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abstract of the dissertation

Shifting Hecke Eigensystems
in Positive Characteristic

by

Davide Alessandro Reduzzi

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Chandrashekhar Khare, Chair

We study congruences modulo p between modular forms arising from di¤erent contexts. In

the �rst part of the dissertation we use geometric methods to show that the (mod p) PEL

Hecke eigensystems associated to a reductive group G coincide with the (mod p) algebraic

Hecke eigensystems associated to an inner form of G. In the second part of the dissertation

we use cohomological methods to construct weight shiftings for (mod p) automorphic forms

associated to a de�nite quaternion algebra over a totally real �eld in which p is unrami�ed.

In particular, we construct cohomological avatars of the partial Hasse invariants.

ii



The dissertation of Davide Alessandro Reduzzi is approved.

Joseph A. Rudnick

Haruzo Hida

Richard S. Elman

Chandrashekhar Khare, Committee Chair

University of California, Los Angeles

2012

iii



Alla mia famiglia

iv



table of contents

Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

I Hecke Eigensystems of PEL and Algebraic Types 2

1 Moduli of PEL type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.1 Moduli of p-divisible groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Local PEL data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 The moduli functor for p-divisible groups . . . . . . . . . . . . . . . . 5

1.1.3 A variant of the moduli functor . . . . . . . . . . . . . . . . . . . . . 6

1.2 Moduli of abelian schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Global PEL data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The moduli functor for abelian schemes . . . . . . . . . . . . . . . . . 8

1.2.3 Modular forms of PEL type . . . . . . . . . . . . . . . . . . . . . . . 10

2 Uniformization of the superspecial locus of PEL Shimura varieties : : : 12

2.1 A theorem of Rapoport and Zink . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 From global PEL data to local PEL data . . . . . . . . . . . . . . . . 12

2.1.2 Uniformization of basic isogeny classes . . . . . . . . . . . . . . . . . 14

2.2 Restriction to the superspecial locus . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Superspecial abelian varieties . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Uniformization of the superspecial locus . . . . . . . . . . . . . . . . 18

3 Comparison of Hecke eigensystems : : : : : : : : : : : : : : : : : : : : : : : 22

3.1 Superspecial points on unitary Shimura varieties . . . . . . . . . . . . . . . . 22

v



3.1.1 PEL data of type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Choice of a superspecial point . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 The groups I and J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Unitary Dieudonné modules and invariant di¤erentials . . . . . . . . . . . . 29

3.2.1 Invariant di¤erentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Superspecial modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Algebraic modular forms . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 The correspondence between Hecke eigensystems . . . . . . . . . . . . . . . 39

4 On the number of unitary Hecke eigensystems : : : : : : : : : : : : : : : : 45

4.1 Estimate of the cardinality of the superspecial locus . . . . . . . . . . . . . . 45

4.2 Estimate of the size of the irreducible representations of �G . . . . . . . . . . 46

4.3 Upper bound for the number of Hecke eigensystems . . . . . . . . . . . . . . 48

II Cohomological Weight Shiftings for Automorphic Forms on

De�nite Quaternion Algebras 49

5 Weight shiftings for GL2(Fq)-modules : : : : : : : : : : : : : : : : : : : : : : 50

5.1 Untwisted GL2(Fq)-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Identities in K0(G) (I) . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Intertwining operators for the periods q + 1 and q � 1 . . . . . . . . . 54

5.1.3 Determination of Jordan-Hölder constituents: the case g = 1 . . . . . 59

5.1.4 Application to elliptic modular forms . . . . . . . . . . . . . . . . . . 60

5.2 Twisted GL2(Fq)-modules and intertwining operators for g > 1 . . . . . . . . 64

5.2.1 Identities in K0(G) (II) . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Determination of Jordan-Hölder constituents: the case g > 1 . . . . . 66

vi



5.2.3 Families of intertwining operators for g > 1 . . . . . . . . . . . . . . . 70

6 Weight shiftings for automorphic forms : : : : : : : : : : : : : : : : : : : : 79

6.1 Shiftings for weights not containing (2; :::; 2)-blocks . . . . . . . . . . . . . . 79

6.1.1 Some motivations: geometric Hilbert modular forms . . . . . . . . . . 80

6.1.2 Automorphic forms on de�nite quaternion algebras . . . . . . . . . . 83

6.1.3 Behavior of Hecke eigensystems under reduction modulo MR . . . . . 85

6.1.4 Holomorphic weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.5 Holomorphic weight shiftings via generalized Dickson invariants and

D-operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Shiftings for weights containing (2; :::; 2)-blocks . . . . . . . . . . . . . . . . . 97

References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

vii



acknowledgments

First I would like to express my gratitude to my advisor, Chandrashekhar Khare, for the

great opportunity he gave to me by accepting me as a student of his, for his guidance and

encouragement during the years of my doctorate, and for his patience and generosity in

answering my questions and giving me advice.

Conversations and correspondence with Don Blasius, Najmuddin Fakhruddin, Benedict

Gross, Florian Herzig, Haruzo Hida, Marc-Hubert Nicole, Gordan Savin and Jacques Tilouine

have contributed to the development of my research during the last three years: I owe

thanks to them. In particular, I am grateful to Benedict Gross for suggesting the problem

investigated in Part I of this dissertation. I am grateful to Massimo Bertolini, for being a

constant reference in the Department of Mathematics of the Univeristà degli Studi di Milano,

and to David Gieseker, for many interesting conversations we had about mathematics and

other subjects.

I thank Patrick Allen, with whom I have gone through many stages of the Ph.D. student

life. My life in UCLA has been moreover made easier by the work of the sta¤ of the

Department of Mathematics, which I also sincerely thank.

I could not be where I am today without the love of my family: I thank my parents

Patrizia and Lino, my sisters Chiara and Haregeweyn, and my brothers Alberto and Stefano,

for always sustaining me, and for being close even when I am so far away from home.

A special thanks goes to Kien, for his patience and support, and for introducing me to

National Parks: places in which, like in mathematics, "when we try to pick out anything by

itself, we �nd it hitched to everything else in the Universe." (J. Muir, My First Summer in

the Sierra, 1911).

viii



Vita

2002�2005 B.Sc. (Mathematics), Università degli Studi di Milano, Italy

2005�2007 M.Sc. (Mathematics), Università degli Studi di Milano, Italy

2007�2012 Ph.D. Student and Teaching Assistant, Department of Mathematics, UCLA

Publications

Reduction mod p of Cuspidal Representations of GL2(Fpn) and Symmetric Powers, Journal

of Algebra 324 (2010), pp. 3507�3531.

ix



Introduction

In the present work we study various techniques for producing congruences modulo p between

systems of Hecke eigenvalues arising from spaces of modular forms.

More precisely, in Part I we consider spaces of (mod p) PEL modular forms associated to

a reductive group G and we show that, under suitable assumptions, the Hecke eigensystems

that they a¤ord coincide with the Hecke eigensystems arising from algebraically de�ned

modular forms associated to an inner form of G. Our results generalize constructions of

Serre ([Ser96]) and Ghitza ([Ghi04a]) and can be interpreted as an instance of a global

Langlands correspondence, conjecturally relating (mod p) Galois representations arising from

geometric objects to Hecke eigensystems occurring in adelic spaces. Our proofs make use of

a uniformization result for basic isogeny classes of Shimura varieties due to Rapoport and

Zink ([RZ96]).

In Part II, we work with automorphic forms associated to some de�nite quaternion al-

gebras over a totally real �eld. In this context, we produce congruences modulo p between

eigenforms of �xed level and varying weights. These weight shiftings are obtained via co-

homological methods, generalizing constructions of Ash-Stevens ([AS86b]) and Edixhoven-

Khare ([EK03]). In particular, we de�ne cohomological avatars of the partial Hasse invariant

operators, geometrically constructed by Goren ([Gor01]) and Andreatta-Goren ([AG05]) in

the context of Hilbert-Blumenthal modular varieties. The starting point of our constructions

can be found in a note of Serre on the existence of some di¤erential operators intertwining

modular representations of GL2(Fq) (cf. [Ser01] and [Red10]).
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Part I

Hecke Eigensystems of PEL and

Algebraic Types
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CHAPTER 1

Moduli of PEL type

1.1 Moduli of p-divisible groups

Let G be a p-divisible group over a scheme S (cf. [Dem72], [Fon77]) and denote by Ĝ its

Serre dual. An S-polarization of G is an S-quasi-isogeny � : G! Ĝ that is anti-symmetric

(i.e., �̂ = ��). A Qp-homogeneous S-polarization of G is the set � = Q�p � of Q�p -multiples

of an S-polarization � of G; a principal S-polarization is an S-polarization that is also

an isomorphism. If (O;� ) is a Zp-algebra with involution, an action of (O;� ) on G is a

homomorphism of Zp-algebras i : O ! EndS(G); if G is endowed with the action i, Ĝ is

endowed with the dual action {̂ given by setting {̂(a) := i(a�)^ for any a 2 O.

Let k be a perfect �eld of characteristic p > 0 and denote by W = W (k) the ring of

Witt vectors of k; let K0 = W [1
p
] and denote by � the absolute Frobenius morphism of

K0. An isocrystal (D0; F ) over K0 is a �nite dimensional K0-vector space D0 endowed with

a Frobenius K0-semilinear automorphism F : D0 ! D0. For n 2 Z, de�ne 1(n) to be

the isocrystal (K0; p
n�). A polarization of D0 is a K0-bilinear non-degenerate alternating

pairing of isocrystals h; i : D0 �D0 ! 1(1), so that hFx; Fyi = p hx; yi� for all x; y 2 D0; a

Qp-homogeneous polarization of D0 is the equivalence class of Q�p -multiples of a polarization.

Let D be a Dieudonné W -module (i.e., a �nitely generated left module over the Dieudonné

ring W [F; V ]) that is �nite free over W ; a polarization of D is a W -bilinear non-degenerate

alternating form h; i : D � D ! W such that hFx; yi = hx; V yi� for all x; y 2 D; a Zp-

homogeneous polarization of D is the equivalence class of Z�p -multiples of a polarization. A

polarization is principal if it is a perfect pairing.

When k is algebraically closed, denote by M (resp. M�) the contravariant (resp. covari-
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ant) Dieudonné functor, giving an additive anti-equivalence (resp. equivalence) between the

category of p-divisible groups over k and the category of Dieudonné W (k)-modules that are

free and of �nite rank over W (k) (cf. [Fon77]). The functor M� preserves the dictionary

of (principal) polarizations between the categories of p-divisible groups and of Dieudonné

modules.

1.1.1 Local PEL data

Let k;W;K0 and � be as above, with k algebraically closed. Let B be a �nite dimensional

semi-simple Qp-algebra endowed with an involution �, and let V 6= 0 be a �nitely generated

left B-module, endowed with a non-degenerate, alternating, Qp-bilinear form h; i : V � V !

Qp which is skew-Hermitian with respect to �. These objects de�ne a reductive group G over

Qp whose R-points, for any Qp-algebra R, are given by:

G(R) = f(g; s) 2 GLB
QpR(V 
Qp R)�R� : hgv; gwi = s hv; wi 8v; w 2 V 
Qp Rg:

The mapG(R)! R� given by (g; s) 7! s de�nes a homomorphism ofQp-groups c : G! Gm,

called the similitude character of G.

A Qp-PEL datum for moduli of p-divisible groups over k is the datum

Dp = (B;
� ; V; h; i ;OB;�; b; �);

where: (1) (B;� ; V; h; i) is as above; (2) OB is a maximal Zp-order in B stable under the

involution �; (3) � � V is an OB-stable Zp-lattice of V which is self-dual with respect to h; i;

(4) b is a �xed element of G(K0); (5) � : Gm=K ! GK is a co-character of G de�ned over a

�nite �eld extension K of K0. We require that the following four conditions are satis�ed: (a)

(b; �) is an admissible pair in the sense of [RZ96]; (b) the isocrystal (N;F) := (V 
QpK0; b�)

has slopes in the interval [0; 1]; (c) the weight decomposition of V 
Qp K with respect to

� contains only weights 0 and 1: V 
Qp K = V0 � V1; (d) let D be the universal cover of

Gm in the sense of quasi-algebraic groups ([Ser60], 7.3) and let � : DK0 ! GK0 be the slope

morphism associated to b, as de�ned in [Kot85], 4 (for any algebraic �nite-dimensional Qp-
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representation � : G ! GL(U) of G, let �� 2 HomK0(DK0 ; GL(UK0)) be the morphism for

which the action of D on the isotypical component of the isocrystal (U 
QpK0; �(b)(idU
�))

of slope � 2 Q is given by the character � 2 X�(D); � is the only morphism such that

� � � = �� for any � as above); then we ask that c � � : DK0 ! Gm=K0 is the character of DK0

corresponding to the rational number 1.

The re�ex �eld E of Dp is the �eld of de�nition of the conjugacy class of the co-character �.

1.1.2 The moduli functor for p-divisible groups

Let us keep the above notation, so that a local PEL datum Dp with re�ex �eld E is �xed;

write c(b) = p � u�(u)�1 for some u 2 W�. De�ne a map 	 : N � N ! K0 by setting

	(v; w) = u�1 hv; wi for v; w 2 N . As 	(Fv;Fw) = p	(v; w)�, 	 de�nes a polarization of

the isocrystal N . Any other choice of u gives rise to a Q�p -multiple of 	, so that Dp de�nes

a Qp-homogeneously polarized K0-isocrystal endowed with an action of B: (N;F;Q�p 	).

Fix a p-divisible group X over k whose K0-isocrystal constructed viaM� is isomorphic to

(N;F); by functoriality there is a Qp-algebra homomorphism iX : B ! End(X)
ZpQp: The

class Q�p 	 induces a Qp-homogeneous polarization ��X : (X; iX)! (X̂; iX̂) that respects the

action of B (this polarization need not to be principal). The triple (X; iX; �X) is determined

up to quasi-isogeny, and it is assumed �xed.

Let �E = EK0 and denote by O �E the ring of integers of �E; let NILPO �E
be the category of

locally noetherian SpecO �E-schemes (S;OS) such that the ideal sheaf pOS is locally nilpotent;

for any such S, denote by S the closed subscheme of S de�ned by pOS. Following [RZ96],

3.21, let �M be the contravariant functor NILPO �E
!SETS de�ned as follows: if S is a scheme

in NILPO �E
, �M(S) consists of the equivalence classes of tuples (X; i; �; �) where: (1) X is

a p-divisible group over S; (2) i : OB ! EndS X is a Zp-algebra homomorphism such that

detOS(a;LieX) = detK(a; V0) for all a 2 OB (cf. [RZ96], 3.23); (3) � : (X; i) ! (X̂; {̂) is a

principal polarization of (X; i); (4) � : (X; iX)S ! (X; i)S is a quasi isogeny of p-divisible

groups over S that respects the OB-structure and such that �̂ � �S � � 2 Q�p (�X)S. Two

tuples (X; i; �; �),(X 0; i0; �
0
; �0) 2 �M(S) are equivalent if the S-quasi-isogeny �0 � ��1 lifts to

5



an isomorphism f : (X; i) ! (X 0; i0) of p-divisible groups over S with OB-action, such that

f̂ � �0 � f 2 Z�p �.

By [RZ96], 3.25, the functor �M is prorepresentable by a formal scheme �M which is

formally locally of �nite type over SpfO
�E
.

1.1.3 A variant of the moduli functor

Let us keep the above assumptions and further require that the polarization �X is principal

and that iX comes from an action of OB on X (this will always be true in our applications).

De�ne the setM0(Fp) :=M0
(X;iX;�X)

(Fp) to be the collection of equivalence classes of quasi-

isogenies � : (X; iX; �X)! (X; iX; �X) of X over Fp that respect the OB-structure and such

that �̂ � �X � � 2 Q�p �X. Two quasi-isogenies � and �0 are said to be equivalent if the Fp-

quasi-isogeny f := �0 ���1 is an isomorphism (X; iX; �X)! (X; iX; �X) of p-divisible groups

over Fp with OB-action, such that f̂ � �X � f 2 Z�p �X.

M0(Fp) is a non-empty closed subset of �M(Fp). Let J(Qp) denote the group of quasi-

isogenies � : (X; iX)!(X; iX) over Fp such that �̂ � �X � � 2 Q�p �X, and let J(Zp) be the

subgroup of isomorphisms (X; iX)!(X; iX) preserving the polarization form up to a factor

in Z�p . While the space �M(Fp) is somehow mysterious, by sending [�] 2M0(Fp) to the coset

��1J(Zp) � J(Qp) we have:

Proposition 1.1.1. There is a natural bijectionM0(Fp) ' J(Qp)=J(Zp).

1.2 Moduli of abelian schemes

Let S be a locally noetherian scheme. If A is an abelian scheme over S, we denote by

Â its dual and by A(p) its p-divisible group. Let (O;� ) be a Z(p)-algebra with involution.

The category of abelian O-schemes over S up to isogeny of order prime to p, denoted by

AbSCH �
O;S or, when no confusion arises, by AbSCH

�, is de�ned as follows: its objects are

pairs (A; i) where A is an abelian scheme over S, and i is a homomorphism of Z(p)-algebras

i : O ! EndA 
Z Z(p); a morphism f : (A1; i1) ! (A2; i2) in AbSCH �
O;S is an element of

6



HomO(A1; A2) 
Z Z(p). An isogeny in AbSCH �
O;S is a quasi-isogeny of abelian S-schemes

which is a morphism of AbSCH �
O;S; its kernel is the kernel of the corresponding isogeny of

p-divisible groups. A quasi-isogeny in AbSCH �
O;S is a quasi-isogeny of abelian schemes that

respects the action of O. If (A; i) is an object of AbSCH �
O;S, its dual object is (Â; {̂), where

{̂ : O! End Â
Z Z(p) is given by {̂(b) = i (b�) ^ (b 2 O).

There is an obvious notion of polarization in AbSCH �
O;S; a Q-homogeneous (resp. Z(p)-

homogeneous) polarization � : (A; i)! (Â; {̂) is the set of (locally on S) Q�-multiples (resp.

Z�(p)-multiples) of a polarization � of (A; i) in AbSCH
�
O;S; � is said to be principal if there is

an element �0 2 � that is a principal polarization in AbSCH �
O;S. (Cf. [Lan08]).

1.2.1 Global PEL data

Let B be a �nite dimensional semi-simple Q-algebra endowed with a positive involution �;

let V 6= 0 be a �nitely generated left B-module and h; i : V � V ! Q a non-degenerate,

alternating Q-bilinear form which is skew-hermitian with respect to �. These objects de�ne

a reductive group G over Q whose R-points, for a �xed Q-algebra R, are given by G(R) =

f(g; s) 2 GLB
QR(V 
QR)�R� : hgv; gwi = s hv; wi 8v; w 2 V 
QRg. The mapG(R)! R�

given by g 7! c(g) de�nes a homomorphism of Q-groups c : G ! Gm, called the similitude

character of G.

A Q-PEL datum for moduli of abelian schemes (at p) is a tuple

D = (B;� ; V; h; i ;OB;�; h;K
p; �)

where: (1) (B;� ; V; h; i) is as above; (2) OB is a Z(p)-order of B stable under the involution

� and such that OB
ZZp is a maximal order in BQp ; (3) � � VQp is an OB-stable Zp-

lattice such that the restriction of h; iQp to � � � is a perfect pairing of Zp-modules; (4)

Kp is an open compact subgroup of G(Apf ); (5) � : Q ,! Qp is an embedding of �elds; (6)

h : C! EndB V 
Q R is an R-algebra homomorphism such that: (a) h (z) = h (z)� for all z

in C; (b) the symmetric R-bilinear form (; ) : VR�VR ! R de�ned by (v; w) =


v; h(

p
�1)w

�
is positive de�nite.

The PEL datum D is said to have good reduction at p if the algebra B 
Q Qp is unrami�ed

7



and, in case EndB V 
Q R has a factor isomorphic to Mn(H) for some n > 0, then p is odd

(here H denotes the division algebra of real quaternions). (Cf. [Wed99], 1.4). When we are

in the good reduction case, the algebraic group GQp has a reductive model G over Zp whose

R-valued points for a commutative Zp-algebra R are given by:

G(R) = f(g; s) 2 GLOB
ZpR(�
Zp R)�R� : hgv; gwi = s hv; wi 8v; w 2 �
Zp Rg:

If D has good reduction, such a reductive model of GQp will be considered �xed without

further mention.

The map h endows VR with a complex structure. Let � : Gm=C ! GC be the co-character

associated to h as in [RZ96], 6.1, and write VC = VC;0 � VC;1, where VC;0 (resp. VC;1) is the

subspace of VC on which Gm=C acts - via � - through the trivial (resp. identity) character.

We obtain a semi-simple representation � : B ! EndC VC;0 of the Q-algebras B: The re�ex

�eld of the PEL datum D is the �eld of de�nition E of the isomorphism class of �. The

�-adic completion of E, denoted E� , is called the �-adic re�ex �eld.

1.2.2 The moduli functor for abelian schemes

Let us assume a global PEL datum D for moduli of abelian schemes is �xed; let G be the

associated algebraic group, and E the re�ex �eld; assume that D has good reduction at p.

Let S be a locally noetherian base scheme over OE 
Z Z(p).

Let (A; i;�) be a principally polarized abelian scheme in AbSCH �; assume that S is

connected and let s be a geometric point of S. The Tate Apf -module H1(As;Apf ) of As is

endowed with a continuous action of �1(S; s). The action of OB on A endows H1(As;Apf )

with a structure of B-module, and the principal polarization � of (A; i) induces a skew-

symmetric Apf -linear pairing H1(As;Apf )�H1(As;Apf )! Apf (1); which is non-degenerate and

skew-Hermitian with respect to �. On the other side, by de�nition of PEL datum, VApf is

endowed with an action of B and a skew-Hermitian non-degenerate Apf -linear pairing with

values in Apf . A level structure of type Kp based at s on (A; i;�) is the left Kp-orbit � of

an isomorphism � : H1(As;Apf )! VApf of skew-Hermitian B-modules such that � is �xed by

�1(S; s). Here by isomorphism of skew-Hermitian B-modules we mean an isomorphism of
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B-modules carrying one alternating form into a (Apf )�-multiple of the other. The choice of

s is immaterial in practice (and it will not be mentioned later): if s0 is another geometric

point of S, there is a canonical bijection between level structures of type Kp based at s on

(A; i;�) and level structures of type Kp based at s0 on (A; i;�) ([Lan08], Cor. 1.3.7.13).

Assume that G has a reductive model G=Z over Z such that for any commutative ring R

one has:

G(R) = f(g; s) 2 GLOB
ZR(L
Z R)�R� : hgv; gwi = s hv; wi 8v; w 2 L
Z Rg;

where L is an OB-stable Z-lattice of V which is self-dual with respect to h; i and such that

L
ZZp = �. (In our later applications such a choice for G over Z will always be possible and

it will be �xed without further mention). If N � 1 is an integer not divisible by p, a principal

level-N structure on (A; i;�) is a level structure of type U (N) := Ker(G(Ẑp)! G(Ẑp=N Ẑp)).

If Kp is a compact open subgroup of G(Apf ) contained in U (N) for some N � 3 not divisible

by p, then Kp is neat (cf. [Lan08], 1.4.1.9-10).

De�ne the moduli problem M := M(D) associated to the PEL datum D to be the

contravariant functor from the category SCHOE
Z(p) of locally noetherian schemes overOE
Z
Z(p) to the category of sets as follows: if S is an object of SCHOE
Zp , thenM(S) is the set of

isomorphism classes of tuples (A; i; �; �) where: (1) (A; i) is an object in AbSCH � satisfying

Kottwitz determinant condition: for any locally noetherian S-scheme S 0, detOS0 (a;LieAS0) =

detE(a; V0) (a 2 OB 
 OS0; cf. [RZ96], 3.23 or [Kot92], 5, for the precise de�nition); (2)

� : (A; i) ! (Â; {̂) is a Q-homogeneous principal polarization in AbSCH �; (3) � is a level

structure of type Kp on (A; i; �): Two tuples (A1; i1; �1; �1) and (A2; i2; �2; �2) as above are

isomorphic if there is an isomorphism f : (A1; i1;�1)! (A2; i2;�2) such that �2 �H1(f;Apf )�

��11 2 Kp and c(�2) � c(�1)�1 2 r � c(Kp), where r 2 Z�(p) is such that r � f̂ � �2 � f = �1.

We assume from now on that the subgroup Kp is neat. We have the following result (cf.

[Kot92]; [Lan08], 2):

Theorem 1.2.1. The functor M(D) is representable by a quasi-projective smooth scheme

SD;Kp over OE 
Z Z(p).
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Let k be an algebraic closure of the residue �eld of E� . Since the polarizations considered

in our moduli problem are separable, we have the following (cf. [Lan08], 2.2.4.16, 2.3.2.1):

Proposition 1.2.2. The canonical map SD;Kp(W (k))! SD;Kp(k) is surjective.

If Kp
1 � Kp

2 are two neat open compact subgroups of G(A
p
f ), the transition map SD;Kp

1
!

SD;Kp
2
induced by (A; i; �;Kp

1�) 7! (A; i; �;Kp
2�) is a �nite étale covering which is Galois if

Kp
1 is normal in K

p
2 . Denote by SD the projective system of the family of schemes fSD;KpgKp

where the Kp�s are small enough; we de�ne the Hecke action of G(Apf ) on SD as follows:

if g 2 G(Apf ), then g acts on the right on SD via the isomorphism g : SD;Kp ! SD;g�1Kpg

de�ned by [(A; i; �; �)] � g := [(A; i; �; g�1 � �)].

1.2.3 Modular forms of PEL type

For brevity, if we are given a group scheme X over Y with zero section e : Y ! X, we set

t�X=Y := e�
1X=Y , where 

1
X=Y is the sheaf of relative invariant di¤erentials of X over Y .

We keep assuming that D is a global PEL datum having good reduction at p, with associated

groupG having a model over Z as in 1.2.2. LetE be the re�ex �eld ofD and let g = dimC VC;0;

�x an integer N � 3 not divisible by p and assume Kp = U(N). Let S := SD;U(N) be the

quasi-projective smooth scheme over OE 
Z Z(p) representingM(D). Let � : X ! S be the

corresponding universal abelian scheme, with zero section 0. Set E := 0�
1X=S :

Let � : GLg ! GLm be a morphism of algebraic groups de�ned over OE 
Z Z(p). We

denote by E� the locally free sheaf of rank m on S obtained by twisting E via �. More

precisely, let fUigi2I be an open cover of S trivializing E via isomorphisms fi :
�
OSjUi

�g !
EjUi; let gij = f�1jjUi\Uj � fijUi\Uj 2 GLg(OSjUi\Uj) so that gijgjkgki = 1 in GLg(OSjUi\Uj\Uk)

for all indices i; j and k. For any i 2 I de�ne (E�)i :=
�
OSjUi

�m
; for indices i; j 2 I the

element �(gij) de�nes an isomorphism (E�)ijUi\Uj ! (E�)jjUj\Ui. Since the �(gij)�s satisfy the

necessary cocycle identities, we can glue the (E�)i�s to obtain a well de�ned sheaf E� on S.

For anyOE
ZZ(p)-algebraR, the space of PEL modular forms over R of weight � relative
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to the moduli problemM(D) is the R-module

M�(D;R) := H0(S
OE
ZZ(p)R;E� 
R):

We have:

Proposition 1.2.3. An element of M�(D;Fp) is a rule f that assigns to any Fp-rational

tuple (A; i; �; �; �) such that [(A; i; �; �)] is an element of S(Fp) and � is an ordered basis for

t�
A=Fp

over Fp, an element f(A; i; �; �; �) 2 F
m

p in such a way that:

(a) f(A; i; �; �; �M) = �(M)�1 � f(A; i; �; �; �) for all M 2 GLg(Fp);

(b) if (A; i; �; �; �) ' (A0; i0; �0; �0; �0) then f(A; i; �; �; �) = f(A0; i0; �
0
; �0; �0).

It is natural to ask what is the relation between the modular forms de�ned above and

those de�ned using the toroidal or minimal compacti�cations of the PEL Shimura varieties

under consideration. In the case of modular curves, there are "more" modular forms de�ned

using the open modular curves than those de�ned via the compacti�ed modular curves. On

the other hand, for Siegel modular varieties (and other PEL Shimura varieties) the so-called

"Koecher�s principle" can be applied. As the open PEL varieties have no less global sections

than their compacti�cations, we content ourselves to work with non-compacti�ed varieties.
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CHAPTER 2

Uniformization of the superspecial locus of PEL

Shimura varieties

2.1 A theorem of Rapoport and Zink

Let D = (B;� ; V; h; i ;OB;�; h;K
p; �) be a global PEL datum with good reduction at p,

and neat level Kp. Let G be the associated group, and E the re�ex �eld. In the rest of

the dissertation, unless otherwise stated, we assume G is connected and satis�es the Hasse

principle (the latter condition is required only for simplicity, as it is explained in the remark

at the end of 2.1.2). The completion E� of E at � coincide with the �eld of de�nition of

the G0(Qp)-conjugacy class of the co-character � associated to D; under the good reduction

assumption E� is an unrami�ed extension of Qp. Let k = Fp be a �xed algebraic closure of

the residue �eld of E� , and letW = W (Fp), K0 = W [1
p
] and � be the Frobenius morphism of

W . Fix a �nite extensionK ofK0 such that � and the weight decomposition VK = VK;0�VK;1
are de�ned over K. Set �E� = E�K0(= K0), Bp = B
QQp, Vp = V 
QQp, h; ip = h; i
QQp,

Gp = GQp , and OBp = OB 
Z Zp.

2.1.1 From global PEL data to local PEL data

Let SD;Kp be theOE
ZZ(p)-scheme representing the functorM =M(D) of Th. 1.2.1, and �x

a point [(A0; i0; �0; �0)] 2 SD;Kp

�
Fp
�
, where �0 is a principal polarization. Correspondingly

we have a p-divisible group X = A0(p) over Fp, endowed with the action iX : OBp !

EndX induced by i0, and with the principal polarization �X : X ! X̂ induced by �0. The

polarization �X respects the OBp-action and it is well de�ned up to a constant in Q�p . The
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triple (X; iX; �X) is determined modulo isomorphisms by [(A0; i0; �0; �0)]: We associate to

(X; iX; �X) the isocrystal (N := M�(X)[
1
p
];F) over K0 endowed with an action of Bp and

with a non-degenerate bilinear form of isocrystals 	 : N �N ! 1(1) (well de�ned up to an

element of Q�p ) that is skew-Hermitian with respect to �.

Fix an isomorphism of B
QK0-modules N ' V 
QK0 that respects the skew-symmetric

forms on both sides. Write the action of Frobenius on the right hand side as F = b 
 �

for a unique element b 2 Gp(K0); by construction c(b) = p. The isocrystal V 
Q K0 has

slopes in the interval [0; 1], and in the decomposition of the K-vector space V 
Q K under

the co-character � only the weights 0 and 1 appear. Since �0 is a separable polarization,

Prop. 1.2.2 implies that the pair (b; �) is admissible in the sense of [RZ96], 1. We conclude

that D together with the �xed point [(A0; i0; �0; �0)] 2 SD;Kp

�
Fp
�
determines a local Qp-

PEL datum Dp = (Bp;
� ; Vp; h; ip ;OBp ;�; b; �); having re�ex �eld E� . Denote by �M the

formally smooth scheme over SpfO
�E�
that represents the functor associated in 1.1.2 to the

pair (Dp; (X; iX; �X)).

Let J(Qp) be the group ofK0-automorphisms of the isocrystal (V 
QK0; b
�) equivariant

for the action of Bp and preserving the polarization form induced by h; i up to a non-zero

scalar in Qp. J(Qp) is the group of Qp-rational points of an algebraic group J de�ned over

Qp and it is isomorphic to the group J 0(Qp) of quasi-isogenies f : (X; iX)!(X; iX) of p-

divisible groups over Fp such that f̂ � �X � f 2 Q�p �X. Since a choice of b 2 Gp(K0) has

been �xed, we identify J(Qp) with J 0(Qp): The group J(Qp) acts on �M from the left by the

rule g � [(X; i; �; �)] := [(X; i; �; � � g�1)]; where [(X; i; �; �)] 2 �M(S) for some scheme S in

NILPO �E�
.

Denote by I(Q) the group of quasi-isogenies of Fp-abelian variety (A0; i0)! (A0; i0) that

send �0 into itself; I (Q) is the group of rational points of an algebraic group I de�ned over

Q. It acts by quasi-isogenies on the tuple (X; iX; �X), hence on ((N;F); i;Q�p 	), de�ning

a morphism �0;p : I(Q) ! J(Qp) factoring through I(Q) ,! I(Qp). Since I(Q) acts by

skew-Hermitian symplectic B-equivariant similitudes on H1(A0;Apf ) ' V 
Q Apf , there is a

homomorphism �p0 : I(Q) ! G(Apf ) depending of the choice of a representative �0 for the

class �0.
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Let DK0 be the universal cover of Gm=K0 in the sense of quasi-algebraic groups and let

� : DK0 ! GK0 be the slope morphism associated to b (cf. 1.1.1). Following [Kot85], we say

that the p-divisible group X of (A0; i0; �0) is basic if � factors through the center of GK0.

This is equivalent to say that the algebraic group JQp is an inner form of Gp (cf. [RZ96],

1.15).

2.1.2 Uniformization of basic isogeny classes

The formal scheme �M is not in general de�ned over OE� . There is a suitable completion of

�M that can be written asM
Spf OE� SpfO �E�
for a pro-formal schemeM over Spf(OE� ) (cf.

[RZ96], 3.41). The action of J(Qp) on �M descends to an action onM:

We let

Z([(A0; i0; �0; �0)])(Fp) � SD;Kp(Fp)

to be the set of points [(A; i; �; �)] 2 SD;Kp

�
Fp
�
such that there exists an isogeny (A0; i0)!

(A; i) in AbSCH � sending �0 into �. If the p-divisible group X of (A0; i0; �0) is basic in the

sense of 2.1.1, then Z([(A0; i0; �0; �0)])(Fp) is the set of Fp-valued points of a closed subset

Z := Z([(A0; i0; �0; �0)]) of SD;Kp 
 Fp (cf. [RR96]).

We have the following result, due to M. Rapoport and Th. Zink (cf. [RZ96], 6):

Theorem 2.1.1. Let us �x [(A0; i0; �0; �0)] 2 SD;Kp

�
Fp
�
such that the p-divisible group of

(A0; i0; �0) is basic; denote by Z the closed subspace of SD;Kp de�ne above: Let bSD;Kp=Z be

the formal completion of SD;Kp along Z. Then there is a canonical isomorphism of formal

schemes over SpfOE� :

#Kp : I(Q)nM�G(Apf )=K
p ! bSD;Kp=Z ;

where I(Q) acts on M via �0;p, and on G(Apf ) via �
p
0. The system of morphisms f#KpgKp

is equivariant with respect to the right Hecke G(Apf )-action on the projective systems of both

sides above.

The action of G(Apf ) on f bSD;Kp=ZgKp is the Hecke action de�ned in 1.2.2. If Kp
1 � Kp

2

are open compact subgroups of G(Apf ), there is a transition map I(Q)nM�G(Apf )=K
p
1 !
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I(Q)nM�G(Apf )=K
p
2 . A projective system of formal schemes remains therefore de�ned and,

if g 2 G(Apf ), the map xKp 7! g�1xKpg (x 2 G(Apf )) induces a morphism

g : I(Q)nM�G(Apf )=K
p ! I(Q)nM�G(Apf )=g�1Kpg:

This is the Hecke G(Apf )-action on I(Q)nM�G(Apf )=Kp.

One also sees that I is an inner form of G such that I(R) is compact modulo the center,

and there are canonical identi�cations I(Apf ) = G(Apf ), J(Qp) = I(Qp): this is a consequence

of the basicity of X (cf. [RZ96], 6.30).

Assume from now on that X is basic. There is then a morphism of functors �Kp :

I(Q)n �M�G(Apf )=Kp ! SD;Kp 
OE� O �E�
over NILPO �E�

, such that:

Proposition 2.1.2. The morphism �Kp induces a canonical bijection of sets:

�Kp(Fp) : I(Q)n �M(Fp)�G(Apf )=K
p ! Z(Fp)

which is equivariant for the Hecke G(Apf )-action.

Since it will be needed later, we recall the de�nition of �Kp , that we shall call the

uniformization morphism for the isogeny class Z. We have the well known:

Lemma 2.1.3. Let S 2NILPZp , and let A0 be an object in AbSCH �; set X 0 = A0(p). For

any quasi-isogeny � : X 0 ! X 00 of p-divisible groups over S that respects the OBp-action,

there exists an element A00 of AbSCH � whose p-divisible group is X 00 and a quasi-isogeny

� : A0 ! A00 of AbSCH � inducing � : X 0 ! X 00. Furthermore the arrow � : A0 ! A00 in

AbSCH � is uniquely determined; we denote A00 by ��A
0. This construction is functorial, i.e.

(�2�1)�A
0 = �2� (�1�A

0).

Under the hypothesis of the above lemma, if A0 comes with a polarization �, then �

de�nes a polarization ��� :=
�
��1
�^
���1 on A00. If furthermore A0 comes with a rigidi�cation

� : H1(A
0;Apf )! V 
Q Apf (i.e., a symplectic OB-equivariant isomorphism), then A00 comes

with the rigidi�cation ��� := � �H1(�
�1;Apf ):

15



Let S be a �xed scheme in NILPO �E�
. Denote by

( ~A0;~{0; ~�0; ~�0)

a �xed lifting of (A0; i0; �0; �0) over O �E�
(Prop. 1.2.2) and let (~X;~{X; ~�X) be the correspond-

ing lifting of (X; iX; �X) to O �E�
. Consider a p-divisible group with additional structure

[(X; i; �; �)] 2 �M(S), so that � : (X; iX)S ! (X; i)S is an S-quasi-isogeny; by the rigid-

ity property of quasi-isogenies of p-divisible groups, � lifts uniquely to an S-quasi-isogeny

~� : (~X;~{X)S ! (X; i). By the above lemma, we obtain therefore an abelian scheme ~��( ~A0=S)

over S endowed with an action ~��(~{0) of OB, a polarization ~��(~�0) and a level structure

~��(~�0), such that

[(~��( ~A0=S); ~��(~{0); ~��(
~�0); ~��(~�0))] 2 SD;Kp (S) :

We de�ne a morphism of functors �Kp over NILPO �E�
by letting, for any S 2 Obj(NILPO �E�

):

�Kp(S) : �M(S)�G(Apf )=K
p ! SD;Kp(S);

[(X; i; �; �)]� gKp 7�! [(~��( ~A0=S); ~��(~{0); ~��(
~�0); g

�1 � ~��(~�0))]:

The family f�KpgKp is equivariant with respect to the right G(Apf )-action on the projective

systems of both sides above (this G(Apf )-action is what we refer to as the Hecke G(A
p
f )-action

or, simply, as the Hecke action).

Fix S 2 Obj(NILPO �E�
), [(X; i; �; �)] 2 �M(S), g 2 G(Apf ) and � 2 I(Q); we de�ne

� �
�
[(X; i; �; �)]� gKp

�
:= [(X; i; �; � � �0;p(��1)S)]� �p0(�)gK

p:

As �Kp is invariant under this I(Q)-action, it induces a morphism of functors

�Kp : I(Q)n �M�G(Apf )=K
p ! SD;Kp 
OE� O �E�

;

whose Fp-points give the Hecke isomorphism of Prop. 2.1.2.

Remark 2.1.4. If G is connected but does not satisfy the Hasse principle, slight variants

of the above results can be proved: one replaces the closed set Z(Fp) � SD;Kp(Fp) de�ned

above by the set of points [(A; i; �; �)] 2 SD;Kp

�
Fp
�
such that the homogenously principally
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polarized Bp-isocrystal of (A; i; �) is isomorphic to ((N;F); i;Q�p 	). This set, that we still

denote by Z(Fp), de�nes a closed subscheme Z of SD;Kp 
 Fp, if X is basic ([RZ96], 6.27).

The uniformization morphism associated to the �xed element [(A0; i0; �0; �0)] gives now an

isomorphism of formal schemes over SpfOE� :

I(Q)nM�G(Apf )=K
p ! bSD;Kp=Z ;

for some Z � Z open and closed. If G satis�es the Hasse principle, Z = Z is an isogeny class

on SD;Kp 
 Fp and we recover the results stated above; in general Z(Fp) =
`q

i=1 Zi(Fp) is

the disjoint union of �nitely many isogeny classes on SD;Kp(Fp) ([RZ96], 6.30). If we denote

by �i the uniformization morphism associated to the ith isogeny class Zi contained in Z, we

have an isomorphism of formal schemes over SpfO �E�
:

`q
i=1�i : I(Q)n

�`q
i=1

�M
�
�G(Apf )=K

p ! bSD;Kp=Z 
O �E�
;

where
`q

i=1
�M is the sum of q copies of �M (notice in fact that �M only depends upon

the quasi-isogeny class of the p-divisible group of (A0; i0; �0), and this quasi-isogeny class is

constant along Z).

2.2 Restriction to the superspecial locus

2.2.1 Superspecial abelian varieties

Let G1=2 be the p-divisible group over Fp having slope 1=2. An abelian variety A of dimen-

sion g over Fp is said to be supersingular (resp. superspecial) if A(p) is isogenous (resp.

isomorphic) to Gg
1=2 over Fp. An elliptic curve over Fp is supersingular if and only if it is

superspecial (cf. [Dem72], page 92).

If E=Fp is a supersingular elliptic curve, there exists a canonical Fp2-rational model E 0 of

E such that the geometric Frobenius E 0 ! E 0(p
2) = E 0 equals [�p]. The association E 7! E 0

is functorial and EndFp2 E
0 = EndFp E. Moreover, the cotangent space of E has a canonical

Fp2-structure and E 0(p) is a canonical model of E(p) whose covariant Dieduonné module
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A01=2 :=M�(E
0(p)) over W (Fp2) is isomorphic to:�

W (Fp2)2;F =
�
�p

1
�
�0; V =

�
p
�1
�
�0;�1

�
;

where �0 is the Frobenius morphism ofW (Fp2): One has A1=2 :=M�(E(p)) ' W (Fp)[F;V ]
W (Fp)[F;V ](F+V )

,

and the ring of Dieudonné module endomorphisms EndA1=2 = EndA01=2 is isomorphic to the

maximal order in the quaternion division algebra over Qp (cf. [Ghi04a], Cor. 7). Notice

F + V = 0 in A01=2 and A1=2. By a result of Deligne and Ogus ([Ogu79], Th. 6.2, and

[Shi], Th. 3.5), if g � 2 and E1; :::; E2g are supersingular elliptic curves over Fp, there is an

isomorphism E � :::� Eg ' Eg+1 � :::� E2g over Fp.

If A is an abelian variety over Fp of dimension g � 2, then A is superspecial if and only

if A is isomorphic over Fp to Eg, for some supersingular elliptic curve E=Fp; this happens

if and only if M�(A(p)) ' Ag1=2 as Dieduonné W (Fp)-modules (cf. [K Z98], 1.6.). It follows

that a superspecial abelian variety A=Fp of dimension g � 2 has a canonical model A0 over

Fp2, in which the geometric Frobenius equals [�p]. Furthermore the association A 7! A0 is

functorial. If A = Eg is a superspecial abelian variety over Fp of dimension g � 1, then

A comes with a canonical principal polarization induced from the canonical polarization of

E. In the rest of the dissertation we will identify canonically E and Ê, so that A will be

endowed with the identity principal polarization.

2.2.2 Uniformization of the superspecial locus

Let us �x integers g � 1, N � 3 and a prime number p not dividing N ; let us denote by

Ag;N the quasi-projective smooth scheme over Z(p) classifying prime-to-p isogeny classes of

tuples (A; �; �), where A is an abelian projective scheme of relative dimension g over some

S 2SCH Z(p) , � is a principal homogeneous polarization of A, and � is a principal level N

structure on (A; �) (this scheme is sometimes referred to as the Siegel moduli scheme of

principal level N). If g = 1, A1;N(Fp) contains a �nite number of supersingular elliptic

curves, which form an isogeny class; if g > 1, the supersingular abelian varieties in Ag;N(Fp)

de�ne a closed subset of positive dimension (cf. [K Z98], 4.9). This situation also occurs for

other Shimura varieties of PEL type and motivates what follows.
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Fix D = (B;� ; V; h; i ;OB;�; h;K
p; �) a global PEL datum with good reduction at p,

and neat level Kp. Denote by G the associated algebraic group, assumed connected and

satisfying the Hasse principle. The objects E; E� ; �E� , Fp; W , K0; �, K , �; Bp, Vp, h; ip, Gp,

OBp are de�ned as at the beginning of section 2.1.

Let SD;Kp be the quasi-projective smooth scheme representing M(D) over SpecO �E�
.

Suppose the common dimension of the abelian schemes parametrized by SD;Kp is g :=

dimC VC;0 � 2; �x a supersingular elliptic curve E0 over Fp, and denote its canonical model

over Fp2 by E 00. Let A0 = Eg
0 be the corresponding superspecial abelian variety over Fp,

endowed with the identity principal polarization �0 = idgE0.

Assume that SD;Kp contains a point of the form [(A0; i0; �0; �0)] 2 SD;Kp

�
Fp
�
that we

�x (an obvious necessary condition for this to happen is the existence of a Q-algebra homo-

morphism B ! Mg(B), where B is the quaternion Q-algebra rami�ed at p and 1). The

p-divisible groupX = A0(p) over Fp is isomorphic toGg
1=2 and it comes with an additional PE-

structure (iX; �X); by Dieudonné functoriality, we obtain an isocrystal (N := M�(X)[
1
p
];F)

over K0 endowed with an action of Bp and with a non-degenerate bilinear form of isocrystals

	 : N � N ! 1(1). We de�ne b as in 2.1.1, noticing that since N is isoclinic, the slope

morphism associated to G and b over K0 has image contained in the center of G, so that b

is basic by [Kot85], 5.

As in 2.1.1, a local PEL datum Dp remains de�ned and we can consider the closed

subscheme M0(Fp) := M0
(X;iX;�X)

(Fp) of �M(Fp) as de�ned in 1.1.3. We identify M0(Fp)

with J(Qp)=J(Zp).

De�nition 2.2.1. We let Z 0(Fp) := Z 0([(A0; i0; �0; �0)])(Fp) � SD;Kp(Fp) be the set of

points [(A; i; �; �)] 2 Z
�
Fp
�
such that the principally polarized p-divisible group (A(p); i; �)

of (A; i; �) is isomorphic to (X; iX; �X). We call Z 0(Fp) the superspecial locus associated to

(X; iX; �X).

The set Z 0(Fp) is a closed subset of Z(Fp); furthermore if the class [(A; i; �; �)] belongs

to Z 0
�
Fp
�
, the p-divisible group of A is isomorphic to Gg

1=2, so that A ' A0 is superspecial.
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Remark 2.2.2. In [Eke87], it is shown that the isomorphism classes of principal polarizations

on A0 form a single genus class, so that if � and �
0 are two principal polarizations on A0, the

p-adic polarizations associated to � and �0 respectively on the Dieudonné module of A0(p) are

isomorphic. Hence (A0(p); �) ' (A0(p); �
0
) as principally polarized p-divisible groups over

Fp. Let us denote by Ag;N the Siegel moduli scheme over Z(p) introduced at the beginning of

this paragraph. As a consequence of the cited above result of [Eke87], we have on Ag;N(Fp):

Z 0(Fp) = f[(A0; �; �)] : � a principal polarization on A0,

� a principal level N structure on A0g:

Proposition 2.2.3. The uniformization morphism �Kp(Fp) of Prop. 2.1.2 induces a canon-

ical isomorphism:

�0Kp(Fp) : I(Q)nM0(Fp)�G(Apf )=K
p ! Z 0(Fp);

which is equivariant for the Hecke G(Apf )-action. We call �0Kp(Fp) the uniformization mor-

phism for the superspecial locus.

Proof. Under our assumptions on G, and by the basicity of b, the map �Kp(Fp) is a

well-de�ned Hecke equivariant isomorphism. The action of I(Q) on �M(Fp) determines an

action onM0(Fp) � �M(Fp), so that we obtain a natural injective Hecke equivariant map:

I(Q)nM0(Fp)�G(Apf )=K
p ,! I(Q)n �M(Fp)�G(Apf )=K

p:

De�ne �0Kp(Fp) by precomposing this map with �Kp(Fp). In order to determine the image

of �0Kp(Fp), we follow the construction of the uniformization morphism over the �eld Fp (cf.

2.1.2).

Pick an element [�] 2 M0(Fp); the quasi-isogeny � : (X; iX; �X) ! (X; iX; �X) deter-

mines, by Lemma 2.1.3, a principally polarized abelian variety (��A0; ��i0; ���0) in AbSCH
�,

whose p-divisible group is isomorphic to (X; iX; �X), so that the image of �
0
Kp(Fp) is con-

tained inside the superspecial locus.
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On the other hand, let [(A; i; �; �)] 2 Z 0(Fp) and choose a quasi-isogeny of principally

polarized abelian varieties � : (A0; i0; �0) ! (A; i; �). Then � de�nes a quasi-isogeny of

the corresponding p-divisible groups � : (X; iX; �X) ! (A(p); i; �). Precomposing � with

an isomorphism � : (A(p); i; �) ! (X; iX; �X) we obtain an element [� � �] 2 M0(Fp) such

that (� � �)�(A0; i0; �0) = ��(A; i; �) ' (A; i; �). Let now g 2 G(Apf ) be de�ned by g :=

(� � �)� �0 � ��1; the pre-image of [(A; i; �; �] 2 Z 0(Fp) under �0Kp(Fp) is the I(Q)-class

represented by [� � �]� gKp. �

We have seen that the group I(Q) := (EndOB(A0; �0)
ZQ)� acts on the left uponM0(Fp)

through the map �0;p : I(Q)! J(Qp). We have therefore the canonical identi�cation:

I(Q)nM0(Fp)
'! I(Q)nJ(Qp)=J(Zp);

where the action of I(Q) onM0(Fp) is the one described in 2.1.1, so that the action of I(Q)

on the coset space J(Qp)=J(Zp) is given by x � gJ(Zp) = (M�(x) � g)J(Zp), for all x 2 I(Q)

and all g 2 J(Qp). We will write x � gJ(Zp) = xgJ(Zp) to shorten notation.

Corollary 2.2.4. There is a canonical isomorphism equivariant for the Hecke G(Apf )-action:

�0Kp(Fp) : I(Q)n
�
J(Qp)=J(Zp)�G(Apf )=K

p
�
! Z 0(Fp);

where the action of I(Q) on J(Qp)=J(Zp) is the one described above. Furthermore, Z 0(Fp)

is a �nite set.

Proof. We just need to show the �niteness of Z 0(Fp). By [RZ96], 6.29 and the basicity

of X, we have canonical identi�cations I(Apf ) = G(Apf ) and J(Qp) = I(Qp), so that we can

rewrite the domain of the morphism �0Kp(Fp) as:

I(Q)n
�
I(Qp)=I(Zp)� I(Apf )=C

p
�
= I(Q)nI(Af )=C;

where Cp is the image of Kp in I(Apf ) and C = I(Zp)� Cp. By the proof of 6.23 in [RZ96],

I(Q) is a discrete subgroup of I(Af ); by Prop. 1.4 of [Gro99], the quotient space I(Q)nI(Af )

is therefore compact, so that I(Q)nI(Af )=C is �nite. �

21



CHAPTER 3

Comparison of Hecke eigensystems

We apply the results of the last section to study systems of Hecke eigenvalues coming from

unitary modular forms.

3.1 Superspecial points on unitary Shimura varieties

3.1.1 PEL data of type A

Let us �x from now on embeddings Q! C and � : Q! Qp; we assume the notation of 1.2.1.

Fix a choice i of square root of �1 in C. Let B = k = Q(
p
�) be a quadratic imaginary �eld

(� 2 Z; � < 0). Fix an embedding � : k ,! C such that �(
p
�) = i

p
�� (where

p
�� > 0)

and identify k 
Q R and C via � . Assume that p 6= 2 is a prime which is inert in k=Q.

(The fact that p is odd is used in the proof of Lemma 3.1.3. Moreover, in order to work with

PEL data having good reduction at p, we require that p is unrami�ed in the extension k=Q.

We exclude the case of p split in k in order to guarantee that k embeds in the quaternion

Q-algebra rami�ed at fp;1g: cf. the beginning of proof of Prop. 3.1.1).

Let x 7! x denote the non-trivial �eld automorphism of k. Set V = kg for a positive

even integer g = 2n; �x two non-negative integers r and s whose sum is g and let H =�
�
p
�Ir p

�Is

�
. Let us denote by h; i : V � V ! Q the map de�ned by setting hv; wi =

Trk=Q (v
tHw) for every v; w 2 V : h; i is a Q-bilinear non-degenerate skew-Hermitian pairing.

Let h : C! Endk V 
Q R =Mg(k)
Q R be the R-algebra homomorphism de�ned by

a+ bi 7�! 1
 a�H 
 bp
��

(a; b 2 R).

Set OB = Ok;(p) = Z(p)[
p
�], and � =

�
OB 
Z(p) Zp

�g
.
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The algebraic group G associated to the datum (B;� ; V; h; i) as in 1.2.1 is GUg(k; r; s):

for a Q-algebra R, GUg (k 
Q R; r; s) = fA 2 GLg(k 
Q R) : A
t
HA = c(A)H; c(A) 2 R�g:

Notice that G is connected and it has a reductive model over Z as de�ned in 1.2.2; such

a model will be from now on considered �xed and denoted by the same letter G. Observe

that G(Zp) can then be canonically identi�ed with the group of unitary similitudes on �,

endowed with its Zp-valued Hermitian pairing induced by h; i.

The group ker c = Ug(k;H) is an inner form of the quasi-split unitary group overQ associated

to the extension k=Q, hence it is a group of type Ag�1 when viewed over Q; being g even, G

satis�es the Hasse principle ([Kot92], 7).

If fea; fbg1�a;b�g denotes the standard ordered basis of C2g,

VC;0 = hiea 
 1� ea 
 i; ifb 
 1 + fb 
 ii1�a�r
1�b�s

and the corresponding representation � : B ! EndC(VC;0) ' Mg(C) is induced by the

assignment
p
� 7�! H. The �eld of de�nition of � is E = Q if r = s, and E = k otherwise;

furthermore the determinant polynomial is:

f(X1; X2) := det(X1 +
p
�X2;VC;0) = (X1 �

p
�X2)

r(X1 +
p
�X2)

s 2 OE[X1; X2]:

Let N � 3 be an integer prime to p and let Kp = U (N) (notice that, instead of working

with U (N), we could work more generally with a neat open compact subgroup of G(Apf )).

We have so far de�ned a Q-PEL datum DA with good reduction at p and re�ex �eld E.

If � : GLg ! GLm is a rational Z(p)-representation and if R is any Z(p)-algebra,

M�(DA;R) is the space of unitary (or Picard) R-modular forms of signature (r; s) for the

�eld k, having level N and weight � (cf. 1.2.3).

Let � be the co-character associated to h. Let Fp be a �xed algebraic closure of the

residue �eld of E� � Qp; set W = W (Fp), K0 = W [1
p
] � Qp and denote by � the Frobenius

morphism of W . Fix a �nite extension K � Qp of K0 such that � is de�ned over K; set

�E� = E�K0(= K0). De�ne Bp, Vp, h; ip, Gp, OBp as before.
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3.1.2 Choice of a superspecial point

The embedding � : Q ,! Qp identi�es k� with the degree two unrami�ed extension of Qp

inside Qp; if Fp2 denotes the residue �eld of k� , we obtain an embedding Fp2 � Fp.

Proposition 3.1.1. There is a supersingular elliptic curve E0 over Fp whose endomorphism

ring EndE0 contains an element '� such that:

1. '2� = �;

2. the tangent map Lie'� : LieE0 ! LieE0 is multiplication by the scalar
p
�(mod p) 2

Fp2 � Fp, where
p
� 2 k is viewed as an element of k� via �:

Proof. Let E be any �xed supersingular elliptic curve over Fp. Since p does not split

in k=Q, Th. 3.8 at page 78 of [Vig80] implies that there is an embedding of Q-algebras

j : k ,! End0E; there is a maximal order R of End0E containing j(
p
�): in fact we can

write End0E = j(k) � j(k)u for some u 2 End0E (cf. [Vig80], Cor. 2.2, page 6), and the

left order of the ideal Z + Zj(
p
�) + Zu + Zj(

p
�)u of End0E clearly contains j(

p
�). By

work of Deuring, there is a an elliptic curve E0 over Fp and a quasi-isogeny f : E0 ! E such

that R = f � EndE0 � f�1, so that EndE0 contains an element '0� whose square equals �

(cf. [Wed07], 2.15).

The tangent morphism Lie'0� can be canonically identi�ed with an element of Fp; since

(Lie'0�)
2 = �mod p, we have Lie'0� = �

p
�(mod p) 2 Fp2. We de�ne '� := �'0� depending

on Lie'0� being equal to �
p
�(mod p) respectively. The pair (E0; '�) we just constructed

satis�es the requirement of the proposition. �

Fix a pair (E0; '�) over Fp as in the above proposition (the choice of isomorphism class

of E0 will not be relevant later on, since g � 2); let E 00 denote the canonical model of

E0 over Fp2 . Denote by R the Z-algebra EndE0 = EndFp2 E
0
0: R is a maximal order in

B := End0E0 = EndE0 
Z Q, and B is a quaternion algebra over Q whose rami�cation set

is fp;1g. If � is a place of Q, we denote by B� the Q�-algebra B
QQ�; we also denote by

� the canonical involution of B.
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Set A0 = Eg
0 , �0 = idgE0 : We obtain canonical isomorphisms EndA0 = Mg(R) and

End0A0 = Mg(B). Under this identi�cation and the canonical isomorphism A0
'! Â0, the

principal polarization �0 = idgE0 of A0 coincides with the identity matrix Ig 2 Mg(R), so

that the auto-quasi-isogenies of the principally (homogeneously) polarized abelian variety

(A0; �0) are identi�ed with the elements of the unitary quaternion similitude group:

GUg(B; Ig) := fX 2 GLg(B) : X�X = c(X) � Ig; c(X) 2 Q�g;

where X� := X
t
. Similarly, the automorphisms of the pair (A0; �0) are given by GUg(R; Ig),

and the automorphisms of (A0; �0) viewed as a polarized abelian variety up to prime-to-p

isogeny are given by GUg(R
ZZ(p); Ig). Notice that GUg(B; Ig) de�nes a reductive algebraic

group over Q, and that Ug(B; Ig) is compact at in�nity, since Ug(B1; Ig) � O(4g).

Let � : k ,! B be the Q-algebra homomorphism such that �(
p
�) = '�. De�ne a

Z(p)-algebra monomorphism i0 : Ok;(p),!End(A0) 
Z Z(p) = Mg(R 
Z Z(p)) by requiring

that
p
� 7!

�
�'�Ir

'�Is

�
. On the dual variety Â0 = A0 we have the dual action {̂0 :

Ok;(p),!Mg(R 
Z Z(p)) de�ned by {̂0(b) = i0(b)
� for any b 2 Ok;(p). Since k is embedded

into B by �, the conjugation on B induces on �(k) the only non-trivial automorphism; we

therefore have:

i0(
p
�) = �i0(

p
�) = i0(

p
�)�;

so that �0 � i0(b) = {̂0(b) � �0 for any b 2 Ok;(p), and �0 is a principal polarization for

(A0; i0) (equivalently, i0(b�) = i0(b)
y for any b 2 Ok;(p), where y denotes the Rosati involution

associated to �0).

Fix an ordered basis ft1; :::; tgg for the Fp-vector space LieA0 = (LieE0)
g such that

ftig is (the natural image of) a basis for the Lie algebra of the simple ith factor of A0 =

Eg
0 (1 � i � g). With respect to ft1; :::; tgg, Lie i0(

p
�) acts on LieA0 via the matrix�

�
p
�(mod p)�Ir p

�(mod p)�Is

�
2 GLg(Fp2) � GLg(Fp):We conclude that the �xed pair (A0; i0)
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satis�es Kottwitz�determinant condition, since we have the following equalities in Fp2:

det(X1 +
p
�X2; LieA0) = det

0@(X1 �
p
�X2)Ir

(X1 +
p
�X2)Is

1A (mod p)
= (X1 �

p
�X2)

r(X1 +
p
�X2)

s(mod p)

= f(X1; X2) (mod p):

We �x a U(N)-orbit of an isomorphism �0 : H1(A0;Apf ) ! V 
Q Apf of skew-hermitian

modules with k-action. Let SDA;U(N) be the quasi-projective smooth scheme overO �E�
de�ned

in Th. 1.2.1; by de�nition of our moduli variety, we have determined a point:

[(A0; i0; �0; �0)] 2 SDA;U(N)(Fp)

that we consider �xed for the remaining of this section. Correspondingly we have associated

the closed subspace Z 0(Fp) = Z 0([(A0; i0; �0; �0)])(Fp) of SDA;U(N)(Fp) as in Def. 2.2.1.

The p-divisible group X :=A0(p) over Fp is isomorphic to Gg
1=2 and is endowed with the

action iX of OBp induced by i0 and the principal polarization �X : X ! X̂ ' X. We

associate to (X; iX; �X) the Dieudonné module M := M�(X) over W , endowed with an

action iM of OBp and a principal polarization eM : M �M ! W of Dieudonné modules,

which is skew-Hermitian with respect to �, and well de�ned only up to a scalar factor in

Z�p . By inverting p, we obtain an isocrystal (N := M[1
p
];F) over K0 endowed with an

action of Bp and with a non-degenerate bilinear form of isocrystals 	 : N �N ! 1(1). We

�x an isomorphism of B 
Q K0-modules N ' V 
Q K0 that respects the skew-symmetric

forms on both sides and we then write the action of Frobenius on the right hand side as

F = b 
 � for some b 2 Gp(K0) (recall that since N is isoclinic, b is basic). We have a Qp-

PEL datum for moduli of p-divisible groups Dp= (Bp;
� ; Vp; h; ip ;OBp ;�; b; �) having re�ex

�eld E� . Associated to Dp and (X; iX; �X) we have the moduli functor �M and hence the

closed subspaceM0(Fp) � �M(Fp) (cf. 1.1.3).

Cor. 2.2.4 gives a canonical isomorphism (equivariant with respect to the Hecke G(Apf )-

action) associated to (X; iX; �X):

�0U(N)(Fp) : I(Q)n
�
J(Qp)=J(Zp)�G(Apf )=U(N)

�
! Z 0(Fp):
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Recall that both sides above are �nite sets.

3.1.3 The groups I and J

We now describe the groups appearing in the domain of �0U(N)(Fp): As we saw above, G =

GUg(k; r; s) and

U(N) = Ker(G(Ẑp)! G(Ẑp=N Ẑp))

is a compact open subgroup of G(Apf ) (recall that in 3.1.1 we have �xed a speci�c integral

model over Z for the unitary group GUg(k; r; s)).

By de�nition, I(Q) is the group of auto-Ok;(p)-quasi-isogenies of the homogeneously prin-

cipally polarized abelian variety (A0; �0), so that if we let � := �� =
�
�'�Ir

'�Is

�
2Mg(R);

then I(Q) = fX 2 GUg(B; Ig) : X� = �Xg; and for any Q-algebra S we have I(S) = fX 2

GUg(B
Q S; Ig) : X� = �Xg:

On the other side, J(Qp) is the group of K0-automorphisms of the homogeneously prin-

cipally polarized isocrystal with k-action ((N;F);i;Q�p 	); it has a compact subgroup J(Zp)

that is given by theW -automorphisms of the homogeneously principally polarized Dieudonné

module (M;iM; eM). SinceM =M�(A0(p)) ' A�g1=2 as principally polarized Dieudonné mod-

ules, where A�g1=2 is endowed with the product polarization coming from the polarization�
0
�1

1
0

�
on A1=2, one deduces ([Ghi04a], Cor. 10), keeping track of the action of Ok;(p):

J(Qp) ' fX 2 GUg(Bp; Ig) : X� = �Xg = I(Qp);

J(Zp) ' fX 2 GUg(Rp; Ig) : X� = �Xg =: I(Zp);

where Rp denotes the unique maximal order of the skew-�eld Bp. The above isomorphisms

are canonical.

We deduce from Cor. 2.2.4:

Proposition 3.1.2. There is a canonical isomorphism equivariant with respect to the Hecke

G(Apf )-action:

�0U(N)(Fp) : I(Q)nI(Af )=UN ! Z 0(Fp);
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where UN := J(Zp) � U(N) is viewed as an open compact subgroup of I(Af ) = J(Qp) �

G(Apf ).

If Lq is a �nite �eld of cardinality q, there is, up to isomorphism, a unique Hermitian

space of dimension m � 1 associated to the quadratic extension Lq2=Lq (cf. [Lew82]). We

denote the associated unitary group - de�ned over Lq - by Um; in particular GUm(Lq2) =

fX 2 GLm(Lq2) : X�X = c(X) � Im; c(X) 2 L�q g: (Notice we do not denote this group by

GUm(Lq)).

We will also need to consider the algebraic group G(Um1�Um2) � GUm1�GUm2 de�ned

over Lq, whose Lq-points are:

G(Um1 � Um2)(Lq2) =

8<:g =
0@ X 0m1;m2

0m2;m1 Y

1A : g 2 GUm1+m2(Lq2)

9=; =

=

8<:
0@ X 0m1;m2

0m2;m1 Y

1A : X
�X=cIm1

Y �Y=cIm2
; c 2 L�q

9=; :

Via the embedding � : k ,! B that we �xed, we obtain a natural epimorphism Rp � Fp2,

indeed we can write Rp = Zp['�] � Zp['�]� for a choice of uniformizer � of Rp such that

�2 = p, so that:
Rp

�Rp

�=
Zp['�]
pZp['�]

'! Zp[
p
�]

pZp[
p
�]
= Fp2 :

Lemma 3.1.3. Let �G := G(Ur�Us)(Fp2); there is a short exact sequence of groups (de�ning

Up):

1! Up ! J(Zp)
�! �G! 1,

where the map � : J(Zp) ! �G is induced by the canonical epimorphism Rp � Fp2 arising

from the �xed embedding � : k ,! B.

Proof. By previous considerations, we have a natural identi�cation J(Zp) = fX 2

GUg(Rp; Ig) : X� = �Xg: Via the embedding �, we identify '�(mod�) with
p
�(mod p) 2

Fp2; if X 2 J(Zp), then �(X) 2 GUg(Fp2) and the equation X� = �X for an (r; s)-block

matrix X =
�
A
C
B
D

�
2 GUg(Rp; Ig) reduces to the equation in Mg(Fp2):�

A
C
B
D

�
(mod�) �

�
�
p
��Ir p

��Is

�
(mod p) =

�
�
p
��Ir p

��Is

�
(mod p) �

�
A
C
B
D

�
(mod�):
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We deduce that B(mod�) = 0r;s and C(mod�) = 0s;r, since p 6= 2, so that �(X) 2 �G:

On the other side, if Y =
�

T
0s;r

0r;s
S

�
2 �G, then we can lift Y to a matrix inG(Ur�Us)(Ok� ),

and we can see G(Ur � Us)(Ok� ) � J(Zp) via �, so that � is onto. �

3.2 Unitary Dieudonné modules and invariant di¤erentials

We have the following general fact:

Lemma 3.2.1. Let L be a sub�eld of Fp and let � denote the restriction of the Frobenius of

W to W (L). Let M be a Dieudonné module over W (L) endowed with the Z(p)-linear action

of a Z(p)-algebra with involution (O; �); assume M is endowed with a principal polarization

e : M � M ! W (L) that is skew-Hermitian with respect to the O-action. Then the

assignment:

h; i : M

FM
� M

VM
! L; (x; y) 7! e(x; Fy)(mod p)

is a well-de�ned perfect pairing which is L-linear in the �rst variable and L-semilinear (with

respect to �) in the second variable. Furthermore, h; i is skew-Hermitian with respect to the

action of O.

If furthermore F + V = 0 on M , then h; i de�nes a ��1-alternating pairing M
VM

� M
VM

! L.

Proof. For x; y;m;m0 2M we have:

e(x+ Fm;F (y + V m0)) = e(x; Fy) + e(Fm;Fy) + e(x+ Fm;FV m0)

= e(x; Fy) + e(m;V Fy)� + e(x+ Fm; pm0)

� e(x; Fy)(mod p);

so that h; i is well de�ned; it is clearly L-linear in the �rst variable, and �-semilinear in the
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second since F is �-semilinear. If b 2 O and x; y 2M we have:

hbx; yi =


bx; y

�
= e(bx; Fy)(mod p)

= e(x; b�Fy)(mod p)

= e(x; Fb�y)(mod p)

= hx; b�yi :

To show that h; i is non-degenerate we need to show that the L-linear map " : M
FM

!

Hom�-semi-lin(
M
VM

; L) induced by h; i is an isomorphism of L-vector spaces. Let x 2 M such

that hx; yi = 0 for all y 2M . By assumption we have e(y; V x) 2 pW (L) for all y 2M . If we

denote by � :M ! HomW (M;W ) the isomorphism de�ned by �(m) := e(�;m), we have that

�(V x) has image contained inside pW (L), so that there is z 2M such that 1
p
�(V x) = �(z);

we obtain V x = pz, so that px = FV x = pFz, hence x = Fz 2 FM: We deduce that " is

injective. Similarly one can show that h; i induces an injective �-semilinear map of L-spaces
M
VM

! HomL(
M
FM

; L): We conclude that dimL
M
VM

= dimL
M
FM

and " is forced to be an

isomorphism.

Finally, if F + V = 0, we have FM = VM and if x; y 2M one computes:

hx; yi = e(x; Fy)(mod p) = �e(x; V y)(mod p)

= �e(Fx; y)��1(mod p) = e(y; Fx)�
�1
(mod p)

= hy; xi�
�1
.

This says that h; i is ��1-alternating. �

Fix a point [(A0; i; �; �)] 2 Z 0(Fp). By 2.2.1, (A0; i; �) has a canonical Fp2-structure, that

we denote by (A00; i; �
0
); by functoriality, the various object that we associated to (A0; i; �)

(as p-divisible groups, Dieudonné modules, polarizations, actions of algebras) are obtained

as base changes to Fp (resp. W ) of analogous objects de�ned over Fp2 (resp. W (Fp2)).

Let X0 = A00(p) be the p-divisible group of A
0
0: it is de�ned over Fp2; its covariant Dieudonné

module is M0 = (A01=2)
g (cf. 2.2.1). Denote by iM0 the action of OBp on M

0 and by eM0 :
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M0 �M0 ! W (Fp2) the principal polarization of Dieudonné modules which base change to

iM and eM respectively over W:

By [P 82] 3.3.1, there is a positive integer m such that the canonical map of cotangent

spaces (at the origin) t�A00[pm] ! t�X0 is an isomorphism. As a consequence, the closed im-

mersion A00[p
m] ,! A00 of Fp2-group schemes induces an epimorphism of Fp2-vector spaces

t�A00
! t�X0 : Since A00 is superspecial, dimX

0 = g = dimA00, so that we obtain canonical

identi�cations t�A00 = t
�
X0 and LieA00 = LieX

0:

By covariant Dieudonné theory, we have a natural isomorphism of Fp2-vector spaces:

Lie(X0) =
M0

VM0 :

All the above isomorphisms respect the actions of Ok;(p) on the modules considered, and also

the polarizations induced by �.

By the explicit description of A01=2 given in 2.2.1, we have F + V = 0 on M0, so that by

Prop. 3.2.1, the principal polarization eM0 : M0 �M0 ! W (Fp2) induces a non-degenerate

pairing of Fp2-spaces:

h; i : M
0

VM0 �
M0

VM0 ! Fp2

which is linear in the �rst argument, �-linear in the second argument, and �-alternating (i.e.,

hx; yi = hy; xi�, as �2 = 1 on Fp2). Hence ( M
0

VM0 ; iM0 ; h; i) is a Hermitian space over Fp2 of

dimension g = 2n, endowed with an action of Ok;(p) with respect to which the pairing h; i

is skew-symmetric. Since eM0 is determined only up to a constant in Z�p , the pairing h; i is

determined up to a constant in F�p .

Via the �xed embedding � we obtain the decomposition:

M0 =M0
� �M0

+;

where:

M0
� := fm 2M0 : iM0(

p
�)m = �

p
�mg; rkW (Fp2 )M

0
� = g .

It is easily seen that VM0
� �M0

�, FM
0
� �M0

� and that eM0(M
0
+;M

0
+) = 0; eM0(M

0
�;M

0
�) =
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0 (i.e.,M0
� andM

0
+ are totally isotropic with respect to the principal polarization). We have:

M0

VM0 =
M0

�
VM0

+

�
M0

+

VM0
�
:

This is a decomposition as Fp2-vector spaces with action of Ok;(p), where
p
� acts as the

element �
p
�(mod p) of Fp2 on the �rst summand, and as

p
�(mod p) on the second. Fur-

thermore:

dimFp2
M0

�
VM0

+

= r, dimFp2
M0

+

VM0
�
= s:

Proposition 3.2.2. Let (A0; i; �) be a triple over Fp such that for some level structure �

we have [(A0; i; �; �)] 2 Z 0(Fp); let (A00; i; �
0
) be the canonical Fp2-structure of (A0; i; �).

The automorphism group of the Fp2-Hermitian space with Ok;(p)-action ( M
0

VM0 ; iM0 ; h; i) is

isomorphic to the �nite group �G = G(Ur � Us)(Fp2).

Proof. Let L� :=
M0

�
VM0

�
. Let B+ (resp. B�) be a �xed ordered basis of L+ (resp. L�). If

X is an automorphism of M0

VM0 which commutes with the action of Ok;(p), we have X L� � L�,

so that the matrix representing X with respect to B := B� [ B+ is of the form:

X =

0@ X� 0r;s

0s;r X+

1A 2 GLg(Fp2):

Any such matrix represents - with respect to B - an automorphism of M0

VM0 commuting with

the action of Ok;(p).

Since FM0
+ �M0

� and eM0(M
0
�;M

0
�) = 0, we deduce that hL�;L+i = 0, by de�nition of

the pairing h; i. This implies that h; i is represented, with respect to B, by a Hermitian diag-

onal matrix
�
U�
0s;r

0r;s
U+

�
2 GLg(Fp2), so that if X is as above, it represents an automorphism

of ( M
0

VM0 ; iM0 ; h; i) with respect to B if and only if:

X�
� � U� �X� = cU�;

where c 2 F�p is a scalar depending only on X.
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We conclude that the automorphism group of ( M
0

VM0 ; iM0 ; h; i) is isomorphic to:

G = f(X�; X+) 2 GUr(Fp2 ;U�)�GUs(Fp2 ;U+) : c�(X�) = c+(X+)g,

where c� and c+ are the similitude factor homomorphisms of the two unitary groups above.

The unitary spaces (Frp2 ;U�) and (F
r
p2 ; Ir) are isomorphic, hence we can �nd an isomorphism

GUr(Fp2 ;U�) ' GUr(Fp2) preserving the similitude factor of corresponding matrices in each

group; we can proceed similarly for GUs(Fp2 ;U+). We obtain therefore an isomorphism

G ' �G. �

3.2.1 Invariant di¤erentials

We now work with cotangent spaces. As usual, t�A00 denotes the cotangent space (at the

origin) of A00. As vector spaces over Fp2, we have a canonical identi�cation:

t�A00 = HomFp2

�
M0

VM0 ;Fp2
�
.

Let L := M0

VM0 = L� � L+, where L� :=
M0

�
VM0

�
, so that t�A00 = L

�. The action of Ok;(p) on L

induces by functoriality an algebra homomorphism:

i_ : Oopp
k;(p) = Ok;(p) ! EndFp2 (L

�)

de�ned by i_(b)(�) := � � i(b) for all b 2 Ok;(p) and � 2 t�A00 . Notice that
p
� 2 Ok;(p) acts on

L�� as �
p
�(mod p), via i_.

The non-degenerate Hermitian pairing h; i on L induces a �-semilinear isomorphism of Fp2-

spaces " : L! L� by setting "v : w 7! hw; vi for all v; w 2 L. This allows us to de�ne

a pairing (; ) on L� by setting ("v1 ; "v2) := hv1; v2i for all v1; v2 2 L. We have obtained

a non-degenerate pairing (; ) : L� � L� ! Fp2 ; which is �-semilinear in the �rst variable,

linear in the second, and such that (�1; �2) = (�2; �1)
� for all �1; �2 2 L�. Furthermore

(i_(b)�1; �2) = (�1; i
_(b)�2) for all b 2 Ok;(p), and

�
L��;L

�
+

�
= 0. We have that

(t�A00 = L
�; i_; (; ))
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is a Fp2-Hermitian space of dimension g, endowed with an action i_ of Ok;(p) with respect to

which the pairing (; ) is skew-Hermitian.

Lemma 3.2.3. There is an isomorphism of groups:

AutFp2 (t
�
A00
; i_; (; )) ' �G:

Proof. The result follows from Prop. 3.2.2, since the map X 7!(X�)�1 de�nes an iso-

morphism of groups AutFp2 (t
�
A00
; i_; (; ))! AutFp2 (LieA

0
0; i; h; i). �

We can now give the following:

De�nition 3.2.4. Let (A0; i; �) be a triple over Fp such that for some level structure �

we have [(A0; i; �; �)] 2 Z 0(Fp); let (A00; i; �
0
) be the canonical Fp2-structure of (A0; i; �). A

basis of invariant di¤erentials of (A00; i; �
0
) (over Fp2) is a choice of an ordered (similitude)

Hermitian basis � = (��; �+) of the Hermitian module (t
�
A00
; i_; (; )) such that �� is a basis

for (t�A00)� :=
�
M0

�
VM0

�

��
.

For (A00; i; �
0
) as above there is a basis B of t�A00 with respect to which the automorphisms

of (t�A00 ; i
_; (; )) are represented by the matrices of �G = G(Ur � Us)(Fp2). Let � 2 Fgp2 be the

coordinate column vector of a basis of invariant di¤erentials for (A00; i; �
0
) with respect to B.

Then any other coordinate vector (with respect to B) of a basis of invariant di¤erentials for

(A00; i; �
0
) is of the form M� for a unique M 2 �G.

3.3 Superspecial modular forms

We assume �xed from now on a basis �0 of invariant di¤erentials for (A
0
0; i0; �

0
0). We de-

note by Z 0di� (Fp) the set of equivalence classes of tuples (A; i; �; �; �), where (A; i; �; �) is

a representative for an equivalence class [(A; i; �; �)] 2 Z 0(Fp), and � is a choice of basis of

invariant di¤erentials for the triple (A0; i; �
0
) de�ned over Fp2 . Two tuples (A; i; �; �; �) and

(A1; i1; �1; �1; �1) are equivalent if there is an isomorphism f : (A; i; �; �) ! (A1; i1; �1; �1)

such that f �(�1) = �, where f � : t�A1 ! t�A is the cotangent map induced by f .
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We remark that if g 2 J(Zp) � GLg(Rp) and v 2 LieA00 ' F
g
p2 , ! 2 t�A00 = (LieA

0
0)
�, then

g acts on v and on ! as follows:

g � v : = g(mod�)v

g � ! : = ! � g(mod�);

where � is a uniformizer for Rp.

Proposition 3.3.1. The uniformization map �0U(N)(Fp) induces an isomorphism �0di� (Fp)

equivariant with respect to the Hecke G(Apf )-action:

�0di� (Fp) : I(Q)n
�
J(Qp)=Up �G(Apf )=U(N)

�
! Z 0di� (Fp):

Proof. (In this proof, for � 2 I(Q) we will sometimes write � to denote �0;p(�) 2 J(Qp),

if no ambiguity arises). Fix a left transversal Y (resp. G) of J(Zp) in J(Qp) (resp. of Up in

J(Zp)). Let I(Q) � (��1Up � xU(N)) be a �xed element in the left hand side above; there are

uniquely determined y�1 2 Y and g�1 2 G such that ��1Up = y�1g�1Up. By the de�nition of

�0U(N)(Fp) (cf. 2.2.2), we obtain a well de�ned tuple (y�A0; y�i0; y��0; x�1 �y��0) representing

a class in Z 0(Fp). Since the p-divisible group of (y�A0; y�i0; y��0) coincides with (X; iX; �X),

�0 is a basis of invariant di¤erentials for the Fp2-model of (y�A0; y�i0; y��0), via the canonical

identi�cation:

(Lie y�A
0
0)
�
= (LieX0)

�
;

then �0g is also a basis of invariant di¤erentials for the model of (y�A0; y�i0; y��0) over Fp2.

We set:

�0di� (Fp) : I(Q) �
�
y�1g�1Up�xU(N)

�
7�! [(y�A0; y�i0; y��0; x

�1 � y��0; �0g)]:

As we �xed the transversals Y and G, to show that the above assignment is well de�ned

we only need to check that the map constructed factors through I(Q). Let � 2 I(Q), so that

��A0 = A0: Then �y�1g�1Up = y�11 g�11 Up for uniquely determined y�11 2 Y and g�11 2 G.

Write y1 = f � y��1 with f = g�11 ug 2 J(Zp), for some u 2 Up. The isomorphism f induces

an isomorphism:

fab : (y�A0; y�i0; y��0)
'! (y1;�A0; y1;�i0; y1;��0):
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By de�nition of the action of I(Q) on G(Apf )=U(N) we have:

� � xU(N) = �p0(�)xU(N) = �0 �H1(�) � ��10 � xU(N):

The level structure on (y1;�A0; y1;�i0; y1;��0) associated to y�11 g�11 Up��p0(�)xU(N) is therefore

induced by:

x�1�p0(�
�1)y1;�(�0) = x�1�0H1(�

�1)��10 �0H1(y
�1
1 )

= x�1�0H1(y
�1f�1)

= x�1y�(�0) �H1(f
�1);

so that fab is an isomorphism

fab : (y�A0; y�i0; y��0; x
�1 � y��0)

'! (y1;�A0; y1;�i0; y1;��0; x
�1�p0(�

�1)y1;�(�0)):

The cotangent map induced by fab gives:

f �ab(�0g1) = �0g1f = �0ug = �0g;

so that fab preserves the choices of invariant di¤erentials.

The map �0di� (Fp) is surjective: let [(A; i; �; �; �)] 2 Z 0di� (Fp); we can �nd y�1 2 Y,

eg�1 2 J(Zp) and x 2 G(Apf ) such that (A; i; �; �; �) is isomorphic to a tuple of the form:
(y�A0; y�i0; y��0; x

�1 � y��0; �0eg):
Let g�1 2 G such that eg�1Up = g�1Up; then

[(A; i; �; �; �)] = �0di� (Fp)(I(Q) �
�
y�1g�1Up�xU(N)

�
):

The map �0di� (Fp) is injective: let us �x y�1; y
�1
1 2 Y, g�1; g�11 2 G and x; x1 2 G(Apf )

such that there is an isomorphism:

fab : (y�A0; y�i0; y��0; x
�1 � y��0; �0g)

'! (y1;�A0; y1;�i0; y1;��0; x
�1
1 � y1;��0; �0g1):

Denote by f 2 J(Zp) the automorphism induced by fab on (X; iX; �X) and let

� = (y�1f�1y1)ab
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be the auto-quasi-isogeny of (A0; i0; �0) inducing y�1f�1y1 on (X; iX; �X). Since f is an

isomorphism, we have:

(i) x�11 y1;�(�0)H1(f) = x�1y�(�0), so x � �0H1(y
�1f�1y1)�

�1
0 x1(modU(N));

(ii) �0g1f = �0g, hence g1f � g(modUp).

Then we have:

I(Q)�
�
y�11 g�11 Up�x1U(N)

�
= I(Q)�

�
�y�11 g�11 Up��p0(�)x1U(N)

�
(ii)
= I(Q)�

�
y�1g�1Up��0H1(y

�1f�1y1)�
�1
0 x1U(N)

�
(i)
= I(Q)�

�
y�1g�1Up�xU(N)

�
:

The HeckeG(Apf )-equivariance of f�0di� ;Kp(Fp)gKp (with respect to the projective systems

of domain and codomain obtained by varying the prime-to-p level structures) is a consequence

of the de�nition of the Hecke operators in this context: for  2 G(Apf ) let us denote byH the

corresponding Hecke operator acting on the domain or codomain of �0di� (Fp), for a suitable

level subgroup: For y�1 2 Y, g�1 2 G and x 2 G(Apf ) we have:

I(Q) �
�
y�1g�1Up � xU(N)

� H7�! I(Q) �
�
y�1g�1Up � �1x � �1U(N)

�
�0di� (Fp)7�! [(y�A0; y�i0; y��0; 

�1x�1 � y�(�1�0); �0g);

I(Q) �
�
y�1g�1Up � xU(N)

� �0di� (Fp)7�! [(y�A0; y�i0; y��0; x
�1 � y�(�0); �0g)

H7�! [(y�A0; y�i0; y��0; 
�1x�1 � y�(�0); �0g);

and �1x�1 � y�(�1�0) = �1x�1 � y�(�0). �

The isomorphism �0di� (Fp) described above depends on the choices of transversals G and

Y. We assume from now on that such transversals have been �xed.

For an algebraic Fp-representation � : GLg ! GLd of the groupGLg, denote byM�(N ;Fp)

the Fp-vector space M�(DA;Fp) of unitary modular forms (mod p) of signature (r; s) for the

�eld k, having level N and weight �. Let � : Z 0 ,! SDA;U(N) 
 Fp be the closed immer-

sion of Fp-schemes giving on geometric points the inclusion Z 0(Fp) � SDA;U(N)(Fp). Let
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� : G(Ur � Us) ! GLm be an algebraic Fp-representation of the Fp-group G(Ur � Us). We

consider restrictions of modular forms to the superspecial locus, as in [Ghi04a]:

De�nition 3.3.2. The space M ss
� (N ;Fp) of unitary superspecial modular forms (mod p) of

signature (r; s) for the �eld k, having weight � and level N is the �nite dimensional Fp-

vector space whose elements f are rules that assign, to any tuple (A; i; �; �; �)=Fp such that

[(A; i; �; �)] is an element of Z 0(Fp) and � is an ordered basis of invariant di¤erentials for

(A0; i; �
0
), an element f(A; i; �; �; �) 2 Fmp in such a way that:

(a) f(A; i; �; �; �M) = �(M)�1f(A; i; �; �; �) for all M 2 �G ' AutFp2 (t
�
A0 ; i

_; (; ));

(b) if (A; i; �; �; �) ' (A1; i1; �1; �1; �1) then f(A; i; �; �; �) = f(A1; i1; �1; �1; �1).

One reason for which the restriction of modular forms to the superspecial locus Z 0(Fp) is

of interest to us is the �niteness of the set Z 0(Fp) (Cor. 2.2.4). We have the following

description of the space of superspecial modular forms:

Proposition 3.3.3. For any algebraic Fp-representation � : GLg ! GLd, denote by Res �

its restriction to G(Ur � Us). Then:

M ss
Res �(N ;Fp) = H0(Z 0(Fp); ��E�):

Proof. If f 2 H0(Z 0(Fp); ��E�), then f satis�es (a) and (b) of Def. 3.3.2 (cf. Prop. 1.2.3).

On the other hand, let f 2M ss
Res �(N ;Fp) so that f is an assignment on tuples (A; i; �; �; �)=Fp

as in Def. 3.3.2; in particular � here is a basis of invariant di¤erentials for (A0; i; �
0
). If !

is any ordered basis of t�A, there is a unique X!;� 2 GLg(Fp) such that ! = �X!;� and we

de�ne f(A; i; �; �; !) := �(X!;�)
�1 � f(A; i; �; �; �). This assignment is well de�ned as � is a

representation of GLg, and allows us to view f as an element of H0(Z 0(Fp); ��E�). �

The de�nition ofM ss
� (N ;Fp) depends upon Z 0(Fp), hence upon the choice of (A0; i0; �0; �0)

that we have �xed at the beginning. The Hecke operators act upon M ss
� (N ;Fp).
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3.3.1 Algebraic modular forms

Recall that we have identi�cations I(Qp) = J(Qp) and I(Apf ) = G(Apf ). Set U := Up�U(N)

and view it as an open compact subgroup of I(Af ). The group I(Q) is discrete inside

I(Af ), by [RZ96], 6.23, so that the double coset space I(Q)nI(Af )=U is �nite, because

I(Q)nI(Af ) is compact (cf. [Gro99], Prop. 1.4). Assume �xed an algebraic Fp-representation

� : G(Ur � Us) ! GLm. Following [Gro99], we de�ne the space of algebraic modular forms

(mod p) for the group I, having level U and weight � to be the �nite dimensional Fp-vector

space:

Malg
� (N ;Fp) : = ff : I(Q)nI(Af )=U ! Fmp :

f(xM) = �(M)�1f(x), M 2 �G; x 2 I(Q)nI(Af )=Ug;

where the right action of �G on I(Q)nI(Af )=U is induced by the identi�cation �G = J(Zp)=Up.

The space Malg
� (N ;Fp) is endowed with a natural action of the Hecke algebra and our

previous computations give:

Proposition 3.3.4. There is an isomorphism of �nite dimensional Fp-vector spaces endowed

with the Hecke G(Apf )-action:

Malg
� (N ;Fp) 'M ss

� (N ;Fp):

Proof. By Prop. 3.3.1, we have an isomorphism of Malg
� (N ;Fp) with the space of

functions Z 0di� (Fp) ! Fmp satisfying condition (a) of Def. 3.3.2. (Note that if g�1 2 G,

mUp 2 J(Zp)=Up then by de�nition �0g �mUp = �0m
�1g). �

3.4 The correspondence between Hecke eigensystems

Set for convenience of notation S := SDA;U(N) 
 Fp: Let I be the ideal sheaf associated to

the closed immersion of Fp-schemes � : Z 0 ,! S (recall that Z 0 is discrete), so that I is a

coherent ideal sheaf on S and we have the following exact sequence:

0! H0(S; I 
 E�)! H0(S;E�)! H0(S; ��OZ0 
 E�):
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The projection formula gives ����E� = ��OZ0
E�, so that H0(S; ��OZ0
E�) = H0(Z 0; ��E�).

The above exact sequence of vector spaces can therefore be written, by Prop. 3.3.3, as:

0! H0(S; I
E�)!M�(N ;Fp)
r!M ss

Res �(N ;Fp);

where the map r need not to be surjective. Recall that Res � is the restriction of � to the

algebraic group G(Ur � Us). Furthermore, observe that r is equivariant with respect to the

Hecke G(Apf )-action.

Proposition 3.4.1. There exists a positive integer m0 such that the map r induce a surjec-

tion M�
detm(N ;Fp)!M ss
Res(�
detm)(N ;Fp) for any m > m0.

Proof. The invertible sheaf of OS-modules
Vg E = Edet is ample over S by [Lan08], Th.

7.2.4.1. The proposition then follows in the same way as [Ghi04a], Prop. 24. (The reader

should be aware of some typos contained in the proof of Prop. 24 of loc.cit.: in line 3 of the

proof of the proposition, "locally free" should be changed into "coherent"). �

We have:

Theorem 3.4.2. Let p be an odd prime and k=Q be a quadratic imaginary �eld extension

in which p is inert. Let n be a positive integer and let r; s be non-negative integers such that

r + s = g := 2n: Let furthermore N � 3 be an integer not divisible by p. Denote by I the

reductive Q-group whose Q-rational points are given by I(Q) = fX 2 GUg(B; Ig) : X� =

�Xg, where B is the quaternion algebra over Q rami�ed at p and 1, and � is as in 3.1.3.

The systems of Hecke eigenvalues arising from (r; s)-unitary PEL modular forms (mod p)

for the quadratic imaginary �eld k, having �xed level N and any possible weight � : GLg !

GLm(�) de�ned over Fp, are the same as the systems of Hecke eigenvalues arising from

(mod p) algebraic modular forms for the group I having level U = Up � U(N) � I(Af ) and

any possible weight �0 : G(Ur � Us)! GLm0(�0) de�ned over Fp.

Proof. We �rst show that any system of Hecke eigenvalues occurring in the spaces

fM�(N ;Fp)g� for variable weights � : GLg ! GLm(�) de�ned over Fp also occurs in the
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spaces fM ss
� (N ;Fp)g� for variable weights � : G(Ur � Us)! GLm0(�) de�ned over Fp. Then

we follow the proof of Th. 28 in [Ghi04a] to show that the converse is also true, and �nally

we apply Prop. 3.3.4. Notice that the �rst part of this proof is di¤erent from the one given

in [Ghi04a].

For any integer i � 0 we have an exact sequence of OS-modules:

0! I i+1 ! I i ! I i=I i+1 ! 0

giving rise to the exact sequence in cohomology:

0! H0(S; I i+1 
 E�)! H0(S; I i 
 E�)
ri! H0(S; I i=I i+1 
 E�);

which de�nes the homomorphisms ri for any i � 0 (r0 = r in the previous notation).

For any j � 1 we also have the exact sequence of sheaves of OS-modules:

I 
 Ij=Ij+1 ! OS 
 Ij=Ij+1 ! ��OZ0 
 Ij=Ij+1 ! 0:

The image of the �rst map is zero, so that we obtain isomorphisms of OS-modules Ij=Ij+1 '

��OZ0 
 Ij=Ij+1 for any j � 1. In cohomology we have therefore isomorphisms �j for any

j � 1:

�j : H
0(S; Ij=Ij+1 
 E�)

'! H0(Z 0; ��(Ij=Ij+1 
 E�)):

Let 0 6= f 2 M�(N ;Fp) = H0(S;E�) be a Hecke eigenform of some �xed weight � :

GLg ! GLm de�ned over Fp. If r(f) 6= 0 then the system of Hecke eigenvalues associated to

f occurs in M ss
Res �(N ;Fp), since r is Hecke equivariant. If r(f) = 0, then f 2 H0(S; I
E�).

We claim that in this case there is a positive integer h such that f 2 H0(S; Ih 
 E�) and

rh(f) 6= 0. Assume not: then r1(f) = 0 and f 2 H0(S; I2 
 E�), so that we can compute

r2(f) and we have r2(f) = 0; therefore f 2 H0(S; I3 
 E�), etc. Reiterating this procedure

we deduce that f 2 H0(S; I i 
 E�) for all integers i > 0, so that f = 0, contradicting our

assumption 0 6= f . Then there exists a positive integer h such that f 2 H0(S; Ih 
 E�) and

rh(f) 6= 0. Let:

f ss := �h(rh(f)) 2 H0(Z 0; ��(Ih=Ih+1 
 E�)):
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Since �h is injective, f
ss is non-zero. Observe that Ih=Ih+1 = Symh(I=I2) and that

��(I=I2) = ��(
1S) (cf. [Har77] II, 8.17). Notice that the Hecke operators act on

H0(Z 0; ��(Ih=Ih+1 
 E�))

by de�nition of the G(Apf )-action on S (cf. also the identi�cation made below of this space

of sections with a space of superspecial modular forms).

Let X denote the universal abelian scheme over S, endowed with the principal S-

polarization �univ : X ! X̂ and the action iuniv of the ring Ok;(p). By Prop. 2.3.4.2.

in [Lan08], the Kodaira-Spencer map induces an isomorphism of OS-sheaves:

KS :
E
OS bE
J 0

! 
1
S
;

where bE = 0�
1X̂=S , and:
J 0 =

0@ ��univ(y)
 z � ��univ(z)
 y

iuniv(b)
�(x)
 y � x
 {̂univ(b)

�(y)
: x 2 E; y; z 2 bE; b 2 Ok;(p)

1A :

(Here ��univ denotes the pull-back morphism ��univ :
bE! E; iuniv(b)�, resp. {̂univ(b)�, denotes

the endomorphism of E, resp. bE, induced by iuniv(b), resp. {̂univ(b)). Precomposing KS with
id
 ��univ we get the isomorphism of sheaves:

Sym2 E
J

! 
1
S
;

where J =
�
iuniv(b)

�(x)
 y � x
 iuniv(b)
�(y) : x; y 2 E; b 2 Ok;(p)

�
. Write

Sym2
[ E :=

Sym2 E
J

and notice that while J is not preserved by the group GLg (if rs > 0), it has nevertheless

an action of GLr � GLs, because of the determinant condition imposed in the de�nition of

the moduli problem.

We have:

H0(Z 0; ��(Ih=Ih+1 
 E�)) = H0(Z 0; ��((Symh Sym2
[ E)
 E�)):

42



The group GLr�GLs acts on the sheaf ��(Symh(Sym2
[ E)
 E�); as the space of superspecial

modular forms is de�ned for representations � of G(Ur � Us) � GLr � GLs, we conclude

that:

f ss 2 H0(Z 0; ��(Symh(Sym2
[ E)
 E�)) =M ss

Symh Sym2[ (std)
Res �
(N ;Fp);

where we are viewing Symh(Sym2
[ (std))
Res � as a representation ofG(Ur�Us) by restriction

(std : GLg ! GLg is the standard representation of GLg).

The maps rh and �h are Hecke equivariant; as it is shown in [Fak09], the Kodaira-Spencer

map is also Hecke equivariant, modulo a rescaling on the Hecke operators acting on Sym2
[ (E)

(this rescaling on the Hecke operators can be interpreted as a "Tate twist"). We deduce that,

after performing the mentioned rescaling, the non-zero form f ss 2M ss
Symh Sym2[ (std)
Res �

(N ;Fp)

is an Hecke eigenform with the same eigenvalues as our original f .

On the other hand, let us assume now that we are given a non-zero eigenform f ss 2

M ss
�0 (N ;Fp) for some weight �0 : G(Ur � Us) ! GLm0 de�ned over Fp. There is a rational

Fp-representation ~� : GLg ! GLm whose restriction to G(Ur � Us) contains �0. Indeed the

algebraically induced representation �00 := IndGLgG(Ur�Us) �
0 contains (non-canonically) a �nite

dimensional G(Ur � Us)-invariant subspace � that is G(Ur � Us)-isomorphic to �0; by local

�niteness there is a �nite dimensional GLg-submodule ~� of �00 containing � as a G(Ur �Us)-

submodule.

By Prop. 3.4.1, there is an integer c > 0 divisible by p2 � 1 such that the map:

r :M~�
detc(N ;Fp)!M ss
Res(~�
detc)(N ;Fp) =M ss

Res ~�(N ;Fp)

is surjective; since M ss
�0 (N ;Fp) �M ss

Res ~�(N ;Fp) and since r is Hecke equivariant, we see that

a system of Hecke eigenvalues occurring in M ss
�0 (N ;Fp) also occurs in M~�
detc(N ;Fp).

We conclude that the system of Hecke eigenvalues arising from the spaces of modular

formsM�(N ;Fp) for varying � : GLg ! GLm, coincide with the systems of Hecke eigenvalues

arising from the spaces M ss
�0 (N ;Fp) for varying �0 : G(Ur � Us) ! GLm0. The theorem now

follows from Prop. 3.3.4. �

We presented the construction of the Hecke correspondence for PEL Shimura varieties
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associated to some unitary groups. One obtains the result of [Ghi04a] (for g > 1) by

forgetting about the action of the algebra with involution that appears in our computations;

observe that for Siegel modular forms, the superspecial locus has an easier shape, as explained

in Rem. 2.2.2.

Let D be a PEL datum of rank g with associated reductive Q-group G of type A or

C. If D has good reduction at a prime p > 2 and the associated Shimura variety S�Fp has

a non-empty superspecial locus, then one obtains a result analogous to Th. 3.4.2 by using

similar techniques. More precisely, let I be the algebraic Q-group of automorphisms of a

�xed triple (A0; i0; �0) de�ning a point in the superspecial locus of S�Fp . The basicity of

the p-divisible group of A0 implies that I is an inner form of G such that I(R) is compact

modulo center, and IQv ' GQv for every place v of Q di¤erent from p and 1 ([RZ96], Th.

6.30). The group ofW (�Fp)-linear automorphisms of the homogeneously principally polarized

Dieudonné module with OB 
Z Zp-action associated to (A0; i0; �0) de�nes an integral model

= of IQpover Zp. We can then set (cf. Lemma 3.1.3; notice that IQp ' JQp in the notation

of 3.1.3, by Cor. 6.29 of [RZ96]):

Up := ker(=(Zp)! =(Fp)); �G := =Fp :

Fix an open compact neat subgroup Kp of G(Apf ). Then the Hecke eigensystems arising from

(mod p) modular forms of PEL type associated to the group G, having level Kp and varying

weight � : GLg ! GLm(�) de�ned over Fp coincide with the Hecke eigensystems arising from

(mod p) algebraic modular forms associated to I, having level Kp � Up and varying weight

�0 : �G! GLm0(�0) de�ned over Fp. (Here we are identifying G(Apf ) and I(A
p
f )).
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CHAPTER 4

On the number of unitary Hecke eigensystems

We keep the assumptions and the notation introduced in the previous section: in particular,

we work with unitary (mod p) PEL modular forms of signature (r; s), with p 6= 2. We give

an estimate of the number of (mod p) Hecke eigensystems occurring in the spacesM�(N ;Fp)

for N �xed and varying �, extending a result of [Ghi04b].

Denote by N := N (p; k; r; s;N) the number of Hecke eigensystems occurring in the

totality of spaces M�(N ;Fp) for � varying over the set of Fp-rational representations of GLg;

by Th. 3.4.2 and Prop. 3.3.4, N is the number of distinct Hecke eigensystems occurring in

the totality of spaces M ss
� (N ;Fp) where � now runs over the �nite set Irr( �G) of isomorphism

classes of irreducible �nite-dimensional representations of �G := G(Ur � Us)(Fp2) over Fp. If

� : �G! GL(W�) is any �xed element representing a class in Irr( �G), we have:

M ss
� (N ;Fp) = ff : Z 0di� (Fp)! W� : f([(A; i; �; �; �M)]) =

�(M)�1f([(A; i; �; �; �)]), all M 2 �G, [(A; i; �; �; �)] 2 Z 0di¤ (Fp)g;

so that, by de�nition of Z 0(Fp), we have dimFpM
ss
� (N ;Fp) � #Z 0(Fp) � dimFpW�, and:

N � #Z 0(Fp) �
X

[�]2Irr( �G)
dimFpW�: (4.1)

4.1 Estimate of the cardinality of the superspecial locus

In order to compute #Z 0(Fp), one would like to have an explicit mass formula for principally

polarized superspecial varieties of the PEL type considered here; lacking such an explicit

formula, we can instead using what is known for Siegel varieties. Let us denote by A the

Siegel moduli scheme over Ok;(p) classifying prime-to-p isogeny classes of tuples (A; �; �),
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where A is an abelian projective scheme of relative dimension g over some S 2SCHOk;(p) , �

is a principal homogeneous polarization ofA, and � is a full levelN structure on (A; �). There

is a natural mapping j from the moduliOk;(p)-scheme S associated to the PEL datumDA that

we �xed, to A. More precisely, by �xing an isomorphism of Q-vector spaces V = kg ' Q2g

we obtain a monomorphism of Q-groups GUg(k; r; s) ,! GSp2g(J) ' GSp2g, where J is some

symplectic form on Q2g; then by de�nition, if S is a locally noetherian Ok;(p)-scheme, j sends

the class [(A; i; �; �)] 2 S(S) to the class [(A; �; �)] 2 A(S), where � is the U 0(N) orbit of

the symplectic isomorphism � : H1(A;Apf )! V 
QApf , with U 0(N) := Ker(GSp2g(Ẑp; J)!

GSp2g(Ẑp=N Ẑp; J)) (notice that U(N) = U 0(N) \GUg(Ok 
 Ẑp; r; s)).

Since j is a closed embedding, it sends injectively the superspecial locus Z 0(Fp) of the

unitary PEL variety S 
 Fp - relative to our choice of (A0; i0; �0; �0) - into the superspecial

locus of A 
 Fp. The explicit mass formula for superspecial principally polarized abelian

varieties due to Ekedahl ([Eke87]) and based on work of Hashimoto-Ibukiyama ([HI80])

gives:

#Z 0(Fp) � Cg �#GSp2g(Z=NZ) �
Yg

i=1
(pi + (�1)i); (4.2)

where the constant Cg is:

Cg :=
(�1)g(g+1)=2

2g
�
Yg

i=1
�(1� 2i) = 1

22gg!
�
Yg

i=1
B2i:

(Here � is the Riemann zeta function, and B2i denotes the 2ith Bernoulli number).

4.2 Estimate of the size of the irreducible representations of �G

All the representations we consider in this paragraph are �nite dimensional over the appro-

priate �eld. The number of pairwise non-isomorphic irreducible representations of the �nite

group �G over Fp coincides with the number kp( �G) of p-regular conjugacy classes of �G; a

matrix element X of �G is p-regular if and only if its minimal polynomial has only simple

roots over Fp, that is to say if and only if X is semi-simple (over Fp).

The group �G is the set of Fp-points of the connected reductive algebraic group G :=

G(Ur � Us) de�ned over Fp; one can compute the center Z and the derived subgroup G0 of
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G and �nd:

Z = Z0 '

8<: G(U1 � U1)

GU1

if rs 6= 0;

if rs = 0;

G0 = SUr � SUs:

Since G0 is connected, simply-connected and semi-simple with rank:

rk(G0) =

8<: g � 2

g � 1

if rs 6= 0;

if rs = 0;

by applying Th. 3.7.6 of [Car85], we have:

kp( �G) = #Z0(Fp) � prk(G
0) =

8<: pg�2 � (p� 1)(p+ 1)2

pg�1 � (p� 1)(p+ 1)

if rs 6= 0;

if rs = 0:
(4.3)

If t � 2, then SUt(Fp2) is the set of Fp-points of a simply connected group of type
2At�1(p), and its order is #SUt(Fp2) = p

t(t�1)
2 �

Qt
i=2(p

i � (�1)i) (cf. [Car85] 2.9; we set

SU0(Fp2) = SU1(Fp2) := f1g). Using the exactness of the sequence 1 ! SUt(Fp2) !

Ut(Fp2)
det! U1(Fp2) ! 1 for t > 0, one deduces that #Ut(Fp2) = #SUt(Fp2) � (p + 1). We

conclude that for any choice of non-negative integers r and s such that r + s = g we have:

#G(Ur � Us)(Fp2) = #Ur(Fp2) �#Us(Fp2) � (p� 1)

= p
r(r�1)+s(s�1)

2 �
Yr

i=1
(pi � (�1)i) �Ys

i=1
(pi � (�1)i) � (p� 1):

In particular, a p-Sylow subgroup of G(Ur � Us)(Fp2) has order p
r(r�1)+s(s�1)

2 . Since �G is a

group with a split (B;N)-pair ([Car85] 1.18), we deduce that if � : �G ! GL(W�) is an

irreducible representation of �G over Fp, then:

dimFpW� � p
r(r�1)+s(s�1)

2 : (4.4)

(The proof of this fact is contained in [Cur70]; cf. esp. Cor. 3.5 and 5.11). Putting together

formulae (4.3) and (4.4) we obtain:

X
[�]2Irr( �G)

dimFpW� �

8<: p
r(r�1)+s(s�1)

2 � pg�2(p� 1)(p+ 1)2

p
g(g�1)

2 � pg�1(p� 1)(p+ 1)

if rs 6= 0;

if rs = 0:
(4.5)
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4.3 Upper bound for the number of Hecke eigensystems

Putting formulae (4.2) and (4.5) together into formula (4.1), we obtain:

Theorem 4.3.1. Let p; k; r; s;N be �xed as above (in particular r; s � 0, r+s = g and p 6= 2)

and set Cg := 2�2g(g!)�1
Qg

i=1B2i: The number N := N (p; k; r; s;N) of distinct (mod p)

Hecke eigensystems occurring in the totality of spaces M�(N ;Fp) for varying � satis�es the

following inequality:

N � Cg �#GSp2g(Z=NZ) �
Yg

i=1
(pi + (�1)i) �8<: p

r(r�1)+s(s�1)
2 � pg�2(p� 1)(p+ 1)2

p
g(g�1)

2 � pg�1(p� 1)(p+ 1)

if rs 6= 0;

if rs = 0:

In particular, if we keep k; r; s;N �xed and let p > 2 vary:

N 2 O(pg2+g+1�rs); for p!1:

For an estimate ofN in the case of Siegel modular forms, cf. [Ghi04b]; for elliptic modular

forms, a conjectural mass formula for the asymptotic with respect to p of two-dimensional

odd and irreducible Galois representations of Q can be found in [Cen09].
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Part II

Cohomological Weight Shiftings for

Automorphic Forms on De�nite

Quaternion Algebras
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CHAPTER 5

Weight shiftings for GL2(Fq)-modules

5.1 Untwisted GL2(Fq)-modules

Fix a rational prime p, a positive integer g, and set q = pg. Denote by Fq a �nite �eld with

q elements and �x an algebraic closure Fq of Fq; denote by � 2 Gal (Fq=Fp) the arithmetic

Frobenius element. Let G = GL2 (Fq) and let M be a representation of G over Fq; for any

n 2 Z, the Frobenius element �n induces a map G ! G obtained by applying �n to each

entry of the matrices in G: composing this map with the action of G on M , we give to the

latter a new structure of G-module, that is denoted M [n] and called the nth Frobenius twist

of M: If f : M ! N is a G-homomorphism and n 2 Z, denote by f [n] : M [n]!N [n] the map

de�ned by f [n](x) = f(x) for all x 2M [n]: f [n] is a G-homomorphism.

Let M1 denote the standard representation of G on F2q and, for any positive integer k,

de�ne Mk = Sym
kM1 to be the kth symmetric power of M1. We identify Mk with the Fq-

vector space of homogeneous polynomials over Fq in two variables and of degree k, endowed

with the action of G induced by:

0@ a b

c d

1A �X = aX + cY;

0@ a b

c d

1A � Y = bX + dY:

We set M0 to be the trivial representation of G. Denote by det : G ! F�q the determinant

character of G, so that det[n] = detp
n

.

Recall (cf. [Ste63], [Ste68] §13) that the irreducible representations of G over Fq are all
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and only of the form:

detm
Fq
Og�1

i=0
M

[i]
ki
;

where k0; :::; kg�1 and m are integers such that 0 � ki � p � 1 for i = 0; :::; g � 1, 0 �

m < q � 1, and all the tensor products are over Fq: The above representations are pairwise

non-isomorphic.

We denote by K0(G) the Grothendieck group of �nitely generated Fq[G]-modules: it can

be identi�ed with the free abelian group generated by the isomorphism classes of irreducible

representations of G over Fq ([Ser77]). If M is an Fq[G]-module, we denote by [M ] its class

in K0(G) and set e = [det]; if no confusion arises we also write M to denote [M ]. Tensor

product over Fq induces on K0(G) a structure of commutative ring with identity; we denote

the product in K0(G) by � or by juxtaposition.

5.1.1 Identities in K0(G) (I)

We present some identities between virtual representations in K0(G) that we will need later.

Negative weights We extend the de�nition of Mk 2 K0 (G) for k < 0 in a way that is

coherent with Brauer character computations, as suggested by Serre in [Ser01].

Let G = GL2 as an algebraic group over Fq, and let T � G be the maximal split torus

of diagonal matrices. Identify the character group X(T) of T with Z2 in the usual way,

so that the roots associated to (G;T) are (1;�1) and (�1; 1); �x a choice of positive root

� = (1;�1). The corresponding Borel subgroup B is the group of upper triangular matrices

in G; we denote by B� the opposite Borel subgroup. For a �xed � 2 X(T), let M� be the

one dimensional left B�-module on which B� acts (through T) via the character � . Denote

by indGB�M� the left G-module given by algebraic induction from B� to G of M�: De�ne

the following generalization of the dual Weyl module for � (cf. [Jan03], II.5):

W (�) =
X

i�0
(�1)i �Ri indGB� (M�) ,

where Ri indGB� (�) denote the ith right derived functor of indGB� (�). W (�) is an element
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of the Grothendieck group K0(G) of G, because each Ri indGB� (M�) is a �nite dimensional

G-module, and Ri indGB� (M�) is zero for i > 1 ([Jan03], II.4.2). For �k = (k; 0) 2 X(T)

with k any integer we have:

Ri indGB� (M�k) ' H i(P1Fq ;O (k)):

If k � 0, H1(P1Fq ;O (k)) = 0 so that W (�k) = H0(P1Fq ;O (k)) = Symk F2q; if k < 0 we

have H0(P1Fq ;O (k)) = 0 and W (�k) = �H1(P1Fq ;O (k)); the canonical perfect pairing of

G-modules:

H0(P1Fq ;O (�k � 2))�H1(P1Fq ;O (k))! H1(P1Fq ;O (�2)) ' det
�1
Ga;Fq ;

brings naturally to the following:

De�nition 5.1.1. Let k < 0 be an integer. De�ne the element Mk of the Grothendieck

group K0 (G) of G over Fq by:

Mk =

8<: 0 if k = �1

�e1+k �M�k�2 if k � �2
:

Lemma 5.1.2. For any k 2 Z we have in K0 (G) the identity:

Mk + e1+k �M�k�2 = 0: (�g;k)

An identity of Serre Let us �x an embedding � : Fq2 !M2(Fq) corresponding to a choice

of Fq-basis for the degree 2 extension of Fq inside Fq. Let Qp be a �xed algebraic closure of

the p-adic �eld Qp and let us �x an isomorphism between Fq and the residue �eld of the ring

of integers Zp of Qp; denoting by � : F
�
q!Z

�
p the corresponding Teichmüller character, the

Brauer character Greg ! Qp of the representations Mk (k � 1) is given as follows:0@ a

a

1A 7! (k + 1)� (a)k ; a 2 F�q0@ a

b

1A 7! � (a)k+1 � � (b)k+1

� (a)� � (b)
; a; b 2 F�q ; a 6= b

� (c) 7! � (c)q(k+1) � � (c)k+1

� (c)q � � (c)
; c 2 F�q2nF

�
q :
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Using the above formulae, the following is proved in [Ser01]:

Lemma 5.1.3. For any k 2 Z we have in K0 (G) the identity:

Mk � e �Mk�(q+1) =Mk�(q�1) � e �Mk�2q: (�g;k)

Product formula It is a result of Glover that for any positive integers n;m there exists

a short exact sequence of Fq[SL2(Fq)]-modules of the form:

0!Mn�1 
Fq Mm�1
j!Mn 
Fq Mm

�!Mn+m ! 0;

where j is induced by the assignment u 
 v 7! uX 
 vY � uY 
 vX and � is induced

by multiplication inside the algebra Fq[X; Y ]: The following is an easy extension to GL2 of

Glover�s result:

Lemma 5.1.4. For any n;m 2 Z we have in K0 (G) the identity:

MnMm =Mn+m + eMn�1Mm�1: (�g;n;m)

Proof. Let � be the Brauer character of the virtual representation MnMm �Mn+m �

eMn�1Mm�1. Let a; b 2 F�q such that a 6= b; denote by ~x the Teichmüller lift of x 2 F�q taken

via �. We have:

�

0@ a

a

1A = (n+ 1)(m+ 1)~an+m � (n+m+ 1)~an+m +

�~a2 � nm~a(n�1)+(m�1);

�

0@ a

b

1A =
~an+1 � ~bn+1

~a� ~b
~am+1 � ~bm+1

~a� ~b
� ~a

n+m+1 � ~bn+m+1

~a� ~b
+

�~a~b(~a
n � ~bn)(~am � ~bm)

(~a� ~b)2
:

Both these expressions are trivially zero. If c 2 F�q2nF�q and � : Fq2!M2 (Fq) is as above,

then det � (c) = c1+q, so that:
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�(� (c)) =
~cq(n+1) � ~cn+1

~cq � ~c
~cq(m+1) � ~cm+1

~cq � ~c +

�~c
q(n+m+1) � ~cn+m+1

~cq � ~c � ~c1+q (~c
qn � ~cn)(~cqm � ~cm)

(~cq � ~c)2 ;

and this is also zero. As � is identically zero on Greg, MnMm �Mn+m � eMn�1Mm�1 is the

zero element of K0 (G). �

We summarize the three identities obtained so far:

Proposition 5.1.5. Let q = pg (g � 1) and let k; n;m 2 Z. The following identities hold in

K0 (G):

Mk = �e1+k �M�k�2 (�g;k)

Mk � e �Mk�(q+1) =Mk�(q�1) � e �Mk�2q (�g;k)

MnMm =Mn+m + eMn�1Mm�1: (�g;k)

5.1.2 Intertwining operators for the periods q + 1 and q � 1

Recall that the irreducible complex representations of G (of dimension larger than one)

that are not twists of the Steinberg representation are of two types: the principal series

representations, having dimension q+1 and obtained by inducing to G characters of a Borel

subgroup of G, and the cuspidal representations, having dimension q � 1 and characterized

by the property that they do not occur as a factor of a principal series.

The two periods q + 1 and q � 1 appear in the identity (�g;k) and suggest the existence

of intertwining operators that shift weights by q+1 and q� 1 respectively; furthermore one

expects these operators to give a bridge between the modular representations of G and the

above mentioned characteristic zero representations of G.

The period q+1 Let k > q be an integer and let �q = XY q �XqY 2 Fq [X; Y ]. Dickson

proved that this polynomial is one of the two generators of the ring of SL2 (Fq)-invariants
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in the symmetric algebra Sym� F2q, so we will call it the Dickson invariant. Let us denote by

�q also the G-equivariant map det
Mk�(q+1)!Mk given by multiplication by �q.

Proposition 5.1.6. For k > q, there is an exact sequence of G-modules:

0! det
Mk�(q+1)
�q!Mk ! IndGB

�
�k
�
! 0;

where B is the subgroup of G consisting of upper triangular matrices, and � is the character

of B de�ned extending the character diag(a; b) 7! a of the standard maximal torus of G.

Furthermore, for any integer � � 0 there are isomorphisms of G-modules:

Mk

det
Mk�(q+1)
'

Mk+�(q�1)

det
Mk+�(q�1)�(q+1)
;

where the inclusion det
Mk+�(q�1)�(q+1) ,! Mk+�(q�1) is induced by the multiplication by

�q.

Proof. The above result is standard; cf. [Red10], Prop. 2.7. �

The period q � 1 For the period q � 1, the starting point is the G-equivariant derivation

D : Fq[X; Y ]!Fq[X; Y ] de�ned by Serre as:

D : f(X; Y ) 7�! Xq @f

@X
(X; Y ) + Y q @f

@Y
(X; Y ):

This map de�nes by restriction an intertwining operatorMk!Mk+(q�1) for any k � 0, giving

rise to a weight shifting by q � 1. The kernel of D is large, as shown by G. Savin:

Proposition 5.1.7. The kernel of the map D : Fq [X; Y ] ! Fq [X; Y ] is given by kerD =

Fq [Xp; Y p; �q] :

Proof. Let A = Fq[Xp; Y p; �q] and B = kerD; notice that we have the inclusions of rings

Fq[Xp; Y p] � A � B � Fq[X;Y ]. The polynomial tp � (XpqY p �XpY pq) 2 Fq(Xp; Y p)[t] is

irreducible in Fq(Xp; Y p)[t] since XpqY p�XpY pq does not have a pth-root in Fq(Xp; Y p), so

that we have [Q (A) : Fq(Xp; Y p)] = p, where we denote by Q(R) the �eld of fractions of an

integral domain R inside some extension of R.
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Now observe that Q (B) is properly contained inside Fq(X; Y ): if not, we could writeX =

f
g
with f; g 2 B, g 6= 0 and 1 = af + bg for some a; b 2 B; this would imply X = f � (aX + b)

so that f 2 B would be an associate of X in Fq[X; Y ]. Since [Fq(X; Y ) : F(Xp; Y p)] = p2 we

have therefore Q (A) = Q (B). Notice that Fq[X; Y ]=A is an integral extension, so that B=A

is too.

The domain A is normal, since the corresponding variety has equation Xq
1X2 �X1X

q
2 �

Xp
3 = 0, and then it de�nes an hypersurface of A3=Fq that is non-singular in codimension one.

We conclude A = B. �

We assume for the rest of this paragraph that p is an odd prime. If we restricted ourselves

to weights 2 � k � p� 1 we have the following exact sequence:

0! det
Mk�2
�q!

Mk+(q�1)

D(Mk)
! coker�q ! 0; (5.1)

where �q = �q(modD(Mk)) is induced by the Dickson invariant.

The main result we can prove is the following:

Theorem 5.1.8. Let q 6= 2, 2 � k � p � 1 with k 6= q+1
2
and let us denote by �

�
�k
�

the cuspidal Qp-representation of G associated to the kth-power of the Teichmüller character

�. Let C be the Deligne-Lusztig variety of SL2=Fq . There exists a canonical W (Fq)-integral

model

~�
�
�k
�
:= H1

cris(C=Fq)�k

of �
�
�k
�
, arising from the (�k)-eigenspace of the �rst crystalline cohomology group of C=Fq ,

such that there is an isomorphism of Fq [G]-modules:

Mk+(q�1)

D (Mk)
' ~�

�
�k
�

W (Fq) Fq:

(The (�k)-eigenspace of H1
cris(C=Fq) is computed with respect to the natural action of � :=

ker(NmF�
q2
=F�q ) on H

1
cris(C=Fq)).

Proof. Let

U2 (Fq2) =
�
g 2 GL2 (Fq2) : gAgt = A

	
;
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where A =
�
0
�1

1
0

�
. We consider F�q2 embedded in U2 (Fq2) via t 7!

�
t
0
0
t�q

�
, so that U2 (Fq2) =

F�q2 � SL2 (Fq). The group U2 (Fq2) acts on C=Fq2 via the embedding:

U2 (Fq2) ,! GL3 (Fq2) : g 7!
�
g
0
0
1

�
:

Fix a rational prime l 6= p and �eld isomorphisms Ql ' C and Qp ' C; �x embeddings

W (Fq) � W (Fq2) ,! Qp ' C. By [HJ90], §2.10, we have isomorphisms of U2 (Fq2)-modules:

H1
cris(C=Fq2 )
W (Fq2 ) C = H1

dR(C=W (Fq2 ))
W (Fq2 ) C ' H1
�
C;Ql

�
.

If 1 � k � q we deduceH1
dR(C=W (Fq2 ))�k
W (Fq2 )C ' H1

�
C;Ql

�
�k, hence also an isomorphism

of SL2 (Fq)-modules:

H1
dR(C=W (Fq))�k 
W (Fq) C ' H1

�
C;Ql

�
�k :

Here the (�k)-eigenspace of H1
dR(C=W (Fq)) is computed with respect to the action of � �

F�q2 � U2 (Fq2) on H1
dR(C=W (Fq)) = H1

cris(C=Fq).

Since H1
�
C;Ql

�
�k is the subspace of H

1
�
C;Ql

�
on which � acts via the character

#�k : � ! Q�l : t 7! t�k, by [Lus78], Example 2.20, the Ql-representation of SL2 (Fq)

a¤orded by H1
�
C;Ql

�
�k is of the following type: if #�k is in general position (i.e. #

2
�k 6= 1

or, equivalently, k 6= (q + 1) =2), H1
�
C;Ql

�
�k is an irreducible cuspidal representation of

SL2 (Fq) over Ql. If k = (q + 1)=2, then H1
�
C;Ql

�
�k = V � V �, with V cuspidal.

If #�k is in general position, there is an indecomposable character & : F�q2 ! C� ' Q�l
for which there is an isomorphism of SL2 (Fq)-modules:

H1
�
C;Ql

�
�k ' Res

GL2(Fq)
SL2(Fq) (� (&)) :

Notice that & is not unique and can be changed into &�1 or into any other indecomposable

character that equals & on �. If now we take any p-adic integral model of each side of the

above isomorphism (e.g. we can take H1
dR(C=W (Fq))�k for the étale cohomology group) and

we reduce mod p, we �nd the SL2 (Fq)-module isomorphism

H1
dR(C=Fq)ss�k '

�
�̂ (&)

�ss
:
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If 2 � k � p�1 the left-hand side is isomorphic to
�
Mk+(q�1)
D(Mk)

�ss
by Prop. 4.1 of [Red10], and

hence to
�
�0 (�k)

�ss
for any choice of integral model �0

�
�k
�
of �

�
�k
�
(using a computation

of Brauer characters). Therefore the reductions of the Brauer characters of �̂ (&) and �0 (�k)

need to coincide.

Assume the embedding � : Fq2!M2 (Fq) is given by setting

c = x+ y
p
" 7!

�
x
y
y"
x

�
;

where x; y 2 Fq and " is a generator of F�q . If �(c) 2 SL2 (Fq) we have c 2 �; the formulae

giving the Brauer characters of the cuspidal representations of GL2 (Fq) imply that, if & j� =

�hj� (0 � h � q), we have

�(c)k + �(c)�k = �(c)h + �(c)�h

for any c 2 �, so that
�
�(c)k+h � 1

� �
�(c)k � �(c)h

�
= 0: We conclude that

k � �h(mod q + 1)

and & j� = ��kj� . We can assume without loss of generality & = �k; this implies that the

SL2 (Fq)-action on H1
�
C;Ql

�
�k extends to a GL2(Fq)-action giving an isomorphism

H1
�
C;Ql

�
�k ' �

�
�k
�
:

If ~�
�
�k
�
is the W (Fq)-model of �

�
�k
�
corresponding to H1

dR(C=W (Fq))�k in the above

isomorphism, we have ~� (�k) ' H1
dR(C=Fq)�k. In [Red10], §3.4 and §4.1, a canonical isomor-

phism

H1
dR(C=Fq)�k '

Mk+(q�1)

D (Mk)

is constructed by identifying the exact sequence (5.1) with:

0 ! H0(C=Fq ;
1C)�k ! H1
dR(C=Fq)�k ! H1(C=Fq ;OC)�k ! 0:

This concludes the proof of the theorem. �
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5.1.3 Determination of Jordan-Hölder constituents: the case g = 1

Assume g is any positive integer. For convenience, we give the following non standard

de�nition:

De�nition 5.1.9. Let M 2 K0(G) be of the form M = em
Qg�1

i=0 M
[i]
ki
where k0; :::; kg�1

and m are integers. We say that the Jordan-Hölder factors of M can be computed in the

standard form (using (�g); (�g) and (�g)) if, by applying �nitely many times the identities

of Prop. 5.1.5, together with the identities eq�1 = 1 and �g = 1, we can write M as:

M =
X

j2J
nj

�
emj

Yg�1

i=0
M

[i]

k
(j)
i

�
;

where J is a �nite set and for any j 2 J we have nj;mj; k
(j)
0 ; :::; k

(j)
g�1 2 Z such that

nj 6= 0, 0 � mj < q � 1; 0 � k
(j)
0 ; :::; k

(j)
g�1 � p � 1 and, if j; j0 2 J with j 6= j0 then

(mj; k
(j)
0 ; :::; k

(j)
g�1) 6= (mj0 ; k

(j0)
0 ; :::; k

(j0)
g�1). (Notice that the integers nj;mj; k

(j)
0 ; :::; k

(j)
g�1 are

uniquely determined by M).

Similarly one de�nes the notion of computability in standard form for an element ofK0(G)

that is given as an algebraic sum of products of elements of the formM = em
Qg�1

i=0 M
[i]
ki
. Also,

in an obvious way, one de�nes computability in standard form using any subset or superset

of the identities (�); (�) and (�) (together with the identities eq�1 = 1 and �g = 1).

Lemma 5.1.10. Let g be any positive integer and let n;m 2 Z such that n;m � 0. By

applying (�g) we obtain the following identity in K0(G) :

MnMm =
Xminfn;mg

i=0
eiMn+m�2i:

Proof. We induct on n. For n = 0 the statement is true; for n � 0 we have, assuming

m > 0:

Mn+1Mm = Mn+m+1 + eMnMm�1 =

= Mn+m+1 +
Xminfn;m�1g

i=0
ei+1Mn+m�1�2i =

= Mn+m+1 +
Xminfn+1;mg

i=1
eiM(n+1)+m�2i =

=
Xminfn+1;mg

i=0
eiM(n+1)+m�2i: �
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Corollary 5.1.11. For any positive integer t and any integers n1; :::; nt � 0 we have:Yt

i=1
Mni =

X
�2A

es�Mr� ;

where A is a �nite set and s�; r� � 0 for any � 2 A.

Proof. It follows from applying (�g) and inducting on t. �

The following proposition guarantees that, if g = 1, (�1) and (�1) are enough to compute

explicitly the Jordan-Hölder factors of any of the modules Mk for k 2 Z.

Proposition 5.1.12. Let g = 1. For any m; k 2 Z, we can compute the Jordan-Hölder

factors of emMk in the standard form, using (�1) and (�1). Furthermore, by using also

(�1), we can compute the Jordan-Hölder factors in the standard form for any algebraic sum

of products of emMk�s.

Proof. The second assertion in the statement of the proposition follows from the �rst

one, together with Lemma 5.1.10. To prove the �rst assertion, we can assume m = 0 and,

using (�1), we also suppose k � 0. Write k = np+ r where n is a non-negative integer and

r is an integer such that 0 � r � p� 1. We induct on n.

If n = 0, there is nothing to prove. Assume n � 1 is �xed and that we can compute the

Jordan-Hölder factors ofMk in the standard form, using (�1); (�1) and (�1), for any k of the

form k = n0p+r0 where 0 � n0 � n�1 and 0 � r0 � p�1. If 0 � r � p�1 we have, applying

(�1), thatMnp+r =M(n�1)p+(r+1)+e(M(n�1)p+(r�1)�M(n�2)p+r). If r 6= 0; p�1 we are done by

induction assumption. If r = 0, thenMnp =M(n�1)p+1+e(M(n�2)p+(p�1)�M(n�2)p) and we are

done. If r = p�1, just notice thatM(n�1)p+p =Mnp =M(n�1)p+1+e(M(n�2)p+(p�1)�M(n�2)p).

(When n = 1 one sometimes needs to apply (�1) to canonically compute the constituents of

the virtual representations appearing in these identities). �

5.1.4 Application to elliptic modular forms

In this section we present some weight shifting results for elliptic modular forms modulo p

in terms of cohomology of groups. We assume p > 3; by a modular form mod p we mean the

60



reduction modulo p of a form in characteristic zero - as de�ned by Serre and Swinnerton-Dyer,

unless otherwise speci�ed. In this paragraph we assume g = 1.

Let N � 5 be a positive integer not divisible by p and denote byMk(N;Fp) the Fp-vector

space of mod p modular forms for the group �1(N) having weight k � 2 and with coe¢ cients

in Fp; the Hecke algebra HN ; generated over Fp by the operators Tl for l 6= p, acts on this

space. The q-expansion homomorphism is an injective map Mk(N;Fp) ,! Fp[[q]].

The theta operator � :Mk(N;Fp)!Mk+(p+1)(N;Fp) is de�ned on q-expansion by the formula

�(
P

n anq
n) =

P
n nanq

n; it satis�es �Tl = lTl� for any prime l 6= p. Denote by Ep�1 the

normalized form of the classical characteristic zero Eisenstein series whose q-expansion is

given by:

Ep�1 = 1� 2(p� 1)=Bp�1
P

n �p�2(n)q
n;

then Ep�1 2 Mp�1(1;Z(p)) and Ep�1 � 1(mod pZ(p)[[q]]), as 2�(2 � p)�1 � 0(mod p) by the

Clausen-von Staudt theorem. Multiplication by the reduction mod p of Ep�1 gives rise to a

Hecke-equivariant mapMk(N;Fp)!Mk+(p�1)(N;Fp), that we refer to as the Hasse invariant.

In view of the Eichler-Shimura isomorphism, the study of Hecke eigensystems of mod p

modular forms of weight k � 2 and level N leads to the study of the eigenvalues of the

Hecke algebra HN acting on the cohomology group H1(�1(N);Mk�2), where �1(N) acts

on Mk�2 via its reduction mod p, and the action of HN comes from the G-action on Mk�2

and it is de�ned as in [AS86b]. The weight shiftings realized on the spaces of modular

forms by the theta operator and the Hasse invariant have cohomological counterparts. In

[AS86b], Ash and Stevens identi�es a group-theoretical analogue of the �-operator in the

Hecke-equivariant map induced in cohomology by the Dickson invariant (cf. 5.1.2):

�p;� : H
1(�1(N); det
Mk�2) �! H1(�1(N);Mk+p�1):

Here the twisting by det on the left hand side is a manifestation of the fact that the �

operator on spaces of modular forms is twist-Hecke-equivariant.

Edixhoven and Khare identi�es in [EK03] a cohomological analogue of the Hasse invariant
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in the case k = 2 by studying the degeneracy map

H1 (�1(N);M0)
�2 ! H1 (�1(N) \ �0 (p) ;Mp�1) :

The D-derivation de�ned in 5.1.2 can be used to produce weight shifting by p � 1 for 3 �

k � p+ 1:

Theorem 5.1.13. Let M be a non-Eisenstein maximal ideal of the Hecke algebra HN .

(1) If k � 0 and H1(�1(N);Mk)M 6= 0, then also H1(�1(N);Mk+(p�1))M 6= 0.

(2) If 0 � k � p� 1, there is a Hecke-equivariant embedding

H1(�1(N);Mk)M ,! H1(�1(N);Mk+(p�1))M:

Proof. If k � 0 and k 6� 0(mod p+ 1), then Mk+(p�1) �Mk is positive in K0 (G), giving

the �rst assertion. If 1 � k � p� 1 we have the exact sequence of G-modules:

0!Mk
D!Mk+(p�1) ! cokerD ! 0.

By passing to the long exact sequence in cohomology and localizing with respect to the non-

Eisenstein maximal ideal M we get the second statement for 1 � k � p � 1 (cf. [Kha01]).

If k = 0, the existence of a monic map � : H1 (�1(N);M0)M ,! H1(�1(N);Mp�1)M is the

cited above result of Edixhoven and Khare ([EK03]).

The existence of � also implies the �rst statement for k � 0(mod p+ 1): if k = s(p+ 1)

for some s � 0, formula (�g;k) gives the following identity in K0 (G):

Ms(p+1)+p�1 = es �Mp�1 + (Ms(p+1) � es �M0):

Notice thatMs(p+1)�dets �M0 > 0 because of the existence of the monic map�p : det
M0 ,!

Mp+1. If H1(�1(N);Ms(p+1))M 6= 0 then

H1(�1(N); det
s
M0)M 6= 0 or H1(�1(N);Ms(p+1)= det

s
M0)M 6= 0:

In the �rst case, by applying � we deduce H1(�1(N); det
s
Mp�1)M 6= 0 and hence

H1(�1(N);Ms(p+1)+p�1)M 6= 0:
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If it is H1(�1(N);Ms(p+1)= det
s
M0)M 6= 0, the same conclusion holds. �

Notice that the above theorem cannot be deduced only by the existence of the map D, as

for k = 0 the virtual representationMp�1�M0 is not positive in K0 (G). A similar situation

will occur later on when we will consider the more general case of Hilbert modular forms (cf.

section 6.2).
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5.2 Twisted GL2(Fq)-modules and intertwining operators for g > 1

We keep the notation of the previous section, so that p is a prime number, g a positive integer,

and q = pg; we denote by Fq a �nite �eld with q elements and we �x an algebraic closure

Fq of Fq; we let � 2 Gal (Fq=Fp) be the arithmetic Frobenius element and G = GL2 (Fq). If

k 2 Z, M [i]
k is its ith Frobenius twist of the virtual representation Mk, for any integer i.

5.2.1 Identities in K0(G) (II)

None of the identities in K0(G) appearing in Prop. 5.1.5 contains a Frobenius twist; this

implies that, while (�g); (�g); (�g) are all we need to compute the Jordan-Hölder factors

of products of virtual representations of the form Mk (k 2 Z) when g = 1 (Prop. 5.1.12),

these same three families of identities are not enough to work out such a computation when

g > 1. For example, when g > 1, the Jordan-Hölder factors of Mp are fM [1]
1 ; eMp�2g and

they cannot be found using (�g):

Proposition 5.2.1. Let g � 1. For any k 2 Z we have in K0(G) the identity:

Mk =Mk�pM
[1]
1 � epMk�2p: (�g;k)

Proof. Fix an embedding � : Fq2 ! M2 (Fq) and denote by ~x 2 Zp the Teichmüller

lift of x 2 F�q taken via the Teichmüller character we previously �xed. Let � be the Brauer

character of the virtual representation Mk �Mk�pM
[1]
1 + epMk�2p. Let a; b 2 F�q such that

a 6= b. We have:

�

0@ a

a

1A = (k + 1)~ak � (k � p+ 1)~ak�p � 2~ap +

+~a2p � (k � 2p+ 1)~ak�2p;

�

0@ a

b

1A =
~ak+1 � ~bk+1

~a� ~b
� ~a

k�p+1 � ~bk�p+1

~a� ~b
~a2p � ~b2p

~ap � ~bp
+

+~ap~bp
~ak�2p+1 � ~bk�2p+1

~a� ~b
:
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Both these expressions are zero. If c 2 F�q2nF�q then det � (c) = c1+q; also notice that

tr(� (c) ;M
[1]
1 ) = tr(� (c)

� ;M1) = tr � (c)
� = cp + cpq, so that:

�(� (c)) =
~cq(k+1) � ~ck+1

~cq � ~c � ~c
q(k�p+1) � ~ck�p+1

~cq � ~c (cp + cpq) +

+~c(1+q)p
~cq(k�2p+1) � ~ck�2p+1

~cq � ~c ;

and this is also zero. As � is identically zero on Greg, Mk �Mk�pM
[1]
1 + epMk�2p is the zero

element of K0 (G). �

Corollary 5.2.2. Let g � 1; for any k; h 2 Z the following identity holds in K0(G) :

MkM
[1]
h � epMk�pM

[1]
h�1 =Mk�pM

[1]
h+1 � epMk�2pM

[1]
h : (�0g;k;h)

Proof. Multiplying (�g;k) by M
[1]
h we obtain the identity

MkM
[1]
h =Mk�p (M1Mh)

[1] � epMk�2pM
[1]
h :

Applying (�g;1;h) and distributing the Frobenius action we deduce that the left hand side of

this equation equals Mk�p

�
M

[1]
h+1 + epM

[1]
h�1

�
� epMk�2pM

[1]
h . �

Corollary 5.2.3. Let g � 1. For any k; h; i 2 Z we have in K0(G) the identity:

M
[i]
k M

[i+1]
h � ep

i+1

M
[i]
k�pM

[i+1]
h�1 =M

[i]
k�pM

[i+1]
h+1 � ep

i+1

M
[i]
k�2pM

[i+1]
h :

Proof. Just apply ith Frobenius twist to (�0g;k;h). �

Remark 5.2.4. Notice the following:

1. By applying the product formula, one sees that (�1) and (�1) are equivalent.

2. Equation (�0g) (g > 1) has a structure similar to equation (�1): the weight shiftings

appearing in the latter are by p + 1 and p � 1 (corresponding respectively to the de-

gree of the Dickson invariant and of Serre�s derivation map); in equation (�0g), the
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weight shiftings occurring are by (p; 1; 0; :::; 0) and (p;�1; 0; :::; 0) - the commas sepa-

rate the shifting constants for tensor factors corresponding to Frobenius twistings by

�0; �1; :::; �g�1. In this sense we can think of (�0g) as a generalization of (�1) for g > 1.

3. The reason for which only three (possibly) non-zero terms appear in (�g) instead of

four - as one could have expected by looking at (�1), is that by applying weight-shifting

of (p; 1; 0; :::; 0) toMk we obtain epMk�pM
[1]
�1 that is the zero module: this phenomenon

cannot happen when g = 1.

4. The reason for which, when g > 1, we were expecting an identity in K0(G) involv-

ing weight shiftings by (p;�1; 0; :::; 0) (and cyclic permutations of this) resides in the

existence of the partial Hasse invariants and theta operators acting on spaces of mod

p Hilbert modular forms of genus g. Also, for good reasons we do not have weight

shiftings by (�1; p; 0; :::; 0), as long as g > 2: cf. 6.1.1.

5.2.2 Determination of Jordan-Hölder constituents: the case g > 1

We know show that equations (�g); (�g); (�g) are enough to compute the Jordan-Hölder

constituents of products of virtual representations of the form em
Qg�1

i=0 M
[i]
ki
(m; k0; :::; kg�1 2

Z).

Lemma 5.2.5. Let g � 1; for any k 2 Z, we can compute the Jordan-Hölder factors of Mk

in the standard form, using (�g); (�g); (�g).

Proof. By applying (�g) if necessary we can assume k � 0. If g = 1, the lemma follows

from the last remark and Prop. 5.1.5. For g � 2, write k = np + r where n; r 2 Z are such

that n � 0 and 0 � r � p� 1. We induct on n.

If n = 0, there is nothing to prove. Assume n � 1 is �xed and that we can com-

pute the Jordan-Hölder factors of Mk in the standard form, using (�g); (�g) and (�g), for

any k of the form k = n0p + r0 where 0 � n0 � n � 1 and 0 � r0 � p � 1. We have

Mnp+r =M(n�1)p+rM
[1]
1 � epM(n�2)p+r by (�g); the Jordan-Hölder factors of epM(n�2)p+r can

be computed in the standard form by induction (if n = 1 thenM(n�2)p+r = �e1�p+rMp�r�2 by
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(�g)). Also, by induction we have an algorithm that allows us to write M(n�1)p+r =
P

i2I Ji

where I is a �nite set and each Ji is of the form em
Qg�1

i=0 M
[i]
ki
for some integers m; k0; :::; kg�1

such that 0 � m < q � 1; 0 � k0; :::; kg�1 � p � 1. It is therefore enough to show that

we can compute the factors of
�Qg�1

i=0 M
[i]
ki

�
M

[1]
1 in standard form, where 0 � m < q � 1;

0 � k0; :::; kg�1 � p� 1. The product formula gives:�Yg�1

i=0
M

[i]
ki

�
M

[1]
1 =

�Yg�1
i=0
i6=1

M
[i]
ki

�
M

[1]
k1+1

+ ep
�Yg�1

i=0
i6=1

M
[i]
ki

�
M

[1]
k1�1:

If k1 6= p�1, each of the two summands is either a Jordan-Hölder factor in standard form,

or it is zero. Otherwise we are left with the determination of the constituents of the �rst

summand. If g = 2 the latter equals Mk0M
[1]
p = Mk0M1 + epMk0M

[1]
p�2 = Mk0+1 + eMk0�1 +

epMk0M
[1]
p�2 and this is not in standard form if and only if k0 = p� 1, in which case we can

compute the constituents ofMk0+1 =Mp in standard form by using (�g): Mp =M
[1]
1 +eMp�2.

Assume now g > 2 and k1 = p� 1. We have, applying (�g):�Yg�1
i=0
i6=1

M
[i]
ki

�
M [1]

p =

�Yg�1
i=0
i6=1;2

M
[i]
ki

�
(Mk2M1)

[2] + ep
�Yg�1

i=0
i6=1

M
[i]
ki

�
M

[1]
p�2:

The second summand is already in standard form; for the �rst summand we have:�Yg�1
i=0
i6=1;2

M
[i]
ki

�
(Mk2M1)

[2] =

�Yg�1
i=0
i6=1;2

M
[i]
ki

�
M

[2]
k2+1

+ ep
2

�Yg�1
i=0
i6=1;2

M
[i]
ki

�
M

[2]
k2�1:

If k2 6= p � 1, each of the two summands is either a Jordan-Hölder factor in standard

form, or it is zero. Otherwise we are left with the determination of the constituents of

the �rst summand. We proceed as before, distinguishing the cases g = 3 and g > 3. It

is easily seen by induction that the algorithm produces the Jordan-Hölder factors of the

virtual representations appearing in each step as long as ki 6= p� 1 for some 1 � i � g � 1.

If k1 = ::: = kg�1 = p � 1, we are left with the determination the Jordan-Hölder factors

of Mk0M
[g�1]
p = Mk0(M1 + ep

g�1
M

[g�1]
p�2 ). By the product formula, we just need to �nd

the constituents of Mk0+1: if k0 6= p � 1 this is an irreducible representation; otherwise

Mp =M
[1]
1 + eMp�2 and we are done. �

Corollary 5.2.6. Let g � 1. Then (�g); (�g); (�g) imply (�g).
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Proof. By the previous lemma, we can compute the Jordan-Hölder factors of each

summand appearing in (�g) (in standard form). Since we know a priori that the Jordan-

Hölder factors appearing in the right and left hand sides of (�g) have to appear with the

same multiplicities, (�g) is a consequence of (�g); (�g); (�g). �

We can �nally prove:

Theorem 5.2.7. Let g � 1. Using (�g); (�g); (�g) we can compute the Jordan-Hölder

factors in the standard form for any algebraic sum of products of virtual representations of

the form em
Qg�1

i=0 M
[i]
ki
(m; k0; :::; kg�1 2 Z).

Proof. If g = 1, this is just Prop. 5.1.5. Assume g � 2; by applications of (�g) and

of Lemma 5.1.11, it is enough to prove that we can compute the Jordan-Hölder factors in

the standard form for the representation M =
Ng�1

i=0 M
[i]
ki
(k0; :::; kg�1 � 0). We induct on

dimFq M . If dimFq M = 1, we are done, otherwise we distinguish two cases.

Case 1 : There is some i, 0 � i � g � 1, such that Mki is reducible.

By applying an appropriate Frobenius twist, we can assume without loss of generality that

Mk0 is reducible. By the previous lemma, we can compute the Jordan-Hölder factors of Mk0

in the standard form, say Mk0 =
P

h2I Jh in K0(G), where I is a �nite set with at least two

elements and each Jh is a non-zero composition factor of Mk0, written in standard form. It

is then enough to compute in standard form the constituents of Jh
Qg�1

i=1 M
[i]
ki
for each h 2 I.

Fix an element h 2 I; up to twisting by a power of e we can assume Jh =
Qg�1

i=0 M
[i]
ri where

0 � r0; :::; rg�1 � p� 1; so that an application of Lemma 5.1.10 gives:

Jh
Yg�1

i=1
M

[i]
ki

= Mr0

Yg�1

i=1
(MriMki)

[i] =

= Mr0

Yg�1

i=1

�Xminfri;kig

j=0
ejp

i

M
[i]
ri+ki�2j

�
=

=
Xminfri;kig

ji=0
(1�i�g�1)

es(j1;:::;jg�1)Mr0M
[1]
r1+k1�2j1 :::M

[g�1]
rg�1+kg�1�2jg�1 ;

where s (j1; :::; jg�1) 2 Z and the last summation is over the g � 1 indices j1; :::; jg�1: Since

dimFq

�
Mr0 
M

[1]
r1+k1�2j1 
 :::
M

[g�1]
rg�1+kg�1�2jg�1

�
< dimFq M
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for any value of j1; :::; jg�1, by induction assumption we can compute the Jordan-Hölder

constituents of Jh
Qg�1

i=1 M
[i]
ki
in the standard form.

Case 2 : For any i, 0 � i � g � 1, the representation Mki is irreducible.

By the previous lemma, we can assume - up to twistings by powers of det - that we have

written M [i]
ki
=
Qg�1

j=0M
[j]

r
(i)
j

for any 0 � i � g � 1, where 0 � r
(i)
0 ; :::; r

(i)
g�1 � p� 1. Then:

M =
Yg�1

i=0
M

[i]
ki
=
Yg�1

j=0

�Yg�1

i=0
M

r
(i)
j

�[j]
: (5.2)

Applying the product formula (cf. Cor. 5.1.11), we can write:�Yg�1

i=0
M

r
(i)
j

�[j]
=
X

�j2Aj
es�jM [j]

r�j
; (5.3)

where, for any 0 � j � g � 1; Aj is a non-empty �nite set and s�j ; r�j � 0 for �j 2 Aj.

Combining (5.2) and (5.3) we obtain:

M =
X

�j2Aj
(0�j�g�1)

es(�0;:::;�g�1)Mr�0
M [1]

r�1
:::M [g�1]

r�g�1
; (5.4)

where s(�0; :::; �g�1) 2 Z and the summation is over the g-tuples (�0; :::; �g�1) 2 A0 � :::�

Ag�1. If each of the sets A0; :::; Ag�1 contains exactly one element, then for any 0 � j � g�1,

at most one element in fr(0)j ; :::; r
(g�1)
j g is positive. Indeed, if this were not the case, there

would be some j such that r(a)j ; r
(b)
j > 0 for some a; b with 0 � a < b � g � 1; then by only

applying the product formula we would obtain:�Yg�1

i=0
M

r
(i)
j

�[j]
=

��Yg�1
i=0
i6=a;b

M
r
(i)
j

��
M

r
(a)
j +r

(b)
j
+ eM

r
(a)
j �1Mr

(b)
j �1

��[j]
:

Since r(a)j � 1; r(b)j � 1 � 0, the left hand side above contains at least two non-zero sum-

mand, contradicting the fact that by only applying the product formula we could also write�Qg�1
i=0 Mr

(i)
j

�[j]
= esjM

[j]
rj for some integers sj; rj. We conclude that if each of the sets

A0; :::; Ag�1 contains exactly one element, then M is irreducible and (5.2) is the standard

Jordan-Hölder form of M .

If there is 0 � j � g � 1 such that Aj has at least two elements, then in (5.4) at least tow

non-zero terms appear, so that each of the summand of (5.4) has dimension strictly less than

dimFq M , and by induction we are done. �
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5.2.3 Families of intertwining operators for g > 1

For g = 1, one has available two intertwining operators acting on Fp[G]-modules and shifting

weights by p � 1, namely the Dickson invariant �p and the derivation map D (cf. 5.1.2).

For g > 1, equation (�g) and the existence of partial Hasse invariants and theta operators

acting on spaces of mod p Hilbert modular forms (cf. [AG05]) suggest that there should be

other intertwining operators between modular representations of G, generalizing �q and D.

In this section we will construct such operators.

Unless otherwise speci�ed, we will always assume g > 1, and we will consider all the

tensor product over Fq (q = pg).

Generalized Dickson invariants

De�nition 5.2.8. For any integer � such that 1 � � � g� 1, the (non-twisted) generalized

�th Dickson operator is the element

�� = X 
 Y pg�� � Y 
Xpg��

of the G-module M1 
M
[�]

pg�� .

For integers �; � such that 0 � � � g � 1 and 1 � � � g � 1, the �-twisted generalized

�th Dickson operator is the element

�
[�]
� = X 
 Y pg�� � Y 
Xpg��

of the G-module M [�]
1 
M

[�+�]

pg�� .

Lemma 5.2.9. Let k; h be two non-negative integers and let �; � be two integers such

that 0 � � � g � 1 and 1 � � � g � 1. Multiplication by �[�]� in the Fq[G]-algebra

Fq[X; Y ][�] 
 Fq[X; Y ][�+�] induces an injective G-homomorphism:

�
[�]
� : detp

� 
M [�]
k 
M

[�+�]
h !M

[�]
k+1 
M

[�+�]

h+pg�� :

Proof. We can assume � = 0. To prove G-equivariance of the map ��, it is enough to
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show that �� = det  ��� for all  2 G. Let  =
�
a
c
b
d

�
2 G; then �� equals:

(aX + cY )
 (bp�X + dp
�

Y )p
g�� � (bX + dY )
 (ap�X + cp

�

Y )p
g��

= (aX + cY )
 (bqXpg�� + dqY pg��)� (bX + dY )
 (aqXpg�� + cqY pg��)

= (aX + cY )
 (bXpg�� + dY pg��)� (bX + dY )
 (aXpg�� + cY pg��)

= adX 
 Y pg�� + bcY 
Xpg�� � bcX 
 Y pg�� � adY 
Xpg��

= det  �
�
X 
 Y pg�� � Y 
Xpg��

�
= det  ���:

To show injectivity of ��, notice that there is an isomorphism of Fq[G]-algebras Fq[X;Y ]


Fq[X;Y ][�] ' Fq[Z;W; T p
�
; Up� ] obtained by sending the ordered tuple (X 
 1; Y 
 1; 1 


X; 1 
 Y ) into the ordered tuple (Z;W; T p
�
; Up�), were we are letting G acts on Z;W; T; U

as follows: for  =
�
a
c
b
d

�
2 G,

Z = aZ + cW;

W = bZ + dW;

T = aT + cU;

U = bT + dU:

Under the above identi�cation, the map �� corresponds to multiplication by ZU q �WT q

on Fq[Z;W; T p
�
; Up� ], and it is therefore injective. �

In addition to the above operators, the classical Dickson invariant also gives rise to an

intertwining map:

Proposition 5.2.10. Let k be a non-negative integer and let � be an integer such that

0 � � � g � 1. Let �[�] = XY q � Y Xq be the classical Dickson invariant, viewed as an

element of M [�]
q+1. Multiplication by �

[�] in the Fq[G]-algebra Fq[X; Y ][�] induces an injective

G-homomorphism:

�[�] : detp
� 
M [�]

k �!M
[�]
k+(q+1):
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Proof. This follows from section 5.1.2. �

Notice that the operators �[�]� and �[�] (0 � � � g�1, 1 � � � g�1) pairwise commute,

as it follows by seeing them as multiplication by polynomials in some polynomial algebra

over Fq (cf. the end of the proof of Lemma 5.2.9).

Remark 5.2.11. Let us �x a convention that will make the notation easier in the sequel.

For non-negative integers k0; :::; kg�1, the G-moduleMk0
M
[1]
k1

:::
M [g�1]

kg�1
will be identi�ed

with the G-module obtained by permuting in any possible way the tensor factors. Also, for

integers �; � and any G-module M , the notation M [�+�] will denote the th Frobenius twist

of M , where  is the smallest non-negative integer such that  � �+ �(mod g).

We can summarize the above results as follows:

Theorem 5.2.12. Let us �x non-negative integers k0; :::; kg�1. For any integers �; � subject

to the constraints 0 � � � g � 1 and 1 � � � g � 1, there are pairwise commuting injective

G-intertwining operators as follows:

�
[�]
� : detp

� 

O

i
M

[i]
ki
�!

�O
i6=�;�+�

M
[i]
ki

�

M

[�]
k�+1


M
[�+�]

k�+�+pg��
;

�[�] : detp
� 


O
i
M

[i]
ki
�!

�O
i6=�

M
[i]
ki

�

M

[�]
k�+(q+1)

;

where the tensor products indices run over the integers i such that 0 � i � g � 1, unless

otherwise speci�ed.

Remark 5.2.13. The operators �[�]g�1 for 0 � � � g � 1 give, under suitable assumptions,

cohomological analogues of the theta operators de�ned in [AG05] in the context of Hilbert

modular forms. We do not know of any geometric interpretation of the other generalized

Dickson operators.

We can picture the weight shiftings allowed by the g(g� 1)+ g = g2 generalized Dickson

operators with the following self-explanatory tables:
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�1 (1; pg�1; 0; 0; :::; 0; 0)

�
[1]
1 (0; 1; pg�1; 0; :::; 0; 0)

�
[2]
1 (0; 0; 1; pg�1; :::; 0; 0)

::: :::

�
[g�2]
1 (0; 0; 0; 0; :::; 1; pg�1)

�
[g�1]
1 (pg�1; 0; 0; 0; :::; 0; 1)

�2 (1; 0; pg�2; 0; :::; 0; 0)

�
[1]
2 (0; 1; 0; pg�2; :::; 0; 0)

�
[2]
2 (0; 0; 1; 0; :::; 0; 0)

::: :::

�
[g�2]
2 (pg�2; 0; 0; 0; :::; 1; 0)

�
[g�1]
2 (0; pg�2; 0; 0; :::; 0; 1)

:::

�g�1 (1; 0; 0; 0; :::; 0; p)

�
[1]
g�1 (p; 1; 0; 0; :::; 0; 0)

�
[2]
g�1 (0; p; 1; 0; :::; 0; 0)

::: :::

�
[g�2]
g�1 (0; 0; 0; 0; :::; 1; 0)

�
[g�1]
g�1 (0; 0; 0; 0; :::; p; 1)

� (q + 1; 0; 0; :::; 0; 0)

�[1] (0; q + 1; 0; :::; 0; 0)

�[2] (0; 0; q + 1; :::; 0; 0)

::: :::

�[g�2] (0; 0; 0; :::; q + 1; 0)

�[g�1] (0; 0; 0; :::; 0; q + 1)

For example, if g = 2 the generalized Dickson operators give all and only the weight

shiftings of the form:

a1(1; p) + a2(p; 1) + a3(0; p
2 + 1) + a4(p

2 + 1; 0);

for any non-negative integers a1; a2; a3; a4: For g > 2 a new phenomenon occurs, as the

operators do not allow weight shiftings of the form:

(1; p; 0; :::; 0; 0); (0; 1; p; :::; 0; 0); :::; (0; 0; 0; :::; 1; p); (p; 0; 0; :::; 0; 1):

This happens not because of limitations intrinsic to our intertwining maps, but because of

the structure of G-modules:

Proposition 5.2.14. Assume g > 2 and let k; h be integers such that 0 � k; h � p� 1. For

any integer � such that 0 � � � g�1 and any integer m, there are no G-module morphisms

detm
M [�]
k 
M

[�+1]
h !M

[�]
k+1 
M

[�+1]
h+p .
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Proof. It is enough to prove the non existence of morphisms for � = 0. Using (�g) and

(�g) we have, in K0(G):

M
[1]
h+p =M

[1]
h M

[2]
1 + ep(h+1)M

[1]
p�h�2:

If k 6= p � 1, as g > 2, we deduce that the Jordan-Hölder factors of Mk+1 
 M
[1]
h+p are

Mk+1
M [1]
h 
M [2]

1 and detp(h+1)
Mk+1
M [1]
p�h�2, unless h = p� 1, in which case only the

�rst factor occurs. None of these factors coincides with detm
Mk 
M
[1]
h .

If k = p� 1, write Mp =M
[1]
1 + eMp�2 in K0(G). Applying (�g) we obtain:

MpM
[1]
h+p =

�
M

[1]
1 + eMp�2

��
M

[1]
h M

[2]
1 + ep(h+1)M

[1]
p�h�2

�
= M

[1]
h+1M

[2]
1 + epM

[1]
h�1M

[2]
1 + ep(h+1)M

[1]
p�h�1 + ep(h+2)M

[1]
p�h�3

+eMp�2M
[1]
h M

[2]
1 + ep(h+1)+1Mp�2M

[1]
p�h�2:

If h 6= p� 1, the above formula shows that none of the Jordan-Hölder factors of Mp 
M [1]
h+p

equals detm
Mp�1 
M
[1]
h . If h = p� 1, we have:

MpM
[1]
2p�1 = M

[2]
1 M

[2]
1 + epM

[1]
p�2M

[2]
1 + epM

[1]
p�2M

[2]
1 + eMp�2M

[1]
p�1M

[2]
1

= M
[2]
2 + ep

2

+ 2epM
[1]
p�2M

[2]
1 + eMp�2M

[1]
p�1M

[2]
1 ;

and detm
Mp�1 
M [1]
p�1 is not a constituent of Mp 
M [1]

2p�1 if p 6= 2: If p = 2, decomposing

M
[2]
2 we get to the same conclusion. �

We conclude this section by noticing the following consequence of Prop. 5.1.6:

Proposition 5.2.15. Let us �x non-negative integers k0; :::; kg�1. For any integer � such

that 0 � � � g � 1 consider the G-map �[�] : detp� 

N

iM
[i]
ki
!
�N

i6=�M
[i]
ki

�

M

[�]
k�+(q+1)

.

We have:

coker�[�] '
�O

i6=�
M

[i]
ki

�


�
IndGB

�
�k�+2

��[�]
;

where B is the subgroup of G consisting of upper triangular matrices, and � is the

character of B de�ned extending the character diag(a; b) 7! a of the standard maximal torus

of G:
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Remark 5.2.16. The Jordan-Hölder constituents of coker�[�]� can be explicitly computed

using the results we proved earlier, but we do not know of any interesting description of the

cokernel of the operators �[�]� .

Generalized D-operators

Let us denote by @X (resp. @Y ) the operator of partial derivation with respect to X (resp. Y )

acting on the polynomial algebra Fq[X; Y ]; if f 2 Fq[X; Y ], denote by the same symbol the

Fq-vector space endomorphism of Fq[X; Y ] induced by multiplication by f . The operators

@X
f; @Y
f; f 
@X and f
@Y are therefore derivation of the Fq-algebra Fq[X; Y ]
Fq[X;Y ]:

De�nition 5.2.17. Let k; h be two non-negative integers. For any integer � such that

1 � � � g � 1, the (non-twisted) generalized �th D-operator is the Fq-vector space homo-

morphism:

D� = @X 
Xpg�� + @Y 
 Y pg�� :Mk 
M
[�]
h �!Mk�1 
M

[�]

h+pg�� :

For any integers �; � such that 0 � � � g�1 and 1 � � � g�1, the �-twisted generalized

�th D-operator is the Fq-vector space homomorphism:

D
[�]
� = @X 
Xpg�� + @Y 
 Y pg�� :M

[�]
k 
M

[�+�]
h �!M

[�]
k�1 
M

[�+�]

h+pg�� :

Lemma 5.2.18. Let k; h be two non-negative integers and let �; � be integers such that

0 � � � g � 1 and 1 � � � g � 1. The operator D[�]
� :M

[�]
k 
M [�+�]

h !M
[�]
k�1 
M

[�+�]

h+pg�� is a

G-homomorphism; it is injective if 0 < k � p� 1 and 0 � h � p� 1.

Proof. By twisting, we can assume that � = 0. Fix f1 2 Mk, f2 2 M
[�]
h and let

 =
�
a
c
b
d

�
2 G; denote by �� the matrix

�
a�

�

c�
�
b�
�

d�
�

�
, where � denotes the arithmetic Frobenius
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element of Gal(Fq=Fp): D� ((f1 
 f2)) equals:

[a � (@Xf1) (X; Y ) + b � (@Y f1) (X; Y )]
Xpg��f2(
��X; �

�

Y )

+ [c � (@Xf1) (X; Y ) + d � (@Y f1) (X; Y )]
 Y pg��f2(
��X; �

�

Y )

= (@Xf1) (X; Y )
 (aXpg�� + cY pg��)f2(
��X; �

�

Y )

+ (@Y f1) (X; Y )
 (bXpg�� + dY pg��)f2(
��X; �

�

Y )

= D� (f1 
 f2) :

For the injectivity statement, notice that if 0 < k � p�1 and 0 � h � p�1, thenMk
M [�]
h

is an irreducible G-module, so it is enough to show that D� is non-zero on Mk 
M
[�]
h . We

have D�(X
k 
Xh) = kXk�1 
Xh+pg�� , and this is non-zero as k is prime with p. �

In addition to the above operators, the D-map de�ned by Serre also gives an intertwining

map:

Proposition 5.2.19. Let k be a non-negative integer and let � be an integer such that

0 � � � g � 1. Then the Frobenius twists of Serre�s operator D[�] = Xq@X + Y q@Y de�ne

G-homomorphisms:

D[�] :M
[�]
k �!M

[�]
k+(q�1)

which are injective if 1 � k � p� 1.

Proof. After twisting, we can assume � = 0. The result then follows from section 5.1.2

and the irreducibility of M [�]
k in the range 1 � k � p� 1. �

We can summarize the above results as follows:

Theorem 5.2.20. Let us �x non-negative integers k0; :::; kg�1. For any integers �; � subject

to the constraints 0 � � � g � 1 and 1 � � � g � 1, there are G-intertwining operators as

follows:

D
[�]
� :

O
i
M

[i]
ki
�!

�O
i6=�;�+�

M
[i]
ki

�

M

[�]
k��1 
M

[�+�]

k�+�+pg��
;

D[�] :
O

i
M

[i]
ki
�!

�O
i6=�

M
[i]
ki

�

M

[�]
k�+(q�1);
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where the tensor product indices run over the integers i such that 0 � i � g � 1, unless

otherwise speci�ed. If 0 < k� � p� 1, then D[�] is injective; if in addition 0 � k�+� � p� 1,

then D[�]
� is injective.

Remark 5.2.21. The operators D[�]
g�1 for 0 � � � g � 1 give, under suitable assumptions,

cohomological analogues of the partial Hasse invariants de�ned in [AG05] in the context of

mod p Hilbert modular forms. We do not know of any geometric interpretation of the other

D-maps introduced above.

We can picture the weight shiftings allowed by the g(g� 1)+ g = g2 generalized D-maps

as follows:

D1 (�1; pg�1; 0; 0; :::; 0; 0)

D
[1]
1 (0;�1; pg�1; 0; :::; 0; 0)

D
[2]
1 (0; 0;�1; pg�1; :::; 0; 0)

::: :::

D
[g�2]
1 (0; 0; 0; 0; :::;�1; pg�1)

D
[g�1]
1 (pg�1; 0; 0; 0; :::; 0;�1)

D2 (�1; 0; pg�2; 0; :::; 0; 0)

D
[1]
2 (0;�1; 0; pg�2; :::; 0; 0)

D
[2]
2 (0; 0;�1; 0; :::; 0; 0)

::: :::

D
[g�2]
2 (pg�2; 0; 0; 0; :::;�1; 0)

D
[g�1]
2 (0; pg�2; 0; 0; :::; 0;�1)

:::

Dg�1 (�1; 0; 0; 0; :::; 0; p)

D
[1]
g�1 (p;�1; 0; 0; :::; 0; 0)

D
[2]
g�1 (0; p;�1; 0; :::; 0; 0)

::: :::

D
[g�2]
g�1 (0; 0; 0; 0; :::;�1; 0)

D
[g�1]
g�1 (0; 0; 0; 0; :::; p;�1)

D (q � 1; 0; 0; :::; 0; 0)

D[1] (0; q � 1; 0; :::; 0; 0)

D[2] (0; 0; q � 1; :::; 0; 0)

::: :::

D[g�2] (0; 0; 0; :::; q � 1; 0)

D[g�1] (0; 0; 0; :::; 0; q � 1)

Similarly to what happened for the generalized Dickson operators, the non existence of

shiftings of the form
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(�1; p; 0; :::; 0; 0); (0;�1; p; :::; 0; 0); :::; (0; 0; 0; :::;�1; p); (p; 0; 0; :::; 0;�1)

when g > 2 is a consequence of the structure of the irreducible G-modules:

Proposition 5.2.22. Assume g > 2 and let k; h be integers such that 0 � k; h � p� 1. For

any integer � such that 0 � � � g�1 and any integer m, there are no G-module morphisms

detm
M [�]
k 
M

[�+1]
h !M

[�]
k�1 
M

[�+1]
h+p .

Proof. It is enough to consider the case � = 0; we can also assume that k 6= 0. Using

formulae (�g) and (�g) we have, in K0(G):

M
[1]
h+p =M

[1]
h M

[2]
1 + ep(h+1)M

[1]
p�h�2:

As g > 2, the Jordan-Hölder factors of Mk�1 
M
[1]
h+p are

Mk�1 
M
[1]
h 
M

[2]
1 ; det

p(h+1)
Mk�1 
M
[1]
p�h�2;

unless h = p � 1, in which case only the �rst factor occurs: none of these factors coincides

with detm
Mk 
M
[1]
h :�

We conclude by noticing the following consequence of Th. 5.1.8:

Proposition 5.2.23. Let us �x non-negative integers k0; :::; kg�1; let � be an integer such

that 0 � � � g � 1 and assume 2 � k� � p � 1, k� 6= q+1
2
. Consider the injective G-map

D[�] : D[�] :
N

iM
[i]
ki
!
�N

i6=�M
[i]
ki

�

M

[�]
k�+(q�1). We have:

cokerD[�] '
�N

i6=�M
[i]
ki

�


�
��
�
�k�
��[�]

;

where: ��
�
�k�
�
= H1

cris(C=Fq)�k� 
W (Fq) Fq, C is the Deligne-Lusztig variety of SL2=Fq
and the (�k�)-eigenspace of H1

cris(C=Fq) is computed with respect to the natural action of

ker(NmF�
q2
=F�q ) on H

1
cris(C=Fq).

Remark 5.2.24. We do not know of any interesting description of the cokernel of the

operators D[�]
� . The Jordan-Hölder constituents of cokerD

[�]
� can be explicitly computed

using the results described in this dissertation.
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CHAPTER 6

Weight shiftings for automorphic forms

We apply the results of the previous sections to obtain weight shiftings for automorphic

forms on de�nite quaternion algebras whose center is a totally real �eld F unrami�ed at the

prime p > 2. First we treat the case in which the tensor factors - corresponding to the prime

decomposition of p in F - of the weight that we want to shift are all of dimension greater

than one: this is what we call a weight not containing a (2; :::; 2)-block. In section 6.2 we

consider shiftings for irreducible weights that contain a (2; :::; 2)-block.

6.1 Shiftings for weights not containing (2; :::; 2)-blocks

Let us �x some notation that will be used throughout this section and the next one. Let F

be a totally real number �eld of degree g over Q, and let p > 2 be a rational prime which

is unrami�ed in F=Q. Denote by OF the ring of integers of F and write pOF =
Yr

j=1
Pj;

where the Pj�s are distinct maximal ideals of OF .

Fix an integer j with 1 � j � r. Let fj be the residual degree of Pj over pZ, so that

FPj := OF=Pj is an extension of Fp = Z=pZ of degree fj. Let FPj be the completion of F at

Pj, and denote by OFPj
its ring of integers. Fix an algebraic closure Qp of Qp; let n be the

positive least common multiple of the integers f1; :::; fr and let E be the maximal unrami�ed

extension of Qp inside Qp having degree n over Qp, so that Hom(F;Qp) = Hom(F;E).

Denote by O the ring of integers of E and let F be its residue �eld. Let � be the arithmetic

Frobenius of the extension E=Qp. Set:

Hom(FPj ; E) =
n
�
(j)
i : 0 � i � fj � 1

o
;
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where the labeling is chosen so that, for any i, we have:

� � �(j)i = �
(j)
i+1:

Here the subscripts are taken modulo fj and in the range 0 � i � fj � 1:

Denote by a bar the analogous morphisms for the residue �elds, so that � is the arithmetic

Frobenius of the extension F=Fp, and:

Hom(FPj ;F) = f�
(j)
i : 0 � i � fj � 1g

are labeled so that:

� � �(j)i = �
(j)
i+1;

where the subscripts are taken modulo fj and in the range 0 � i � fj � 1:

We let AF be the topological ring of adèles of F , and we denote by A1F the subring of

�nite adèles. We let MF;f (resp. MF;1) be the set of �nite (resp. in�nite) places of F and

we identify MF;f with the set of maximal ideals of OF .

6.1.1 Some motivations: geometric Hilbert modular forms

Denote by dF the discriminant of F=Q and �x a fractional ideal a of F with its natural

positive cone a+, so that (a; a+) represents an element in the strict class group of F . Let

N � 4 be an integer and recall that, by previous assumptions, p does not divide dF . Let S

be a scheme over Spec(Z[ 1
dF
]).

There is an S-schemeM parametrizing isomorphism classes [(A; �; �; ")=T=S] of (a; a+)-

polarized Hilbert-Blumenthal abelian T -schemes (A; �) of relative dimension g (T is an

S-scheme), endowed with real multiplication � by OF , �N -level structure ", and satisfying

the Deligne-Pappas condition (or, equivalently since dF is invertible in S, satisfying the

Rapoport condition). M has relative dimension g over S and is geometrically irreducible;

see [DP94] and [AG05] for more details.

Let G = ResOF =Z(Gm;OF ) be the Weil restriction to Z of the algebraic OF -group Gm;OF .

For any scheme T , denote by XT = Hom(GT ;Gm;T ) the group of characters of the base
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change GT of G to T . If S is the scheme over Spec(Z[ 1dF ]) �xed above, a geometric (a; a
+)-

polarized Hilbert modular form f over S having weight � 2 XS and level �N is a rule that

assigns to any a¢ ne scheme Spec(R) ! S, any R-point [(A; �; �; ")=R=S] of M, and any

generator ! of the R
Z OF -module 
1A=R, an element f(A; �; �; "; !) 2 R such that:

f(A; �; �; "; ��1!) = �(�) � f(A; �; �; "; !)

for � 2 G(R), and such that some compatibility conditions are satis�ed (cf. [AG05], 5). We

denote by M�(�N ; S) the �(S;OS)-module of such functions.

We remark that the formation of spaces of geometric Hilbert modular forms does not

commute with base change: for example, if g > 1 and 1 � j � r; 0 � i � fj � 1, the (j; i)th

partial Hasse invariant that we will consider below is a non-zero, non-cuspidal modular forms

over SpecFPj that cannot be lifted to a modular forms over SpecOF : the natural reduction

morphism M�(�N ;OF )!M�(�N ;FPj) is in general not surjective.

Assume g > 1 for the rest of this paragraph. We consider modular forms over S =

Spec(F). The labeling of the embeddings �(j)i for 1 � j � r and 0 � i � fj � 1 induces a

canonical splitting:

GF =
Mr

j=1

�
ResFPj =Fp(Gm;FPj )�SpecFp SpecF

�
=

Mr

j=1

M
�
(j)
i :FPj ,!F

Gm;F;

such that the projection �(j;i) of GF onto the (j; i)th factor is induced by �
(j)
i . The character

group XF of GF is the free Z-module or rank g generated by these projections. A geometric

Hilbert modular form over Spec(F) whose weight is
Qr

j=1

Qfj�1
i=0 �

a
(j)
i

(j;i) for some a
(j)
i 2 Z is

also said to have weight vector ~a = (~a(1); :::;~a(r)) where ~a(j) = (a(j)0 ; :::; a
(j)
fj�1) for 1 � j � r.

Th. 2.1 of [Gor01] shows that, for any 1 � j � r and 0 � i � fj � 1, there is an (a; a+)-

polarized Hilbert modular form h(j;i) over Spec(F) having weight �p(j;i�1)�
�1
(j;i) and level 1,

whose q-expansion at every (a; a+)-polarized unrami�ed Fp-rational cusp is one. h(j;i) is

called the (j; i)th partial Hasse invariant. As mentioned earlier, the forms h(j;i) are not

liftable to characteristic zero; even the total Hasse invariant, i.e., the form h =
Q
(j;i) h(j;i),
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having parallel weight (p� 1; p� 1; :::; p� 1), is not always liftable to characteristic zero (cf.

Prop. 3.1 in [Gor01]).

As a consequence of the existence of the partial Hasse invariants, one can produce (geo-

metric) weight shiftings. More precisely, �x an integer j such that 1 � j � r and as-

sume � 2 XF is such that M�(�N ;F) 6= 0; denote the weight vector associated to � by

~a = (~a(1); :::;~a(r)). Multiplication by h(j;i) for an integer i such that 0 � i � fj � 1 induces

a Hecke injection of M�(�N ;F) into M�0(�N ;F), where the weight vector associated to �0 is

~a + ~t and ~t = (~t(1); :::;~t(r)) is such that ~t(r) = ~0 if r 6= j, while ~t(j) is one of the following

fj-tuples:

(�1; 0; 0; :::; 0; p) if i = 0;

(p;�1; 0; :::; 0; 0) if i = 1;

(0; p;�1; :::; 0; 0) if i = 2;

:::

(0; 0; 0; :::; p;�1) if i = fj � 1:

In [Kat78] 2.5. and [AG05] 12, generalized theta operators acting on spaces of geometric

Hilbert modular forms over Spec(F) are de�ned, allowing additional weight shiftings. For

example, if p is inert in F=Q, these operators induce shiftings by the vectors:

(1; 0; 0; :::; 0; p);

(p; 1; 0; :::; 0; 0);

(0; p; 1; :::; 0; 0);

:::

(0; 0; 0; :::; p; 1):

The reader will notice that the two sets of weight shifting vectors described above are con-

tained in the sets of weight shifting vectors produced in 5.2.3 and 5.2.3 for �Fp-representation

of GL2(F). Exploiting the adelic de�nition of Hilbert modular forms, we will see that all

the geometric weight shiftings can be obtained as cohomological weight shiftings via the

82



operators considered in Section 3. The purely cohomological picture will be reacher, as more

shiftings will be allowed. The formation of spaces of adelic automorphic forms on de�nite

quaternion algebra will have the advantage of being compatible with base changes, under

suitable assumptions (Prop. 6.1.2). Finally, our cohomological weight shiftings translate

into weight shiftings for (mod p) Galois representations arising from automorphic forms on

GL2(AF ).

6.1.2 Automorphic forms on de�nite quaternion algebras

We recall the de�nition and some properties of automorphic forms on de�nite quaternion

algebras over totally real number �elds. The exposition follows [Tay06] and [Kis09b]; cf. also

[Tay89].

Fix a �nite set � � MF;f disjoint from the set of places of F lying above p and such

that #� + [F : Q] � 0(mod 2). Let D be a quaternion algebra over F whose rami�cation

set is MF;1 [ �. Let OD be a �xed maximal order of D and for any v 2MF;f � � �x ring

isomorphisms (OD)v 'M2(OFv).

Let U be a compact open subgroup of (D 
F A1F )
� such that:

1. U =
Q

v2MF;f
Uv, where Uv is a subgroup of (OD)

�
v ;

2. Uv = (OD)
�
v if v 2 �;

3. if vjp, then Uv = GL2(OFv):

Let A be a topological Zp-algebra. Let v be a place of F above p, say v = vj := Pj

for some integer j such that 1 � j � r; let W�j be a free A-module of �nite rank and �x a

continuous homomorphism

� j : Uvj = GL2(OFPj
) �! Aut(W�j);

where Aut(W�j) is the group of continuous A-linear automorphisms of W�j . Let W� =Nr
j=1W�j ; where the tensor products are over A, and denote by � the corresponding group
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homomorphism � :
Qr

j=1 Uvj!Aut(W� ). If no confusion arises, we also denote by � the

action of U onW� induced by precomposing the latter morphism with the natural projection

U!
Qr

j=1 Uvj .

For A as above, let  : (A1F )
� =F�!A� be a continuous character such that, for any

v 2MF;f :

� jUv\O�Fv
(u) =  �1(u) � IdW� , for all u 2 Uv \ O�

Fv
.

We say that such a Hecke character  is compatible with � .

De�nition 6.1.1. For D;U;A; � ;W� and  as above, the space S�; (U;A) of automorphic

forms on D having level U , weight � , character  and coe¢ cients in A is the A-module

consisting of all the functions:

f : D�n (D 
F A1F )
� �! W�

satisfying:

(a) f(gu) = �(u)�1f(g) for all g 2 (D 
F A1F )
� and all u 2 U ;

(b) f(gz) =  (z)f(g) for all g 2 (D 
F A1F )
� and all z 2 (A1F )

�.

As in [Kis09b], we will assume, unless otherwise stated, that for all t 2 (D 
F A1F )
�, the

�nite group (U �(A1F )
�\t�1D�t)=F� has order prime to p. This assumption is automatically

satis�ed if U is su¢ ciently small, as Lemma 1.1. of [Tay06] implies that in this case (U �

(A1F )
� \ t�1D�t)=F� is a 2-group. We obtain as a consequence (cf. [Tay06], Cor. 1.2):

Proposition 6.1.2. Let B a topological A-algebra. The natural morphism

S�; (U;A)
A B!S�
AB; 
AB(U;B)

is an isomorphism of B-modules.

De�ne a left action of (D 
F A1F )
� on the set of functions D�n (D 
F A1F )

� ! W�

by setting (gf)(x) := f(xg) for all g; x 2 (D 
F A1F )
�. Let S be a set of primes of F
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containing the rami�cation set of D, the primes above p and the primes v for which Uv is

not a maximal compact subgroup of D�
v . Let TunivS;A = A[Tv; Sv : v =2 S] be the commutative

polynomial A-algebra in the indicated indeterminates. For each �nite place v =2 S, let $v

be a �xed uniformizer for Fv. S�; (U;A) has a natural action of TunivS;A , with Sv acting via

the double coset U
�
$v

$v

�
U and Tv via U

�
$v

1

�
U (cf. [Tay06], 1); this action does not

depend upon the choices of uniformizers that we made. The image of TunivS;A in the ring of

A-module endomorphisms of S�; (U;A) is the Hecke algebra TS;A acting on S�; (U;A). The

isomorphism of Prop. 6.1.2 is Hecke equivariant.

6.1.3 Behavior of Hecke eigensystems under reduction modulo MR

For a discrete valuation ring R, we will denote by MR its maximal ideal. If the residual

characteristic of R is p > 0 and no confusion arises, we will also improperly refer to reduction

modulo MR as reduction modulo p. If T is a commutative algebra, a system of eigenvalues

of T with values in R is a set theoretic map 
 : T ! R; the reduction of 
 modulo p,

denoted �
, is the function obtained by composing 
 with the reduction morphism R! R
MR
.

Let RT = R 
Z T ; if M is an RT -module, we say that a system of eigenvalues 
 : T !R

occurs in M if there is a non-zero element m 2 M such that Tm = 
(T )m for all T 2 T .

Such a non-zero m is called an 
-eigenvector.

Fixing R and T as above. We have:

Lemma 6.1.3. Let M be an RT -module which is �nitely generated over R. If 
 : T !R is

a system of eigenvalues of T occurring in M , then �
 : T ! R
MR

is a system of eigenvalues of

T occurring in �M :=M 
R
R
MR

:

Proof. Cf. [AS86a], Prop. 1.2.3. �

Lemma 6.1.4. Let M be an RT -module which is �nite and free over R. Let �
 : T ! R
MR

be a system of eigenvalues of T occurring in �M =M 
R
R
MR
. There exists a �nite extension

of discrete valuation rings R0=R such that MR0 \ R = MR and a system of eigenvalues


0 : T ! R0 of T occurring in M 
R R
0 such that, for all T 2 T , 
0(T )(modMR0) = �
(T )
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in R0

MR0
: (Here we view R

MR
� R0

MR0
by the given embedding R � R0).

Proof. Cf. [DS74], Lemme 6.11. A generalization of the result is given in [AS86a], Prop.

1.2.2. �

Let D, U , � , W� and  be as in 6.1.2, and set A = O. In particular, we assume that  

is compatible with (� ;W� ), U is small enough and p is odd. Denote by a bar the operation

of tensoring over O with F. From now on, unless otherwise stated, we assume �xed a set S

of primes of F containing the rami�cation set of D, the primes above p and the primes v for

which Uv is not a maximal compact subgroup of D�
v . The Hecke eigensystems considered

below will always be with respect to the Hecke algebra TunivS;A0 for some topological Zp-algebra

A0.

Proposition 6.1.5. Fix an O-valued weight (� 0;W� 0) together with a compatible Hecke

character  0 : (A1F )
� =F�!O� such that � 0 = � . Let ' : (�� ;W�� )! (�� 0;W�� 0) be a non-

zero intertwining operator for F-representations of U . ' induces a Hecke equivariant map

'� : S��;� (U;F)!S�� 0;� (U;F).

Assume ' is injective: then if 
 is a Hecke eigensystem occurring in S�; (U;O), there

is a �nite extension of E, with ring of integer O0 such that MO0 \ O =MO, and there is a

Hecke eigensystem 
0 occurring in S� 0; 0(U;O0) such that:


0(modMO0) = 
(modMO) in
O0

MO0
:

Proof. For f 2 S��;� (U;F) set '�(f) := '�f . If g 2 (D 
F A1F )
� ; u 2 U and z 2 (A1F )

�

we have:

'�(f)(gu) = '(f(gu)) = '
�
��(u�1)f(g)

�
= �� 0(u)�1' (f(g)) ;

'�(f)(gz) = '(f(gz)) = '
�
� (z)f(g)

�
= � (z)' (f(g)) :

Since � 0 = � , we have that �� 0 and � are compatible and we conclude that '�(f) 2 S�� 0;� (U;F).

86



If g; x 2 (D 
F A1F )
�, we have:

(g � '�(f)) (x) = (' � f) (xg)

= (' � (g � f)) (x)

= ('�(g � f)) (x) ;

so that ' is Hecke-equivariant. Assume now that ' is injective and notice that this implies

the injectivity of '�. Let 
 be a Hecke eigensystem occurring in the �nite O-module with

Hecke action S�; (U;O); by Prop. 6.1.2, reduction modulo p induces a Hecke equivariant

surjection � : S�; (U;O) �! S��;� (U;F):

By Lemma 6.1.3, the Hecke eigensystem �
 := 
(modMO) occurs in S��;� (U;F), and

hence in S�� 0;� (U;F) as '� is Hecke equivariant and injective. Now, applying Lemma 6.1.4

to the Hecke equivariant surjection S� 0; 0(U;O)!S�� 0;� (U;F), we deduce the existence of a

�nite extension of discrete valuation rings O0=O such that MO0 \ O =MO, and of a Hecke

eigensystem 
0 : TS;O0 ! O0 occurring in S� 0; 0(U;O) 
O O0 whose reduction modulo MO0

has value in F � O0
MO0

and coincide with �
. By Prop. 6.1.2, S� 0; 0(U;O)
OO0 ' S� 0; 0(U;O0)

as Hecke modules, and we are done. �

6.1.4 Holomorphic weights

For any integer j such that 1 � j � r let us �x two tuples ~k(j) = (k(j)0 ; :::; k
(j)
fj�1) 2 Z

fj
�2 and

~w(j) = (w
(j)
0 ; :::; w

(j)
fj�1) 2 Z

fj . De�ne the �nite free O-module with GL2(O)-action:

W(~k(j); ~w(j)) :=
Ofj�1

i=0
Symk

(j)
i �2O2 
 detw

(j)
i

where the tensor products are over O.

If we let the group GL2(OFPj
) act on the tensor factor Symk

(j)
i �2O2 
 detw

(j)
i (here 0 �

i � fj � 1) via the embedding GL2(OFPj
)!GL2(O) induced by �(j)i = �i � �(j)0 , W(~k(j); ~w(j))

can be seen as a representation of GL2(OFPj
). We view GL2(OFPj

) as a subgroup of GL2(O)

via the embedding �(j)0 , and we write the GL2(OFPj
)-representation W(~k(j); ~w(j)) as:

W(~k(j); ~w(j)) =
Ofj�1

i=0

�
Symk

(j)
i �2O2 
 detw

(j)
i

�[i]
;
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where the superscript [i] indicates twisting by the ith power of the Frobenius element �. In

the sequel, unless otherwise stated, we always view GL2(OFPj
) � GL2(O) via �(j)0 .

Denote by � (~k(j); ~w(j)) the continuous action of GL2(OFPj
) on W(~k(j); ~w(j)) and let � (~k;~w) =Nr

j=1 � (~k(j); ~w(j)), where the tensor products are over O and ~k = (~k(1); :::; ~k(r)). We have:

� (~k;~w) :
Yr

j=1
GL2(OFPj

) �! AutW(~k;~w);

with W(~k;~w) =
Nr

j=1W(~k(j); ~w(j)) (tensor product over O).

If there is some integer j such that ~k(j) = (2; :::; 2), we say that the weight � (~k;~w) contains

a (2; :::; 2)-block relative to the prime Pj. This terminology is not standard but it is used

throughout the dissertation.

We say that � (~k;~w) is a holomorphic weight if there exists an integer w such that:

k
(j)
i + 2w

(j)
i � 1 = w (*)

for all 1 � j � r and all 0 � i � fj � 1 (cf. [Hid88]).

The pair (~k; ~w) 2 Zg�2�Zg is called the parameter pair for � (~k;~w). If � (~k;~w) is a holomorphic

weight, it is also determined by the parameter pair (~k; w) 2 Zg�2 � Z, with w as in (*).

Some results on holomorphic weight shiftings

Lemma 6.1.6. Let us view the holomorphic weight � (~k;w) as an O-representation of the

�xed level U � (D 
F A1F )
�. A Hecke character  : (A1F )

� =F�!O� is compatible with

� (~k;w) if and only if the following two conditions are satis�ed:

(a)  (u) = 1 for all u 2 Uv \ O�
Fv
, where v 2MF;f and v /jp;

(b)  (u) =
�
NmFPj =Qp(u)

�1�w
for all u 2 O�

FPj
, where 1 � j � r.

Proof. The reason for condition (a) is clear, as the representation � (~k;w) factors throughQr
j=1GL2(OFPj

). Let j be such that 1 � j � r and �x u 2 O�
FPj
; recall that we embed OFPj
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in O via �(j)0 . The matrix
�
u
u

�
2 GL2(OFPj

) acts on W(~k(j);w) as the automorphism:Ofj�1

i=0

�
�i(u)k

(j)
i �2+2w(j)i � Idi

�
=

Ofj�1

i=0
�i(u)w�1 � Idi

=
�
NmFPj =Qp(u)

�w�1
�
Ofj�1

i=0
Idi

=
�
NmFPj =Qp(u)

�w�1
� IdW

(~k(j);w)
;

where Idi denotes the identity map of the O-vector space:�
Symk

(j)
i �2O2 
 detw

(j)
i

�[i]
;

and we used the assumption that the local extension FPj=Qp is unrami�ed with Galois

group generated by the restriction of � to FPj . The result now follows, as we need to have

� jO�FPj
(u) =  �1(u) � IdW

(~k;w)
. �

Lemma 6.1.7. Let w be an even integer. Then there exists a continuous character  :

(A1F )
� =F�!Z�p such that:

(a)  (u) = 1 for all u 2 O�
Fv
, where v 2MF;f and v /jp;

(b)  (u) =
�
NmFPj =Qp(u)

�w
for all u 2 O�

FPj
, where 1 � j � r.

Proof. The adèles norm map (A1F )
�!

�
A1Q
��
induces a continuous homomorphism

Nm : (A1F )
� =F�!

�
A1Q
��
=Q�. The group-theoretic decomposition

�
A1Q
��

= Q� � Ẑ�

induces a continuous isomorphism � :
�
A1Q
��
=Q�!Ẑ�= h�1i. Finally, the map

Q
l Z

�
l !Z�p

de�ned by sending the tuple (al)l 2
Q

l Z
�
l into a

w
p 2 Z�p de�nes a continuous homomorphism

� : Ẑ�= h�1i!Z�p since w is even. We check that the composition  := � � � � Nm is a

Hecke character with the desired properties.

Assume v = Pjjp and view a �xed u 2 O�
FPj

as an element of (A1F )
� whose v-component

is u and whose v0-component is 1 for all �nite places v0 6= v of F . Then Nm(u � F�) =

NmFPj =Qp(u) � Q
�, where we identify NmFPj =Qp(u) with the adèle of Q whose p-component

is the p-adic unit NmFPj =Qp(u) 2 Z
�
p and whose other components are equal to 1. Then

(� � �)
�
NmFPj =Qp(u) �Q

�
�
=
�
NmFPj =Qp(u)

�w
2 Z�p .
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Assume v is a �nite place of F lying above some rational prime l 6= p and let u 2 O�
Fv

viewed as an element of (A1F )
� in the usual way. Write Nm(u �F�) = NmFv=Ql(u) �Q�; since

the p-component of NmFv=Ql(u) 2 Ẑ� is trivial,  (u) = 1. �

Set A = O and let D, U , (� ;W� ) and  be as in 6.1.2.

Proposition 6.1.8. Assume � = � (~k;w) and �
0 = � (~k0;w0) are holomorphic O-linear weights

for automorphic forms on D, with w � w0(mod p � 1) and w odd. Assume that � (~k;w) and

 are compatible and that �� (~k;w) is isomorphic to an F-linear U -subrepresentation of �� (~k0;w0).

Then:

(a) There is a Hecke character  0 : (A1F )
� =F�!O� which is compatible with � (~k0;w0) and

such that � 0 = � ;

(b) For any Hecke eigensystem
 occurring in S�; (U;O) there is a �nite extension of discrete

valuation rings O0=O with MO0 \ O = MO and a Hecke eigensystem 
0 occurring in

S� 0; 0(U;O0) such that 
0(modMO0) = 
(modMO):

Proof. Since p > 2, the integer 1 � w0 is even. By Lemma 6.1.7, there exists a Hecke

character  00 : (A1F )
� =F�!Z�p � O� such that  00(u) = 1 for all v 2MF;f not lying above

p and all u 2 O�
Fv
, and  00(u) =

�
NmFPj =Qp(u)

�1�w0
for u 2 O�

FPj
(1 � j � r). By Lemma

6.1.6,  00 is compatible with � (~k0;w0).

Let � denote the reduction modulo MO of the Hecke character  �1 00. Since w �

w0(mod p � 1), by the compatibility of  with � (~k;w) and by the construction of  
00, the

continuous character � is trivial on the open subgroupQ
v /jp
�
Uv \ O�

Fv

�
�
Qr

j=1O�
FPj

of
�
OF 
Z Ẑ

��
. Therefore � factors through a �nite discrete quotient of (A1F )

�. In partic-

ular, the Teichmüller lift ~� of � is a continuous character (A1F )
� =F�!O�. The O�-valued

Hecke character  0 :=  00~��1 is compatible with � (~k0;w0) and satis�es
� 
0
= � , so that (a) is

proved.

Part (b) follows by applying Prop. 6.1.5 with  0 chosen as in (a). �
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Link with classical automorphic forms on D�

To conclude this paragraph, we make explicit the link between adelic automorphic forms

for a de�nite quaternion algebra D having holomorphic weights, and classical automorphic

forms for the algebraic Q-group D associated to D�.

Set A = E and let � :
Qr

j=1GL2(OFPj
)!Aut(W� ) be a weight for adelic automorphic

forms on D as considered in 6.1.2; suppose W� = W�alg 
E W� sm, where W� sm is a smooth

irreducible E-representation of
Qr

j=1GL2(OFPj
), and

W�alg =
Or

j=1

Ofj�1

i=0

�
Symk

(j)
i �2E2 
 detw

(j)
i

�[i]
is an irreducible algebraic representation of D(Qp) = (D 
Q Qp)

� =
Qr

j=1GL2(FPj). We

assume that k(j)i +2w
(j)
i �1 equals some �xed integer w for all 1 � j � r and all 0 � i � fj�1.

Recall that, as usual, we see FPj embedded in E via �(j)0 for 1 � j � r; we can also write

W�alg =
O

�:F ,!E

�
Symk��2E2 
 detw�

�
. Let  : (A1F )

� =F�!E� be a Hecke character

compatible with � .

Fix an isomorphism �Qp ' C, inducing an embedding E ,! C. View W�algC
:= W�alg 
E C

(resp. W� smC
:= W� sm 
E C) as a complex representation of D(R) := (D 
Q R)� � D(C) '

D( �Qp) (resp. of
Qr

j=1GL2(OFPj
)). Let W�C := W� 
E C be the corresponding complex

representation of
Qr

j=1GL2(OFPj
)�

Q
vj1(OD)

�
v .

Let U 0 be a compact open subgroup of (D 
F A1F )
� such that U 0 =

Q
v2MF;f

U 0v, where

U 0v = Uv if v /jp and, for vjjp, U 0vj � GL2(OFPj
) acts trivially on W� sm. Denote by

C1(D�n (D 
F AF )� =U 0)

the complex vector space of smooth functions f : D�n (D 
F AF )�!C which are invariant

by the action of U 0. Let W �
�C
be the C-linear dual of W�C.

De�ne a map:

� : S�; (U;E) �! Hom(D
QR)�
�
W �
�C
; C1(D�n (D 
F AF )� =U 0)

�
by sending f 2 S�; (U;E) to the assignment:

w� 7�! (g 7�! w�(� algC (g
�1
1 )�

alg(gp)f(g
1));
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where w� 2 W �
�C
and g 2 (D 
F AF )�. We have the following (cf. [Kis09b], 3.1.14):

Proposition 6.1.9. The map � identi�es S�; (U;E) 
E C with a space of automorphic

forms for the group D� having central character  C given by

 C(g) = NmF=Q(g1)
1�w NmF=Q(gp)

w�1 (g1)

for g 2 (D 
F AF )�.

If � =
N

v �v is an irreducible automorphic representation for the group D
�, then �

is generated by an element in �(f)(W �
�C
) for some f 2 S�; (U;E

0), some U small enough

and some E 0 � E big enough, if and only if �1 ' W �
�algC

and
N

vjp �v contains W
�
� smC

as a

representation of
Qr

j=1GL2(OFPj
).

Assume furthermore that F=Q has even degree and that we choose � to be the empty set.

Let � be a holomorphic weight with parameters (~k; w) 2 Zg�2 � Z and let  : A�F=F�!�Q�p
be a continuous character such that  (a) = (Nm a)1�w for all a contained inside an open

subgroup of (F 
Q Qp)
�. Fix an isomorphism �Qp ' C as before.

As a consequence of the classical Jacquet-Langlands theorem, we can identify the complexi�-

cation of the space S�; (U; �Qp) (~k 6= ~2) with a space of regular algebraic cuspidal automorphic

representations � of GL2(AF ) such that �1 has weight (~k; w) and � has central character

 1. If ~k = ~2 the identi�cation works if we consider, instead of S�; (U; �Qp), the quotient of

S�; (U; �Qp) by the subspace of functions factoring through the reduced norm. For a detailed

formulation of these last facts, cf. Th. 2.1 of [Hid88] and Lemma 1.3 of [Tay06].

6.1.5 Holomorphic weight shiftings via generalized Dickson invariants and D-

operators

Let q be a power of p. The intertwining operators between Fq-representations of GL2(Fq)

studied in Section 5.2 allow us to produce weight shiftings between spaces of automorphic

forms having holomorphic weights.
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Main theorem

Let us set A = O and let D, U , (� ;W� ) and  be as in 6.1.2. Recall in particular that U is

small enough and that  is compatible with � . For simplicity, if � is a holomorphic weight

with parameters (~k; w) 2 Zg�2�Z and f 2 S�; (U;O), we also say that f has weight (~k; w) or

that f has weight ~k. Recall that we write ~k = (~k(1); :::; ~k(r)) with ~k(j) = (k(j)0 ; :::; k
(j)
fj�1) 2 Z

fj
�2

for 1 � j � r, and that we de�ne the vector ~w(j) = (w(j)0 ; :::; w
(j)
fj�1) 2 Z

fj by the relations

k
(j)
i + 2w

(j)
i � 1 = w, for all 0 � i � fj � 1.

Theorem 6.1.10. Assume � is a holomorphic O-linear weight with parameters (~k; w) 2

Zg�2 � Z with w odd. Let f = minff1; :::; frg and �x an integer � such that 1 � � � f . For

any integers i; j with 1 � j � r and 0 � i � fj�1 choose:

a
(j)
i 2 fp� � 1; p� + 1g:

Set ~a = (~a(1); :::;~a(r)) with ~a(j) = (a(j)0 ; :::; a
(j)
fj�1), and let w

0 = w + (p� � 1). Assume at least

one of the following conditions is satis�ed:

(*) Let j be any integer such that 1 � j � r and � < fj. Then for any i with 0 � i � fj� 1

and a
(j)
i = p� � 1, we have that 2 < k

(j)
i � p + 1, 2 � k

(j)
i+fj�� � p + 1 and if

i0 6= i is another integer such that 0 � i0 � fj � 1 and a(j)i0 = p� � 1, we also have

i 6� i0 � �(mod fj).

Let j be any integer such that 1 � j � r and � = fj. Then for any i with 0 � i � fj � 1

and a(j)i = p� � 1, we have that 2 < k
(j)
i � p+ 1:

(**) The weight (~k; w) is p-small and generic, i.e., 2 < k
(j)
i � p+ 1 for all i; j.

Let  : (A1F )
� =F�!O� be a Hecke character compatible with � . Then, if 
 is a Hecke

eigensystem occurring in the space S�; (U;O), there is a �nite local extension of discrete val-

uation rings O0=O and an O0-valued Hecke eigensystem 
0 occurring in holomorphic weight

(~k + ~a; w0) and with associated Hecke character  0 such that:


0(modMO0) = 
(modMO):
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The character  0 is compatible with the weight (~k + ~a; w0) and it can be chosen so that

� 
0
= � .

Proof. Recall that � is the O-linear representation

� :
Qr

j=1GL2(OFPj
)!AutW;

where W =
Nr

j=1Wj, Wj =
Nfj�1

i=0

�
Symk

(j)
i �2O2 
 detw

(j)
i

�[i]
, k(j)i + 2w

(j)
i � 1 = w.

The group GL2(OFPj
) acts on W via the action on Wj induced by the embedding �

(j)
0 :

GL2(OFPj
) ,! GL2(O). The superscript [i] indicates twisting by the ith power of the arith-

metic Frobenius element of Gal(E=Qp).

The F-linear representation �Wj := Wj 
O F of GL2(OFPj
) factors through the reduction

map GL2(OFPj
)! GL2(FPj); using the notation introduced in 5.1 we can identify �Wj with

the F[GL2(FPj)]-module

�Wj =
Ofj�1

i=0

�
M

k
(j)
i �2 
 det

w
(j)
i

�[i]
;

where we see GL2(FPj) ,! GL2(F) via ��(j)0 , and the superscript [i] indicates twisting by the

ith power of the arithmetic Frobenius element of Gal(F=Fp).

For any �xed integer j, 1 � j � r, let Tj = fi : a(j)i = p�+1g and Dj = fi : a(j)i = p��1g.

For i 2 Tj set #(j)i := �
[i]
fj�� if � < fj and #

(j)
i := �[i] if � = fj, where �

[i]
fj�� and �

[i] are the

generalized Dickson invariants for the group GL2(FPj) ' GL2(Fpfj ) as de�ned in 5.2.3. For

i 2 Dj set �
(j)
i := D

[i]
fj�� if � < fj and �

(j)
i := D[i] if � = fj, where D

[i]
fj�� and D

[i] are the

generalized D-operators for GL2(FPj) de�ned in 5.2.3. Set:

�j =

�K
i2Tj

#
(j)
i

�
�
�K

i2Dj
�
(j)
i

�
;

where the symbol
J

denotes composition of functions, and each of the two composition

factors above is computed by ordering Tj and Dj in the natural way. As seen in section 5.2,

the operators #(j)i and �(j)i give rise to morphisms of FPj [GL2(FPj)]-modules, and hence to

morphisms of F[GL2(FPj)]-modules via the scalar extension ��
(j)
0 : FPj ,! F:We deduce that

�j induces a GL2(FPj)-equivariant and F-linear morphism:

�j : �Wj! �W 0
j ;
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where �W 0
j is the F[GL2(FPj)]-module:

�W 0
j : =

O
i2Tj

�
M

k
(j)
i +(p�+1)�2 
 det

w
(j)
i �1

�[i]


O

i2Dj

�
M

k
(j)
i +(p��1)�2 
 det

w
(j)
i

�[i]
:

Indeed, by Th. 5.2.12, �[i]fj�� increases k
(j)
i by 1, k(j)i+fj�� by p

�, w(j)i by �1, and does not

change k(j)s for s 6= i; i+fj�� or w(j)s for s 6= i; �[i] increases k(j)i by pfj +1, w(j)i by �1, and

does not change k(j)s or w(j)s for s 6= i. On the other hand, by Th. 5.2.20, the operator D[i]
fj��

increases k(j)i by �1, k(j)i+fj�� by p
�, and does not change k(j)s for s 6= i; i+ fj � � or w(j)s for

any s; D[i] increases k(j)i by pfj � 1, and does not change k(j)s for s 6= i or w(j)s for any s.

By Th. 5.2.12,
J

i2Tj #
(j)
i is injective. If (�) is satis�ed, the injectivity statement of Th.

5.2.20 implies that
J

i2Dj �
(j)
i is injective on �Wj. The image of

Nfj�1
i=0

�
Xk

(j)
i �2 
 1

�[i]
2 �Wj

under
J

i2Dj �
(j)
i is easily seen to be of the form

Q
i2Dj(k

(j)
i �2) �u for some non-zero u 2 �Wj.

If (��) holds,
Q

i2Dj(k
(j)
i � 2) is non-zero in F and, being �Wj an irreducible representation of

GL2(FPj), we deduce that
J

i2Dj �
(j)
i is injective on �Wj. We conclude that under assumptions

(�) or (��), all the maps �j for 1 � j � r are injective.

Let b(j)i = �1 if i 2 Tj and b(j)i = 0 if i 2 Dj. De�ne the O[GL2(OFPj
)]-module:

W 0
j =

Ofj�1

i=0

�
Symk

(j)
i +a

(j)
i �2O2 
 detw

(j)
i +b

(j)
i

�[i]
;

so that W 0
j 
O F = �W 0

j as F-representations of GL2(OFPj
) or, equivalently, of GL2(FPj).

Set W 0 =
Nr

j=1W
0
j and denote by �

0 the action of U on W 0 induced by the projection

U !
Qr

j=1GL2(OFPj
). Let w0 = w + (p� � 1); for all the values of i and j for which the

following integers are de�ned, we have k(j)i + a
(j)
i � k

(j)
i � 2 and:�

k
(j)
i + a

(j)
i

�
+ 2

�
w
(j)
i + b

(j)
i

�
� 1

=
�
k
(j)
i + 2w

(j)
i � 1

�
+ p� � 1

= w + (p� � 1):

95



Therefore � 0 is a holomorphic weight for automorphic forms on D with parameters (~k +

~a; w0) 2 Zg�2 � Z:

The injections �j (1 � j � r) constructed above allow us to see �W =
Nr

j=1
�Wj as an

F-linear U -subrepresentation of �W 0 =
Nr

j=1
�W 0
j. Since w is odd and w � w0(mod p� 1), we

can apply Prop. 6.1.8. We conclude that there exists a Hecke character  0 : (A1F )
� =F�!O�

compatible with � 0 and such that � 0 = � ; furthermore, for any Hecke eigensystem
 occurring

in S�; (U;O) there is a �nite extension of discrete valuation rings O0=O withMO0\O =MO

and a Hecke eigensystem 
0 occurring in S� 0; 0(U;O0) such that 
0(modMO0) = 
(modMO):

�

Corollary 6.1.11. Under the same notation and assumptions of Th. 6.1.10, any �Fp-linear

continuous Galois representation arising from a Hecke eigenform in S�; (U;O), where � is

a holomorphic weight of parameter ~k, also arises from an eigenform in S� 0; 0(U; �Zp), where

� 0 is a holomorphic weight of parameters ~k + ~a and  0 is some O�-valued Hecke character

compatible with � 0 and such that � 0 = � .

Remark 6.1.12. We remark what follows:

1. Condition (�) of Th. 6.1.10 is true if, for example, for any j with 1 � j � r, there is

at most one i, 0 � i � fj � 1, such that a(j)i = p� � 1, and for these values of i and j

we have 2 < k
(j)
i � p+ 1 and 2 � k

(j)
i+fj�� � p+ 1.

2. The reason for which in the above result we limit a(j)i to be in the set fp��1; p�+1g for

all i; j is that we want to preserve the holomorphicity of the weights of the automorphic

forms involved. More weight shiftings are possible using the generalized Dickson and

D-operators if we do not impose the holomorphicity condition.

3. As a consequence of Rem. 5.2.13 and Rem. 5.2.21, the above result gives rise to more

holomorphic weight shiftings than the ones obtained by the theory of generalized theta

operators and Hasse invariants for geometric (mod p) Hilbert modular forms (cf. 6.1.1).
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6.2 Shiftings for weights containing (2; :::; 2)-blocks

While the generalized Dickson invariants induce injective maps on the trivial F-representation

of GL2(FPj), theD-operators are identically zero on this module. Starting with automorphic

forms whose weight contains a (2; :::; 2)-block (cf. de�nition in 6.1.4), we can then produce

weight shiftings through the operators �[�]� but we cannot always successfully use the opera-

tors D[�]
� . On the other side, the study of weight shiftings "by

���!
p� 1" for automorphic forms

whose weight contains a (2; :::; 2)-block is motivated by the weight part of Serre�s modularity

conjecture for totally real �elds (cf. Rem. 6.2.4 below).

In this section we slightly generalize a result of Edixhoven and Khare (cf. [EK03]) to

produce weight shiftings "by
���!
p� 1" starting from forms whose weight is not necessarily

parallel but contains (2; :::; 2)-blocks relative to some primes of F above p. We always

assume that p > 2 is unrami�ed in the totally real number �eld F .

We keep the notation introduced in 6.1, and we furthermore assume that F has even

degree over Q and that the quaternion F -algebra D is rami�ed at all and only the in�nite

places of F , i.e., � = ?. We �x an isomorphism (D 
F A1F )
� ' GL2(A1F ).

The symbols F, U , (� ;W� ),  , S and TunivS;F will have the same meaning as in 6.1.2. We

assume that � is a (non necessarily holomorphic) F-linear weight with parameters (~k; ~w) 2

Zg�2 � Zg, where ~k = (~k(1); :::; ~k(r)) and ~k(j) = (k
(j)
0 ; :::; k

(j)
fj�1) 2 Z

fj
�2; ~w = (~w

(1); :::; ~w(r)) and

~w(j) = (w
(j)
0 ; :::; w

(j)
fj�1) 2 Z

fj , for 1 � j � r.

We write W� =
Nr

j=1W�j where W�j is the F-representation of GL2(OFPj
) de�ned by:

W�j =
Ofj�1

i=0

�
Symk

(j)
i �2 F2 
 detw

(j)
i

�[i]
:

If the weight � is holomorphic, it is also determined by the pair (~k; w) 2 Zg�2 � Z where

k
(j)
i + 2w

(j)
i � 1 = w, for all i and j.

Choose a prime P of F above p and let $ be a �xed choice of uniformizer for the ring of

integers of the completion of F at P. We can assume, up to relabeling, that P = P1. De�ne
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the matrix of GL2(FP1):

� =

0@ 1 0

0 $

1A ;

and view it as an element of GL2(A1F ) whose components away from P1 are trivial.

If g is an element of GL2(A1F ) and Q is a �nite set of �nite places of F , we denote by

gQ the element of GL2(A1F ) whose components at each place of Q are trivial, and whose

components away from Q coincide with those of g. We let gQ = g=gQ. A similar convention

is used for subgroups of GL2(A1F ) which are products of subgroups of GL2(Fv) for v varying

over the �nite places of F . In particular, by assumption we have Up = GL2(OF 
Z Zp).

We denote the action by right translation of GL2(A1F ) on S�; (U;F) by a dot.

Set:

U0 =

8<:u 2 U : uP1 �
0@ � �

0 �

1A (mod$)
9=; :

By restricting � to U0, we de�ne S�; (U0;F) as in Def. 6.1.1; notice that the level of the

automorphic forms belonging to this space is not prime-to-p.

We have the following result, which is a not-prime-to-p version of Lemma 3.1 of [Tay06]:

Lemma 6.2.1. Assume that � is an irreducible (non necessarily holomorphic) F-linear weight

with parameters (~k; ~w) 2 Zg�2 � Zg such that ~k(1) = ~2. Then the map:

� : S�; (U;F)� S�; (U;F) �! S�; (U0;F)

de�ned by:

(f1; f2) 7�! f1 +� � f2

is a Hecke-equivariant F-morphism whose kernel is Eisenstein, i.e., the localization (ker�)M

vanishes for all maximal ideals M of TunivS;F which are non-Eisenstein.

Proof. It is straightforward to check that � is well de�ned, using the fact thatGL2(OFP1
)

acts onW�1 via an integral power of the (mod$) determinant character. Also, � is equivari-

ant for the action of the algebra TunivS;F .
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Write �U��1 = UP1 � �GL2(OFP1
)��1. De�ne an F-linear action of the subgroup

�U��1 of GL2(A1F ) on W� by letting UP1 act on
Nr

j=2W�j via the restriction of � to U
P1,

and by letting �GL2(OFP1
)��1 act on W�1 via the reduction modulo $ of the determinant

character raised to the power of
Pf1�1

i=0 w
(1)
i pi. Observe that this action is compatible with

the given action � of U on W� .

If (f1; f2) 2 ker�, we see that f1 (gu) = u�1f1(g) for all u in U and all u in �U��1, so

that f1 (gu) = u�1f1(g) for every u in SL2(FP1)U � GL2(A1F ). Here SL2(FP1) acts on W�1

trivially.

Assume that WU
� 6= f0g, i.e., that W� = F is the trivial representation of U . If (f1; f2) 2

ker�, then f1 is invariant under right translations by elements ofD�U ; strong approximation

for SL2 then implies that f1 is invariant under right translations by any element of SL2(A1F ),

and hence it factors through the reduced norm map D�n (D 
F A1F )
�!F�n (A1F )

�. Since

any maximal ideal of TunivS;F in the support of the space of functions D�n (D 
F A1F )
�!W�

factoring through the reduced norm is Eisenstein, we obtain the desired result.

Assume now that WU
� = f0g and let (f1; f2) 2 ker�. Using strong approximation,

we see that for any g 2 GL2(A1F ) and u 2
Qr

j=1GL2(OFPj
) we can �nd an element � 2

D� \ gSL2(FP1)Ug�1 such that for all j = 1; :::; r :

g�1Pj �gPj 2 uPj +M2(Pj):

In particular, we obtain:

f1(g) = f1(�
�1g) = f1(g(g

�1��1g))

and, since g�1��1g 2 SL2(FP1)U :

f1(g) =
�
g�1�g

�
f1(g) = uf1(g).

Since u is arbitrary, we conclude that f1(g) 2 WU
� for any g 2 GL2(A1F ), so that f1 = 0,

f2 = 0 and � is injective. �

Let F� denote the space consisting of all the functions

f : D�n (D 
F A1F )
�!W� ;
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and de�ne a left F-linear action of U on F� by:

(uf)(g) = �(u)f(gu)

for all u 2 U , g 2 (D 
F A1F )
� and f 2 F� . Set:

S� (U;F) = H0(U;F� ):

In what follows, we work for simplicity with the spaces S� (U;F), forgetting about the

action of the center of (D 
F A1F )
� on F� . Following the proof of Prop. 1 at page 48 of

[EK03], and using Lemma 6.2.1, we obtain the following result:

Theorem 6.2.2. Assume that � is an irreducible (non necessarily holomorphic) F-linear

weight with parameters (~k; ~w) 2 Zg�2 � Zg such that ~k(j) = ~2 for some 1 � j � r. Let � 0 be

the F-linear weight associated to the parameters ~k0 = (~k(1); :::; ~k(j)+���!p� 1; :::; ~k(r)) and ~w0 = ~w.

For any non-Eisenstein maximal ideal M of TunivS;F , there is an injective Hecke-equivariant

F-morphism:

S� (U;F)M ,! S� 0(U;F)M:

Proof. Assume without loss of generality that j = 1. Via the surjection U ! GL2(FP1),

the group U acts on the FP1-points P1(FP1) of the projective Fp-line, and we can identify

the coset space U=U0 with P1(FP1). Recall that we are viewing FP1 as a sub�eld of F via

the �xed embedding ��(1)0 .

By Shapiro�s lemma applied to the pair (U;U0) and the left F[U ]-module F� , we obtain

an isomorphism:

H0(U0;F� )
��! H0(U;F�
FF[P1(FP1)]): (1)

Here U acts on F[P1(FP1)] = f' : P1(FP1)!Fg via its quotient GL2(FP1) and by the rule

(u')(P ) = '(u�1P ) for u 2 GL2(FP1) and P 2 P1(FP1). Furthermore U acts diagonally

on F�
F[P1(FP1)]. By Lemma 1.1.4 of [AS86a], the isomorphism (1) preserves the Hecke

action on both sides.

By Lemma 2.6 of [Red10], there is an isomorphism of F[GL2(FP1)]-modules:

F[P1(FP1)] ' F� Sympf1�1 �F2� =M0 �Mpf1�1,
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inducing a surjection:

H0(U;F�
F[P1(FP1)]) �! H0(U;F�
Mpf1�1): (2)

Observe that the composition of the restriction map H0(U;F� ) ! H0(U0;F� ) with the

surjection:

H0(U0;F� ) ' H0(U;F�
F[P1(FP1)])! H0(U;F� )

is given by f 7! 1
[U :U0]

P
u2U=U0 1 
 uf = 1 
 f . This implies that the �rst summand of

H0(U;F� )�2 is identi�ed via the map � of Lemma 6.2.1 and the Shapiro isomorphism with

the direct summand H0(U;F� ) of H0(U;F�
F[P1(FP1)]).

Using the map �, the Shapiro isomorphism, the projection (2), and the isomorphism of

F[GL2(Fpf1 )]-modules Mpf1�1 '
Nf1�1

i=0 M
[i]
p�1, we obtain a Hecke equivariant morphism:

� : H0(U;F� )�2 �! H0
�
U;F�


Nf1�1
i=0 M

[i]
p�1

�
:

By Lemma 6.2.1, precomposing � with the injection H0(U;F� ) ,! H0(U;F� )�2 given by

f 7! (0; f) we obtain a Hecke equivariant injective morphism:

H0(U;F� )M ,! H0
�
U;F�


Nf1�1
i=0 M

[i]
p�1

�
M

(3)

for any non-Eisenstein maximal ideal M of TunivS;F .

Let ~k0 = (
���!
p+ 1; ~k(2); :::; ~k(r)) and set ~w0 = ~w. Observe that if � 0 is the representation of

U associated to the parameters (~k0; ~w0) then W� 0 ' W�
F
Nf1�1

i=0 M
[i]
p�1. The U -equivariant

map F�

Nf1�1

i=0 M
[i]
p�1 ! F� 0 induced by the assignment:

f 
m 7�! [g 7! f(g)
m]

for g 2 D�n (D 
F A1F )
� is injective. We deduce that for any non-Eisenstein maximal ideal

M of TunivS;F , there is a Hecke equivariant monomorphism:

H0
�
U;F�


Nf1�1
i=0 M

[i]
p�1

�
M
,! H0(U;F� 0)M:

Combining this with (3), we are done. �
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Remark 6.2.3. Under the assumptions of the above theorem, � 0 is an irreducible represen-

tation of U . This implies that, if the number of indices j such that ~k(j) = ~2 is larger than

one, Th. 6.2.2 can be further applied to obtain weight shiftings "in blocks" by
���!
p� 1.

Remark 6.2.4. The content of Th. 6.2.2 generalizes Lemma 4.6.8 of [Gee11], which is

proved in loc. cit. via Lemma 1.5.5 of [Kis09a].

The weight shifting produced by Th. 6.2.2 is not in general of holomorphic type: for

example, if r > 1 and � is holomorphic, then � 0 is never holomorphic. Nevertheless we have:

Corollary 6.2.5. Assume that � is the irreducible holomorphic F-linear weight with parame-

ters (~2; w) 2 Zg�2� (2Z+ 1). Let � 0 be the holomorphic weight associated to the parameters

(
���!
p+ 1; w + (p � 1)) 2 Zg�2 � (2Z+ 1). For any non-Eisenstein maximal ideal M of TunivS;F ,

there is an injective Hecke-equivariant F-morphism:

S� (U;F)M ,! S� 0(U;F)M:

Proof. Fix a non-Eisenstein maximal ideal M of TunivS;F . Applying Th. 6.2.2 r times

we obtain a Hecke equivariant injection S� (U;F)M ,! S� 0(U;F)M, where � 0 is the irreducible

F-linear weight with parameters (���!p+ 1; ~v) 2 Zg�2 � Zg and each component of ~v equals the

integer w�1
2
. This weight is holomorphic with parameters (

���!
p+ 1; w + (p� 1)). �

The Jacquet-Langlands correspondence and Cor. 6.2.5 imply (cf. [EK03]):

Corollary 6.2.6. An irreducible continuous representation � : Gal( �F=F )!GL2(�Fp) arising

from a holomorphic Hilbert modular form of level U � GL2(A1F ) and parallel weight ~2 also

arises from a holomorphic Hilbert modular form of level U and parallel weight
���!
p+ 1.
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