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ABSTRACT OF THE DISSERTATION

Properties of Hamiltonian Variational Integrators

by

Jeremy M. Schmitt

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Melvin Leok, Chair

This dissertation, Properties of Hamiltonian Variational Integrators, by

Jeremy Schmitt, explores Hamiltonian varational integrators. Variational inte-

grators are a common class of symplectic integrators, which have primarily been

analyzed and constructed by discretizing Hamilton’s principle. Hamiltonian vari-

ational integrators are derived by discretizing Hamilton’s phase space principle

and have not been studied as thoroughly. In this dissertation, new error analysis

theorems and other related results extend the theory of Hamiltonian variational

integrators. It is shown that these two formulations of variational integrators are

not always numerically equivalent, even when they analytically represent the same

map. Numerical simulations show there can be important differences between these

xii



two formulations of variational integrators, particularly for averaging methods.

Next, a new class of variational integrators is developed based on the Taylor

method combined with an augmented shooting method. A symmetric and more

computationally efficient version is also developed, as well as a comparison of La-

grangian and Hamiltonian formulations of the integrator. Error analysis results

are presented, and in addition, a proof is given of a sufficient condition for the

equivalence of a Hamiltonian and Lagrangian variational integrator. Numerical

simulations are presented, as well as a discussion on the role of automatic differ-

entiation in the implementation of Taylor variational integrators.

The last topic focuses on an adaptive framework for symplectic integrators.

The Poincaré transformation is used to construct an extended Hamiltonian sys-

tem, which allows for variable step sizes. However, it is shown that the resulting

Hamiltonian is often degenerate, and the only plausible framework for variational

integrators is to use Hamiltonian variational integrators. Furthermore, the de-

generacy of the Hamiltonian is discussed with regards to error analysis and the

invertibility of the discrete Legendre transforms. A few monitor functions are con-

sidered, and numerical simulations demonstrate the significant gains in efficiency

when using adaptive variational integrators.

xiii



Chapter 1

Introduction and Background

In the early 1800’s Abel showed that even for the well understood poly-

nomial equation we may need to settle for an approximate solution, rather than

the exact solution [43]. Perhaps no mathematical field has benefited more from

approximation methods than the field of differential equations. Sir Isaac Newton

raised differential equations and dynamical systems to the fore of mathematics and

the sciences when he developed the differential calculus and the laws of mechanics.

Finding the solution of a differential equation was not merely a mathematical cu-

riosity, but a powerful way of understanding the world around us. Unfortunately,

for differential equations, and so many things in mathematics, the nonlinear case

often requires methods of approximation. Linear approximations are often the

first choice, but their value is generally constrained to a local region. How can we

achieve a global approximation? A good place to start answering this question is

to decide what are the relevant global properties of the dynamical system. The

key idea is to view an approximation method as a discrete dynamical system, then

it seems reasonable to seek a discrete dynamical system that has global properties

similar to the exact dynamical system (see [4] for a related discussion). These

statements will be made precise in the following pages, but this is the big idea

motivating many of the topics in this dissertation, and I believe it is an idea that

many areas of numerical approximation have yet to fully realize.

The global properties we consider will be mainly geometric properties, but

1
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topological properties also merit consideration. Euclid’s development of geometry

is perhaps the most well-known, yet it is the notion of geometry proposed by Felix

Klein and his Erlangen program that is most relevant to this discussion (see [23]).

Geometry can be defined by the mathematical objects that remain unchanged or

invariant under certain transformations, and Euclidean geometry centers around

the study of rigid transformations and the invariants preserved under such trans-

formations. Conservation laws in the physical sciences are intimately related to the

notion of invariance under transformation. Emmy Noether showed that for many

physical systems symmetry implies conservation (see [1], Chapter 4). We will dis-

cuss such systems, known as Hamiltonian systems, and the geometry that arises,

called symplectic geometry. We first present the prerequisite material needed to

make these notions precise, then an overview of this dissertation is provided.

1.1 Geometric Numerical Integration

Geometric numerical integration concerns algorithms that aim to approxi-

mate or preserve structure and qualitative properties of a dynamical system (see

[19]). While there are many different notions of a geometric integrator, one par-

ticularly relevant characterization involves smooth manifolds and Lie groups.

The set of all diffeomorphisms on a smooth manifold M forms a Lie group,

G, and the associated set of all smooth vector fields (along with the commutator

bracket) forms the corresponding Lie algebra, g. Let b ⊂ g be a linear subspace,

corresponding to B ⊂ G via

b = {F ∈ g|Φt,F ∈ B}.

The discrete time-h map Ψh : M →M is a geometric integrator for b if Ψh,F ∈ B

for all F ∈ b. Symplectic integrators correspond to setting b equal to the set of

all Hamiltonian vector fields on M , equipped with the commutator bracket, and

setting B equal to the set of all symplectic diffeomorphisms from M to M . The

discovery of symplectic transformations began in classical mechanics.
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1.2 Continuous and Discrete Mechanics

Let Q be some smooth manifold, often called the configuration manifold,

and let q ∈ C2([0, T ], Q) be a curve/trajectory on the manifold. Then, for a

given function L : TQ → R, known as the Lagrangian, we can define the action

functional

S(q;T ) =

∫ T

0

L(q, q̇)dt.

Curves which satisfy Hamilton’s principle of stationary action,

δS = 0,

where δ represents variations with respect to q, will satisfy the Euler–Lagrange

equations,
∂

∂t

∂L

∂q̇
− ∂L

∂q
= 0.

These concepts form the basis of Lagrangian mechanics, and the field of variational

integrators originated from the discretization of Lagrangian mechanics. Consider

a discrete curve q = {qk}Ni=0, then given a discrete Lagrangian, Ld : Q × Q → R,

define the discrete action as

Sd(q0, q1, . . . , qN ;h) =
N−1∑
k=0

Ld(qk, qk+1).

A discrete curve that is a stationary point of the discrete action, must satisfy the

discrete Euler–Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0.

This implies D2Ld(qk−1, qk) = −D1Ld(qk, qk+1), and by defining the conjugate

momenta as pk = −D1Ld(qk, qk+1), then requiring the momenta to match for

any given pair (qk, qk+1) yields an equivalent form of the discrete Euler–Lagrange

equations,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1).

These equations implicitly define the map (and one-step method) F̃Ld
: (qk, pk)→

(qk+1, pk+1), which is known as a variational integrator. The goal is to approximate
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the continuous flow of the Euler–Lagrange equations, and we need a way to relate

the discrete map F̃Ld
to the flow of the Euler–Lagrange equations. This relation

is made by an object known classically as a type I generating function, but in the

language of variational integrators it is called the exact discrete Lagrangian

LEd (q0, q1;h) = ext
q∈C2([0,h],Q)

q(0)=q0
q(h)=q1

∫ h

0

L(q(t), q̇(t))dt.

Continuous mechanics is connected to discrete mechanics via the following theorem

from [35].

Theorem 1. If a discrete Lagrangian, Ld : Q × Q → R, approximates the exact

discrete Lagrangian, LEd : Q×Q→ R to order r, i.e.,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1),

then the discrete Hamiltonian map, F̃Ld
: (q0, p0) 7→ (q1, p1), viewed as a one-step

method, is order r accurate.

Variational integrators are symplectic integrators, and in order to see where

symplecticity fits in we must examine Hamiltonian mechanics.

Hamiltonian mechanics is related to Lagrangian mechanics by the Legendre

transform, which can be interpreted as a map from the tangent bundle TQ, to the

cotangent bundle T ∗Q. The conjugate momentum, p, can be defined by the Leg-

endre transform p = ∂L
∂q̇

, assuming a nondegenerate Lagrangian. The Hamiltonian

H : TQ → T ∗Q is defined as

H(q, p) =< p, q̇ > −L(q, q̇),

where q̇ is defined via the Legendre transform and < ·, · > is the usual pairing

between the tangent and cotangent bundle. The Euler–Lagrange equations are

equivalent to Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,
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and reveal many intrinsic properties of the dynamical system. An (autonomous)

Hamiltonian is constant along the flow of Hamilton’s equations as the following

calculation shows

dH(q, p)

dt
=
∂H

∂q

dq

dt
+
∂H

∂p

dp

dt

= −ṗq̇ + q̇ṗ

= 0.

The Hamiltonian often coincides with the sum of the kinetic energy and potential

energy of a physical system, and the previous result is then more commonly known

as the conservation of energy. The mathematical structure we are interested in is

called a symplectic structure. A symplectic manifold is a smooth manifold, M ,

with an associated closed nondegenerate differential 2-form, ω. In particular the

cotangent bundle has a natural symplectic structure (T ∗Q,ω), where ω takes the

local coordinate form dp∧dq. A symplectic transformation F : M1 →M2, is a map

between two symplectic manifolds, (M1, ω1) and (M2, ω2), such that F ∗ω2 = ω1,

where F ∗ is the pullback with respect to F . The flow of Hamilton’s equations ΦH,t,

is a symplectic transformation from T ∗Q to T ∗Q.

d

dt
ω = dq̇ ∧ dp+ dq ∧ dṗ

= dHp ∧ dp− dq ∧ dHq (by Hamilton′s Eqts)

= d(Hpdp+Hqdq) (Property of Exterior Derivative)

= d(dH) = 0. (Exact ⇒ Closed)

The following calculation shows that, assuming sufficiently independent coordi-

nates, every symplectic transformation is locally associated with a generating func-

tion.

ΦH,t(q0, p0) = (q1, p1)

⇒ dq0 ∧ dp0 = dq1 ∧ dp1

⇒ dq0 ∧ dp0 − dq1 ∧ dp1 = 0

⇒ d(−p0dq0 + p1dq1) = 0
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By Poincare’s lemma, there exists (locally) a function S of q0 and q1 such that

dS = −p0dq0 + p1dq1. This is known as a type I generating function, since it

is a function of q0 and q1, and the exact discrete Lagrangian is a type I gener-

ating function of the time-h flow of Hamiltion’s equations with boundary condi-

tions q(0) = q0 and q(h) = q1. The fact that the flow of Hamilton’s equations

can be generated by a generating function is an alternate proof of the symplec-

ticity of the flow on T ∗Q. In a similar manner, this can be used to show that

the mapping generated by a discrete Lagrangian, F̃ h
Ld

, is a symplectic mapping,

which implies variational integrators are also symplectic integrators. Variational

integrators discretize the generating function of the Hamiltonian flow, and if the

generating function approximates the exact discrete Lagrangian, then it is called

a Lagrangian varaitional integrator. For a detailed overview of discrete mechanics

and variational integrators, I recommend [35], and some excellent sources on La-

grangian and Hamiltonian mechanics include [1], [34], [14], and [27].

My research has focused on examining a discretization of type II and type

III generating functions, known as the exact discrete right or exact discrete left

Hamiltonian, and the resulting variational integrators, known as Hamiltonian vari-

ational integrators. Hamiltonian variational integrators were first introduced in

[26], and further developed in [31]. [26] derived the discrete Hamiltonian from

a discrete Lagrangian, and [31] showed that the discrete Hamiltonian could be

derived independently of a discrete Lagrangian.

1.3 Backwards Error Analysis

Backwards error analysis was first used in [52] for numerical linear algebra.

The development of backwards analysis for symplectic integrators (see [8], [15])

rigorously justified the energy performance of symplectic methods, and it also

explained the poor behavior of symplectic integrators when combined with variable

step sizes. Given a problem P and its solution S, backwards error analysis attempts

to show that a given approximation scheme S̃ solves a problem P̃ , where P̃ is in
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some sense close to P . Let Ψh be a symplectic integrator with step size h applied

to a Hamiltonian vector field, ż = F (z), then let Φt,F be the associated time-t flow

map. By comparing Taylor expansions, one can construct a modified vector field

F̃ such that

Ψn
h(z0) = Φnh,F̃ (z0), for n = 1, 2, 3, . . .

and furthermore, it can be shown that F̃ is also a Hamiltonian vector field. The

following theorem shows not only the existence of a modified Hamiltonian, but also

that the symplectic integrator nearly preserves the Hamiltonian over exponentially

long time intervals.

Theorem 2. Let H be an analytic Hamiltonian associated to the Hamiltonian

vector field F , then for a symplectic integrator Ψh that stays within a compact set

there exists a constant h0 and a modified Hamiltonian, H̃ such that,

H̃(Ψn
h(y0)) = H̃(y0) +O(e−h0/2h),

H(Ψn
h(y0)) = H(y0) +O(hp),

over exponentially long time intervals nh ≤ eh0/2h.

This explains the excellent long-time near energy preservation of symplec-

tic integrators, but these results require a fixed step size h. Otherwise, each time

h varies the symplectic integrator becomes associated with a different modified

Hamiltonian, which can lead to a drift away from the orignal Hamiltonian. Al-

though this may seem a death sentence for adaptive symplectic methods, there has

been progress made in this direction, which we will discuss in the fourth chapter,

and we will show that discrete Hamiltonians are part of the solution.

1.4 Overview

The second chapter establishes error analysis theorems and results on the

adjoint of a discrete Hamiltonian and Hamiltonian variational integrators. Next

the question of when different generating functions lead to the same numerical

method is addressed. This question is phrased as a question of commutativity for



8

the composition of discretization and a form of the Legendre transform, and lack

of commutativity is shown for the general case. It is shown that even when the

generating functions generate the same map analytically there can be a difference

numerically. In particular, an averaging method is examined and shown to have

significantly different behavior, which depends on the type of generating function

involved. For this case, the different behavior can be attributed to the boundary

values associated with each type of generating function. This lends significant sup-

port to the notion that in general, when constructing a variational integrator, one

should consider not only the scheme for approximating the generating function,

but also which type of generating function should be approximated.

The third chapter presents a new type of variational integrator that is con-

structed using the Taylor method, and it is called a Taylor variational integrator.

In particular, a shooting-like scheme is developed that takes advantage of the Tay-

lor method to give a shooting method that is in general one order higher than the

usual shooting method. After deriving these error analysis results, a symmetric

form of the integrator is developed, which has computational efficiency advantages

compared to the unsymmetric form. Next, the Lagrangian and Hamiltonian vari-

ational integrators are compared, and a result is presented that gives a sufficient

condition for the equivalence of a Lagrangian and Hamiltonian variational integra-

tor. The chapter concludes with a series of numerical results, and a discussion of

the role of automatic differentiation in developing more efficient implementions of

Taylor variational integrators.

The fourth chapter discusses efforts to combine symplectic and variational

integrators with adaptivity. In particular, the most common approach for symplec-

tic integrators is to use the Poincaré transformation to generate a new Hamiltonian

system with respect to a fictive time and subsequently fictive constant step sizes.

This allows established symplectic integrators to be applied to the transformed

Hamiltonian system with some noteable caveats. However, this approach has not

been successfully derived at the level of the generating function, and it is shown
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that this is due to a degeneracy of the transformed Hamiltonian. As a result, the

way forward requires the construction of discrete Hamiltonians and Hamiltonian

variational integrators, which until now have not been considered. A modification

of the error analysis theorem is discussed for Hamiltonian variational integrators

based on the Poincaré transformed Hamiltonian. Finally, numerical results are pre-

sented to show the efficiency advantages of adaptive variational integrators over

non-adaptive variational integrators.



Chapter 2

Properties of Hamiltonian

Variational Integrators

2.1 Introduction

Geometric numerical integration is a field of numerical analysis that de-

velops numerical methods with the goal of preserving geometric properties of dy-

namical systems (see [19]). Variational integrators are geometric numerical in-

tegrators derived from discretizing Hamilton’s principle from classical mechanics

(see [35]). They have many desirable properties such as symplecticity, momentum-

preservation, and near-energy preservation, which results in excellent long-term

stability. While the Lagrangian formulation of variational integrators has been

thoroughly investigated (see [9; 30; 32; 33; 35; 36]), only recently has the Hamil-

tonian formulation of variational integrators been established (see [26; 31]).

In this paper we will continue the investigation of Hamiltonian variational

integrators, and establish theorems on error analysis, symmetry of the method,

and provide numerical experiments to elucidate the relative numerical advantages

and disadvantages of the Lagrangian and Hamiltonian formulations. In particular,

evidence is presented to show that for oscillatory problems the discrete Lagrangian

and discrete Hamiltonian variational integrators have differing resonance and con-

ditioning properties. In addition, it is shown that some approximation methods

10
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will only yield a symmetric method when derived from a specific type of generating

function. The upshot is that the numerical properties of a variational integrator

are determined both by the approximation scheme used to construct it and by the

type of the generating function being approximated.

2.1.1 Discrete Mechanics

Lagrangian variational integrators are based on a discrete analogue of Hamil-

ton’s principle, and Hamiltonian variational integrators are based on a discrete

analogue of Hamilton’s phase space variational principle. The fundamental ob-

jects in the discretization are generating functions of symplectic maps, and in the

Hamiltonian case, they are obtained by approximating the exact Type II gener-

ating function associated with a Hamiltonian flow, which we refer to as the exact

discrete right Hamiltonian,

H+,E
d (q0, p1) = ext

(q,p)∈C2([0,T ],T ∗Q)
q(0)=q0,p(T )=p1

(
p1q1 −

∫ T

0

[pq̇ −H(q, p)] dt

)
. (2.1)

This can be viewed as the solution at time T of the Type II Hamilton–Jacobi

equation,

∂S2(q0, p, t)

∂t
= H

(
∂S2

∂p
, p

)
, (2.2)

which more generally describes the Type II generating function which generates

the time-t Hamiltonian flow map,

S2(q0, p, t) = ext
(q,p)∈C2([0,t],T ∗Q)
q(0)=q0,p(t)=p

(
p(t)q(t)−

∫ t

0

[p(s)q̇(s)−H(q(s), p(s))] ds

)
. (2.3)

Similarly, the exact discrete left Hamiltonian is given by,

H−,Ed (p0, q1;h) = ext
(q,p)∈C2([0,T ],T ∗Q)
q(0)=q0,p(T )=p1

(
−p0q0 −

∫ T

0

[pq̇ −H(q, p)] dt

)
. (2.4)

and it can be viewed as a solution at time T of the Type III Hamilton–Jacobi

equation,

∂S3(p0, q, t)

∂t
= H

(
q,−∂S3

∂q

)
. (2.5)
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Given discrete Hamiltonians, H+
d (qk, pk+1;h) andH−d (pk, qk+1;h), the discrete Hamil-

ton’s equations are given by,

qk+1 = D2H
+
d (qk, pk+1;h), (2.6)

pk = D1H
+
d (qk, pk+1;h), (2.7)

and,

qk = −D1H
−
d (pk, qk+1;h), (2.8)

pk+1 = −D2H
−
d (pk, qk+1;h). (2.9)

These can also be expressed in terms of the discrete Legendre transformations,

F±H+
d : (qk, pk+1)→ T ∗Q,

F+H+
d (qk, pk+1;h) = (D2H

+
d (qk, pk+1;h), pk+1), (2.10)

F−H+
d (qk, pk+1;h) = (qk, D1H

+
d (qk, pk+1;h)), (2.11)

and F±H−d : (pk, qk+1)→ T ∗Q,

F+H−d (pk, qk+1;h) = (qk+1,−D2H
−
d (pk, qk+1;h)), (2.12)

F−H−d (pk, qk+1;h) = (−D1H
−
d (pk, qk+1;h), pk). (2.13)

We observe that the Hamiltonian maps F̃H±
d

: (qk, pk) 7→ (qk+1, pk+1) can be ex-

pressed as

F̃H±
d

= F+H±d ◦ (F−H±d )−1. (2.14)

2.2 Error Analysis and Symmetric Methods

2.2.1 Error Analysis

Variational integrators are able to benefit from and adopt many traditional

techniques and methods of numerical analysis (see [30]). This can be largely at-

tributed to the following theorem from [35].
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Theorem 3 (Theorem 2.3.1, Marsden and West [35]). If a discrete Lagrangian,

Ld : Q×Q→ R, approximates the exact discrete Lagrangian, LEd : Q×Q→ R to

order r, i.e.,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1),

then the discrete Hamiltonian map, F̃Ld
: (qk, pk) 7→ (qk+1, pk+1), viewed as a one-

step method, is order r accurate.

Thus, in order to generate a variational integrator of a particular order, one

can leverage techniques from numerical analysis with the goal of approximating

the exact discrete Lagrangian, then the associated discrete Hamiltonian map yields

the variational integrator. We first present the corresponding theorem for discrete

Hamiltonian variational integrators, which draws much of its inspiration from the

theorem and proof of the above result as detailed in [35].

Theorem 4. If a discrete right Hamiltonian, H+
d : T ∗Q → R, approximates the

exact discrete right Hamiltonian, H+,E
d : T ∗Q→ R to order r, i.e.,

H+
d (q0, p1;h) = H+,E

d (q0, p1;h) +O(hr+1),

and the Hamiltonian is continuously differentiable, then the discrete map, F̃ h
H+

d

:

(qk, pk) 7→ (qk+1, pk+1), viewed as a one-step method, is order r accurate.

Note that the following proof can be easily adjusted to prove an equivalent

theorem for the discrete left Hamiltonian case. First, we will need the following

lemma.

Lemma 1. Let f1, g1, e1, f2, g2, e2 ∈ Cr be such that

f1(x, h) = g1(x, h) + hr+1e1(x, h),

f2(x, h) = g2(x, h) + hr+1e2(x, h).

Then, there exists functions e12 and ē1 bounded on compact sets such that

f2(f1(x, h), h) = g2(g1(x, h), h) + hr+1e12(g1(x, h), h),

f−1
1 (y) = g−1

1 (y) + hr+1ē1(y).
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Proof.

f2(f1(x, h), h) = f2(g1(x, h) + hr+1e1(x, h), h)

= g2(g1(x, h) + hr+1e1(x, h), h) + hr+1e2(g1(x, h) + hr+1e1(x, h), h)

= g2(g1(x, h), h) + hr+1ẽ1(g1(x, h), h) + hr+1e2(g1(x, h)

+ hr+1e1(x, h), h),

where ẽ1 is bounded on compact set. This last line comes from combining compact-

ness of the set with the smoothness of the functions to obtain a Lipschitz property

of the form,

‖g2(g1(x, h) + hr+1e1(x, h), h)− g2(g1(x, h), h)‖ ≤ Chr+1.

For each choice of (x, h), equality holds for a particular choice of constant, which

defines ẽ1 and establishes its smoothness as a function. Adding e2 to ẽ1 we obtain

a function e12, which is also bounded on compact sets such that,

f2(f1(x, h), h) = g2(g1(x, h), h) + hr+1e12(g1(x, h), h).

Let y = f1(x, h), and note that by definition,

f−1
1 (f1(x, h)) = g−1

1 (g1(x, h)).

Since g−1
1 (y) = g−1

1 (g1(x, h) + hr+1e1(x, h)), then

‖g−1
1 (y)− f−1

1 (y)‖ = ‖g−1
1 (y)− g−1

1 (g1(x, h))‖ ≤ C̄hr+1.

From this, it follows that there exists a function ē1 bounded on compact sets such

that,

f−1
1 (y) = g−1

1 (y) + hr+1ē1(y).

Now we are ready for the proof of the theorem.

Proof. By assumption there is some bounded continuously differentiable function

e such that,

H+
d (q(0), p(h);h) = H+,E

d (q(0), p(h), h) + hr+1e(q(0), p(h), h).
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Differentiating yields,

D1H
+
d (q(0), p(h);h) = D1H

+,E
d (q(0), p(h);h) + hr+1D1e(q(0), p(h), h),

where ‖D1e(q(0), p(h), h)‖ ≤ C̃. This implies,

‖F−H+
d (q(0), p(h);h)− F−H+,E

d (q(0), p(h);h)‖ ≤ C̃hr+1.

Now combining this with the fact that F̃H+
d

= F+H+
d ◦ (F−H+

d )−1 and applying

Lemma 1, we have,

F̃ h
H+

d
= F̃ h

H+,E
d

+O(hr+1).

Determining the order of a variational integrator is greatly simplified via

the above theorems, which relate the order of the integrator to the order to which

the associated discrete Lagrangian or discrete right Hamiltonian approximates the

corresponding exact generating function. Similarly, it was shown in [35] that one

can determine whether or not the variational integrator is a symmetric method by

examining the corresponding discrete Lagrangian. We would like to extend this

result to the case of discrete Hamiltonians.

2.2.2 Symmetric Methods

Definition 1 (see Chapters II.3 and V of [19]). A numerical one-step method Φh

is called symmetric or time-reversible, if it satisfies

Φh ◦ Φ−h = id

or equivalently

Φh = Φ−1
−h.

The adjoint of a numerical one-step method, denoted Φ∗h, is defined as

Φ∗h = Φ−1
−h.
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A numerical one-step method is a symmetric method if it is self-adjoint,

i.e., Φh = Φ∗h. The adjoint of a discrete Lagrangian, L∗d, is defined as

L∗d(q0, q1, h) = −Ld(q1, q0,−h).

The discrete Lagrangian is called self-adjoint if L∗d(q0, q1, h) = Ld(q0, q1, h). The

following theorem from [35] relates the self-adjointness of the discrete Lagrangian

with the self-adjointness of the corresponding variational integrator.

Theorem 5 (Theorem 2.4.1 of [35]). The discrete Lagrangian (or an equivalent

discrete Lagrangian), Ld, is self-adjoint if and only if the method associated to the

corresponding discrete Hamiltonian map is self-adjoint, i.e., symmetric.

In many cases it is easier to check if the discrete Lagrangian is self-adjoint,

rather than checking the variational integrator itself. We seek a definition for the

adjoint of a discrete right Hamiltonian.

The adjoint of a one-step method (q1, p1) = Φh(q0, p0) can be obtained

by reversing the direction of time, and reversing the roles of the initial data and

terminal solution, i.e., (q0, p0) = Φ∗−h(q1, p1). This corresponds to swapping out

(q0, p0, q1, p1, h) for (q1, p1, q0, p0,−h). This motivates the definition of the adjoint

of a Type II generating function as a Type III generating function and vice versa.

In particular, given a Type II discrete Hamiltonian H+
d , we seek a definition for

the Type III adjoint (H+
d )∗ that will satisfy F̃ h

(H+
d )∗

= (F̃ h
H+

d

)∗. Let F̃ h
(H+

d )∗
(q0, p0) =

(q1, p1). Then, we want

(q1, p1) = F̃ h
(H+

d )∗
(q0, p0)

= (F̃ h
H+

d
)∗(q0, p0)

= (F̃−h
H+

d

)−1(q0, p0).

This implies F̃−h
H+

d

(q1, p1) = (q0, p0), which together with F̃ h
(H+

d )∗
(q0, p0) = (q1, p1)

yield the respective sets of equations,

p1 = D1H
+
d (q1, p0;−h),

q0 = D2H
+
d (q1, p0;−h),
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and

p1 = −D2(H+
d )∗(p0, q1;h),

q0 = −D1(H+
d )∗(p0, q1;h).

Comparing these equations we see that setting (H+
d )∗(p0, q1;h) = −H+

d (q1, p0;−h)

satisfies F̃ h
(H+

d )∗
= (F̃ h

H+
d

)∗. A similar calculation yields an analogous expression for

the adjoint of a Type III generating function H−d .

Definition 2. Given a Type II/III generating function, H±d , define the adjoint

as the Type III/II generating function, (H±d )∗, where F̃ h
(H±

d )∗
(q0, p0) = (q1, p1), as

(H+
d )∗(p0, q1;h) = −H+

d (q1, p0;−h), (2.15)

(H−d )∗(q0, p1;h) = −H−d (p1, q0;−h). (2.16)

Example 1. The symplectic Euler-A method for a Lagrangian of the form L(q, q̇) =

1
2
q̇Mq̇ − V (q) is given by,

p1 = p0 − h∇V (q0),

q1 = q0 + hM−1p1.

The corresponding discrete right Hamiltonian is given by

H+
d (q0, p1, h) = p1(q0 + hM−1p1)− h[p1M

−1p1 −H(q0, p1)],

= p1q0 + hH(q0, p1).

The adjoint of this method is given by symplectic Euler-B,

q1 = q0 + hM−1p0,

p1 = p0 − h∇V (q1).

We now derive the corresponding adjoint of the discrete right Hamiltonian for

symplectic Euler-A.

(H+
d )∗(p0, q1;h) = −H+

d (q1, p0;−h)

= −p0(q1 − hM−1p0)− h[p0M
−1p0 −H(q1, p0)]
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= −p0q1 + hH(q1, p0).

We can verify that this generates symplectic Euler-B by applying the discrete left

Hamilton’s equations,

q0 = −D1(H+
d )∗(p0, q1;h)

= D2H
+
d (q1, p0;−h)

= q1 − hM−1p0,

p1 = −D2(H+
d )∗(p0, q1;h)

= D1H
+
d (q1, p0;−h)

= p0 − h∇V (q1).

Solving the first equation for q1 gives symplectic Euler-B, as expected.

Theorem 6. (H±d )∗∗ = H±d .

Proof. We consider the case of the Type II generating function H+
d . Let

F̃ h
(H+

d )∗∗
(q0, p0) = (q1, p1). Since (H+

d )∗ is a Type III generating function, applying

the definition of the adjoint twice gives

(H+
d )∗∗(q0, p1;h) = −(H+

d )∗(p1, q0;−h)

= H+
d (q0, p1;h),

and a similar calculation shows that this holds for the Type III generating function

H−d as well.

Since the notion of the adjoint that we introduced converts a Type II to a

Type III generating function, for a discrete Hamiltonian to be self-adjoint, we need

to compare the adjoint to the Legendre transformation of the discrete Hamiltonian,

which is given by,

H−d (pk, qk+1;h) = −pkqk − pk+1qk+1 +H+
d (qk, pk+1;h),

where we view pk+1 and qk as functions of pk and qk+1. Then, the following cal-

culation shows that these two generating functions generate the same symplectic
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map, i.e., F̃H−
d

= F̃H+
d

,

−D1H
−
d (pk, qk+1;h) = qk + pk

∂qk
∂pk

+
∂pk+1

∂pk
qk+1 −D1H

+
d (qk, pk+1;h)

∂qk
∂pk

−D2H
+
d (qk, pk+1;h)

∂pk+1

∂pk

= qk +
(
pk −D1H

+
d (qk, pk+1;h)

) ∂qk
∂pk

+
(
qk+1 −D2H

+
d (qk, pk+1;h

) ∂pk+1

∂pk
,

−D2H
−
d (pk, qk+1;h) = pk

∂qk
∂qk+1

+
∂pk+1

∂qk+1

qk+1 + pk+1

−D1H
+
d (qk, pk+1;h)

∂qk
∂qk+1

−D2H
+
d (qk, pk+1;h)

∂pk+1

∂qk+1

= pk+1 +
(
pk −D1H

+
d (qk, pk+1;h)

) ∂qk
∂qk+1

+
(
qk+1 −D2H

+
d (qk, pk+1;h)

) ∂pk+1

∂qk+1

.

Definition 3. A Type II/III generating function is self-adjoint, if it is equal (up

to equivalency) to the Legendre transform of its adjoint.

Note that this definition implies that a discrete right Hamiltonian is self-

adjoint if its adjoint is equal (up to equivalency) to the associated discrete left

Hamiltonian, i.e., (H+
d )∗ = H−d .

Theorem 7. Given a self-adjoint discrete right Hamiltonian, i.e., H−d = (H+
d )∗,

the method associated to the discrete right Hamiltonian map is self-adjoint. Like-

wise, if a method coming from a discrete right Hamiltonian map is self-adjoint,

then the associated discrete right Hamiltonian is self-adjoint.

Proof. Assume H−d = (H+
d )∗. Then,

(F̃H+
d

)∗ = F̃(H+
d )∗ = F̃H−

d
= F̃H+

d
,

and so, by definition, the map is self-adjoint. Now assume F̃H+
d

= (F̃H+
d

)∗. Then,

F̃H−
d

= F̃H+
d

= (F̃H+
d

)∗ = F̃(H+
d )∗ ,

which implies (H+
d )∗ = H−d (up to equivalency) and, by definition, the discrete

right Hamiltonian is self-adjoint.
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A similar proof can be used to prove an identical theorem for the discrete left

Hamiltonian. The previous theorem provides an easy way to check if a variational

integrator is self-adjoint. Assuming the Hamiltonian flow is time-reversible, it

follows that the exact discrete right Hamiltonian is self-adjoint. This can also be

shown using the definition of a self-adjoint exact discrete right Hamiltonian, and

the same result can be shown for the discrete left Hamiltonian with only minor

adjustments.

Corollary 1. The exact discrete right Hamiltonian, H+,E
d , is self-adjoint.

Proof. A direct calculation shows that

(H+,E
d )∗(p0, q1;h) = −H+,E

d (q1, p0;−h)

= −(p̃(−h)q̃(−h)−
∫ −h

0

[p̃(τ)q̃(τ)−H(q̃(τ), p̃(τ))]dτ)

= −p(−h+ h)q(−h+ h)−
∫ 0

−h
[p(τ + h)q(τ + h)

−H(q(τ + h), p(τ + h))]dτ

= −p(0)q(0)−
∫ h

0

[p(t)q(t)−H(q(t), p(t))]dt

= H−,Ed (p0, q1;h),

where we used the fact that the time-reversed solution (q̃(τ), p̃(τ)) over the time do-

main [−h, 0] with (q1, p0) boundary data is related to the solution curve (q(t), p(t))

over the time domain [0, h] with (q0, p1) boundary data by (q̃(τ), p̃(τ)) = (q(τ +

h), p(τ + h)).

The definition of the adjoint also provides a simple way to construct sym-

metric methods. Given any method defined by Hd, we can construct a symmetric

method using composition, for example, F̃
h
2
Hd
◦ F̃

h
2
H∗

d
, which is nothing more than

composing a half-step of the adjoint method with a half-step of the method. It

is well-known that this leads to a symmetric method, as the following calculation

demonstrates,

(F̃
h
2
Hd
◦ F̃

h
2
H∗

d
)∗ = (F̃

h
2
H∗

d
)∗ ◦ (F̃

h
2
Hd

)∗
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= F̃
h
2
H∗∗

d
◦ F̃

h
2
H∗

d

= F̃
h
2
Hd
◦ F̃

h
2
H∗

d
,

where the last line used Theorem 2.7. More generally, a composition method of

the form,

F̃αsh
Hd
◦ F̃ βsh

H∗
d
◦ · · · ◦ F̃ β2h

H∗
d
◦ F̃α1h

Hd
◦ F̃ β1h

H∗
d
,

where αs+1−i = βi for i = 1, . . . , s, will be symmetric. For a more in depth

discussion of symmetric composition methods, see Chapter V.3 of [19].

2.3 Discrete Lagrangians versus Discrete Hamil-

tonians

2.3.1 Composition of Discretization and the Legendre Trans-

form

A transformation of one type of a generating function into another type of

generating function, which preserves the associated sympletic map is given by the

following Legendre transforms.

Definition 4. (i) The Legendre transform of a Type I generating into a Type II

generating function is given by the equation,

H+
d (qk, pk+1;h) = pk+1qk+1 − Ld(qk, qk+1;h),

where qk+1 is implicitly defined by pk+1 = D2Ld(qk, qk+1;h). The Legendre

transform of a Type II generating function into a Type I is given by the same

equation, where pk+1 is implicitly defined by qk+1 = D2H
+
d (qk, pk+1;h).

(ii) The Legendre transform of a Type I generating function into a Type III gen-

erating function is given by the equation,

H−d (pk, qk+1;h) = −pkqk − Ld(qk, qk+1;h),
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where qk is implicitly defined by pk = −D1Ld(qk, qk+1;h). The Legendre trans-

form of a Type III generating function into a Type I is given by the same

equation, where pk is implicitly defined by qk = −D1H
−
d (pk, qk+1;h).

(iii) The Legendre transform of a Type II generating function into a Type III

generating function is given by the equation,

H−d (pk, qk+1;h) = −pkqk − pk+1qk+1 +H+
d (qk, pk+1;h),

where qk and pk+1 are implicitly defined by the set of equations

pk = D1H
+
d (qk, pk+1;h) and qk+1 = D2H

+
d (qk, pk+1;h). The Legendre trans-

form of a Type III generating into a Type II is given by the same equa-

tion, where qk+1 and pk are implicitly defined by the set of equations qk =

−H−d (pk, qk+1;h) and pk+1 = −H−d (pk, qk+1).

Variational integrators are derived by first discretizing the exact generating

function, which results in a new generating function of the same type. Using

the Legendre transforms defined above, the discretized generating function can be

transformed into an equivalent generating function of a different type. This can

be viewed as composing the Legendre transform and the discretization. Likewise,

one could first take the Legendre transform of the given exact generating function

and then apply the discretization. The question we address next is whether or not

changing the order of this composition results in the same symplectic map, and

for one particular type of discretization this question has already been answered.

It was shown in [31] that the Galerkin variational integrator construction

leads to equivalent discrete Lagrangian and discrete Hamiltonian methods for the

same choice of quadrature rule and finite-dimensional function space, and the result

is given in the following theorem.

Theorem 8 (Proposition 4.1 of [31]). If the continuous Hamiltonian H(q, p) is

hyperregular and we construct a Lagrangian L(q, q̇) by the Legendre transformation,

then the generalized Galerkin Hamiltonian variational integrator (see [31]) and the

generalized Galerkin Lagrangian variational integrator, associated with the same

choice of basis functions and numerical quadrature formula, are equivalent.
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Will this hold for other types of variational integrators? To begin to address

this question, we propose the following examples.

Example 2. Consider a Lagrangian of the form L(q, q̇) = 1
2
q̇Mq̇ − V (q), where

M is symmetric positive-definite and V is sufficiently smooth.

The exact discrete Lagrangian, which is defined as,

LEd (q0, q1;h) =

∫ h

0

L(q01(t), q̇01(t))dt,

where q01(0) = q0, q01(h) = q1, and q01 satisfies the Euler–Lagrange equation in the

time interval (0, h). Letting q0 and q1 be fixed, then a first-order finite difference

approximation of the velocities yields,

q̇0 ≈
q1 − q0

h
,

q̇1 ≈
q1 − q0

h
.

Using the rectangular quadrature rule about the initial point results in the following

discrete Lagrangian (i.e. Type I generating function),

Ld(q0, q1;h) =
1

2

(
q1 − q0

h

)
M

(
q1 − q0

h

)
− V (q0) (2.17)

Applying the implicit discrete Euler–Lagrange equations yields,

p0 = M
q1 − q0

h
+ h∇V (q0), p1 = M

q1 − q0

h
.

Finally re-arranging these equations results in the variational integrator, also known

as symplectic Euler-A,

q1 = q0 + hM−1p1, p1 = p0 − h∇V (q0).

Now we apply this same approximation scheme to the associated exact Type

II generating function. The boundary-value formulation of the exact discrete right

Hamiltonian is given by,

H+,E
d (q0, p1) =

(
p1q1 −

∫ h

0

[pq̇ −H(q, p)] dt

)
,
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where (q(t), p(t)) satisfy Hamilton’s equations with boundary conditions q(0) = q0,

p(h) = p1. The first-order finite difference approximations of the velocities yields

the following equations for the momentum,

p0 ≈M
q1 − q0

h
,

p1 ≈M
q1 − q0

h
.

Solving for q1 in terms of q0 and p1 yields the approximation q1 ≈ q0 +hM−1p1 and

this simplifies the approximation to p0 as p0 ≈ p1. Now using these approximations

in combination with the rectangular rule about the initial point yields the discrete

right Hamiltonian,

H+
d (q0, p1;h) = p1(q0 + hM−1p1)− h

(
1

2
p1M

−1p1 − V (q0)

)
.

After applying the implicit discrete Hamilton’s equations and re-arranging terms

the resulting method is again symplectic Euler-A,

q1 = q0 + hM−1p1, p1 = p0 − h∇V (q0).

The composition of the Legendre transform and the discretization of a gen-

erating function will be called commutative, if regardless of the order of this com-

position, either resulting generating function leads to the same symplectic map. In

this context, the previous example shows that this particular discretization scheme,

which includes both the trajectory approximation and quadrature rule, commutes

with the Legendre transform between Type I and Type II generating functions.

Now we look at the same velocity approximation, but using the rectangular

rule about the end point rather than the initial point.

Example 3. As before we first build the discrete Lagrangian with q0, q1 fixed and

velocity approximations,

q̇0 ≈
q1 − q0

h
,

q̇1 ≈
q1 − q0

h
.

Applying the rectangular rule about the endpoint yields the discrete Lagrangian,

Ld(q0, q1;h) =
1

2

(
q1 − q0

h

)
M

(
q1 − q0

h

)
− V (q1), (2.18)
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and the associated variational integrator is symplectic Euler-B,

q1 = q0 + hM−1p0, p1 = p0 − h∇V (q1).

Now applying the same approximation scheme to construct the discrete right

Hamiltonian results in the following Type II generating function,

H+
d (q0, p1;h) = p1(q0 + hM−1p1)− h

(
1

2
p1M

−1p1 − V (q0 + hM−1p1)

)
.

Applying the implicit discrete Hamilton’s equations and re-arranging terms results

in the method,

q1 = q0 + hM−1p0, p1 = p0 − h∇V (q0 + hM−1p1),

which is not symplectic Euler-B.

We have just proven the following theorem.

Theorem 9. In general, the composition of the Legendre transform of a generating

function and the discretization of a generating function do not commute.

Therefore, the answer to our original question is that in general, a fixed

approximation scheme used to construct a discrete Lagrangian will not generate

the same method when it is used to construct a discrete Hamiltonian. In general,

how might the two resulting methods differ? A complete characterization of this

issue is subtle, and beyond the scope of this paper, but it will be a topic of future

work. For now, we will consider how the two approaches differ when combined

with the method of averaging, which will also serve to illustrate how the type of

generating function and the associated boundary data can affect the numerical

properties of the method.

2.3.2 Averaged Lagrangians and Hamiltonians

Averaging methods have played a role in solving differential equations since

at least as far back as the time of Lagrange (see [51]), and they continue to play a

key role particularly in the field of numerical differential equations applied to nearly
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integrable systems or problems with multiple timescales. We consider perturbed

Hamiltonian systems with Hamiltonians of the form,

H = H(A) + εH(B), (2.19)

where ε � 1 and the dynamics of the Hamiltonian system corresponding to H(A)

is exactly solvable or at the very least cheap to approximate. We call this an

almost-integrable system. The motivation being that the dynamics of the system

are largely influenced by an integrable Hamiltonian with simpler dynamics, but

smaller influences also play a role in the overall dynamics. An example is the

classic n-body problem of the solar system, where a particular planet’s trajectory

is largely influenced by the sun, but other planets and nearby objects also play a

role. Averaging methods can be constructed to exploit the larger influence of H(A)

on the dynamics of the system by averaging out the smaller influences. Ideally,

averaging techniques will allow for larger time steps to be used while still yielding

a reasonable approximation to the solution.

A variational integrator for such a system was proposed in [10] using a

discrete Lagrangian formulation, which drew inspiration from the kick-drift-kick

leapfrog method (see [53]). We will discuss the original Lagrangian formulation

(hereafter referred to as the averaged Lagrangian) and in addition construct an

analogous method in terms of a discrete right Hamiltonian (referred to as the

averaged Hamiltonian). The Lagrangian corresponding to (2.19) is given by,

L = L(A) + εL(B), (2.20)

and we will make the assumption that L(B)(q(t), q̇(t)) = −V (B)(q(t)).

The averaging method of interest has a local truncation error of O(ε2h3),

and is defined in terms of a discrete Lagrangian, Ld. This method, proposed in

[10], uses a discrete Lagrangian of the form,

Ld(q0, q1, h) = L
(A),E
d (q0, q1;h) + ε

∫ h

0

L(B)(qA(q0, q1, t), q̇A(q0, q1, t))dt

= L
(A),E
d (q0, q1;h)− ε

∫ h

0

V (B)(qA(q0, q1, t))dt,
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where we denote the trajectory corresponding to L(A) with boundary conditions

(q0, q1) by (qA(t), q̇A(t)). The idea is to use the dynamics of L(A), which is either

solved for exactly or efficiently and accurately approximated, to average the con-

tribution of L(B) to the dynamics. The corresponding discrete Hamiltonian map

is given implicitly by

−p0 = D1L
(A),E
d (q0, q1;h)− ε

∫ h

0

D1V
(B)(qA(q0, q1, t))dt, (2.21a)

p1 = D2L
(A),E
d (q0, q1;h)− ε

∫ h

0

D2V
(B)(qA(q0, q1, t))dt. (2.21b)

As shown in [10], this method has local truncation error of size O(ε2h3). Using the

notation pA0 (q0, q1) = −D1L
(A),E
d (q0, q1;h) and pA1 (q0, q1) = D2L

(A),E
d (q0, q1;h), we

rearrange the above equations to get

p0 − ε
∫ h

0

D1V
(B)(qA(q0, q1, t))dt = pA0 (q0, q1), (2.22a)

p1 = pA1 (q0, q1)− ε
∫ h

0

D2V
(B)(qA(q0, q1, t))dt. (2.22b)

In [10], it is noted that −ε
∫ h

0
D1V

(B)(qA(q0, q1, t))dt is an average along the trajec-

tory generated by L(A) which, in general, gives more weight to the initial periods of

the trajectory, while−ε
∫ h

0
D2V

(B)(qA(q0, q1, t))dt is an average along the trajectory

generated by L(A) that, in general, favors the latter periods of the trajectory.

Now let us consider the discrete right Hamiltonian given by the same form

of approximation,

H+
d (q0, p1;h) = H

(A),+,E
d (q0, p1;h) + ε

∫ h

0

V (B)(qA(q0, p1, t))dt.

The discrete right Hamiltonian map is given implicitly by

p0 = D1H
(A),+,E
d (q0, p1;h) + ε

∫ h

0

D1V
(B)(qA(q0, p1, t))dt,

q1 = D2H
(A),+,E
d (q0, p1;h) + ε

∫ h

0

D2V
(B)(qA(q0, p1, t))dt.

Using the notation pA0 (q0, p1) = D1H
(A),+,E
d (q0, p1;h) and

qA1 (q0, p1) = D2H
(A),+,E
d (q0, p1;h), we rearrange the equations to yield

p0 − ε
∫ h

0

D1V
(B)(qA(q0, p1, t))dt = pA0 (q0, p1), (2.23a)
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q1 = qA1 (q0, p1) + ε

∫ h

0

D2V
(B)(qA(q0, p1, t))dt. (2.23b)

Theorem 10. The method defined implicitly by (2.23) has local truncation error

O(ε2h3).

Proof. Using variational error analysis, we need to show

O(ε2h3) = HE,+
d −H+

d

= ∆A + ε∆B,

where ∆A is given by

p(h)q(h)−
∫ h

0

[p(t)q̇(t)−H(A)(q(t), p(t))]dt

−

(
pA(h)qA(h)−

∫ h

0

[pA(t)q̇A(t)−H(A)(qA(t), pA(t))]dt

)
,

and ε∆B is given by

ε

∫ h

0

[
V (B)(q(t))− V (B)(qA(t))

]
dt.

Using a functional Taylor expansion, ∆A becomes

∆A =
δ

δqA

(∫ h

0

[pA(t)q̇A(t)−H(A)(qA(t), pA(t))]dt

)
δqA

+
δ2

δq2
A

(∫ h

0

[pA(t)q̇A(t)−H(A)(qA(t), pA(t))]dt

)
δq2
A +O(δq3

A),

where δqA is the difference between q and qA. Noting that q and qA differ in forces

of order εh2 and p differs from pA to first order in εh, implies that δqA is on the

order of O(εh). This can be seen explicitly by comparing Taylor expansions about

time zero. Since qA satisfies Hamilton’s equations for H(A), the first variation

vanishes (see Lemma 2.1 of [31]) leaving a term on the order of hδq2
A. Therefore,

we have

∆A = O(ε2h3).

Likewise, a functional Taylor expansion for ∆B yields,

∆B =
δ

δqA

[∫ h

0

V (B)(qA(t))dt

]
δqA +O(δq2

A).
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Noting that V (B) is only a function of qA and that q differs from qA on the order

of εh2, implies ε∆B = O(ε2h3).

Theorem 11. Assuming the flow associated with L(A) is time-reversible, then both

methods, defined respectively by (2.22) and (2.23), are symmetric methods.

Proof. The discrete Lagrangian associated with (2.22) is given by,

Ld(q0, q1;h) = L
(A),E
d (q0, q1;h)− ε

∫ h

0

V (B)(qA(q0, q1, t))dt.

The adjoint of the discrete Lagrangian is given by,

(Ld(q0, q1;h))∗ = −Ld(q1, q0;−h)

= −L(A),E
d (q1, q0;−h) + ε

∫ −h
0

V (B)(qA(q1, q0, t))dt

= −L(A),E
d (q1, q0;−h)− ε

∫ h

0

V (B)(qA(q1, q0, t))dt

= L
(A),E
d (q0, q1;h)− ε

∫ h

0

V (B)(qA(q0, q1, t))dt

= Ld(q0, q1;h).

The third equality comes from the time-reversibility of the flow associated with

L(A), and the fourth equality uses this property together with the fact that the

exact discrete Lagrangian is self-adjoint.

The discrete right Hamiltonian associated with (2.23) is given by,

H+
d (q0, p1;h) = H

(A),+,E
d (q0, p1;h) + ε

∫ h

0

V (B)(qA(q0, p1, t))dt.

The adjoint of the discrete right Hamiltonian is given by,

(H+
d )∗(p0, q1;h) = −H+

d (q1, p0;−h)

= −H(A),+,E
d (q1, p0;−h)− ε

∫ −h
0

V (B)(qA(q1, p0, t))dt

= −H(A),+,E
d (q1, p0;−h) + ε

∫ h

0

V (B)(qA(q1, p0, t))dt

= H
(A),−,E
d (p0, q1;h) + ε

∫ h

0

V (B)(qA(p0, q1, t))dt
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= H−d (p0, q1;h),

where the third equality comes from the time-reversibility of the flow associated

with H(A), and the fourth equality uses this property together with the fact that

the exact discrete Hamiltonian is self-adjoint. By Definition 2.8 and Theorem 2.9,

the method is symmetric.

It can be shown that methods (2.22) and (2.23) do not result in the same

symplectic map. How do these respective maps differ? To gain insight into this

question we now turn to numerical experimentation.

2.4 Numerical Results

2.4.1 Exact Generating Functions

First, we consider the unperturbed harmonic oscillator boundary-value prob-

lem,

q̈(t) + q(t) = 0, q(0) = q0, q(h) = q1. (2.24)

Analytically, the boundary-value problem is not well-posed when h is an integer

multiple of π, and in particular there are infinitely many solutions. Recall that the

exact discrete Lagrangian is given by,

LEd (q0, q1;h) =

∫ h

0

L(q01(t), q̇01(t))dt, (2.25)

where q01(0) = q0, q01(h) = q1, and q01(t) satisfies the Euler–Lagrange equation in

the time interval (0, h). Thus, the exact Type I generating function is ultimately

defined in terms of such a boundary-value problem. The integrator obtained from

the exact discrete Lagrangian is given by,

q1 = q0 cos(h) + p0 sin(h),

p1 = q1 cot(h)− q0 csc(h).

This integrator is analytically the true solution of the harmonic oscillator initial-

value problem, where (q(0), p(0)) = (q0, p0), and consequently the local truncation
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error is zero. However, noting that cot(h) and csc(h) both involve dividing by

sin(h), we expect increased round-off error for values of h that are near integer

multiples of π.

Similarly, the exact discrete right Hamiltonian is given by,

H+,E
d (q0, p1;h) = p1q1 −

∫ h

0

[p01(t)q̇01(t)−H(q01(t), p01(t))]dt, (2.26)

where q01(0) = q0, p01(h) = p1, and (q01(t), p01(t)) satisfies Hamilton’s equations

in the time interval (0, h). This is related to the unperturbed harmonic oscillator

boundary-value problem given by,

q̇(t) = p(t), ṗ(t) = −q(t), q(0) = q0, p(h) = p1. (2.27)

This boundary-value problem is not well-posed for values of h that are odd multi-

ples of π
2

and there are infinitely many solutions for such values of h. The integrator

obtained from the exact discrete right Hamiltonian for the harmonic oscillator is

given by,

p1 = p0 cos(h)− q0 sin(h),

q1 = p1 tan(h) + q0 sec(h).

This integrator is analytically the true solution to the harmonic oscillator initial-

value problem, where (q(0), p(0)) = (q0, p0) and the local truncation error will be

zero. Noting that the method involves tan(h) and sec(h), we expect increased

round-off error around odd multiples of π
2
.

Both of the integrators given by the exact discrete Lagrangian and the exact

discrete right Hamiltonian have been implemented for the harmonic oscillator with

initial conditions (q0, p0) = (1, 0) over the time interval [0, 10000], and the energy

error is shown in Figure 2.1. Note the jump in round-off error corresponding to

values of h that are odd multiples of π (for the discrete Lagrangian) and odd

multiples of π
2

(for the discrete right Hamiltonian). The bottom plot takes the

minimum error of the two methods, and this indicates that a step-size causing

noticeable round-off error for one method will work just fine for the other method.
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Figure 2.1: Energy error versus step size for exact generating functions. The first
plot is the energy error versus step size for the exact discrete right Hamiltonian
applied to the harmonic oscillator. The second plot shows the energy error versus
step size for the exact discrete Lagrangian, while the third plot takes the minimum
of the energy error from either method.

In this particular case, we can conclude that the numerical difference be-

tween the symplectic maps generated by the respective exact discrete Lagrangian

and exact discrete right Hamiltonian is a matter of numerical conditioning, which

is inherited from the underlying ill-posedness of the associated boundary-value

problem. Despite the fact that the methods are applied to an initial-value prob-

lem, numerical properties can be attributed to a boundary-value problem that is no

longer visible in the methods themselves. Considering many symplectic integrators

are derived independently of the variational integrator formulation, perhaps some

of their numerical properties can be better understood by reinterpreting them in

the framework of variational integrators.

2.4.2 Averaged variational integrators for nonlinearly per-

turbed harmonic oscillator

Now we consider the previous averaging methods applied to a Hamiltonian

of the form,

H(q, p) =
1

2
(p2 + q2) +

ε

3
q3, (2.28)
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which is the Hamiltonian for a nonlinearly perturbed harmonic oscillator. The

corresponding averaged Lagrangian is given by

Ld(q0, q1, h) =

∫ h

0

1

2
(q̇A(t)2 − qA(t)2)dt−

∫ h

0

ε

3
qA(t)3dt, (2.29)

where (qA(t), q̇A(t)) is the solution corresponding to the Lagrangian L(A)(q, q̇) =

1
2
(q̇2 − q2) with boundary conditions (q0, q1). Analogously, the averaged Hamilto-

nian is given by

H+
d (q0, p1, h) = p1qA(h)−

∫ h

0

1

2
(pA(t)2 − qA(t)2)dt+

ε

3

∫ h

0

qA(t)3dt, (2.30)

where (qA(t), pA(t)) is the solution corresponding to the Hamiltonian H(A)(q, p)

with boundary conditions (q0, p1). Applying the discrete right and left Legendre

transforms implicitly defines the discrete Hamiltonian map for Ld(q0, q1, h) and the

discrete right Hamiltonian map for H+
d (q0, p1, h), which yields the respective one-

step methods. Numerical simulations were run over a time-span from 0 to 10000

or the nearest integer value to 10000 for the respective time-step. The initial

conditions are given by (q0, p0) = (1, 0).

Figures 2.2 and 2.3 show plots of the energy error versus step size for two

different values of ε. The third plot in each of the figures hints that the discrete

Lagrangian and discrete right Hamiltonian have numerical resonance that is nearly

dual, in some sense, with respect to step size. The discrete Lagrangian exhibits

excessive numerical resonance for step sizes near odd multiples of π, while the

discrete right Hamiltonian exhibits excessive numerical resonance for step sizes

near odd multiples of π
2
. It should be noted that the arbitrary value of 106 was

substituted for output that was either near infinite or NaN. What is particularly

striking is that the occurence of the numerical resonance is intimately connected

to the corresponding boundary-values for each generating function.

Now this by no means provides a rigorous analysis of the numerical reso-

nances, nor does it fully explain all of the resonance effects, but it does provide mo-

tivation and insight into the numerical differences between the discrete Lagrangian

and discrete right Hamiltonian. A more in-depth analysis might be provided by

applying something similar to modulated Fourier expansions (see [16; 18], and
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Figure 2.2: Energy error versus stepsize for ε = 0.1. Three plots of step size
versus energy error with fixed ε = 0.1. The first plot corresponds to the averaged
Hamiltonian, and it suffers from numerical resonance around odd integer multiples
of π

2
and exactly at odd multiples π. The second plot corresponds to the averaged

Lagrangian which suffers from numerical resonance around odd multiples of π. The
last plot takes the minimum error of the respective methods.
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Figure 2.3: Energy error versus stepsize for ε = 0.001. Three plots of step size
versus energy error with fixed ε = 0.001. The first plot corresponds to the averaged
Hamiltonian, and it suffers from numerical resonance at some odd integer multiples
of π

2
. The second plot corresponds to the averaged Lagrangian which suffers from

numerical resonance around odd multiples of π. The last plot takes the minimum
error of the respective methods.
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Chapter XIII of [19]). Modulated Fourier expansions are particularly well-suited

for oscillatory problems when large step sizes are sought. The standard backward

error analysis relies on hω → 0, which is not the case for high oscillatory problems

when seeking large step sizes. Modulated Fourier expansions can provide a tool for

deriving many of the same results as backward error analysis, such as long-term

energy preservation. Furthermore, it can be quite useful for examining the step

sizes that lead to excessive numerical resonance. However, it should be noted that

while modulated Fourier expansions have been used quite successfully to analyze

explicit trigonometric integrators, it is not quite as clear how easily it can deal with

implicit integrators such as those obtained from the discrete averaged Lagrangian

and discrete averaged Hamiltonian.

2.5 Conclusion

Error analysis and symmetry results have now been extended to cover dis-

crete Hamiltonian variational integrators. Furthermore, examples have been pre-

sented indicating that the underlying well-posedness in terms of the boundary

conditions of the exact generating function can be directly related to numerical

resonance. In conclusion, it is clear that the numerical properties of variational

integrators are dependent on both the approximation scheme used in constructing

the generating function and the type of generating function being approximated.

This paper indicates that the class of variational integrators generated using

the Hamiltonian formulation are not necessarily equivalent to the ones obtained

from the Lagrangian formulation, and it would therefore be of interest to continue

developing methods based on the discrete Hamiltonian variational integrator for-

mulation. In particular, the results presented suggest that further work remains

to be done to better understand the circumstances under which it is preferable to

favor one approach over the other.

Chapter 2, in full, is a reprint of the material that has been accepted for

publication by IMA Journal of Numerical Analysis, 2017. Schmitt, Jeremy; Leok,

Melvin, Oxford University Press, 2017. The dissertation author was the primary
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investigator and author of this material.



Chapter 3

Lagrangian and Hamiltonian

Taylor Variational Integrators

3.1 Introduction

This paper is concerned with the systematic construction and analysis of

Lagrangian and Hamiltonian variational integrators of arbitrarily high-order de-

rived from an underlying Taylor integrator. This can be viewed, on the Lagrangian

side, as a special case of the shooting-based variational integrators introduced in

[30], which provided a general framework for constructing a Lagrangian variational

integrator from a given one-step method.

The main limitation of the shooting-based variational integrator approach

is that in order to achieve higher-order accuracy, one requires multiple steps of

the underlying one-step method in order to obtain approximations of the solution

of the Euler–Lagrange boundary-value problem at the quadrature points. This

is of course the best one can hope to achieve given a generic one-step method,

but for one-step methods such as collocation methods or Taylor methods, one

obtains a continuous approximation that can be evaluated at multiple points. As

such, these methods only require a single step of the one-step method in order to

obtain a continuous approximation of the Euler–Lagrange boundary-value problem

that can be used to construct discrete Lagrangians and discrete Hamiltonians that

37
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generate symplectic integrators.

We focus on the use of Taylor integrators as the underlying one-step method,

since they can be efficiently implemented to arbitrarily high-order for a broad range

of problems by leveraging automatic differentiation techniques, and the resulting

solution can be evaluated at additional quadrature points at the cost of a polyno-

mial evaluation.

3.2 Discrete Mechanics

Discrete Lagrangian mechanics [35] is based on a discrete analogue of Hamil-

ton’s principle, referred to as the discrete Hamilton’s principle,

δSd = 0,

where the discrete action sum, Sd : Qn+1 → R, is given by

Sd(q0, q1, . . . , qn) =
∑n−1

i=0
Ld(qi, qi+1).

The discrete Lagrangian, Ld : Q × Q → R, is a generating function of the

symplectic flow, and is an approximation to the exact discrete Lagrangian,

LEd (q0, q1;h) =

∫ h

0

L(q01(t), q̇01(t))dt, (3.1)

where q01(0) = q0, q01(h) = q1, and q01 satisfies the Euler–Lagrange equation in

the time interval (0, h).

The discrete variational principle yields the discrete Euler–Lagrange

(DEL) equation,

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, (3.2)

which implicitly defines the discrete Lagrangian map FLd
: (qk−1, qk) 7→ (qk, qk+1)

for initial conditions (q0, q1) that are sufficiently close to the diagonal of Q×Q. This

is equivalent to the implicit discrete Euler–Lagrange (IDEL) equations,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), (3.3)

which implicitly defines the discrete Hamiltonian map F̃Ld
: (qk, pk) 7→ (qk+1, pk+1),

where the discrete Lagrangian is the Type I generating function of the symplectic
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transformation. Furthermore, the discrete Hamiltonian map associated with the

exact discrete Lagrangian F̃LE
d

is the time-h flow map of the Hamiltonian vector

field. These observations serve as the basis by which the variational error analysis

result of §3.2.1 is proven in [35]. In particular, variational error analysis relates

the order to which a computable discrete Lagrangian approximates the exact dis-

crete Lagrangian with the order of accuracy of the discrete Hamiltonian map when

viewed as a one-step method for approximating the flow of Hamilton’s equations.

3.2.1 Variational error analysis

The natural setting for analyzing the order of accuracy of a variational inte-

grator is the variational error analysis framework introduced in [35]. In particular,

Theorem 2.3.1 of [35] states that if a discrete Lagrangian, Ld : Q × Q → R, ap-

proximates the exact discrete Lagrangian, LEd : Q×Q→ R, given in (3.1) to order

p, i.e.,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hp+1), (3.4)

then the discrete Hamiltonian map, F̃Ld
: (qk, pk) 7→ (qk+1, pk+1), viewed as a

one-step method, is order p accurate.

3.3 Lagrangian Taylor Variational Integrator

The exact discrete Lagrangian (3.1) is given by the action integral evalu-

ated along the solution of the Euler–Lagrange boundary-value problem. In turn,

the boundary-value problem with boundary data (q0, q1) can be related to an

initial-value problem with initial data (q0, v0), which satisfies the condition q1 =

πQΦh(q0, v0), where πQ : TQ → Q is the canonical projection onto Q and Φh :

TQ→ TQ is the exact time-h flow map. This yields the following characterization

of the exact discrete Lagrangian,

LEd (q0, q1;h) =

∫ h

0

L(Φt(q0, v0))dt,

where q1 = πQΦh(q0, v0). The Taylor variational integrator is generated by a

computable discrete Lagrangian obtained when the integral is approximated by
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a quadrature rule, and the Taylor method is used to approximate the flow map

that relates the boundary data (q0, q1) with the initial-value data (q0, v0), and

the trajectory associated with the initial data. The following summarizes the

construction of the Taylor variational integrator.

(i) The approximation to q̇(0) = v0, denoted as ṽ0, is defined via the inverse

problem,

q1 = πQ ◦Ψ
(r+1)
h (q0, ṽ0), (3.5)

where πQ : TQ → Q is the canonical projection onto Q and Ψ
(r+1)
h : TQ →

TQ denotes a (r + 1)-order Taylor method.

(ii) Generate approximations to the quadrature nodal values, qci ≈ q(cih) (ex-

cluding q1 if needed, which is assumed to be given) and vci ≈ q̇(cih), via

Taylor’s method using ṽ0,

(qci , vci) = Ψ
(r)
cih

(q0, ṽ0). (3.6)

(iii) Apply the quadrature rule to construct the associated discrete Lagrangian,

Ld(q0, q1;h) = h
m∑
i=1

biL(qci , vci). (3.7)

(iv) Applying the discrete Legendre transforms implicitly defines the method,

p0 = −D1Ld(q0, q1;h),

p1 = D2Ld(q0, q1;h).

Remark. It may seem like a waste to solve for ṽ0 using a (r + 1)-order Tay-

lor method, and then to use only a r-order method to solve the Euler–Lagrange

boundary-value problem, but from an implementation perspective, no additional

derivative evaluations are needed to solve (3.5), other than those already required

in implementing the r-order Taylor method on TQ. In fact, it is an efficient use

of the higher-derivative information we already needed to compute in order to con-

struct the r-order Taylor method on TQ.
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This apparent discrepancy can be resolved by thinking of equation (3.5) as

being a (r + 1)-order Taylor method for the second-order differential equation on

Q, and (3.6) as a r-order Taylor method on the first-order differential equation on

TQ. In particular, notice that because of the canonical projection πQ in equation

(3.5), we only need to compute up to q(r+1)(0) in order to solve for ṽ0, instead of

the up to q(r+2)(0) that is necessary to define Ψ
(r+1)
h . But, we needed to compute

up to v(r)(0) = q(r+1)(0) in order to construct Ψ
(r)
h , the r-order Taylor method on

TQ.

The following lemmas are needed for a theorem on the accuracy of the

method. These lemmas can be proved using Lipschitz continuity and triangle

inequalities (see Appendices for their proofs).

Lemma 2. ṽ0 as defined by, (3.5), approximates v0 to at least O(hr+1).

Lemma 3. A r-order Taylor method with initial conditions (q0, ṽ0), where ṽ0 is

defined by (3.5), is accurate to at least O(hr+1) for the Euler–Lagrange boundary-

value problem with boundary conditions (q0, q1).

Theorem 12. Assuming a Lagrangian L that is Lipschitz continuous in both vari-

ables, then for a r-order accurate Taylor method, Ψ
(r)
h , and a s-order accurate

quadrature formula, the associated Taylor discrete Lagrangian (3.7) has order of

accuracy at least min(r + 1, s).

Proof. (qd(t), vd(t)), associated with the Taylor method Ψh of order r and initial

data (q0, ṽ0), approximates the exact solution (q01(t), v01(t)) of the Euler–Lagrange

boundary-value problem with the following error,

q01(cih) = qd(cih) +O(hr+1),

v01(cih) = vd(cih) +O(hr+1).

If the numerical quadrature formula is order s accurate, then

LEd (q0, q1;h) =

∫ h

0

L(q01(t), v01(t))dt

=
[
h
∑m

i=1
biL(q01(cih), v01(cih))

]
+O(hs+1)
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=
[
h
∑m

i=1
biL(qd(cih) +O(hr+1), vd(cih) +O(hr+1))

]
+O(hs+1)

=
[
h
∑m

i=1
biL(qd(cih), vd(cih))

]
+O(hr+2) +O(hs+1)

= Ld(q0, q1;h) +O(hr+2) +O(hs+1)

= Ld(q0, q1;h) +O(hmin(r+1,s)+1),

where we used the quadrature approximation error, the error estimates on the

shooting solution, and the assumption that L is Lipschitz continuous in both vari-

ables.

The choice of the Taylor method as the underlying one-step method has

the advantage that it only requires one to precompute the prolongation of the

Euler–Lagrange vector field once at the initial time, and the computational cost is

not increased appreciably by having to compute the numerical solution at multiple

quadrature nodes, since that only requires a polynomial evaluation. This efficiency

in evaluation improves upon the methods outlined in [29] and [30], which utilized

collocation and the shooting-method, respectively.

Example 4. Consider a first-order Taylor variational integrator that uses the

rectangular quadrature rule about the initial point. We assume a Lagrangian of the

form L(q, q̇) = 1
2
q̇TMq̇ − V (q). Then the integrator is constructed as follows:

(i) The inverse problem is,

q1 = q0 + hṽ0.

This implies ṽ0 = q1−q0
h

, where q0, q1 are the given boundary conditions.

(ii) The quadrature nodal values are qc1 = q0 and vc1 = ṽ0 = q1−q0
h

.

(iii) The corresponding discrete Lagrangian is given by,

Ld(q0, q1;h) = hL
(
q0,

q1 − q0

h

)
= h

[
1

2

(q1 − q0

h

)T
M
(q1 − q0

h

)
− V (q0)

]
.

(iv) The discrete Legendre transforms are given by,

p0 = M
(q1 − q0

h

)
+ h∇V (q0),
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p1 = M
(q1 − q0

h

)
.

With some rearranging and substitution we see that this is symplectic Euler-A,

q1 = q0 + hM−1p1,

p1 = p0 − h∇V (q0).

If we use the rectangular quadrature rule about the end point, then the

resulting method would be symplectic Euler-B. If instead we choose the trapezoid

quadrature rule, then the resulting method will be Störmer–Verlet. All three of

these classic symplectic integrators can be derived as Taylor variational integra-

tors. However, there are also novel methods that come from the Taylor variational

integrator framework, as the next example illustrates.

Example 5. Consider a second-order Taylor variational integrator, which utilizes

a first-order Taylor method combined with the trapezoid rule to approximate the

discrete Lagrangian. The approximate initial velocity is given by,

ṽ0 =
q1 − q0

h
− h

2
M−1∇V (q0).

The resulting method is an explicit second-order method given by,

q1 = q0 + hM−1p0 −
h2

2
M−1∇V (q0) +

h4

4
M−1∇∇V (q0)M−1V (q0),

p1 = Mṽ0 −
h

2
(∇V (q0) +∇V (q1)).

As demonstrated above, Lagrangian Taylor variational integrators provide

a very general family of symplectic integrators that include not only classic sym-

plectic integrators, but also novel symplectic integrators. The Taylor variational

integrator is amenable to the construction of higher-order symplectic integrators

that can benefit from many of the numerical techniques that have enhanced the

classical Taylor method (see [24], [46]). In particular, automatic differentiation

allows for accurate and relatively cheap derivative evaluations (see [20], [41], [39]).

In general, higher-order Taylor variational integrators will require solving a system

of nonlinear equations, which can be dealt with using standard methods (see [21]).
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While it is clear that Taylor variational integrators will have a higher computational

cost than the Taylor method, in many cases the Taylor variational integrator can

preserve accuracy and structure for larger step sizes, which may justify the higher

cost per step. We will further examine these topics in section 3.5. Next, we con-

sider discrete Hamiltonian formulations and symmetric formulations of the Taylor

variational integrator.

3.4 Hamiltonian and Symmetric Taylor Varia-

tional Integrators

3.4.1 Hamiltonian Taylor Variational Integrators

Thus far, we have derived the Taylor variational integrator by approximat-

ing the discrete Lagrangian, which is a type I generating function of the symplectic

map/integrator. However, we will also consider the discrete right and discrete left

Hamiltonians (see [26], [31]), which are type II and type III generating functions,

respectively. The motivation being that for a degenerate Hamiltonian there may be

no corresponding Lagrangian formulation, in which case the discrete Hamiltonian

formulation may be the only way to construct a variational integrator. Also, it has

recently been shown in [44] that even when the Legendre transform is a diffeomor-

phism, the discrete Lagrangian and discrete Hamiltonian formulation generated by

a fixed approximation scheme can lead to different variational integrators.

The boundary-value formulation of the exact discrete right Hamiltonian is

given by,

H+,E
d (q0, p1;h) =

(
pT1 q1 −

∫ T

0

[
pT q̇ −H(q, p)

]
dt

)
,

where (q(t), p(t)) satisfy Hamilton’s equations with boundary conditions q(0) =

q0, p(T ) = p1. Now let us consider the construction of a Taylor discrete right

Hamiltonian.

(i) Construct a r-order Taylor expansion on the cotangent bundle, T ∗Q, and
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solve for p̃0,

p1 = πT ∗Q ◦Ψ
(r)
h (q0, p̃0),

where πT ∗Q : (q, p) 7→ p.

(ii) Pick a quadrature rule of order s with quadrature weights and nodes given

by (bi, ci) for i = 1, . . . ,m.

(iii) Use a r-order Taylor method to generate approximations of (q(t), p(t)) at the

quadrature nodes,

(qci , pci) = Ψ
(r)
cih

(q0, p̃0),

and use a (r+ 1)-order Taylor method on the configuration manifold to gen-

erate the approximation to the boundary term q1,

q̃1 = πQ ◦Ψ
(r+1)
h (q0, p̃0).

(iv) Use the quadrature rule and approximate boundary term, q̃1, to construct

the discrete right Hamiltonian of order min(r + 1, s),

H+
d (q0, p1;h) = pT1 q̃1 − h

m∑
i=1

[
pTci q̇ci −H

(
Ψ

(r)
cih

(q0, p̃0)
)]
,

where q̇ci is obtained by inverting the continuous Legendre transform, (qci , pci) =

FL(qci , q̇ci).

(v) The method is implicitly defined by the implicit discrete right Hamilton’s

equations,

q1 = D2H
+
d (q0, p1), p0 = D1H

+
d (q0, p1). (3.8)

The boundary-value formulation of the exact discrete left Hamiltonian is

given by,

H−,Ed (q1, p0;h) = −
(
pT0 q0 −

∫ T

0

[
pT q̇ −H(q, p)

]
dt

)
,

where (q(t), p(t)) satisfy Hamilton’s equations with boundary conditions q(T ) =

q1, p(0) = p0. Now let us consider the construction of a Taylor discrete left

Hamiltonian.
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(i) Construct a (r + 1)-order Taylor expansion on the cotangent bundle, T ∗Q,

and solve for q̃0,

q1 = πQ ◦Ψ
(r+1)
h (q̃0, p0).

(ii) Pick a quadrature rule of order s with quadrature weights and nodes given

by (bi, ci) for i = 1, . . . ,m.

(iii) Use a r-order Taylor method to generate approximations of (q(t), p(t)) at the

quadrature nodes,

(qci , pci) = Ψ
(r)
cih

(q̃0, p0).

(iv) Use the quadrature rule and approximate boundary term, q̃0, to construct

the discrete left Hamiltonian of order min(r + 1, s),

H−d (q1, p0;h) = −pT0 q̃0 − h
m∑
i=1

[
pTci q̇ci −H

(
Ψ

(r)
cih

(q̃0, p0)
)]
,

where q̇ci is obtained by inverting the continuous Legendre transform, (qci , pci) =

FL(qci , q̇ci).

(v) The method is implicitly defined by the implicit discrete left Hamilton’s equa-

tions,

p1 = −D2H
−
d (q1, p0;h), q0 = −D1H

−
d (q1, p0;h). (3.9)

The Störmer–Verlet method can be derived as a Lagrangian Taylor varia-

tional integrator by choosing r = 0 for the respective Taylor methods and using

the trapezoid rule for the quadrature rule. This yields a discrete Lagrangian cor-

responding to the Störmer–Verlet method,

Ld(q0, q1;h) =
h

2

((q1 − q0

h

)T
M
(q1 − q0

h

)
− V (q0)− V (q1)

)
.

Choosing r = 0 and the trapezoid rule to construct a Hamiltonian Taylor varia-

tional integrator results in a discrete right Hamiltonian given by,

H+
d (q0, p1;h) = pT1 (q0 + hM−1p1)− h

2

(
pT1M

−1p1 − V (q0 + hM−1p1)
)
,
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and a discrete left Hamiltonian given by,

H−d (q1, p0;h) = pT0 (q1 − hM−1p0)− h

2

(
pT0M

−1p0 − V (q1 − hM−1p0)
)
.

The corresponding methods are not Störmer–Verlet, in fact they are neither sym-

metric nor explicit. However, a simple calculation shows that these discrete Hamil-

tonians are adjoint to each other (see [44] for info on adjoint discrete Hamiltonians),

i.e. −H+
d (q1, p0;−h) = H−d (q1, p0;h). Therefore, a symmetric method can be con-

structed by composing the two methods. We will denote the resulting symmetric

method by SVHd, and we compare it to Störmer–Verlet in section 3.5 (see Figure

3.7 and Figure 3.9).

It should be noted that some approximations schemes do yield the same

method when applied to a discrete Lagrangian and a discrete right/left Hamilto-

nian. For instance, choosing r = 0 and the rectangular rule about the end point

will yield symplectic Euler-B for both the discrete Lagrangian and discrete right

Hamiltonian approximation. When can we expect a fixed approximation scheme

applied to a discrete Lagrangian and a discrete right Hamiltonian to yield the same

method? The following theorem answers this question.

Theorem 13. Assuming a regular Lagrangian, we consider a fixed approximation

scheme used to construct a discrete Lagrangian, Ld, and a discrete right Hamil-

tonian, H+
d . This results in two integrators, F̃Ld

: (q0, p0) 7→ (q1,Ld
, p1,Ld

) and

F̃H+
d

: (q0, p0) 7→ (q1,H+
d
, p1,H+

d
). If the discrete right Hamiltonian approximation

satisfies p1,H+
d

= D2Ld(q0, q̂1), where q̂1 is the approximated value of q1, then the

integrators represent the same map, i.e., (q1,Ld
, p1,Ld

) = (q1,H+
d
, p1,H+

d
).

We have placed the proof of the above theorem in the appendix. It is impor-

tant to note that even though the theorem guarantees the analytical equivalence

of the integrators, this does not guarantee numerical equivalence (see [44]).

3.4.2 Symmetric Lagrangian Taylor Variational Integra-

tors

Consider the following variational derivation of the Störmer–Verlet method.

Construct the discrete Lagrangian by using the trapezoid rule and approximating
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ṽ0 and ṽ1 with the inverse problems given by,

q1 = Ψ
(1)
h (q0, ṽ0), q0 = Ψ

(1)
−h(q1, ṽ1),

where Ψr
h denotes the r-th order Taylor method with step size h. Then, the velocity

approximations are given by,

ṽ0 =
q1 − q0

h
, ṽ1 =

q1 − q0

h
,

and the resulting discrete Lagrangian yields the Störmer–Verlet method,

Ld(q0, q1;h) =
h

2

((q1 − q0

h

)T
M
(q1 − q0

h

)
− V (q0)− V (q1)

)
.

It is well-known that Störmer–Verlet is a symmetric method, and that sym-

metric methods preserve important structure of time-reversible equations and are

desirable for highly-oscillatory problems (see chapters V and XI of [19]). We can

generalize the above approximation to yield a class of symmetric Taylor varia-

tional integrators. The approximation scheme uses a symmetric quadrature rule

with weights and nodes {bi, ci}mi=1, and the Taylor method, and it is outlined as

follows:

(i) Solve the inverse problems for ṽ0 and ṽ1,

q1 = Ψ
(r)
h (q0, ṽ0), q0 = Ψ

(r)
−h(q1ṽ1). (3.10)

(ii) Generate approximations to the quadrature nodes (qci , vci) via,

qci = ciπQ ◦Ψ
(r)
cih

(q0, ṽ0) + (1− ci)πQ ◦Ψ
(r)
−(1−ci)h(q1, ṽ1)

vci = ciπQ ◦Ψ
(r−1)
cih

(q0, ṽ0) + (1− ci)πQ ◦Ψ
(r−1)
−(1−ci)h(q1, ṽ1).

Note q0, q1, ṽ0, and ṽ1 are used as the approximations for their respective

quadrature nodal values. Also, since the quadrature rule is assumed to be

symmetric, ci = 1− cm−i+1 and bi = bm−i+1.

(iii) Construct the discrete Lagrangian,

Ld(q0, q1;h) = h

m∑
i=1

biL(qci , vci)
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(iv) Apply the discrete Legendre transforms to implicitly define the variational

integrator,

p0 = −D1Ld(q0, q1;h), p1 = D2Ld(q0, q1;h).

Theorem 14. The symmetric Taylor variational integrator is a symmetric method.

Proof. By theorem 2.4.1 of [35], it is sufficient and necessary to show that the

discrete Lagrangian of the symmetric Taylor variational integrator is self-adjoint,

i.e., Ld(q0, q1;h) = −Ld(q1, q0;−h). We will use (*) to denote the approximated

values resulting from exchanging (q0, q1, h) for (q1, q0,−h). Exchanging (q0, q1, h)

for (q1, q0,−h) transforms (3.10) into,

q0 = Ψ
(1)
−h(q1, ṽ

∗
0), q1 = Ψ

(1)
h (q0, ṽ

∗
1),

so that ṽ∗0 = ṽ1 and ṽ∗1 = ṽ0. Therefore,

q∗ci = ciπQ ◦Ψ
(r)
−cih(q1, ṽ

∗
0) + (1− ci)πQ ◦Ψ

(r)
(1−ci)h(q0, ṽ

∗
1)

= (1− cm−i+1)πQ ◦Ψ
(r)
−(1−cm−i+1)h(q1, ṽ1) + cm−i+1πQ ◦Ψ

(r)
cm−i+1h

(q0, ṽ0)

= qcm−i+1
.

The second to last line follows from the fact that the quadrature rule is symmetric

and therefore satisfies 1 − ci = cm−i+1. The same steps show that v∗ci = vcm−i+1
.

The symmetric quadrature rule also implies that bi = bm−i+1, so that we have the

following,

−Ld(q1, q0;−h) = −(−h)
m∑
i=1

biL(q∗ci , v
∗
ci

)

= h
m∑
i=1

biL(qci , vci)

= Ld(q0, q1;h).

Theorem 15. Given a regular Lagrangian, an odd r-order Taylor method, and

a symmetric quadrature rule of order r + 1, then the resulting symmetric Taylor

variational integrator is of order r + 1.
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Proof. Lemmas 2 and 3 imply that the nodal value approximations, qci and vci ,

are of order r and r − 1 respectively. Therefore,

Ld(q0, q1;h) = h
m∑
i=1

biL(qci , vci)

= h

m∑
i=1

biL(q(cih) +O(hr+1), q̇(cih) +O(hr))

= h

m∑
i=1

bi (L(q(cih), q̇(cih)) +O(hr))

= h

m∑
i=1

biL(q(cih), q̇(cih)) +O(hr+1)

=

∫ h

0

L(q(t), q̇(t))dt+O(hr+1)

= LEd (q0, q1;h) +O(hr+1).

We have used the order of the nodal approximations, the error order of the quadra-

ture rule, and the Lipschitz continuity of a regular Lagrangian. By theorem 2.3.1

of [35], the resulting variational integrator, denoted by Ψ̃h, is at least of order r,

i.e.,

Ψ̃h(q0, v0) = Φh(q0, v0) +O(hr+1)

= Φh(q0, v0) + C(q0, v0)hr+1 +O(hr+2),

where Φh is the true flow of the Euler–Lagrange equations, and the last equality

is a consequence of the implicit function theorem.

Finally, since the variational integrator is symmetric and r + 1 is even, the

method will be of order r + 1 as the following implies.

Φh(q0, v0)− C(q0, v0)hr+1 +O(hr+2) = Φ∗h(q0, v0)− C(q0, v0)(−h)r+1 +O(hr+2)

= Ψ̃∗h(q0, v0)

= Ψ̃h(q0, v0)

= Φh(q0, v0) + C(q0, v0)hr+1 +O(hr+2),

which implies C(q0, v0)hr+1 = 0, and the method is of order r + 1 as claimed.
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The symmetric Taylor variational integrator is of order r + 1, but only re-

quires the derivatives of a r-order Taylor method, which makes it more efficient

than the non-symmetric Taylor variational integrator, in addition to the qualita-

tive benefits associated with its symmetry. However, applying this approximation

scheme to generate a discrete Hamiltonian will not directly lead to a symmetric

method. Recall that the symmetric Taylor variational integrator was inspired by

Störmer–Verlet, so it is likely that using this approximation scheme to generate a

discrete right and left Hamiltonian will result in the discrete left and right Hamil-

tonian methods that are adjoint to each other. In that case, the composition of

these methods should yield a symmetric method from the discrete Hamiltonian

formulation. We conjecture that if an approximation scheme yields a symmetric

discrete Lagrangian, then the corresponding discrete right and left Hamiltonians

will be adjoint. We will explore this further in future work.

3.5 Numerical Implementation and Experiments

We now discuss the numerical implementation of the methods introduced in

this paper. Below, we present the algorithm for the Lagrangian Taylor variational

integrator, and we discuss some of our observations about the implementation

details. Additionally, we compare the methods to other kinds of variational inte-

grators, and discuss their relative merits.

Algorithm Given (q0, p0), h, L(q(t), q̇(t)), the Euler–Lagrange vector field, quadra-

ture weights and nodes {(bi, ci)}i=1:m, and the desired order of the method r + 1,

then the Taylor variational integrator will output (q1, p1) and is implemented as

follows:

1. Prolongate the Euler–Lagrange vector field to obtain derivatives q(j)(q(t), v(t))

for j = 1, . . . , r + 1.

2. Compute the partial derivatives ∂q(j)(q,v)
∂q

and ∂q(j)(q,v)
∂v

.
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3. Solve the following nonlinear system for q1 and ṽ0:0 = q1 − q0 − hṽ0 −
∑p+1

j=2 q
(j)(q0, ṽ0)h

j

j!
,

0 = p0 + ∂Ld(q0,q1)
∂q0

.

4. Finally, p1 is given explicitly by,

p1 =
∂Ld(q0, q1)

∂q1

.

When solving the nonlinear system that arises above, the following points

should be noted:

1. In general, the nonlinear system is not amenable to a fixed-point iteration,

so a form of Newton’s method is preferable.

2. Each iteration will require evaluation of

qci = q0 + hṽ0 +
r∑
j=2

q(j)(q0, ṽ0)
hj

j!
,

vci = ṽ0 +
r+1∑
j=2

q(j)(q0, ṽ0)
hj−1

(j − 1)!
.

3. The following requires computing ∂ṽ0
∂q0

,

−p0 =
∂Ld(q0, q1)

∂q0

= h
m∑
i=1

bi

(
∂L(qci , vci)

∂q0

+
∂L(qci , vci)

∂ṽ0

∂ṽ0

∂q0

)T
Fortunately, this can be found explicitly and need only be computed once at

the beginning of the iteration,

∂ṽ0

∂q0

=

(
I +

r+1∑
j=2

∂q(j)(q0, ṽ0)

∂ṽ0

(cih)j−1

j!

)−1(−1

h
I −

r+1∑
j=2

∂q(j)(q0, ṽ0)

∂q0

(cih)j−1

j!

)
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4. Likewise, when solving p1 = ∂Ld(q0,q1)
∂q1

, it will be necessary to compute

∂ṽ0

∂q1

=
1

h

(
I +

r+1∑
j=2

∂q(j)(q0, ṽ0)

∂ṽ0

(cih)j−1

j!

)−1

,

which is explicit and is composed of terms that have already been computed.

Observe that good initial guesses for the nonlinear system are provided with little

computational cost, by using a (r+1)-order Taylor method for q1 and the Legendre

transform of p0 for ṽ0. Since this yields an approximate solution that is comparable

in accuracy to the one obtained by the corresponding Taylor variational integra-

tor, this yields a predictor-corrector implementation, where the Taylor variational

integrator applies a symplectic correction that converges very rapidly. In general,

when solving a nonlinear system as part of a symplectic method, the method be-

comes an almost symplectic method (see [50]) unless it is solved to within machine

precision. This implies that the error tolerance of the nonlinear solver will dictate

to what order the symplectic structure is preserved and consequently, how well

near-energy conservation is preserved (see Figure 3.1).

In practice, setting the nonlinear solver tolerance one or two orders above

the order of the integrator is sufficient to maintain symplecticity. For most Taylor

variational integrators, the nonlinear solver with moderate tolerance converges in a

few iterations, and often in one or no iterations. The symmetric Taylor variational

integrator showed excellent nonlinear convergence, and only required one iteration

of the nonlinear solver for the various experiments we ran.

3.5.1 Automatic Differentiation

As with the Taylor method, an efficient general purpose implementation will

require an efficient means of computing derivatives, such as automatic differentia-

tion. For the following simulations, we used the AdiGator automatic differentiation

package for MATLAB (see [40]). Implementation of a high-order Taylor variational

integrator requires both the evaluation of higher time derivatives, q(p+1)(q0, ṽ0), and

the evaluation of the Jacobians of the time derivatives w.r.t. q0 and ṽ0. The Ja-

cobian evaluations are the most expensive part of the method (see Figure 3.2),
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Figure 3.1: Pseudo-symplectic behavior. The plot of the energy preservation of
a 4th order Taylor variational integrator applied to the simple pendulum with two
different tolerance levels for the nonlinear solver and a step size of 0.1. Energy
drift is evident when the tolerance level is set at 10−5 or larger, but the drift
disappears for smaller tolerance levels. The method had an average energy error
around 6.5 · 10−5 for a tolerance of 10−6, and an average energy error of 8.1 · 10−4

for a tolerance of 10−5.

especially for higher-dimensional systems, and for efficient high-order methods,

the cost of Jacobian evaluations will need to be reduced to a level comparable to

the time derivative. There appears to be some relationships between the Jaco-

bians and the time derivatives that could potentially be exploited to decrease the

evaluation costs. For instance,

∂q(3)(q0, ṽ0)

∂ṽ0

=

[
q(3)

(
q0,

[
1

0

])
q(3)

(
q0,

[
0

1

])]
,

which allows us to replace expensive Jacobian evaluations with cheaper time deriva-

tive evaluations. Additionally, Jacobians of higher-order time derivatives appear

to have some relations to Jacobians of lower-order time derivatives, such as,

∂q(4)(q0, ṽ0)

∂ṽ0

= −2
∂q(3)(q0, ṽ0)

∂q0

.

Hopefully, a good implementation of automatic differentiation will already take

advantage of such relationships.
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Automatic differentiation greatly benefits from the way it is compiled, which

means the more efficient implementations will be in languages such as Fortran or

C++. Another aspect to consider is parallel implementation. Combining auto-

matic differentiation and parallel computing techniques has been shown to signifi-

cantly reduce computational time (see [5]).

One possible implementation for the algorithm would be to construct the

Taylor discrete Lagrangian, then apply automatic differentiation to the discrete

Lagrangian in combination with a nonlinear solver to recover the discrete Legendre

transforms and consequently (q1, p1). In fact, this could provide a more general

framework for the derivation of all implicit variational integrators.
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Figure 3.2: Computational cost of full derivative and partial Jacobian evalua-
tions. The derivative order versus time plot of 100 evaluations of each derivative
corresponding to 4 different models with increasing dimension. It is worth not-
ing that the rate of growth in time needed for higher-order derivative evaluations
appears to be independent of the dimension.

3.5.2 Comparison of Methods

The simulations compare the discrete Lagrangian form of the Taylor vari-

ational integrator (TVI), the discrete right Hamiltonian form of the Taylor varia-

tional integrator (HTVI), the symmetric Taylor variational integrator of 4th order
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(SV4), Taylor’s method, and the Runge–Kutta shooting variational integrators

(ShVI) (see [30]). Overall, high-order Taylor methods perform quite well in terms

of computational time versus global error. However, as the length of integration

time becomes very large, the variational integrators begin to show their strength.

Of the three variational integrators, the symmetric Taylor variational integrator is

the most efficient.

Comparison of the Lagrangian or Hamiltonian Taylor variational integrator

to the Runge–Kutta shooting variational integrator does not result in a clear win-

ner in terms of computational efficiency. It is well known that beyond 4th-order,

Runge–Kutta (RK) methods require a higher number of stages/function evalua-

tions, and the number of stages grows faster for vector differential equations as

compared to scalar differential equations (see [6]). The number of order conditions

grows quite quickly. For instance a 4th-order RK method has 8 order conditions,

a 7th-order RK method has 85 order conditions, and a 25th-order method has

3,231,706,871 order conditions (see [47]). However, a 25th-order RK method only

has 313 stages, so the function evaluations grow at a much slower rate. The Taylor

method must contend with the increasing cost of evaluating higher-order deriva-

tives, which for our implementation grows at a rate of 2n, where n is the order of the

derivative. For methods less than order 10 the difference in computational cost of

the Taylor variational integrator and the Runge–Kutta based shooting variational

integrator did not seem significant. However, the symmetric Taylor variational

integrator did exhibit lower evaluation costs than the other methods. It should be

noted that the most efficient implementations of the Taylor method involve variable

stepsizes, and symplectic integrators are not predisposed to variable stepsizes.

The following simulations were implemented in MATLAB.

3.5.3 Simple Pendulum

Consider the simple pendulum with unit mass and length in a gravitational

field with g = −9.8m/s2, where q is parametrized by the angle between the y-axis
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and the pendulum. The corresponding Lagrangian is,

L(q, q̇) =
1

2
q̇2 − g(1− cos(q)).

The Euler–Lagrange equation yields,

q̈ = −g sin(q).

In Figure 3.3, the level sets of the corresponding Hamiltonian are compared

to the trajectories generated by a 2nd-order Taylor variational integrator (TVI2)

(see Example 2). The numerical solutions appear nearly identical to the level sets

of the Hamiltonian, which indicates that the variational integrator exhibited good

energy behavior for a variety of initial conditions.

The simulation in Figure 3.4 used initial conditions (q0, p0) = (π
2
, 0). The

6th-order Taylor variational integrator performed well at a stepsize of h = 0.5,

while the 6th-order Taylor method failed to generate a reasonable approximation

for this stepsize. The ability of the Taylor variational integrator to perform well

at larger stepsizes may gives it an advantage over traditional Taylor methods.

In Figure 3.5, we compare various types of Taylor variational integrators

against the shooting-based variational integrator (ShVI). The plots compare the

energy error versus computational time for methods of various order. It is clear

the the symmetric Taylor variational integrator (SV4) is the most efficient in this

respect, but it is not so clear whether the non-symmetric Taylor variational inte-

grators (TVI and HTVI) are more efficient than ShVI.

3.5.4 Kepler’s Planar 2-Body Problem

Consider two bodies interacting under mutual gravity and set one body as

the center of the coordinate system (see [19]). Thus, constraining them to lie in a

plane, we have Kepler’s planar 2-body problem with corresponding Lagrangian,

L(q, q̇) =
1

2
(q̇2

1 + q̇2
2) + (q2

1 + q2
2)−1/2.
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Figure 3.3: (a) The level sets of the Hamiltonian of the simple pendulum corre-
sponding to a variety of initial conditions. (b) The trajectories generated by TVI2
using the same initial conditions with a step size h = 0.1 for the time interval
[0, 20].

Note here we are using q1 and q2 as the first and second components of q. This in

turn gives us the Euler–Lagrange equations,

q̈ =

 −q1
(q21+q22)3/2

−q2
(q21+q22)3/2

 .
Our simulations used initial conditions q0 =

[
1

0

]
and p0 =

[
0

0.8

]
. Figure

3.6 compares various Taylor variational integrators to Taylor methods of the same

order using a stepsize of h = 0.25. The trajectories of the Taylor methods for

this stepsize behave poorly, while variational integrators show good qualitative

performance.

Figure 3.7 compares the Störmer–Verlet method (SV) to the discrete Hamil-

tonian composition method (SVHd) discussed in section 3.4.1. Given that the

Störmer–Verlet method is explicit, while SVHd is implicit, it is no surprise that

the Störmer–Verlet method has lower computational cost. However, SVHd does

exhibit lower energy error and performs slightly better qualitatively, so when the

problem is non-separable (and SV is implicit), SVHd may be a better alternative.

3.5.5 Henon-Heiles Model

The Henon–Heiles model attempts to capture the dynamics of a galaxy

with cylindrical symmetry (see [19] for more info). The Hamiltonian is given by,
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Figure 3.4: Simple Pendulum energy versus time. A plot of the Simple Pendulum
total energy vs. time of the sixth-order integrators TVI6 and Taylor’s method for
a step size of h = 0.5. At this step size and time interval, Taylor’s method has
significant energy drift, and as a result its accuracy suffers.

H(p, q) = 1
2
(p2

1+p2
2)+U(q), where U(q) = 1

2
(q2

1+q2
2)+q2

1q2− 1
3
q3

2. The corresponding

Euler–Lagrange equation is,

q̈ =

[
−q1 − 2q1q2

−q2 − q2
1 + q2

2

]
.

It is known that the dynamics become chaotic at higher energy levels. The following

simulations were conducted with an initial energy level of H0 = 1
12

(see Figure 3.8)

and H0 = 1
8

(see Figure 3.5). The second energy value corresponds to a chaotic

system.

In Figure 3.8, we compare the 6th-order Taylor variational integrator (TVI6),

the 6th-order Runge–Kutta shooting-based variational integrator (ShVI6), and the

4th-order symmetric Taylor variational integrator (SV4) applied to the Henon-

Heiles model with H0 = 1
12

. For global errors between 10−1 and 10−5, SV4 is the

more efficient method. Amongst the higher-order methods, TVI6 and ShVI6 ap-

pear to be the more efficient methods. A 6th-order symmetric Taylor variational

integrator would be even more efficient for higher-order accuracy.
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Figure 3.5: Plots of the average energy error versus computational time for
the various variational integrators. The 4th-order symmetric Taylor variational
integrator (SV4) is the clear winner in terms of efficiency, while comparisons of
TVI, HTVI, and ShVI are mixed.

3.5.6 Fermi-Pasta-Ulam Model

The Fermi-Pasta-Ulam (FPU) model has a particularly distinguished place

in the history of numerical simulations and nonlinear dynamics (see [11]). We

apply the modified model as outlined in [19], consisting of a sequence of 6 mass

points, fixed at both ends connected on opposite sides by a series of soft nonlinear

springs and stiff linear springs. Letting {qi, pi}6
i=1 denote the displacements and

velocities of the mass points, the corresponding Hamiltonian is given by,

H(p, q) =
1

2

3∑
i=1

(p2
2i−1 + p2

2i) +
ω2

4

6∑
i=1

(q2i − q2i−1)2 +
6∑
i=0

(q2i+1 − q2i)
4,

where ω = 50. By using the change of variables,

x0,i = (q2i + q2i−1)/
√

2, x1,i = (q2i − q2i−1)/
√

2,

y0,i = (p2i + p2i−1)/
√

2, y1,i = (p2i − p2i−1)/
√

2,

the resulting Hamiltonian system has a nearly conserved quantity I = I1 + · · ·+I3,

where

Ij(x1,j, y1,j) =
1

2
(y2

1,j + ω2x2
1,j)
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Figure 3.6: Kepler’s planar 2-body problem. Position plots of Kepler’s planar
2-body problem as generated by various integrators with a time step of h = 0.25
over a time interval of [0, 250]. The Taylor variational integrators exhibit close
to the correct behavior, while the various Taylor methods all fail to capture the
behavior of the system.

is the energy of the jth stiff spring. Despite the significant energy exchange between

individual springs, the total oscillatory energy, I, remains near constant. Our

simulations used initial values of,

x0,1

x0,2

x0,3

x1,1

x1,2

x1,3


=



1

0

0

1/ω

0

0


,



y0,1

y0,2

y0,3

y1,1

y1,2

y1,3


=



1

0

0

1

0

0


.

Figure 3.9 compares the Störmer–Verlet method to SVHd. The first couple

of plots use a stepsize of h = 0.03, which is on the boundary of the linear stability

of Störmer–Verlet (i.e. hω = 1.5). SVHd does appear to be qualitatively more

accurate, but neither method does well at this stepsize. For h = 0.01, both methods

give a much better qualitative representation of the system, but their global errors

are still too large to be considered accurate. None of the methods in this paper

are appropriate for a highly-oscillatory model such as the FPU model. For an
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Figure 3.7: Comparison of Störmer–Verlet and SVHd. This plot compares the
performance of Störmer–Verlet (SV) and the discrete Hamiltonian composition
method (SVHd) from section 3.4.1. SVHd exhibits a much smaller amplitude in
the energy error, as compared to SV, but the implicit nature of SVHd is reflected in
the increased computational cost. Clearly, SV is preferable for separable problems,
but for non-separable problems SVHd may be the better choice.

accurate solution, one should consider either the IMEX method (see [48]) or Filon-

type methods (see [22]). The combination of exponential type integrators with

symplectic and energy-preserving integrators was also recently considered in [? ].

3.5.7 Outer Solar System

Consider the motion of the five outer planets (including Pluto) relative to

the sun. The corresponding Hamiltonian for this N-body problem is given by,

H(p, q) =
1

2

5∑
i=0

1

mi

pTi pi −G
5∑
i=1

i−1∑
j=0

mimj

‖qi − qj‖
,

where G = 2.95912208286 ·10−4. The initial data and masses is taken from Section

1.2.4 of [19], and corresponds to September 5, 1994 at 0h00. In Figure 3.10,

we compare the 4th and 6th-order Taylor variational integrators to the 4th and

6th-order Taylor methods. The simulations was over the time period [0, 200000],

and the stepsize was h = 400 (days). The 4th-order methods did not produce
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Figure 3.8: The Henon-Heiles model simulated over the time interval [0, 1000].
The bottom right plot compares the global error versus computational time of
the 6th-order Taylor variational integrator (TVI6), the 6th-order Runge–Kutta
based shooting variational integrator (ShVI6), and the 4th-order symmetric Taylor
method (SV4).

a useful simulation at this stepsize, but both 6th-order integrators give a good

representation of the system.

3.6 Conclusions and Future Directions

The Taylor variational integrators provide a way to build high-order sym-

plectic integrators and include many of the classic symplectic integrators as special

cases, i.e., symplectic Euler and Störmer–Verlet. This provides a framework for

importing the large body of literature on the efficient construction of high-order

Taylor integrators in order to construct similarly high-order symplectic integrators.

In particular, these methods can be viewed as a symplectic correction to

higher-order Taylor methods that typically converges in a small number of it-

erations. By viewing these as predictor-corrector methods, one can interpolate

between Taylor methods and Taylor variational integrators, and it would be in-

teresting to see the extent to which a fixed number of iterations of the symplectic

corrector can improve upon the performance of Taylor integrators for realistic
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Figure 3.9: A comparison of Störmer–Verlet, SVHd, and the 8th-order Tay-
lor method for the Fermi-Pasta-Ulam model. For h = 0.03, the Störmer–Verlet
method is on the cusp of being linearly unstable. For h = 0.01, the methods all
present a similar picture to the reference solution, but their global errors are quite
large and none of them exhibit good accuracy.

problems.

The numerical simulations demonstrate that the geometric structure-preser-

ving properties of symplectic integrators can be important for achieving numerical

stability of long time simulations, so it should be of great interest to the compu-

tational astrophysics community to combine the high-order accuracy of high-order

Taylor integrators with the geometric structure-preserving properties of variational

integrators.

The most efficient implementations of the Taylor method utilize a variable

stepsize, and extending variable stepsizes to the variational integrator framework is

an area that deserves continued research. We are currently considering an approach

based on the combination of Hamiltonian variational integrators and the Poincaré

transformation that is quite promising. In particular, we note that the use of

Hamiltonian as opposed to Lagrangian variational integrators is critical, as the

Poincaré transformed Hamiltonian is degenerate, and there is no corresponding

Lagrangian formulation.
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Figure 3.10: The sun and 5 outer planets simulated over the time interval
[0,200000] with a step size of h = 400 (days). The stepsize is too large for the 4th-
order methods to give a qualitatively accurate representation, but both 6th-order
methods performed well qualitatively.

3.7 Appendix: Detailed Proofs

Given an Euler–Lagrange equation of the form,

q̈(t) = f(q(t), q̇(t), t),

we denote the exact solution of the Euler–Lagrange boundary-value problem with

boundary conditions (q0, q1) by (q(t), v(t)). We seek an estimate of the true initial

velocity, v0, for the corresponding Euler–Lagrange initial-value problem, with order

of accuracy r. Let us denote this estimate by ṽ0. Given a one-step method,

Ψ̂h : TQ → TQ, with order of accuracy r + 1, we solve for the initial velocity ṽ0,

such that,

πQ ◦ Ψ̂h(q0, ṽ0) = q1, (3.11)

where πQ : TQ → Q is the canonical projection. Let Φh : TQ → TQ be the

exact time-h flow map of the Euler–Lagrange initial-value problem. By definition,

the exact Euler–Lagrange flow applied to the initial condition (q0, v0) is a solution

of the Euler–Lagrange boundary-value problem with boundary conditions (q0, q1),

where

πQ ◦ Φh(q0, v0) = q1. (3.12)

Consider a Taylor method with order of accuracy r and r + 1,

Ψh(q0, ṽ0) =

(∑r

k=0

hk

k!
q(k)(0),

∑r+1

k=1

hk−1

(k − 1)!
q(k)(0)

)
(3.13)
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and

Ψ̂h(q0, ṽ0) =

(∑r+1

k=0

hk

k!
q(k)(0),

∑r+2

k=1

hk−1

(k − 1)!
q(k)(0)

)
, (3.14)

where q(k)(0) is calculated by considering the prolongations of the Euler–Lagrange

vector field, and evaluating it at (q0, ṽ0). An analogous approach, involving the pro-

longation of the Euler–Lagrange vector field at both the initial and final time, which

can be viewed as a two-point Taylor method, was used to develop a prolongation-

collocation variational integrator in [29].

Lemma 4. ṽ0 as defined by, (3.11) and (3.14), approximates v0 to at least O(hr+1).

Proof. Solving πQ ◦ Ψ̂h(q0, ṽ0) = q1 for ṽ0 yields,

ṽ0 =
q1 − q0

h
−
∑r

k=1

hk

(k + 1)!
(f (k−1)(q0, ṽ0, 0)).

Since the exact solution q(t) ∈ Cr+2([0, h]), using Taylor’s Theorem, we have,

q1 = q0 + v0h+
∑r+1

k=2

hk

k!
f (k−2)(q0, v0, 0) +Rr+1(h).

Solving for v0 yields,

v0 =
q1 − q0

h
−
∑r

k=1

hk

(k + 1)!
f (k−1)(q0, v0, 0)− Rr+1(h)

h
.

Now evaluating the norm of the difference we have,

‖ṽ0 − v0‖ =

∥∥∥∥−∑r

k=1

hk

(k + 1)!
(f (k−1)(q0, ṽ0, 0)− f (k−1)(q0, v0, 0)) +

Rr+1(h)

h

∥∥∥∥ .
Since q(t) ∈ Cr+2([0, h]) each of f (i−1) is Lipschitz continuous in its arguments for

i = 1, 2, . . . , r. Let Mi be the Lipschitz constant for f (i−1) over the compact interval

[0, C] with respect to velocity, and C > 0 can be chosen so that Mi, i = 1, 2, . . . , p,

is bounded. Using the triangle inequality, we have,

‖ṽ0 − v0‖ ≤
∑r

k=1

hk

(k + 1)!
Mk‖ṽ0 − v0‖+

∥∥∥∥Rr+1(h)

h

∥∥∥∥ .
Rearranging, we have,

‖ṽ0 − v0‖
(

1−
∑r

k=1

hk

(k + 1)!
Mk

)
≤
∥∥∥∥Rr+1(h)

h

∥∥∥∥ ≤ O(hr+2)

h
= O(hr+1).
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By continuity, there exists C̃ satisfying 0 < C̃ < C, such that for all h satisfying

0 < h < C̃, the term inside the parenthesis on the leftmost expression is positive

and bounded away from zero. That concludes the proof.

Remark. It is worth noting that a similar proof may be given for any (r+1)-order

one-step method. This is due to the fact that any (r + 1)-order one-step method

agrees with the (r + 1)-order Taylor’s method up to a local truncation error of

order O(hr+2). Thus, the only change in the error term in the proof would be to

replace Rr+1(h) by the sum of the local truncation error of the one-step method

and Rr+1(h), which are both O(hr+2). Thus, this result can be generalized to any

one-step method of the desired order.

Using this result, we can show that starting our r-order Taylor method at

ṽ0, rather than at v0, will not affect the order of accuracy of the method.

Lemma 5. A r-order Taylor method, defined by (3.13), with initial conditions

(q0, ṽ0), where ṽ0 is defined by (3.11), is accurate to at least O(hr+1) for the Euler–

Lagrange boundary-value problem with boundary conditions (q0, q1).

Proof. As before, we denote the solution to the Euler–Lagrange boundary-value

problem with boundary condition (q0, q1) by (q(t), v(t)) for t ∈ [0, h]. This solu-

tion also satisfies the Euler–Lagrange initial-value problem with initial conditions

(q0, v0), where v0 satisfies (3.12). We denote the solution of the Euler–Lagrange

initial-value problem with initial conditions (q0, ṽ0) by (q̃(t), ṽ(t)). Let (qd(t), vd(t))

denote the values generated by r-order Taylor method with initial conditions

(q0, ṽ0). Noting that the Euler–Lagrange initial-value problem is well-posed, we

denote the Lipschitz constant with respect to initial velocity by M .

‖(q(t), v(t))− (q̃(t), ṽ(t))‖ ≤M‖v0 − ṽ0‖ ≤ O(hr+1).

Combining this inequality with our r-order method yields,

‖(q(t), v(t))− (qd(t), vd(t))‖ = ‖(q(t), v(t))− (q̃(t), ṽ(t))

+ (q̃(t), ṽ(t))− (qd(t), vd(t))‖

≤ ‖(q(t), v(t))− (q̃(t), ṽ(t))‖
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+ ‖(q̃(t), ṽ(t))− (qd(t), vd(t))‖

≤ O(hr+1),

where we used the triangle inequality, and the fact that the local truncation error

of a r-order Taylor method is O(hr+1) to bound the second term in line two,

since (q̃(t), ṽ(t)) and (qd(t), vd(t)) correspond to the exact solution and r-th order

Taylor approximation, respectively, of the Euler–Lagrange initial-value problem

with initial data (q0, ṽ0).

Theorem 16. Assuming a regular Lagrangian, we consider a fixed approxima-

tion scheme used to construct a corresponding discrete Lagrangian, Ld, and a dis-

crete right Hamiltonian, H+
d . This results in two integrators, F̃Ld

: (q0, p0) 7→
(q1,Ld

, p1,Ld
) and F̃H+

d
: (q0, p0) 7→ (q1,H+

d
, p1,H+

d
). If the discrete right Hamiltonian

approximation satisfies p1,H+
d

= D2Ld(q0, q̂1), where q̂1 is the approximated value of

q1, then the integrators represent the same map, i.e., (q1,Ld
, p1,Ld

) = (q1,H+
d
, p1,H+

d
).

Proof. Let p̂0 be defined by −p̂0 = D1Ld(q0, q̂1), where we consider q̂1 as an inde-

pendent variable. The discrete right Hamiltonian is given by,

H+
d (q0, p1,H+

d
) = pT

1,H+
d
q̂1 − Ld(q0, q̂1).

Note that here q̂1 is being considered as a function of q0 and p1,H+
d

, as defined

implicitly by the assumption p1,H+
d

= D2Ld(q0, q̂1). Then

p0 = D1H
+
d (q0, p1,H+

d
)

=
∂q̂1

∂q0

T

p1,H+
d
−
(
D1Ld(q0, q̂1) +

∂q̂1

∂q0

T

D2Ld(q0, q̂1)

)
=
∂q̂1

∂q0

T (
p1,H+

d
−D2Ld(q0, q̂1)

)
+ p̂0

= p̂0,

where the last line follows by the assumption p1,H+
d

= D2Ld(q0, q̂1). Therefore,

p0 = p̂0, which then implies −p0 = D1Ld(q0, q̂1) and consequently q̂1 = q1,Ld
.

Applying the next discrete Legendre transform yields,

q1,H+
d

= D2H
+
d (q0, p1,H+

d
)
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=
∂q̂1

∂p1,H+
d

T

p1,H+
d

+ q̂1 −

(
∂q̂1

∂p1,H+
d

T

D2Ld(q0, q̂1)

)

=
∂q̂1

∂p1,H+
d

T (
p1,H+

d
−D2Ld(q0, q̂1)

)
+ q̂1

= q̂1.

Therefore, q̂1 = q1,H+
d

, which implies q1,Ld
= q1,H+

d
. Now we have,

p1,H+
d

= D2Ld(q0, q̂1)

= D2Ld(q0, q1,Ld
)

= p1,Ld
.

Chapter 3, in full, is a reprint of the material that has been submitted

for publication to BIT Numerical Mathematics, 2017. Schmitt, Jeremy; Shingel,

Tatianna; Leok, Melvin, Springer, 2017. The dissertation author was the primary

investigator and author of this material.



Chapter 4

Adaptive Hamiltonian Variational

Integrators

4.1 Introduction

Symplectic integrators are a class of geometric integrators that when ap-

plied to a Hamiltonian system yield a discrete approximation of the flow that

preserves the symplectic 2-form (see [19]). The preservation of symplecticity re-

sults in the preservation of many qualitative aspects of the underlying dynamical

system. In particular, when applied to conservative Hamiltonian systems, sym-

plectic integrators show excellent long-time near-energy preservation. However,

when symplectic integrators were first used in combination with variable time-

steps, the near-energy preservation was lost and the integrators performed poorly

(see [7], [13]). Backwards error analysis provided justification both for the excel-

lent long-time near-energy preservation of symplectic integrators and for the poor

performance experienced when using variable time-steps (see Chapter IX of [19]).

Backward error analysis shows that symplectic integrators can be associated with

a modified Hamiltonian in the form of a powers series in terms of the time-step.

Changing the time-step results in a different modified Hamiltonian each time the

time-step is varied. This is the source of the poor energy conservation. There has

been a great effort to circumvent this problem, and there have been many suc-
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cesses. However, there has yet to be a unified general framework for constructing

adaptive symplectic integrators. In this paper, we attempt to add to this effort by

extending variable time-steps into the domain of variational integrators. After a

brief introduction to variational integrators, we present a framework for variable

time-step variational integrators, and contrast our method with existing work on

the matter.

4.2 Variational Integrators

Variational integrators are symplectic integrators derived by discretizing

Hamilton’s principle, versus discretizing Hamilton’s equations directly. As a result,

variational integrators are symplectic, preserve many invariants and momentum

maps, as well as having excellent long-time near-energy preservation (see [35]).

Traditionally, variational integrators have focused on the type I generating function

known as the discrete Lagrangian, Ld : Q×Q 7→ R. The exact discrete Lagrangian

of the true flow of Hamilton’s equations can be represented in both a variational

form and in a boundary-value form. The latter is given by

LEd (q0, q1;h) =

∫ h

0

L(q01(t), q̇01(t))dt, (4.1)

where q01(0) = q0, q01(h) = q1, and q01 satisfies the Euler–Lagrange equations

over the time interval [0, h]. A variational integrator is defined by constructing

an approximation to (4.1), Ld : Q × Q 7→ R, and then applying the discrete

Euler–Lagrange equations,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), (4.2)

which implicitly define the integrator, F̃Ld
: (qk, pk) 7→ (qk+1, pk+1). The error

analysis is greatly simplified via Theorem 2.3.1 of [35], which states that if a

discrete Lagrangian, Ld : Q×Q→ R, approximates the exact discrete Lagrangian,

LEd : Q×Q→ R, to order r, i.e.,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1),
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then the discrete Hamiltonian map, F̃Ld
: (qk, pk) 7→ (qk+1, pk+1), viewed as a

one-step method, is order r accurate.

Many other properties of the integrator, such as symmetry of the method,

can be determined by analyzing the associated discrete Lagrangian, as opposed

to analyzing the integrator directly. More recently, variational integrators have

been extended to the framework of type II and type III generating functions,

commonly referred to as discrete Hamiltonians (see [26], [31]). Hamiltonian varia-

tional integrators are derived by discretizing Hamilton’s phase space principle. The

boundary-value formulation of the exact type II generating function of the time-h

flow of Hamilton’s equations is given by the exact discrete right Hamiltonian,

H+,E
d (q0, p1;h) = pT1 q1 −

∫ h

0

[
p(t)T q̇(t)−H(q(t), p(t))

]
dt, (4.3)

where (q(t), p(t)) satisfy Hamilton’s equations with boundary conditions q(0) = q0

and p(h) = p1. A type II Hamiltonian variational integrator is constructed by

using an approximate discrete Hamiltonian, H+
d , and applying the discrete right

Hamilton’s equations,

p0 = D1H
+
d (q0, p1), q1 = D2H

+
d (q0, p1),

which implicitly defines the integrator, F̃H+
d

: (q0, p0) 7→ (q1, p1).

Various methods for constructing and analyzing Hamiltonian variational

integrators can be found in [31], [44], and [45]. In particular, there is an analogous

error analysis theorem as in the case of Lagrangian variational integrators. If a

discrete right Hamiltonian, H+
d , approximates the exact discrete right Hamiltonian,

H+,E
d , to order r, i.e.,

H+
d (q0, p1;h) = H+,E

d (q0, p1;h) +O(hr+1),

then the discrete right Hamilton’s map, F̃H+
d

: (qk, pk) 7→ (qk+1, pk+1), viewed as a

one-step method, is order r accurate.

Hamiltonian and Lagrangian variational integrators are not always equiva-

lent. In particular, it was shown in [44] that in some cases even when the Hamilto-

nian and Lagrangian integrators are analytically equivalent they can have different
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numerical properties. Even more to the point, Lagrangian variational integrators

cannot always be constructed when the underlying Hamiltonian is degenerate, and

in that situation, Hamiltonian variational integrators are the more natural choice.

In the next section we examine a transformation commonly used to construct

variable time-step symplectic integrators, which in most cases of interest results

in a degenerate Hamiltonian. Our approach is to apply Hamiltonian variational

integrators to the resulting transformed Hamiltonian system.

4.3 The Poincaré Transformation and Discrete

Hamiltonians

Given a Hamiltonian, H(q, p), and a desired transformation of time, t 7→
τ , given by dt

dτ
= g(q, p), a new Hamiltonian system is given by the Poincaré

transformation,

H̄(q̄, p̄) = g(q, p)
(
H(q, p) + pt

)
, (4.4)

where (q̄, p̄) =

([
q

qt

]
,

[
p

pt

])
. We will follow the common choice of setting qt = t

and pt = −H(q(0), p(0)), so that H̄(q̄, p̄) = 0 along all integral curves through

(q(0), p(0)). The time t shall be referred to as the physical time, and τ as the

fictive time. The corresponding Hamilton’s equations are given by,

˙̄q =

[
∇pg(q, p)

0

]
(H(q, p) + pt) +

[
∂H
∂p

1

]
g(q, p) (4.5)

˙̄p = −

[
∇qg(q, p)

0

]
(H(q, p) + pt)−

[
∂H
∂q

0

]
g(q, p). (4.6)

When the initial conditions are (q(0), p(0)), then H(q, p) + pt = 0 and

˙̄q =

[
g(q, p)∂H

∂p

g(q, p)

]
, ˙̄p =

[
−g(q, p)∂H

∂q

0

]
. (4.7)

In general,

∂2H̄

∂p̄2
=

[
∂H
∂p
∇pg(q, p)T + g(q, p)∂

2H
∂p2

+∇pg(q, p)∂H
∂p

T ∇pg(q, p)

∇pg(q, p)T 0

]
,
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which can be singular in many cases. Most of the papers cited here on variable

time-step symplectic integrators focus exclusively on using a monitor function,

g, that is only a function of position, in which case the resulting transformed

Hamiltonian is degenerate and there is no corresponding Lagrangian formulation.

Therefore, Hamiltonian variational integrators are the most general and natural

way to derive variable time-step variational integrators.

The exact type II generating function for the transformed Hamiltonian is

given by,

H̄+,E
d (q̄0, p̄1;h) = p̄T1 q̄1 −

∫ h

0

(
p̄(τ)T ˙̄q(τ)− H̄(q̄(τ), p̄(τ))

)
dτ, (4.8)

where (q̄(τ), p̄(τ)) satisfy Hamilton’s equations (4.7), with boundary conditions

q̄(0) = q̄0, p̄(h) = p̄1.

The above exact discrete right Hamiltonian implicitly defines a symplectic

map with respect to the symplectic form ω̄(p̄k, q̄k) on T ∗Q̄ via the discrete Legendre

transforms given by,

p̄0 =
∂H̄+,E

d

∂q̄0

, q̄1 =
∂H̄+,E

d

∂p̄1

.

Our approach is to construct Hamiltonian variational integrators by using a dis-

crete right Hamiltonian, H̄+
d , that approximates (4.8) to order r, then the resulting

integrator will be a variable time-step symplectic integrator. It is important to note

that this method will be symplectic in two different ways. It will be symplectic

both with respect to the symplectic form dp̄∧dq̄ and with respect to the symplectic

form dp ∧ dq. Since pt is constant(i.e. pt0 =
∂H̄+

d

∂qt0
= pt1), the symplectic form in

generalized coordinates is given by

ω̄(p̄k, q̄k) = dp̄k ∧ dq̄k

=
n+1∑
i=1

dp̄k,i ∧ dq̄k,i

=
n∑
i=1

dpk,i ∧ dqk,i + dptk ∧ dqtk

=
n∑
i=1

dpk,i ∧ dqk,i
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= ω(pk, qk).

A symplectic variable time-step method was proposed independently in

[17] and [42], which applied a symplectic integrator to the Hamiltonian system

resulting from the Poincaré transformation. In [17], it is noted that one of the first

applications of the Poincaré transformation was by Levi-Civita, who applied it to

the three-body problem. A more in-depth discussion of such time transformations

can be found in [49]. There has been further work using this transformation in

papers such as [2] and [3], which focus on developing symplectic, explicit, splitting

methods with variable time-steps.

Our approach is to discretize the type II generating function for the flow

of Hamilton’s equations, where the Hamiltonian is given by the Poincaré transfor-

mation. Therefore, we are constructing variational integrators, and in particular

Hamiltonian variational integrators (see [26], [31]). This approach works seam-

lessly with existing methods and theorems of Hamiltonian variational integrators,

but now the system under consideration is the transformed Hamiltonian system

resulting from the Poincaré transformation. It should be noted that the meth-

ods of [17] and [42] include the possibility of applying a variational integrator to

the Poincaré transformed Hamilton’s equations. Our approach gives a framework

for constructing variational integrators by using the Poincaré transformed discrete

right Hamiltonian. In most cases, these two approaches will produce equivalent

integrators, but our new approach allows for the method to analyzed at the level

of the generating function, and indicates that most such symplectic methods are

best interpreted as coming from a type II or III generating function, as opposed

to a type I generating function.

Remark. Other approaches to variable time-step variational integrators can be

found in [25], [37] and [38]. In particular, [25] is inspired by the result of Ge and

Marsden ([12]), which states that constant time-step symplectic integrators of au-

tonomous Hamiltonian systems cannot exactly conserve the energy unless it agrees

with the exact flow map up to a time reparametrization. Therefore, they sought

a variable time-step energy-conserving symplectic integrator. However, symplec-

ticity is with respect to the space-time symplectic form dp ∧ dq + dH ∧ dt. The
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time-step is determined by enforcing discrete energy conservation, which arises

as a consequence of the fact that energy is the Noether quantity associated with

time translational symmetry. An extended Hamiltonian is used that is similar in

spirit to the Poincaré transformation. A nearly identical approach and definition

of symplecticity was used in [38].

In [37], the approach involves a transformation of the Lagrangian, which

is motivated by the Poincaré transformation, but it is not equivalent. The lack of

equivalence is not surprising, since the Hamiltonian given by the Poincaré trans-

formation is degenerate for their choice of monitor functions. As a consequence,

the phase space path is not preserved, but the state space path is preserved up to a

rescaling of the velocity.

4.4 Variational Error Analysis

The standard error analysis theorem for Hamiltonian variational integrators

assumes a non-degenerate Hamiltonian, i.e., det(∂
2H̄
∂p̄2

) 6= 0 (see [44]). The non-

degeneracy implies that the usual implicit function theorem can be applied to the

discrete right Hamilton’s equations. In particular, the proof of the error analysis

theorem relies upon the following lemma, which follows from the implicit function

theorem.

Lemma 6. Let f1, g1, e1, f2, g2, e2 ∈ Cr be such that

f1(x, h) = g1(x, h) + hr+1e1(x, h),

f2(x, h) = g2(x, h) + hr+1e2(x, h).

Then, there exists functions e12 and ē1 bounded on compact sets such that

f2(f1(x, h), h) = g2(g1(x, h), h) + hr+1e12(g1(x, h), h),

f−1
1 (y) = g−1

1 (y) + hr+1ē1(y).

Combining this lemma with the discrete right Hamiltonian map,

F̃H+
d

(q0, p0) = F+H+
d ◦ (F−H+

d )−1(q0, p0) = (q1, p1),
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ensures the order of accuracy of the integrator is at least of the order to which

H+
d approximates H+,E

d . Since the usual implicit function theorem does not ap-

ply, we need to justify the invertibility of F−H+
d , which comes down to whether

p̄0 = D1H̄
+
d (q̄0, p̄1;h) can be solved for p̄1.

We assume the original Hamiltonian, H(q, p), is nondegenerate. Then, we

will show that the exact discrete right Hamiltonian can be reduced to a particular

form and the extended variables pt1 and qt1 can be solved for explicitly. As a result,

the implicit function theorem is not needed with respect to these variables. Hamil-

ton’s equations of the transformed Hamiltonian, H̄(q̄, p̄) = g(q, p) (H(q, p) + pt),

are

˙̄q =

[
∇pg(q, p)

0

]
(H(q, p) + pt) +

[
∂H
∂p

1

]
g(q, p)

˙̄p = −

[
∇qg(q, p)

0

]
(H(q, p) + pt)−

[
∂H
∂q

0

]
g(q, p).

The corresponding exact discrete right Hamiltonian is of the form

H̄+,E
d (q̄0, p̄1;h) = p̄T1 q̄1 −

∫ h

0

(
p̄(τ)T ˙̄q(τ)− H̄(q̄(τ), p̄(τ))

)
dτ

= pT1 q1 + pt1q
t
1 −

∫ h

0

(p(τ)T q̇(τ) + pt(τ)g(q(τ), p(τ))

− g(q(τ), p(τ))pt(τ)− g(q(τ), p(τ))H(q(τ), p(τ)))dτ

= pT1 q1 + pt1q
t
1 −

∫ h

0

(
p(τ)T q̇(τ)− g(q(τ), p(τ))H(q(τ), p(τ))

)
dτ.

As a result, only one part of this exact discrete right Hamiltonian requires approx-

imations of the extended variable qt and pt. Furthermore, since ṗt = 0 this implies

pt1 = pt0. Now, let H̄+
d (q̄0, p̄1;h) be an approximation to the exact discrete right

Hamiltonian of the form

H̄+
d (q̄0, p̄1;h) = pT1 q̂1(q0, p1;h) + pt1q̂

t
1(qt0, q0, p1;h)− I(q0, p1;h),

where ·̂ denotes an approximated value and I(q0, p1;h) is an approximation of∫ h

0

(
p(τ)T q̇(τ)− g(q(τ), p(τ))H(q(τ), p(τ))

)
dτ.
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Then, the discrete right Legendre transforms, p̄0 = D1H̄
+
d (q̄0, p̄1;h) and q̄1 =

D2H̄
+
d (q̄0, p̄1;h), give the following explicit relations for pt1 and qt1,[

p0

pt0

]
=

∂q̂1∂q0

T
p1 + pt1

∂q̂t1
∂q0
− ∂I

∂q0
∂q̂t1
∂qt0
pt1

 ,
[
q1

qt1

]
=

[
q̂1 + ∂q̂1

∂p1

T
p1 + ∂q̂1

∂p1

T
pt1 − ∂I

∂p1

q̂t1

]
.

Now, since the analytic solution satisfies pt1 = pt0, there is no need to approximate

pt1. Therefore,
∂q̂t1
∂qt0

= 1, and pt1 is given independently of the other values. The

upshot is a system that can be solved by first setting pt1 = pt0, then implicity solv-

ing for p1 in terms of (qt0, q0, p
t
1, p1), explicitly solving for q1 and finally explictly

solving for qt1. Since p1 is not determined by qt1, the implicit function theorem

is simply needed for finding p1. Therefore, we need det(∂
2H̄
∂p2

) 6= 0, which is the

same as det(∂H
∂p
∇pg(q, p)T + g(q, p)∂

2H
∂p2

+∇pg(q, p)∂H
∂p

T
) 6= 0. Note this holds for

nondegenerate Hamiltonians H and p-independent monitor functions.

Theorem 17. Given a nondegenerate Hamiltonian H, and a monitor function

g ∈ C1([0, h]), such that det(∂H
∂p
∇pg(q, p)T +g(q, p)∂

2H
∂p2

+∇pg(q, p)∂H
∂p

T
) 6= 0. Then,

if the discrete right Hamiltonian H̄+
d , approximates the exact discrete right Hamil-

tonian H̄+,E
d , to order r, i.e.,

H̄+
d (q̄0, p̄1;h) = H̄+,E

d (q̄0, p̄1;h) +O(hr+1),

then the discrete right Hamilton’s map F̃H̄+
d

: (q̄k, p̄k) 7→ (q̄k+1, p̄k+1), viewed as a

one-step method, is order r accurate.

4.5 Adaptive Hamiltonian Taylor Variational In-

tegrators

We will demonstrate the approach using Hamiltonian Taylor variational

integrators (see [45]), which are constructed as follows:
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(i) Construct a r-order Taylor expansion,Ψ
(r)
h , on the cotangent bundle, T ∗Q̄,

and solve for ˜̄p0,

p̄1 = πT ∗Q̄ ◦Ψ
(r)
h (q̄0, ˜̄p0),

where πT ∗Q̄ : (q̄, p̄) 7→ p̄.

(ii) Pick a quadrature rule of order s with quadrature weights and nodes given

by (bi, ci) for i = 1, . . . ,m.

(iii) Use a r-order Taylor method to generate approximations of (q̄(t), p̄(t)) at the

quadrature nodes,

(q̄ci , p̄ci) = Ψ
(r)
cih

(q̄0, ˜̄p0),

and use a (r+ 1)-order Taylor method on the configuration manifold to gen-

erate the approximation to the boundary term q̄1,

˜̄q1 = πQ̄ ◦Ψ
(r+1)
h (q̄0, ˜̄p0).

(iv) Use the quadrature rule and approximate boundary term, ˜̄q1, to construct

the discrete right Hamiltonian of order min(r + 1, s),

H̄+
d (q̄0, p̄1;h) = p̄T1 ˜̄q1 − h

m∑
i=1

[
p̄Tci ˙̄qci − H̄

(
Ψ

(r)
cih

(q̄0, ˜̄p0)
)]
.

(v) The method is implicitly defined by the implicit discrete right Hamilton’s

equations,

q̄1 = D2H̄
+
d (q̄0, p̄1), p̄0 = D1H̄

+
d (q̄0, p̄1). (4.9)

For a lucid exposition, we will at first assume g(q, p) = g(q) and H(q, p) =

1
2
pTM−1p+V (q). Consider the discrete right Hamiltonian given by approximating

q̄1 with a first-order Taylor method about q̄0, approximating p̄0 with a zeroth-order

Taylor expansion about p̄0, and using the rectangular quadrature rule about the

initial point, which yields

H̄+
d = pT1 (q0 + hg(q0)M−1p1) + pt1(qt0 + hg(q0))− hg(q0)

[
1

2
pT1M

−1p1 − V (q0)

]
.

(4.10)
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The corresponding variational integrator is given by,

p̄1 =

[
p0 − hg(q0)∇V (q0)− h∇g(q0)

(
1
2
pT1M

−1p1 + V (q0) + pt0
)

pt0

]
, (4.11)

q̄1 =

[
q0 + hg(q0)M−1p1

qt0 + hg(q0)

]
. (4.12)

The resulting integrator is merely symplectic Euler-B applied to the transformed

Hamiltonian system,

q̄1 = q̄0 + h
∂H̄(q̄0, p̄1)

∂p̄
,

p̄1 = p̄0 − h
∂H̄(q̄0, p̄1)

∂q̄
.

In fact, this is precisely the adaptive symplectic integrator first proposed in [17]

and also presented on page 254 of [28]. Most existing symplectic integrators can be

interpreted as variational integrators, but there are also new methods that are most

naturally derived as variational integrators. We will also consider a fourth-order

Hamiltonian variational integrator recently developed in [45], which is distinct from

any existing symplectic method.

One of the most important aspects of implementing a variable time-step

symplectic integrator of this form is a well chosen monitor function, g(q). We need

g to be positive-definite, so that we never stall or march backward in time. Noting

that the above integrator is first-order, a natural choice is to use the second-order

truncation error given by − (qt1−qt0)2

2
M−1∇V (q0). Let tol be some desired level of

accuracy, then one choice for g would be,

g(q0) =
tol

‖ (qt1−qt0)2

2
g(q0)M−1∇V (q0)‖

. (4.13)

Noting that qt1 − qt0 = hg(q0), we have,

g(q0) =
tol

‖h2g(q0)3

2
M−1∇V (q0)‖

, (4.14)

which yields,

g(q0) =

(
tol

‖h2
2
M−1∇V (q0)‖

) 1
4

. (4.15)



81

This justifies our choice for g as,

g(q0) =
tol

‖h2
2
M−1∇V (q0)‖

, (4.16)

which achieves an error which is comparable to the chosen value of tol.

Alternative choices of g, proposed in [17], include the p-independent ar-

clength parameterization given by,

g(q) = (2(H0 − V (q)) +∇V (q)TM−1∇V (q))−
1
2 , (4.17)

and a choice particular to Kepler’s two-body problem,

g(q) = qT q, (4.18)

which is motivated by Kepler’s second law, which states that a line segment joining

the two bodies sweeps out equal areas during equal intervals of time.

We have tested the algorithm given by (4.12) on Kepler’s planar two-body

problem, with an eccentricity of 0.9, using the three choices of g given by (4.16),

(4.17), and (4.18). Of these three choices, (4.18) is particular to Kepler’s two-body

problem, while (4.16) and (4.17) are more general choices. However, since (4.16)

is based on the truncation error, the cost of computing this function will increase

as the order of the method increases. In contrast, (4.17) is independent of the

order. Simulations using Kepler’s two-body problem with an eccentricity of 0.9

over a time interval of [0, 1000] were run using the three different choices of g and

the usual symplectic Euler-B. Results indicate that symplectic Euler-B takes the

most steps and computational time to achieve a level of accuracy around 10−5.

To achieve a level of accuracy around 10−5, the choice of the truncation error

monitor function, (4.16), resulted in the least number of steps, and the second

lowest computational time. The lowest computational time belonged to (4.18), but

it used significantly more steps than (4.16). The lower computational cost can be

attributed to the cheaper evaluation cost of the monitor function and its derivative.

Finally, the monitor function (4.17) required the most steps and computational

time of the adaptive algorithms, but it is still a good choice in general given its

broad applicability. See Figures 4.1, 4.2, and 4.3.
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Figure 4.1: A time-step of h = 0.00001 was used, and it took 10,000,000 steps.
Global error = 5.5 · 10−4.

Figure 4.2: The tolerance was set to 10−5 and it took 1,123,116 steps. Global
error = 4.2 · 10−5.



83

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Step #10 6

0

2

4

6

8

S
te

p 
S

iz
e

#10 -4

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Step #10 6

0

2

4

6

8
S

te
p 

S
iz

e
#10 -4

1 2 3 4 5 6 7 8 9 10 11

Step #10 5

0

2

4

6

8

S
te

p 
S

iz
e

#10 -4

Figure 4.3: The top plot corresponds to (4.16), the middle plot corresponds to
(4.17), and the bottom plot corresponds to (4.18). All of the monitor functions ap-
pear to increase and decrease the step size at the same points along the trajectory,
but clearly (4.16) allowed for the larger steps to be taken.

Next, we consider the fourth-order Hamiltonian Taylor variational integra-

tor constructed using Taylor methods up to order 3 and Simpson’s quadrature rule.

We will now drop the assumption of p-independent monitor functions and consider

g(q, p). The following monitor functions were considered,

g(q) =
(
qT q
)γ

for γ =
1

2
, 1 (4.19)

g(q) =
(
2(H0 − V (q)) +∇V (q)TM−1∇V (q)

)− 1
2 (4.20)

g(q, p) = ‖pt − L(q,M−1p)‖−1
2 (4.21)

The monitor function (4.21) was originally intended to be ‖pt +H(q, p)‖−1
2 ,

but an accidental error led to the conclusion that (4.21) is the better choice. We

will discuss the shortcomings of using the inverse energy error in the next para-

graph. Note that ‖L(q,M−1p)‖−1
2 also performs decently, but the addition of

pt = −H(q0, p0) showed noticeable improvement. It was noted in [17] that the

inverse Lagrangian has been considered as a possible choice for g in the Poincaré

transformation, but not in the framework of symplectic integration. While the
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choice of (4.19) was generally the most efficient, (4.21) was very close in terms

of efficiency and offers a more general monitor function. This also implies that

efficiency is not limited to only q or p-independent monitor functions. However,

various attempts to construct seperable transformed Hamiltonians (see [2], [3])

required the use of q or p-independent monitor functions, so this is where such

monitor functions are most useful.

The truncation error monitor function, (4.16), performed quite well for

first-order methods, and this motivated the choice of using Taylor variational inte-

grators, since derivatives would be readily available. However, its success cannot as

easily be applied to higher-order methods. This is due to the fact that for higher-

order truncation errors, one obtains an implicit differential-algebraic definition of

the monitor function. This deviates from the first-order case, where the monitor

function can be solved for explicitly. Another seemingly natural choice for the

monitor function is the inverse of the energy error. However, Taylor variational

integrators are constructed using Taylor expansions about the initial point, and

consequently the monitor function is largely evaluated about the initial point. If

the initial point is at a particularly tricky part of the dynamics and requires a

small first step, then the energy error at the first step will not reflect this, since

initially the energy error is zero. In contrast, the inverse Lagrangian will be small

at an initial point that requires a small first step. The inverse energy error may

work well for methods that primarily evaluate the energy error at the end point

rather than the initial point.

Additionally, it is often advantageous to bound the time-step below or

above. As noted on page 248 of [28], this can be done by setting a = ∆tmin

∆τ

and b = ∆tmax

∆τ
, then defining the new monitor function as,

ĝ = b
g + a

g + b
. (4.22)

Note that for methods such as the Taylor variational integrator, bounding g(q, p)

does bound the step-size, but not directly (see the tables below for a comparison

of bounds, computationals time, steps, and error).
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Figure 4.4: It was applied to Kepler’s planar two-body problem over a time
interval of [0, 10] with an eccentricity of 0.9, and the method required 2000 steps
to achieve a global error of around 6.2 · 10−5.

Compared to non-adaptive variational integrators, the adaptive methods showed

a significant gain in efficiency for Kepler’s 2-body planar problem with high ec-

centricity, while low eccentricity models do not need nor do they benefit from

adaptivity. A Hamiltonian dynamical system with regions of high curvature in the

vector field and its norm will in general benefit from an adaptive scheme such as

the one outlined here.

Table 4.1: A comparison of different choices of monitor functions for Kepler’s
2-body problem with an eccentricity of 0.9

Kepler Planar two-Body Problem, Eccentricity = 0.9

Method Monitor h min Step max Step min g max g Energy Error Global Error Steps Time

HTVI4 Gamma 0.1 0.0020 0.2493 0.01 8 1.43E-05 7.09E-06 181 26.9

HTVI4 Energy 0.1 0.0051 0.1809 0.0001 2 1.93E-06 4.76E-06 146 28.3

HTVI4 Arclength 0.1 0.0040 0.1458 0.003 0.3 1.10E-04 3.69E-05 185 70.2

HTVI4 - 0.0025 0.0025 0.0025 - - 2.50E-06 2.89E-05 4000 120
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Figure 4.5: It was applied to Kepler’s planar two-body problem over a time
interval of [0, 10] with an eccentricity of 0.9, and it took 146 steps and had a global
error = 4.76 · 10−6.
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Figure 4.6: Energy is the monitor function (4.21), gamma is the monitor func-
tion (4.19), and arc length is the monitor function (4.20). The energy monitor
and gamma monitor function performed the best in terms of fewest steps, lowest
computational cost and lowest global error. Notice that (4.21) did not take the
largest steps nor the smallest steps.
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Figure 4.7: This choice of monitor function resulted in the fewest steps for an
accuracy of 10−5 or better.

Table 4.2: A comparison of different choices of monitor functions for Kepler’s
2-body problem with an eccentricity of 0.99

Kepler Planar two-Body Problem, Eccentricity = 0.99

Method Monitor g(q, p) h min Step max Step min g max g Energy Error Global Error Steps Time

HTVI4 Gamma 0.1 0.00006 0.2648 0.0005 8 4.88E-05 5.60E-06 372 49.3

HTVI4 Energy 0.03 0.00015 0.1462 1E-6 5 9.13E-06 4.63E-06 383 58.4

HTVI4 Arclength 0.1 0.00005 0.1379 0.0008 10 1.31E-05 1.49E-05 691 146.0

HTVI4 - 0.0005 0.0005 0.0005 - - 1.38E-01 7.83E-01 20000 525.2

SV - 5E-7 5E-7 5E-7 - - 3.34E-06 2.68E-05 2E7 189.2

4.6 Conclusion

Due to the degeneracy of the Hamiltonian, adaptive variational integra-

tors based on the Poincaré transformation should be constructed using discrete

Hamiltonians, which are type II or III generating functions. This has potential

implications for the numerical properties of such integrators, and might explain

why there has only been a limited amount of work on the construction of adap-

tive variational integrators based on the traditional Lagrangian perspective. The

standard variational error analysis has been extended to include this particular

form of a degenerate Hamiltonian. The efficiency of the resulting integrator is
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largely based upon a proper choice of the monitor function g, and more research

is needed to find a general choice of g that maintains a decent level of efficiency.

Galerkin variational integrators are likely to be a more promising choice than Tay-

lor variational integrators, since the cost of evaluating the monitor function and its

derivatives should be lower. In addition, the Galerkin approximation scheme may

help inform a better choice of monitor function, due to the extensive literature on

efficient a posteriori error estimation.

Chapter 4, in full, is currently being prepared for submission for publication

of the material. Schmitt, Jeremy; Leok, Melvin. The dissertation author was the

primary investigator and author of this material.



Chapter 5

Conclusions and Future

Directions

This dissertation has extended the theory and algorithmic framework for

Hamiltonian variational integrators and their associated type II and type III gen-

erating functions. It has been shown that the type of generating function used can

affect the numerical properties of the resulting variational integrator. Averaging

methods are particularly affected by the choice of using a Lagrangian variational

integrator versus a Hamiltonian variational integrator. Furthermore, it was shown

that discretization does not always commute with the Legendre transforms for

generating functions, and a sufficient condition was provided for when this compo-

sition is commutative. A new class of variational integrators was developed that

exploits the structure of the Taylor method to gain a higher order of accuracy for

the particular shooting problem that arises in the construction of variational inte-

grators. The framework for adaptive symplectic integrators, based on the Poincaré

transformation, has been extended to variational integrators, and due to degen-

eracy issues it requires discrete Hamiltonians as opposed to discrete Lagrangians.

The standard variational error analysis theorem has been extended to this partic-

ular degenerate case.

The computational efficiency of Taylor varaitional integrators ultimately

depends upon bringing down the cost of the Jacobian evaluations. Alternative

89
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automatic differentiation packages may help here, but the more promising route is

to exploit the potential scalability of automatic differentiation for shared or dis-

tributed computing. Variational integrators require the use of discrete Legendre

transforms, which generally involve partial differentiation, and higher order varia-

tional integrators are generally implicit. A general computational framework that

applies automatic differentiation to a discrete Hamiltonian or discrete Lagrangian

in combination with a compatible nonlinear solver could greatly simplify the imple-

mentation of variational integrators. This would greatly increase the accessbility

of variational integrators to the general scientific community.

Further research on the differing numerical properties of Lagrangian and

Hamiltonian variational integrators for particular classes of variational integrators

could yield more interesting results. However, it is intriguing that Galerkin varia-

tional integrators are equivalent for either formulation, and this may indicate that

furthering their computational development is the best way forward. In particular,

Galerkin variational integrators might be the best candidates to implement in the

adaptive framework. Additionally, it has been brought to my attention that type

IV generating functions are of interest for some areas in statistical mechanics, and

this type of generating functionhas yet to be established in a variational setting for

deriving integrators. Also, more research is needed for choosing a monitor func-

tion in adaptive implementation. This is another area where Galerkin variational

integrators woud be interesting to consider, as the monitor function might benefit

from being based on the Galerkin approximation error. The monitor function is an

a priori error estimator, but variational integrators in general could benefit from

the development of a posteriori error indicators. The final area of further research

would be the development of error analysis theorems for more general degenerate

Hamiltonians and degenerate Lagrangians.

At the very least the work in this thesis indicates that Hamiltonian varia-

tional integrators may deserve more attention than they have recieved thus far.
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