-
ing UGC from some optimal geometric inapproximability results. ACM Trans-
actions on Algorithms (TALG), 12(1):6, 2016. Conference version in SODA ’12.
2.2, 5, 5.4, 5.4, 5.4, 5.4, 5.4.4, 5.4, 5.4.5

[37] Aram W Harrow and Ashley Montanaro. Testing product states, quantum
Merlin-Arthur games and tensor optimization. Journal of the ACM (JACM),
60(1):3, 2013. 2.2

http://arxiv.org/abs/1509.09236
http://arxiv.org/abs/1509.09236

BIBLIOGRAPHY 109

[38] Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with vary-
ing deletion probabilities. In Proceedings of the Fifteenth Workshop on Analytic
Algorithmics and Combinatorics, ANALCO 2018, New Orleans, LA, USA, Jan-
uary 8-9, 2018., pages 54–61, 2018. 1.2, 1, 7

[39] Julien M Hendrickx and Alex Olshevsky. Matrix p-norms are NP-hard to ap-
proximate if p 6= 1, 2,∞. SIAM Journal on Matrix Analysis and Applications,
31(5):2802–2812, 2010. 2.2

[40] N. Holden and R. Lyons. Lower bounds for trace reconstruction. CoRR,
abs/1808.02336, 2018. 1.2

[41] Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace re-
construction for random strings and arbitrary deletion probability. CoRR,
abs/1801.04783, 2018. 1.2, 7

[42] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder. Trace recon-
struction with constant deletion probability and related results. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, pages 389–398, 2008. 1.2, 7, 7.1, 7.1

[43] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J.
Comput. Syst. Sci., 62(2):367–375, 2001. 2.1

[44] Peng Jiang, Jiming Peng, Michael Heath, and Rui Yang. A clustering approach
to constrained binary matrix factorization. In Data Mining and Knowledge
Discovery for Big Data, pages 281–303. Springer, 2014. 1.1

[45] V. V. Kalashnik. Reconstruction of a word from its fragments. Computa-
tional Mathematics and Computer Science (Vychislitel’naya matematika i vy-
chislitel’naya tekhnika), Kharkov, 4:56–57, 1973. 1.2, 7.1

[46] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algo-
rithm for the distinct elements problem. In Proceedings of the Twenty-Ninth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 41–52,
2010. 2.2, 4.2, 4.5

[47] Ravi Kannan and Santosh Vempala. Spectral algorithms. Foundations and
Trends in Theoretical Computer Science, 4(3-4):157–288, 2009. 1.1

BIBLIOGRAPHY 110

[48] Sampath Kannan and Andrew McGregor. More on reconstructing strings from
random traces: Insertions and deletions. In IEEE International Symposium on
Information Theory, pages 297–301, 2005. 1.2

[49] Qifa Ke and Takeo Kanade. Robust subspace computation using `1 norm. Tech-
nical Report CMU-CS-03-172, Carnegie Mellon University, Pittsburgh, PA.,
2003. 1.1

[50] Qifa Ke and Takeo Kanade. Robust `1 norm factorization in the presence of
outliers and missing data by alternative convex programming. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 739–746. IEEE, 2005. 1.1

[51] Subhash Khot. Hardness results for coloring 3-colorable 3-uniform hypergraphs.
In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE
Symposium on, pages 23–32. IEEE, 2002. 5.4

[52] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture, inte-
grality gap for cut problems and embeddability of negative type metrics into `1.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 53–62. IEEE Computer Society, 2005. 5.3

[53] Eunwoo Kim, Minsik Lee, Chong-Ho Choi, Nojun Kwak, and Songhwai Oh.
Efficient-norm-based low-rank matrix approximations for large-scale problems
using alternating rectified gradient method. IEEE transactions on neural net-
works and learning systems, 26(2):237–251, 2015. 1.1

[54] Guy Kindler, Assaf Naor, and Gideon Schechtman. The UGC hardness thresh-
old of the Lp Grothendieck problem. Mathematics of Operations Research,
35(2):267–283, 2010. Conference version in SODA ’08. 5.4.3

[55] Ilia Krasikov and Yehuda Roditty. On a reconstruction problem for sequences,.
Journal of Combinatorial Theory, Series A, 77(2):344–348, 1997. 7.1, 7.1, 7.1,
7.1

[56] Nojun Kwak. Principal component analysis based on `1-norm maximization.
IEEE transactions on pattern analysis and machine intelligence, 30(9):1672–
1680, 2008. 1.1

[57] Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions
on Information Theory, 47(1):2–22, 2001. 1.2

BIBLIOGRAPHY 111

[58] Vladimir Levenshtein. Efficient reconstruction of sequences from their sub-
sequences or supersequences. Journal of Combinatorial Theory Series A,
93(2):310–332, 2001. 1.2

[59] S. Lovett and J. Zhang. Improved Noisy Population Recovery, and Reverse
Bonami-Beckner Inequality for Sparse Functions. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 137–142, 2015. 1.2

[60] Michael W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends in Machine Learning, 3(2):123–224, 2011. 1.1

[61] Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum
k-cut and densest at-least-k-subgraph from the small set expansion hypothesis.
Algorithms, 11(1):10, 2018. 2.1, 5, 5.3

[62] Bennet Manvel, Aaron Meyerowitz, Allen Schwenk, Ken Smith, and Paul Stock-
meyer. Reconstruction of sequences. Discrete Mathematics, 94(3):209–219, 1991.
7.1

[63] P. P. Markopoulos, S. Kundu, S. Chamadia, and D. A. Pados. Efficient `1-Norm
Principal-Component Analysis via Bit Flipping. ArXiv e-prints, 2016. 1.1

[64] Panos P. Markopoulos, George N. Karystinos, and Dimitrios A. Pados. Some
options for `1-subspace signal processing. In ISWCS 2013, The Tenth Interna-
tional Symposium on Wireless Communication Systems, Ilmenau, TU Ilmenau,
Germany, August 27-30, 2013, pages 1–5, 2013.

[65] Panos P. Markopoulos, George N. Karystinos, and Dimitrios A. Pados. Optimal
algorithms for `1-subspace signal processing. IEEE Trans. Signal Processing,
62(19):5046–5058, 2014. 1.1

[66] Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction re-
visited. In Proceedings of the 22nd Annual European Symposium on Algorithms,
pages 689–700, 2014. 1.2, 7.1, 7.1

[67] Deyu Meng, Zongben Xu, Lei Zhang, and Ji Zhao. A cyclic weighted median
method for `1 low-rank matrix factorization with missing entries. In AAAI,
volume 4, page 6, 2013. 1.1

[68] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings
in input-sparsity time and applications to robust linear regression. In Proceedings

BIBLIOGRAPHY 112

of the 45th Annual ACM Symposium on Theory of Computing, STOC 2013, Palo
Alto, CA, USA, June 01 - 04, 2013, pages 91–100, 2013. 3

[69] Pauli Miettinen. Matrix decomposition methods for data mining: Computa-
tional complexity and algorithms. PhD Thesis, University of Helsinki, Finland,
2009. 1.1

[70] Ankur Moitra and Michael E. Saks. A polynomial time algorithm for lossy pop-
ulation recovery. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 110–116,
2013. 1.2

[71] Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(o(n1/3)) samples.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1042–1046, 2017. 1.2, 7, 7.1, 7.1, 7.1

[72] Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar,
and Prateek Jain. Non-convex robust pca. In Advances in Neural Information
Processing Systems, pages 1107–1115, 2014. 1.1

[73] Feiping Nie, Jianjun Yuan, and Heng Huang. Optimal mean robust principal
component analysis. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1062–1070, 2014. 1.1

[74] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey
Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit
Gopalan, Bichlien Nguyen, et al. Random access in large-scale dna data storage.
Nature biotechnology, 36(3):242, 2018. 1.2

[75] Young Woong Park and Diego Klabjan. Iteratively reweighted least squares
algorithms for l1-norm principal component analysis. In IEEE 16th International
Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona,
Spain, pages 430–438, 2016. 1.1

[76] Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion chan-
nel: Subpolynomially many traces suffice. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 228–239, 2017. 1.2, 7

[77] Yury Polyanskiy, Ananda Theertha Suresh, and Yihong Wu. Sample complex-
ity of population recovery. In Proceedings of the 30th Conference on Learning
Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 1589–
1618, 2017. 1.2

BIBLIOGRAPHY 113

[78] Prasad Raghavendra and David Steurer. Graph expansion and the unique games
conjecture. In Proceedings of the Forty-second ACM Symposium on Theory of
Computing, STOC ’10, pages 755–764, 2010. 2.1, 2.1, 5, 5.3

[79] Prasad Raghavendra, David Steurer, and Prasad Tetali. Approximations for
the isoperimetric and spectral profile of graphs and related parameters. In
Proceedings of the forty-second ACM symposium on Theory of computing, pages
631–640. ACM, 2010. 5.3

[80] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between
expansion problems. In Computational Complexity (CCC), 2012 IEEE 27th
Annual Conference on, pages 64–73. IEEE, 2012. 2.1, 5, 5.3

[81] Ilya P. Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank
approximations with provable guarantees. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 250–263, 2016. 2.2, 6.2

[82] B. Roos. Binomial approximation to the Poisson binomial distribution: The
Krawtchouk expansion. Theory Probab. Appl., 45:328–344, 2000. 7.1, 10.1,
10.1.1, 10.1, 10.1

[83] Alexander Scott. Reconstructing sequences. Discrete Mathematics, 175(1):231–
238, 1997. 7.1, 7.1

[84] Bao-Hong Shen, Shuiwang Ji, and Jieping Ye. Mining discrete patterns via
binary matrix factorization. In KDD, pages 757–766, 2009. 1.1

[85] Nariankadu D. Shyamalkumar and Kasturi R. Varadarajan. Efficient subspace
approximation algorithms. Discrete & Computational Geometry, 47(1):44–63,
2012. 1.1

[86] Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation
with entrywise l1-norm error. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 688–701, 2017. 1.1, 2.1, 2.2

[87] Daureen Steinberg. Computation of matrix norms with applications to robust
optimization. Research thesis, Technion-Israel University of Technology, 2005.
2.2

[88] David Steurer. Subexponential algorithms for d-to-1 two-prover games and for
certifying almost perfect expansion. Manuscript, 2010. 5.3

BIBLIOGRAPHY 114

[89] Krishnamurthy Viswanathan and Ram Swaminathan. Improved string recon-
struction over insertion-deletion channels. In Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 399–408, 2008. 1.2

[90] A. Wigderson and A. Yehudayoff. Population recovery and partial identification.
Machine Learning, 102(1):29–56, 2016. Preliminary version in FOCS 2012. 1.2

[91] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations
and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014. 1.1, 2.2

[92] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust
principal component analysis: Exact recovery of corrupted low-rank matrices
via convex optimization. In Advances in neural information processing systems,
pages 2080–2088, 2009. 1.1

[93] S.M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable
and error-free DNA-based data storage. Scientific Reports, 7(1):5011, 2017. 1.2

[94] Huishuai Zhang, Yi Zhou, and Yingbin Liang. Analysis of robust pca via lo-
cal incoherence. In Advances in Neural Information Processing Systems, pages
1819–1827, 2015. 1.1

[95] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank
matrix approximation under robust `1-norm. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012,
pages 1410–1417, 2012. 1.1

	Contents
	Overview
	Low Rank Approximations
	Population Recovery

	Low Rank Approximations
	Introduction
	Our Results
	Our Techniques

	Preliminaries
	lp-Approximation Algorithms
	l1-Approximation Algorithm
	1 < p < 2
	0 < p < 1
	p > 2
	Finite Fields

	Hardness
	lp-Low Rank Approximation and min pstar to p A
	Reducing 2 to pstar norm to min pstar to p
	Hardness of 2 to q norm for all q in 2, infty
	Hardness of min pstar to p
	Hardness for Finite Fields

	Additional Results
	Bicriteria Algorithm
	Weighted Low Rank Approximation

	Population Recovery
	Introduction
	Our techniques

	Preliminaries
	Upper bounds
	Lower bounds
	Total Variation Distance Upper Bound

	Bibliography

