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ABSTRACT OF THE DISSERTATION

Gauge Extensions of the Standard Model: Uncovering Dark Symmetry and Neutrino Mass
Among Extended Structure

by

Corey M Kownacki

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2018

Dr. Ernest Ma, Chairperson

Though it appears to describe the world well to at least the electroweak scale, the

Standard Model is becoming increasingly inadequate: it can fit fermionic masses but offers

no explanation for the observed hierarchy; it provides no mechanism for generating neutrinos

mass; and lastly, but perhaps most significantly, it is absent any dark matter candidate.

Myriad extentions exist that are able to accommodate these problems individually including

the many models that resort to ad hoc symmetries to protect dark matter. Here, extensions

are motivated by generalizations of symmetries contained in the Standard Model (such as B-

L) or symmetries introduced to enhance Standard Model structure. In the first part we study

generalizations of U(1) gauge extensions such a B-L and I3R. For generalized B-L, we allow

families to transform differently from one another and study the resulting flavor-changing

neutral current constraints. In the next project, to incorporate dark matter to the puzzle,

we then implement the scotogenic mechanism to generate neutrino mass via the Type II

seesaw with interesting collider signatures coming from the double charged scalar. The next

extension is a U(1) family symmetry that is also a dark symmetry, in both cases coupling

v



exclusively to right-handed objects. We then push to explore Alternative Left-Right models

both individually and as low-energy subgroups of the unified trinification and quartification

models. We uncover naturally emerging dark symmetries for certain breaking patterns

and investigate phenomenological signatures that arise from dark matter and glueball-like

states of leptonic color. Obtaining gauge coupling unification at one-loop imposes further

constraints on the possible symmetry breaking patterns as well as permissible low-energy

particle content.
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Chapter 1

Introduction

This thesis is divided into four parts. First, the Standard Model will be briefly

introduced. The second part will discuss U(1) extentions of generalized symmetries. The

third part will consider more general gauge extentions that link left-right symmetry with

dark matter. The final part contains the conclusion and bibliography.

1.1 The Standard Model of Particle Interactions

The Standard Model, at a basic level, is a description of fundamental particles

and their interactions under the gauge group SU(3)C × SU(2)L × U(1)Y . Particles are

divided into two categories: the integer-spin, force-carrying particles, called bosons, and

half-integer-spin particles called fermions. Based on their interactions, the latter are further

divided into quarks and leptons.

Quarks : (u, d) (c, s) (t, b), Leptons : (e, ve) (µ, vµ) (τ, vτ ) (1.1)

1



Quarks and leptons are compactly organized according to their respective transformations

under fundamental interactions.

Table 1.1: Fermion assignments under the Standard Model

Particle SU(3)C SU(2)L U(1)Y
QiL = (u, d)iL 3 2 1/6

uiR 3 1 2/3
diR 3 1 −1/3

LiL = (ν, l)iL 1 2 −1/2
liR 1 1 −1

In Table 1.1, integers greater than 1 (here 2 and 3, read as ”doublet” and ”triplet”)

are a short-hand to describe the representation in which the particles transform under the

corresponding gauge group. The remaining numbers signify particles’ charge eigenvalues.

The table shows that the electron eL transforms differently than the electron eR.

In fact, all listed fermions transform differently than their opposite chirality counterparts;

they are not the same fermions. They are separate degrees of freedom. This is further

apparent since particles of different handedness belong to distinct representations of the

Poincare group. Then, in general, they may also belong to unrelated representations of a

gauge group.

Though persistent in electroweak gauge interactions, left-right distinctions are

blurred when the distinguishing symmetry is spontaneously broken. In the Standard Model

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Y (1.2)

This breaking is induced by the higgs mechanism whereby

φ0 = (−1/
√

2)(h+ iA) → < φ0 >= 246GeV (1.3)

2



The higgs mixes left and right-handed fermions into physical particles with a mass propor-

tional to the scale of breaking.

fij(ν̄Li, l̄Li) φ lRj + h.c. (1.4)

This mass eigenstate of eL and eR is the electron.

Examining the Yukawa couplings, there are two important features that deserve

attention. First, since the couplings fij are proportional to the mass, there is a large

disparity in magnitudes between the three families. Although nature might simply choose

these fine-tuned values arbitrarily, one might instead hope to find a more complete theory

that describes such low energy behavior. This fermion mass hierarchy problem is a small

motivation for work in the next part of this thesis.

Second, fij can link any left-handed and right-handed gauge-invariant-product-

pair from the three famliies; there is no reason a priori it should couple diagonally. One can

then redefine the fermion fields to be the mass eigenstate fields through appropriate chiral

rotations. Regardless, the gauge interaction eigenstates of those fermions is fixed. This

discrepancy may lead to flavor-violating currents. Of these, flavor-changing neutral currents

are highly constrained in the Standard Model, potentially providing powerful constraints

on models that alter the mass generation mechanism.

3



Part I

U(1) Extensions of Generalized

Symmetries
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Chapter 2

Generalized Gauge U(1) Family

Symmetry for Quarks and Leptons

If the standard model of quarks and leptons is extended to include three singlet

right-handed neutrinos, then the resulting fermion structure admits an infinite number of

anomaly-free solutions with just one simple constraint. Well-known examples satisfying this

constraint are B −L, Lµ −Lτ , B − 3Lτ , etc. We derive this simple constraint, and discuss

two new examples which offer some insights to the structure of mixing among quark and

lepton families, together with their possible verification at the Large Hadron Collider.

2.1 Introduction

In the standard model of particle interactions, there are three families of quarks

and leptons. Under its SU(3)C × SU(2)L × U(1)Y gauge symmetry, singlet right-handed

neutrinos νR do not transform. They were thus not included in the minimal standard model
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which only has three massless left-handed neutrinos. Since neutrinos are now known to be

massive, νR should be considered as additions to the standard model. In that case, the

model admits a possible new family gauge symmetry U(1)F , with charges n1,2,3 for the

quarks and n′1,2,3 for the leptons as shown in Table 1.

Table 2.1: Fermion assignments under U(1)F .

Particle SU(3)C SU(2)L U(1)Y U(1)F
QiL = (u, d)iL 3 2 1/6 ni

uiR 3 1 2/3 ni
diR 3 1 −1/3 ni

LiL = (ν, l)iL 1 2 −1/2 n′i
liR 1 1 −1 n′i
νiR 1 1 0 n′i

To constrain n1,2,3 and n′1,2,3, the requirement of gauge anomaly cancellation is

imposed. The contributions of color triplets to the [SU(3)]2U(1)F anomaly sum up to

[SU(3)]2U(1)F :
1

2

3∑
i=1

(2ni − ni − ni); (2.1)

and the contributions of QiL, uiR, diR, LiL, liR to the U(1)Y [U(1)F ]2 anomaly sum up to

U(1)Y [U(1)F ]2 :
3∑
i=1

[
6

(
1

6

)
− 3

(
2

3

)
− 3

(
−1

3

)]
n2
i +

[
2

(
−1

2

)
− (−1)

]
n′i

2
. (2.2)

Both are automatically zero, as well as the [U(1)F ]3 anomaly because all fermions couple to

U(1)F vectorially. The contributions of the SU(2)L doublets to the [SU(2)]2U(1)F anomaly

sum up to

[SU(2)]2U(1)F :
1

2

3∑
i=1

(3ni + n′i); (2.3)
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and the contributions to the [U(1)Y ]2U(1)F anomaly sum up to

[U(1)Y ]2U(1)F :
3∑
i=1

[
6

(
1

6

)2

− 3

(
2

3

)2

− 3

(
−1

3

)2
]
ni +

[
2

(
−1

2

)2

− (−1)2

]
n′i

=

3∑
i=1

(
−3

2
ni −

1

2
n′i

)
. (2.4)

Both are zero if
3∑
i=1

(3ni + n′i) = 0. (2.5)

There are many specific examples of models which satisfy this condition as shown

in Table 2. If there are four families, then n1,2,3 = 1/3, n4 = −1, and n′1,2,3 = 1, n′4 = −3,

Table 2.2: Examples of models satisfying Eq. (5).

n1 n2 n3 n′1 n′2 n′3 Model

1/3 1/3 1/3 −1 −1 −1 B − L [1]

0 0 0 0 1 −1 Lµ − Lτ [2, 3, 4, 5]

1/3 1/3 1/3 0 0 −3 B − 3Lτ [6, 7, 8, 9]

1/3 1/3 1/3 3 −3 −3 Ref. [10]

1 1 −2 1 1 −2 Ref. [11]

a a −2a 0 −1 1 Ref. [12]

would also satisfy Eq. (5). This may then be considered [13] as the separate gauging of B

and L.

In this paper, we discuss two new examples which offer some insights to the struc-

ture of mixing among quarks and lepton families. Both have nontrivial connections between

quarks and leptons. Their structures are shown in Table 3. In both cases, with only one

Higgs doublet with zero charge under U(1)F , quark and lepton mass matrices are diagonal

except for the first two quark families. This allows for mixing among them, but not with

the third family. It is a good approximation to the 3×3 quark mixing matrix, to the extent

7



Table 2.3: Two new models satisfying Eq. (5).

n1 n2 n3 n′1 n′2 n′3 Model

1 1 0 0 −2 −4 A

1 1 −1 0 −1 −2 B

that mixing with the third family is known to be suppressed. In the lepton sector, mixing

also comes from the Majorana mass matrix of νR which depends on the choice of singlets

with vacuum expectation values which break U(1)F . Adding a second Higgs doublet with

nonzero U(1)F charge will allow mixing of the first two families of quarks with the third

in both cases. As for the leptons, this will not affect Model A, but will cause mixing in

the charged-lepton and Dirac neutrino mass matrices in Model B. Flavor-changing neutral

currents are predicted, with interesting phenomenological consequences.

2.2 Basic structure of Model A

Consider first the structure of the 3×3 quark mass matrixMd linking (d̄L, s̄L, b̄L)

to (dR, sR, bR). Using

Φ1 = (φ+
1 , φ

0
1) ∼ (1, 2, 1/2; 0), (2.6)

with 〈φ0
1〉 = v1, it is clear that Md is block diagonal with a 2× 2 submatrix which may be

rotated on the left to become

Md =


cL −sL 0

sL cL 0

0 0 1




m′d 0 0

0 m′s 0

0 0 m′b

 (2.7)

8



where sL = sin θL and cL = cos θL. We now add a second Higgs doublet

Φ2 = (φ+
2 , φ

0
2) ∼ (1, 2, 1/2; 1), (2.8)

with 〈φ0
2〉 = v2, so that

Md =


cL −sL 0

sL cL 0

0 0 1

 ,


m′d 0 m′db

0 m′s m′sb

0 0 m′b

 (2.9)

is obtained. At the same time, Mu is of the form

Mu =


m′u 0 0

0 m′c 0

m′ut m′ct m′t




cR sR 0

−sR cR 0

0 0 1

 , (2.10)

where it has been rotated on the right. Because of the physical mass hierarchy mu <<

mc << mt, the diagonalization of Eq. (10) will have very small deviations from unity on

the left. Hence the unitary matrix diagonalizing Eq. (9) on the left will be essentially the

experimentally observed quark mixing matrix VCKM which has three angles and one phase.

Now Md of Eq. (9) has exactly seven parameters, the three diagonal masses m′d,m
′
s,m

′
b,

the angle θL, the off-diagonal mass m′sb which can be chosen real, and the off-diagonal mass

m′db which is complex. With the input of the three quark mass eigenvalues md,ms,mb and

VCKM , these seven parameters can be determined.

Consider the diagonalization of the real mass matrix
a 0 s1c

0 b s2c

0 0 c

 = VL


a(1− s2

1/2) 0 0

0 b(1− s2
2/2) 0

0 0 c(1 + s2
1/2 + s2

2/2)

V †R, (2.11)

9



where s1,2 << 1 and a << b << c have been assumed. We obtain

VL =


1− s2

1/2 −s1s2b
2/(b2 − s2

1c
2 − a2) s1

s1s2a
2/(b2 + s2

2c
2 − a2) 1− s2

2/2 s2

−s1 −s2 1− s2
1/2− s2

2/2

 , (2.12)

and

V †R =


1 s1s2ab/(b

2 − a2) −s1a/c

−s1s2ab/(b
2 − a2) 1 −s2b/c

s1a/c s2b/c 1

 . (2.13)

Hence

VCKM =


cL −sL 0

sL cL 0

0 0 1




eiα 0 0

0 1 0

0 0 1

VL, (2.14)

where α is the phase transferred from m′db.

Comparing the above with the known values of VCKM [14], we obtain

s1 = 0.00886, s2 = 0.0405, sL = −0.2253, eiα = −0.9215 + i0.3884, (2.15)

with md = m′d, ms = m′s, mb = m′b to a very good approximation.

2.3 Scalar sector of Model A

In addition to Φ1,2, we add a scalar singlet

σ ∼ (1, 1, 0; 1), (2.16)
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then the Higgs potential containing Φ1,2 and σ is given by

V = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
3σ̄σ + [µσΦ†2Φ1 +H.c.]

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 +

1

2
λ3(σ̄σ)2 + λ12(Φ†1Φ1)(Φ†2Φ2)

+ λ′12(Φ†1Φ2)(Φ†2Φ1) + λ13(Φ†1Φ1)(σ̄σ) + λ23(Φ†2Φ2)(σ̄σ). (2.17)

Let 〈φ0
1,2〉 = v1,2 and 〈σ〉 = u, then the minimum of V is determined by

0 = v1(m2
1 + λ1v

2
1 + (λ12 + λ′12)v2

2 + λ13u
2) + µv2u, (2.18)

0 = v2(m2
2 + λ2v

2
2 + (λ12 + λ′12)v2

1 + λ23u
2) + µv1u, (2.19)

0 = u(m2
3 + λ3u

2 + λ13v
2
1 + λ23v

2
2) + µv1v2. (2.20)

For m2
2 large and positive, a solution exists with v2

2 << v2
1 << u2, i.e.

u2 ' −m
2
3

λ3
, v2

1 '
−m2

1 − λ13u
2

λ1
, v2 '

−µv1u

m2
2 + λ23u2

. (2.21)

Hence the scalar particle spectrum of Model A consists of a Higgs boson h very much like

that of the SM withm2
h ' 2λ1v

2
1, a heavy Higgs boson which breaks U(1)F withm2

σ ' 2λ3u
2,

and a heavy scalar doublet very much like Φ2 with m2(φ+
2 , φ

0
2) ' m2

2 + λ23u
2.

2.4 Gauge sector of Model A

With the scalar structure already considered, the Z − ZF mass-squared matrix is

given by

M2
Z,ZF

=

g2
Z(v2

1 + v2
2)/4 −gZgF v2

2/2

−gZgF v2
2/2 g2

F (u2 + v2
2)

 . (2.22)

The Z−ZF mixing is then (gZ/2gF )(v2
2/u

2). For v2 ∼ 10 GeV and u ∼ 1 TeV, this is about

10−4, well within the experimentally allowed range.

11



Since ZF couples to quarks and leptons according to n1,2,3 and n′1,2,3, its branching

fractions to e−e+ and µ−µ+ are given by 2n′1,2
2/(12

∑
n2
i +3

∑
n′i

2). Since n′1 = 0, we need

consider only the branching fraction ZF → µ−µ+ to compare against data. For Model A, it

is about 2/21. The cu,d coefficients used in the experimental search [15, 16] of ZF are then

cu = cd = 2g2
F (2/21). (2.23)

For gF = 0.13, a lower bound of about 4.0 TeV on mZF
is obtained from the Large Hadron

Collider (LHC) based on the preliminary 13 TeV data by comparison with the published

data from the 7 and 8 TeV runs. Note however that if ZF → e−e+ is ever observed, this

particular model is ruled out.

2.5 Flavor-changing interactions

Whereas the SM Z boson does not mediate any flavor-changing interactions, the

heavy ZF does because it distinguishes families. For quarks,

LZF
= gFZ

µ
F (ū′γµu

′ + c̄′γµc
′ + d̄′γµd

′ + s̄′γµs
′). (2.24)

Using Eqs. (12) and (13) to express the above in terms of mass eigenstates for the d sector,

and keeping only the leading flavor-changing terms, we find

L′ZF
= gFZ

µ
F [s1(d̄LγµbL+ b̄LγµdL)+s2(s̄LγµbL+ b̄LγµsL)−s1s2(d̄LγµsL+ s̄LγµdL)]. (2.25)

From the experimental values of the B0 − B̄0, B0
S − B̄0

S , and KL − KS mass differences,

severe constraints on g2
F /m

2
ZF

are obtained, coming from the operators

(d̄LγµbL)2 +H.c., (s̄LγµbL)2 +H.c., (d̄LγµsL)2 +H.c. (2.26)
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respectively. Using typical values of quark masses and hadronic decay and bag parame-

ters [17], we estimate the various Wilson coefficients to find their contributions as follows:

∆MB = 4.5× 10−2 s2
1(g2

F /m
2
ZF

) GeV3, (2.27)

∆MBs = 6.4× 10−2 s2
2(g2

F /m
2
ZF

) GeV3, (2.28)

∆MK = 1.9× 10−3 s2
1s

2
2(g2

F /m
2
ZF

) GeV3. (2.29)

Using Eq. (15) and assuming that the above contributions are no more than 10% of their

experimental values [14], we find the lower limits on mZF
/gF to be 10.2, 9.5, 0.84 TeV

respectively. This is easily satisfied for mZF
> 4.0 TeV with gF = 0.13 from the LHC

bound discussed in the previous section.

In the scalar sector, since Φ1,2 both contribute to Md, the neutral scalar field

orthogonal to the SM Higgs field will also mediate flavor-changing interactions. The Yukawa

interactions are

LY =
h1√
2v1

(m′dd̄
′
Ld
′
R +m′ss̄

′
Ls
′
R +m′bb̄

′
Lb
′
R) +

h2√
2v2

(m′dbd̄
′
Lb
′
R +m′sbs̄

′
Lb
′
R). (2.30)

Extracting again the leading flavor-changing terms, we obtain

L′Y =

(
h2√
2v2

− h1√
2v1

)
(s1mbd̄LbR + s2mbs̄LbR − s1s2msd̄LsR − s1s2mds̄LdR

− s1s
2
2mdb̄LdR − s3

2msb̄LsR), (2.31)

where the physical scalar (v1h2 − v2h1)/
√
v2

1 + v2
2 = H + iA is a complex field, with mH '

mA.

Assuming negligible mixing between H or A with the SM h (identified as the 125

13



GeV particle observed at the LHC), we consider the following effective operators [18]:

s2
1m

2
b

8v2
2

(
1

m2
H

− 1

m2
A

)
(d̄LbR)2 − s2

1s
2
2mbmd

4v2
2

(
1

m2
H

+
1

m2
A

)
(d̄LbR)(d̄RbL) +H.c.,(2.32)

s2
2m

2
b

8v2
2

(
1

m2
H

− 1

m2
A

)
(s̄LbR)2 − s4

2mbms

4v2
2

(
1

m2
H

+
1

m2
A

)
(s̄LbR)(s̄RbL) +H.c., (2.33)

s2
1s

2
2m

2
s

8v2
2

(
1

m2
H

− 1

m2
A

)
(d̄LsR)2 − s2

1s
2
2msmd

4v2
2

(
1

m2
H

+
1

m2
A

)
(d̄LsR)(d̄RsL) +H.c.(2.34)

The upper bounds on (1/v2
2)[(1/m2

H)− (1/m2
A)] from ∆MB,∆MBs ,∆MK are then

(4.5× 10−9, 5.3× 10−9, 4.5× 10−3) GeV−4, (2.35)

respectively, whereas those on (1/v2
2)[(1/m2

H) + (1/m2
A)] are

(1.4× 10−4, 1.7× 10−5, 8.0× 10−5) GeV−4. (2.36)

For v2 = 10 GeV, these are easily satisfied with for example mH = 500 GeV and mA = 520

GeV.

2.6 Lepton sector of Model A

With the chosen U(1)F charges (0,−2,−4) of Table 3, the charged-lepton and

Dirac neutrino mass matrices (Ml andMD) are both diagonal. As for the 3× 3 Majorana

mass matrix MR of νR, it depends on the choice of scalar singlets which break U(1)F . We

have already used σ ∼ 1 [see Eq. (16)] to induce a small v2 [see Eq. (21)]. Call that σ1 and

add σ2,4 ∼ 2, 4, with vacuum expectation values u1,2,4 respectively. Then

MR =


M0 M1 M2

M1 M3 0

M2 0 0

 , (2.37)
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where M0 is an allowed invariant mass term, M1 comes from u2, and M2,3 from u4. The

seesaw neutrino mass matrix is then

Mν =MDM−1
R MT

D =


0 0 a

0 b c

a c d

 , (2.38)

where the two texture zeros appear because of the form ofMR andMD being diagonal [94].

This form is known to be suitable for a best fit [19] to current neutrino-oscillation data with

normal ordering of neutrino masses.

2.7 Basic structure of Model B

The quark structure of Model B is basically the same as that of Model A, with

the second Higgs doublet now having two units of U(1)F charge, i.e.

Φ2 = (φ+
2 , φ

0
2) ∼ (1, 2, 1/2; 2). (2.39)

Hence σ2 ∼ (1, 1, 0; 2) is needed for the σ2Φ†2Φ1 term in Eq. (17).

In the gauge sector, again ZF → e−e+ is zero, and the branching fraction ZF →

µ−µ+ is now 2/51. The cu,d coefficients are then

cu = cd = 2g2
F (2/51). (2.40)

For the same choice of gF = 0.13 for Model A, the present experimental lower bound from

LHC data is reduced from 4.0 TeV to 3.7 TeV. For quarks,

LZF
= gFZ

µ
F (ū′γµu

′ + c̄′γµc
′ − t̄′γµt′ + d̄′γµd

′ + s̄′γµs
′ − b̄′γµb′). (2.41)

15



Using Eqs. (12) and (13) to express the above in terms of mass eigenstates for the d sector,

and keeping only the leading flavor-changing terms, we find

L′ZF
= 2gFZ

µ
F [−s1(d̄LγµbL + b̄LγµdL)− s2(s̄LγµbL + b̄LγµsL) + s1s2(d̄LγµsL + s̄LγµdL)].

(2.42)

This differs from Eq. (25) only by an overall factor of −2. As for the scalar sector, Eqs. (30)

and (31) remain the same.

2.8 Lepton sector of Model B

With the chosen U(1)F charges (0,−1,−2) of Table 3, the charged-lepton and

Dirac neutrino mass matrices are given by

Ml =


m′e 0 m′eτ

0 mµ 0

0 0 m′τ

 , MD =


m′1 0 0

0 m′2 0

m′31 0 m′3

 . (2.43)

Using the scalar singlets σ1 ∼ 1 as well σ2, the νR Majorana mass matrix is again given

by Eq. (37). Now even though MD is not diagonal, Eq. (38) is still obtained, thereby

guaranteeing a best fit to current neutrino-oscillation data. The difference from Model A

is the presence of τ − e transitions from the nondiagonal Ml. However, for m′eτ/m
′
τ < 0.1,

the branching fraction of τ → eµ−µ+ is less than 2× 10−11, far below the current bound of

4.1× 10−8.
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2.9 Application to LHC anomalies

Whereas ZF also mediates b→ sµ−µ+, its effect is too small in Models A and B to

explain the tentative LHC observations of B → K∗µ−µ+ and the ratio of B+ → K+µ−µ+ to

B+ → K+e−e+ [20]. The reason is the stringent bound onmZF
from LHC data as a function

of gF through the parameters cu,d of Eqs. (23) and (40). Suppose we take n1,2,3 = (0, 0, 1)

and n′1,2,3 = (0,−3, 0), then ZF couples to only µ−µ+ and b′b̄′, thus allowing for b − s

mixing, but cu,d = 0. This evades the direct LHC bound, and may be used to explain the

B anomalies if they persist. Of course, Eqs. (27) to (29) still hold, and a full analysis of the

detailed structure of B → K∗µ−µ+ will be required.

2.10 Conclusions

We have generalized the B − L symmetry as a gauge U(1)F extension of the

standard model, where quarks and leptons of each family may transform differently. We

have considered two new examples (A and B), each with two Higgs doublets and restricted

quark mass matrices consistent with data. The new ZF gauge boson couples differently

to each quark and lepton family, and is constrained by present data to be heavier than

about 4 TeV if gF = 0.13. Future data may reveal just such a ZF belonging to this class of

models. Flavor-changing interactions are suitably suppressed by the assignments of quarks

and leptons under U(1)F . In the leptonic sector, with the addition of a minimal set of Higgs

singlets, a Majorana neutrino mass matrix of two texture zeros may be obtained, leading

to a best fit of neutrino-oscillation data with normal ordering of neutrino masses.
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Chapter 3

Type II Radiative Seesaw Model of

Neutrino Mass with Dark Matter

We consider a model of neutrino mass with a scalar triplet (ξ++, ξ+, ξ0) assigned

lepton number L = 0, so that the tree-level Yukawa coupling ξ0νiνj is not allowed. It is

generated instead through the interaction of ξ and ν with dark matter and the soft breaking

of L to (−1)L. We discuss the phenomenological implications of this model, including ξ++

decay and the prognosis of discovering the dark sector at the Large Hadron Collider.

3.1 Introduction

Nonzero neutrino mass is necessary to explain the well-established phenomenon

of neutrino oscillations in many experiments. Theoretically, neutrino masses are usually

assumed to be Majorana and come from physics at an energy scale higher than that of

electroweak symmetry breaking of order 100 GeV. As such, the starting point of any theo-
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retical discussion of the underlying theory of neutrino mass is the effective dimension-five

operator [21]

L5 = −fij
2Λ

(νiφ
0 − liφ+)(νjφ

0 − ljφ+) +H.c., (3.1)

where (νi, li), i = 1, 2, 3 are the three left-handed lepton doublets of the standard model

(SM) and (φ+, φ0) is the one Higgs scalar doublet. As φ0 acquires a nonzero vacuum

expectation value 〈φ0〉 = v, the neutrino mass matrix is given by

Mν
ij =

fijv
2

Λ
. (3.2)

Note that L5 breaks lepton number L by two units.

It is evident from Eq. (2) that neutrino mass is seesaw in character, because it

is inversely proportional to the large effective scale Λ. The three well-known tree-level

seesaw realizations [22] of L5 may be categorized by the specific heavy particle used to

obtain it: (I) neutral fermion singlet N , (II) scalar triplet (ξ++, ξ+, ξ0), (III) fermion triplet

(Σ+,Σ0,Σ0). It is also possible to realize L5 radiatively in one loop [22] with the particles

in the loop belonging to the dark sector, the lightest neutral one being the dark matter of

the Universe. The simplest such example [23] is the well-studied “scotogenic” model, from

the Greek ’scotos’ meaning darkness. The one-loop diagram is shown in Fig. 1. The new

particles are a second scalar doublet (η+, η0) and three neutral singlet fermions NR. The

dark Z2 is odd for (η+, η0) and NR, whereas all SM particles are even. This is thus a Type

I radiative seesaw model. It is of course possible to replace N with Σ0, so it becomes a

Type III radiative seesaw model [24]. What then about Type II?

Since L5 is a dimension-five operator, any loop realization is guaranteed to be

finite. On the other hand, if a Higgs triplet (ξ++, ξ+, ξ0) is added to the SM, a dimension-
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ν νNR

η0 η0

φ0 φ0

Figure 3.1: One-loop Z2 scotogenic neutrino mass.

four coupling ξ0νiνj− ξ+(νilj + liνj)/
√

2+ ξ++lilj is allowed. As ξ0 obtains a small vacuum

expectation value [7] from its interaction with the SM Higgs doublet, neutrinos acquire

small Majorana masses, i.e. Type II tree-level seesaw. If an exact symmetry is used to

forbid this dimension-four coupling, it will also forbid any possible loop realization of it.

Hence a Type II radiative seesaw is only possible if the symmetry used to forbid the hard

dimension-four coupling is softly broken in the loop, as recently proposed [25].

3.2 Type II Radiative Seesaw Neutrino Masses

The symmetry used to forbid the hard ξ0νν coupling is lepton number U(1)L under

which ξ ∼ 0. The scalar trilinear ξ̄0φ0φ0 term is allowed and induces a small 〈ξ0〉, but ν

remains massless. To connect ξ0 to νν in one loop, we add a new Dirac fermion doublet

(N,E) with L = 0, together with three complex neutral scalar singlets s with L = 1. The

resulting one-loop diagram is shown in Fig. 2. Note that the hard terms ξ0NN and sν̄LNR

are allowed by L conservation, whereas the ss terms break L softly by two units to (−1)L. A

dark Z2 parity, i.e. (−1)L+2j , exists under which N,E, s are odd and ν, l, ξ are even. Hence
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the lightest s is a possible dark-matter candidate. The three s scalars are the analogs of

the three right-handed sneutrinos in supersymmetry, and (N,E)L,R are the analogs of the

two higgsinos. However, their interactions are simpler here and less constrained.

The usual understanding of the Type II seesaw mechanism is that the scalar tri-

linear term µξ†ΦΦ induces a small vacuum expectation value 〈ξ0〉 = u if either µ is small

or mξ is large or both. More precisely, consider the scalar potential of Φ and ξ.

V = m2Φ†Φ +M2ξ†ξ +
1

2
λ1(Φ†Φ)2 +

1

2
λ2(ξ†ξ)2 + λ3|2ξ++ξ0 − ξ+ξ+|2

+ λ4(Φ†Φ)(ξ†ξ) +
1

2
λ5[|
√

2ξ++φ− + ξ+φ̄0|2 + |ξ+φ− +
√

2ξ0φ̄0|2]

+ µ(ξ̄0φ0φ0 +
√

2ξ−φ0φ+ + ξ−−φ+φ+) +H.c. (3.3)

Let 〈φ0〉 = v, then the conditions for the minimum of V are given by [7]

m2 + λ1v
2 + (λ4 + λ5)u2 + 2µu = 0, (3.4)

u[M2 + λ2u
2 + (λ4 + λ5)v2] + µv2 = 0. (3.5)

For µ 6= 0 but small, u is also naturally small because it is approximately given by

u ' −µv2

M2 + (λ4 + λ5)v2
, (3.6)

where v2 ' −m2/λ1. The physical masses of the L = 0 Higgs triplet are then given by

m2(ξ0) ' M2 + (λ4 + λ5)v2, (3.7)

m2(ξ+) ' M2 + (λ4 +
1

2
λ5)v2, (3.8)

m2(ξ++) ' M2 + λ4v
2. (3.9)

Since the hard term ξ0νν is forbidden, u by itself does not generate a neutrino mass. Its

value does not have to be extremely small compared to the electroweak breaking scale. For
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example u ∼ 0.1 GeV is acceptable, because its contribution to the precisely measured ρ

parameter ρ0 = 1.00040 ± 0.00024 [26] is only of order 10−6. With the soft breaking of L

to (−1)L shown in Fig. 2, Type II radiative seesaw neutrino masses are obtained. Let the

relevant Yukawa interactions be given by

LY = fssν̄LNR +
1

2
fRξ

0NRNR +
1

2
fLξ

0NLNL +H.c., (3.10)

together with the allowed mass terms mE(N̄N + ĒE), m2
ss
∗s, and the L breaking soft term

(1/2)(∆m2
s)s

2 +H.c., then

mν =
f2
s urx

16π2
[fRFR(x) + fLFL(x)], (3.11)

where r = ∆m2
s/m

2
s and x = m2

s/m
2
E , with

FR(x) =
1 + x

(1− x)2
+

2x lnx

(1− x)3
, (3.12)

FL(x) =
2

(1− x)2
+

(1 + x) lnx

(1− x)3
. (3.13)

Using for example x ∼ fR ∼ fL ∼ 0.1, r ∼ fs ∼ 0.01, we obtain mν ∼ 0.1 eV for u ∼ 0.1

GeV. This implies that ξ may be as light as a few hundred GeV and be observable, with

µ ∼ 1 GeV. For fs ∼ 0.01 and mE a few hundred GeV, the new contributions to the

anomalous muon magnetic moment and µ→ eγ are negligible in this model.

In the case of three neutrinos, there are of course three s scalars. Assuming that

the L breaking soft terms |(∆m2
s)ij | << |m2

si −m2
sj | for i 6= j, then the 3× 3 neutrino mass

matrix is diagonal to a very good approximation in the basis where the s mass-squared

matrix is diagonal. This means that the dark scalars sj couples to Uijli, where Uij is the

neutrino mixing matrix linking e, µ, τ to the neutrino mass eigenstates ν1,2,3.
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3.3 Doubly Charged Higgs Production and Decay

The salient feature of any Type II seesaw model is the doubly charged Higgs boson

ξ++. If there is a tree-level ξ++l−i l
−
j coupling, then the dominant decay of ξ++ is to l+i l

+
j .

Current experimental limits [46] on the mass of ξ++ into eµ, µµ, and ee final states are

about 490 to 550 GeV, assuming for each a 100% branching fraction. In the present model,

since the effective ξ++l−i l
−
j coupling is one-loop suppressed, ξ++ → W+W+ should be

considered [28] instead, for which the present limit on m(ξ++) is only about 84 GeV [29].

A dedicated search of the W+W+ mode in the future is clearly called for.

If m(ξ++) > 2mE , then the decay channel ξ++ → E+E+ opens up and will domi-

nate. In that case, the subsequent decay E+ → l+s, i.e. charged lepton plus missing energy,

will be the signature. The present experimental limit [60] on mE , assuming electroweak pair

production, is about 260 GeV if ms < 100 GeV for a 100% branching fraction to e or µ,

and no limit if ms > 100 GeV. There is also a lower threshold for ξ++ decay, i.e. m(ξ++)

sufficiently greater than 2ms, for which ξ++ decays through a virtual E+E+ pair to ssl+l+,

resulting in same-sign dileptons plus missing energy.

In Fig. 3 we plot the pair production cross section of ξ++ξ−− at the Large Hadron

Collider (LHC) at a center-of-mass energy of 13 TeV. We assume that ξ+ and ξ0 are heavier

than ξ++ so that we can focus only on the decay products of ξ±±. The W±W± mode is

always possible and should be looked for experimentally in any case. However, as already

noted, a much more interesting possibility is the case m(ξ++) > 2mE , with the subsequent

decay E+ → l+s. This would yield four charged leptons plus missing energy, and depending

on the linear combination of charged leptons coupling to s, there could be exotic final
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Figure 3.2: LHC Production cross section of ξ++ξ−− at 13 TeV.

states which have very little SM background, becoming thus excellent signatures to search

for. Suppose s1 is the lightest scalar, and s2,3 are heavier than E+, then E+ decays to

s1
∑
Ui1l

+
i . Hence the decay of ξ++ξ−− could yield for example e+e+µ−µ− plus four s1

(missing energy) in the final state.

Recent LHC searches for multilepton signatures at 8 TeV by CMS [31] and AT-

LAS [32] are consistent with SM expectations, and are potential restrictions on our model.

In particular, the CMS study includes rare SM events such as e+e+µ−µ− and e+e+µ−. Due

to the absence of opposite-sign, same-flavor (OSSF) l+l− pairs, both events are classified

as OSSF0 where lepton l refers to electron, muon, or hadronically decaying tau. Leptonic

tau decays contribute to the electron and muon counts, and this determines the OSSFn

category. Details from CMS are shown in Table 1 for ≥ 3 leptons and Nτhad = 0. The CMS

study estimates a negligible SM background for SR1-SR3, and in our simulation we use the
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Selected CMS results OSSF0 Nτhad = 0 , Nb = 0

signal regions HT > 200 GeV HT < 200 GeV

≥ 4 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR1 (100,∞) 0 0.01+0.03
−0.01 0 0.11+0.08

−0.08

SR2 (50, 100) 0 0.00+0.02
−0.00 0 0.01+0.03

−0.01

SR3 (0, 50) 0 0.00+0.02
−0.00 0 0.01+0.02

−0.01

3 leptons /ET (GeV) Obs. Exp.(SM) Obs. Exp.(SM)

SR4 (100,∞) 5 3.7± 1.6 7 11.0± 4.9

SR5 (50, 100) 3 3.5± 1.4 35 38± 15

SR6 (0, 50) 4 2.1± 0.8 53 51± 11

Table 3.1: Events observed by CMS at 8 TeV with integrated luminosity 19.5 fb−1.

same selection criteria. We impose the cuts on transverse momentum pT > 10 GeV and

psuedorapidity |η| < 2.4 for each charged lepton, with at least one lepton pT > 20 GeV. In

order to be isolated, each lepton with pT must satisfy
∑

i pT i < 0.15pT , where the sum is

over all objects within a cone of radius ∆R = 0.3 around the lepton direction.

We implement our model with FeynRules 2.0 [33]. Using the CTEQ6L1 parton

distribution functions, we generate events using MadGraph5 [34], which includes the Pythia

package for hadronization and showering. MadAnalysis [35] is then used with the Delphes

card designed for CMS detector simulation. Generated events intially have 4 leptons. About

half are detected as 3 lepton events, but the constraints from signal regions SR4-SR6 are less

restrictive than SR1-SR3. The number of detected events in the OSSF0 ≥ 4 lepton category

is almost the same as e±e±µ∓µ∓2s12s∗1 with very few additional leptons from showering or

initial/final state radiation.

To examine the production of e±e±µ∓µ∓ we take the mass of s1 to be 130 GeV,

which allows s1 to be dark matter as discussed in the next section. We use the values

fR = fL = 0.1 and fs = 0.01, although the results are not sensitive to the exact values due
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to on-shell production and decay. The effects due to u ∼ 0.1 GeV may be neglected.

For our model, we scan the mass range of ξ++ and E+. In Fig. 4 we plot contours

showing the expected number of detected events in the OSSF0 ≥ 4 lepton category for

13 TeV at luminosity 100 fb−1 assuming a negligible background as for the 8 TeV case.

Although the branching fractions of E+ to τ+s1 or µ+s1 are comparable, we find that

most of the contributions from τ± decay to e± or µ± in the ≥ 4 lepton final state are not

detected. A similar analysis performed for 8 TeV at 19.5 fb−1 has a maximum number

of detected events of 0.4 in the plot analogous to Fig. 4, which corresponds to a small

estimated exclusion at the 15% confidence level.

3.4 Dark Matter Properties

The lightest s, say s1, is dark matter. Its interaction with leptons is too weak to

provide a large enough annihilation cross section to explain the present dark matter relic

density ΩM of the Universe. However, it also interacts with the SM Higgs boson through

the usual quartic coupling λss
∗sΦ†Φ. For a value of λs consistent with ΩM , the direct-

detection cross section in underground experiments is determined as a function of ms. A

recent analysis [36] for a real s claims that the resulting allowed parameter space is limited

to a small region near ms < mh/2.

In our model, we can evade this constraint by evoking s2,3. The mass-squared

matrix spanning s∗i sj is given by

(M2
s)ij = m2

ij + λijv
2, (3.14)
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Figure 3.3: Number of e±e±µ∓µ∓2s12s∗1 events for 13 TeV at luminosity 100 fb−1.

whereas the coupling matrix of the one Higgs h to s∗i sj is λijv
√

2. Upon diagonalizingM2
s,

the coupling matrix will not be diagonal in general. In the physical basis, s1 will interact

with s2 through h. This allows the annihilation of s1s
∗
1 to hh through s2 exchange, and

contributes to ΩM without affecting the s1 scattering cross section off nuclei through h.

This mechanism restores s1 as a dark-matter candidate for ms > mh.

To demonstrate the scale of the values involved, we consider the simplifying case

when ms2 = ms3 and λ12 = λ13. The additional choice m2
s2,3 = m2

s1 + m2
h ensures that
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Figure 3.4: Allowed values of λ12 plotted against ms1 from relic abundance assuming λ11 =
0.

s2,3 are heavier than s1, and is convenient because then the relic abundance requirement

no longer depends explicitly on m2
s2,3 . Taking into account that s1 is a complex scalar, we

use σ × vrel = 4.4 ×10−26cm3s−1 [37] and in Fig. 5 we plot the allowed values for λ12 and

ms1 taking λ11 = 0 for simplicity to satisfy the LUX data.

Another possible scenario is to add a light scalar χ with L = 0, which acts as a

mediator for s self-interactions. This has important astrophysical implications [38, 39, 40,

41, 42, 43]. In this case, s1s
∗
1 annihilating to χχ becomes possible.
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3.5 Conclusions

We have studied a new radiative Type II seesaw model of neutrino mass with dark

matter [25], which predicts a doubly charged Higgs boson ξ++ with suppressed decay to

l+l+, thereby evading the present LHC bounds of 490 to 550 GeV on its mass. In this

model, ξ++ may decay to two charged heavy fermions E+E+, each with odd dark parity.

The subsequent decay of E+ is into a charged lepton l+ and a scalar s which is dark matter.

Hence there is the interesting possibility of four charged leptons, such as µ−µ−e+e+, plus

large missing energy in the final state. We show that the LHC at 13 TeV will be able to

probe such a doubly charged Higgs boson with a mass of the order 400 to 500 GeV.
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Chapter 4

Gauge U(1) Dark Symmetry and

Radiative Light Fermion Masses

A gauge U(1) family symmetry is proposed, spanning the quarks and leptons as

well as particles of the dark sector. The breaking of U(1) to Z2 divides the two sectors and

generates one-loop radiative masses for the first two families of quarks and leptons, as well

as all three neutrinos. We study the phenomenological implications of this new connection

between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle

associated with this U(1) breaking may be identified with the 750 GeV diphoton resonance

recently observed at the Large Hadron Collider (LHC).

4.1 Introduction

In any extension of the standard model (SM) of particle interactions to include

dark matter, a symmetry is usually assumed, which distinguishes quarks and leptons from
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dark matter. For example, the simplest choice is Z2 under which particles of the dark

sector are odd and those of the visible sector are even. Suppose Z2 is promoted to a gauge

U(1) symmetry, then the usual assumption is that it will not affect ordinary matter. These

models all have a dark vector boson which couples only to particles of the dark sector.

Table 4.1: Particle content of proposed model of gauge U(1) dark symmetry.

particles SU(3)C SU(2)L U(1)Y U(1)D Z2

Q = (u, d) 3 2 1/6 0, 0, 0 +
uc 3∗ 1 −2/3 1,−1, 0 +
dc 3∗ 1 1/3 −1, 1, 0 +

L = (ν, e) 1 2 −1/2 0, 0, 0 +
ec 1 1 1 −1, 1, 0 +

Φ = (φ+, φ0) 1 2 1/2 0 +
σ1 1 1 0 1 +
σ2 1 1 0 2 +

N,N c 1 1 0 1/2,−1/2 −
S, Sc 1 1 0 −3/2, 3/2 −

(η0, η−) 1 2 −1/2 1/2 −
χ0 1 1 0 1/2 −
χ− 1 1 −1 −1/2 −

(ξ2/3, ξ−1/3) 3 2 1/6 1/2 −
ζ2/3 3 1 2/3 −1/2 −
ζ−1/3 3 1 −1/3 −1/2 −

In this paper, it is proposed instead that a gauge U(1) extension of the SM spans

both ordinary and dark matter. It is in fact also a horizontal family symmetry. It has

a number of interesting consequences, including the radiative mass generation of the first

two families of quarks and leptons, and a natural explanation of the 750 GeV diphoton

resonance recently observed [44, 16] at the Large Hadron Collider (LHC).
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4.2 New Gauge U(1)D Symmetry

The framework that radiative fermion masses and dark matter are related has

been considered previously [45]. Here it is further proposed that families are distinguished

by the connecting dark symmetry. In Table 1 we show how they transform under U(1)D as

well as the other particles of the dark sector. The U(1)D symmetry is broken spontaneously

by the vacuum expectation value 〈σ1,2〉 = u1,2 to an exactly conserved Z2 which divides the

two sectors.

ν νN N

η0 η0

φ0 φ0

χ0 χ0

σ1

σ1

Figure 4.1: One-loop neutrino mass from trilinear couplings.

The gauge U(1)D symmetry is almost absent of axial-vector anomalies for each

family. The [SU(3)]2U(1)D anomaly is zero from the cancellation between uc and dc. The

[SU(2)]2U(1)D anomaly is zero because Q and L do not transform under U(1)D. The

[U(1)Y ]2U(1)D and U(1)Y [U(1)D]2 anomalies are cancelled among uc, dc, and ec, i.e.

3

(
−2

3

)2

(1) + 3

(
1

3

)2

(−1) + (1)2(−1) = 0, (4.1)

3

(
−2

3

)
(1)2 + 3

(
1

3

)
(−1)2 + (1)(−1)2 = 0. (4.2)
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ν νN N

η0 η0

φ0 φ0

χ0

σ1

σ1

Figure 4.2: One-loop neutrino mass from trilinear and quadrilinear couplings.

The [U(1)D]3 anomaly is not zero for either the first or second family, but is cancelled

between the two. This is thus a generalization of the well-known anomaly-free Le − Lµ

gauge symmetry [2] to the difference of B − L− 2Y between the first two families.

σ2

e ecN Sc

η− χ−

φ0 σ1

Figure 4.3: One-loop electron mass.
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µ µcN N c

η− χ−

φ0 σ1

Figure 4.4: One-loop muon mass.

4.3 Radiative Masses for Neutrinos and the First and Second

Families

At tree level, only t, b, τ acquire masses from 〈φ0〉 = v as in the SM. The first two

families are massless because of the U(1)D symmetry. Neutrinos acquire one-loop masses

through the scotogenic mechanism [23] as shown in Figs. 1 and 2. With one copy of (N,N c),

only one neutrino becomes massive. To have three massive scotogenic neutrinos, three copies

of (N,N c) are needed. The one-loop electron and muon masses are shown in Figs. 3 and

4. Note that at least two copies of (N,N c) are needed for two charged-lepton masses. The

mass matrix spanning (N,N c, S, Sc) is of the form

MN,S =



f1u1 mN f3u1 f5u2

mN f2u1 f6u2 f4u1

f3u1 f6u2 0 mS

f5u2 f4u1 mS 0


. (4.3)
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u ucN N c

ξ2/3 ζ2/3

φ0 σ1

Figure 4.5: One-loop u quark mass.

Note that the f1,2,3,4u1 terms break lepton number by two units, whereas the f5,6u2 terms do

not. Lepton number L = 1 may be assigned to e, µ, τ,N, S and L = −1 to ec, µc, τ c, N c, Sc.

σ2

d dcN Sc

ξ−1/3 ζ−1/3

φ0 σ1

Figure 4.6: One-loop d quark mass.

It is broken down to lepton parity (−1)L only by neutrino masses. The analogous one-loop

u and d quark masses are shown in Figs. 5 and 6. Because the second family has opposite

U(1)D charge assignments relative to the first, the c and s quarks reverse the roles of u and

d. Two copies of (S, Sc) are needed to obtain the most general quark mass matrices for

both the u and d sectors.
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To evaluate the one-loop diagrams of Figs. 1 to 6, we note first that each is a

sum of simple diagrams with one internal fermion line and one internal scalar line. Each

contribution is infinite, but the sum is finite. There are 10 neutral Majorana fermion fields,

spanning 3 copies of N,N c and 2 copies of S, Sc. We denote their mass eigenstates as ψk

with mass Mk. There are 4 real scalar fields, spanning
√

2Re(η0),
√

2Im(η0),
√

2Re(χ0),

√
2Im(χ0). We denote their mass eigenstates as ρ0

l with mass ml. In Figs. 1 and 2, let the

νiψkη̄
0 coupling be hνik, then the radiative neutrino mass matrix is given by [23]

(Mν)ij =
∑
k

hνikh
ν
jkMk

16π2

∑
l

[(yRl )2F (xlk)− (yIl )2F (xlk)], (4.4)

where
√

2Re(η0) =
∑

l y
R
l ρ

0
l ,
√

2Im(η0) =
∑

l y
I
l ρ

0
l , with

∑
l(y

R
l )2 =

∑
l(y

I
l )2 = 1, xlk =

m2
l /M

2
k , and the function F is given by

F (x) =
x lnx

x− 1
. (4.5)

There are two charged scalar fields, spanning η±, χ±. We denote their mass eigenstates as

ρ+
r with mass mr. In Fig. 3, let the eLψkη

+ and the ecLψkχ
− couplings be hek and he

c

k , then

me =
∑
k

hekh
ec

k Mk

16π2

∑
r

yηry
χ
r F (xrk), (4.6)

where η+ =
∑

r y
η
rρ+
r , χ+ =

∑
r y

χ
r ρ+

r , with
∑

r(y
η
r )2 =

∑
r(y

χ
r )2 = 1 and

∑
r y

η
ry

χ
r = 0. A

similar expression is obtained for mµ, as well as the light quark masses.

4.4 Tree-Level Flavor-Changing Neutral Couplings

Since different U(1)D charges are assigned to (uc, cc, tc) as well as (dc, sc, bc), there

are unavoidable flavor-changing neutral currents. They can be minimized by the following
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assumptions. Let the two 3×3 quark mass matrices linking (u, c, t) to (uc, cc, tc) and (d, s, b)

to (dc, sc, bc) be of the form

Mu = U
(u)
L


mu 0 0

0 mc 0

0 0 mt

 , Md = U
(d)
L


md 0 0

0 ms 0

0 0 mb

 , (4.7)

where UCKM = (U
(u)
L )†U

(d)
L is the quark charged-current mixing matrix. However, since ZD

does not couple to left-handed quarks, and its couplings to right-handed quarks have been

chosen to be diagonal in their mass eigenstates, flavor-changing neutral currents are absent

in this sector. Of course, they will appear in the scalar sector, and further phenomenological

constraints on its parameters will apply.

4.5 ZD Gauge Boson

As σ1,2 acquire vacuum expectation values u1,2 respectively, the ZD gauge boson

obtains a mass given by

m2
ZD

= 2g2
D(u2

1 + 4u2
2). (4.8)

Since σ1,2 do not transform under the SM, and Φ does not under U(1)D, there is no mixing

between ZD and Z. Using Table 1 and assuming that all new particles are lighter than ZD,

the branching fraction of ZD to e−e+ + µ−µ+ is estimated to be 0.07. The cu,d coefficients

used in the experimental search [46, 60] of ZD are then

cu = cd = g2
D (0.07). (4.9)

For gD = 0.3, a lower bound of about 3.1 TeV on mZD
is obtained from LHC data based

on the 7 and 8 GeV runs. For our subsequent discussion, let u1 = 1 TeV, u2 = 4 TeV, then
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mZD
= 3.4 TeV. Note that ZD does not couple to the third family, so if t̄t, b̄b, or τ+τ− final

states are observed, this model is ruled out.

4.6 Scalar Sector

There are three scalars with integral charges under U(1)D, i.e. Φ and σ1,2. Whereas

〈φ0〉 = v breaks the electroweak SU(2)L×U(1)Y gauge symmetry as in the SM, 〈σ1,2〉 = u1,2

break U(1)D to Z2, with all those particles with half-integral U(1)D charges becoming odd

under this exactly conserved dark Z2 parity. The relevant scalar potential is given by

V = µ2
0Φ†Φ +m2

1σ
∗
1σ1 +m2

2σ
∗
2σ2 +m12σ

2
1σ
∗
2 +m12(σ∗1)2σ2

+
1

2
λ0(Φ†Φ)2 +

1

2
λ1(σ∗1σ1)2 +

1

2
λ2(σ∗2σ2)2 + λ3(σ∗1σ1)(σ∗2σ2)

+ λ4(Φ†Φ)(σ∗1σ1) + λ5(Φ†Φ)(σ∗2σ2), (4.10)

where m12 has been rendered real by absorbing the relative phase between σ1,2. The con-

ditions for v and u1,2 are

0 = µ2
0 + λ0v

2 + λ4u
2
1 + λ5u

2
2, (4.11)

0 = m2
1 + λ1u

2
1 + λ3u

2
2 + λ4v

2 + 2m12u2, (4.12)

0 = m2
2 + λ2u

2
2 + λ3u

2
1 + λ5v

2 +m12u
2
1/u2. (4.13)

As in the SM, φ± and
√

2Im(φ0) become longitudinal components of W± and Z, and

√
2Re(φ0) = h is the one physical Higgs boson associated with electroweak symmetry

breaking. Let σ1 = (σ1R + iσ1I)/
√

2 and σ2 = (σ2R + iσ2I)/
√

2, then the mass-squared
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matrix spanning h, σ1R,2R is

M2
R =


2λ0v

2 2λ4vu1 2λ5vu2

2λ4vu1 2λ1u
2
1 2λ3u1u2 + 2m12u1

2λ5vu2 2λ3u1u2 + 2m12u1 2λ2u
2
2 −m12u

2
1/u2

 , (4.14)

and that spanning σ1I,2I is

M2
I =

−4m12u2 2m12u1

2m12u1 −m12u
2
1/u2

 . (4.15)

The linear combination (u1σ1I + 2u2σ2I)/
√
u2

1 + 4u2
2 has zero mass and becomes the lon-

gitudinal component of the massive ZD gauge boson. The orthogonal component is a

pseudoscalar, call it A, with a mass given by m2
A = −m12(u2

1 + 4u2
2)/u2. In Eq. (14), σ1R

and σ2R mix in general. For simplicity, let m12 = −λ3u2, then for v2 << u2
1,2, we obtain

m2
σ1R

= 2λ1u
2
1, m2

σ2R
= 2λ2u

2
2 + λ3u

2
1, m2

A = λ3(u2
1 + 4u2

2), (4.16)

m2
h = 2

[
λ0 −

λ2
4

λ1
− 2λ2

5u
2
2

2λ2u2
2 + λ3u2

1

]
v2. (4.17)

4.7 Relevance to the Diphoton Excess

Any one of the three particles σ1R, σ2R, A may be identified with the 750 GeV

diphoton excess. For illustration, let us consider σ1R. The production cross section through

gluon fusion is given by

σ̂(gg → σ1R) =
π2

8m2
σ1R

Γ(σ1R → gg)δ(ŝ−m2
σ1R

). (4.18)

For the LHC at 13 TeV, the diphoton cross section is roughly [48]

σ(gg → σ1R → γγ) ' (100 pb)× (λg TeV)2 ×B(σ1R → γγ), (4.19)
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where λg is the effective coupling of σ1R to two gluons, normalized by

Γ(σ1R → gg) =
λ2
g

8π
m3
σ1R

, (4.20)

and the corresponding λγ comes from

Γ(σ1R → γγ) =
λ2
γ

64π
m3
σ1R

. (4.21)

If σ1R decays only to two gluons and two photons, and assuming λ2
γ/8 << λ2

g, then

σ(gg → σ1R → γγ) ' (100 pb)× (λγ TeV)2/8, (4.22)

which is supposed to be about 6.2 fb from the recent data [44, 16]. This means that

λγ ' 2.2× 10−2 (TeV)−1, and Γ(σ1R → γγ) ' 1 MeV.

Now σ1R couples to the new scalars ξ2/3, ξ−1/3, ζ2/3, ζ−1/3, η−, χ− through
√

2u1

multiplied by the individual quartic scalar couplings. For simplicity, let all these couplings

be the same, say λσ, and all the masses be the same, say m0, then [49]

λγ =
αu1λσ√
2πm2

σ1R

[
6

(
2

3

)2

+ 6

(
−1

3

)2

+ 2(−1)2

]
f

(
m2

0

m2
σ1R

)
, (4.23)

where the function f is given by

f(x) = 8x

[
arctan

(
1√

4x− 1

)]2

− 2. (4.24)

Let m0 = 700 GeV, then x = 0.87 and f = 1.23. Hence for u1 = 1 TeV and λσ = 1.1,

the required λγ ' 0.022 (TeV)−1 is obtained. For this λσ, we find λg = 0.128, hence

Γ(σ1R → gg) ' 0.27 GeV, which is below the energy resolution of ATLAS and CMS. This

narrow width is not favored by the ATLAS data, but cannot be ruled out at this time.
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4.8 Dark Matter

The lightest neutral particle with odd Z2 is a good dark-matter candidate. In this

model, it could be the lightest scalar particle in the sector consisting of η0 = (ηR + iηI)/
√

2

and χ0 = (χR + iχI)/
√

2. There are two sectors, the mass-squared matrix spanning ηR, χR

is given by

M2
R =

m2
η A

A m2
χ + C

 , (4.25)

and that spanning ηI , χI is

M2
I =

m2
η B

B m2
χ − C

 , (4.26)

where A,B come from the φ0η0(χ0)∗ and φ0η0χ0(σ1)∗ couplings and C from the χ0χ0(σ1)∗

coupling. The phenomenology of the lightest particle in this group is similar to that of

the so-called inert Higgs doublet model [23, 50, 51]. For details, see for example recent

updates [52, 53, 54].

4.9 Conclusions

A new idea linking family symmetry to dark symmetry is proposed using a gauge

U(1)D symmetry, which breaks to exactly conserved Z2. The first and second families of

quarks and leptons transform under this U(1)D so that their masses are forbidden at tree

level. They interact with the dark sector in such a way that they acquire one-loop finite

masses, together with all three neutrinos. The extra ZD gauge boson may have a mass of

order a few TeV, and one particle associated with the breaking of U(1)D may be identified

with the 750 GeV diphoton excess recently observed at the LHC.

41



Part II

Alternative Left-Right Models

Containing Dark Symmetry with

Unification
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Chapter 5

Dark Gauge U(1) Symmetry for an

Alternative Left-Right Model

An alternative left-right model of quarks and leptons, where the SU(2)R lepton

doublet (ν, l)R is replaced with (n, l)R so that nR is not the Dirac mass partner of νL, has

been known since 1987. Previous versions assumed a global U(1)S symmetry to allow n to

be identified as a dark-matter fermion. We propose here a gauge extension by the addition

of extra fermions to render the model free of gauge anomalies, and just one singlet scalar

to break U(1)S . This results in two layers of dark matter, one hidden behind the other.

5.1 Introduction

The alternative left-right model [83] of 1987 was inspired by the E6 decomposition

to the standard SU(3)C×SU(2)L×U(1)Y gauge symmetry through an SU(2)R which does

not have the conventional assignments of quarks and leptons. Instead of (u, d)R and (ν, l)R
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as doublets under SU(2)R, a new quark h and a new lepton n per family are added so that

(u, h)R and (n, e)R are the SU(2)R doublets, and hL, dR, nL, νR are singlets.

This structure allows for the absence of tree-level flavor-changing neutral currents

(unavoidable in the conventional model), as well as the existence of dark matter. The

key new ingredient is a U(1)S symmetry, which breaks together with SU(2)R, such that a

residual global S′ symmetry remains for the stabilization of dark matter. Previously [55, 56,

57], this U(1)S was assumed to be global. We show in this paper how it may be promoted

to a gauge symmetry. To accomplish this, new fermions are added to render the model free

of gauge anomalies. The resulting theory has an automatic discrete Z2 symmetry which is

unbroken, as well as the global S′, which is now broken to Z3. Hence dark matter has two

components [58]. They are identified as one Dirac fermion (nontrivial under both Z2 and

Z3) and one complex scalar (nontrivial under Z3).

5.2 Model

The particle content of our model is given in Table 1, where the scalar SU(2)L ×

SU(2)R bidoublet is given by

η =

η0
1 η+

2

η−1 η0
2

 , (5.1)

with SU(2)L transforming vertically and SU(2)R horizontally. Without U(1)S as a gauge

symmetry, the model is free of anomalies without the addition of the ψ and χ fermions.

In the presence of gauge U(1)S , the additional anomaly-free conditions are all satisfied by

the addition of the ψ and χ fermions. The [SU(3)C ]2U(1)S anomaly is canceled between
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Table 5.1: Particle content of proposed model of dark gauge U(1) symmetry.

particles SU(3)C SU(2)L SU(2)R U(1)X U(1)S
(u, d)L 3 2 1 1/6 0
(u, h)R 3 1 2 1/6 −1/2
dR 3 1 1 −1/3 0
hL 3 1 1 −1/3 −1

(ν, l)L 1 2 1 −1/2 0
(n, l)R 1 1 2 −1/2 1/2
νR 1 1 1 0 0
nL 1 1 1 0 1

(φ+
L , φ

0
L) 1 2 1 1/2 0

(φ+
R, φ

0
R) 1 1 2 1/2 1/2

η 1 2 2 0 −1/2
ζ 1 1 1 0 1

(ψ0
1, ψ

−
1 )R 1 1 2 −1/2 2

(ψ+
2 , ψ

0
2)R 1 1 2 1/2 1

χ+
R 1 1 1 1 −3/2
χ−R 1 1 1 −1 −3/2
χ0

1R 1 1 1 0 −1/2
χ0

2R 1 1 1 0 −5/2

σ 1 1 1 0 3

(u, h)R and hL; the [SU(2)L]2U(1)S anomaly is zero because (u, d)L and (ν, l)L do not trans-

form under U(1)S ; the [SU(2)R]2U(1)S and [SU(2)R]2U(1)X anomalies are both canceled

by summing over (u, h)R, (n, l)R, (ψ0
1, ψ

−
1 )R, and (ψ+

2 , ψ
0
2)R; the addition of χ±R renders

the [U(1)X ]2U(1)S , U(1)X [U(1)S ]2, [U(1)X ]3, and U(1)X anomalies zero; and the further

addition of χ0
1R and χ0

2R kills both the [U(1)S ]3 and U(1)S anomalies, i.e.

0 = 3[6(−1/2)3 − 3(−1)3 + 2(1/2)3 − (1)3]

+ 2(2)3 + 2(1)3 + 2(−3/2)3 + (−1/2)3 + (−5/2)3, (5.2)

0 = 3[6(−1/2)− 3(−1) + 2(1/2)− (1)]

+ 2(2) + 2(1) + 2(−3/2) + (−1/2) + (−5/2). (5.3)
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Under T3R + S, the neutral scalars φ0
R and η0

2 are zero, so that their vacuum

expectation values do not break T3R + S which remains as a global symmetry. However,

〈σ〉 6= 0 does break T3R + S and gives masses to ψ0
1Rψ

0
2R − ψ−1Rψ+

2R, χ+
Rχ
−
R, and χ0

1Rχ
0
2R.

These exotic fermions all have half-integral charges [59] under T3R+S and only communicate

with the others with integral charges through W±R ,
√

2Re(φ0
R), ζ, and the two extra neutral

gauge bosons beyond the Z. Some explicit Yukawa terms are

(ψ0
1Rφ

−
R + ψ−1Rφ̄

0
R)χ+

R, (ψ+
2Rφ

0
R − ψ0

2Rφ
+
R)χ−R, (5.4)

(ψ0
1Rφ

0
R − ψ−1Rφ+

R)χ0
2R, (ψ+

2Rφ
−
R + ψ0

2Rφ̄
0
R)χ0

1R. (5.5)

This dichotomy of particle content results in an additional unbroken symmetry of the La-

grangian, i.e. discrete Z2 under which the exotic fermions are odd. Hence dark matter has

two layers: those with nonzero T3R+S and even Z2, i.e. n, h,W±R , φ
±
R, η

±
1 , η

0
1, η̄

0
1, ζ, and the

underlying exotic fermions with odd Z2. Without ζ, a global S′ symmetry remains. With

ζ, because of the ζ3σ∗ and χ0
1Rχ

0
1Rζ terms, the S′ symmetry breaks to Z3.

Table 5.2: Particle content of proposed model under (T3R + S)× Z2.

particles gauge T3R + S global S′ Z3 Z2

u, d, ν, l 0 0 1 +
(φ+
L , φ

0
L), (η+

2 , η
0
2), φ0

R 0 0 1 +
n, φ+

R, ζ 1 1 ω +
h, (η0

1, η
−
1 ) −1 −1 ω2 +

ψ+
2R, χ

+
R 3/2,−3/2 0 1 −

ψ−1R, χ
−
R 3/2,−3/2 0 1 −

ψ0
1R, ψ

0
2R 5/2, 1/2 1,−1 ω, ω2 −

χ0
1R, χ

0
2R −1/2,−5/2 1,−1 ω, ω2 −

σ 3 0 1 +
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Let

〈φ0
L〉 = v1, 〈η0

2〉 = v2, 〈φ0
R〉 = vR, 〈σ〉 = vS , (5.6)

then the SU(3)C×SU(2)L×SU(2)R×U(1)X×U(1)S gauge symmetry is broken to SU(3)C×

U(1)Q with S′, which becomes Z3, as shown in Table 2 with ω3 = 1. The discrete Z2

symmetry is unbroken. Note that the global S′ assignments for the exotic fermions are not

T3R + S because of vS which breaks the gauge U(1)S by 3 units.

5.3 Gauge sector

Consider now the masses of the gauge bosons. The charged ones, W±L and W±R ,

do not mix because of S′(Z3), as in the original alternative left-right models. Their masses

are given by

M2
WL

=
1

2
g2
L(v2

1 + v2
2), M2

WR
=

1

2
g2
R(v2

R + v2
2). (5.7)

Since Q = I3L + I3R +X, the photon is given by

A =
e

gL
W3L +

e

gR
W3R +

e

gX
X, (5.8)

where e−2 = g−2
L + g−2

R + g−2
X . Let

Z = (g2
L + g2

Y )−1/2

(
gLW3L −

g2
Y

gR
W3R −

g2
Y

gX
X

)
, (5.9)

Z ′ = (g2
R + g2

X)−1/2(gRW3R − gXX), (5.10)
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where g−2
Y = g−2

R + g−2
X , then the 3 × 3 mass-squared matrix spanning (Z,Z ′, S) has the

entries:

M2
ZZ =

1

2
(g2
L + g2

Y )(v2
1 + v2

2), (5.11)

M2
Z′Z′ =

1

2
(g2
R + g2

X)v2
R +

g4
Xv

2
1 + g4

Rv
2
2

2(g2
R + g2

X)
, (5.12)

M2
SS = 18g2

Sv
2
S +

1

2
g2
S(v2

R + v2
2), (5.13)

M2
ZZ′ =

√
g2
L + g2

Y

2
√
g2
R + g2

X

(g2
Xv

2
1 − g2

Rv
2
2), (5.14)

M2
ZS =

1

2
gS

√
g2
L + g2

Y v
2
2, (5.15)

M2
Z′S = −1

2
gS

√
g2
R − g2

Xv
2
R −

gSgRv
2
2

2
√
g2
R + g2

X

. (5.16)

Their neutral-current interactions are given by

LNC = eAµj
µ
Q + gZZµ(jµ3L − sin2 θW j

µ
Q)

+ (g2
R + g2

X)−1/2Z ′µ(g2
Rj

µ
3R − g2

Xj
µ
X) + gSSµj

µ
S , (5.17)

where g2
Z = g2

L + g2
Y and sin2 θW = g2

Y /g
2
Z .

In the limit v2
1,2 << v2

R, v
2
S , the mass-squared matrix spanning (Z ′, S) may be

simplified if we assume

v2
S

v2
R

=
(g2
R + g2

X + g2
S)2

36g2
S(g2

R + g2
X − g2

S)
, (5.18)

and let

tan θD =

√
g2
R + g2

X − gS√
g2
R + g2

X + gS

, (5.19)

then D1

D2

 =

 cos θD sin θD

− sin θD cos θD


Z ′
S

 , (5.20)
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with mass eigenvalues given by

M2
D1

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 cos θD
, (5.21)

M2
D2

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 sin θD
. (5.22)

In addition to the assumption of Eq. (18), let us take for example

2gS =
√
g2
R + g2

X , (5.23)

then sin θD = 1/
√

10 and cos θD = 3/
√

10. Assuming also that gR = gL, we obtain

g2
X

g2
Z

=
sin2 θW cos2 θW

cos 2θW
,

gS
gZ

=
cos2 θW

2
√

cos 2θW
, (5.24)

v2
S

v2
R

=
25

108
, M2

D2
= 3M2

D1
=

5 cos4 θW
4 cos 2θW

g2
Zv

2
R. (5.25)

The resulting gauge interactions of D1,2 are given by

LD =
gZ√

10
√

cos 2θW
{[3 cos 2θW j

µ
3R − 3 sin2 θW j

µ
X + (1/2) cos2 θW j

µ
S ]D1µ

+ [− cos 2θW j
µ
3R + sin2 θW j

µ
X + (3/2) cos2 θW j

µ
S ]D2µ}. (5.26)

Since D2 is
√

3 times heavier than D1 in this example, the latter would be produced first

in pp collisions at the Large Hadron Collider (LHC).

5.4 Fermion sector

All fermions obtain masses through the four vacuum expectation values of Eq. (6)

except νR which is allowed to have an invariant Majorana mass. This means that neutrino

masses may be small from the usual canonical seesaw mechanism. The various Yukawa
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terms for the quark and lepton masses are

−LY =
mu

v2
[ūR(uLη

0
2 − dLη+

2 ) + h̄R(−uLη−2 + dLη
0
1)]

+
md

v1
(ūLφ

+
L + d̄Lφ

0
L)dR +

mh

vR
(ūRφ

+
R + h̄Rφ

0
R)hL

+
ml

v2
[(ν̄Lη

0
1 + l̄Lη

−
1 )nR + (ν̄Lη

+
2 + l̄Lη

0
2)lR]

+
mD

v1
ν̄R(νLφ

0
L − lLφ+

L ) +
mn

vR
n̄L(nRφ

0
R − lRφ−R) +H.c. (5.27)

These terms show explicitly that the assignments of Tables 1 and 2 are satisfied.

As for the exotic ψ and χ fermions, they have masses from the Yukawa terms of

Eqs. (4) and (5), as well as

(φ0
1Rψ

0
2R − ψ−1Rψ+

2R)σ∗, χ−Rχ
+
Rσ, χ0

1Rχ
0
2Rσ. (5.28)

As a result, two neutral Dirac fermions are formed from the matrix linking χ0
1R and ψ0

1R to

χ0
2R and ψ0

2R. Let us call the lighter of these two Dirac fermions χ0, then it is one component

of dark matter of our model. The other will be the scalar ζ, to be discussed later. Note

that χ0 communicates with ζ through the allowed χ0
1Rχ

0
1Rζ interaction. Note also that the

allowed Yukawa terms

d̄RhLζ, n̄LνRζ (5.29)

enable the dark fermions h and n to decay into ζ.

5.5 Scalar sector

Consider the most general scalar potential consisting of ΦL,R, η, and σ. Let

η =

η0
1 η+

2

η−1 η0
2

 , η̃ = σ2η
∗σ2 =

 η̄0
2 −η+

1

−η−2 η̄0
1

 , (5.30)
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then

V = −µ2
LΦ†LΦL − µ2

RΦ†RΦR − µ2
σσ
∗σ − µ2

ηTr(η
†η) + [µ3Φ†LηΦR +H.c.]

+
1

2
λL(Φ†LΦL)2 +

1

2
λR(Φ†RΦR)2 +

1

2
λσ(σ∗σ)2 +

1

2
λη[Tr(η

†η)]2 +
1

2
λ′ηTr(η

†ηη†η)

+ λLR(Φ†LΦL)(Φ†RΦR) + λLσ(Φ†LΦL)(σ∗σ) + λRσ(Φ†RΦR)(σ∗σ) + λση(σ
∗σ)Tr(η†η)

+ λLηΦ
†
Lηη

†ΦL + λ′LηΦ
†
Lη̃η̃

†ΦL + λRηΦ
†
Rη
†ηΦR + λ′RηΦ

†
Rη̃
†η̃ΦR. (5.31)

Note that

2|det(η)|2 = [Tr(η†η)]2 − Tr(η†ηη†η), (5.32)

(Φ†LΦL)Tr(η†η) = Φ†Lηη
†ΦL + Φ†Lη̃η̃

†ΦL, (5.33)

(Φ†RΦR)Tr(η†η) = Φ†Rη
†ηΦR + Φ†Rη̃

†η̃ΦL. (5.34)

The minimum of V satisfies the conditions

µ2
L = λLv

2
1 + λLηv

2
2 + λLRv

2
R + λLσv

2
S + µ3v2vR/v1, (5.35)

µ2
η = (λη + λ′η)v

2
2 + λLηv

2
1 + λRηv

2
R + λσηv

2
S + µ3v1vR/v2, (5.36)

µ2
R = λRv

2
R + λLRv

2
1 + λRηv

2
2 + λRσv

2
S + µ3v1v2/vR, (5.37)

µ2
σ = λσv

2
S + λLσv

2
1 + λσηv

2
2 + λRσv

2
R. (5.38)

The 4× 4 mass-squared matrix spanning
√

2Im(φ0
L, η

0
2, φ

0
R, σ) is then given by

M2
I = µ3



−v2vR/v1 vR v2 0

vR −v1vR/v2 v1 0

v2 v1 −v1v2/vR 0

0 0 0 0


. (5.39)
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and that spanning
√

2Re(φ0
L, η

0
2, φ

0
R, σ) is

M2
R =M2

I + 2



λLv
2
1 λLηv1v2 λLRv1vR λLσv1vS

λLηv1v2 (λη + λ′η)v
2
2 λRηv2vR λσηv2vS

λLRv1vR λRηv2vR λRv
2
R λRσvRvS

λLσv1vS λσηv2vS λRσvRvS λσv
2
S


. (5.40)

Hence there are three zero eigenvalues in M2
I with one nonzero eigenvalue −µ3[v1v2/vR +

vR(v2
1 + v2

2)/v1v2] corresponding to the eigenstate (−v−1
1 , v−1

2 , v−1
R , 0)/

√
v−2

1 + v−2
2 + v−2

R .

In M2
R, the linear combination H = (v1, v2, 0, 0)/

√
v2

1 + v2
2, is the standard-model Higgs

boson, with

m2
H = 2[λLv

4
1 + (λη + λ′η)v

4
2 + 2λLηv

2
1v

2
2]/(v2

1 + v2
2). (5.41)

The other three scalar bosons are much heavier, with suppressed mixing to H, which may

all be assumed to be small enough to avoid the constraints from dark-matter direct-search

experiments. The addition of the scalar ζ introduces two important new terms:

ζ3σ∗, (η0
1η

0
2 − η−1 η+

2 )ζ. (5.42)

The first term breaks global S′ to Z3, and the second term mixes ζ with η0
1 through v2. We

assume the latter to be negligible, so that the physical dark scalar is mostly ζ.

5.6 Present phenomenological constraints

Many of the new particles of this model interact with those of the standard model.

The most important ones are the neutral D1,2 gauge bosons, which may be produced at the

LHC through their couplings to u and d quarks, and decay to charged leptons (e−e+ and
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µ−µ+). As noted previously, in our chosen example, D1 is the lighter of the two. Hence

current search limits for a Z ′ boson are applicable [46, 60]. The cu,d coefficients used in the

data analysis are

cu = (g2
uL + g2

uR)B = 0.0273 B, cd = (g2
dL + g2

dR)B = 0.0068 B, (5.43)

where B is the branching fraction of Z ′ to e−e+ and µ−µ+. Assuming that D1 decays

to all the particles listed in Table 2, except for the scalars which become the longitudinal

components of the various gauge bosons, we find B = 1.2× 10−2. Based on the 2016 LHC

13 TeV data set, this translates to a bound of about 4 TeV on the D1 mass.

The would-be dark-matter candidate n is a Dirac fermion which couples to D1,2

which also couples to quarks. Hence severe limits exist on the masses of D1,2 from un-

derground direct-search experiments as well. The annihilation cross section of n through

D1,2 would then be too small, so that its relic abundance would be too big for it to be a

dark-matter candidate. Its annihilation at rest through s-channel scalar exchange is p-wave

suppressed and does not help. As for the t-channel diagrams, they also turn out to be too

small. Previous studies where n is chosen as dark matter are now ruled out.

5.7 Dark sector

Dark matter is envisioned to have two components. One is a Dirac fermion χ0

which is a mixture of the four neutral fermions of odd Z2, and the other is a complex scalar

boson which is mostly ζ. The annihilation χ0χ̄0 → ζζ∗ determines the relic abundance of χ0,

and the annihilation ζζ∗ → HH, where H is the standard-model Higgs boson, determines

that of ζ. The direct ζζ∗H coupling is assumed small to avoid the severe constraint in
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direct-search experiments.

Let the interaction of ζ with χ0 be f0ζχ0Rχ0R +H.c., then the annihilation cross

section of χ0χ̄0 to ζζ∗ times relative velicity is given by

〈σ × vrel〉χ =
f4

0

4πmχ0

(m2
χ0
−m2

ζ)
3/2

(2m2
χo
−m2

ζ)
2
. (5.44)

Let the effective interaction strength of ζζ∗ with HH be λ0, then the annihilation

cross section of ζζ∗ to HH times relative velicity is given by

〈σζ × vrel〉ζ =
λ2

0

16π

(m2
ζ −m2

H)1/2

m3
ζ

. (5.45)

Note that λ0 is the sum over several interactions. The quartic coupling λζH is assumed neg-

ligible, to suppress the trilinear ζζ∗H coupling which contributes to the elastic ζ scattering

cross section off nuclei. However, the trilinear couplings ζζ∗Re(φ0
R) and Re(φ0

R)HH are

proportional to vR, and the trilinear couplings ζζ∗Re(σ) and Re(σ)HH are proportional

to vS . Hence their effective contributions to λ0 are proportional to v2
R/m

2[
√

2Re(φ0
R)] and

v2
S/m

2[
√

2Re(σ)], which are not suppressed.

As a rough estimate, we will assume that

〈σ × vrel〉−1
χ + 〈σζ × vrel〉−1

ζ = (4.4× 10−26 cm3/s)−1 (5.46)

to satisfy the condition of dark-matter relic abundance [61] of the Universe. For given values

of mζ and mχ0 , the parameters λ0 and f0 are thus constrained. We show in Fig. 1 the plots

of λ0 versus f0 for mζ = 150 GeV and various values of mχ0 . Since mζ is fixed at 150 GeV,

λ0 is also fixed for a given fraction of Ωζ/ΩDM . To adjust for the rest of dark matter, f0

must then vary as a function of mχ0 according to Eq. (44).
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Figure 5.1: Relic-abundance constraints on λ0 and f0 for mζ = 150 GeV and various values
of mχ0 .

As for direct detection, both χ0 and ζ have possible interactions with quarks

through the gauge bosons D1,2 and the standard-model Higgs boson H. They are suppressed

by making the D1,2 masses heavy, and the H couplings to χ0 and ζ small. In our example

with mζ = 150 GeV, let us choose mχ0 = 500 Gev and the relic abundances of both to be

equal. From Fig. 1, these choices translate to λ0 = 0.12 and f0 = 0.56.
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Consider first the D1,2 interactions. Using Eq. (26), we obtain

gVu (D1) = 0.0621, gVd (D1) = 0.0184, gζ(D1) = 0.1234, (5.47)

gVu (D2) = −0.1235, gVd (D2) = −0.0062, gζ(D2) = 0.3701. (5.48)

The effective ζ elastic scattering cross section through D1,2 is then completely determined

as a function of the D1 mass (because MD2 =
√

3MD1 in our example), i.e.

LVζq =
(ζ∗∂µ − ζ∂µζ∗)

M2
D1

[(−7.57× 10−3)ūγµu+ (1.51× 10−3)d̄γµd]. (5.49)

Using the latest LUX result [62] and Eq. (25), we obtain vR > 35 TeV which translates to

MD1 > 18 TeV, and MWR
> 16 TeV.

The χ̄0γµχ0 couplings to D1,2 depend on the 2 × 2 mass matrix linking (χ1, ψ1)

to (χ2, ψ2) which has two mixing angles and two mass eigenvalues, the lighter one being

mχ0 . By adjusting these parameters, it is possible to make the effective χ0 interaction with

xenon negligibly small. Hence there is no useful limit on the D1 mass in this case.

Direct search also constrains the coupling of the Higgs boson to ζ (through a

possible trilinear λζH
√

2vHζ
∗ζ interaction) or χ0 (through an effective Yukawa coupling ε

from H mixing with σR and φ0
R). Let their effective interactions with quarks through H

exchange be given by

LSζq =
λζHmq

m2
H

ζ∗ζq̄q +
εfq
m2
H

χ̄0χ0q̄q, (5.50)

where fq = mq/
√

2vH = mq/(246 GeV). The spin-independent direct-detection cross sec-

tion per nucleon in the former is given by

σSI =
µ2
ζ

πA2
[λpZ + (A− Z)λn]2, (5.51)
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where µζ = mζMA/(mζ +MA) is the reduced mass of the dark matter, and [63]

λN =

∑
u,d,s

fNq +
2

27

1−
∑
u,d,s

fNq

 λζHmN

2mζm
2
H

, (5.52)

with [64]

fpu = 0.023, fpd = 0.032, fps = 0.020, (5.53)

fnu = 0.017, fnd = 0.041, fns = 0.020. (5.54)

For mζ = 150 GeV, we have

λp = 2.87× 10−8λζH GeV−2, λn = 2.93× 10−8λζH GeV−2. (5.55)

Using A = 131, Z = 54, and MA = 130.9 atomic mass units for the LUX experiment [62],

and twice the most recent bound of 2 × 10−46 cm2 (because ζ is assumed to account for

only half of the dark matter) at this mass, we find

λζH < 9.1× 10−4. (5.56)

As noted earlier, this is negligible for considering the annihilation cross section of ζ to H.

For the H contribution to the χ0 elastic cross section off nuclei, we replace mζ with

mχ0 = 500 GeV in Eq. (51) and λζH/2mζ with ε/
√

2vH in Eq. (52). Using the experimental

data at 500 GeV, we obtain the bound.

ε < 9.6× 10−4. (5.57)

From the above discussion, it is clear that our model allows for the discovery of dark matter

in direct-search experiments in the future if these bounds are only a little above the actual

values of λζH and ε.
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5.8 Conclusions

In the context of the alternative left-right model, a new gauge U(1)S symmetry has

been proposed to stabilize dark matter. This is accomplished by the addition of a few new

fermions to cancel all the gauge anomalies, as shown in Table 1. As a result of this particle

content, an automatic unbroken Z2 symmetry exists on top of U(1)S which is broken to a

conserved residual Z3 symmetry. Thus dark matter has two components. One is the Dirac

fermion χ0 ∼ (ω,−) and the other the complex scalar ζ ∼ (ω,+) under Z3 × Z2. We have

shown how they may account for the relic abundance of dark matter in the Universe, and

satisfy present experimental search bounds.

Whereas we have no specific prediction for discovery in direct-search experiments,

our model will be able to accommodate any positive result in the future, just like many

other existing proposals. To single out our model, many additional details must also be

confirmed. Foremost are the new gauge bosons D1,2. Whereas the LHC bound is about 4

TeV, the direct-search bound is much higher provided that ζ is a significant fraction of dark

matter. If χ0 dominates instead, the adjustment of free parameters of our model can lower

this bound to below 4 TeV. In that case, future D1,2 observations are still possible at the

LHC as more data become available.

Another is the exotic h quark which is easily produced if kinematically allowed.

It would decay to d and ζ through the direct d̄RhLζ coupling of Eq. (29). Assuming that

this branching fraction is 100%, the search at the LHC for 2 jets plus missing energy puts

a limit on mh of about 1.0 TeV, as reported by the CMS Collaboration [65] based on the

√
s = 13 TeV data at the LHC with an integrated luminosity of 35.9 fb−1 for a single scalar
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quark.

If the d̄RhLζ coupling is very small, then h may also decay significantly to u and a

virtual W−R , with W−R becoming n̄l−, and n̄ becoming ν̄ζ∗. This has no analog in the usual

searches for supersymmetry or the fourth family because WR is heavy (> 16 TeV). To be

specific, the final states of 2 jets plus l−1 l
+
2 plus missing energy should be searched for. As

more data are accumulated at the LHC, such events may become observable.
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Chapter 6

Quartified Leptonic Color, Bound

States, and Future

Electron-Positron Collider

The [SU(3)]4 quartification model of Babu, Ma, and Willenbrock (BMW), pro-

posed in 2003, predicts a confining leptonic color SU(2) gauge symmetry, which becomes

strong at the keV scale. It also predicts the existence of three families of half-charged leptons

(hemions) below the TeV scale. These hemions are confined to form bound states which

are not so easy to discover at the Large Hadron Collider (LHC). However, just as J/ψ and

Υ appeared as sharp resonances in e−e+ colliders of the 20th centrury, the corresponding

’hemionium’ states are expected at a future e−e+ collider of the 21st century.
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6.1 Introduction

Fundamental matter consists of quarks and leptons, but why are they so different?

Both interact through the SU(2)L × U(1)Y electroweak gauge bosons W±, Z0 and the

photon A, but only quarks interact through the strong force as mediated by the gluons of

the unbroken (and confining) color SU(3) gauge symmetry, called quantum chromodynamics

(QCD). Suppose this is only true of the effective low-energy theory. At high energy, there

may in fact be three ’colors’ of leptons transforming as a triplet under a leptonic color SU(3)

gauge symmetry. Unlike QCD, only its SU(2)l subgroup remains exact, thus confining only

two of the three ’colored’ leptons, called ’hemions’ in Ref. [66] because they have ±1/2

electric charges, leaving the third ones free as the known leptons.

The notion of leptonic color was already discussed many years ago [67, 68], and its

incorporation into [SU(3)]4 appeared in Ref. [69], but without full unification. Its relevance

today is threefold. (1) The [SU(3)]4 quartification model [66] of Babu, Ma, and Willenbrock

(BMW) is non-supersymmetric, and yet achieves gauge-coupling unification at 4×1011 GeV

without endangering proton decay. This unification of gauge couplings is only possible if

the three families of hemions have masses below the TeV scale. Given the absence of

experimental evidence for supersymmetry at the Large Hadron Collider (LHC) to date,

this alternative scenario deserves a closer look. (2) The quartification scale determines

the common gauge coupling for the SU(2)l symmetry. Its extrapolation to low energy

predicts that it becomes strong at the keV scale, in analogy to that of QCD becoming

strong at somewhat below the GeV scale. This may alter the thermal history of the Universe

and allows the formation of gauge-boson bound states, the lightest of which is a potential
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warm dark-matter candidate [70]. (3) The hemions (called ’liptons’ previously [68]) have

±1/2 electric charges and are confined to form bound states by the SU(2)l ’stickons’ in

analogy to quarks forming hadrons through the SU(3)C gluons. They have been considered

previously [71] as technifermions responsible for electroweak symmetry breaking. Their

electroweak production at the LHC is possible [72] but the background is large. However,

in a future e−e+ collider (ILC, CEPC, FCC-ee), neutral vector resonances of their bound

states (hemionia) would easily appear, in analogy to the observations of quarkonia (J/ψ,

Υ) at past e−e+ colliders.

6.2 The BMW model

Under the [SU(3)]4 quartification gauge symmetry, quarks and leptons transform

as (3, 3̄) in a moose chain linking SU(3)q to SU(3)L to SU(3)l to SU(3)R back to SU(3)q

as depicted in Fig. 1.

SU(3)L

SU(3)l

SU(3)R

SU(3)q

q qc

l lc

Figure 6.1: Moose diagram of [SU(3)]4 quartification.
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Specifically,

q ∼ (3, 3̄, 1, 1) ∼


d u h

d u h

d u h

 , l ∼ (1, 3, 3̄, 1) ∼


x1 x2 ν

y1 y2 e

z1 z2 N

 , (6.1)

lc ∼ (1, 1, 3, 3̄) ∼


xc1 yc1 zc1

xc2 yc2 zc2

νc ec N c

 , qc ∼ (3̄, 1, 1, 3) ∼


dc dc dc

uc uc uc

hc hc hc

 . (6.2)

Below the TeV energy scale, the gauge symmetry is reduced [66] to SU(3)C × SU(2)l ×

SU(2)L × U(1)Y with the particle content given in Table 1. The electric charge Q is given

Table 6.1: Particle content of proposed model.

particles SU(3)C SU(2)l SU(2)L U(1)Y
(u, d)L 3 1 2 1/6
uR 3 1 1 2/3
dR 3 1 1 −1/3

(x, y)L 1 2 2 0
xR 1 2 1 1/2
yR 1 2 1 −1/2

(ν, l)L 1 1 2 −1/2
νR 1 1 1 0
lR 1 1 1 −1

(φ+, φ0) 1 1 2 1/2

by Q = I3L + Y as usual. The exotic SU(2)l doublets x, y have ±1/2 charges, hence

the name hemions. Whereas the quarks and charged leptons must obtain masses through

electroweak symmetry breaking, the hemions have invariant mass terms, i.e. x1Ly2L −

x2Ly1L and x1Ry2R− x2Ry1R. This is important because they are then allowed to be heavy

without disturbing the electroweak oblique parameters S, T, U which are highly constrained
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experimentally. In the following, the mass terms from electroweak symmetry breaking, i.e.

x̄LxRφ̄
0 and ȳLyRφ

0, will be assumed negligible.

6.3 Gauge coupling unification and the leptonic color con-

finement scale

The renormalization-group evolution of the gauge couplings is dictated at leading

order by

1

αi(µ)
− 1

αi(µ′)
=

bi
2π

ln

(
µ′

µ

)
, (6.3)

where bi are the one-loop beta-function coefficients,

bC = −11 +
4

3
NF , (6.4)

bl = −22

3
+

4

3
NF , (6.5)

bL = −22

3
+ 2NF +

1

6
NΦ, (6.6)

bY =
13

9
NF +

1

12
NΦ. (6.7)

The number of families NF is set to three, and the number of Higgs doublets NΦ is set

to two, as in the original BMW model. Here we make a small adjustment by separating

the three hemion families into two light ones at the electroweak scale MZ and one at a

somewhat higher scale MX . We then input the values [14]

αC(MZ) = 0.1185, (6.8)

αL(MZ) = (
√

2/π)GFM
2
W = 0.0339, (6.9)

αY (MZ) = 2αL(MZ) tan2 θW = 0.0204, (6.10)
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where αY has been normalized by a factor of 2 (and bY by a factor of 1/2) to conform to

[SU(3)]4 quartification. We find

MU = 4× 1011 GeV, αU = 0.0301, MX = 486 GeV. (6.11)

We then use bl to extrapolate back to MZ and obtain αl(MZ) = 0.0469. Below the elec-

troweak scale, the evolution of αl comes only from the stickons and it becomes strong at

about 1 keV. Hence ’stickballs’ are expected at this confinement mass scale. Unlike QCD

where glueballs are heavier than the π mesons so that they decay quickly, the stickballs are

so light that they could decay only to lighter stickballs or to photon pairs through their

interactions with hemions.

6.4 Thermal history of stickons

At temperatures above the electroweak symmetry scale, the hemions are active

and the stickons (ζ) are in thermal equilibrium with the standard-model particles. Below

the hemion mass scale, the stickon interacts with photons through ζζ → γγ scattering with

a cross section

σ ∼ 9α2α2
l T

6

16M8
eff

. (6.12)

The decoupling temperature of ζ is then obtained by matching the Hubble expansion rate

H =
√

(8π/3)GN (π2/30)g∗T 4 (6.13)

to [6ζ(3)/π2]T 3〈σv〉. Hence

T 14 ∼ 28

38

(
π7

5[ζ(3)]2

)
GNg∗M

16
eff

α4α4
l

, (6.14)
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where 6M−4
eff =

∑
(M i

xy)
−4. For Meff = 110 GeV and g∗ = 92.25 which includes all

particles with masses up to a few GeV, T ∼ 6.66 GeV. Hence the contribution of stickons

to the effective number of neutrinos at the time of big bang nucleosynthesis (BBN) is given

by [73]

∆Nν =
8

7
(3)

(
10.75

92.25

)4/3

= 0.195, (6.15)

compared to the value 0.50 ± 0.23 from a recent analysis [74]. The most recent PLANCK

measurement [75] coming from the cosmic microwave background (CMB) is

Neff = 3.15± 0.23. (6.16)

However, at the time of photon decoupling, the stickons have disappeared, hence Neff =

3.046 as in the SM. This is discussed in more detail below.

6.5 Formation and decay of stickballs

As the Universe further cools below a few keV, leptonic color goes through a

phase transition and stickballs are formed. If the lightest stickball ω is stable, it may be

a candidate for warm dark matter. It has strong self-interactions and the 3 → 2 process

determines its relic abundance. Following Ref. [76] and using Ref. [70], we estimate that it

is overproduced by a factor of about 3. However, ω is not absolutely stable. It is allowed

to mix with a scalar bound state of two hemions which would decay to two photons. We

assume this mixing to be fωmω/Mxy, so that its decay rate is given by

Γ(ω → γγ) =
9α2f2

ωm
5
ω

64π3M4
eff

, (6.17)
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where Meff is now defined by 6M−2
eff =

∑
(M i

xy)
−2. Setting mω = 5 keV to be above

the astrophysical bound of 4 keV from Lyman α forest observations [77] and Meff = 150

GeV, its lifetime is estimated to be 4.4 × 1017s for fω = 1. This is exactly the age of the

Universe, and it appears that ω may be a candidate for dark matter after all. However,

CMB measurements constrain [78] a would-be dark-matter lifetime to be greater than about

1025s, and x-ray line measurements in this mass range constrain [79] it to be greater than

1027s, so this scenario is ruled out. On the other hand, if mω = 10 keV, then the ω lifetime

is 1.4 × 1016s, which translates to a fraction of 2 × 10−14 of the initial abundance of ω to

remain at the present Universe. Compared to the upper bound of 10−10 for a lifetime of

1016s given in Ref. [78], this is easily satisfied, even though ω is overproduced at the leptonic

color phase transition by a factor of 3.

At the time of photon decoupling, the SU(2)l sector contributes no additional

relativistic degrees of freedom, hence Neff remains the same as in the SM, i.e. 3.046,

coming only from neutrinos. In this scenario, ω is not dark matter. However, there are

many neutral scalars and fermions in the BMW model which are not being considered here.

They are naturally very heavy, but some may be light enough and stable, and be suitable

as dark matter.

6.6 Revelation of leptonic color at future e−e+ colliders

Unlike quarks, all hemions are heavy. Hence the lightest bound state is likely to be

at least 200 GeV. Its cross section through electroweak production at the LHC is probably

too small for it to be discovered. On the other hand, in analogy to the observations of J/ψ
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and Υ at e−e+ colliders of the last century, the resonance production of the corresponding

neutral vector bound states (hemionia) of these hemions is expected at a future e−e+ collider

(ILC, CEPC, FCC-ee) with sufficient reach in total center-of-mass energy. Their decays will

be distinguishable from heavy quarkonia (such as toponia) experimentally.

The formation of hemion bound states is analogous to that of QCD. Instead of

one-gluon exchange, the Coulomb potential binding a hemion-antihemion pair comes from

one-stickon exchange. The difference is just the change in an SU(3) color factor of 4/3 to

an SU(2) color factor of 3/4. The Bohr radius is then a0 = [(3/8)ᾱlm]−1, and the effective

ᾱl is defined by

ᾱl = αl(a
−1
0 ). (6.18)

Using Eqs. (3) and (5), and αl(MZ) = 0.047 with m = 100 GeV, we obtain ᾱl = 0.059 and

a−1
0 = 2.2 GeV. Consider the lowest-energy vector bound state Ω of the lightest hemion of

mass m = 100 GeV. In analogy to the hydrogen atom, its binding energy is given by

Eb =
1

4

(
3

4

)2

ᾱ2
lm = 0.049 GeV, (6.19)

and its wavefunction at the origin is

|ψ(0)|2 =
1

πa3
0

= 3.4 GeV3. (6.20)

Since Ω will appear as a narrow resonance at a future e−e+ collider, its observation depends

on the integrated cross section over the energy range
√
s around mΩ:

∫
d
√
s σ(e−e+ → Ω→ X) =

6π2

m2
Ω

ΓeeΓX
Γtot

, (6.21)

where Γtot is the total decay width of Ω, and Γee, ΓX are the respective partial widths.
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Since Ω is a vector meson, it couples to both the photon and Z boson through its

constituent hemions. Hence it will decay to W−W+, qq̄, l−l+, and νν̄. Using

〈0|x̄γµx|Ω〉 = εµΩ
√

8mΩ|ψ(0)|, (6.22)

the Ω→ e−e+ decay rate is given by

Γ(Ω→ γ, Z → e−e+) =
2m2

Ω

3π
(|CV |2 + |CA|2)|ψ(0)|2, (6.23)

where

CV =
e2(1/2)(−1)

m2
Ω

+
g2
Z(− sin2 θW /4)[(−1 + 4 sin2 θW )/4]

m2
Ω −M2

Z

, (6.24)

CA =
g2
Z(− sin2 θW /4)(1/4)

m2
Ω −M2

Z

. (6.25)

In the above, Ω is assumed to be composed of the singlet hemions xR and yR with invariant

mass term x1Ry2R − x2Ry1R (case A). Hence Γee = 43 eV. If Ω comes instead from xL and

yL with invariant mass term x1Ly2L − x2Ly1L (case B), then the factor (− sin2 θW /4) in

CV and CA is replaced with (cos2 θW /4) and Γee = 69 eV. Similar expressions hold for the

other fermions of the Standard Model (SM).

For Ω→W−W+, the triple γW−W+ and ZW−W+ vertices have the same struc-

ture. The decay rate is calculated to be

Γ(Ω→ γ, Z →W−W+) =
m2

Ω(1− r)3/2

6πr2

(
4 + 20r + 3r2

)
C2
W |ψ(0)|2, (6.26)

where r = 4M2
W /m

2
Ω and

CW =
e2(1/2)

m2
Ω

+
g2
Z(− sin2 θW /4)

m2
Ω −M2

Z

(6.27)

in case A. Because of the accidental cancellation of the two terms in the above, CW turns

out to be very small. Hence ΓWW = 3.2 eV. In addition to the s−channel decay of Ω to
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W−W+ through γ and Z, there is also a t−channel electroweak contribution in case B

because xL and yL form an electroweak doublet. Replacing (− sin2 θW /4) with (cos2 θW /4)

in CW , and adding this contribution, we obtain

Γ(Ω→W−W+) =
m2

Ω(1− r)3/2

6πr2
[(4 + 20r + 3r2)C2

W

+ 2r(10 + 3r)CWDW + r(8− r)D2
W ]|ψ(0)|2, (6.28)

where

DW =
−g2

4(m2
Ω − 2M2

W )
. (6.29)

Thus a much larger ΓWW = 190 eV is obtained. For Ω→ ZZ, there is only the t−channel

contribution, i.e.

Γ(Ω→ ZZ) =
m2

Ω(1− rZ)5/2

3πrZ
D2
Z |ψ(0)|2, (6.30)

where rZ = 4M2
Z/m

2
Ω and DZ = g2

Z sin4 θW /4(m2
Ω − 2m2

Z) in case A, with sin4 θW replaced

by cos4 θW in case B. Hence ΓZZ is negligible in case A and only 2.5 eV in case B.

The Ω decay to two stickons is forbidden by charge conjugation. Its decay to three

stickons is analogous to that of quarkonium to three gluons. Whereas the latter forms a

singlet which is symmetric in SU(3)C , the former forms a singlet which is antisymmetric

in SU(2)l. However, the two amplitudes are identical because the latter is symmetrized

with respect to the exchange of the three gluons and the former is antisymmetrized with

respect to the exchange of the three stickons. Taking into account the different color factors

of SU(2)l versus SU(3)C , the decay rate of Ω to three stickons and to two stickons plus a
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photon are given by

Γ(Ω→ ζζζ) =
16

27
(π2 − 9)

α3
l

m2
Ω

|ψ(0)|2, (6.31)

Γ(Ω→ γζζ) =
8

9
(π2 − 9)

αα2
l

m2
Ω

|ψ(0)|2. (6.32)

Hence Γζζζ = 4.5 eV and Γγζζ = 1.1 eV. The integrated cross section of Eq. (21) for

X = µ−µ+ is then 3.8× 10−33 cm2-keV in case A and 2.1× 10−33 cm2-keV in case B. For

comparison, this number is 7.9× 10−30 cm2-keV for the Υ(1S). At a high-luminosity e−e+

collider, it should be feasible to make this observation. Table 2 summarizes all the partial

decay widths.

Table 6.2: Partial decay widths of the hemionium Ω.

Channel Width (A) Width (B)

νν̄ 11 eV 123 eV

e−e+ 43 eV 69 eV
µ−µ+ 43 eV 69 eV
τ−τ+ 43 eV 69 eV

uū 50 eV 175 eV
cc̄ 50 eV 175 eV

dd̄ 10 eV 147 eV
ss̄ 10 eV 147 eV
bb̄ 10 eV 147 eV

W−W+ 3.2 eV 190 eV
ZZ 0.02 eV 2.5 eV

ζζζ 4.5 eV 4.5 eV
ζζγ 1.1 eV 1.1 eV

sum 279 eV 1319 eV

71



6.7 Conclusions

There are important differences between QCD and QHD (quantum hemiodynam-

ics). In the former, because of the existence of light u and d quarks, it is easy to pop up

uū and dd̄ pairs from the QCD vacuum. Hence the production of open charm in an e−e+

collider is described well by the fundamental process e−e+ → cc̄. In the latter, there are no

light hemions. Instead it is easy to pop up the light stickballs from the QHD vacuum. As

a result, just above the threshold of making the Ω resonance, the many-body production

of Ω + stickballs becomes possible. This cross section is presumably also well described by

the fundamental process e−e+ → xx̄. In case A, the cross section is given by

σ(e−e+ → xx̄) =
2πα2

3

√
1− 4m2

s

[
(s+ 2m2)

s2
+

x2
W

2(1− xW )2

(s−m2)

(s−m2
Z)2

+
xW

(1− xW )

(s−m2)

s(s−m2
Z)
− (1− 4xW )

4(1− xW )

m2

s(s−m2
Z)

]
, (6.33)

where xW = sin2 θW and s = 4E2 is the square of the center-of-mass energy. In case B, it

is

σ(e−e+ → xx̄) =
2πα2

3

√
1− 4m2

s

[
(s+ 2m2)

s2
+

(s−m2)

2(s−m2
Z)2

− (s−m2)

s(s−m2
Z)

+
(1− 4xW )

4xW

m2

s(s−m2
Z)

]
. (6.34)

Using m = 100 GeV and s = (250 GeV)2 as an example, we find these cross sections to be

0.79 and 0.44 pb respectively.

In QCD, there are qq̄ bound states which are bosons, and qqq bound states which

are fermions. In QHD, there are only bound-state bosons, because the confining symmetry

is SU(2)l. Also, unlike baryon (or quark) number in QCD, there is no such thing as hemion
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number in QHD, because y is effectively x̄. This explains why there are no stable analog

fermion in QHD such as the proton in QCD.

The SM Higgs boson h couples to the hemions, but these Yukawa couplings could

be small, because hemions have invariant masses themselves as already explained. So far

we have assumed these couplings to be negligible. If not, then h may decay to two photons

and two stickons through a loop of hemions. This may show up in precision Higgs studies

as a deviation of h→ γγ from the SM prediction. It will also imply a partial invisible width

of h proportional to this deviation. Neither would be large effects and that is perfectly

consistent with present data.

The absence of observations of new physics at the LHC is a possible indication that

fundamental new physics may not be accessible using the strong interaction, i.e. quarks

and gluons. It is then natural to think about future e−e+ colliders. But is there some

fundamental issue of theoretical physics which may only reveal itself there? and not at

hadron colliders? The BMW model is one possible answer. It assumes a quartification

symmetry based on [SU(3)]4. It has gauge-coupling unification without supersymmetry,

but requires the existence of new half-charged fermions (hemions) under a confining SU(2)l

leptonic color symmetry, with masses below the TeV scale. It also predicts the SU(2)l

confining scale to be keV, so that stickball bound states of the vector gauge stickons are

formed. These new particles have no QCD interactions, but hemions have electroweak

couplings, so they are accessible in a future e−e+ collider, as described in this paper.
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Chapter 7

Dark Revelations of the [SU(3)]3

and [SU(3)]4

Two theoretically well-motivated gauge extensions of the standard model are

SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q

is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three varia-

tions, according to how SU(3)R is broken. It is shown here for the first time that a built-in

dark U(1)D gauge symmetry exists in all six versions, and may be broken to discrete Z2

dark parity. The available dark matter candidates in each case include fermions, scalars, as

well as vector gauge bosons. This work points to the unity of matter with dark matter, the

origin of which is not ad hoc.
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7.1 Introduction

To extend the SU(3)C × SU(2)L ×U(1)Y gauge symmetry of the standard model

(SM) of quarks and leptons, there are many possibilities. We focus in this paper on two such

theoretically well-motivated ideas. The first [80, 81] is SU(3)C × SU(3)L × SU(3)R, and

the second [69, 66, 82] is SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same

as SU(3)C and SU(3)l is its color leptonic counterpart. It has been known for a long time

that [SU(3)]3 has three distinct variations, according to how SU(3)R is broken to SU(2)R.

• (A) (u, d)R is a doublet, which corresponds to the conventional left-right model.

• (B) (u, h)R is a doublet [83, 84, 55, 56, 57, 85], where h is an exotic quark with the

same charge as d, which corresponds to the alternative left-right model.

• (C) (h, d)R is a doublet [86, 87, 88, 89], which implies that the vector gauge bosons

of this SU(2)R are all neutral.

Note that in the early days of flavor SU(3) for the u, d, s quarks, these SU(2) subgroups

are called T, V, U spins. The same three versions are obviously also possible for [SU(3]4.

Whereas these structures have been known for a long time, an important property

of these models has been overlooked, i.e. the existence of a built-in dark U(1)D gauge

symmetry already present in [SU(3)]3 and [SU(3)]4 under which the SM particles are dis-

tinguished from those of the dark sector. We will identify this symmetry in all six cases

and discuss how it may fit into a viable extension of the SM.
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7.2 Dark Symmetries in [SU(3)]3

The fermion assignments under SU(3)C × SU(3)L × SU(3)R are

q ∼ (3, 3∗, 1) ∼


d u h

d u h

d u h

 , (7.1)

where the I3L values from left to right are (−1/2, 1/2, 0) and the YL values from left to right

are (−1/3,−1/3, 2/3);

λ ∼ (1, 3, 3∗) ∼


N Ec ν

E N c e

νc ec S

 , (7.2)

where the I3L values from top to bottom are now (1/2,−1/2, 0) and the YL values from top

to bottom are (1/3, 1/3,−2/3), the I3R values from left to right are (−1/2, 1/2, 0) and the

YR values from left to right are (−1/3,−1/3, 2/3);

qc ∼ (3∗, 1, 3) ∼


dc dc dc

uc uc uc

hc hc hc

 , (7.3)

where the I3R values from top to bottom are (1/2,−1/2, 0) and the YR values from top to

bottom are (1/3, 1/3,−2/3). The electric charge operator is given by

Q = I3L −
YL
2

+ I3R −
YR
2
. (7.4)

Since (dc, uc) and (ec, νc) are SU(2)R doublets, this reduces to the conventional

left-right model. Consider now

DA = 3(YL − YR). (7.5)
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The [Q,DA] assignments of q, λ, and qc are then given by

Qq =


−1/3 2/3 −1/3

−1/3 2/3 −1/3

−1/3 2/3 −1/3

 , Dq =


−1 −1 2

−1 −1 2

−1 −1 2

 , (7.6)

Qλ =


0 1 0

−1 0 −1

0 1 0

 , Dλ =


2 2 −1

2 2 −1

−1 −1 −4

 , (7.7)

Qqc =


1/3 1/3 1/3

−2/3 −2/3 −2/3

1/3 1/3 1/3

 , Dqc =


−1 −1 −1

−1 −1 −1

2 2 2

 . (7.8)

This shows that u, uc, d, dc, ν, νc, e, ec have DA = −1 (odd), whereas h, hc, N,N c, E,Ec, S

have even DA charges, i.e. 2 and −4. Let us define a parity [25] using the particle’s spin j:

RA = (−1)DA+2j . (7.9)

Since j = 1/2, RA is even for u, uc, d, dc, ν, νc, e, ec and odd for h, hc, N,N c, E,Ec, S, thereby

allowing the latter to be considered as belonging to the dark sector, as long as U(1)D is

broken only by two units, in analogy to the breaking of B − L in models of neutrino mass,

where lepton parity (−1)L remains conserved.

To break [SU(3)]3, a scalar bitriplet φ ∼ (1, 3, 3∗) is used. It transforms exactly as

λ and has the same [Q,D] assignments. Now 〈φ33〉 breaks SU(3)L × SU(3)R to SU(2)L ×

SU(2)R × U(1)YL+YR . The U(1)D symmetry is broken by 4 units at the same time. This

gives masses to the exotic fermions h,N,E. Two other neutral scalars φ11, φ22 have DA = 2.

Their vacuum expectation values would break SU(2)L×SU(2)R to U(1)I3L+I3R , and U(1)D
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by 2 units, allowing mass terms for uuc, ddc, eec, ννc, NS, and N cS. At this point, it looks

like a dark residual Z2 symmetry is still possible. However this is not a viable scenario,

because the SU(2)L and SU(2)R breaking are now at the same scale, contrary to what is

observed. Furthermore, both I3L + I3R and YL + YR are still unbroken. Whereas Q is a

linear combination of the two, there remains another unbroken U(1) gauge symmetry. To

solve these problems, the usual procedure is to allow φ31 and φ13 to acquire nonzero vacuum

expectation values as well, thus breaking SU(2)R and SU(2)L separately. However, since

they have DA = −1 (odd RA), the dark symmetry is lost.

To save the dark symmetry, we insert another bitriplet η ∼ (1, 3, 3∗) with an extra

Z2 symmetry under which it is odd and all other fields are even. This extra symmetry

prevents η from coupling to the quarks and leptons, so that the absolute RA values of the η

components are not fixed by them as in φ. However their relative RA values are still fixed by

the gauge bosons. Using Eqs. (5) and (9), we see that of the eight SU(3)L and eight SU(3)R

gauge bosons, the four gauge bosons which take u and d to h, and the corresponding ones

which take uc and dc to hc are odd under RA, and the others are even. We can now choose

〈η31〉 6= 0 and 〈η13〉 6= 0 to break SU(3)L×SU(3)R to just U(1)Q and preserve RA, because

η31, η32, η13, η23 may be defined to be even and the other components odd without breaking

RA.

Of the 27 fermion fields for each family, 16 are in the visible sector (RA even),

i.e. u, uc, d, dc, ν, νc, e, ec, and 11 are in the dark sector (RA odd), i.e. h, hc, N,N c, E,Ec, S.

Of the 24 gauge bosons, 16 are visible, i.e. the 8 gluons, W±L , W±R , the photon, Z, and

two other heavier neutral ones, a linear combination of which couples to the dark charge
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DA, and 8 are dark, i.e. those with odd RA. The scalars are also divided into sectors with

even and odd RA. This is thus a model with possible fermion, scalar, and vector dark-

matter candidates. Their existence is not an ad hoc invention, but a possible outcome of

the postulated theoretical framework beyond the standard model.

Consider next the alternative left-right model, i.e. variation (B), where dc is

switched with hc and (ν, e, S) are switiched with (N,E, νc), i.e.

qc ∼


hc hc hc

uc uc uc

dc dc dc

 , λ ∼


ν Ec N

e N c E

S ec νc

 . (7.10)

The electric charge is given as before by Eq. (4), but the dark charge is now

DB = 3(YL + I3R +
YR
2

). (7.11)

Hence Dq remains the same as in Eq. (6), but Dλ and Dqc are now given by

Dλ =


−1 2 2

−1 2 2

−4 −1 −1

 , Dqc =


2 2 2

−1 −1 −1

−1 −1 −1

 . (7.12)

Again using RB = (−1)DB+2j , we find it to be even for u, uc, d, dc, ν, νc, e, ec and odd for

h, hc, N,N c, E,Ec, S. Choosing φ13, φ22, φ31 to have nonzero vacuum expectation values,

the symmetry breaking pattern is as in (A), only that the SU(2) subgroup of SU(3)R is

now different. It suffers from the same problems as in (A), which may be solved again by

adding η, with 〈η33〉 6= 0 and 〈η11〉 6= 0.

In the third variation (C), uc is switched with hc, and (ν, e, S) are switched with
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(Ec, N c, ec), i.e.

qc ∼


dc dc dc

hc hc hc

uc uc uc

 , λ ∼


N ν Ec

E e N c

νc S ec

 . (7.13)

The electric charge and dark charge are now given by

Q = I3L −
YL
2

+ YR, DC = 3(YL − I3R +
YR
2

). (7.14)

Hence

Qλ =


0 0 1

−1 −1 0

0 0 1

 , Dλ =


2 −1 2

2 −1 2

−1 −4 −1

 , (7.15)

Qqc =


1/3 1/3 1/3

1/3 1/3 1/3

−2/3 −2/3 −2/3

 Dqc =


−1 −1 −1

2 2 2

−1 −1 −1

 . (7.16)

Again using RC = (−1)DC+2j , we find it to be even for u, uc, d, dc, ν, νc, e, ec and odd for

h, hc, N,N c, E,Ec, S. Choosing φ11, φ23, φ32 to have nonzero vacuum expectation values,

the pattern of symmetry breaking is the same as in (A) and (B), but the SU(2)R subgroup

is different from either. It suffers from the same problems as the two previous cases, and

they are again solved by adding η, with 〈η31〉 6= 0 and 〈η12〉 6= 0. However, in contrast to

the variations (A) and (B), the φ33 and η33 entries are not neutral, so it is not possible to

preserve SU(2)L × SU(2)R as a low-energy subgroup.
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7.3 Gauge Boson Masses in (B)

Consider the breaking of SU(3)L × SU(3)R by a very large 〈η33〉 = v33. Of the

8 vector gauge bosons WL
i of SU(3)L and the 8 vector gauge bosons WR

i of SU(3)R, 9

become very heavy. The remaining 7 are the 3 of SU(2)L, the 3 of SU(2)R, and the one

linear combination W V
8 = (WL

8 +WR
8 )/
√

2. We assume that they survive to just above the

electroweak scale with equal couplings (g) for SU(2)L and SU(2)R and a different one (g′)

for YL + YR. Let 〈η11〉 = v11, 〈φ22〉 = v22, 〈φ13〉 = v13, 〈φ31〉 = v31, then

M2(WR
1,2) =

g2

2
[v2

11 + v2
22 + v2

31], (7.17)

where (WR
1 ∓ iWR

2 )/
√

2 = W±R are the charged SU(2)R gauge bosons with odd RB. The

other gauge bosons have even RB with

M2(WL
1,2) =

g2

2
[v2

11 + v2
22 + v2

13], (7.18)

and the massless photon given by

A =
e

g
(WL

3 +WR
3 )− e

g′

√
2

3
W V

8 . (7.19)

This implies

e2

g′2
=

3

2
(1− 2 sin2 θW ). (7.20)

If g′ = g (which is valid at the unification scale), then sin2 θW = 3/8 as expected. Now v31

breaks SU(2)R without breaking SU(2)L, so its value may be greater than the elctroweak

scale. Its associated gauge boson Z ′ is given by

Z ′ =

√
2gWR

3 +
√

3g′W V
8√

2g2 + 3g′2
=

1

cos θW
[
√

1− 2 sin2 θWW
R
3 + sin θWW

V
8 ]. (7.21)
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Hence the SM Z boson is now

Z = cos θWW
L
3 − tan θW [sin θWW

R
3 −

√
1− 2 sin2 θWW

V
8 ]. (7.22)

The (Z,Z ′) mass-squared matrix is given by

M2
ZZ =

g2

2 cos2 θW
[v2

11 + v2
22 + v2

13], (7.23)

M2
Z′Z′ =

g2

2

[
cos2 θW

1− 2 sin2 θW
v2

31 +
1− 2 sin2 θW

cos2 θW
(v2

11 + v2
22) + 2 tan2 θW v

2
13

]
, (7.24)

M2
ZZ′ =

g2 tan2 θW

2
√

1− 2 sin2 θW
[sin2 θW v

2
13 − (1− 2 sin2 θW )(v2

11 + v2
22)]. (7.25)

To avoid Z −Z ′ mixing so as not to upset precision electroweak measurements, M2
ZZ′ may

be chosen to be negligible in the above.

In this alternative left-right model, (u, h)R and (S, e)R are SU(2)R doublets with

h and S odd under RB. The mass terms for u and ν come from v22, those for d and e from

v13, those for h, E from v31, and the 3 × 3 matrix spanning (N,N c, S) from all three. As

such, it contains the necessary ingredients for a consistent model of built-in dark matter.

In variation (C), it has already been noted that SU(2)L × SU(2)R cannot be maintained

as a low-energy subgroup. Hence the associated dark sector must be very heavy and does

not lead to a realistic model. In variation (A), whereas SU(2)L × SU(2)R may emerge as

a low-energy subgroup, the dark sector consists of singlets under this symmetry and must

also be very heavy.

7.4 Dark Symmetries in [SU(3)]4

The notion of leptonic color [67, 68] is based on quark-lepton interchange symme-

try. Postulating SU(3)l to go with SU(3)q, leptons have three color components to begin
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with, but SU(3)l is broken to SU(2)l which remains exact, so that two of these leptonic color

fields are confined in analogy to the three color quarks being confined. The third unconfined

component is the observed lepton of the SM. The new particles of this model are not easily

produced and observed at the Large Hadron Collider, but will have unique signatures in a

future lepton collider, as recently discussed [82]. Under SU(3)q×SU(3)L×SU(3)l×SU(3)R,

q ∼ (3, 3∗, 1, 1) as in Eq. (1) and qc ∼ (3∗, 1, 1, 3) as in Eqs. (3), (10), and (13) for the three

variations (A,B,C) in parallel to what has been discussed for [SU(3]3. As for the leptonic

sector,

l ∼ (1, 3, 3∗, 1) ∼


x1 x2 ν

y1 y2 e

z1 z2 n

 (7.26)

is the same in all three variations, in analogy to q, whereas lc has three variations to match

qc, i.e.

lc ∼ (1, 1, 3, 3∗) ∼


xc1 yc1 zc1

xc2 yc2 zc2

νc ec nc

 ,


zc1 yc1 xc1

zc2 yc2 xc2

nc ec νc

 ,


xc1 zc1 yc1

xc2 zc2 yc2

νc nc ec

 . (7.27)

The electric charge and dark charge in (A) are given by

Q = I3L −
YL
2

+ I3R −
YR
2
− Yl

2
, DA = 3(YL − YR). (7.28)

Hence

Ql =


1/2 1/2 0

−1/2 −1/2 −1

1/2 1/2 0

 , Qlc =


−1/2 1/2 −1/2

−1/2 1/2 −1/2

0 1 0

 , (7.29)
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and Dl = −Dqc of Eq. (8), Dlc = −Dq of Eq. (6), i.e. u, uc, d, dc, ν, νc, e, ec, x, xc, y, yc have

DA = 1 (odd), whereas h, hc, n, nc, z, zc have DA = −2 (even). Again let RA = (−1)DA+2j ,

then the former group of fermions is even and the latter odd, i.e. belonging to the dark

sector if U(1)D is broken only by two units.

The breaking of SU(3)L × SU(3)R by a scalar bitriplet φ ∼ (1, 3, 1, 3∗), which

couples also to the fermions, proceeds as before. It has the same problems as discussed in

the [SU(3)]3 case. However, there are now two additional scalar bitriplets [66] in [SU(3)]4

with nonzero vacuum expectation values, i.e.

φL ∼ (1, 3, 3∗, 1) ∼ l, φR ∼ (1, 1, 3, 3∗) ∼ lc. (7.30)

They have thus the same would-be [Q,D] assignments. They are not responsible for fermion

masses, but are required to break leptonic color SU(3)l to SU(2)l. Now φL33 has DA = 2

which may be used to break SU(3)l × SU(2)L to SU(2)l × SU(2)L × U(1)Yl+YL . To break

SU(2)R as well without breaking RA, we use the same trick as before by assigning φR an

odd parity under Z2 as in [SU(3)]3 for η. To preserve the RA parity for the gauge bosons,

we may again define φRi1, φ
R
i2 to be even, and φRi3 to be odd. Now 〈φR31〉 breaks SU(3)l to

SU(2)l, but it also breaks SU(2)R without breaking SU(2)L. It allows thus the separation

of the SU(2)R scale without breaking the dark parity RA.

In the second variation (B), the electric charge is again the same as in (A) and

the dark charge is the same as in (B) of [SU(3)]3, i.e. Eq. (11). Using the same changes in

the pattern of symmetry breaking as discussed before, a model with dark Z2 symmetry is

again achieved. Here 〈φR33〉 breaks SU(3)l × SU(3)R to SU(2)l × SU(2)R × U(1)Yl+YR and

separates the SU(2)l scale from the breaking of SU(2)R by 〈φ31〉. This is the analog of the
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alternative left-right model in the [SU(3)]3 case. Applying 〈φL33〉 as well, the residual U(1)

symmetry is now YL + YR + Yl, exactly as needed for the electric charge of Eq. (28). In the

third variation (C), the electric charge is

Q = I3L −
YL
2

+ YR −
Yl
2
, (7.31)

and the dark charge is the same as DC of Eq. (14). It also results in a model with dark Z2

symmetry. However, as with its [SU(3)]3 analog, it is not possible to preserve SU(2)L ×

SU(2)R as a low-energy subgroup. Note that sin2 θW = 1/3 at the unification scale for

[SU(3)]4 which is of order 1011 GeV for a nonsupersymmetric model [66, 82].

7.5 Conclusions

The existence of a dark sector is easily implemented by adding a new symmetry

and new particles to the standard model. There are indeed numerous such proposals. As

a guiding principle, supersymmetry is a well-known and perhaps the only example, where

superpartners of all SM particles belong to the dark sector. In this paper, we suggest

another, i.e. that such a dark symmetry may have a gauge origin buried inside a complete

extended theoretical framework for the understanding of quarks and leptons. The inevitable

consequence of this hypothesis is to divide all fermions, scalars, as well as vector gauge bosons

into two categories. One includes all known particles of the SM and some new ones; the

other is the dark sector. They are however intrinsically linked to each other as essential

components of the unifying framework.

We consider as first examples [SU(3)]3 and [SU(3)]4, and identified the exact

nature of this dark symmetry in three variations of the above two unified symmetries. We
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have shown how this dark gauge symmetry is broken to the discrete Z2 dark parity which

stabilizes dark matter. Whereas all these models contain dark matter, only variation (B)

in either [SU(3)]3 or [SU(3)]4 allows it to be such that it exists at or near the electroweak

scale. They may serve as the prototypes for a deeper understanding of the origin of dark

matter as a built-in symmetry of a theoretically motivated extension of the Standard Model.

Our study points to the unity of matter with dark matter, the origin of which is not ad

hoc. Other possible candidates are SU(6) [90, 91] and SU(7) [91]. Future more detailed

explorations are called for.
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Chapter 8

Alternative [SU(3)]4 Model of

Leptonic Color and Dark Matter

The alternative [SU(3)]4 model of leptonic color and dark matter is discussed. It

unifies at MU ∼ 1014 GeV and has the low-energy subgroup SU(3)q × SU(2)l × SU(2)L ×

SU(2)R×U(1)X with (u, h)R instead of (u, d)R as doublets under SU(2)R. It has the built-

in global U(1) dark symmetry which is generalized B − L. In analogy to SU(3)q quark

triplets, it has SU(2)l hemion doublets which have half-integral charges and are confined

by SU(2)l gauge bosons (stickons). In analogy to quarkonia, their vector bound states

(hemionia) are uniquely suited for exploration at a future e−e+ collider.

8.1 Introduction

To venture beyond the Standard Model (SM) of quarks and leptons, there have

been many trailblazing ideas. One is the notion of grand unification, i.e. the embedding
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of the SM gauge symmetry SU(3)C × SU(2)L ×U(1)Y in a single larger symmetry such as

SU(5) ∼ E4, SO(10) ∼ E5, or E6. There are indeed very many papers devoted to this topic.

Less visited are the symmetries [SU(3)]N , where N = 3, 4, 6 have been considered [80, 81,

92, 66, 82, 93, 94, 95]. Another idea is that the SU(2)R quark doublet may not be (u, d)R

but rather (u, h)R where h is an exotic quark of charge −1/3. This was originally motivated

by superstring-inspired E6 models [83, 84] and later generalized to nonsupersymmetric

models [55, 56, 57, 85], but is easily implemented in [SU(3)]N models. A third idea is

quark-lepton interchange symmetry [67, 68] which assumes SU(3)l for leptons in parallel to

SU(3)q for quarks, but with SU(3)l broken to SU(2)l×U(1)Yl . This is naturally embedded

in [SU(3)]4 [66] and implies that only one component of the color lepton triplet is free, i.e.

the observed lepton, whereas the other two color components (with half-integral charges)

are confined in analogy to the three color components of a quark triplet. Finally a fourth

idea has been put forward recently [93, 96] that a dark symmetry may exist within [SU(3)]N

itself or perhaps [SU(3)]N ×U(1). This new insight points to the possible intrinsic unity of

matter with dark matter [90, 91, 97].

In this paper, all four of the above ideas are incorporated into a single consistent

framework based on the symmetry SU(3)q×SU(3)L×SU(3)l×SU(3)R. The three families

of quarks and leptons are contained in the bifundamental chain (3, 3∗, 1, 1) + (1, 3, 3∗, 1) +

(1, 1, 3, 3∗) + (3∗, 1, 1, 3) which also include other fermions beyond the SM. This unifying

symmetry is broken by two bifundamental scalars at MU to SU(3)q × SU(2)l × SU(2)L ×

SU(2)R × U(1)X in such a way that a residual global U(1)D symmetry remains. This

important property guarantees that a dark sector exists for a set of fermions, scalars, and
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vector gauge bosons. Because of the necessary particle content of [SU(3)]4, this U(1)D may

be identified as generalized B − L [25], under which quarks have charge 1/3 and leptons

have charge −1, but the other particles have different values.

At MR of order a TeV, SU(2)R×U(1)X is broken to U(1)Y of the SM, with particle

content of the SM plus possible light particles transforming under the leptonic color SU(2)l

symmetry. We will discuss their impact on cosmology as well as their possible revelation at

a future e−e+ collider, following closely our previous work [82] on the subject. We will also

consider the phenomenology associated with the SU(2)R gauge symmetry and the possible

dark-matter candidates of this model.

8.2 Fermion Content and Dark Symmetry

All fermions belong to bitriplet representations (3, 3∗) under SU(3)A × SU(3)B,

where SU(3)A acts vertically from up to down with I3A = (1/2,−1/2, 0) and YA =

(1, 1,−2)/(2
√

3), and SU(3)B horizontally from left to right with I3B = (−1/2, 1/2, 0)

and YB = (−1,−1, 2)/(2
√

3). The dark symmetry we will consider is

D =
√

3(−2YL +
√

3I3R + YR − 2Yl). (8.1)
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Under SU(3)q×SU(3)L×SU(3)l×SU(3)R, the fermion content of our model is then given

by

q ∼ (3, 3∗, 1, 1) ∼


d u h

d u h

d u h

 , Dq ∼


1 1 −2

1 1 −2

1 1 −2

 , (8.2)

l ∼ (1, 3, 3∗, 1) ∼


x1 x2 ν

y1 y2 e

z1 z2 n

 , Dl ∼


0 0 −3

0 0 −3

3 3 0

 , (8.3)

lc ∼ (1, 1, 3, 3∗) ∼


zc1 yc1 xc1

zc2 yc2 xc2

nc ec νc

 , Dlc ∼


−3 0 0

−3 0 0

0 3 3

 , (8.4)

qc ∼ (3∗, 1, 1, 3) ∼


hc hc hc

uc uc uc

dc dc dc

 , Dqc ∼


2 2 2

−1 −1 −1

−1 −1 −1

 , (8.5)

where u has charge 2/3, d, h have charge −1/3, x, z have charge 1/2, y has charge −1/2,

ν, n have charge 0, and e has charge −1. Using

RD = (−1)D+2j , (8.6)

we see that u, uc, d, dc, ν, νc, e, ec, z, zc are even, and h, hc, x, xc, y, yc, n, nc are odd. Further,

the gauge bosons which take h to u, d in SU(3)L and hc to uc, dc in SU(3)R are odd, as well

as the corresponding ones in SU(3)l, and the others even, including all those of the SM.

Hence RD would remain a good symmetry for dark matter provided that the scalar sector

responsible for the symmetry breaking obeys it as well.
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The scalar bitriplets responsible for the masses of the fermions in Eqs. (2) to (5)

come from three chains, each of the form (3, 1, 3∗, 1) + (1, 3, 1, 3∗) + (3∗, 1, 3, 1) + (1, 3∗, 1, 3).

Specifically,

φ(1,3,5) ∼ (1, 3, 1, 3∗) ∼


η0 φ+

2 φ0
1

η− φ0
2 φ−1

χ0 χ+ λ0

 , Dφ ∼


−3 0 0

−3 0 0

0 3 3

 , (8.7)

φ̄(2,4,6) ∼ (1, 3∗, 1, 3) ∼


η̄0 η+ χ̄0

φ−2 φ̄0
2 χ−

φ̄0
1 φ+

1 λ̄0

 , Dφ̄ ∼


3 3 0

0 0 −3

0 0 −3

 . (8.8)

From the qcqφ terms, we obtain masses of hhc from 〈χ0〉(1), ddc from 〈φ0
1〉(3), uuc from

〈φ0
2〉(5). From the llcφ̄ terms, we obtain masses of nnc, zzc from 〈χ̄0〉(2), ννc, xxc from

〈φ̄0
1〉(4), eec, yyc from 〈φ̄0

2〉(6). It is clear that D and thus RD remain unbroken by the above

vacuum expectation values.

8.3 Symmetry Breaking Pattern

We consider the breaking of [SU(3)]4 at MU by two scalar bitriplets, one trans-

forming as φL+ ∼ (1, 3, 3∗, 1) ∼ l, belonging to a chain in parallel to the fermions, the other

transforming as φR− ∼ (1, 1, 3, 3∗) ∼ lc, belonging to a chain with an additional overall

imposed assignment of odd RD, i.e. an additional Z2 factor [93]. This preserves the relative

RD among its components, but prevents it from coupling to the fermions. Using 〈φL+
33 〉

with even RD to break SU(3)L × SU(3)l to SU(2)L × SU(2)l × U(1)(YL+Yl)/
√

2 and 〈φR−33 〉

which also has even RD to break SU(3)l × SU(3)R to SU(2)l × SU(2)R × U(1)(Yl+YR)/
√

2,
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the resulting theory preserves RD. Assuming also that all the particles of the chain asso-

ciated with φR− are superheavy, the low-energy theory with the residual gauge symmetry

SU(3)q×SU(2)l×SU(2)L×SU(2)R×U(1)X , where X = (YL+YR+Yl)/
√

3, also preserves

D.

Since there are three fermion chains, and five scalar chains, the b coefficients for

the renormalization-group running of each SU(3) gauge coupling are all given by

b = −11 +
2

3

(
1

2

)
(2)(3)(3) +

1

3

(
1

2

)
(2)(3)(5) = 0. (8.9)

This shows that we have a possible finite field theory [92] above MU .

At MR, the SU(2)R×U(1)X gauge symmetry is broken to U(1)Y of the SM, where

Y = I3R −X, by an SU(2)R doublet whose neutral component is a linear combination of

χ0 from φ(1), the conjugate of χ̄0 from φ̄(2), and φR+
31 from the (1, 1, 3, 3∗) component of the

chain containing φL+ discussed previously. From the allowed antisymmetric trilinear term

lclcφR+, the mass term xc1y
c
2−xc2yc1 is then obtained. Note that the correponding mass term

x1y2 − x2y1 is superheavy because it comes from 〈φL+
33 〉. Note also that the corresponding

term lclcφR− is forbidden because of the overall assignment of odd RD for φR−. Finally the

symmetry SU(2)L×U(1)Y is broken by two SU(2)L doublets to U(1)em with Q = I3L+Y .

8.4 Renormalization-Group Running of Gauge Couplings

The renormalization-group evolution of the gauge couplings is dictated at leading

order by

1

αi(µ)
=

1

αi(µ′)
+
bi
2π

ln

(
µ′

µ

)
, (8.10)
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where bi are the one-loop beta-function coefficients. From MU to MR, we assume that all

fermions are light except the three families of (x, y) hemions. As for the scalars, we assume

that only the following multiplets are light under SU(2)L × SU(2)R × U(1)X : 1 copy of

(1, 2,−1/2), 6 copies of (2, 2, 0), 3 copies of (2, 1,−1/2), and 4 copies of (2, 1, 1/2). This

choice requires fine tuning in the scalar sector as in other models of grand unification such

as SU(5) and SO(10). As a result, the five b coefficients are given by

bq = −11 +
2

3

(
1

2

)
(6)(3) = −5, (8.11)

bl = −22

3
+

2

3

(
1

2

)
(4)(3) = −10

3
, (8.12)

bL = −22

3
+

2

3

(
1

2

)
(3 + 1)(3) +

1

3

(
1

2

)
[7 + 6(2)] = −1

6
, (8.13)

bR = −22

3
+

2

3

(
1

2

)
(3 + 2 + 1)(3) +

1

3

(
1

2

)
[1 + 6(2)] =

5

6
, (8.14)

bX =
2

3

[
1

6
(3) +

1

6
(3) +

1

4
(4) +

1

4
(4)

]
(3) +

1

3

(
1

4

)
[2 + 7(2)] =

22

3
. (8.15)

From MR to MZ , we assume the SM quark and lepton content together with 1 copy

of (xc, yc) hemions and two SU(2)L Higgs scalar doublets. The massless SU(2)l stickons

are of course included but they affect only αl. The four b coefficients are then

bq = −11 +
2

3

(
1

2

)
(4)(3) = −7, (8.16)

bl = −22

3
+

2

3

(
1

2

)
(2) = −20

3
, (8.17)

bL = −22

3
+

2

3

(
1

2

)
(3 + 1)(3) +

1

3

(
1

2

)
(2) = −3, (8.18)

bY =
1

2

[
2

3

{
10

3
(3) +

1

4
(4)

}
+

1

3

(
1

4

)
(4)

]
=

23

6
, (8.19)

where a factor of 1/2 has been inserted to normalize bY . The boundary condition at MR
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for SU(2)R × U(1)X to become U(1)Y is

2

αY (MR)
=

1

αR(MR)
+

1

αX(MR)
. (8.20)

We then obtain

1

αq(MZ)
=

1

αU
− 7

2π
ln
MR

MZ
− 5

2π
ln
MU

MR
, (8.21)

1

αL(MZ)
=

1

αU
− 3

2π
ln
MR

MZ
− 1

6(2π)
ln
MU

MR
, (8.22)

1

αY (MZ)
=

1

αU
+

23

6(2π)
ln
MR

MZ
+

49

12(2π)
ln
MU

MR
. (8.23)
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Figure 8.1: Evolution of α−1
i as a function of energy scale.
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Using the experimental inputs

αq(MZ) = 0.1185, (8.24)

αL(MZ) = (
√

2/π)GFM
2
W = 0.0339, (8.25)

αY (MZ) = 2αL(MZ) tan2 θW = 0.0204, (8.26)

where a factor of 2 has been used to normalize αY , we find

1

0.0339
− 1

0.1185
= 21.06 =

4

2π
ln
MR

MZ
+

29

6(2π)
ln
MU

MR
, (8.27)

1

0.0204
− 1

0.0339
= 19.52 =

41

6(2π)
ln
MR

MZ
+

17

4(2π)
ln
MU

MR
. (8.28)

This implies MR ' 600 GeV and MU ' 1014 GeV, as shown in Fig. 1. The 5 lines emanating

from a common point at 1014 GeV represent U(1)X , SU(2)R, SU(2)L, SU(2)l, and SU(3)q

from top to bottom. The line between MR and MZ represents normalized U(1)Y . Since

there are uncertainties (both theoretical and experimental) in the above estimate, the value

of MR should not be taken too literally, but rather an indication that particles transforming

under SU(2)R have masses of an order of magnitude greater than those of the SM. As a

result, αU = 0.0322. Using

1

αR(MR)
=

1

αU
+

5

6(2π)
ln
MU

MR
, (8.29)

we obtain αR(MR) = 0.0290. Using

1

αl(MZ)
− 1

αq(MZ)
=

1

3(2π)
ln
MR

MZ
+

5

3(2π)
ln
MU

MR
, (8.30)

we obtain αl = 0.0650, implying a confining scale of about 0.4 MeV from leptonic color.

This is significantly different from the result of the [SU(3)]4 model with MR = MU , where

it is a few keV [66, 82].
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8.5 Low-Energy Particle Content

The particles of this model at or below a few TeV are listed in Table 1 under

SU(3)q × SU(2)l × SU(2)L × SU(2)R × U(1)X ×D, where X = (YL + YR + Yl)/
√

3 (each

Y normalized according to
∑
Y 2 = 1/2, D =

√
3(−2YL +

√
3I3R + YR − 2Yl), and Q =

I3L + I3R − X. The SU(2)L × SU(2)R scalar bidoublet contains the SU(2)L doublets

Table 8.1: Particle content of proposed model.

particles SU(3)q SU(2)l SU(2)L SU(2)R U(1)X D S I3R + S

(u, d)L 3 1 2 1 −1/6 (1,1) 1/3 1/3
(u, h)R 3 1 1 2 −1/6 (1,−2) −1/6 (1/3,−2/3)
dR 3 1 1 1 1/3 1 1/3 1/3
hL 3 1 1 1 1/3 −2 −2/3 −2/3

(ν, l)L 1 1 2 1 1/2 (−3,−3) −1 −1
(n, l)R 1 1 1 2 1/2 (0,−3) −1/2 (0,−1)
νR 1 1 1 1 0 −3 −1 −1
nL 1 1 1 1 0 0 0 0

(z, y)R 1 2 1 2 0 (3, 0) 1/2 (1, 0)
xR 1 2 1 1 −1/2 0 0 0
zL 1 2 1 1 −1/2 3 1 1

(φ0
1, φ
−
1 ) 1 1 2 1 1/2 0 0 0

(χ+, χ0) 1 1 1 2 −1/2 (3, 0) 1/2 (1,0)
(η,Φ2) 1 1 2 2 0 (−3, 0) −1/2 (−1, 0)
λ0 1 1 1 1 0 3 1 1

η = (η0, η−) and Φ2 = (φ+
2 , φ

0
2), with η heavy at the MR scale. Because of the assumed

symmetry breaking pattern, our model actually possesses a conserved global symmetry

S =
1√
3

(YR − 2YL − 2Yl) (8.31)
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before SU(2)R breaking, even though the corresponding gauge symmetry has been broken.

Whereas both S and I3R are broken by 〈χ0〉, the combination

I3R + S =
D

3
(8.32)

is unbroken. Although this idea was used previously [55, 56], the important observation

here is that I3R + S coincides with the usual definition of B − L for the known quarks and

leptons, but takes on different values for the other particles. Hence D/3 may be defined as

generalized B − L and functions as a global dark U(1) symmetry. Now

RD = (−1)3B−3L+2j (8.33)

so that it is identical to the usual definition of R parity in supersymmetry for the SM

particles. Here the odd RD particles are the h, n, x, y fermions, (η0, η−), λ0 scalars, and W±R

vector bosons. Note that leptonic color SU(2)l confines the x, y hemions to bosons which

must then have even RD.

To verify that generalized B − L is indeed a global dark U(1) symmetry of our

model, consider the SU(2)R gauge bosons (W+
R ,W

0
R,W

−
R ) which has S = 0. Hence they

have I3R + S values (1, 0,−1). This is expected because W+
R takes hR to uR and lR to nR.

Consider next the Yukawa terms allowed by the gauge symmetry and S, i.e.

d̄R(uLφ
−
1 − dLφ0

1), ūR(uLφ
0
2 − dLφ+

2 ) + h̄R(−uLη− + dLη
0), (χ+ūR − χ0h̄R)hL,(8.34)

(φ0
1ν̄L + φ−1 l̄L)νR, ν̄L(nRη

0 + lRφ
+
2 ) + l̄L(nRη

− + lRφ
0
2), n̄L(nRχ

0 − lRχ+), (8.35)

z̄L(zRχ
0 − yRχ+), x̄R(z̄Rχ

+ + ȳRχ
0), d̄RhLλ

0, n̄LνRλ
0, z̄LxRλ

0, zRyRλ̄
0,(8.36)

and the scalar trilinear terms

φ−1 (η0χ+ + φ+
2 χ

0)− φ0
1(η−χ+ + φ0

2χ
0), λ0(η0φ0

2 − η−φ+
2 ). (8.37)
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It is easily confirmed from the above that I3R + S is not broken by 〈φ0
1,2〉 and 〈χ0〉. Note

that in the familar case of SU(5) grand unification, neither B nor L is part of SU(5)

but both exist as low-energy conserved quantities. Here, B and L are again not part of

[SU(3)]4 separately, but a generalized B−L emerges, and remains unbroken to be naturally

interpreted as a global dark symmetry.

8.6 Gauge Sector

Let

〈φ0
1〉 = v1, 〈φ0

2〉 = v2, 〈χ0〉 = vR, (8.38)

then the SU(3)q × SU(2)l × SU(2)L × SU(2)R × U(1)X gauge symmetry is broken to

SU(3)q×SU(2)l×U(1)em with a residual global I3R+S as the dark symmetry, as explained

previously.

Consider now the masses of the gauge bosons. The charged ones, W±L and W±R ,

do not mix because the latter have dark charge ±1. Their masses are given by

M2
WL

=
1

2
g2
L(v2

1 + v2
2), M2

WR
=

1

2
g2
R(v2

R + v2
2). (8.39)

Since Q = I3L + I3R −X, the photon is given by

A =
e

gL
W3L +

e

gR
W3R +

e

gX
ZX , (8.40)

where e−2 = g−2
L + g−2

R + g−2
X . Let

Z = (g2
L + g2

Y )−1/2

(
gLW3L −

g2
Y

gR
W3R −

g2
Y

gX
ZX

)
, (8.41)

Z ′ = (g2
R + g2

X)−1/2(gRW3R − gXZX), (8.42)
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where g−2
Y = g−2

R + g−2
X , then the 2× 2 mass-squared matrix spanning (Z,Z ′) is given by

1

2

 (g2
L + g2

Y )(v2
1 + v2

2) (
√
g2
L + g2

Y /
√
g2
R + g2

X)(g2
Xv

2
1 − g2

Rv
2
2)

(
√
g2
L + g2

Y /
√
g2
R + g2

X)(g2
Xv

2
1 − g2

Rv
2
2) (g2

R + g2
X)v2

R + (g4
Xv

2
1 + g4

Rv
2
2)/(g2

R + g2
X)

 .(8.43)

Their neutral-current interactions are given by

LNC = eAµj
µ
Q + gZZµ(jµ3L − sin2 θW j

µ
em) + (g2

R + g2
X)−1/2Z ′µ(g2

Rj
µ
3R + g2

Xj
µ
X),(8.44)

where g2
Z = g2

L+g2
Y and sin2 θW = g2

Y /g
2
Z . Since Z−Z ′ mixing is constrained by experiment

to be less than 10−4 or so, we assume (g2
Xv

2
1 − g2

Rv
2
2)/v2

R to be negligible.

The new gauge boson Z ′ may be produced at the Large Hadron Collider (LHC)

through their couplings to u and d quarks, and decay to charged leptons (e−e+ and µ−µ+).

Hence current search limits for a Z ′ boson are applicable. Using αR(MR) = 0.0290 and

αX(MR) = 0.0163, the cu,d coefficients [46, 16] used in the data analysis for our model are

cu = (g2
uL + g2

uR)B = 0.04 B, cd = (g2
dL + g2

dR)B = 0.01 B, (8.45)

where B is the branching fraction of Z ′ to e−e+ and µ−µ+. Assuming that Z ′ decays

to all the particles listed in Table 1, except for the scalars which become the longitudinal

components of the various gauge bosons, we find B = 0.044. Based on the 2016 LHC 13

TeV data set [98], this translates to a bound of about 3 to 4 TeV on the Z ′ mass.
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8.7 Scalar Sector

Consider the most general scalar potential consisting of ΦL = (φ0
1, φ
−
1 ), χR =

(χ+, χ0), λ0, and

η =

η0 φ+
2

η− φ0
2

 , η̃ = σ2η
∗σ2 =

 φ̄0
2 −η+

−φ−2 η̄0

 , (8.46)

then

V = −µ2
LΦ†LΦL − µ2

Rχ
†
RχR − µ2

ηTr(η
†η)− µ2

λλ̄λ+ [µ1Φ†LηχR + µ2λdet(η) +H.c.]

+
1

2
fL(Φ†LΦL)2 +

1

2
fR(χ†RχR)2 +

1

2
fλ(λ̄λ)2 +

1

2
fη[Tr(η

†η)]2 +
1

2
f ′ηTr(η

†ηη†η)

+ fLR(Φ†LΦL)(χ†RχR) + fLλ(Φ†LΦL)(λ̄λ) + fRλ(χ†RχR)(λ̄λ) + fλη(λ̄λ)Tr(η†η)

+ fLηΦ
†
Lηη

†ΦL + f ′LηΦ
†
Lη̃η̃

†ΦL + fRηχ
†
Rη
†ηχR + f ′Rηχ

†
Rη̃
†η̃χR. (8.47)

Note that

2|det(η)|2 = [Tr(η†η)]2 − Tr(η†ηη†η), (8.48)

(Φ†LΦL)Tr(η†η) = Φ†Lηη
†ΦL + Φ†Lη̃η̃

†ΦL, (8.49)

(χ†RχR)Tr(η†η) = χ†Rη
†ηχR + χ†Rη̃

†η̃χR. (8.50)

The minimum of V satisfies the conditions

µ2
L = fLv

2
1 + fLηv

2
2 + fLRv

2
R + µ1v2vR/v1, (8.51)

µ2
η = (fη + f ′η)v

2
2 + fLηv

2
1 + fRηv

2
R + µ1v1vR/v2, (8.52)

µ2
R = fRv

2
R + fLRv

2
1 + fRηv

2
2 + µ1v1v2/vR. (8.53)
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The 3× 3 mass-squared matrix spanning
√

2Im(φ0
1, φ

0
2, χ

0) is then given by

M2
I = µ1


−v2vR/v1 vR v2

vR −v1vR/v2 v1

v2 v1 −v1v2/vR

 . (8.54)

and that spanning
√

2Re(φ0
1, φ

0
2, χ

0) is

M2
R =M2

I + 2


fLv

2
1 fLηv1v2 fLRv1vR

fLηv1v2 (fη + f ′η)v
2
2 fRηv2vR

fLRv1vR fRηv2vR fRv
2
R

 . (8.55)

Hence there are two zero eigenvalues in M2
I with one nonzero eigenvalue −µ1[v1v2/vR +

vR(v2
1 + v2

2)/v1v2] corresponding to the eigenstate (−v−1
1 , v−1

2 , v−1
R )/

√
v−2

1 + v−2
2 + v−2

R . In

M2
R, the linear combination H = (v1, v2, 0)/

√
v2

1 + v2
2, is the standard-model Higgs boson,

with

m2
H = 2[fLv

4
1 + (fη + f ′η)v

4
2 + 2fLηv

2
1v

2
2]/(v2

1 + v2
2). (8.56)

The other two scalar bosons are much heavier, with suppressed mixing to H, which may

all be assumed to be small enough to avoid the constraints from dark-matter direct-search

experiments.

The dark scalars are λ0, χ±, and (η0, η−). Whereas χ± become the longitudinal

components of W±R , the other scalars have the interaction

µ2λ
0(η0φ0

2 − η−φ+
2 ) +H.c. (8.57)

The 2× 2 mass-squared matrix linking (λ, η̄) to (λ̄, η) is given by

M2
λ−η =

−µ2
λ + fLλv

2
1 + fRλv

2
R + fληv

2
2 µ2v2

µ2v2 −µ2
η + fηv

2
2 + f ′Lηv

2
1 + f ′Rηv

2
R

 . (8.58)
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We assume µ2 to be very small so that there is negligible mixing, with λ0 as the lighter par-

ticle which is our dark-matter candidate. Note of course that η0 is not a suitable candidate

because it has Z0 interactions.

8.8 Dark Matter Interactions

Consider the scalar singlet λ0 as our dark-matter candidate. Let its coupling with

the SM Higgs boson be fλH
√

2vH , then it has been shown [85] that for mλ = 150 GeV,

fλH < 4.4×10−4 from the most recent direct-search result [99]. With such a small coupling,

the λ0 annihilation cross section in the early Universe through the SM Higgs boson is much

too small for λ0 to have the correct observed relic abundance. Hence a different process is

required.

Consider then the Yukawa sector. As noted in Eq. (36), the interactions fxλ
0z̄LxR

and fyλ̄
0zRyR exist. Now xR/yR forms a Dirac hemion and has been assumed to be light

in the previous analysis on the renormalization-group running of gauge couplings. For

convenience, the outgoing yR may be redefined as incoming xL. Let mλ > mx, then

λ0λ̄0 → xx̄ through z exchange is possible as shown in Fig. 2. Let fy = f∗x so that the λ0z̄x

interaction is purely scalar. The cross section × relative velocity is then given by

σvrel =
f4
x

4π

(
1− m2

x

m2
λ

)3/2
(mz +mx)2

(m2
z +m2

λ −m2
x)2

. (8.59)

As an example, let mλ = 150 GeV, mx = 100 GeV, and mz = 600 GeV, then σvrel = 1 pb

is obtained for fx = 0.385. The xx̄ final states remain in thermal equilibrium through the

photon, with their confined bound states (which are bosons with even RD) decaying to SM
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Figure 8.2: Dark scalar annihilation to hemions.

particles as described in a following section.

8.9 Leptonic Color in the Early Universe

As discussed in our earlier paper [82], the SU(2)l massless stickons (ζ) play a role

in the early Universe. The important difference is that αl(MZ) is bigger here than in the

Babu-Ma-Willenbrock (BMW) model [66], i.e. 0.065 versus 0.047. Hence the leptonic color

confinement scale is about 0.4 MeV instead of 4 keV. At temperatures above the electroweak

symmetry scale, the hemions are active and the stickons are in thermal equilibrium with the

standard-model particles. Below the hemion mass scale, the stickon interacts with photons

through ζζ → γγ scattering with a cross section

σ ∼ α2α2
l T

6

64m8
, (8.60)
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where m is the mass of the one light xRyR hemion of this model. The decoupling tempera-

ture of ζ is then obtained by matching the Hubble expansion rate

H =
√

(8π/3)GN (π2/30)g∗T 4 (8.61)

to [6ζ(3)/π2]T 3〈σv〉. Hence

T 14 ∼ 212

34

(
π7

5[ζ(3)]2

)
GNg∗m

16

α4α4
l

. (8.62)

For m = 100 GeV and g∗ = 92.25 which includes all particles with masses up to a few GeV,

T ∼ 9 GeV. Hence the contribution of stickons to the effective number of neutrinos at the

time of big bang nucleosynthesis (BBN) is given by [73]

∆Nν =
8

7
(3)

(
10.75

92.25

)4/3

= 0.195, (8.63)

compared to the value 0.50± 0.23 from a recent analysis [74].

As the Universe further cools below a few MeV, leptonic color goes through a

phase transition and stickballs are formed. However, they are not stable because they are

allowed to mix with a scalar bound state of two hemions which would decay to two photons.

For a stickball ω of mass mω, we assume this mixing to be fωmω/m, so that its decay rate

is given by

Γ(ω → γγ) =
α2f2

ωm
5
ω

256π3m4
. (8.64)

Using mω = 1 MeV as an example with m = 100 GeV as before, its lifetime is estimated

to be 1.0× 107s for fω = 1. This means that it disappears long before the time of photon

decoupling, so the SU(2)l sector contributes no additional relativistic degrees of freedom.

Hence Neff remains the same as in the SM, i.e. 3.046, coming only from neutrinos. This
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agrees with the PLANCK measurement [75] of the cosmic microwave background (CMB),

i.e.

Neff = 3.15± 0.23. (8.65)

8.10 Leptonic Color at Future e−e+ Colliders

Unlike quarks, all hemions are heavy. Hence the lightest bound state is likely to be

at least 200 GeV. Its cross section through electroweak production at the LHC is probably

too small for it to be discovered. On the other hand, in analogy to the observations of J/ψ

and Υ at e−e+ colliders of the last century, the resonance production of the corresponding

neutral vector bound states (hemionia) of these hemions is expected at a future e−e+ collider

(ILC, CEPC, FCC-ee) with sufficient reach in total center-of-mass energy. Their decays will

be distinguishable from heavy quarkonia (such as toponia) experimentally.

As discussed in Ref. [82], the formation of hemion bound states is analogous to

that of QCD. Instead of one-gluon exchange, the Coulomb potential binding a hemion-

antihemion pair comes from one-stickon exchange. The difference is just the change in

an SU(3) color factor of 4/3 to an SU(2) color factor of 3/4. The Bohr radius is then

a0 = [(3/8)ᾱlm]−1, and the effective ᾱl is defined by

ᾱl = αl(a
−1
0 ). (8.66)

Using αl(MZ) = 0.065 with m = 100 GeV, we obtain ᾱl = 0.087 and a−1
0 = 3.26 GeV.

Consider the lowest-energy vector bound state Ω of the lightest hemion of mass m = 100
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GeV. In analogy to the hydrogen atom, its binding energy is given by

Eb =
1

4

(
3

4

)2

ᾱ2
lm = 106 MeV, (8.67)

and its wavefunction at the origin is

|ψ(0)|2 =
1

πa3
0

= 11.03 GeV3. (8.68)

Since Ω will appear as a narrow resonance at a future e−e+ collider, its observation depends

on the integrated cross section over the energy range
√
s around mΩ:

∫
d
√
s σ(e−e+ → Ω→ X) =

6π2

m2
Ω

ΓeeΓX
Γtot

, (8.69)

where Γtot is the total decay width of Ω, and Γee, ΓX are the respective partial widths.

Since Ω is a vector meson, it couples to both the photon and Z boson through its

constituent hemions. Hence it will decay to W−W+, qq̄, l−l+, and νν̄. Using

〈0|x̄γµx|Ω〉 = εµΩ
√

8mΩ|ψ(0)|, (8.70)

the Ω→ e−e+ decay rate is given by

Γ(Ω→ γ, Z → e−e+) =
2m2

Ω

3π
(|CV |2 + |CA|2)|ψ(0)|2, (8.71)

where

CV =
e2(1/2)(−1)

m2
Ω

+
g2
Z(− sin2 θW /4)[(−1 + 4 sin2 θW )/4]

m2
Ω −M2

Z

, (8.72)

CA =
g2
Z(− sin2 θW /4)(1/4)

m2
Ω −M2

Z

. (8.73)

In the above, Ω is composed of the singlet hemions xR and yR with invariant mass term

x1Ry2R−x2Ry1R. The (xL, yL) option, considered in the BMW model, is not available here
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because they are superheavy from the breaking of SU(3)L at MU . Here Γee = 139 eV.

Similar expressions hold for the other fermions of the SM.

For Ω→W−W+, the triple γW−W+ and ZW−W+ vertices have the same struc-

ture. The decay rate is calculated to be

Γ(Ω→ γ, Z →W−W+) =
m2

Ω(1− r)3/2

6πr2

(
4 + 20r + 3r2

)
C2
W |ψ(0)|2, (8.74)

where r = 4M2
W /m

2
Ω and

CW =
e2(1/2)

m2
Ω

+
g2
Z(− sin2 θW /4)

m2
Ω −M2

Z

. (8.75)

Because of the accidental cancellation of the two terms in the above, CW turns out to be

very small. Hence ΓWW = 10 eV. For Ω → ZZ, there is only the t−channel contribution,

i.e.

Γ(Ω→ ZZ) =
m2

Ω(1− rZ)5/2

3πrZ
D2
Z |ψ(0)|2, (8.76)

where rZ = 4M2
Z/m

2
Ω and DZ = g2

Z sin4 θW /4(m2
Ω − 2m2

Z). Hence ΓZZ is negligible. The

Ω decay to two stickons is forbidden by charge conjugation. Its decay to three stickons is

analogous to that of quarkonium to three gluons. Whereas the latter forms a singlet which

is symmetric in SU(3)C , the former forms a singlet which is antisymmetric in SU(2)l.

However, the two amplitudes are identical because the latter is symmetrized with respect

to the exchange of the three gluons and the former is antisymmetrized with respect to the

exchange of the three stickons. Taking into account the different color factors of SU(2)l

versus SU(3)C , the decay rate of Ω to three stickons and to two stickons plus a photon are

Γ(Ω→ ζζζ) =
16

27
(π2 − 9)

α3
l

m2
Ω

|ψ(0)|2, (8.77)

Γ(Ω→ γζζ) =
8

9
(π2 − 9)

αα2
l

m2
Ω

|ψ(0)|2. (8.78)
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Hence Γζζζ = 39 eV and Γγζζ = 7 eV. The integrated cross section for X = µ−µ+ is then

1.2 × 10−32 cm2-keV. For comparison, this number is 7.9 × 10−30 cm2-keV for the Υ(1S).

At a high-luminosity e−e+ collider, it should be feasible to make this observation. Table 2

summarizes all the partial decay widths.

Table 8.2: Partial decay widths of the hemionium Ω.

Channel Width∑
νν̄ 36 eV

e−e+, µ−µ+, τ−τ+ 0.4 keV

uū, cc̄ 0.3 keV

dd̄, ss̄, bb̄ 0.1 keV

W−W+ 10 eV
ZZ < 0.1 eV

ζζζ 39 eV
ζζγ 7 eV

sum 0.9 keV

There are important differences between QCD and QHD (quantum hemiodynam-

ics). In the former, because of the existence of light u and d quarks, it is easy to pop up

uū and dd̄ pairs from the QCD vacuum. Hence the production of open charm in an e−e+

collider is described well by the fundamental process e−e+ → cc̄. In the latter, there are no

light hemions. Instead it is easy to pop up the light stickballs from the QHD vacuum. As

a result, just above the threshold of making the Ω resonance, the many-body production

of Ω + stickballs becomes possible. This cross section is presumably also well described by

the fundamental process e−e+ → xx̄, i.e.

σ(e−e+ → xx̄) =
2πα2

3

√
1− 4m2

s

[
(s+ 2m2)

s2
+

x2
W

2(1− xW )2

(s−m2)

(s−m2
Z)2

+
xW

(1− xW )

(s−m2)

s(s−m2
Z)
− (1− 4xW )

4(1− xW )

m2

s(s−m2
Z)

]
, (8.79)
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where xW = sin2 θW and s = 4E2 is the square of the center-of-mass energy. Using m = 100

GeV and s = (250 GeV)2 as an example, we find this cross section to be 0.79 pb.

In QCD, there are qq̄ bound states which are bosons, and qqq bound states which

are fermions. In QHD, there are only bound-state bosons, because the confining symmetry

is SU(2)l. Also, unlike baryon (or quark) number in QCD, there is no such thing as hemion

number in QHD, because y is effectively x̄. This explains why there are no stable analog

fermion in QHD such as the proton in QCD.

8.11 Conclusions

Candidates for dark matter are often introduced in an ad hoc manner, because it is

so easy to do. There are thus numerous claimants to the title. Is there a guiding principle?

One such is supersymmetry, where the superpartners of the SM particles naturally belong

to a dark sector. Another possible guiding principle proposed recently is to look for a

dark symmetry embedded as a gauge symmetry in a unifying extension of the SM, such

as [SU(3)]N . In this paper, the alternative [SU(3)]4 gauge model of leptonic color and

dark matter is discussed in some detail. The dark global U(1) symmetry is identified as

generalized B − L and the dark parity is RD = (−1)3B−3L+2j . The dark sector contains

fermions (h, x, y, n), scalars [(η0, η−), λ0], and vector gauge bosons W±R , where h is a dark

quark of charge −1/3, x, y are hemions of charge ±1/2, and n is a dark neutral fermion.

The dark matter of the Universe is presumably a neutral scalar dominated by the singlet

λ0.

The absence of observations of new physics at the LHC is a possible indication that
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fundamental new physics may not be accessible using the strong interaction, i.e. quarks

and gluons. It is then natural to think about future e−e+ colliders. But is there some

fundamental issue of theoretical physics which may only reveal itself there? and not at

hadron colliders? The notion of leptonic color is such a possible answer. Our alternative

[SU(3)]4 model allows for the existence of new half-charged fermions (hemions) under a

confining SU(2)l leptonic color symmetry, with masses below the TeV scale. It also predicts

the SU(2)l confining scale to be 0.4 MeV, so that stickball bound states of the vector gauge

stickons are formed. These new particles have no QCD interactions, but hemions have

electroweak couplings, so they are accessible in a future e−e+ collider, as described in this

paper.
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Chapter 9

Conclusions

In the first section, well-motivated U(1) gauge extensions were applied to the

Standard Model in an effort to describe a variety of observations. In Chapter 2, this

symmetry served as a generalized B-L symmetry that, though heavily restricted by FCNC,

was able to recreate the best-fit CKM parameters. In Chapter 3, neutrino mass and dark

matter were discussed in unison via a triplet model where the doubly charged triplet scalar

had an unexplored collider signature. In Chapter 4, right-handed isospin inspired a U(1)

extension to only right-handed fields, which permitted the generation of all light fermion

masses radiatively through dark matter.

In the second section, left-right models that linked normal matter symmetries

with dark matter stability were explored. In Chapter 5, a consistent, gauged U(1) was

constructed to replace a global symmetry and stabilize dark matter in ALRM. Chapter 6

explored a particular quartification scheme in which the low-energy particle content featured

leptonic-color bound states with stable glueball-like states and associated signatures. In
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Chapter 7, the symmetry breaking pattern from quartification and trinification to ALRM

were studied, revealing the possible low-energy content and dark matter symmetry based

on the pattern of symmetry breaking. In Chaptere 8, some of these ideas were combined to

find a consistent model of SU(3)4 unification that featured ALRM as a low-energy subgroup

as well as an emergent symmetry for dark matter.
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