
UCLA
UCLA Electronic Theses and Dissertations

Title
A Programmable Wireless Single Channel Neural Interface with Artifact Cancellation 
Capability

Permalink
https://escholarship.org/uc/item/9wd786qm

Author
Nong, Yu

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wd786qm
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

A Programmable Wireless Single Channel Neural Interface  

with Artifact Cancellation Capability 

 

 

A dissertation submitted in partial satisfaction of the  

requirements for the degree Master of Science 

in Electrical and Computer Engineering 

 

by 

 

Yu Nong 

 

2022 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Yu Nong 

2022  



ii 
 

ABSTRACT OF THE THESIS 

 

A Programmable Wireless Single Channel Neural Interface  

with Artifact Cancellation Capability 

 

by 

 

Yu Nong 

Master of Science in Electrical and Computer Engineering 

University of California, Los Angeles, 2022 

Professor Wentai Liu, Chair 

 

 In the past decades, the field of neural interface has gained significant amount of attention 

and advancement. However, some desirable powerful features have not been designed in the 

current neural interface devices because of technical challenges. First, most current neural 

interface devices use wire communication to transfer collected data and receive external 

commands. While wire communication provides better signal quality and data rate, wireless 

communication enables the free movement of experiment target in chronic studies. Secondly, 

stimulation artifact becomes a major roadblock for the development of bidirectional neural 

interfaces. This problem can be further divided into two parts, the saturation of amplifier caused 
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by large-amplitude artifact and the distortion of neural signals. Thirdly, for rodent-based chronic 

studies, the size and weight become another layer of constraints given the size of experiment 

animal. Fourthly, various neuromodulation applications usually require different stimulation 

protocols, thus the stimulation waveforms generated by the interface must be versatile and 

programmable to support a broad set of applications – a one size fits all concept. 

 To address the aforementioned features, this thesis introduces a low-power mobile, 

lightweight, and wireless single channel stimulation and recording system with real-time artifact 

cancellation capability. The proposed system consists of a remote/implanted device, a wireless 

communication adapter, and a graphical user interface (GUI) on a laptop/desktop. User can execute 

commands (e.g., toggle stimulation/recording, adjust stimulation parameters, enable artifact 

cancellation) to the implanted/remote device through a GUI in real-time. Bluetooth Low Energy 

(BLE) is used as the wireless communication protocol between the implanted/remote device and 

the adapter. An adapter is used to accommodate the speed limitation of BLE on laptop/desktop. 

The size of the current prototype is approximately 8cm×3cm and has the potential to shrink down 

to 2cm×1.75cm. Real-time artifact cancellation capability is realized through the combination 

template subtraction followed by Hampel filter. The functionality and robustness of the system has 

been validated in both in-vitro and in-vivo experiments.  
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Chapter 1 Introduction 

1.1. Introduction to Neural Interface 

 Neural interfaces are devices that interact with the nervous system in two ways [1]. In 

one way, information in the nervous system is encoded in the form of electrical signal, which is 

recorded by neural interface to recover useful information [1]. In the other way, information can 

be injected into the nervous system by eliciting electrical stimulation with special patterns from 

outside of neurons, which generates voltage gradients across membrane and subsequently 

triggers the response of the stimulated neurons [1]. While many neural interface devices are only 

capable of establishing one way communication reliably, a bidirectional neural interface can 

record neural signals and execute electrical stimulation to nervous system simultaneously. Such 

feature is ideal for medical applications to restore patient’s functionality which is disabled by 

disease or injury. To restore the functionality through electrical stimulation which mimics the 

natural neuronal behaviors, precise modulation of stimulation pulses needs to be determined, 

ideally in an adaptive way in real-time based on the feedback of the recorded neural response. 

Such a stable close-loop mechanism in a dedicated integrated system is a basis for successful 

prosthetic devices [1].  

 

1.2. Challenges for Bidirectional Neural Interface 

 Many challenges exist for high-performance bidirectional neural interface devices and the 

major ones may include stimulation artifact [1], bandwidth of communication protocol, limited 

computing power, efficacy of neuron recruitment.  
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While recording neuronal activity, electrodes pick up the undesired artifact waveform due 

to the applied stimulation and these artifacts are typically several order larger in amplitude than 

neuronal responses [1]. Traditional methods to deal with artifacts include analog filtering and 

blanking require relatively simple hardware [1]. However, limitations apply to analog filtering 

and blanking does not preserve neural signals during the blank period. Considering the 

drawbacks of conventional methods, advancement needs to be made to provide better signal 

quality without interrupting on-going stimulation.  

The effectiveness of the close-loop control mechanism in bidirectional neural interfaces 

relies on processing recorded neural response in real-time. Methods to process neural responses 

to provide feedback control signal can be rough divided into 2 categories. For one, recorded 

neural responses are transmitted to back-end device where signal is processed to generate 

feedback control which gets sent back to the stimulator through either wire or wireless 

communications. Performing computation off the implanted neural interface provides sufficient 

computing resource to accommodate complicated inference algorithm. However, the 

convenience in wire communication and bandwidth of wireless communication protocol 

becomes the bottleneck. For another, processing recorded neural responses within the implanted 

neural interface device is highly desirable as it removes the need of an associated back-end 

device which enables the free movement of the experimental subjects or patients. The limitation 

of such paradigm lies in the trade-off between the computing power, memory space, and the size, 

power consumption of the whole implanted system.  

Neural stimulation protocols have been actively developing over the years. For invasive 

neural interfaces, electrical signals are often modulated in shape, frequency, and amplitudes. In 

recent years, biomimetic stimulation protocol with random frequency components gains more 
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attention due to the effectiveness in recruiting surrounding neurons [2]. To leverage such benefit, 

clever algorithms need to be developed to avoid the need for extra computational power and 

large storage space to generate and store the precise waveform. 

 

1.3. Thesis Outline 

 The rest of this thesis is formatted in the following order. Chapter 2 provides the 

necessary background knowledge related to the development of the system. Chapter 3 to 6 

discusses the development of a wireless single channel stimulation and recording system with 

real-time artifact cancellation capabilities. The discussion in these chapters includes the overview 

of system architecture, hardware, and printed circuit board (PCB) design, the firmware 

implementation, the design of graphical user interface, and algorithm to remove stimulation 

artifact. Chapter 7 discusses the in-vitro and in-vivo testing result of the prototype with the 2nd 

iteration PCB. Finally, Chapter 8 concludes the work, envisions and expansion of the current 

prototype to a close-loop neural interface where artifact cancellation is performed on chip, and 

forecasts potential challenges of building an adaptive close-loop neural interface with 

deployment of machine learning models on-chip based on this work. 
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Chapter 2 : Background Knowledge 

2.1. Overview of CC13x2/CC26x2RSIP Microcontroller 

 CC13x2/CC26x2 family microcontrollers (MCU) are used as core controllers in the 

system. The hardware overview of CC1352R and CC2652RSIP are shown in Figure 2-1 and 2-2 

below.  

 

Figure 2-1: CC1352R Hardware Overview [3] 

 

CC1352R and CC2652RSIP are low-power wireless MCUs with Bluetooth Low Energy (BLE) 

capability, on-chip support of SPI and UART. Both MCUs have a 48-MHz Arm Cortex-M4 

processor in parallel with a 24-MHz autonomous ultra-low power sensor controller to interface 
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analog-to-digital converter (ADC) without interrupting tasks in main CPU. Additionally, 

hardware accelerator in CC1352R/CC2652RSIP significantly reduces runtime of multiplication 

and division operation. Both MCUs have single-clock-cycle multiplication instruction and 

require only 2-to-12 clock cycles for division instruction. Compared to CC1352R, CC2652RSIP 

integrates the passive components and crystal oscillator in the package, which further reduces the 

overall system footprint and eases the development process. Provided features mentioned above, 

CC1352R and CC2652RSIP are great candidates for the core controllers for the proposed 

system. 

 

Figure 2-2: CC2652RSIP Hardware Overview [4] 
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2.2. Bluetooth Low Energy (BLE) 

2.2.1. Overview of Bluetooth Low Energy (BLE) 

 Bluetooth Low Energy (BLE) is a low-power wireless communication protocol 

introduced in 2001. While sharing similar features with Bluetooth Classic, BLE consumes much 

less power compared with Bluetooth Classic and its data layer structure are more suitable for the 

purpose of our application [5]. With appropriate configurations, data transmission rate of BLE 

can go up to approximately 1250Kbit/s which is sufficient for single-channel neural recordings. 

The following discussion provides the prerequisites to understand the firmware design of the 

system. 

2.2.2. BLE Physical Layer (PHY) 

 BLE uses 2.4GHz in ISM band which is the same frequency band used by Bluetooth 

Classic and WI-FI [5]. The advertising band starts from 2402MHz to 2480MHz [5]. The entire 

band is divided into 40 channels of 1MHz wide and separated by 2MHz. The arrangement of 

channels in the frequency is shown in Figure 2-3 [5].  

Channels 37, 38, and 39 are reserved as advertising channel to exchange advertisement packet 

which contains device-specific information to establish connections between central and 

peripheral device. The placement of the advertising channels deliberately avoids the overlap with 

WI-FI bands and other sources [5]. The separation of 3 advertising channels avoids interferences 

from WI-FI, Bluetooth Classic, Microwaves, etc. BLE radio transmits under a modulation 

scheme with 4 options for Bluetooth 5.0: LE 1M, LE 2M, LE coded with S = 2, LE coded with S 

= 8. Speed-range tradeoff for different modulations is summarized in table 2-1 below. Notice that 

additional support is needed for Bluetooth 5.0 to operate under coded modulation. 
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Figure 2-3: Frequency Band of Bluetooth Low Energy [5] 

 

Table 2-1: BLE Modulation Modes [6] 

 Theoretical Data Rate 
Range Multiplier 

(approx.) 
Bluetooth 5.0 Support 

LE 1M 1 Mbit/s  1 Yes 

LE 2M 2 Mbit/s 0.8 Yes 

Coded 

S=2 
500 Kbit/s 2 Optional 

Coded 

S = 8 
125 Kbit/s 4 Optional 

 

2.2.3. Connection 

 Connection is established between the central and peripheral devices after the exchange 

of connectable advertisement packet. After the connection established, the central device is 

responsible for managing the connection and approving the requested connection parameters 

from the peripheral device. During a connection event, the central and peripheral devices send 

packets to each other in turns to exchange information until all data has been exchanged or the 
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maximum connection interval has reached. A connection event will be terminated if the central 

device does receive a return packet from the peripheral [6]. The maximum connection interval 

can be requested by the peripheral ranging from 7.5ms to 4s [6]. 

2.2.4.  Generic Attribute Profile (GATT) 

 Generic Attribute Profile (GATT) defines the data transfer procedures and formats in a 

structural way. The structure of GATT can be summarized in Figure 2-4 below. Service in BLE 

serves as a container of logically related data item. A BLE peripheral profile can have multiple 

services and one service contains zero or more characteristics [7]. Data item in service is called 

characteristic which contains multiple properties used as identification and definition of data 

format [7]. The description of each property in characteristic is listed as the following: 

 

Figure 2-4: Structure of GATT 
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1. UUID: UUID is a 16-bit unique identifier for each attribute in GATT server, which 

makes the characteristic attribute addressable. In theory, UUID ranges from 0x0001 to 

0xFFFF so that one GATT service can accommodate up to 65535 characteristics [7]. In 

practice, a service may contain up to tens of characteristics [7]. 

2. Permission: Access permission defines whether the characteristic attribute can be written 

or read (or both) by the central device. The permission field has 4 types of configurations 

[7]. 

a.  None: The attribute cannot be accessed. 

b. Readable: The attribute can be read by the central device. 

c. Writable: Central device can write to the attribute. 

d. Readable and Writable: The Attribute can be read and written by the central 

device. 

Additionally, peripheral can request the central device to provide authenticated key to 

access the specified attribute [7]. 

3. Attribute length: Determines the length of the attribute value. The maximum length 

allowed is 512 bytes [7]. 

4. Attribute value: Attribute value stores the actual content of the characteristic attribute. 

There is no data type restriction for attribute value. 

5. Descriptor: This is a user-readable description of the characteristic in UTF-8 string. An 

example of descriptor would be “Room Temperature (°F)” [7]. 

6. CCCD: CCCD is the abbreviation of Client Characteristic Configuration Descriptor. 

CCCD grants the permission for a client to stream data to the central device rather than 

initiating read commands continuously from the central device [7]. CCCD allows two 
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styles of data streaming: notification and indication. Compared to notification, indication 

sends data continuously without requesting for a return packet from the central device to 

indicate a successful receipt. 

 

2.3. Serial Peripheral Interface (SPI) 

 CC1352R/CC2652RSIP equips with serial peripheral interface (SPI) with dedicated SPI 

master up to 6MHz clock speed. The hardware SPI support facilitates the interface of external 

high-performance sigma-delta ADC. The following discussion covers the background of SPI 

communication protocol. 

 SPI is a synchronous, full deplex main-subnode-based (or master-slave-based) interface 

[8]. The protocol is available in 3-wire and 4-wire modes. The following discussion will be 

based on the popular 4-wire format. The interface between main and subnode is shown in Figure 

2-5. 

 

Figure 2-5: SPI Configuration with Main/Master and a Subnode/Slave [8] 

 

There are 4 signal lines between the main and subnode device and the functionality of each is 

described below: 
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• CS: Chip-select pin selects subnode to communication. Typically, chip-select is an 

active-low signal. 

• SCLK: Serial clock is the clock signal provided by the SPI main device to synchronize 

the two-way communication. 

• MOSI: Master-out-slave-in is abbreviated as MOSI, meaning the data is sent from the 

master/main to the slave/subnode. The corresponding pin on the slave/subnode is called 

SDI (serial-data-in). 

• MISO: Master-in-slave-out is abbreviated as MISO, meaning the data is sent from the 

slave/subnode to master/main. The corresponding pin on the slave/subnode is called SDO 

(serial-data-out). 

Figure 2-6 demonstrates one communication frame of 8-bit SPI protocol. The communication 

begins when the chip-select pin is pulled low, shown in the green dashed line. Main/Master 

device determines whether to sample/shift data at rising or falling edge [8]. Figure 2-6 shows an 

example of sampling at rising edge and shifting at falling edge.  

 

Figure 2-6: One Frame of 8-bit SPI with Data Sampled at Rising Edge and Shifted at 

Falling Edge [8] 
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The sampling edge is indicated by the orange dashed line, meaning the logical value in MOSI 

line at rising edge of SCLK is read by the subnode [8]. The shifting edge is indicated by the blue 

dashed line [8], meaning the logical value in MISO line at falling edge of SCLK is read by the 

main. Additionally, one main device can interface with multiple subnodes in the configuration 

shown in Figure 2-7 below. In this scenario, an individual chip-select pin from the main is 

needed to interface each subnode. The main device can only communicate to one subnode at a 

time. 

 

 

 

Figure 2-7: Multi-subnode SPI Configuration [8] 

 

 

2.4.  Universal Asynchronous Receiver/Transmitter (UART) 

 Universal Asynchronous Receiver/Transmitter, or UART, is a dedicated hardware for 

serial communication, which requires only two wires between devices as shown in Figure 2-8. 

TX pin refers to the transmitter pin and RX pin refers to the receiver pin. UART can be 
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configured in simplex, half-duplex, or full-duplex modes based on applications [9]. Data is 

transmitted as frames in UART, and the rest of the discussion will be focused on the formatting 

content of UART frames. 

 

Figure 2-8: TX and RX Wires between Devices in UART [9] 

 

Figure 2-9 illustrates a typical UART frame. As an asynchronous communication protocol, 

UART does not have a clock signal to synchronize the transmitter and the receiver. Therefore, 

the transmitter and the receiver must be configured to send data at the same speed.  

 

Figure 2-9: A Typical UART Frame [9] 

 

A UART frame consists of start/stop bits, data bits, followed by an optional parity bit [9]. During 

the idle state, the TX/RX line is pulled high. The start bit is a transitional bit from the idle high to 

low to signal the start of a new frame. Likewise, a stop bit is a transitional bit back to the idle 

state by holding the TX/RX line high. Note that data bits in the illustration consist of 8 bits in 
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total. In UART protocol, data bits can have from 5 to 9 bits. The optional parity bit is set based 

on the parity in use to error detection. For even parity, the parity bit is set so that the number of 

1’s in the frame is even [9]. For odd parity, the parity bit is set so that the number of 1’s in the 

frame is odd [9]. 

 

 

2.5. Stimulation Artifact 

2.5.1. The Stimulation Artifact Waveform 

 To aid the discussion of the artifact cancellation algorithm in Chapter 6, it is crucial to 

understand the distorted stimulation artifact waveform due to the tissue-electrode interface. 

When electrical current is injected into tissues, chemical changes happen in the chemical 

environment at the tissue-electrode interface by primarily two mechanisms [1]. First, a 

redistribution of ions in the chemical environment occurs to supply the current flow [1]. This is 

process is called non-Faradaic reaction. Secondly, electron flow between the electrode and the 

electrolyte to create current flow [1], which is Faradaic reaction. The combination of two types 

of reactions can be simply modeled by a Randall Cell model, Shown in Figure 2-10.  
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Figure 2-10: Randall Cell Model with the Induced Voltage on Electrode [10] 

The non-Faradaic charge redistribution may be modeled as a simple electrical double-layer 

capacitor, Cdl [1]. The Faradaic processes can be modeled by a Faradaic impedance, 

approximated by a resistor Rct to model the charge transfer [1]. Additionally, Rs is used to model 

the current flow in electrolyte medium [1]. When constant current stimulation is delivered by a 

square-wave pulse, non-Faradaic reaction causes the charging process in the induced voltage 

waveform. The time-domain waveform can be modeled by the following equation. 

𝑉(𝑡) = [𝐼0 ∗ 𝑅𝑐𝑡 (1 − 𝑒
−𝑡

𝑅𝑐𝑡∗𝐶𝑑𝑙) + 𝐼0 ∗ 𝑅𝑠] ∗ 𝑢(𝑡) [10] 

Based on the discussions above, the scenario of a biphasic pulse train injected into tissues can be 

illustrated in Figure 2-11. The original square-wave pulses injected into tissue are distorted due 

to Faradaic and non-Faradaic process, attenuated over some distance, and collected by the 

recording electrode. 
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Figure 2-11: Scenario of Stimulation Artifact Collected by Recording Electrode 

 

2.5.2. Review of Existing Artifact Cancellation Method 

While recording neuronal activity, electrodes pick up the undesired artifact waveform due 

to the applied stimulation and these artifacts are typically several order larger in amplitude than 

neuronal responses, which dramatically disturbs the collect of neural signal due to potential 

amplifier saturation and distortion in the neural signals [1]. Different techniques used to 

eliminate stimulation artifact from the recording signals have been long investigated and could in 

roughly divided into 2 categories: front-end and backend methods. 

2.5.2.1. Front-end Methods 

 Traditional analog filtering is typically used in scenarios of high-frequency stimulation 

and low-frequency neural signals. However, neural signals and stimulation artifacts are almost 

guaranteed to overlap in frequency spectrum. Therefore, the actual neural signals could be 

distorted, and the artifacts may not be suppressed sufficiently [1]. Moreover, for aperiodic and 

biomimetic stimulations of which the power spectral density is more spread-out, frequency-based 

filtering technique simply becomes impractical. 

Blanking is commonly used and relatively mature technique. In this method, the amplifier 

is disconnected from the input signal when the stimulus is applied, avoiding the amplifier being 
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saturated due to the high-amplitude stimulus artifact [1]. Then, the amplifier is turned back on 

when the recording site discharges to a certain point where the voltage amplitude would not 

cause the amplifier to saturate, or the amplitude of the remained voltage is comparable to the 

signal of interest. Blanking method is easy to apply and does not require significant amount of 

hardware and power. However, all signals including neural signal of interest and artifacts are 

completely lost in the duration that the amplifier is turned off. And there’s no remedy to the loss 

of information. 

 Frequency shaping circuit can be used to adjust the gain of the amplifier so that the gain 

becomes smaller for lower frequency signals [2]. Given such conditions, if stimulation 

parameters are carefully chosen such that the stimulation pulse consists of mainly low frequency 

components, one can prevent the amplifier from saturation and achieve continuous recording. 

However, the resulting drawback of this approach is that the choices of stimulation parameters 

become very limited.  

 An approach used in commercialized device by Medtronic is to place two recording 

electrodes around a stimulating electrode symmetrically, shown in Figure 2-12 [1][11]. Since 

two recording electrodes are equally distant to the stimulating electrode, the amount of stimulus 

artifact experienced by two recording electrodes are the same in ideal situation [1][11]. On the 

contrary, the recording electrodes are not symmetrical with respect to the surrounding neurons. 

Thus, the neural responses recorded by two recording electrodes are not identical. Therefore, 

treating one of the symmetric electrodes as reference electrode can remove the stimulus artifact 

while preserving neural response. In practice, perfect symmetry is impossible. Therefore, 

significant amount of filter is required to remove the residual stimulus artifact, which causes 

neural responses with overlapping frequency spectrum to be removed or distorted [1]. With all 
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these limiting factors, this method is useful in some specific applications but does not generalize 

well. 

 

Figure 2-12: Design of Symmetrical Sensing by Medtronic. Inc [11] 

 

 Except the ones mentioned above, many other front-end methods exist. Several designs 

introduce a hard reset mechanism to reset the amplifier so that it can quickly recover from 

saturation [12][13][14][15]. Template subtraction in hardware scheme to remove stimulation 

artifact is proposed in several works [16][17][18]. While these works seem to be promising, the 

results suffer from relatively low signal-to-noise ratio (SNR) [12]. [19] reports a clever way to 

avoid amplifier saturation by subtracting a fixed voltage level in front-end so that the resulting 

voltage is within the range of the amplifier. However, while the amplifier subtraction is avoided 

successfully, the remaining artifact is relatively large in amplitude and contaminates the 

meaningful neural signals. Front-end circuit methods to cancel stimulation artifact mentioned 

above suffer from the problem that they are not generalized well to all applications [1]. 

Additionally, many of the existing proposed front-end methods lack verifications by in-vitro and 

in-vivo experiments.  
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2.5.2.2. Back-end Methods 

Back-end methods targets the recorded digitized signals and aims to extract useful 

information buried in large-amplitude stimulus artifact. Therefore, recorded data used in back-

end methods is required to be saturation free. Back-end methods can be further divided into 3 

categories: data reconstruction, template subtraction, component decomposition. 

Data reconstruction removes data points contaminated by stimulus artifact and replace 

them by interpolated or approximated values [11]. A naïve method simply samples and hold the 

last artifact free sample before the stimulation starts to execute until the amplitude of the artifact 

becomes lower than certain threshold. Such method is simple to apply and only consumes a 

small amount of computing resource, which comes with the cost of significant distortion. To 

reduce the amount of distortion, linear interpolation, cubic spline interpolation, and Gaussian 

estimation can be applied to data points between the start and the end of the artifact [11]. The 

complexity of the application varies based on the techniques used to generate values within the 

window of stimulus artifact. In general, data reconstruction is easy to apply but not as reliable 

when the signal of interest is high frequency [11]. Therefore, interpolation is more suitable for 

LPF and ECoG recordings [11]. Additionally, action potentials within the stimulus window tends 

to be discarded so that not much information with in the artifact window can be revealed.   

Template subtraction was initially proposed as a post processing method and require 

larger dynamic range to accommodate large stimulus artifacts without losing the underlying 

neural activities [12]. Template used for subtraction may be formed from averaging the multiple 

periods of artifact or fitting critical points to a predefined function [12]. However, both ways 

suffer from under-sampling and tiny shifting in stimulus artifact due to timing inaccuracy. More 

sophisticated methods to align the stimulus artifact waveform have been investigated. For 



20 
 

example, one can up-sample, shift, and down-sample the artifacts from different periods so that 

the critical points of each contributing component align together before averaging [12]. 

However, algorithm for such method is rather demanding, making it different for real-time 

applications. Additionally, adaptive filtering can be applied to recordings from the adjacent 

electrodes to form the subtraction template [12]. All methods mentioned in the category of 

template subtraction require some time for the template to converge and will need to update 

throughout the recording duration. Therefore, artifact cancellation quality in this scheme is time 

varying [12]. 

Component decomposition decomposes the input waveform into multiple components 

and reconstruct the waveform without components that contributing to the artifact [12]. 

Ensemble empirical mode decomposition (EMD) and independent component decomposition 

(ICD) are commonly used and offer great accuracy [12]. However, both methods are 

computation demanding and difficult to deploy to real-time application in firmware. 
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Chapter 3 : Overview of the System 

3.1. System Architecture 

 The development of the system is a collaboration between Yu Nong and Yanpeng Chen. 

The design of single-channel stimulation and recording system with real-time artifact 

cancellation capability consists of 3 major components: an implanted/remote device, a 

communication adapter, and a backend device (usually laptop/computer or smart phone). Figure 

3-1 shows a block diagram representation of the system structure.  

 

Figure 3-1: System Architecture Diagram 

 

CC2652RSIP and CC1352R are used as the core controller for the implant and adapter, 

respectively. The implant/remote module and adapter exchange information through Bluetooth 

Low Energy (BLE) to offload recorded neural signal and adjust stimulation parameters. The 
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adapter serves as a bridge between the implant and the backend device to improve the 

compatibility of the system and resolve the limitation of BLE streaming speed with 

laptop/computer. A typical experimental setup of the system is shown in Figure 3-2 

 

Figure 3-2: Experimental System Configuration 

 

 The signal flow during normal operation is the following. Recorded neural signal is sent 

to the adapter from the implant through BLE, buffered in adapter, and streamed to the backend 

device through universal asynchronous receiver-transmitter (UART) for data storage and real-

time signal processing. Commands to adjust stimulation parameters is instantiated in the backend 

device and sent to the adapter through UART, then forwarded to the implant wirelessly through 

BLE.  
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3.2. Stimulation Protocol 

 The current version of the system can provide biphasic and monophasic mode, periodic 

and aperiodic Poisson-distributed mode, fixed and Poisson-distributed rando pulse width mode 

current burst stimulation. Configurable parameters include stimulation period, burst period, burst 

count, pulse width, stimulation amplitude, inter-phase delay, and asymmetric ratio. 

  Figure 3-3 below illustrates the periodic stimulation with respect to all configurable 

parameters. The cathodic phase is configured to be the leading phase in biphasic stimulation 

protocol of the system. Firmware can be changed to accommodate the need of anodic phase as 

the leading phasic in biphasic stimulation protocol. However, it has been demonstrated that 

cathodic stimulation is more efficient to elicit neural responses than anodic stimulation. 

Therefore, the firmware in the system is default to generate biphasic stimulation with cathodic 

leading phase. The example shown in Figure 3-3 illustrates the scenario of a periodic burst train 

stimulation with 3 biphasic pulses in each burst train. A traditional periodic stimulation protocol 

with no burst trains can be easily implemented by setting the parameter burst count to 1. 

Typically, the purpose of the second phase in a biphasic stimulation is to neutralize the extra 

charge introduced into the organism by the leading phase. Therefore, the pulse width of both 

phases is typically set to equal. However, the system provides the functionality to adjust the ratio 

of two phases so that 1). Cathodic and anodic monophasic stimulation can be achieved by setting 

the asymmetric ratio to 0 or a large number (typically greater 75). 2). Asymmetric biphasic 

stimulation can be achieved to further investigate different stimulation protocol.  
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Figure 3-3: Periodic (Fixed Frequency, Fixed Pulse Width) Stimulation Protocol 

 

 The system can accommodate aperiodic randomized stimulation where the period 

between adjacent burst trains is Poisson distributed with λ equals the stimulation period 

parameter. Figure 3-4 illustrates an example of aperiodic randomized stimulation with burst 

trains of 3 biphasic pulses. The same scheme can be applied to traditional stimulation without 

burst trains.  
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Figure 3-4: Aperiodic (Poisson Distributed Frequency, Fixed Pulse Width) Stimulation 

Protocol 

 

 A different scheme of randomization is available in periodic stimulation where the 

stimulation pulse width is Poisson distributed with λ equal the parameter pulse width and the 

stimulation period is fixed. In the random frequency mode, the burst stimulation is no longer 

supported and burst count is fixed to 1. Figure 3-5 illustrates an example of Poisson distributed 

frequency mode. The asymmetric ratio can be adjusted in this mode as well to provide more 

flexibility in the stimulation waveform. While the influence of randomized pulse with on neural 

response is not clear, this system serves as a convenient tool for further investigation. 
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Figure 3-5: Periodic (Fixed Frequency, Poisson Distributed Pulse Width) Stimulation 

Protocol 

 

 Additionally, random frequency mode and random pulse width mode can operate 

simultaneously where stimulation period and pulse width are Poisson distributed. A sample 

stimulation waveform is shown in Figure 3-6. Similar to random pulse width mode, burst train 

stimulation is no longer supported in this mode and burst count is fixed to 1. All other parameters 

retain the same flexibility and are allowed to be modified in real-time. 

 

3.3. System Specification 

 The specification of the current system is summarized in Table 3-1 below. Additionally, 

implicit constraints exist for the system due to the definition of the stimulation protocol. 
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Referring to Figure 3-3, the duration of the entire burst train needs to be shorter than stimulation 

period. Therefore, an implicit constraint is the following: 

𝐵𝑢𝑟𝑠𝑡 𝐶𝑜𝑢𝑛𝑡 ∗ 𝐵𝑢𝑟𝑠𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 ≤ 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 

Table 3-1: System Specification 

Parameters/Conditions Range/Limit 

Stimulation Frequency <=1000Hz 

Pulse Width >=100µs 

Burst Period >=100µs 

Stimulator Compliance Voltage 10V 

ADC # of Channels 1 (max 4) 

Sampling Frequency 15.625kHz (max 31.25kHz) 

Resolution 24-bit 

 

 

Figure 3-6: Aperiodic (Poisson Distributed Frequency, Poisson Distributed Pulse Width) 

Stimulation Protocol 
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Chapter 4 : Hardware Design 

4.1.  Power Management 

 The power management of the system consists of 4 parts: battery/power supply, wireless 

charger, boost converter, low dropout. The system can be working with a battery or power 

supply ranging from 3.3 V to 4.5 V. However, since a wall power supply introduce undesired 60 

Hz noise, a battery is preferred. Currently, a 600 mAh 4 V LiPo battery is used for experiment 

and testing, which can last more than 40 hours given the maximum current consumption of the 

system is approximately 15 mA. A wireless charger which consists of a charging IC LTC4124 

and a coil. Note that no ground copper plate is allowed below the coil, which needs to be 

considered when design PCB with the minimum possible area. A TPS7A0233PDQNR low 

dropout (LDO) IC is used to provide stable 3.3 V supply for MCU, ADC, and pins that need to 

be constantly pulled high. TPS7A0233PDQNR consumes 25 nA current and the maximum 

output current is 200 mA. Additionally, This LDO is available in X2SON package with 1.00 mm 

× 1.00 mm, which provides significant advantage to reduce overall PCB area. A boost converter 

LTC3459EDC#TRMPBF consuming 10 µA quiescent current is used to provide 10 V supply to 

the single pole double throw switch to control the polarity of the stimulation current. This boost 

converter is available in a footprint of 2.00 mm × 2.00 mm, which provides convenience to 

shrink down the size of the PCB.  

 

4.2. Analog to Digital Converter (ADC) 

3 different ADC have been considered including ADS131A02, AD4114BCPZ, and 

ADS131M04 in the first and second iteration of the system. ADS131M04 is used in the current 
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implementation. AD4114BCPZ has a large dynamic range to capture large-amplitude stimulation 

artifact for real-time artifact-removal post-processing algorithm. Therefore, the 2nd iteration PCB 

was designed with both ADS131M04 and AD4114BCPZ for comparison. However, due to the 

recent global chip shortage, testing was not carried out on AD4114BCPZ. ADS131A02 was used 

in the 1st iteration PCB. The impedance of this ADC is around 100kΩ, which could be prone to 

large signal distortion when recording bio-signals. Also, the relatively large footprint (5.00 mm × 

5.00 mm) and need for more GPIOs to interface could be potential roadblock of system 

miniaturization.  

 ADS131M04 sigma-delta ADC is chosen to digitize analog neural signals for the 

following considerations. 1). ADS131M04 is available in WQFN package which has a footprint 

of 3.00 mm × 3.00 mm. Such small dimension provides advantages to miniaturize the PCB area 

and the overall size of the remote system. 2). ADS131M04 has programmable gain up to 128, 

which eliminates the need of an additional front-end amplifier, which also contributes to the 

reduction of the overall PCB area. 3). Three operations mode are available, and the low power 

provides good tradeoffs between sampling rate, noise performance, and input impedance. At the 

desired sampling rate and input gain, noise level is 3.63 µVRMS and the input impedance is 

30MΩ. 4. Maximum four differential recording channels are available. While the project 

currently targets a single-channel stimulation and recording device, the redundancy in BLE 

bandwidth does allow the extension to a multi-channel system given the availability of ADC 

channels. 5. The selected ADC has 24-bit resolution.  

 One caution on this selected ADC is that ADS131M04 requires a clock signal at 

8.192MHz by default. However, supplying a clock signal at this specific frequency with a crystal 

oscillator introduces extra system footprint. A resolution in the system is used the system clock 
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of CC2652RSIP to supply a clock signal at 8MHz as an alternative. In this case, the resulting 

sampling rate becomes slightly lower than using 8.192MHz clock signal. 

 

4.3. Stimulator 

 The Design of stimulation to delivery electrical stimulation is shown in Figure 4-1 below. 

A voltage-controlled current source is built with a low-power operational amplifier LT1637 with 

polarity control enabled by a single pole double throw (SPDT) switch ADG5436. The input 

voltage of the amplifier VDAC is provided by the digital-to-analog converter on the 

microcontroller CC2652RSIP. The current limiting resistor R limit the maximum current 

stimulation that can be delivered by the stimulator. In the current implementation, the current 

limiting resistor is set to 500Ω, and the corresponding largest supported stimulation current is 

2mA. If a larger stimulation current is needed, a smaller current limiting resistor can be used to 

replace the 500Ω resistor currently in used. The polarity of ADG5436 SPDT switch is controlled 

by 2 GPIOs from CC2652 MCU to generate biphasic current stimulation pulse.  
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Figure 4-1: Stimulator Design 

 

 The design of the stimulator circuit is verified through simulation in LTSpice. The 

simulated circuit built in LTSpice is shown in Figure 4-2 below. Simulation is run to generate 

biphasic pulses with 100µs pulse width and 1ms period to validate the control scheme and the 

stimulation results are shown in Figures 4-3 and 4-4. Also, it is crucial to verify the rise-time of 

induced voltage as a long rise-time could destroy the integrity of constant current stimulation. 

Additionally, notice that a voltage sweep is applied to the non-inverting input of LT1637 to 

confirm the stable operation of the stimulator over a wide range of output current.  
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Figure 4-2: Simulated Circuit in LTSpice for Design Validation 

 

Figure 4-3: Simulation Result 
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Figure 4-4: Rise-time of the Stimulator with 100us Pulse Width 

4.4.  Printed Circuit Board (PCB) Design 

 In this system, a CC1352R1 or similar launchpads that have BLE capability can be used 

as an adapter between the implant and backend since no size restriction exists on the adapter. 

Therefore, PCB design only needs to be carried out on the implanted/remote device to create a 

functional prototype. The development of the implant is devised in 3 steps. In step 1, the 1st 

iteration of the PCB is layout aiming to validate the system design without an on-board MCU 

and the emphasis on overall PCB area. In step 2, with some issues of discovered from the testing 

in step 1, the system design is modified, and the 2nd iteration PCB is layout incorporating an on-

board MCU with some effort to reduce the overall PCB area. In step 3, finalize the system design 
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and layout a multi-layer final version miniaturized PCB with the targeted dimension around 2.00 

cm×1.75 cm. 

The design file and the manufactured 1st iteration PCB are shown in Figure 4-5 and 

Figure 4-6 below. Modular design is applied for the convenience of incremental testing and 

avoid possible failure leading to a complete breakdown of the system. The design of the 1st-

iteration PCB consists of 5 modules: power management, recorder, stimulator, wireless charger, 

and blanking circuitry. Note that the wireless charger and blanking circuitry modules are 

designed by Yanpeng Chen. Different modules are completely isolated including the ground 

copper plane. Reserved headers across different modules can be used to connect the ground 

plane of subsystems when needed. To ease the design process, a CC1352R1 launchpad is used to 

interface each subsystem without using an on-board MCU. The blanking circuitry was used for 

artifact cancellation in the original design. However, it is replaced by the real-time signal 

processing method proposed later. The board area of 1st iteration PCB is not well minimized 

purposefully as the motivation for this PCB is mainly to validate the circuit design and detect 

possible system failure.  
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Figure 4-5: 1st Iteration PCB Drawing 

 

The testing procedures can be summarized as the following:  

1. Verify the operation of LDO and boost converter using a power supply then with a 

battery. 

2. Verify the operation of Stimulator with a power supply then with the power 

management module powered by a power supply. 

3. Verify the operation of recorder with a power supply then wutg the power 

management module powered by a power supply. 

4. Verify the simultaneous operation of stimulator and recorder with a power supply 

then with the power management module powered by a power supply. 
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5. Verify the simultaneous operation of stimulator and recorder with the power 

management module powered by a battery. 

 

Figure 4-6: 1st Iteration PCB 

 

 The design file and the manufactured 2nd iteration PCB are shown in Figure 4-7 and 4-8 

below. In the revised design, subsystems and the ground plane are no longer isolated like it was 

in 1st iteration PCB. Rather, they are interconnected and placed close to each other to somewhat 

reduce the overall PCB area, which is a transitional stage to the final system. The size of the PCB 

is reduced to 8.00 cm×3.00 cm. 
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Figure 4-7: Drawing of 2nd Iteration PCB 

 

In the original plan, a CC1352R MCU is used as the controller for the remote system. 

However, additional resistors, capacitors, and clock source are required to drive CC1352R, 

which introduces additional PCB area. A new product CC2652RSIP from Texas Instrument. Inc 

is system-in-package microcontroller chip with integrated DCDC components, balun, and crystal 

oscillators. Such features provide significant convenience to minimize the overall size of the 

implanted/remote system. Additionally, CC1352 and CC2652 belong to the same family of 

which the source codes are mostly compatible. Thus, CC2652RSIP is used in the revised design 

to replace CC1352R. In terms of the recorder, as mentioned previously, the 2nd iteration PCB 

was designed to compare 2 ADCs (ADS131M04 and AD4114BCPZ) to replace ADS131A02 in 

1st iteration PCB. The designs of both ADS131M04 and AD4114BCPZ are incorporated into 

PCB as separate modules. However, due to chip shortage, AD4114BCPZ was out of stock and 

the current system operates with ADS131M04. Also, the design of blanking circuitry in 1st 

iteration is removed and artifact cancellation would be done in a real-time post-processing 



38 
 

algorithm in MATLAB which will be discussed in detail in section 6.2. Ultimately, such 

algorithm would be migrated and executed on MCU. By removing the original blanking 

circuitry, the size of the PCB can be further reduced.  

 

Figure 4-8: 2nd Iteration PCB 

 

 The 2nd iteration PCB was tested following the same procedures. The setup of 2nd 

iteration PCB after the testing procedures is shown in Figure 4-9. Furthermore, jumper wires on 

the top are mostly removed for the convenience of animal testing. Instead, the necessary 

connections are replaced by wires soldered at the bottom of the board to avoid the risk of loose 

jumper wires being plugged out accidentally, which is highly possible in future chronic animal 

experiments. 
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Figure 4-9: 2nd Iteration PCB with Jumper Wires Removed 

 

4.5. Adapter 

 Adapter is a major component of the system that connects the remote system and the 

backend. As most commercially available laptops in the recent years are equipped with 

Bluetooth module, in the original plan, the system consists of implanted/remote device and 

backend, and they directly communicate through Bluetooth Low Energy. In testing, it was 

noticed that the maximum data streaming rate between the remote device and a backend with 

Windows operating system is approximately 144Kbit/s which is much less than the maximum 

speed of BLE (720Kbits/s) under 1 Megabit Physical Layer (1M PHY) due to the limitation of 

connection interval. While Bluetooth Low Energy (BLE) connection interval ranges from 7.5 ms 

to 4s in theory, device-specific limitation also exists. For laptop with Windows operating system, 
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the maximum connection interval of BLE is usually 20ms. Such narrow range limits the 

maximum BLE data streaming rate between the remote system and the backend. Furthermore, 

many laptops with Windows operating system does not support 2 Megabit Physical Layer (2M 

PHY) which could potentially lift the transmission rate even more (up to about 1400 Kbits/s). 

Such limitation prevents the potential extend of the system to a multi-channel stimulation and 

recording system. Aside from the capability of BLE, the adapter needs to have UART capability 

to forward recorded data and receive command from backend.  

 Due to the aforementioned limitations, an adapter that supports BLE speed over the data 

generation rate of single-channel recording is needed to avoid data loss. By default, the remote 

device samples neural signals at 15.625kHz and retains 16 noise-free bits out of total 24-bit 

resolution to reduce the occupation of bandwidth. Therefore, the minimum data rate required 

would be: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 = 15625 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 ∗ 16 𝑏𝑖𝑡𝑠 =  250𝐾𝑏𝑖𝑡𝑠/𝑠 

Additionally, a larger bandwidth allowed by the adapter should be consider for extendibility of 

the system into a multi-channel system in the future. Thus, an adapter with 2M PHY is highly 

desired to ensure the potential to extend the system to a 4-channel system. Moreover, the 

convenience of development needs to be considered. Since no strict size restriction exists for the 

adapter, a commercially available ready-to-use product that can be programmed would be an 

ideal option. 

 With all considerations above, a CC1352R1 launchpad, shown in Figure 4-10 below, is 

used as the adapter of the system. In addition to meeting all requirements above, firmware 

support for CC1352 and CC2652 series can be used interchangeably. Currently, a CC1352R1 
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ready-to-use launchpad can simply be programmed without the need of additional hardware to 

produce a functional prototype. In the future, a CC1352R MCU chip can be used to develop a 

smaller adapter to improve user-friendliness.   

 

Figure 4-10: CC1352R1 Launchpad 
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Chapter 5 : Firmware Design 

5.1. Firmware Design of the Implanted/Remote Device 

5.1.1. Overview of Firmware Design of Implanted/Remote Device 

 The remote device operates as a peripheral device in BLE communication protocol. 

Proper configuration of BLE stack is crucial to meet the target design requirements. Important 

configurations of BLE stack include the following: 

1. Physical Layer (PHY): 1M PHY 

2. Address Mode: Public address 

3. Minimum Connection Interval: 25ms 

4. Maximum Connection Interval: 25ms 

5. Data Length Extension: Yes 

 Note that both minimum and maximum connection interval are set to 25ms. In general, devices 

in BLE protocol send data with a variable number of bytes during one connection event within 

the configured minimum and maximum connection interval. With high BLE data rate and 

multiple tasks operating in parallel, connection events with unpredictable duration may create 

data loss in some scenarios. Therefore, such practice is implemented to ensure the predictable 

behavior of the system and guarantee zero buffer overflow. The setup of Generic Attribute 

Profile (GATT) determines the firmware design. Aside from default services, a custom service is 

built with 15 characteristics to control the operation and stimulation parameter over-the-air. 

Table 5-1 below summarizes the universally unique identifier (UUID), attribute value length, 

descriptions, and the associated command type of all 15 characteristics. Refer to section 3.2 for 

descriptions of stimulation parameters in the table. 
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Table 5-1: Descriptions of Characteristics in Custom Service 

UUID 

Attribute 

Value 

Length 

Description 
Control or Parameter 

Update Command 

0x1235 1 Data length extension enable Control 

0x1236 1 PHY layer selection Control 

0x1237 1 
Notification enable and recording data after 

enabled 
Control 

0x1238 1 Stimulation enable Control 

0x1239 3 Stimulation period (µs) Parameter update 

0x123A 2 Pulse width (µs) Parameter update 

0x123B 2 Burst period (µs) Parameter update 

0x123C 1 Burst count Parameter update 

0x123D 1 Update temporarily stored parameters Control 

0x123E 3 DAC value (Iout = DAC value / 500 µs) Parameter update 

0x123F 1 Inter-phase delay (µs) Parameter update 

0x1240 1 

Asymmetric ratio, the ratio between the pulse 

width of the first phase over second phase. 

(Actual ratio = asymmetric ratio/10) 

Parameter update 

0x1241 1 Random pulse width enable Control 

0x1242 1 Random frequency enable Control 

0x1243 1 Recording ADC enable Control 

 

Table 3-1: Descriptions of Characteristics in Custom Service 

 Attributes used to represent stimulation parameters in Table 3-1 do not follow the normal 

binary rule in digital memory. At the beginning of development, a smartphone is used to connect 

to the remote device using LightBlue. While it is convenient to interface the remote device and 
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change stimulation parameters in this way, user-input values in LightBlue are default in 

hexadecimal without pronounced annotation, which is likely to cause confusion. For example, a 

user intending to adjust the burst period to 5000µs could result in 0x5000 µs stimulation period 

without an intentional conversion from decimal to hexadecimal. Figure 5-1 below shows the user 

interface of LightBlue, in which the write command allows hexadecimal numbers by default. 

Therefore, a custom rule is applied in the attribute values so that the user can input the desired 

value in decimal form to avoid confusion and the inconvenience of manual conversion. The data 

format conversion procedure based on a custom rule can be demonstrated in Figure 5-2 below. 

 

Figure 5-1: User Interface of LightBlue 
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Figure 5-2: Data Conversion Procedure 

 

User-input value of stimulation parameters in double-precision floating-point format is 

segmented per 2 digits, rescaled every 2 digits to ostensibly the same in hexadecimal in backend, 

which is then sent to the remote device through adapter.  Upon the receipt of attribute value, the 

remote device reassembles 3 bytes of 2-digit numbers back to the original double-precision 

floating-point format to configure the stimulator. The algorithms below demonstrate the 

conversion between the desired value and the intermediate 3-byte format for communication in 

pseudocode. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜 3 − 𝑏𝑦𝑡𝑒 𝑓𝑜𝑟𝑚𝑎𝑡                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

double parameter = user-input value in backend; 

int attribute_len; // length of the corresponding attribute value 

uint8 converted_value[3] = {0x00, 0x00, 0x00}; 

string param_str = num2str(parameter); 
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if (attribute_len == 3) 

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]); 

converted_value[1] = str2int(param_str[2]*16) + str2int(param_str[3]); 

converted_value[2] = str2int(param_str[4]*16) + str2int(param_str[5]); 

else if (attribute_len == 2) 

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]); 

converted_value[1] = str2int(param_str[2]*16) + str2int(param_str[3]); 

else if (attribute_len == 1) 

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]); 

end if   

                                                                                                                                                                                  

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟐 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑅𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑡𝑜 𝐷𝑜𝑢𝑏𝑙𝑒 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑚𝑎𝑡                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

double parameter; // Stimulation parameter in decimal 

int attribute_len; // length of the corresponding attribute value; 

uint8 attribute_value[3]; // Attribute values received from BLE 

if (attribute_len == 3) 

parameter = (attribute_value[0]/16*10+attribute[0]%16)*10000 + 

(attribute_value[1]/16*10+attribute[1]%16)*100 + 

(attribute_value[2]/16*10+attribute[2]%16); 
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else if (attribute_len == 2) 

parameter = (attribute_value[0]/16*10+attribute[0]%16)*100 + 

(attribute_value[1]/16*10+attribute[1]%16)*1; 

else if (attribute_len == 1) 

parameter = attribute_value[0]/16*10+attribute[0]%16; 

end if   

                                                                                                                                                                                  

 An overview of the firmware workflow of the implanted/remote device is shown in 

Figure 5-3 below. A real-time operating system designed by Texas Instrument (TI-RTOS) is 

used to manage multiple tasks and achieve real-time operation on a single-core MCU. Three 

tasks created in TI-RTOS including stimulation task, BLE task, and recording task operate 

concurrently with the support of TI-RTOS. Stimulation task manages the amplitude, polarity, 

and timing of current stimulation by controlling the polarity of SPDT switch and the non-

inverting input of the amplifier. Recording task monitors ADC readings buffered in SRAM and 

sends buffered data to adapter as BLE notifications in time to avoid buffer overflow. BLE task 

maintains the wireless connection to the adapter, changes operation status and modify 

stimulation parameters upon the receipt of parameter update command. The priorities of three 

tasks in descending order are the following: recording task, BLE task, stimulation task. The order 

of priorities is set to guarantee no data loss will occur during the operation with potentially 

acceptable micro-second level delay in stimulation waveform. 
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Figure 5-3: Firmware Flowchart of Implanted/Remote Device 

 

 

5.1.2. Stimulation Task 

The stimulation task recruits 2 GPIOs, 1 DAC, 1 timer, and 1 TI-RTOS clock instance to manage 

the amplitude and timing of current stimulation. When stimulation is enabled, a TI-RTOS clock 

instance is initialized to be triggered when the next burst train is about to begin. When this clock 



49 
 

instance is triggered, a timer is initialized to measure the duration until the next biphasic pulse in 

a burst train should be produced. When this timer triggers, 1 biphasic pulse is produced by 

setting DAC to the corresponding voltage level and switching the polarity of SPDT 

appropriately. The pulse width is created by a CPU delay function written in assembly code. 

Then the timer restarts with the same counter value for the next biphasic pulse. The 

reinitialization of timer is repeated until the user-defined number of biphasic pulses has been 

executed. Finally, the program sets the stimulation parameters for the next burst train and 

deconstructs the clock instance when 1 complete burst train is finished. The timing of clock 

instance, timer, and CPU delay in periodic stimulation protocol is illustrated in Figure 5-4 below. 

 

Figure 5-4: Timing of Clock Instance, Timer, and CPU Delay with Periodic Stimulation 

Protocol 
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In the aperiodic case, at the end of each burst train, the randomized parameter is calculated and 

the clock instance, Timer, and CPU delay for the next burst train will be configured accordingly. 

An example for the timing of clock instance, timer, and CPU delay in aperiodic stimulation 

protocol is illustrated in Figure 5-5 below. 

 

Figure 5-5: Timing of Clock Instance, Timer, and CPU Delay with Aperiodic Stimulation 

Protocol 

 

 The algorithm to generate the above timing event and produce current stimulation is 

shown in the pseudocode below. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑜𝑓 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

int burst_count; // User-defined number of pulses in a burst train 
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int stim_count; // Number of pulses executed in a burst train 

int dac_value; // DAC value related to the corresponding DAC voltage 

while (1) 

while (stimulation on) 

  Initialize a clock instance based on stimulation parameters; 

  Wait until the clock instance triggers; 

  Initialize a timer based on stimulation parameters; 

  while(stim_count <= burst_count) 

   if (timer triggers) 

    DAC_setVoltage(dac_value); 

    Turn on negative phase of SPDT switch; 

    CPU delays; 

    Turn on negative phase of SPDT switch; 

    DAC_setVoltage(0); 

   if end 

  while end 

if  (aperiodic mode) 

   Calculate and update the randomized parameters for the next burst train; 
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  end if 

Deconstruct timer and clock instance; 

 while end 

while end 

                                                                                                                                                                                  

5.1.3. Recording Task 

The recording task is a collaboration between the ARM Cortex-M4 main CPU and a 

RISC (Reduced Instruction Set Computer) sensor controller. For one, the sensor controller 

configures the recording ADC, read and store sampled data into a buffer in a 4-KB SRAM 

(Static random-access memory) that can be accessed by both the sensor controller and the main 

CPU. For another, the main CPU monitors the volume of buffered data and dispatches buffered 

data to the adapter through BLE in a timely manner to avoid buffer overflow. The pseudocode 

below describes the workflow of sensor controller in the recording task. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟒 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Reset ADC; 

Set CS (chip select) pin to high and start SPI communication; 

Send op-code to set command format to 16-bit; 

Configure sampling frequency; 

Set the ADC to low-power mode; 

int response; // Used to read command response from ADC 
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int samples[1464]; // Used to buffer ADC samples 

int head = 0, tail = 0; // Keep track of the unsent data in buffer 

while (response != 0x3333) 

 write op-code to set gain to 16; 

 response = read_response(); 

end while 

set interrupt data-ready GPIO to trigger ADC read event; 

while (recording on) 

 if (data-ready interrupt triggers) 

  samples[head] = read_response(); 

  if (head == 1463) // Wrap buffer around when the end of the buffer is reached 

   head = 0; 

  end if 

 end if 

end while                                                                                                                                

                                                                                                                                                                                  

Figure 5-6 below illustrates how incoming ADC sampled data is accumulated in the 

buffer in SRAM along with the increment of variable head to keep track of the volume of 

buffered data. Blocks in green represents buffered data that awaits to be forwarded to adapter. 
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Each block in the buffer contains 244 bytes of data and 12 blocks contain 2928 bytes in total. 

Buffer block size is chosen based on the length of BLE data packet, which can carry maximum 

249 bytes. However, in the 2nd iteration PCB, the small chip antenna for wireless communication 

soldered by vendor was broken and hand soldering was performed to replace the broken antenna. 

Due to the limitation of hand soldering, it was noticed that the last 2 to 3 bytes of a 249-byte 

BLE packet tend to contain error. Therefore, a buffer block size of 244 is used to accommodate 

the actual size of BLE packet used in practice. In this buffer, every new neural signal sample is 

stored at the address indexed by the current variable head which is incremented by 2 since only 

16 noise-free bits out of 24-bit resolution is buffered and the least significant 8 bits are discarded. 

 

Figure 5-6: Illustration of Data Accumulates into Buffer in SRAM 

 

 The workflow of the main CPU to work with the sensor controller to dispatch buffered 

data is described in the pseudocode below.  

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟓 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑜𝑓 𝑀𝑎𝑖𝑛 𝐶𝑃𝑈 𝑖𝑛 𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑇𝑎𝑠𝑘                                            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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// Main CPU can access variables initialized in SRAM (head, tail, samples) 

int chunksLeft = 0; 

attHandleValueNoti_t noti; // Handle for send BLE notification 

while (recording on) 

 allocate memory and configure handle class object for BLE notification; 

 notif.len = 249; // Set length for BLE notification handle 

 int sampleCount = head – tail; 

 chunksLeft = int(sampleCount / 122); 

 while (chunksLeft --) 

  for (int n = 0; n < 122; ++n) 

   noti.pValue[2*n] = samples[tail] >> 8; // Load the first byte 

   notif.pValue[2*n+1] = samples[tail] & 0x00ff; // Load the second byte 

   tail = tail + 1; 

   if (tail >= 1464) // Set tail to 0 if the end of buffer is reached 

    tail = 0; 

   end if 

   while (1) // Send BLE notification until the communication is successful 

    status = send_notification(); 
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    if (status == SUCCESS) 

     break; 

    end if 

   end while 

  end for 

 end while 

end while                                                                                                                               

                                                                                                                                                                                  

Figure 5-7 below illustrates the scenario of the buffer when 244 bytes of samples are sent 

to the adapter by the main CPU along with the increment of tail to keep track of unsent buffered 

samples. When the counter condition is met, the first 244 bytes of unsent buffered data would be 

transferred to adapter through BLE, followed by the variable tail incremented by 244.  

 

Figure 5-7: Illustration of Buffer in SRAM after 1 BLE Notification Packet is Sent 
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5.1.4. BLE Task  

In addition to maintaining BLE connection and dispatching buffered data to the adapter, 

BLE task monitors the incoming operation and parameter update command and buffers the new 

parameters, waits to execute stimulation based on new parameters until the receipt of update 

command. Upon the receipt of new stimulation parameters, BLE task decodes and reassembles 

the incoming BLE notification packets back to the double-precision floating-point format, 

described in Figure 5-2 and algorithm 2. The management of different operation and stimulation 

parameter of the implanted/remote device is based on GATT and the assignments of 

characteristic attributes are summarized in table 3-1. The format of operation and parameter 

update command will be discussed in the next chapter. 

5.2. Firmware Design of the Adapter 

5.2.1. Overview of Firmware Design of Adapter 

 An overview of the firmware workflow of the adapter is shown in Figure 5-8 below. 

Similar to the firmware design of the remote device, TI-RTOS is used to manage multiple tasks 

and guarantee the real-time operation. Three tasks operate concurrently in the adapter: data 

forward task, BLE speed-drop prevention task, and stimulation parameter update task. Data 

forward task tracks receives and buffers the recorded neural signal recording from the remote 

device through BLE. Once the buffer is filled up to a certain level, buffered data will be 

forwarded to the backend device through UART for long-term storage, real-time visualization, 

and real-time post-processing. Parameter update task monitors stimulation parameter update 

command from the backend device via UART, which would be transferred to remote device via 

BLE. The format of the parameter update command would be discussed later in detail. A BLE 
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speed-drop prevention task is added to the system to avoid potential BLE notification speed drop 

due to the overload of SRAM of the RF core. This task keeps track of the operation duration of 

BLE notification and restart BLE notification every 40 seconds with a small pause of 25 

millisecond to accommodate the transient of turn-on and turn-off operation. Periodicity to restart 

BLE notification is chosen experimentally without generating data loss. The priorities of three 

tasks in descending order are the following: BLE speed-drop prevent task, data forward task, 

parameter update task. Such setting prioritizes data transmission in the adapter to avoid data loss.   

 

Figure 5-8: Firmware Flowchart of Adapter 
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The details of firmware in adapter will be discussed in the following. When the adapter 

powers on, UART, BLE, and 3 tasks mentioned above are initialized. The adapter serves as a 

central device in BLE protocol and determines to either accept or reject the requested connection 

parameters from the peripheral devices. PHY is set to 1M to allow stronger signal strength for 

better signal penetration ability. Baud rate of UART is set to 961200 to provide sufficient 

redundancy to transmit buffered data in time without data overflow. The size of the buffer is set 

to 3904 bytes, which is 16 transmission units of BLE notification. Data forward task sends 

received data when the buffer is filled up to 1/4 of the total size, i.e., 976 bytes, which is 4 

transmission units of BLE notification. The stack size for data forward task is set to 10240 bytes. 

The stack size is set to 1024 bytes for the other 2 tasks.  

After initialization, the adapter starts searching for peripheral device, i.e., 

implanted/remote device to establish connection. As mentioned in section 5.1.1, the implant uses 

public address mode and has a global fixed address. The adapter will continuously search for 

peripheral with this global fixed address and establish connection when it is available.  

5.2.2. Data Forward Task 

Pseudocode describes the operation of data forward task is shown below.  

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟓 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑇𝑎𝑠𝑘 𝑖𝑛 𝐴𝑑𝑎𝑝𝑡𝑒𝑟                                                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

counter = 0; 

while (recording on) 

 Data forward task sleeps for 10 ms; // See consideration of 10ms sleep below  

 counter = int ((head – tail)/976); 
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 while (counter != 0){ 

  UART_write(buffered_data[tail:tail+976]); 

  tail = tail + 976; 

  counter --; 

  if (tail > 3904) 

   tail = 0; 

  end if 

 end while 

end while                                                                                                                                

                                                                                                                                                                                  

Data forward task is set to a 10ms sleep when there is not enough data to forward in the 

buffer. During 10ms sleep period, about 160 samples (320 bytes) are accumulated in the buffer. 

Data forward task forwards recorded data when the buffer has more than 976 bytes of data. A 

sleep period of 10ms guarantees data is sent out faster than it enters buffer. The variables head 

and tail are the indices used to locate unsent data in the buffer. Note that in the pseudocode 

above, only variable tail is updated. The variable head is updated by BLE stack continuously 

when new data is received through BLE notification. Pseudocode shown below describes how 

the variable tail is updated along with the incoming buffered data in BLE stack. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟔 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝐵𝐿𝐸 𝑆𝑡𝑎𝑐𝑘                                             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

while (1) 
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 if (A new BLE notification packet is received) 

  memcpy(buffer_data[head], BLE_notification_packet, 244); 

  head = head + 244; 

  if (head >= 3904) 

   head = 0; 

  end if 

 end if 

end while                                                                                                                                

                                                                                                                                                                                  

Figure 5-9 below illustrates how incoming BLE notification packet is buffered in BLE 

stack along with the update of variable head. Blocks in green represents buffered data that awaits 

to be forwarded to backend. Each block in the buffer contains 244 bytes of data and 16 blocks 

contain 3904 bytes in total. New BLE notification packet received by the adapter is stored at the 

address indexed by the current variable head which is incremented by 244 accordingly 

afterwards. 



62 
 

 

Figure 5-9: Illustration of Data Accumulates in Buffer in Adapter 

 

Figure 5-10 below illustrates how the variables tail keeps track of buffered data in data 

forward task. When the counter condition is met, the first 976 bytes of buffered data would be 

transferred to backend through UART, followed by the variable tail incremented by 976.  

 

Figure 5-10: Illustration of Buffer When Data is Forwarded to Backend 
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When a new BLE notification is received by the adapter, the last 5 bytes would be 

dropped as they are trivial data for the purpose of avoiding bit errors at the end of a packet 

discussed in Chapter 5.1.3, and the first 244 bytes would be moved to a buffer of which the total 

size is 3904 bytes. As recorded data transferred through BLE gets continuously buffered in 

adapter, the data forward task monitors the accumulation of data by integer division between the 

number of bytes in the buffer and 976, the result of which gets stored in a counter. If the value of 

counter is not zero, the adapter forwards 976 bytes to the backend through UART and 

decrements the counter by 1. Such process continuous repeatedly until the recording turns off by 

the user.  

 

5.2.3. BLE Speed-drop Prevention Task 

BLE speed-drop prevention task simply turns off BLE notification every 40 seconds and 

restarts BLE notification after a 25ms delay. In experiments, it was noticed that continuous BLE 

notification over 2 minutes will result in speed drop. Also, restarting BLE notification less than 

15ms after the termination is not successful due to the transience between on and off state. A 

short delay allows BLE notification to fully rest in off state. Therefore, 40 seconds on time and 

25ms delay are chosen in practice. 25ms delay would not cause data loss due to buffer overflow 

with 15.625kHz sampling frequency and 16 noise-free bit data format, which is proved in the 

calculation below.  
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𝐷𝑎𝑡𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 25 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =  
𝑆𝑎𝑚𝑝𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ # 𝑏𝑖𝑡𝑠

8 𝑏𝑖𝑡𝑠
∗ 0.025

=  
15625 ∗ 16 

8 
∗ 0.025 = 781.25 𝑏𝑦𝑡𝑒𝑠 < 3904 𝑏𝑦𝑡𝑒𝑠 (𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒) 

 

5.2.4. Parameter Update Task 

 Parameter update task stores the parameter update command in a class object with a 

custom format. The received command is temporarily stored in the adapter in a custom format 

illustrated in Figure 5-11 below. 

 

Figure 5-11: UART Command Data Format. 

 

Each block presents 1 byte. The description of each field is the following: 

1. Command ID: Determined by the type of parameter to update. Every configurable 

parameter is associated with an ID from 0 to 14. This is the same as the BLE 

characteristic ID when the parameter is sent through BLE write command. Refer to table 

3-3-1 for the corresponding parameter to command ID. 

2. Data Length: Data length indicates the length of the attribute value of the associated 

command ID. Note that the data length byte is not included in the raw command received 

through UART. It is added to the class object based on the associated command ID for 

the convenience for initiating a BLE write command. 
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3. data_array: data_array is an unsigned 8-bit integer array. Following the same format of 

attribute value defined in the Section 5.2, data_array can represent attribute values from 0 

to 999999 by segmenting the attribute value into 3 bytes. For instance, an attribute value 

of 501230 is represented as [0x50, 0x12, 0x30]. For attributes with length smaller than 3 

bytes, zeros are padded to the right side of data_array. For instance, an attribute value of 

2580 is represented as [0x25, 0x80, 0x00]. 

The pseudocode below describes the workflow to transfers a received parameter update 

command from UART to the remote device through BLE.   

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑 𝑃𝑠𝑒𝑢𝑑𝑜𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇𝑎𝑠𝑘                                             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

typedef struct { 

 uint8_t commandID; 

 uint8_t len; 

 uin8_t pData[3]; 

} 

uint8_t UARTCommand[4] = {0, 0, 0, 0};  

while (1) 

 Parameter update task sleeps for 10 ms; 

 Read 4 bytes data through UART and store in UARTCommand array; 

 if (UARTCommand[0] != 20) 

  commandHandle.commandID = UARTCommand[0]; 
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  memcpy(&commandHandle.pData, &UARTCommand[1], 3);  

  switch (UARTCommand[0]) 

   commandHandle.len = the associated BLE characteristic attribute length; 

   if (UARTCommand[0] == 2)  // Characteristic ID to toggle throughput 

    Toggle BLE throughput; 

   end if 

  end switch  

  if (commandHandle.commandID != 2) // Characteristic ID to toggle throughput 

   Send BLE write request to update the specific characteristic attribute; 

  end if 

  UARTCommand[0] = 20; 

end while                                                                                                                                

                                                                                                                                                                                  

When parameter update task wakes up from a 10ms sleep, adapter attempts to read 4 bytes of 

data from UART if available. If the attempt succeeded, the attribute length associated to the 

command ID is determined, followed by transferring all parameter update information to a 

commandHandle class object. Note that a command ID of 2 is an exception such that BLE 

throughout is toggle immediately at this step. Next, a BLE write request is initiated based on the 

commandHandle class object. Finally, the first byte of UARTCommand array is set to a trivial 
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number that is different from all functional command ID, 20 in our implementation,  to indicate 

the completion of a parameter update command to avoid repeated update. 
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Chapter 6 : Software Design 

6.1.  Design of GUI (Graphical User Interface) 

 The GUI used to control the operation of the system, visualize, process, and store the 

recorded neural signal is built using the App Designer in MATLAB. The interface of the 

application is shown in Figure 6-1 below. 

 

Figure 6-1: Graphical User Interface 

 

The interface is divided into three panels to improve user experience: parameter update panel, 

data panel, and control panel. The left panel is used to control stimulation parameters. An update 

command is sent to the remote device through adapter only when user clicks the update button to 

enable bulk update. The middle panel displays the recorded signal (or artifact-free signal when 
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artifact cancellation is enabled) in real-time. At the end of a recording session, user can choose to 

save the recorded data into a .csv file and delete recorded data to start a new recording session. 

The right panel provides control of the operation of the system. Three  buttons provide the major 

control of the system. Connect/disconnect button initiates/terminates the connection between 

adapter and backend. Start/stop recording button enables/disables the on/off state of the 

recording ADC and BLE notification. Toggle stimulation button switches the on/off state of the 

stimulator. 3 checkboxes on the top determine the operation mode. Artifact cancellation 

checkbox enables/disables the real-time artifact cancellation capability. Random frequency 

checkbox enables/disables Poisson-distributed modulation of inter-burst-train periods. Random 

pulse width checkbox enables/disables Poisson-distributed modulation of stimulation pulse 

width. 

 The GUI establishes communication with the adapter through UART after user enabling 

the connection by connect/disconnect button. When the two-way communication is enabled, the 

program initializes a serial port to send control and parameter update commands. Additionally, 

discussed in section 5.1.1, samples of neural signals are sent to backend as a stream of 8-bit 

numbers. The backend program also reassembles the 8-bit stream to decode ADC conversion 

data. Since data in ADS131M04 is given in binary two’s complement format and the remote 

device retains 16 noise-free bits out of 24-bit resolution, the equation below can be used to 

calculate the least significant bit (LSB). The full scale reference of ADS131M04 is 2.4V (-1.2V 

to 1.2V). 

1 𝐿𝑆𝐵 = (𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒
𝐺𝑎𝑖𝑛⁄ ) 216 ⁄ = +𝐹𝑆𝑅 215⁄  [3] 
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Based on the equation above, ideal output code from negative full-scale reference (-FSR) to 

positive full-scale reference (+FSR) can be summarized in Table 6-1 below. 

Table 6-1: ADC Conversion with Output Code 

Input Signal Ideal Output Code 

>= FSR (215 - 1)/ 215 0x7FFF 

FSR / 215 0x0001 

0 0x0000 

- FSR / 215 0xFFFF 

<= -FSR 0x8000 

 

Using rules described above, bit stream from the adapter is decoded to the corresponding voltage 

level of input signal by UART callback function, which triggers when the amount of data 

buffered by UART is equivalent to 1-second interval of ADC samples, i.e., 15625 ADC samples 

at 15.625 kHz sampling frequency. The callback function operates differently depending on 

whether the artifact cancellation capability is enabled. When artifact cancellation is disabled, the 

pseudocode below describes the workflow to offload and display incoming data in real-time. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟖 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑡𝑜 𝑆𝑡𝑜𝑟𝑒 𝑎𝑛𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑦 𝑁𝑒𝑢𝑟𝑎𝑙 𝐷𝑎𝑡𝑎                                             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

data = []; // Array to store decoded ADC recordings 

while (artifact cancellation disabled) 

 if (buffered data size in UART > 31250 bytes) 

  data_temp = read_UART(31250, ‘uint8’); // Read 31250 bytes in UART buffer 
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  adcConversion = zeros(1, 15625); 

  for i = 1:15625 

temp = uint8(data_temp[(i-1)*2+1:i*2]); // Take 2 bytes that form 1 

sample 

adcConversion[i] = typecast(temp, “uint16”); // Decode 1 sample by 

combining 2 bytes of 8-bit number 

if (adcConversion[i] > 32768) 

adcConversion[i] = adcConversion[i] – 65536; // Account for 

binary two’s complement format 

end if 

adcConversion = (2.4/gain)/216*adcConversion;// Convert to input voltage 

data = [data adcConversion]; // Append the most recent frame of decoded 

input voltage to the current recording session 

 end if 

end while                                                                                                                                

                                                                                                                                                                                  

When artifact cancellation is enabled, real-time algorithm to remove stimulation artifact is added 

to Algorithm 8. Template-subtraction-based algorithm is applied to the decoded input voltage, 

which will be discussed in Section 6.2 below. 
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 UART communication between backend and adapter is also responsible for delivering 

control and parameter update commands to adapter. When edit fields, buttons, and check boxes 

are utilized, their corresponding callback function write control or parameter update command as 

bit stream through UART to alter the behavior of the remote device. The format of control and 

parameter update command initiated from backend is illustrated in Figure 6-2 below. 

 

Figure 6-2: Format of Commands in Backend 

 

Each block presents 1 byte. The description of each field is the following: 

1. Command ID: Determined by the type of parameter to update. This is the same as the 

command ID field in Section 5.2.4. 

2. data_array: data_array is an unsigned 8-bit integer array and follows the same rule 

defined in Section 5.2.4. Additionally, details of data_array is determined by the type of 

commands. For control command, data_array[1] and data_array[2] are set to zero. 

data_array[0] is set to binary true and false depending on the desired on/off state. Refer to 

Figure 5-2 for the workflow of parameter update command and algorithm 1 for the data 

format. 

 

6.2. Method to Remove Stimulus Artifact in Real-time 

The real-time artifact cancellation capability of the system is realized by a template-

subtraction-based algorithm. Such an algorithm takes advantages of the similar voltage response 
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from periodic stimulation to form an averaged template which is subtracted from the raw input 

signal with appropriate timing. Figure 6-3 illustrates the conception templating to deal 

withstimulation artifact in periodic stimulation where the periodic stimulus responses can be 

overlaid to form a template. The left panel shows a segment of recorded neural signal with 

stimulation artifact. The right panel shows ten periods of stimulation artifact from the left panel 

overlaid together. It is noticeable that ten adjacent artifact waveforms are similar in shape and 

amplitude. Such behavior is beneficial to establish a artifact template which can be subtracted 

from the raw input signal to remove stimulus artifact.  

 

Figure 6-3: Concept of Template Averaging 

 

The workflow of the algorithm is discussed in the following: 

1. As mentioned in Section 6.1, UART callback function reads data through UART when 

there is equivalently 1-second interval of buffered data. Therefore, artifact cancellation 
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algorithm in the system operates on a window basis as well. Figure 6-4 demonstrates a 

window of raw input signal with stimulus artifact present. Note that the raw input signal 

experiences noticeable DC drifting, which introduces significant errors when forming and 

subtracting artifact template. To mitigate this issue, the algorithm appends the last 0.256 

seconds from the previous window to the current 1-second window to form a 1.256-

second window, which provides redundancy for the convenience to eliminate DC drift in 

step 2 and 3. The window size 1.256 is empirically determined and will be explained 

later. 

 

Figure 6-4: Window with Redundancy for DC Drifting 

 

2. With 1.256-second window in step 1, a 2nd-order high-pass Infinite Impulse Response 

(IIR) filter with cutoff frequency at 5Hz is used to remove low-frequency DC drifting. 

Figure 6-5 below shows the resulting waveform after filtering. Notice that IIR filter does 

not have linear phase and causes phase distortion. The resulting signal after passing 
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through IIR filter is noticeably distorted in the front of the window. This situation is 

undesired and needs to be accounted for. 

3. As mentioned previously, the data panel of GUI displays the signal at a 1-second interval 

while the initial window is 1.256-second with 0.256-second redundancy from the 

previous window. Window size of 1.256 second is determined empirically. During 

experiments, the IIR filter mentioned previously introduces distortion in less than 0.2 

second of data. A redundancy of 0.256 second performs well to remove those distortion 

in practice. With this pre-allocated redundancy, simple truncation can be done to remove 

the first 0.256 seconds of samples containing significant distortion. The resulting 1-

second DC-free signal is shown in Figure 6-6 below.  

 

Figure 6-5: Resulting Waveform from IIR High-pass Filtering 
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Figure 6-6: DC-free Signal after Filtering and Truncation 

 

4. After a DC-free 1-second window is obtained, location of the starting point of stimulus 

artifacts needs to be determined using signal processing method due to the lack of trigger 

signal through wireless communication. In general, the amplitude of stimulus artifacts is 

much larger than that of meaningful neural signal. Such property can be leveraged to 

design a magnitude-based method to segment stimulus artifact into different periods. The 

histogram of a typical 1-second windowed DC-free signal is shown in Figure 6-7.  
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Figure 6-7: Distribution of DC-free Signal in Figure 6-6 

 

Clearly, large-amplitude samples originated from stimulus artifact are greater than 2.5 

standard deviation from the mean of all samples. Hence, a threshold calculated within the 

current windowed DC-free signal can be applied to detect the starting point of a 

stimulation pulse train. Using such observation, the proposed algorithm selects the first 

point that is greater than the established threshold in a stimulation period as the anchor 

point to locate the beginning of a stimulation period. Ideally, an adaptive threshold based 

on stimulation parameters (amplitude, frequency, pulse width, etc.) may provide more 

benefit to localize stimulus artifact more precisely. In practice, a threshold between 2 to 3 

standard deviations regardless stimulation parameters produces decent performance. 

Moreover, as a part of future work, such template-subtraction-based algorithm will be 

migrated to on-chip execution within CC2652RSIP so that the need to localize stimulus 
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artifact statistically is eliminated. Red dots in Figure 6-8 below indicates the anchor point 

to perform template averaging using the aforementioned statistical method.  

 

Figure 6-8: Anchor Points to Perform Template Averaging 

 

A potential issue needs to consider when detecting anchor points. First, stimulus artifacts can 

appear at the edge of the 1-second interval. Thus, those artifacts may not be complete in the 

current window and run-time error of the algorithm could occur. Such scenario is 

demonstrated in Figure 6-9 below. The solution to avoid this situation is to apply the scheme 

of adaptive window width, i.e., shrink or extend the window width when necessary to 

guarantee all detected stimulus artifact are enclosed in the current window width.  
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Figure 6-9: Scenario of Stimulus Artifacts Appearing at the Edge of 1-second Window 

 

5. With the anchor points detected in step 4, stimulus artifacts are segmented into different 

periods. A template of the stimulus artifacts can be formed by averaging the overlaid 

artifact segments as shown in Figure 6-10.  

 

Figure 6-10: Template Averaging 
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The number of artifact segments used to for a template can be pre-determined or ideally, 

determined by the residuals resulting after subtraction. In practice, updating the template 

over time using 10 to 20 segments provides satisfactory performance. 

6. The template obtained in step 5 is subtracted from the DC-free 1-second window, i.e., 

signal obtained in step 3, at each anchor point obtained in step. Template subtraction 

technique tends to suffer from under-sampling, misalignment of stimulation, and sample 

timing. A typical scenario of misalignment is shown in Figure 6-11 below where the 

template and artifact in DC-free signal are offset by 1 sample, which leads to exacerbated 

decline in performance of the algorithm. One solution applied in the algorithm is to 

perform subtractions referring the anchor points as well as indices adjacent to anchor 

points and calculate the sum of the residuals with respect to different referenced points. 

The referenced point with the smallest sum of residuals is selected to be the adjusted 

anchor point for final subtraction. The result after this process can be seen in Figure 6-12.  

 

Figure 6-11: Misalignment between Artifact and Template 
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Figure 6-12: Result after Template Subtraction 

 

7. After template subtraction with misalignment attenuation, noticeable residual artifacts 

exist in various amplitude. Figure 6-13 below provides a close view of a typical scenario 

of artifact residuals. Generally, residual artifacts appear in the form of narrow pulse with 

amplitude drastically higher than the adjacent neural signals or noise floor. Due to the 

resemblance to outlier data points, residual artifacts can be removed using a Hampel filter 

in combination with a bandpass filter for out-of-band noise to recover artifact-free signal. 

In the current implementation, Hampel filter is set to 200 adjacent points with 2 standard 

deviations. The resulting artifact-free signal in comparison with the raw input signal is 

shown in Figure 6-14. In this qualitative comparison, the post-processing signal retains 

the shape and phase features from the raw input signal with significant attenuation of 
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stimulus artifacts. More discussions with qualitative and quantitative analysis on the 

performance of the algorithm will be included in Chapter 7. 

 

Figure 6-13: Magnified View of Typical Residual Artifacts 

  

 

Figure 6-14: Comparison between Artifact-free Signal and Raw Input Signal 
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Chapter 7 : Testing of the System 

7.1. Testing of the Stimulator 

7.1.1. Overview of Testing Methods 

 The functionality of the stimulator with the associated firmware to generate regulated 

stimulation waveform is verified with resistive load, saline, and in-vivo experiments. While 

resistive load does not match the property of real issue, a resistive load provides non-capacitive 

voltage response to current stimulus. Such voltage response contains negligible transient, which 

is ideal to assess the timing accuracy and voltage amplitude of the stimulator with the associated 

firmware with respect to stimulation parameters. The testing of the stimulator during in-vivo 

experiments will be discussed in Chapter 7.4. 

7.1.2. Testing with Resistive Load 

The setup of testing with resistive load is shown in Figure 7-1 below. The remote device is 

powered by a battery and executes stimulation to two 450Ω resistors in series. An oscilloscope is 

used to measure the voltage response against different stimulation parameters and stimulation 

mode. Figures 7-1 to 7-3 below are voltage response under periodic stimulation mode with 

stimulation parameters summarized in Table 7-1. Stimulation current probed by oscilloscope is 

0.885V/(2×450) Ω = 0.983 mA. 
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Figure 7-1: Setup of Testing with Resistive Load 

 

Table 7-1: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 1) 

Parameters Value 

Stimulation Period 100 ms 

Pulse Width 100 µs 

Burst Period 1 ms 

Burst Count 4 

Current 1 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-2: Waveform from Oscilloscope for Stimulation Parameters in Table 4-1 (a) 

 

 

Figure 7-3: Waveform from Oscilloscope for Stimulation Parameters in Table 4-1 (b) 
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Figure 7-4: Waveform from Oscilloscope for Stimulation Parameters in Table 5-1 (c) 

 

Figures 7-5 to 7-7 below are voltage response under periodic stimulation mode with stimulation 

parameters summarized in table 7-2. Stimulation current probed by oscilloscope is 

1.28V/(2×450) Ω = 1.43 mA. 

Table 7-2: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 2) 

Parameters Value 

Stimulation Period 500 ms 

Pulse Width 500 µs 

Burst Period 8 ms 

Burst Count 6 

Current 1.5 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-5: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (a) 

 

 

Figure 7-6: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (b) 
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Figure 7-7: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (c) 

 

With resistive load, testing is also performed with aperiodic stimulation protocol. Figure 7-8 

shows the stimulation waveform in random frequency mode with stimulation parameters in table 

7-3. Figure 7-9 shows the stimulation waveform in random pulse width mode with stimulation 

parameters in table 7-4. Figure 7-10 shows the stimulation waveform with both random 

frequency and random pulse width mode enabled with stimulation parameters in table 7-5. 

Table 7-3: Stimulation Parameters of Random Frequency Stimulation with Resistive 

Load 

Parameters Value 

Stimulation Period 100 ms 

Pulse Width 100 µs 

Burst Period 1 ms 

Burst Count 4 

Current 1 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-8: Waveform from Oscilloscope for Stimulation Parameters in Table 4-4 under 

Random Frequency Mode 

 

Table 7-4: Stimulation Parameters of Random Pulse Width Stimulation with Resistive 

Load 

Parameters Value 

Stimulation Period 5 ms 

Pulse Width 300 µs 

Burst Period 1 ms 

Burst Count 1 

Current 1 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-9: Waveform from Oscilloscope for Stimulation Parameters in Table 4-5 under 

Random Pulse Width Mode 

 

Table 7-5: Stimulation Parameters of Random Pulse Width Stimulation with Resistive 

Load 

Parameters Value 

Stimulation Period 5 ms 

Pulse Width 500 µs 

Burst Period 1 ms 

Burst Count 1 

Current 1.5 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-10: Waveform from Oscilloscope for Stimulation Parameters in Table 4-6 under 

both Random Frequency and Random Pulse Width Mode 

 

Multiple sets of testing with resistive load above demonstrate the capability of the stimulator 

with the associated firmware to deliver accurate current stimulation waveform adhered to the 

specified stimulation parameters and stimulation mode.  

 

7.1.3. Testing with Saline 

The setup of testing with saline is shown in Figure 7-11 below. The remote device is powered by 

a battery and executes stimulation to 0.9% saline. An oscilloscope is used to measure the voltage 

response against different stimulation parameters and stimulation mode. Figures 7-12 to 7-14 

below are voltage response under periodic stimulation mode with stimulation parameters 

summarized in table 7-6. Figure 7-15 is the voltage response under both random frequency and 
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random pulse width model with stimulation parameters summarized in Table 7-7. Note that in 

both cases, the voltage waveform did not settle due to the narrow the pulse width and the large 

RC constant contributed by the electrode-saline interface. From Figure 7-14, the time constant 

can be estimated using the formula below: 

𝑉1,2 = 𝑉0(1 − 𝑒−
𝑡
𝜏) 

From Figure 7-14, V1 is approximately 0.359V when t is 200µs, V2 is approximately 0.2V when 

t is 200µs. The time constant of the electrode-saline interface can be estimated to be 4.36×10-4s.    

 

Figure 7-11: Setup of Testing with Saline 

 

Table 7-6: Stimulation Parameters of Random Pulse Width Stimulation with Resistive 

Load 

Parameters Value 

Stimulation Period 50 ms 

Pulse Width 200 µs 

Burst Period 2 ms 

Burst Count 3 
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Current 1.5 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 

 

 

Figure 7-12: Waveform from Oscilloscope for Stimulation Parameters in Table 4-5 under 

Periodic Mode in Saline (a) 

 



94 
 

 

Figure 7-13: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under 

Periodic Mode in Saline (b) 
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Figure 7-14: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under 

Periodic Mode in Saline (c)  

 

Table 7-7: Stimulation Parameters of Random Frequency and Pulse Width Stimulation 

with Resistive Load 

Parameters Value 

Stimulation Period 50 ms 

Pulse Width 200 µs 

Burst Period 2 ms 

Burst Count 3 

Current 1.5 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-15: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under 

Random Frequency and Random Pulse Width Mode (Saline) 

 

Testing with 0.9% saline above demonstrates noticeable transient effect due to the saline-

electrode interface. This phenomenon is observed during in-vivo experiments due to the non-

Faradaic current created by the tissue-electrode interface. When using 0.9% saline to emulate 

real tissue environment, the stimulator and associated firmware functions properly, which 

provides the prerequisites for in-vivo testing. 

 

7.2. Simulation of Real-time Artifact-cancellation Algorithm 

 Template-subtraction-based algorithm to remove stimulus artifact in real-time discussed 

in section 6.2 is first verified in simulation before the deployment to the system. The simulation 
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also eases the process of developing GUI with intense requirement for computing resource. The 

procedure to validate the feasibility of the proposed algorithm is the following. 

1. Raw input signal containing neural signals super-positioned with stimulus artifact is 

collected with the setup shown in Figure 7-16 below. A beaker containing 50g of 0.9% 

saline simulates real animal tissues and provides voltage response due to tissue-electrode 

interface. A function generator is used to inject pre-recorded electromyography (EMG) 

signal into saline as emulated neural signal. Simultaneously, the implanted/remote device 

delivers periodic current stimulation into beaker and record the voltage response from 

saline. 

 

Figure 7-16: Experiment Configuration to Collect Artifact-contaminated Neural Signal 

 

2. With the collected voltage response data in step 1, the algorithm discussed in Section 6.2 

is written in MATLAB script to remove stimulus artifact in the collected data in a quasi-
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real-time manner. In the simulation, raw input signal is processed per 1-second interval to 

mimic ADC behaviors in actual implementation. Therefore, the complexity of the 

algorithm can be accessed to ensure the real-time feature of the entire system. 

3. The performance of the algorithm is evaluated in 3 aspects: similarity in time domain, 

similarity in frequency domain, processing time for 1-second interval of data. Due to time 

constraint and the transitional nature of this validation stage, qualitative analysis is 

mostly conduct in quasi-real-time simulation to verify the feasibility of the algorithm. For 

time-domain evaluation, Figures 7-17 and 7-18 below show a comparison between the 

post-processing signal, DC-free input signal, and raw input signal. Features of neural 

signals are largely preserved in time domain and the high-amplitude stimulus artifacts are 

attenuated to visually close to baseline noise level.  

 

Figure 7-17: Comparison of Raw Input Signal, DC-free Input Signal, and Post-

processing Signal 
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Figure 7-18: Comparison of Raw Input Signal, DC-free Input Signal, and Post-

processing Signal (Magnified) 

Frequency analysis compares Fast Fourier Transform (FFT) of the post-processing contaminated 

signal and ADC sampled emulated neural signal in saline for two reasons. First, pre-recorded 

neural signals in .csv does not contain DC drifting and background noise caused by the electrode, 

ADC, and environment. This scenario of is demonstrated in Figure 7-19 below. Secondly, 

function generator produces emulated neural signals using sample-and-on method. Signal 

generated in this way may contain additional frequency components that are not presented in the 

original pre-recorded signal. Therefore, the comparison of FFT spectrums between post-

processing signal and emulated signal recorded saline provides a better visualization to evaluate 

the effectiveness of the algorithm.  
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Figure 7-19: Source of Emulated Signal Recorded in Saline in Frequency Analysis 

 

Figure 7-20 below shows FFT of the raw input signal with stimulus artifact. As mentioned in 

Section 2.5, stimulus artifact introduces tones that distributes over a wide frequency spectrum.  

 

Figure 7-20: FFT of Raw Input Signal Contaminated by Stimulus Artifact 
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In Figure 7-21, FFT of post-processing signal largely suppresses tones created by stimulus 

artifact. Compared with emulated neural signals in saline with stimulation disabled, the shape 

and magnitude of FFT spectrum are well recovered from FFT of the raw input signal with tones 

mixed with signal of interest. 

 

Figure 7-21: FFT of Emulated Neural Signal in Saline vs Post-processing Signal 

 

Finally, the processing time for each 1-second interval is measured and used to produce 

arithmetic mean. When the algorithm is applied to GUI in real-time, delay from communication 

and data visualization place more stringent requirement on the maximum run-time. Furthermore, 

optimized version of such algorithm is planned to implement on MCU for artifact cancellation on 

chip as future work, which requires sufficiently efficient coding implementation. Figure 7-22 

below shows the typical run-time for 1-second interval in quasi-real-time simulation. The 

average run-time for 1-second samples is at the level of 10ms with reasonable amount of 

redundancy. 
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Figure 7-22: Processing Time in Quasi-real-time Simulation 

 

7.3. In-vitro Experiment to Access Artifact-cancellation Capability 

With the verified quasi-real-time simulation in Chapter 7.2, the algorithm is deployed to 

the backend of GUI, followed by in-vitro experiments to examine the performance. The setup of 

the in-vitro experiment is shown in Figure 7-23. The implement of the artifact cancellation 

algorithm processes the incoming raw input signal by 1-second interval and displays the post-

processing signal in real-time. Figure 7-24 demonstrates the post-processing signal being 

displayed in the data panel of GUI over time. 
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Figure 7-23: Setup and Signal Flow of In-vitro Testing 

 

The algorithm is tested against different stimulation parameters. At the beginning of in-

vitro testing, the 30 second of emulated neural signal in saline is recorded by the remote device 

without enabling stimulation as a baseline. For each testing case, 30 second of raw input and 

post-processing signal with concurrent stimulation are recorded for evaluation. The performance 

with respect to different stimulation parameters is evaluated under two metrics in frequency 

domain. For the first metric, the magnitude of largest tone in FFT of the raw input is compared to 

the same frequency component in FFT of the post-processing signal to calculate the maximum 

attenuation. Maximum attenuation can be calculated using the following equation. Index i refers 

to the frequency at which FFT of the raw input signal has the largest tone. 



104 
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 20 ∗ 𝑙𝑜𝑔10 (
𝐹𝐹𝑇_𝑟𝑎𝑤[𝑖]

𝐹𝐹𝑇_𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 [𝑖] 
) 

 Figure 7-25 shows a sample comparison between FFT of the raw input signal and the 

post-processing signal with labeled largest tone. 

 

Figure 7-24: Post-processing Signal Displayed in GUI over Time 

 

For the second metric, the normalized cross-correlation at shift of 0 is used to compare the 

similarity between the FFT of the baseline and raw input signal, the FFT of the baseline and 
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post-processing signal. Zero-shift cross-correlations computed between the FFT of raw input 

signal and baseline, the FFT of post-processing signal and baseline provide insight of the 

improvement in frequency spectrum provided by the algorithm. Figure 7-26 provides a visual 

comparison of the FFT spectrum of emulated neural signal, raw input signal, and post-processing 

signal. Intuitively, the FFT of post-processing signal is more correlated to the FFT of emulated 

neural signal than the FFT of raw input signal is. The unwanted tones introduced by current 

stimulation is largely suppressed by the algorithm. 

 

Figure 7-25: Example of Maximum Attenuation 
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Figure 7-26: Example of FFT Comparison 

 Intuitively, pulse width and burst period have significant influence on the shape stimulus 

artifacts. Therefore, testing cases are designed to mainly assess the robustness of the algorithm 

against varying pulse width and burst period. Table 7-8 summarizes the stimulation parameters 

in 4 testing cases. Note that parameter fields that contain multiple number are the varying 

parameters for comparison.  
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Table 7-8: Stimulation Parameters for 4 Testing Cases 

UUID Case 1 Case 2 Case 3 Case 4 

Stimulation 

Period 
100ms 200ms 200ms 200ms 

Stimulation 

Current 
0.6mA 0.6mA 1mA 1mA 

Burst 

Count 
3 3 3 3 

Interphase 

Delay 
10µs 10µs 10µs 10µs 

Asymmetric 

Ratio 
1 1 1 1 

Pulse 

Width 
250µs 250µs 250µs 

250µs, 500µs, 

750µs, 1000µs 

Burst 

Period 

500µs, 1000µs, 

1500µs, 2000µs 

500µs, 1000µs, 

1500µs, 2000µs 

500µs, 1000µs, 

1500µs, 2000µs 
2000µs 

 

Resulting metrics for 4 testing cases are summarized in Figure 7-27 to 7-30 in the manner of two 

bar plots per testing case. The first bar plot compares the maximum attenuate across the varying 

stimulation parameters. The second bar plot demonstrates the improvement of normalized cross-

correlation provided by the algorithm. From the first metric, the algorithm attenuates the 

maximum tone by over 20 dB and the level of attenuation increases and pulse width/burst period 

increases. From the second metric, zero-shift cross-correlation between the raw input signal and 

the baseline generally decreases as pulse width/burst period increases. The red dash-line in the 

second bar plot marks the level of cross-correlation (0.8) that indicates a strong correlation. The 

zero-shift cross-correlation between the raw input signal and the baseline remains below 0.8 and 

even drops below 0.4 in some cases. The proposed algorithm boosts the zero-shift cross-

correlation over the level of strong correlation (0.8) regardless the pulse width/burst period. This 

property provides notable benefit as information of neural signal is often encoded in frequency 

domain 
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Figure 7-27: Resulting Metrics for Case 1 

 

 

Figure 7-28: Resulting Metrics for Case 2 

 

 

Figure 7-29: Resulting Metrics for Case 3 
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Figure 7-30: Resulting Metrics for Case 4 

 

 

7.4. In-vivo Experiment 

7.4.1. In-vivo Testing for Stimulator  

Thanks for the opportunity provided by Dr. Million Mulugeta, an acute system testing 

was performed to verify functionality of the system in real animal experiment. The setup for the 

in-vivo testing is shown in Figure 7-31 below.  

 

Figure 7-31: Setup of Acute Testing 
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During the experiment, periodic constant current stimulation is delivered to celiac branch of the 

Vagus Nerve of a porcine. Two sets of stimulation with the same stimulation parameters, one 

periodic and another one with randomized frequency, were performed. The timeline of the 

experiment is shown in Figure 7-32.  

 

Figure 7-32: Timeline of In-vivo Experiment 

 

The stimulation parameters are shown in table 7-9. The voltage response to such stimulation 

protocols is captured by oscilloscope, shown in Figure 7-33 to 7-35. In Figure 7-35, noticeable 

voltage transience due to Randall Cell effect is observed, which confirms the result from 

experiment with saline. 

Table 7-9: Stimulation Parameters of SPARC Protocol 

Parameters Value 

Periodic, Random Frequency/Pulse Width Periodic 

Stimulation Period 500 ms 

Pulse Width 300 µs 

Burst Period 9 ms 

Burst Count 20 

Current 1 mA 

Interphase Delay 10 µs 

Asymmetric Ratio 1 
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Figure 7-33: Voltage Response of Periodic Current Stimulation with Stimulation 

Parameters in Table 4-12 in Acute Testing 

 

Figure 7-34: Voltage Response of Random Frequency Current Stimulation with 

Stimulation Parameters in Table 4-12 in Acute Testing 
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Figure 7-35: Voltage Transient due to Tissue-Electrode Interface 

 

 

Figure 7-36: Comparison of Recordings from Two Systems 
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7.4.2. In-vivo Testing for Recorder  

 Followed by 2 sets of stimulation, recordings are taken with the system and a 

commercially available device (Plexon) to evaluate the noise performance of the recorder design. 

Figure 7-36 above shows a segment of the recording with each system. While the data 

acquisition with the system and Plexon are not overlapped, similar pattern due to the life-support 

system is observed in both recordings with similar frequency. The noise floor of the recording 

was at the level of 400µVp-p
 which is 8 times higher than that of Plexon due to 2 major reasons. 

First, the gain of the ADC was set to 8 during the experiment. A higher gain can significantly 

lower the magnitude of noise-floor. Secondly, the traces connected to the input pins of ADC are 

not layout properly so that extra noise is introduced from the long and unbalanced copper wires 

to the differential recording channel. This issue of PCB layout can be seen in Figure 7-37. 

Channel 0 used during in-vivo testing is highlighted in green box. The traces of both differential 

inputs to channel 0 is extended to the far left of the ADC chip with long wires. In comparison, 

channel 2 highlighted in blue box has much shorter traces with similar length. This is a 

significant contributing factor since channel 0 used in the in-vivo experiment has the worst 

layout among all 4 channels. Also, the long headers connected to the recording electrodes 

collects excessive unwanted noise. 
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Figure 7-37: Layout of ADC 

 

Efforts are made to reduce the noise-floor based on the result from in-vivo experiments. The gain 

of ADC is adjusted to 16. While noise-floor generally increases with higher sampling frequency, 

to better capture the high-frequency components in neural signals, no adjustment was made on 

the sampling rate. More importantly, channel 2 which has the shortest trace, shown in Figure 7-

37 is configured to be the active instead of channel 0. In Figure 7-37, the 400µVp-p noise floor is 

contributed by both the noise introduced by PCB and the relatively large environmental noise in 

the surgery room in DLAM (Division of Laboratory Animal Medicine at UCLA). In a less noisy 

environment, the noise floor with the same setup is measured to be around 300µVp-p. In the same 

environment, the ADC is configured to a gain of 16 with channel 2 enabled instead of channel 0. 
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Figure 7-38 below shows the noise-floor after the adjustments mentioned above. The noise-floor 

is decreased to around 30µVp-p.  

 

Figure 7-38: Noise Floor after Optimization 
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Chapter 8 : Future Work 

8.1. Extension to a Multi-Channel System 

 Currently, the functional system supports simultaneous operation of 1 stimulating 

channel and 1 recording channel. The framework of the system has the potential to be extended 

to a multi-channel system. For recording, the current framework can accommodate up to 4 

channels without modifying hardware design. Only firmware change is necessary. The main 

limiting factor to accommodate multiple recording channels is the insufficient bandwidth for 

BLE. With 2M PHY layer and data length extension, the maximum speed of BLE over time is 

approximately 1250 Kbit/s. Discussed in section 4.5, the minimum BLE speed requirement to 

avoid data loss is 256Kbit/s. When all 4 channels of ADS131M04 are enabled, the minimum 

required BLE speed would be 1024Kbit/s in theory. Even though 2M PHY layer with data length 

extension can accommodate such requirement with some redundancy, the lower signal 

penetration ability of 2M PHY causes concern when the final iteration of the remote device is 

implanted under tissue. 

For stimulation, to support multiple stimulation channels, additional amplifiers and SPDT 

switch need to be added to PCB, which increases the overall size of the implant. Therefore, the 

weight and size of the implant is a limiting factor determined by the subject of experiment. 

Another constraint lies in the number of GPIO pins and general-purpose timers to control the 

stimulation waveform. Each stimulation channel consumes 3 GPIOs and 1 general-purpose 

timer. Consequently, the current framework can support at most 4 stimulation channels. 
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8.2. Artifact Cancellation on MCU 

As of now, the implementation of real-time stimulus artifact cancellation relies on the 

computing power in backend device. This method is easy to apply without much effort to 

optimize the algorithm to reach the goal of real-time operation and relatively fast to produce a 

functional prototype. However, multiple disadvantages exist for this off-chip solution.  

1. The recorded neural signal in remote device is offloaded to backend through wireless 

communication. Using wireless communication protocol for data exchange creates 

difficulty for generating a trigger signal as a cue of new periods of stimulation which 

is a crucial for template-subtraction-based artifact cancellation algorithm. Therefore, 

in current implementation, anchor points are statistically determined, which 

introduces potential errors. 

2. Mentioned in Figure 6-8, the anchor points used to form templates are determined 

with the assumption that the recorded stimulus artifact are much larger than the 

meaningful neural signal, which does not always hold. In applications where the 

stimulating and recording electrodes are far apart, artifacts and signal of interests 

could be the same order of magnitude. In this case, the proposed algorithm fails 

completely. 

3. As an ultimate goal, it is desired to develop a closed-loop neural interface based on 

the current framework. As an important feature, closed-loop neural interface should 

be capable of eliciting stimulation to the subject, and adjusting stimulation parameters 

given the recent artifact-free neural response. With the current design and algorithm, 

an external backend device with high-performance CPU is a prerequisite. Not only an 

external device with high-end CPU is cost-ineffective, but also generate additional 
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delay to return parameter update command which might be significant for time-

sensitive neural modulations. 

Limitations above can be greatly alleviated by migrating a highly optimized artifact cancellation 

algorithm to be executed on MCU. Due to the limiting computing power and memory space of 

CC2652RSIP, extra cautions are needed to directly migrate the artifact cancellation algorithm 

implemented in MATLAB to MCU. Two major aspects need to be considered: size of SRAM, 

computation time. 

Discussed in Section 2.1, the maximum SRAM available in CC2652RSIP is 88KB. To 

remove artifact on-chip without the support of external backend device, samples of neural signals 

need to be stored in SRAM temporarily to construct artifact template and perform the subtraction 

operation. While IIR filter and other hyper-parameters occupy space of SRAM, ADC samples 

are the major limiting factor since thousands of samples are required to form artifact template for 

low-frequency stimulation. Take the low-frequency stimulation protocol in Table 4-12 as an 

example. Assume it takes 20ms for the compartment voltage settles. The stimulus artifact 

duration can be calculated as the following to estimate the minimum duration of artifact 

template/segment. 

𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑏𝑢𝑟𝑠𝑡_𝑐𝑜𝑢𝑛𝑡 × 𝑏𝑢𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑 +  𝑣𝑜𝑙𝑡𝑎𝑔𝑒_𝑠𝑒𝑡𝑡𝑙𝑒_𝑡𝑖𝑚𝑒

= 20 × 9 + 20 = 200𝑚𝑠 

Then, the minimum number of samples for artifact template/segment would be: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 0.2 ×  𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 3200  
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As the resolution of ADS131M04 is 24-bit, a single-precision floating number which takes 4-

bytes memory space, can be used to store artifact segments. Therefore, the memory space needed 

for each artifact segment is: 

𝐵𝑦𝑡𝑒𝑠 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 × 4 = 12800 

Discussed in section 6.2, for the optimal performance, artifact template should be the average of 

10 to 20 artifact segments. However, with 88KB SRAM, the maximum number of artifact 

segments CC2652RSIP can accommodate would be the following: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑓𝑙𝑜𝑜𝑟(88𝐾𝐵 ∗
1024

12800
) =  7 

 In terms of computation time, CC2652RSIP is equips with hardware division and single-

cycle multiply instruction [3], which significantly reduces computation time when performing 

average calculation and filtering the input signal. In CC2652RSIP, multiplication operation takes 

1 clock cycle and division operation takes 2-12 clock cycles depending on the values.  

For the IIR filter used to remove DC drifting, in the current implementation in MATLAB, 

a 4th-order IIR high-pass filter achieves reasonably good performance. The time-main equation 

of a 4th-order IIR filter in recursive form is the following: 

𝑦[𝑛] =  ∑ 𝑏𝑘𝑥[𝑛 − 𝑘] −  ∑ 𝑎𝑘𝑦[𝑛 − 𝑘] 

4

𝑘=1

 

4

𝑘=0

 

In this recursive equation, 8 addition/subtraction and 9 multiplication operations are needed for 

each sample. Processing time to filter 1 sample and the delay between adjacent samples can be 

calculated as the following: 
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𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑡𝑜 𝐹𝑖𝑙𝑡𝑒𝑟 1 𝑆𝑎𝑚𝑝𝑙𝑒 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=  

(8 × 1 + 9 × 1)

48000000
) = 350𝑛𝑠 

𝐷𝑒𝑙𝑎𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 =
1

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒
= 62.5µ𝑠 

With hardware acceleration for multiplication, runtime to filter 1 sample is significantly shorter 

than the delay between adjacent samples so that the real-time operation can be guaranteed. 

 To obtain the artifact template, significant amount of addition and division is needed. For 

the current implementation in MATLAB, the artifact template updates with every new artifact 

segment. Therefore, the computation time for the update of template and its subtraction from the 

raw input signal must be shorter than the stimulation period less the duration of pulse trains and 

voltage settle time. This condition can be illustrated in Figure 8-1 below. 

 

Figure 8-1: Illustration of Maximum Runtime 
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Again, take the stimulation protocol in table 4-12 as an example. The maximum runtime allowed 

is 300ms. Runtime mainly consists of for loops, summation of artifact segments, and division. 

Assume 7 artifact segments are used to form artifact template and 1 segment includes 3200 

samples, as mentioned previously. An estimated runtime assuming division takes the maximum 

12 clock cycles and 1 iteration of for loop take 20 clock cycles can be calculated as the 

following: 

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝐹𝑜𝑟 𝐿𝑜𝑜𝑝𝑠 + 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 + 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛

=
7 × 3200 × 20 + 3200 × 7 × 1 + 3200 × 12

48000000
=  10.6𝑚𝑠 

 Analysis above shows that the hardware accelerator for division and multiplication 

dramatically reduces the runtime of updating artifact template and subtracting template from raw 

input signal. However, the limited space of SRAM may prevent proper convergence of the 

artifact template due to the limited number of artifact segments used for averaging when the 

stimulation protocol dictates long pulse train. Therefore, other efficient matrix-operation-based 

method such as Kalman filter to remove stimulus artifact is worth investigating. 

 

 

 

 



122 
 

Reference 

[1] Culaclii, S. (2019). Design of a System for Cancelling Stimulus Artifact in Multi-

Channel Neural Interfaces (Order No. 27668462). Available from ProQuest Dissertations 

& Theses Global. (2329741339). https://www.proquest.com/dissertations-theses/design-

system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512 

[2] Culaclii, S., Wang, P. M., Taccola, G., Yang, W., Bailey, B., Chen, Y. P., ... & Liu, W. 

(2021). A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform 

Stimulation Protocols. Frontiers in Neuroscience, 943. 

[3] CC2652RSIP SimpleLink™ Multiprotocol 2.4-GHz wireless system ... - ti.com. (n.d.). 

Retrieved June 2, 2022, from https://www.ti.com/lit/ds/symlink/cc2652rsip.pdf  

[4] CC1352R. CC1352R data sheet, product information and support | TI.com. (n.d.). 

Retrieved June 1, 2022, from https://www.ti.com/product/CC1352R  

[5] Introduction to bluetooth low energy (BLE). Argenox. (n.d.). Retrieved June 1, 2022, from 

https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-

energy-v4-0/  

[6] Woolley, M. (2022, March 29). Exploring bluetooth 5 -going the distance. Bluetooth® 

Technology Website. Retrieved June 1, 2022, from 

https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/  

[7] Townsend, K., Cufí, C., Akiba, & Davidson, R. (n.d.). Getting started with Bluetooth Low 

Energy. O'Reilly Online Learning. Retrieved June 1, 2022, from 

https://www.proquest.com/dissertations-theses/design-system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512
https://www.proquest.com/dissertations-theses/design-system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512


123 
 

https://www.oreilly.com/library/view/getting-started-

with/9781491900550/ch04.html#gatt_udd  

[8] Introduction to SPI interface. Introduction to SPI Interface | Analog Devices. (n.d.). 

Retrieved June 1, 2022, from https://www.analog.com/en/analog-

dialogue/articles/introduction-to-spi-interface.html  

[9] Understanding UART - youtube. (n.d.). Retrieved June 2, 2022, from 

https://www.youtube.com/watch?v=sTHckUyxwp8  

[10] Lo, Y. K., Chang, C. W., & Liu, W. (2014). Bio-impedance characterization technique 

with implantable neural stimulator using biphasic current stimulus. Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering 

in Medicine and Biology Society. Annual International Conference, 2014, 474–477. 

https://doi.org/10.1109/EMBC.2014.6943631 

[11] Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., ... & 

Denison, T. (2012). Design and validation of a fully implantable, chronic, closed-loop 

neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, 20(4), 410-421. 

[12] Zhou, A., Johnson, B. C., & Muller, R. (2018). Toward true closed-loop neuromodulation: 

artifact-free recording during stimulation. Current opinion in neurobiology, 50, 119-127. 

https://doi.org/10.1109/EMBC.2014.6943631


124 
 

[13] Brown, E. A., Ross, J. D., Blum, R. A., Nam, Y., Wheeler, B. C., & DeWeerth, S. P. 

(2008). Stimulus-artifact elimination in a multi-electrode system. IEEE transactions on 

biomedical circuits and systems, 2(1), 10-21.  

[14] Johnson, B. C., Gambini, S., Izyumin, I., Moin, A., Zhou, A., Alexandrov, G., ... & Muller, 

R. (2017, June). An implantable 700μW 64-channel neuromodulation IC for simultaneous 

recording and stimulation with rapid artifact recovery. In 2017 Symposium on VLSI 

Circuits (pp. C48-C49). IEEE. 

[15] Heer, F., Hafizovic, S., Ugniwenko, T., Frey, U., Franks, W., Perriard, E., ... & 

Hierlemann, A. (2007). Single-chip microelectronic system to interface with living cells. 

Biosensors and Bioelectronics, 22(11), 2546-2553. 

[16] Smith, W. A., Uehlin, J. P., Perlmutter, S. I., Rudell, J. C., & Sathe, V. S. (2017, June). A 

scalable, highly-multiplexed delta-encoded digital feedback ECoG recording amplifier 

with common and differential-mode artifact suppression. In 2017 Symposium on VLSI 

Circuits (pp. C172-C173). IEEE. 

[17] Mendrela, A. E., Cho, J., Fredenburg, J. A., Nagaraj, V., Netoff, T. I., Flynn, M. P., & 

Yoon, E. (2016). A bidirectional neural interface circuit with active stimulation artifact 

cancellation and cross-channel common-mode noise suppression. IEEE Journal of Solid-

State Circuits, 51(4), 955-965. 

[18] Nag, S., Sikdar, S. K., Thakor, N. V., Rao, V. R., & Sharma, D. (2015). Sensing of 

stimulus artifact suppressed signals from electrode interfaces. IEEE Sensors Journal, 15(7), 

3734-3742. 



125 
 

[19] Zhou, A., Santacruz, S. R., Johnson, B. C., Alexandrov, G., Moin, A., Burghardt, F. L., ... 

& Muller, R. (2019). A wireless and artefact-free 128-channel neuromodulation device for 

closed-loop stimulation and recording in non-human primates. Nature biomedical 

engineering, 3(1), 15-26. 

 

 




