
UCLA
UCLA Electronic Theses and Dissertations

Title
A Programmable Wireless Single Channel Neural Interface with Artifact Cancellation
Capability

Permalink
https://escholarship.org/uc/item/9wd786qm

Author
Nong, Yu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wd786qm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

A Programmable Wireless Single Channel Neural Interface

with Artifact Cancellation Capability

A dissertation submitted in partial satisfaction of the

requirements for the degree Master of Science

in Electrical and Computer Engineering

by

Yu Nong

2022

© Copyright by

Yu Nong

2022

ii

ABSTRACT OF THE THESIS

A Programmable Wireless Single Channel Neural Interface

with Artifact Cancellation Capability

by

Yu Nong

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Wentai Liu, Chair

 In the past decades, the field of neural interface has gained significant amount of attention

and advancement. However, some desirable powerful features have not been designed in the

current neural interface devices because of technical challenges. First, most current neural

interface devices use wire communication to transfer collected data and receive external

commands. While wire communication provides better signal quality and data rate, wireless

communication enables the free movement of experiment target in chronic studies. Secondly,

stimulation artifact becomes a major roadblock for the development of bidirectional neural

interfaces. This problem can be further divided into two parts, the saturation of amplifier caused

iii

by large-amplitude artifact and the distortion of neural signals. Thirdly, for rodent-based chronic

studies, the size and weight become another layer of constraints given the size of experiment

animal. Fourthly, various neuromodulation applications usually require different stimulation

protocols, thus the stimulation waveforms generated by the interface must be versatile and

programmable to support a broad set of applications – a one size fits all concept.

 To address the aforementioned features, this thesis introduces a low-power mobile,

lightweight, and wireless single channel stimulation and recording system with real-time artifact

cancellation capability. The proposed system consists of a remote/implanted device, a wireless

communication adapter, and a graphical user interface (GUI) on a laptop/desktop. User can execute

commands (e.g., toggle stimulation/recording, adjust stimulation parameters, enable artifact

cancellation) to the implanted/remote device through a GUI in real-time. Bluetooth Low Energy

(BLE) is used as the wireless communication protocol between the implanted/remote device and

the adapter. An adapter is used to accommodate the speed limitation of BLE on laptop/desktop.

The size of the current prototype is approximately 8cm×3cm and has the potential to shrink down

to 2cm×1.75cm. Real-time artifact cancellation capability is realized through the combination

template subtraction followed by Hampel filter. The functionality and robustness of the system has

been validated in both in-vitro and in-vivo experiments.

iv

The dissertation of Yu Nong is approved.

Jonathan Chau-Yan Kao

Mani B. Srivastava

Wentai Liu, Committee Chair

University of California, Los Angeles

2022

v

Table of Contents

Table of Contents ... v

List of Tables... viii

Acknowledgement .. ix

Chapter 1 Introduction... 1

1.1. Introduction to Neural Interface .. 1

1.2. Challenges for Bidirectional Neural Interface ... 1

1.3. Thesis Outline ... 3

Chapter 2 : Background Knowledge ... 4

2.1. Overview of CC13x2/CC26x2RSIP Microcontroller .. 4

2.2. Bluetooth Low Energy (BLE) .. 6

2.2.1. Overview of Bluetooth Low Energy (BLE) .. 6

2.2.2. BLE Physical Layer (PHY) .. 6

2.2.3. Connection ... 7

2.2.4. Generic Attribute Profile (GATT).. 8

2.3. Serial Peripheral Interface (SPI) .. 10

2.4. Universal Asynchronous Receiver/Transmitter (UART) ... 12

2.5. Stimulation Artifact ... 14

2.5.1. The Stimulation Artifact Waveform ... 14

2.5.2. Review of Existing Artifact Cancellation Method ... 16

vi

Chapter 3 : Overview of the System .. 21

3.1. System Architecture ... 21

3.2. Stimulation Protocol .. 23

3.3. System Specification ... 26

Chapter 4 : Hardware Design .. 28

4.1. Power Management .. 28

4.2. Analog to Digital Converter (ADC) .. 28

4.3. Stimulator ... 30

4.4. Printed Circuit Board (PCB) Design .. 33

4.5. Adapter .. 39

Chapter 5 : Firmware Design .. 42

5.1. Firmware Design of the Implanted/Remote Device .. 42

5.1.1. Overview of Firmware Design of Implanted/Remote Device 42

5.1.2. Stimulation Task .. 48

5.1.3. Recording Task .. 52

5.1.4. BLE Task.. 57

5.2. Firmware Design of the Adapter .. 57

5.2.1. Overview of Firmware Design of Adapter .. 57

5.2.2. Data Forward Task ... 59

5.2.3. BLE Speed-drop Prevention Task.. 63

vii

5.2.4. Parameter Update Task ... 64

Chapter 6 : Software Design .. 68

6.1. Design of GUI (Graphical User Interface) ... 68

6.2. Method to Remove Stimulus Artifact in Real-time ... 72

Chapter 7 : Testing of the System ... 83

7.1. Testing of the Stimulator ... 83

7.1.1. Overview of Testing Methods .. 83

7.1.2. Testing with Resistive Load ... 83

7.1.3. Testing with Saline ... 91

7.2. Simulation of Real-time Artifact-cancellation Algorithm .. 96

7.3. In-vitro Experiment to Access Artifact-cancellation Capability 102

7.4. In-vivo Experiment .. 109

7.4.1. In-vivo Testing for Stimulator .. 109

7.4.2. In-vivo Testing for Recorder .. 113

Chapter 8 : Future Work ... 116

8.1. Extension to a Multi-Channel System .. 116

8.2. Artifact Cancellation on MCU .. 117

Reference ... 122

viii

List of Tables

Table 2-1: BLE Modulation Modes [6] .. 7

Table 3-1: System Specification ... 27

Table 5-1: Descriptions of Characteristics in Custom Service ... 43

Table 6-1: ADC Conversion with Output Code ... 70

Table 7-1: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 1) 84

Table 7-2: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 2) 86

Table 7-3: Stimulation Parameters of Random Frequency Stimulation with Resistive Load 88

Table 7-4: Stimulation Parameters of Random Pulse Width Stimulation with Resistive Load ... 89

Table 7-5: Stimulation Parameters of Random Pulse Width Stimulation with Resistive Load ... 90

Table 7-6: Stimulation Parameters of Random Pulse Width Stimulation with Resistive Load ... 92

Table 7-7: Stimulation Parameters of Random Frequency and Pulse Width Stimulation with

Resistive Load ... 95

Table 7-8: Stimulation Parameters for 4 Testing Cases.. 107

Table 7-9: Stimulation Parameters of SPARC Protocol ... 110

ix

Acknowledgement

 First, I would like to express my sincere thanks to my advisor Dr. Wentai Liu, for this

precious opportunity working in Biomimetic Research Lab to prototype this single-channel

stimulation and recording device. I also want to thank you for his guidance, support, affirmation,

and patience for the past 1 year while working with you. More importantly, I want to thank you

for introducing me into the field of neural engineering in which I found passion and providing the

opportunity for me to continue learning after my graduation.

 To Dr. Mani Srivastava, many thanks for your instructions and guidance that really open

my limited horizon. Things I learned from you are for sure a valuable asset for your future work.

Also, I want to thank you for your time, patience, help, and encouragement along the way.

 To Dr. Jonathan Kao, I would like to thank he for the excellent courses where I picked up

incredibly useful tools and knowledge, and for the patient and genuine guidance which helps me

identify my career path. It is truly an honor to have you to be a part of my thesis committee.

 To my fellow student Yanpeng Chen, it is a pleasure to collaborate with you on this project.

Your guidance at the beginning of the project and your suggestion along way are crucial for this

project. To all other fellow students in Biomimetic Research Lab, many thanks for welcoming me

into this group, and for helping me in study and life.

 Finally, to my parents and my wife, I couldn’t come this far without you all. Many thanks

to your unreserved support and love.

 My sincere appreciation for anyone who helped along the way.

x

 This work is partially supported by NIH 1RF1NS118301-01 and NIH OT2 OD024899

(Subawards: WL, MM)

1

Chapter 1 Introduction

1.1. Introduction to Neural Interface

 Neural interfaces are devices that interact with the nervous system in two ways [1]. In

one way, information in the nervous system is encoded in the form of electrical signal, which is

recorded by neural interface to recover useful information [1]. In the other way, information can

be injected into the nervous system by eliciting electrical stimulation with special patterns from

outside of neurons, which generates voltage gradients across membrane and subsequently

triggers the response of the stimulated neurons [1]. While many neural interface devices are only

capable of establishing one way communication reliably, a bidirectional neural interface can

record neural signals and execute electrical stimulation to nervous system simultaneously. Such

feature is ideal for medical applications to restore patient’s functionality which is disabled by

disease or injury. To restore the functionality through electrical stimulation which mimics the

natural neuronal behaviors, precise modulation of stimulation pulses needs to be determined,

ideally in an adaptive way in real-time based on the feedback of the recorded neural response.

Such a stable close-loop mechanism in a dedicated integrated system is a basis for successful

prosthetic devices [1].

1.2. Challenges for Bidirectional Neural Interface

 Many challenges exist for high-performance bidirectional neural interface devices and the

major ones may include stimulation artifact [1], bandwidth of communication protocol, limited

computing power, efficacy of neuron recruitment.

2

While recording neuronal activity, electrodes pick up the undesired artifact waveform due

to the applied stimulation and these artifacts are typically several order larger in amplitude than

neuronal responses [1]. Traditional methods to deal with artifacts include analog filtering and

blanking require relatively simple hardware [1]. However, limitations apply to analog filtering

and blanking does not preserve neural signals during the blank period. Considering the

drawbacks of conventional methods, advancement needs to be made to provide better signal

quality without interrupting on-going stimulation.

The effectiveness of the close-loop control mechanism in bidirectional neural interfaces

relies on processing recorded neural response in real-time. Methods to process neural responses

to provide feedback control signal can be rough divided into 2 categories. For one, recorded

neural responses are transmitted to back-end device where signal is processed to generate

feedback control which gets sent back to the stimulator through either wire or wireless

communications. Performing computation off the implanted neural interface provides sufficient

computing resource to accommodate complicated inference algorithm. However, the

convenience in wire communication and bandwidth of wireless communication protocol

becomes the bottleneck. For another, processing recorded neural responses within the implanted

neural interface device is highly desirable as it removes the need of an associated back-end

device which enables the free movement of the experimental subjects or patients. The limitation

of such paradigm lies in the trade-off between the computing power, memory space, and the size,

power consumption of the whole implanted system.

Neural stimulation protocols have been actively developing over the years. For invasive

neural interfaces, electrical signals are often modulated in shape, frequency, and amplitudes. In

recent years, biomimetic stimulation protocol with random frequency components gains more

3

attention due to the effectiveness in recruiting surrounding neurons [2]. To leverage such benefit,

clever algorithms need to be developed to avoid the need for extra computational power and

large storage space to generate and store the precise waveform.

1.3. Thesis Outline

 The rest of this thesis is formatted in the following order. Chapter 2 provides the

necessary background knowledge related to the development of the system. Chapter 3 to 6

discusses the development of a wireless single channel stimulation and recording system with

real-time artifact cancellation capabilities. The discussion in these chapters includes the overview

of system architecture, hardware, and printed circuit board (PCB) design, the firmware

implementation, the design of graphical user interface, and algorithm to remove stimulation

artifact. Chapter 7 discusses the in-vitro and in-vivo testing result of the prototype with the 2nd

iteration PCB. Finally, Chapter 8 concludes the work, envisions and expansion of the current

prototype to a close-loop neural interface where artifact cancellation is performed on chip, and

forecasts potential challenges of building an adaptive close-loop neural interface with

deployment of machine learning models on-chip based on this work.

4

Chapter 2 : Background Knowledge

2.1. Overview of CC13x2/CC26x2RSIP Microcontroller

 CC13x2/CC26x2 family microcontrollers (MCU) are used as core controllers in the

system. The hardware overview of CC1352R and CC2652RSIP are shown in Figure 2-1 and 2-2

below.

Figure 2-1: CC1352R Hardware Overview [3]

CC1352R and CC2652RSIP are low-power wireless MCUs with Bluetooth Low Energy (BLE)

capability, on-chip support of SPI and UART. Both MCUs have a 48-MHz Arm Cortex-M4

processor in parallel with a 24-MHz autonomous ultra-low power sensor controller to interface

5

analog-to-digital converter (ADC) without interrupting tasks in main CPU. Additionally,

hardware accelerator in CC1352R/CC2652RSIP significantly reduces runtime of multiplication

and division operation. Both MCUs have single-clock-cycle multiplication instruction and

require only 2-to-12 clock cycles for division instruction. Compared to CC1352R, CC2652RSIP

integrates the passive components and crystal oscillator in the package, which further reduces the

overall system footprint and eases the development process. Provided features mentioned above,

CC1352R and CC2652RSIP are great candidates for the core controllers for the proposed

system.

Figure 2-2: CC2652RSIP Hardware Overview [4]

6

2.2. Bluetooth Low Energy (BLE)

2.2.1. Overview of Bluetooth Low Energy (BLE)

 Bluetooth Low Energy (BLE) is a low-power wireless communication protocol

introduced in 2001. While sharing similar features with Bluetooth Classic, BLE consumes much

less power compared with Bluetooth Classic and its data layer structure are more suitable for the

purpose of our application [5]. With appropriate configurations, data transmission rate of BLE

can go up to approximately 1250Kbit/s which is sufficient for single-channel neural recordings.

The following discussion provides the prerequisites to understand the firmware design of the

system.

2.2.2. BLE Physical Layer (PHY)

 BLE uses 2.4GHz in ISM band which is the same frequency band used by Bluetooth

Classic and WI-FI [5]. The advertising band starts from 2402MHz to 2480MHz [5]. The entire

band is divided into 40 channels of 1MHz wide and separated by 2MHz. The arrangement of

channels in the frequency is shown in Figure 2-3 [5].

Channels 37, 38, and 39 are reserved as advertising channel to exchange advertisement packet

which contains device-specific information to establish connections between central and

peripheral device. The placement of the advertising channels deliberately avoids the overlap with

WI-FI bands and other sources [5]. The separation of 3 advertising channels avoids interferences

from WI-FI, Bluetooth Classic, Microwaves, etc. BLE radio transmits under a modulation

scheme with 4 options for Bluetooth 5.0: LE 1M, LE 2M, LE coded with S = 2, LE coded with S

= 8. Speed-range tradeoff for different modulations is summarized in table 2-1 below. Notice that

additional support is needed for Bluetooth 5.0 to operate under coded modulation.

7

Figure 2-3: Frequency Band of Bluetooth Low Energy [5]

Table 2-1: BLE Modulation Modes [6]

 Theoretical Data Rate
Range Multiplier

(approx.)
Bluetooth 5.0 Support

LE 1M 1 Mbit/s 1 Yes

LE 2M 2 Mbit/s 0.8 Yes

Coded

S=2
500 Kbit/s 2 Optional

Coded

S = 8
125 Kbit/s 4 Optional

2.2.3. Connection

 Connection is established between the central and peripheral devices after the exchange

of connectable advertisement packet. After the connection established, the central device is

responsible for managing the connection and approving the requested connection parameters

from the peripheral device. During a connection event, the central and peripheral devices send

packets to each other in turns to exchange information until all data has been exchanged or the

8

maximum connection interval has reached. A connection event will be terminated if the central

device does receive a return packet from the peripheral [6]. The maximum connection interval

can be requested by the peripheral ranging from 7.5ms to 4s [6].

2.2.4. Generic Attribute Profile (GATT)

 Generic Attribute Profile (GATT) defines the data transfer procedures and formats in a

structural way. The structure of GATT can be summarized in Figure 2-4 below. Service in BLE

serves as a container of logically related data item. A BLE peripheral profile can have multiple

services and one service contains zero or more characteristics [7]. Data item in service is called

characteristic which contains multiple properties used as identification and definition of data

format [7]. The description of each property in characteristic is listed as the following:

Figure 2-4: Structure of GATT

9

1. UUID: UUID is a 16-bit unique identifier for each attribute in GATT server, which

makes the characteristic attribute addressable. In theory, UUID ranges from 0x0001 to

0xFFFF so that one GATT service can accommodate up to 65535 characteristics [7]. In

practice, a service may contain up to tens of characteristics [7].

2. Permission: Access permission defines whether the characteristic attribute can be written

or read (or both) by the central device. The permission field has 4 types of configurations

[7].

a. None: The attribute cannot be accessed.

b. Readable: The attribute can be read by the central device.

c. Writable: Central device can write to the attribute.

d. Readable and Writable: The Attribute can be read and written by the central

device.

Additionally, peripheral can request the central device to provide authenticated key to

access the specified attribute [7].

3. Attribute length: Determines the length of the attribute value. The maximum length

allowed is 512 bytes [7].

4. Attribute value: Attribute value stores the actual content of the characteristic attribute.

There is no data type restriction for attribute value.

5. Descriptor: This is a user-readable description of the characteristic in UTF-8 string. An

example of descriptor would be “Room Temperature (°F)” [7].

6. CCCD: CCCD is the abbreviation of Client Characteristic Configuration Descriptor.

CCCD grants the permission for a client to stream data to the central device rather than

initiating read commands continuously from the central device [7]. CCCD allows two

10

styles of data streaming: notification and indication. Compared to notification, indication

sends data continuously without requesting for a return packet from the central device to

indicate a successful receipt.

2.3. Serial Peripheral Interface (SPI)

 CC1352R/CC2652RSIP equips with serial peripheral interface (SPI) with dedicated SPI

master up to 6MHz clock speed. The hardware SPI support facilitates the interface of external

high-performance sigma-delta ADC. The following discussion covers the background of SPI

communication protocol.

 SPI is a synchronous, full deplex main-subnode-based (or master-slave-based) interface

[8]. The protocol is available in 3-wire and 4-wire modes. The following discussion will be

based on the popular 4-wire format. The interface between main and subnode is shown in Figure

2-5.

Figure 2-5: SPI Configuration with Main/Master and a Subnode/Slave [8]

There are 4 signal lines between the main and subnode device and the functionality of each is

described below:

11

• CS: Chip-select pin selects subnode to communication. Typically, chip-select is an

active-low signal.

• SCLK: Serial clock is the clock signal provided by the SPI main device to synchronize

the two-way communication.

• MOSI: Master-out-slave-in is abbreviated as MOSI, meaning the data is sent from the

master/main to the slave/subnode. The corresponding pin on the slave/subnode is called

SDI (serial-data-in).

• MISO: Master-in-slave-out is abbreviated as MISO, meaning the data is sent from the

slave/subnode to master/main. The corresponding pin on the slave/subnode is called SDO

(serial-data-out).

Figure 2-6 demonstrates one communication frame of 8-bit SPI protocol. The communication

begins when the chip-select pin is pulled low, shown in the green dashed line. Main/Master

device determines whether to sample/shift data at rising or falling edge [8]. Figure 2-6 shows an

example of sampling at rising edge and shifting at falling edge.

Figure 2-6: One Frame of 8-bit SPI with Data Sampled at Rising Edge and Shifted at

Falling Edge [8]

12

The sampling edge is indicated by the orange dashed line, meaning the logical value in MOSI

line at rising edge of SCLK is read by the subnode [8]. The shifting edge is indicated by the blue

dashed line [8], meaning the logical value in MISO line at falling edge of SCLK is read by the

main. Additionally, one main device can interface with multiple subnodes in the configuration

shown in Figure 2-7 below. In this scenario, an individual chip-select pin from the main is

needed to interface each subnode. The main device can only communicate to one subnode at a

time.

Figure 2-7: Multi-subnode SPI Configuration [8]

2.4. Universal Asynchronous Receiver/Transmitter (UART)

 Universal Asynchronous Receiver/Transmitter, or UART, is a dedicated hardware for

serial communication, which requires only two wires between devices as shown in Figure 2-8.

TX pin refers to the transmitter pin and RX pin refers to the receiver pin. UART can be

13

configured in simplex, half-duplex, or full-duplex modes based on applications [9]. Data is

transmitted as frames in UART, and the rest of the discussion will be focused on the formatting

content of UART frames.

Figure 2-8: TX and RX Wires between Devices in UART [9]

Figure 2-9 illustrates a typical UART frame. As an asynchronous communication protocol,

UART does not have a clock signal to synchronize the transmitter and the receiver. Therefore,

the transmitter and the receiver must be configured to send data at the same speed.

Figure 2-9: A Typical UART Frame [9]

A UART frame consists of start/stop bits, data bits, followed by an optional parity bit [9]. During

the idle state, the TX/RX line is pulled high. The start bit is a transitional bit from the idle high to

low to signal the start of a new frame. Likewise, a stop bit is a transitional bit back to the idle

state by holding the TX/RX line high. Note that data bits in the illustration consist of 8 bits in

14

total. In UART protocol, data bits can have from 5 to 9 bits. The optional parity bit is set based

on the parity in use to error detection. For even parity, the parity bit is set so that the number of

1’s in the frame is even [9]. For odd parity, the parity bit is set so that the number of 1’s in the

frame is odd [9].

2.5. Stimulation Artifact

2.5.1. The Stimulation Artifact Waveform

 To aid the discussion of the artifact cancellation algorithm in Chapter 6, it is crucial to

understand the distorted stimulation artifact waveform due to the tissue-electrode interface.

When electrical current is injected into tissues, chemical changes happen in the chemical

environment at the tissue-electrode interface by primarily two mechanisms [1]. First, a

redistribution of ions in the chemical environment occurs to supply the current flow [1]. This is

process is called non-Faradaic reaction. Secondly, electron flow between the electrode and the

electrolyte to create current flow [1], which is Faradaic reaction. The combination of two types

of reactions can be simply modeled by a Randall Cell model, Shown in Figure 2-10.

15

Figure 2-10: Randall Cell Model with the Induced Voltage on Electrode [10]

The non-Faradaic charge redistribution may be modeled as a simple electrical double-layer

capacitor, Cdl [1]. The Faradaic processes can be modeled by a Faradaic impedance,

approximated by a resistor Rct to model the charge transfer [1]. Additionally, Rs is used to model

the current flow in electrolyte medium [1]. When constant current stimulation is delivered by a

square-wave pulse, non-Faradaic reaction causes the charging process in the induced voltage

waveform. The time-domain waveform can be modeled by the following equation.

𝑉(𝑡) = [𝐼0 ∗ 𝑅𝑐𝑡 (1 − 𝑒
−𝑡

𝑅𝑐𝑡∗𝐶𝑑𝑙) + 𝐼0 ∗ 𝑅𝑠] ∗ 𝑢(𝑡) [10]

Based on the discussions above, the scenario of a biphasic pulse train injected into tissues can be

illustrated in Figure 2-11. The original square-wave pulses injected into tissue are distorted due

to Faradaic and non-Faradaic process, attenuated over some distance, and collected by the

recording electrode.

16

Figure 2-11: Scenario of Stimulation Artifact Collected by Recording Electrode

2.5.2. Review of Existing Artifact Cancellation Method

While recording neuronal activity, electrodes pick up the undesired artifact waveform due

to the applied stimulation and these artifacts are typically several order larger in amplitude than

neuronal responses, which dramatically disturbs the collect of neural signal due to potential

amplifier saturation and distortion in the neural signals [1]. Different techniques used to

eliminate stimulation artifact from the recording signals have been long investigated and could in

roughly divided into 2 categories: front-end and backend methods.

2.5.2.1. Front-end Methods

 Traditional analog filtering is typically used in scenarios of high-frequency stimulation

and low-frequency neural signals. However, neural signals and stimulation artifacts are almost

guaranteed to overlap in frequency spectrum. Therefore, the actual neural signals could be

distorted, and the artifacts may not be suppressed sufficiently [1]. Moreover, for aperiodic and

biomimetic stimulations of which the power spectral density is more spread-out, frequency-based

filtering technique simply becomes impractical.

Blanking is commonly used and relatively mature technique. In this method, the amplifier

is disconnected from the input signal when the stimulus is applied, avoiding the amplifier being

17

saturated due to the high-amplitude stimulus artifact [1]. Then, the amplifier is turned back on

when the recording site discharges to a certain point where the voltage amplitude would not

cause the amplifier to saturate, or the amplitude of the remained voltage is comparable to the

signal of interest. Blanking method is easy to apply and does not require significant amount of

hardware and power. However, all signals including neural signal of interest and artifacts are

completely lost in the duration that the amplifier is turned off. And there’s no remedy to the loss

of information.

 Frequency shaping circuit can be used to adjust the gain of the amplifier so that the gain

becomes smaller for lower frequency signals [2]. Given such conditions, if stimulation

parameters are carefully chosen such that the stimulation pulse consists of mainly low frequency

components, one can prevent the amplifier from saturation and achieve continuous recording.

However, the resulting drawback of this approach is that the choices of stimulation parameters

become very limited.

 An approach used in commercialized device by Medtronic is to place two recording

electrodes around a stimulating electrode symmetrically, shown in Figure 2-12 [1][11]. Since

two recording electrodes are equally distant to the stimulating electrode, the amount of stimulus

artifact experienced by two recording electrodes are the same in ideal situation [1][11]. On the

contrary, the recording electrodes are not symmetrical with respect to the surrounding neurons.

Thus, the neural responses recorded by two recording electrodes are not identical. Therefore,

treating one of the symmetric electrodes as reference electrode can remove the stimulus artifact

while preserving neural response. In practice, perfect symmetry is impossible. Therefore,

significant amount of filter is required to remove the residual stimulus artifact, which causes

neural responses with overlapping frequency spectrum to be removed or distorted [1]. With all

18

these limiting factors, this method is useful in some specific applications but does not generalize

well.

Figure 2-12: Design of Symmetrical Sensing by Medtronic. Inc [11]

 Except the ones mentioned above, many other front-end methods exist. Several designs

introduce a hard reset mechanism to reset the amplifier so that it can quickly recover from

saturation [12][13][14][15]. Template subtraction in hardware scheme to remove stimulation

artifact is proposed in several works [16][17][18]. While these works seem to be promising, the

results suffer from relatively low signal-to-noise ratio (SNR) [12]. [19] reports a clever way to

avoid amplifier saturation by subtracting a fixed voltage level in front-end so that the resulting

voltage is within the range of the amplifier. However, while the amplifier subtraction is avoided

successfully, the remaining artifact is relatively large in amplitude and contaminates the

meaningful neural signals. Front-end circuit methods to cancel stimulation artifact mentioned

above suffer from the problem that they are not generalized well to all applications [1].

Additionally, many of the existing proposed front-end methods lack verifications by in-vitro and

in-vivo experiments.

19

2.5.2.2. Back-end Methods

Back-end methods targets the recorded digitized signals and aims to extract useful

information buried in large-amplitude stimulus artifact. Therefore, recorded data used in back-

end methods is required to be saturation free. Back-end methods can be further divided into 3

categories: data reconstruction, template subtraction, component decomposition.

Data reconstruction removes data points contaminated by stimulus artifact and replace

them by interpolated or approximated values [11]. A naïve method simply samples and hold the

last artifact free sample before the stimulation starts to execute until the amplitude of the artifact

becomes lower than certain threshold. Such method is simple to apply and only consumes a

small amount of computing resource, which comes with the cost of significant distortion. To

reduce the amount of distortion, linear interpolation, cubic spline interpolation, and Gaussian

estimation can be applied to data points between the start and the end of the artifact [11]. The

complexity of the application varies based on the techniques used to generate values within the

window of stimulus artifact. In general, data reconstruction is easy to apply but not as reliable

when the signal of interest is high frequency [11]. Therefore, interpolation is more suitable for

LPF and ECoG recordings [11]. Additionally, action potentials within the stimulus window tends

to be discarded so that not much information with in the artifact window can be revealed.

Template subtraction was initially proposed as a post processing method and require

larger dynamic range to accommodate large stimulus artifacts without losing the underlying

neural activities [12]. Template used for subtraction may be formed from averaging the multiple

periods of artifact or fitting critical points to a predefined function [12]. However, both ways

suffer from under-sampling and tiny shifting in stimulus artifact due to timing inaccuracy. More

sophisticated methods to align the stimulus artifact waveform have been investigated. For

20

example, one can up-sample, shift, and down-sample the artifacts from different periods so that

the critical points of each contributing component align together before averaging [12].

However, algorithm for such method is rather demanding, making it different for real-time

applications. Additionally, adaptive filtering can be applied to recordings from the adjacent

electrodes to form the subtraction template [12]. All methods mentioned in the category of

template subtraction require some time for the template to converge and will need to update

throughout the recording duration. Therefore, artifact cancellation quality in this scheme is time

varying [12].

Component decomposition decomposes the input waveform into multiple components

and reconstruct the waveform without components that contributing to the artifact [12].

Ensemble empirical mode decomposition (EMD) and independent component decomposition

(ICD) are commonly used and offer great accuracy [12]. However, both methods are

computation demanding and difficult to deploy to real-time application in firmware.

21

Chapter 3 : Overview of the System

3.1. System Architecture

 The development of the system is a collaboration between Yu Nong and Yanpeng Chen.

The design of single-channel stimulation and recording system with real-time artifact

cancellation capability consists of 3 major components: an implanted/remote device, a

communication adapter, and a backend device (usually laptop/computer or smart phone). Figure

3-1 shows a block diagram representation of the system structure.

Figure 3-1: System Architecture Diagram

CC2652RSIP and CC1352R are used as the core controller for the implant and adapter,

respectively. The implant/remote module and adapter exchange information through Bluetooth

Low Energy (BLE) to offload recorded neural signal and adjust stimulation parameters. The

22

adapter serves as a bridge between the implant and the backend device to improve the

compatibility of the system and resolve the limitation of BLE streaming speed with

laptop/computer. A typical experimental setup of the system is shown in Figure 3-2

Figure 3-2: Experimental System Configuration

 The signal flow during normal operation is the following. Recorded neural signal is sent

to the adapter from the implant through BLE, buffered in adapter, and streamed to the backend

device through universal asynchronous receiver-transmitter (UART) for data storage and real-

time signal processing. Commands to adjust stimulation parameters is instantiated in the backend

device and sent to the adapter through UART, then forwarded to the implant wirelessly through

BLE.

23

3.2. Stimulation Protocol

 The current version of the system can provide biphasic and monophasic mode, periodic

and aperiodic Poisson-distributed mode, fixed and Poisson-distributed rando pulse width mode

current burst stimulation. Configurable parameters include stimulation period, burst period, burst

count, pulse width, stimulation amplitude, inter-phase delay, and asymmetric ratio.

 Figure 3-3 below illustrates the periodic stimulation with respect to all configurable

parameters. The cathodic phase is configured to be the leading phase in biphasic stimulation

protocol of the system. Firmware can be changed to accommodate the need of anodic phase as

the leading phasic in biphasic stimulation protocol. However, it has been demonstrated that

cathodic stimulation is more efficient to elicit neural responses than anodic stimulation.

Therefore, the firmware in the system is default to generate biphasic stimulation with cathodic

leading phase. The example shown in Figure 3-3 illustrates the scenario of a periodic burst train

stimulation with 3 biphasic pulses in each burst train. A traditional periodic stimulation protocol

with no burst trains can be easily implemented by setting the parameter burst count to 1.

Typically, the purpose of the second phase in a biphasic stimulation is to neutralize the extra

charge introduced into the organism by the leading phase. Therefore, the pulse width of both

phases is typically set to equal. However, the system provides the functionality to adjust the ratio

of two phases so that 1). Cathodic and anodic monophasic stimulation can be achieved by setting

the asymmetric ratio to 0 or a large number (typically greater 75). 2). Asymmetric biphasic

stimulation can be achieved to further investigate different stimulation protocol.

24

Figure 3-3: Periodic (Fixed Frequency, Fixed Pulse Width) Stimulation Protocol

 The system can accommodate aperiodic randomized stimulation where the period

between adjacent burst trains is Poisson distributed with λ equals the stimulation period

parameter. Figure 3-4 illustrates an example of aperiodic randomized stimulation with burst

trains of 3 biphasic pulses. The same scheme can be applied to traditional stimulation without

burst trains.

25

Figure 3-4: Aperiodic (Poisson Distributed Frequency, Fixed Pulse Width) Stimulation

Protocol

 A different scheme of randomization is available in periodic stimulation where the

stimulation pulse width is Poisson distributed with λ equal the parameter pulse width and the

stimulation period is fixed. In the random frequency mode, the burst stimulation is no longer

supported and burst count is fixed to 1. Figure 3-5 illustrates an example of Poisson distributed

frequency mode. The asymmetric ratio can be adjusted in this mode as well to provide more

flexibility in the stimulation waveform. While the influence of randomized pulse with on neural

response is not clear, this system serves as a convenient tool for further investigation.

26

Figure 3-5: Periodic (Fixed Frequency, Poisson Distributed Pulse Width) Stimulation

Protocol

 Additionally, random frequency mode and random pulse width mode can operate

simultaneously where stimulation period and pulse width are Poisson distributed. A sample

stimulation waveform is shown in Figure 3-6. Similar to random pulse width mode, burst train

stimulation is no longer supported in this mode and burst count is fixed to 1. All other parameters

retain the same flexibility and are allowed to be modified in real-time.

3.3. System Specification

 The specification of the current system is summarized in Table 3-1 below. Additionally,

implicit constraints exist for the system due to the definition of the stimulation protocol.

27

Referring to Figure 3-3, the duration of the entire burst train needs to be shorter than stimulation

period. Therefore, an implicit constraint is the following:

𝐵𝑢𝑟𝑠𝑡 𝐶𝑜𝑢𝑛𝑡 ∗ 𝐵𝑢𝑟𝑠𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 ≤ 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑

Table 3-1: System Specification

Parameters/Conditions Range/Limit

Stimulation Frequency <=1000Hz

Pulse Width >=100µs

Burst Period >=100µs

Stimulator Compliance Voltage 10V

ADC # of Channels 1 (max 4)

Sampling Frequency 15.625kHz (max 31.25kHz)

Resolution 24-bit

Figure 3-6: Aperiodic (Poisson Distributed Frequency, Poisson Distributed Pulse Width)

Stimulation Protocol

28

Chapter 4 : Hardware Design

4.1. Power Management

 The power management of the system consists of 4 parts: battery/power supply, wireless

charger, boost converter, low dropout. The system can be working with a battery or power

supply ranging from 3.3 V to 4.5 V. However, since a wall power supply introduce undesired 60

Hz noise, a battery is preferred. Currently, a 600 mAh 4 V LiPo battery is used for experiment

and testing, which can last more than 40 hours given the maximum current consumption of the

system is approximately 15 mA. A wireless charger which consists of a charging IC LTC4124

and a coil. Note that no ground copper plate is allowed below the coil, which needs to be

considered when design PCB with the minimum possible area. A TPS7A0233PDQNR low

dropout (LDO) IC is used to provide stable 3.3 V supply for MCU, ADC, and pins that need to

be constantly pulled high. TPS7A0233PDQNR consumes 25 nA current and the maximum

output current is 200 mA. Additionally, This LDO is available in X2SON package with 1.00 mm

× 1.00 mm, which provides significant advantage to reduce overall PCB area. A boost converter

LTC3459EDC#TRMPBF consuming 10 µA quiescent current is used to provide 10 V supply to

the single pole double throw switch to control the polarity of the stimulation current. This boost

converter is available in a footprint of 2.00 mm × 2.00 mm, which provides convenience to

shrink down the size of the PCB.

4.2. Analog to Digital Converter (ADC)

3 different ADC have been considered including ADS131A02, AD4114BCPZ, and

ADS131M04 in the first and second iteration of the system. ADS131M04 is used in the current

29

implementation. AD4114BCPZ has a large dynamic range to capture large-amplitude stimulation

artifact for real-time artifact-removal post-processing algorithm. Therefore, the 2nd iteration PCB

was designed with both ADS131M04 and AD4114BCPZ for comparison. However, due to the

recent global chip shortage, testing was not carried out on AD4114BCPZ. ADS131A02 was used

in the 1st iteration PCB. The impedance of this ADC is around 100kΩ, which could be prone to

large signal distortion when recording bio-signals. Also, the relatively large footprint (5.00 mm ×

5.00 mm) and need for more GPIOs to interface could be potential roadblock of system

miniaturization.

 ADS131M04 sigma-delta ADC is chosen to digitize analog neural signals for the

following considerations. 1). ADS131M04 is available in WQFN package which has a footprint

of 3.00 mm × 3.00 mm. Such small dimension provides advantages to miniaturize the PCB area

and the overall size of the remote system. 2). ADS131M04 has programmable gain up to 128,

which eliminates the need of an additional front-end amplifier, which also contributes to the

reduction of the overall PCB area. 3). Three operations mode are available, and the low power

provides good tradeoffs between sampling rate, noise performance, and input impedance. At the

desired sampling rate and input gain, noise level is 3.63 µVRMS and the input impedance is

30MΩ. 4. Maximum four differential recording channels are available. While the project

currently targets a single-channel stimulation and recording device, the redundancy in BLE

bandwidth does allow the extension to a multi-channel system given the availability of ADC

channels. 5. The selected ADC has 24-bit resolution.

 One caution on this selected ADC is that ADS131M04 requires a clock signal at

8.192MHz by default. However, supplying a clock signal at this specific frequency with a crystal

oscillator introduces extra system footprint. A resolution in the system is used the system clock

30

of CC2652RSIP to supply a clock signal at 8MHz as an alternative. In this case, the resulting

sampling rate becomes slightly lower than using 8.192MHz clock signal.

4.3. Stimulator

 The Design of stimulation to delivery electrical stimulation is shown in Figure 4-1 below.

A voltage-controlled current source is built with a low-power operational amplifier LT1637 with

polarity control enabled by a single pole double throw (SPDT) switch ADG5436. The input

voltage of the amplifier VDAC is provided by the digital-to-analog converter on the

microcontroller CC2652RSIP. The current limiting resistor R limit the maximum current

stimulation that can be delivered by the stimulator. In the current implementation, the current

limiting resistor is set to 500Ω, and the corresponding largest supported stimulation current is

2mA. If a larger stimulation current is needed, a smaller current limiting resistor can be used to

replace the 500Ω resistor currently in used. The polarity of ADG5436 SPDT switch is controlled

by 2 GPIOs from CC2652 MCU to generate biphasic current stimulation pulse.

31

Figure 4-1: Stimulator Design

 The design of the stimulator circuit is verified through simulation in LTSpice. The

simulated circuit built in LTSpice is shown in Figure 4-2 below. Simulation is run to generate

biphasic pulses with 100µs pulse width and 1ms period to validate the control scheme and the

stimulation results are shown in Figures 4-3 and 4-4. Also, it is crucial to verify the rise-time of

induced voltage as a long rise-time could destroy the integrity of constant current stimulation.

Additionally, notice that a voltage sweep is applied to the non-inverting input of LT1637 to

confirm the stable operation of the stimulator over a wide range of output current.

32

Figure 4-2: Simulated Circuit in LTSpice for Design Validation

Figure 4-3: Simulation Result

33

Figure 4-4: Rise-time of the Stimulator with 100us Pulse Width

4.4. Printed Circuit Board (PCB) Design

 In this system, a CC1352R1 or similar launchpads that have BLE capability can be used

as an adapter between the implant and backend since no size restriction exists on the adapter.

Therefore, PCB design only needs to be carried out on the implanted/remote device to create a

functional prototype. The development of the implant is devised in 3 steps. In step 1, the 1st

iteration of the PCB is layout aiming to validate the system design without an on-board MCU

and the emphasis on overall PCB area. In step 2, with some issues of discovered from the testing

in step 1, the system design is modified, and the 2nd iteration PCB is layout incorporating an on-

board MCU with some effort to reduce the overall PCB area. In step 3, finalize the system design

34

and layout a multi-layer final version miniaturized PCB with the targeted dimension around 2.00

cm×1.75 cm.

The design file and the manufactured 1st iteration PCB are shown in Figure 4-5 and

Figure 4-6 below. Modular design is applied for the convenience of incremental testing and

avoid possible failure leading to a complete breakdown of the system. The design of the 1st-

iteration PCB consists of 5 modules: power management, recorder, stimulator, wireless charger,

and blanking circuitry. Note that the wireless charger and blanking circuitry modules are

designed by Yanpeng Chen. Different modules are completely isolated including the ground

copper plane. Reserved headers across different modules can be used to connect the ground

plane of subsystems when needed. To ease the design process, a CC1352R1 launchpad is used to

interface each subsystem without using an on-board MCU. The blanking circuitry was used for

artifact cancellation in the original design. However, it is replaced by the real-time signal

processing method proposed later. The board area of 1st iteration PCB is not well minimized

purposefully as the motivation for this PCB is mainly to validate the circuit design and detect

possible system failure.

35

Figure 4-5: 1st Iteration PCB Drawing

The testing procedures can be summarized as the following:

1. Verify the operation of LDO and boost converter using a power supply then with a

battery.

2. Verify the operation of Stimulator with a power supply then with the power

management module powered by a power supply.

3. Verify the operation of recorder with a power supply then wutg the power

management module powered by a power supply.

4. Verify the simultaneous operation of stimulator and recorder with a power supply

then with the power management module powered by a power supply.

36

5. Verify the simultaneous operation of stimulator and recorder with the power

management module powered by a battery.

Figure 4-6: 1st Iteration PCB

 The design file and the manufactured 2nd iteration PCB are shown in Figure 4-7 and 4-8

below. In the revised design, subsystems and the ground plane are no longer isolated like it was

in 1st iteration PCB. Rather, they are interconnected and placed close to each other to somewhat

reduce the overall PCB area, which is a transitional stage to the final system. The size of the PCB

is reduced to 8.00 cm×3.00 cm.

37

Figure 4-7: Drawing of 2nd Iteration PCB

In the original plan, a CC1352R MCU is used as the controller for the remote system.

However, additional resistors, capacitors, and clock source are required to drive CC1352R,

which introduces additional PCB area. A new product CC2652RSIP from Texas Instrument. Inc

is system-in-package microcontroller chip with integrated DCDC components, balun, and crystal

oscillators. Such features provide significant convenience to minimize the overall size of the

implanted/remote system. Additionally, CC1352 and CC2652 belong to the same family of

which the source codes are mostly compatible. Thus, CC2652RSIP is used in the revised design

to replace CC1352R. In terms of the recorder, as mentioned previously, the 2nd iteration PCB

was designed to compare 2 ADCs (ADS131M04 and AD4114BCPZ) to replace ADS131A02 in

1st iteration PCB. The designs of both ADS131M04 and AD4114BCPZ are incorporated into

PCB as separate modules. However, due to chip shortage, AD4114BCPZ was out of stock and

the current system operates with ADS131M04. Also, the design of blanking circuitry in 1st

iteration is removed and artifact cancellation would be done in a real-time post-processing

38

algorithm in MATLAB which will be discussed in detail in section 6.2. Ultimately, such

algorithm would be migrated and executed on MCU. By removing the original blanking

circuitry, the size of the PCB can be further reduced.

Figure 4-8: 2nd Iteration PCB

 The 2nd iteration PCB was tested following the same procedures. The setup of 2nd

iteration PCB after the testing procedures is shown in Figure 4-9. Furthermore, jumper wires on

the top are mostly removed for the convenience of animal testing. Instead, the necessary

connections are replaced by wires soldered at the bottom of the board to avoid the risk of loose

jumper wires being plugged out accidentally, which is highly possible in future chronic animal

experiments.

39

Figure 4-9: 2nd Iteration PCB with Jumper Wires Removed

4.5. Adapter

 Adapter is a major component of the system that connects the remote system and the

backend. As most commercially available laptops in the recent years are equipped with

Bluetooth module, in the original plan, the system consists of implanted/remote device and

backend, and they directly communicate through Bluetooth Low Energy. In testing, it was

noticed that the maximum data streaming rate between the remote device and a backend with

Windows operating system is approximately 144Kbit/s which is much less than the maximum

speed of BLE (720Kbits/s) under 1 Megabit Physical Layer (1M PHY) due to the limitation of

connection interval. While Bluetooth Low Energy (BLE) connection interval ranges from 7.5 ms

to 4s in theory, device-specific limitation also exists. For laptop with Windows operating system,

40

the maximum connection interval of BLE is usually 20ms. Such narrow range limits the

maximum BLE data streaming rate between the remote system and the backend. Furthermore,

many laptops with Windows operating system does not support 2 Megabit Physical Layer (2M

PHY) which could potentially lift the transmission rate even more (up to about 1400 Kbits/s).

Such limitation prevents the potential extend of the system to a multi-channel stimulation and

recording system. Aside from the capability of BLE, the adapter needs to have UART capability

to forward recorded data and receive command from backend.

 Due to the aforementioned limitations, an adapter that supports BLE speed over the data

generation rate of single-channel recording is needed to avoid data loss. By default, the remote

device samples neural signals at 15.625kHz and retains 16 noise-free bits out of total 24-bit

resolution to reduce the occupation of bandwidth. Therefore, the minimum data rate required

would be:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 = 15625 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 ∗ 16 𝑏𝑖𝑡𝑠 = 250𝐾𝑏𝑖𝑡𝑠/𝑠

Additionally, a larger bandwidth allowed by the adapter should be consider for extendibility of

the system into a multi-channel system in the future. Thus, an adapter with 2M PHY is highly

desired to ensure the potential to extend the system to a 4-channel system. Moreover, the

convenience of development needs to be considered. Since no strict size restriction exists for the

adapter, a commercially available ready-to-use product that can be programmed would be an

ideal option.

 With all considerations above, a CC1352R1 launchpad, shown in Figure 4-10 below, is

used as the adapter of the system. In addition to meeting all requirements above, firmware

support for CC1352 and CC2652 series can be used interchangeably. Currently, a CC1352R1

41

ready-to-use launchpad can simply be programmed without the need of additional hardware to

produce a functional prototype. In the future, a CC1352R MCU chip can be used to develop a

smaller adapter to improve user-friendliness.

Figure 4-10: CC1352R1 Launchpad

42

Chapter 5 : Firmware Design

5.1. Firmware Design of the Implanted/Remote Device

5.1.1. Overview of Firmware Design of Implanted/Remote Device

 The remote device operates as a peripheral device in BLE communication protocol.

Proper configuration of BLE stack is crucial to meet the target design requirements. Important

configurations of BLE stack include the following:

1. Physical Layer (PHY): 1M PHY

2. Address Mode: Public address

3. Minimum Connection Interval: 25ms

4. Maximum Connection Interval: 25ms

5. Data Length Extension: Yes

 Note that both minimum and maximum connection interval are set to 25ms. In general, devices

in BLE protocol send data with a variable number of bytes during one connection event within

the configured minimum and maximum connection interval. With high BLE data rate and

multiple tasks operating in parallel, connection events with unpredictable duration may create

data loss in some scenarios. Therefore, such practice is implemented to ensure the predictable

behavior of the system and guarantee zero buffer overflow. The setup of Generic Attribute

Profile (GATT) determines the firmware design. Aside from default services, a custom service is

built with 15 characteristics to control the operation and stimulation parameter over-the-air.

Table 5-1 below summarizes the universally unique identifier (UUID), attribute value length,

descriptions, and the associated command type of all 15 characteristics. Refer to section 3.2 for

descriptions of stimulation parameters in the table.

43

Table 5-1: Descriptions of Characteristics in Custom Service

UUID

Attribute

Value

Length

Description
Control or Parameter

Update Command

0x1235 1 Data length extension enable Control

0x1236 1 PHY layer selection Control

0x1237 1
Notification enable and recording data after

enabled
Control

0x1238 1 Stimulation enable Control

0x1239 3 Stimulation period (µs) Parameter update

0x123A 2 Pulse width (µs) Parameter update

0x123B 2 Burst period (µs) Parameter update

0x123C 1 Burst count Parameter update

0x123D 1 Update temporarily stored parameters Control

0x123E 3 DAC value (Iout = DAC value / 500 µs) Parameter update

0x123F 1 Inter-phase delay (µs) Parameter update

0x1240 1

Asymmetric ratio, the ratio between the pulse

width of the first phase over second phase.

(Actual ratio = asymmetric ratio/10)

Parameter update

0x1241 1 Random pulse width enable Control

0x1242 1 Random frequency enable Control

0x1243 1 Recording ADC enable Control

Table 3-1: Descriptions of Characteristics in Custom Service

 Attributes used to represent stimulation parameters in Table 3-1 do not follow the normal

binary rule in digital memory. At the beginning of development, a smartphone is used to connect

to the remote device using LightBlue. While it is convenient to interface the remote device and

44

change stimulation parameters in this way, user-input values in LightBlue are default in

hexadecimal without pronounced annotation, which is likely to cause confusion. For example, a

user intending to adjust the burst period to 5000µs could result in 0x5000 µs stimulation period

without an intentional conversion from decimal to hexadecimal. Figure 5-1 below shows the user

interface of LightBlue, in which the write command allows hexadecimal numbers by default.

Therefore, a custom rule is applied in the attribute values so that the user can input the desired

value in decimal form to avoid confusion and the inconvenience of manual conversion. The data

format conversion procedure based on a custom rule can be demonstrated in Figure 5-2 below.

Figure 5-1: User Interface of LightBlue

45

Figure 5-2: Data Conversion Procedure

User-input value of stimulation parameters in double-precision floating-point format is

segmented per 2 digits, rescaled every 2 digits to ostensibly the same in hexadecimal in backend,

which is then sent to the remote device through adapter. Upon the receipt of attribute value, the

remote device reassembles 3 bytes of 2-digit numbers back to the original double-precision

floating-point format to configure the stimulator. The algorithms below demonstrate the

conversion between the desired value and the intermediate 3-byte format for communication in

pseudocode.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜 3 − 𝑏𝑦𝑡𝑒 𝑓𝑜𝑟𝑚𝑎𝑡 ̅̅ ̅

double parameter = user-input value in backend;

int attribute_len; // length of the corresponding attribute value

uint8 converted_value[3] = {0x00, 0x00, 0x00};

string param_str = num2str(parameter);

46

if (attribute_len == 3)

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]);

converted_value[1] = str2int(param_str[2]*16) + str2int(param_str[3]);

converted_value[2] = str2int(param_str[4]*16) + str2int(param_str[5]);

else if (attribute_len == 2)

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]);

converted_value[1] = str2int(param_str[2]*16) + str2int(param_str[3]);

else if (attribute_len == 1)

 converted_value[0] = str2int(param_str[0]*16) + str2int(param_str[1]);

end if

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟐 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑅𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑡𝑜 𝐷𝑜𝑢𝑏𝑙𝑒 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑚𝑎𝑡 ̅̅

double parameter; // Stimulation parameter in decimal

int attribute_len; // length of the corresponding attribute value;

uint8 attribute_value[3]; // Attribute values received from BLE

if (attribute_len == 3)

parameter = (attribute_value[0]/16*10+attribute[0]%16)*10000 +

(attribute_value[1]/16*10+attribute[1]%16)*100 +

(attribute_value[2]/16*10+attribute[2]%16);

47

else if (attribute_len == 2)

parameter = (attribute_value[0]/16*10+attribute[0]%16)*100 +

(attribute_value[1]/16*10+attribute[1]%16)*1;

else if (attribute_len == 1)

parameter = attribute_value[0]/16*10+attribute[0]%16;

end if

 An overview of the firmware workflow of the implanted/remote device is shown in

Figure 5-3 below. A real-time operating system designed by Texas Instrument (TI-RTOS) is

used to manage multiple tasks and achieve real-time operation on a single-core MCU. Three

tasks created in TI-RTOS including stimulation task, BLE task, and recording task operate

concurrently with the support of TI-RTOS. Stimulation task manages the amplitude, polarity,

and timing of current stimulation by controlling the polarity of SPDT switch and the non-

inverting input of the amplifier. Recording task monitors ADC readings buffered in SRAM and

sends buffered data to adapter as BLE notifications in time to avoid buffer overflow. BLE task

maintains the wireless connection to the adapter, changes operation status and modify

stimulation parameters upon the receipt of parameter update command. The priorities of three

tasks in descending order are the following: recording task, BLE task, stimulation task. The order

of priorities is set to guarantee no data loss will occur during the operation with potentially

acceptable micro-second level delay in stimulation waveform.

48

Figure 5-3: Firmware Flowchart of Implanted/Remote Device

5.1.2. Stimulation Task

The stimulation task recruits 2 GPIOs, 1 DAC, 1 timer, and 1 TI-RTOS clock instance to manage

the amplitude and timing of current stimulation. When stimulation is enabled, a TI-RTOS clock

instance is initialized to be triggered when the next burst train is about to begin. When this clock

49

instance is triggered, a timer is initialized to measure the duration until the next biphasic pulse in

a burst train should be produced. When this timer triggers, 1 biphasic pulse is produced by

setting DAC to the corresponding voltage level and switching the polarity of SPDT

appropriately. The pulse width is created by a CPU delay function written in assembly code.

Then the timer restarts with the same counter value for the next biphasic pulse. The

reinitialization of timer is repeated until the user-defined number of biphasic pulses has been

executed. Finally, the program sets the stimulation parameters for the next burst train and

deconstructs the clock instance when 1 complete burst train is finished. The timing of clock

instance, timer, and CPU delay in periodic stimulation protocol is illustrated in Figure 5-4 below.

Figure 5-4: Timing of Clock Instance, Timer, and CPU Delay with Periodic Stimulation

Protocol

50

In the aperiodic case, at the end of each burst train, the randomized parameter is calculated and

the clock instance, Timer, and CPU delay for the next burst train will be configured accordingly.

An example for the timing of clock instance, timer, and CPU delay in aperiodic stimulation

protocol is illustrated in Figure 5-5 below.

Figure 5-5: Timing of Clock Instance, Timer, and CPU Delay with Aperiodic Stimulation

Protocol

 The algorithm to generate the above timing event and produce current stimulation is

shown in the pseudocode below.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑜𝑓 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑎𝑠𝑘 ̅̅

int burst_count; // User-defined number of pulses in a burst train

51

int stim_count; // Number of pulses executed in a burst train

int dac_value; // DAC value related to the corresponding DAC voltage

while (1)

while (stimulation on)

 Initialize a clock instance based on stimulation parameters;

 Wait until the clock instance triggers;

 Initialize a timer based on stimulation parameters;

 while(stim_count <= burst_count)

 if (timer triggers)

 DAC_setVoltage(dac_value);

 Turn on negative phase of SPDT switch;

 CPU delays;

 Turn on negative phase of SPDT switch;

 DAC_setVoltage(0);

 if end

 while end

if (aperiodic mode)

 Calculate and update the randomized parameters for the next burst train;

52

 end if

Deconstruct timer and clock instance;

 while end

while end

5.1.3. Recording Task

The recording task is a collaboration between the ARM Cortex-M4 main CPU and a

RISC (Reduced Instruction Set Computer) sensor controller. For one, the sensor controller

configures the recording ADC, read and store sampled data into a buffer in a 4-KB SRAM

(Static random-access memory) that can be accessed by both the sensor controller and the main

CPU. For another, the main CPU monitors the volume of buffered data and dispatches buffered

data to the adapter through BLE in a timely manner to avoid buffer overflow. The pseudocode

below describes the workflow of sensor controller in the recording task.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟒 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ̅̅

Reset ADC;

Set CS (chip select) pin to high and start SPI communication;

Send op-code to set command format to 16-bit;

Configure sampling frequency;

Set the ADC to low-power mode;

int response; // Used to read command response from ADC

53

int samples[1464]; // Used to buffer ADC samples

int head = 0, tail = 0; // Keep track of the unsent data in buffer

while (response != 0x3333)

 write op-code to set gain to 16;

 response = read_response();

end while

set interrupt data-ready GPIO to trigger ADC read event;

while (recording on)

 if (data-ready interrupt triggers)

 samples[head] = read_response();

 if (head == 1463) // Wrap buffer around when the end of the buffer is reached

 head = 0;

 end if

 end if

end while

Figure 5-6 below illustrates how incoming ADC sampled data is accumulated in the

buffer in SRAM along with the increment of variable head to keep track of the volume of

buffered data. Blocks in green represents buffered data that awaits to be forwarded to adapter.

54

Each block in the buffer contains 244 bytes of data and 12 blocks contain 2928 bytes in total.

Buffer block size is chosen based on the length of BLE data packet, which can carry maximum

249 bytes. However, in the 2nd iteration PCB, the small chip antenna for wireless communication

soldered by vendor was broken and hand soldering was performed to replace the broken antenna.

Due to the limitation of hand soldering, it was noticed that the last 2 to 3 bytes of a 249-byte

BLE packet tend to contain error. Therefore, a buffer block size of 244 is used to accommodate

the actual size of BLE packet used in practice. In this buffer, every new neural signal sample is

stored at the address indexed by the current variable head which is incremented by 2 since only

16 noise-free bits out of 24-bit resolution is buffered and the least significant 8 bits are discarded.

Figure 5-6: Illustration of Data Accumulates into Buffer in SRAM

 The workflow of the main CPU to work with the sensor controller to dispatch buffered

data is described in the pseudocode below.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟓 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑜𝑓 𝑀𝑎𝑖𝑛 𝐶𝑃𝑈 𝑖𝑛 𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑇𝑎𝑠𝑘 ̅̅

55

// Main CPU can access variables initialized in SRAM (head, tail, samples)

int chunksLeft = 0;

attHandleValueNoti_t noti; // Handle for send BLE notification

while (recording on)

 allocate memory and configure handle class object for BLE notification;

 notif.len = 249; // Set length for BLE notification handle

 int sampleCount = head – tail;

 chunksLeft = int(sampleCount / 122);

 while (chunksLeft --)

 for (int n = 0; n < 122; ++n)

 noti.pValue[2*n] = samples[tail] >> 8; // Load the first byte

 notif.pValue[2*n+1] = samples[tail] & 0x00ff; // Load the second byte

 tail = tail + 1;

 if (tail >= 1464) // Set tail to 0 if the end of buffer is reached

 tail = 0;

 end if

 while (1) // Send BLE notification until the communication is successful

 status = send_notification();

56

 if (status == SUCCESS)

 break;

 end if

 end while

 end for

 end while

end while

Figure 5-7 below illustrates the scenario of the buffer when 244 bytes of samples are sent

to the adapter by the main CPU along with the increment of tail to keep track of unsent buffered

samples. When the counter condition is met, the first 244 bytes of unsent buffered data would be

transferred to adapter through BLE, followed by the variable tail incremented by 244.

Figure 5-7: Illustration of Buffer in SRAM after 1 BLE Notification Packet is Sent

57

5.1.4. BLE Task

In addition to maintaining BLE connection and dispatching buffered data to the adapter,

BLE task monitors the incoming operation and parameter update command and buffers the new

parameters, waits to execute stimulation based on new parameters until the receipt of update

command. Upon the receipt of new stimulation parameters, BLE task decodes and reassembles

the incoming BLE notification packets back to the double-precision floating-point format,

described in Figure 5-2 and algorithm 2. The management of different operation and stimulation

parameter of the implanted/remote device is based on GATT and the assignments of

characteristic attributes are summarized in table 3-1. The format of operation and parameter

update command will be discussed in the next chapter.

5.2. Firmware Design of the Adapter

5.2.1. Overview of Firmware Design of Adapter

 An overview of the firmware workflow of the adapter is shown in Figure 5-8 below.

Similar to the firmware design of the remote device, TI-RTOS is used to manage multiple tasks

and guarantee the real-time operation. Three tasks operate concurrently in the adapter: data

forward task, BLE speed-drop prevention task, and stimulation parameter update task. Data

forward task tracks receives and buffers the recorded neural signal recording from the remote

device through BLE. Once the buffer is filled up to a certain level, buffered data will be

forwarded to the backend device through UART for long-term storage, real-time visualization,

and real-time post-processing. Parameter update task monitors stimulation parameter update

command from the backend device via UART, which would be transferred to remote device via

BLE. The format of the parameter update command would be discussed later in detail. A BLE

58

speed-drop prevention task is added to the system to avoid potential BLE notification speed drop

due to the overload of SRAM of the RF core. This task keeps track of the operation duration of

BLE notification and restart BLE notification every 40 seconds with a small pause of 25

millisecond to accommodate the transient of turn-on and turn-off operation. Periodicity to restart

BLE notification is chosen experimentally without generating data loss. The priorities of three

tasks in descending order are the following: BLE speed-drop prevent task, data forward task,

parameter update task. Such setting prioritizes data transmission in the adapter to avoid data loss.

Figure 5-8: Firmware Flowchart of Adapter

59

The details of firmware in adapter will be discussed in the following. When the adapter

powers on, UART, BLE, and 3 tasks mentioned above are initialized. The adapter serves as a

central device in BLE protocol and determines to either accept or reject the requested connection

parameters from the peripheral devices. PHY is set to 1M to allow stronger signal strength for

better signal penetration ability. Baud rate of UART is set to 961200 to provide sufficient

redundancy to transmit buffered data in time without data overflow. The size of the buffer is set

to 3904 bytes, which is 16 transmission units of BLE notification. Data forward task sends

received data when the buffer is filled up to 1/4 of the total size, i.e., 976 bytes, which is 4

transmission units of BLE notification. The stack size for data forward task is set to 10240 bytes.

The stack size is set to 1024 bytes for the other 2 tasks.

After initialization, the adapter starts searching for peripheral device, i.e.,

implanted/remote device to establish connection. As mentioned in section 5.1.1, the implant uses

public address mode and has a global fixed address. The adapter will continuously search for

peripheral with this global fixed address and establish connection when it is available.

5.2.2. Data Forward Task

Pseudocode describes the operation of data forward task is shown below.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟓 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑇𝑎𝑠𝑘 𝑖𝑛 𝐴𝑑𝑎𝑝𝑡𝑒𝑟 ̅̅

counter = 0;

while (recording on)

 Data forward task sleeps for 10 ms; // See consideration of 10ms sleep below

 counter = int ((head – tail)/976);

60

 while (counter != 0){

 UART_write(buffered_data[tail:tail+976]);

 tail = tail + 976;

 counter --;

 if (tail > 3904)

 tail = 0;

 end if

 end while

end while

Data forward task is set to a 10ms sleep when there is not enough data to forward in the

buffer. During 10ms sleep period, about 160 samples (320 bytes) are accumulated in the buffer.

Data forward task forwards recorded data when the buffer has more than 976 bytes of data. A

sleep period of 10ms guarantees data is sent out faster than it enters buffer. The variables head

and tail are the indices used to locate unsent data in the buffer. Note that in the pseudocode

above, only variable tail is updated. The variable head is updated by BLE stack continuously

when new data is received through BLE notification. Pseudocode shown below describes how

the variable tail is updated along with the incoming buffered data in BLE stack.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟔 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝐵𝐿𝐸 𝑆𝑡𝑎𝑐𝑘 ̅̅

while (1)

61

 if (A new BLE notification packet is received)

 memcpy(buffer_data[head], BLE_notification_packet, 244);

 head = head + 244;

 if (head >= 3904)

 head = 0;

 end if

 end if

end while

Figure 5-9 below illustrates how incoming BLE notification packet is buffered in BLE

stack along with the update of variable head. Blocks in green represents buffered data that awaits

to be forwarded to backend. Each block in the buffer contains 244 bytes of data and 16 blocks

contain 3904 bytes in total. New BLE notification packet received by the adapter is stored at the

address indexed by the current variable head which is incremented by 244 accordingly

afterwards.

62

Figure 5-9: Illustration of Data Accumulates in Buffer in Adapter

Figure 5-10 below illustrates how the variables tail keeps track of buffered data in data

forward task. When the counter condition is met, the first 976 bytes of buffered data would be

transferred to backend through UART, followed by the variable tail incremented by 976.

Figure 5-10: Illustration of Buffer When Data is Forwarded to Backend

63

When a new BLE notification is received by the adapter, the last 5 bytes would be

dropped as they are trivial data for the purpose of avoiding bit errors at the end of a packet

discussed in Chapter 5.1.3, and the first 244 bytes would be moved to a buffer of which the total

size is 3904 bytes. As recorded data transferred through BLE gets continuously buffered in

adapter, the data forward task monitors the accumulation of data by integer division between the

number of bytes in the buffer and 976, the result of which gets stored in a counter. If the value of

counter is not zero, the adapter forwards 976 bytes to the backend through UART and

decrements the counter by 1. Such process continuous repeatedly until the recording turns off by

the user.

5.2.3. BLE Speed-drop Prevention Task

BLE speed-drop prevention task simply turns off BLE notification every 40 seconds and

restarts BLE notification after a 25ms delay. In experiments, it was noticed that continuous BLE

notification over 2 minutes will result in speed drop. Also, restarting BLE notification less than

15ms after the termination is not successful due to the transience between on and off state. A

short delay allows BLE notification to fully rest in off state. Therefore, 40 seconds on time and

25ms delay are chosen in practice. 25ms delay would not cause data loss due to buffer overflow

with 15.625kHz sampling frequency and 16 noise-free bit data format, which is proved in the

calculation below.

64

𝐷𝑎𝑡𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 25 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
𝑆𝑎𝑚𝑝𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ # 𝑏𝑖𝑡𝑠

8 𝑏𝑖𝑡𝑠
∗ 0.025

=
15625 ∗ 16

8
∗ 0.025 = 781.25 𝑏𝑦𝑡𝑒𝑠 < 3904 𝑏𝑦𝑡𝑒𝑠 (𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒)

5.2.4. Parameter Update Task

 Parameter update task stores the parameter update command in a class object with a

custom format. The received command is temporarily stored in the adapter in a custom format

illustrated in Figure 5-11 below.

Figure 5-11: UART Command Data Format.

Each block presents 1 byte. The description of each field is the following:

1. Command ID: Determined by the type of parameter to update. Every configurable

parameter is associated with an ID from 0 to 14. This is the same as the BLE

characteristic ID when the parameter is sent through BLE write command. Refer to table

3-3-1 for the corresponding parameter to command ID.

2. Data Length: Data length indicates the length of the attribute value of the associated

command ID. Note that the data length byte is not included in the raw command received

through UART. It is added to the class object based on the associated command ID for

the convenience for initiating a BLE write command.

65

3. data_array: data_array is an unsigned 8-bit integer array. Following the same format of

attribute value defined in the Section 5.2, data_array can represent attribute values from 0

to 999999 by segmenting the attribute value into 3 bytes. For instance, an attribute value

of 501230 is represented as [0x50, 0x12, 0x30]. For attributes with length smaller than 3

bytes, zeros are padded to the right side of data_array. For instance, an attribute value of

2580 is represented as [0x25, 0x80, 0x00].

The pseudocode below describes the workflow to transfers a received parameter update

command from UART to the remote device through BLE.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟑 𝑃𝑠𝑒𝑢𝑑𝑜𝐶𝑜𝑑𝑒 𝑓𝑜𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑈𝑝𝑑𝑎𝑡𝑒 𝑇𝑎𝑠𝑘 ̅̅

typedef struct {

 uint8_t commandID;

 uint8_t len;

 uin8_t pData[3];

}

uint8_t UARTCommand[4] = {0, 0, 0, 0};

while (1)

 Parameter update task sleeps for 10 ms;

 Read 4 bytes data through UART and store in UARTCommand array;

 if (UARTCommand[0] != 20)

 commandHandle.commandID = UARTCommand[0];

66

 memcpy(&commandHandle.pData, &UARTCommand[1], 3);

 switch (UARTCommand[0])

 commandHandle.len = the associated BLE characteristic attribute length;

 if (UARTCommand[0] == 2) // Characteristic ID to toggle throughput

 Toggle BLE throughput;

 end if

 end switch

 if (commandHandle.commandID != 2) // Characteristic ID to toggle throughput

 Send BLE write request to update the specific characteristic attribute;

 end if

 UARTCommand[0] = 20;

end while

When parameter update task wakes up from a 10ms sleep, adapter attempts to read 4 bytes of

data from UART if available. If the attempt succeeded, the attribute length associated to the

command ID is determined, followed by transferring all parameter update information to a

commandHandle class object. Note that a command ID of 2 is an exception such that BLE

throughout is toggle immediately at this step. Next, a BLE write request is initiated based on the

commandHandle class object. Finally, the first byte of UARTCommand array is set to a trivial

67

number that is different from all functional command ID, 20 in our implementation, to indicate

the completion of a parameter update command to avoid repeated update.

68

Chapter 6 : Software Design

6.1. Design of GUI (Graphical User Interface)

 The GUI used to control the operation of the system, visualize, process, and store the

recorded neural signal is built using the App Designer in MATLAB. The interface of the

application is shown in Figure 6-1 below.

Figure 6-1: Graphical User Interface

The interface is divided into three panels to improve user experience: parameter update panel,

data panel, and control panel. The left panel is used to control stimulation parameters. An update

command is sent to the remote device through adapter only when user clicks the update button to

enable bulk update. The middle panel displays the recorded signal (or artifact-free signal when

69

artifact cancellation is enabled) in real-time. At the end of a recording session, user can choose to

save the recorded data into a .csv file and delete recorded data to start a new recording session.

The right panel provides control of the operation of the system. Three buttons provide the major

control of the system. Connect/disconnect button initiates/terminates the connection between

adapter and backend. Start/stop recording button enables/disables the on/off state of the

recording ADC and BLE notification. Toggle stimulation button switches the on/off state of the

stimulator. 3 checkboxes on the top determine the operation mode. Artifact cancellation

checkbox enables/disables the real-time artifact cancellation capability. Random frequency

checkbox enables/disables Poisson-distributed modulation of inter-burst-train periods. Random

pulse width checkbox enables/disables Poisson-distributed modulation of stimulation pulse

width.

 The GUI establishes communication with the adapter through UART after user enabling

the connection by connect/disconnect button. When the two-way communication is enabled, the

program initializes a serial port to send control and parameter update commands. Additionally,

discussed in section 5.1.1, samples of neural signals are sent to backend as a stream of 8-bit

numbers. The backend program also reassembles the 8-bit stream to decode ADC conversion

data. Since data in ADS131M04 is given in binary two’s complement format and the remote

device retains 16 noise-free bits out of 24-bit resolution, the equation below can be used to

calculate the least significant bit (LSB). The full scale reference of ADS131M04 is 2.4V (-1.2V

to 1.2V).

1 𝐿𝑆𝐵 = (𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒
𝐺𝑎𝑖𝑛⁄) 216 ⁄ = +𝐹𝑆𝑅 215⁄ [3]

70

Based on the equation above, ideal output code from negative full-scale reference (-FSR) to

positive full-scale reference (+FSR) can be summarized in Table 6-1 below.

Table 6-1: ADC Conversion with Output Code

Input Signal Ideal Output Code

>= FSR (215 - 1)/ 215 0x7FFF

FSR / 215 0x0001

0 0x0000

- FSR / 215 0xFFFF

<= -FSR 0x8000

Using rules described above, bit stream from the adapter is decoded to the corresponding voltage

level of input signal by UART callback function, which triggers when the amount of data

buffered by UART is equivalent to 1-second interval of ADC samples, i.e., 15625 ADC samples

at 15.625 kHz sampling frequency. The callback function operates differently depending on

whether the artifact cancellation capability is enabled. When artifact cancellation is disabled, the

pseudocode below describes the workflow to offload and display incoming data in real-time.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟖 𝑃𝑠𝑒𝑢𝑑𝑜 𝐶𝑜𝑑𝑒 𝑡𝑜 𝑆𝑡𝑜𝑟𝑒 𝑎𝑛𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑦 𝑁𝑒𝑢𝑟𝑎𝑙 𝐷𝑎𝑡𝑎 ̅̅

data = []; // Array to store decoded ADC recordings

while (artifact cancellation disabled)

 if (buffered data size in UART > 31250 bytes)

 data_temp = read_UART(31250, ‘uint8’); // Read 31250 bytes in UART buffer

71

 adcConversion = zeros(1, 15625);

 for i = 1:15625

temp = uint8(data_temp[(i-1)*2+1:i*2]); // Take 2 bytes that form 1

sample

adcConversion[i] = typecast(temp, “uint16”); // Decode 1 sample by

combining 2 bytes of 8-bit number

if (adcConversion[i] > 32768)

adcConversion[i] = adcConversion[i] – 65536; // Account for

binary two’s complement format

end if

adcConversion = (2.4/gain)/216*adcConversion;// Convert to input voltage

data = [data adcConversion]; // Append the most recent frame of decoded

input voltage to the current recording session

 end if

end while

When artifact cancellation is enabled, real-time algorithm to remove stimulation artifact is added

to Algorithm 8. Template-subtraction-based algorithm is applied to the decoded input voltage,

which will be discussed in Section 6.2 below.

72

 UART communication between backend and adapter is also responsible for delivering

control and parameter update commands to adapter. When edit fields, buttons, and check boxes

are utilized, their corresponding callback function write control or parameter update command as

bit stream through UART to alter the behavior of the remote device. The format of control and

parameter update command initiated from backend is illustrated in Figure 6-2 below.

Figure 6-2: Format of Commands in Backend

Each block presents 1 byte. The description of each field is the following:

1. Command ID: Determined by the type of parameter to update. This is the same as the

command ID field in Section 5.2.4.

2. data_array: data_array is an unsigned 8-bit integer array and follows the same rule

defined in Section 5.2.4. Additionally, details of data_array is determined by the type of

commands. For control command, data_array[1] and data_array[2] are set to zero.

data_array[0] is set to binary true and false depending on the desired on/off state. Refer to

Figure 5-2 for the workflow of parameter update command and algorithm 1 for the data

format.

6.2. Method to Remove Stimulus Artifact in Real-time

The real-time artifact cancellation capability of the system is realized by a template-

subtraction-based algorithm. Such an algorithm takes advantages of the similar voltage response

73

from periodic stimulation to form an averaged template which is subtracted from the raw input

signal with appropriate timing. Figure 6-3 illustrates the conception templating to deal

withstimulation artifact in periodic stimulation where the periodic stimulus responses can be

overlaid to form a template. The left panel shows a segment of recorded neural signal with

stimulation artifact. The right panel shows ten periods of stimulation artifact from the left panel

overlaid together. It is noticeable that ten adjacent artifact waveforms are similar in shape and

amplitude. Such behavior is beneficial to establish a artifact template which can be subtracted

from the raw input signal to remove stimulus artifact.

Figure 6-3: Concept of Template Averaging

The workflow of the algorithm is discussed in the following:

1. As mentioned in Section 6.1, UART callback function reads data through UART when

there is equivalently 1-second interval of buffered data. Therefore, artifact cancellation

74

algorithm in the system operates on a window basis as well. Figure 6-4 demonstrates a

window of raw input signal with stimulus artifact present. Note that the raw input signal

experiences noticeable DC drifting, which introduces significant errors when forming and

subtracting artifact template. To mitigate this issue, the algorithm appends the last 0.256

seconds from the previous window to the current 1-second window to form a 1.256-

second window, which provides redundancy for the convenience to eliminate DC drift in

step 2 and 3. The window size 1.256 is empirically determined and will be explained

later.

Figure 6-4: Window with Redundancy for DC Drifting

2. With 1.256-second window in step 1, a 2nd-order high-pass Infinite Impulse Response

(IIR) filter with cutoff frequency at 5Hz is used to remove low-frequency DC drifting.

Figure 6-5 below shows the resulting waveform after filtering. Notice that IIR filter does

not have linear phase and causes phase distortion. The resulting signal after passing

75

through IIR filter is noticeably distorted in the front of the window. This situation is

undesired and needs to be accounted for.

3. As mentioned previously, the data panel of GUI displays the signal at a 1-second interval

while the initial window is 1.256-second with 0.256-second redundancy from the

previous window. Window size of 1.256 second is determined empirically. During

experiments, the IIR filter mentioned previously introduces distortion in less than 0.2

second of data. A redundancy of 0.256 second performs well to remove those distortion

in practice. With this pre-allocated redundancy, simple truncation can be done to remove

the first 0.256 seconds of samples containing significant distortion. The resulting 1-

second DC-free signal is shown in Figure 6-6 below.

Figure 6-5: Resulting Waveform from IIR High-pass Filtering

76

Figure 6-6: DC-free Signal after Filtering and Truncation

4. After a DC-free 1-second window is obtained, location of the starting point of stimulus

artifacts needs to be determined using signal processing method due to the lack of trigger

signal through wireless communication. In general, the amplitude of stimulus artifacts is

much larger than that of meaningful neural signal. Such property can be leveraged to

design a magnitude-based method to segment stimulus artifact into different periods. The

histogram of a typical 1-second windowed DC-free signal is shown in Figure 6-7.

77

Figure 6-7: Distribution of DC-free Signal in Figure 6-6

Clearly, large-amplitude samples originated from stimulus artifact are greater than 2.5

standard deviation from the mean of all samples. Hence, a threshold calculated within the

current windowed DC-free signal can be applied to detect the starting point of a

stimulation pulse train. Using such observation, the proposed algorithm selects the first

point that is greater than the established threshold in a stimulation period as the anchor

point to locate the beginning of a stimulation period. Ideally, an adaptive threshold based

on stimulation parameters (amplitude, frequency, pulse width, etc.) may provide more

benefit to localize stimulus artifact more precisely. In practice, a threshold between 2 to 3

standard deviations regardless stimulation parameters produces decent performance.

Moreover, as a part of future work, such template-subtraction-based algorithm will be

migrated to on-chip execution within CC2652RSIP so that the need to localize stimulus

78

artifact statistically is eliminated. Red dots in Figure 6-8 below indicates the anchor point

to perform template averaging using the aforementioned statistical method.

Figure 6-8: Anchor Points to Perform Template Averaging

A potential issue needs to consider when detecting anchor points. First, stimulus artifacts can

appear at the edge of the 1-second interval. Thus, those artifacts may not be complete in the

current window and run-time error of the algorithm could occur. Such scenario is

demonstrated in Figure 6-9 below. The solution to avoid this situation is to apply the scheme

of adaptive window width, i.e., shrink or extend the window width when necessary to

guarantee all detected stimulus artifact are enclosed in the current window width.

79

Figure 6-9: Scenario of Stimulus Artifacts Appearing at the Edge of 1-second Window

5. With the anchor points detected in step 4, stimulus artifacts are segmented into different

periods. A template of the stimulus artifacts can be formed by averaging the overlaid

artifact segments as shown in Figure 6-10.

Figure 6-10: Template Averaging

80

The number of artifact segments used to for a template can be pre-determined or ideally,

determined by the residuals resulting after subtraction. In practice, updating the template

over time using 10 to 20 segments provides satisfactory performance.

6. The template obtained in step 5 is subtracted from the DC-free 1-second window, i.e.,

signal obtained in step 3, at each anchor point obtained in step. Template subtraction

technique tends to suffer from under-sampling, misalignment of stimulation, and sample

timing. A typical scenario of misalignment is shown in Figure 6-11 below where the

template and artifact in DC-free signal are offset by 1 sample, which leads to exacerbated

decline in performance of the algorithm. One solution applied in the algorithm is to

perform subtractions referring the anchor points as well as indices adjacent to anchor

points and calculate the sum of the residuals with respect to different referenced points.

The referenced point with the smallest sum of residuals is selected to be the adjusted

anchor point for final subtraction. The result after this process can be seen in Figure 6-12.

Figure 6-11: Misalignment between Artifact and Template

81

Figure 6-12: Result after Template Subtraction

7. After template subtraction with misalignment attenuation, noticeable residual artifacts

exist in various amplitude. Figure 6-13 below provides a close view of a typical scenario

of artifact residuals. Generally, residual artifacts appear in the form of narrow pulse with

amplitude drastically higher than the adjacent neural signals or noise floor. Due to the

resemblance to outlier data points, residual artifacts can be removed using a Hampel filter

in combination with a bandpass filter for out-of-band noise to recover artifact-free signal.

In the current implementation, Hampel filter is set to 200 adjacent points with 2 standard

deviations. The resulting artifact-free signal in comparison with the raw input signal is

shown in Figure 6-14. In this qualitative comparison, the post-processing signal retains

the shape and phase features from the raw input signal with significant attenuation of

82

stimulus artifacts. More discussions with qualitative and quantitative analysis on the

performance of the algorithm will be included in Chapter 7.

Figure 6-13: Magnified View of Typical Residual Artifacts

Figure 6-14: Comparison between Artifact-free Signal and Raw Input Signal

83

Chapter 7 : Testing of the System

7.1. Testing of the Stimulator

7.1.1. Overview of Testing Methods

 The functionality of the stimulator with the associated firmware to generate regulated

stimulation waveform is verified with resistive load, saline, and in-vivo experiments. While

resistive load does not match the property of real issue, a resistive load provides non-capacitive

voltage response to current stimulus. Such voltage response contains negligible transient, which

is ideal to assess the timing accuracy and voltage amplitude of the stimulator with the associated

firmware with respect to stimulation parameters. The testing of the stimulator during in-vivo

experiments will be discussed in Chapter 7.4.

7.1.2. Testing with Resistive Load

The setup of testing with resistive load is shown in Figure 7-1 below. The remote device is

powered by a battery and executes stimulation to two 450Ω resistors in series. An oscilloscope is

used to measure the voltage response against different stimulation parameters and stimulation

mode. Figures 7-1 to 7-3 below are voltage response under periodic stimulation mode with

stimulation parameters summarized in Table 7-1. Stimulation current probed by oscilloscope is

0.885V/(2×450) Ω = 0.983 mA.

84

Figure 7-1: Setup of Testing with Resistive Load

Table 7-1: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 1)

Parameters Value

Stimulation Period 100 ms

Pulse Width 100 µs

Burst Period 1 ms

Burst Count 4

Current 1 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

85

Figure 7-2: Waveform from Oscilloscope for Stimulation Parameters in Table 4-1 (a)

Figure 7-3: Waveform from Oscilloscope for Stimulation Parameters in Table 4-1 (b)

86

Figure 7-4: Waveform from Oscilloscope for Stimulation Parameters in Table 5-1 (c)

Figures 7-5 to 7-7 below are voltage response under periodic stimulation mode with stimulation

parameters summarized in table 7-2. Stimulation current probed by oscilloscope is

1.28V/(2×450) Ω = 1.43 mA.

Table 7-2: Stimulation Parameters of Periodic Stimulation with Resistive Load (Case 2)

Parameters Value

Stimulation Period 500 ms

Pulse Width 500 µs

Burst Period 8 ms

Burst Count 6

Current 1.5 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

87

Figure 7-5: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (a)

Figure 7-6: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (b)

88

Figure 7-7: Waveform from Oscilloscope for Stimulation Parameters in Table 4-2 (c)

With resistive load, testing is also performed with aperiodic stimulation protocol. Figure 7-8

shows the stimulation waveform in random frequency mode with stimulation parameters in table

7-3. Figure 7-9 shows the stimulation waveform in random pulse width mode with stimulation

parameters in table 7-4. Figure 7-10 shows the stimulation waveform with both random

frequency and random pulse width mode enabled with stimulation parameters in table 7-5.

Table 7-3: Stimulation Parameters of Random Frequency Stimulation with Resistive

Load

Parameters Value

Stimulation Period 100 ms

Pulse Width 100 µs

Burst Period 1 ms

Burst Count 4

Current 1 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

89

Figure 7-8: Waveform from Oscilloscope for Stimulation Parameters in Table 4-4 under

Random Frequency Mode

Table 7-4: Stimulation Parameters of Random Pulse Width Stimulation with Resistive

Load

Parameters Value

Stimulation Period 5 ms

Pulse Width 300 µs

Burst Period 1 ms

Burst Count 1

Current 1 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

90

Figure 7-9: Waveform from Oscilloscope for Stimulation Parameters in Table 4-5 under

Random Pulse Width Mode

Table 7-5: Stimulation Parameters of Random Pulse Width Stimulation with Resistive

Load

Parameters Value

Stimulation Period 5 ms

Pulse Width 500 µs

Burst Period 1 ms

Burst Count 1

Current 1.5 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

91

Figure 7-10: Waveform from Oscilloscope for Stimulation Parameters in Table 4-6 under

both Random Frequency and Random Pulse Width Mode

Multiple sets of testing with resistive load above demonstrate the capability of the stimulator

with the associated firmware to deliver accurate current stimulation waveform adhered to the

specified stimulation parameters and stimulation mode.

7.1.3. Testing with Saline

The setup of testing with saline is shown in Figure 7-11 below. The remote device is powered by

a battery and executes stimulation to 0.9% saline. An oscilloscope is used to measure the voltage

response against different stimulation parameters and stimulation mode. Figures 7-12 to 7-14

below are voltage response under periodic stimulation mode with stimulation parameters

summarized in table 7-6. Figure 7-15 is the voltage response under both random frequency and

92

random pulse width model with stimulation parameters summarized in Table 7-7. Note that in

both cases, the voltage waveform did not settle due to the narrow the pulse width and the large

RC constant contributed by the electrode-saline interface. From Figure 7-14, the time constant

can be estimated using the formula below:

𝑉1,2 = 𝑉0(1 − 𝑒−
𝑡
𝜏)

From Figure 7-14, V1 is approximately 0.359V when t is 200µs, V2 is approximately 0.2V when

t is 200µs. The time constant of the electrode-saline interface can be estimated to be 4.36×10-4s.

Figure 7-11: Setup of Testing with Saline

Table 7-6: Stimulation Parameters of Random Pulse Width Stimulation with Resistive

Load

Parameters Value

Stimulation Period 50 ms

Pulse Width 200 µs

Burst Period 2 ms

Burst Count 3

93

Current 1.5 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

Figure 7-12: Waveform from Oscilloscope for Stimulation Parameters in Table 4-5 under

Periodic Mode in Saline (a)

94

Figure 7-13: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under

Periodic Mode in Saline (b)

95

Figure 7-14: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under

Periodic Mode in Saline (c)

Table 7-7: Stimulation Parameters of Random Frequency and Pulse Width Stimulation

with Resistive Load

Parameters Value

Stimulation Period 50 ms

Pulse Width 200 µs

Burst Period 2 ms

Burst Count 3

Current 1.5 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

96

Figure 7-15: Waveform from Oscilloscope for Stimulation Parameters in Table 4-7 under

Random Frequency and Random Pulse Width Mode (Saline)

Testing with 0.9% saline above demonstrates noticeable transient effect due to the saline-

electrode interface. This phenomenon is observed during in-vivo experiments due to the non-

Faradaic current created by the tissue-electrode interface. When using 0.9% saline to emulate

real tissue environment, the stimulator and associated firmware functions properly, which

provides the prerequisites for in-vivo testing.

7.2. Simulation of Real-time Artifact-cancellation Algorithm

 Template-subtraction-based algorithm to remove stimulus artifact in real-time discussed

in section 6.2 is first verified in simulation before the deployment to the system. The simulation

97

also eases the process of developing GUI with intense requirement for computing resource. The

procedure to validate the feasibility of the proposed algorithm is the following.

1. Raw input signal containing neural signals super-positioned with stimulus artifact is

collected with the setup shown in Figure 7-16 below. A beaker containing 50g of 0.9%

saline simulates real animal tissues and provides voltage response due to tissue-electrode

interface. A function generator is used to inject pre-recorded electromyography (EMG)

signal into saline as emulated neural signal. Simultaneously, the implanted/remote device

delivers periodic current stimulation into beaker and record the voltage response from

saline.

Figure 7-16: Experiment Configuration to Collect Artifact-contaminated Neural Signal

2. With the collected voltage response data in step 1, the algorithm discussed in Section 6.2

is written in MATLAB script to remove stimulus artifact in the collected data in a quasi-

98

real-time manner. In the simulation, raw input signal is processed per 1-second interval to

mimic ADC behaviors in actual implementation. Therefore, the complexity of the

algorithm can be accessed to ensure the real-time feature of the entire system.

3. The performance of the algorithm is evaluated in 3 aspects: similarity in time domain,

similarity in frequency domain, processing time for 1-second interval of data. Due to time

constraint and the transitional nature of this validation stage, qualitative analysis is

mostly conduct in quasi-real-time simulation to verify the feasibility of the algorithm. For

time-domain evaluation, Figures 7-17 and 7-18 below show a comparison between the

post-processing signal, DC-free input signal, and raw input signal. Features of neural

signals are largely preserved in time domain and the high-amplitude stimulus artifacts are

attenuated to visually close to baseline noise level.

Figure 7-17: Comparison of Raw Input Signal, DC-free Input Signal, and Post-

processing Signal

99

Figure 7-18: Comparison of Raw Input Signal, DC-free Input Signal, and Post-

processing Signal (Magnified)

Frequency analysis compares Fast Fourier Transform (FFT) of the post-processing contaminated

signal and ADC sampled emulated neural signal in saline for two reasons. First, pre-recorded

neural signals in .csv does not contain DC drifting and background noise caused by the electrode,

ADC, and environment. This scenario of is demonstrated in Figure 7-19 below. Secondly,

function generator produces emulated neural signals using sample-and-on method. Signal

generated in this way may contain additional frequency components that are not presented in the

original pre-recorded signal. Therefore, the comparison of FFT spectrums between post-

processing signal and emulated signal recorded saline provides a better visualization to evaluate

the effectiveness of the algorithm.

100

Figure 7-19: Source of Emulated Signal Recorded in Saline in Frequency Analysis

Figure 7-20 below shows FFT of the raw input signal with stimulus artifact. As mentioned in

Section 2.5, stimulus artifact introduces tones that distributes over a wide frequency spectrum.

Figure 7-20: FFT of Raw Input Signal Contaminated by Stimulus Artifact

101

In Figure 7-21, FFT of post-processing signal largely suppresses tones created by stimulus

artifact. Compared with emulated neural signals in saline with stimulation disabled, the shape

and magnitude of FFT spectrum are well recovered from FFT of the raw input signal with tones

mixed with signal of interest.

Figure 7-21: FFT of Emulated Neural Signal in Saline vs Post-processing Signal

Finally, the processing time for each 1-second interval is measured and used to produce

arithmetic mean. When the algorithm is applied to GUI in real-time, delay from communication

and data visualization place more stringent requirement on the maximum run-time. Furthermore,

optimized version of such algorithm is planned to implement on MCU for artifact cancellation on

chip as future work, which requires sufficiently efficient coding implementation. Figure 7-22

below shows the typical run-time for 1-second interval in quasi-real-time simulation. The

average run-time for 1-second samples is at the level of 10ms with reasonable amount of

redundancy.

102

Figure 7-22: Processing Time in Quasi-real-time Simulation

7.3. In-vitro Experiment to Access Artifact-cancellation Capability

With the verified quasi-real-time simulation in Chapter 7.2, the algorithm is deployed to

the backend of GUI, followed by in-vitro experiments to examine the performance. The setup of

the in-vitro experiment is shown in Figure 7-23. The implement of the artifact cancellation

algorithm processes the incoming raw input signal by 1-second interval and displays the post-

processing signal in real-time. Figure 7-24 demonstrates the post-processing signal being

displayed in the data panel of GUI over time.

103

Figure 7-23: Setup and Signal Flow of In-vitro Testing

The algorithm is tested against different stimulation parameters. At the beginning of in-

vitro testing, the 30 second of emulated neural signal in saline is recorded by the remote device

without enabling stimulation as a baseline. For each testing case, 30 second of raw input and

post-processing signal with concurrent stimulation are recorded for evaluation. The performance

with respect to different stimulation parameters is evaluated under two metrics in frequency

domain. For the first metric, the magnitude of largest tone in FFT of the raw input is compared to

the same frequency component in FFT of the post-processing signal to calculate the maximum

attenuation. Maximum attenuation can be calculated using the following equation. Index i refers

to the frequency at which FFT of the raw input signal has the largest tone.

104

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 20 ∗ 𝑙𝑜𝑔10 (
𝐹𝐹𝑇_𝑟𝑎𝑤[𝑖]

𝐹𝐹𝑇_𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 [𝑖]
)

 Figure 7-25 shows a sample comparison between FFT of the raw input signal and the

post-processing signal with labeled largest tone.

Figure 7-24: Post-processing Signal Displayed in GUI over Time

For the second metric, the normalized cross-correlation at shift of 0 is used to compare the

similarity between the FFT of the baseline and raw input signal, the FFT of the baseline and

105

post-processing signal. Zero-shift cross-correlations computed between the FFT of raw input

signal and baseline, the FFT of post-processing signal and baseline provide insight of the

improvement in frequency spectrum provided by the algorithm. Figure 7-26 provides a visual

comparison of the FFT spectrum of emulated neural signal, raw input signal, and post-processing

signal. Intuitively, the FFT of post-processing signal is more correlated to the FFT of emulated

neural signal than the FFT of raw input signal is. The unwanted tones introduced by current

stimulation is largely suppressed by the algorithm.

Figure 7-25: Example of Maximum Attenuation

106

Figure 7-26: Example of FFT Comparison

 Intuitively, pulse width and burst period have significant influence on the shape stimulus

artifacts. Therefore, testing cases are designed to mainly assess the robustness of the algorithm

against varying pulse width and burst period. Table 7-8 summarizes the stimulation parameters

in 4 testing cases. Note that parameter fields that contain multiple number are the varying

parameters for comparison.

107

Table 7-8: Stimulation Parameters for 4 Testing Cases

UUID Case 1 Case 2 Case 3 Case 4

Stimulation

Period
100ms 200ms 200ms 200ms

Stimulation

Current
0.6mA 0.6mA 1mA 1mA

Burst

Count
3 3 3 3

Interphase

Delay
10µs 10µs 10µs 10µs

Asymmetric

Ratio
1 1 1 1

Pulse

Width
250µs 250µs 250µs

250µs, 500µs,

750µs, 1000µs

Burst

Period

500µs, 1000µs,

1500µs, 2000µs

500µs, 1000µs,

1500µs, 2000µs

500µs, 1000µs,

1500µs, 2000µs
2000µs

Resulting metrics for 4 testing cases are summarized in Figure 7-27 to 7-30 in the manner of two

bar plots per testing case. The first bar plot compares the maximum attenuate across the varying

stimulation parameters. The second bar plot demonstrates the improvement of normalized cross-

correlation provided by the algorithm. From the first metric, the algorithm attenuates the

maximum tone by over 20 dB and the level of attenuation increases and pulse width/burst period

increases. From the second metric, zero-shift cross-correlation between the raw input signal and

the baseline generally decreases as pulse width/burst period increases. The red dash-line in the

second bar plot marks the level of cross-correlation (0.8) that indicates a strong correlation. The

zero-shift cross-correlation between the raw input signal and the baseline remains below 0.8 and

even drops below 0.4 in some cases. The proposed algorithm boosts the zero-shift cross-

correlation over the level of strong correlation (0.8) regardless the pulse width/burst period. This

property provides notable benefit as information of neural signal is often encoded in frequency

domain

108

Figure 7-27: Resulting Metrics for Case 1

Figure 7-28: Resulting Metrics for Case 2

Figure 7-29: Resulting Metrics for Case 3

109

Figure 7-30: Resulting Metrics for Case 4

7.4. In-vivo Experiment

7.4.1. In-vivo Testing for Stimulator

Thanks for the opportunity provided by Dr. Million Mulugeta, an acute system testing

was performed to verify functionality of the system in real animal experiment. The setup for the

in-vivo testing is shown in Figure 7-31 below.

Figure 7-31: Setup of Acute Testing

110

During the experiment, periodic constant current stimulation is delivered to celiac branch of the

Vagus Nerve of a porcine. Two sets of stimulation with the same stimulation parameters, one

periodic and another one with randomized frequency, were performed. The timeline of the

experiment is shown in Figure 7-32.

Figure 7-32: Timeline of In-vivo Experiment

The stimulation parameters are shown in table 7-9. The voltage response to such stimulation

protocols is captured by oscilloscope, shown in Figure 7-33 to 7-35. In Figure 7-35, noticeable

voltage transience due to Randall Cell effect is observed, which confirms the result from

experiment with saline.

Table 7-9: Stimulation Parameters of SPARC Protocol

Parameters Value

Periodic, Random Frequency/Pulse Width Periodic

Stimulation Period 500 ms

Pulse Width 300 µs

Burst Period 9 ms

Burst Count 20

Current 1 mA

Interphase Delay 10 µs

Asymmetric Ratio 1

111

Figure 7-33: Voltage Response of Periodic Current Stimulation with Stimulation

Parameters in Table 4-12 in Acute Testing

Figure 7-34: Voltage Response of Random Frequency Current Stimulation with

Stimulation Parameters in Table 4-12 in Acute Testing

112

Figure 7-35: Voltage Transient due to Tissue-Electrode Interface

Figure 7-36: Comparison of Recordings from Two Systems

113

7.4.2. In-vivo Testing for Recorder

 Followed by 2 sets of stimulation, recordings are taken with the system and a

commercially available device (Plexon) to evaluate the noise performance of the recorder design.

Figure 7-36 above shows a segment of the recording with each system. While the data

acquisition with the system and Plexon are not overlapped, similar pattern due to the life-support

system is observed in both recordings with similar frequency. The noise floor of the recording

was at the level of 400µVp-p
 which is 8 times higher than that of Plexon due to 2 major reasons.

First, the gain of the ADC was set to 8 during the experiment. A higher gain can significantly

lower the magnitude of noise-floor. Secondly, the traces connected to the input pins of ADC are

not layout properly so that extra noise is introduced from the long and unbalanced copper wires

to the differential recording channel. This issue of PCB layout can be seen in Figure 7-37.

Channel 0 used during in-vivo testing is highlighted in green box. The traces of both differential

inputs to channel 0 is extended to the far left of the ADC chip with long wires. In comparison,

channel 2 highlighted in blue box has much shorter traces with similar length. This is a

significant contributing factor since channel 0 used in the in-vivo experiment has the worst

layout among all 4 channels. Also, the long headers connected to the recording electrodes

collects excessive unwanted noise.

114

Figure 7-37: Layout of ADC

Efforts are made to reduce the noise-floor based on the result from in-vivo experiments. The gain

of ADC is adjusted to 16. While noise-floor generally increases with higher sampling frequency,

to better capture the high-frequency components in neural signals, no adjustment was made on

the sampling rate. More importantly, channel 2 which has the shortest trace, shown in Figure 7-

37 is configured to be the active instead of channel 0. In Figure 7-37, the 400µVp-p noise floor is

contributed by both the noise introduced by PCB and the relatively large environmental noise in

the surgery room in DLAM (Division of Laboratory Animal Medicine at UCLA). In a less noisy

environment, the noise floor with the same setup is measured to be around 300µVp-p. In the same

environment, the ADC is configured to a gain of 16 with channel 2 enabled instead of channel 0.

115

Figure 7-38 below shows the noise-floor after the adjustments mentioned above. The noise-floor

is decreased to around 30µVp-p.

Figure 7-38: Noise Floor after Optimization

116

Chapter 8 : Future Work

8.1. Extension to a Multi-Channel System

 Currently, the functional system supports simultaneous operation of 1 stimulating

channel and 1 recording channel. The framework of the system has the potential to be extended

to a multi-channel system. For recording, the current framework can accommodate up to 4

channels without modifying hardware design. Only firmware change is necessary. The main

limiting factor to accommodate multiple recording channels is the insufficient bandwidth for

BLE. With 2M PHY layer and data length extension, the maximum speed of BLE over time is

approximately 1250 Kbit/s. Discussed in section 4.5, the minimum BLE speed requirement to

avoid data loss is 256Kbit/s. When all 4 channels of ADS131M04 are enabled, the minimum

required BLE speed would be 1024Kbit/s in theory. Even though 2M PHY layer with data length

extension can accommodate such requirement with some redundancy, the lower signal

penetration ability of 2M PHY causes concern when the final iteration of the remote device is

implanted under tissue.

For stimulation, to support multiple stimulation channels, additional amplifiers and SPDT

switch need to be added to PCB, which increases the overall size of the implant. Therefore, the

weight and size of the implant is a limiting factor determined by the subject of experiment.

Another constraint lies in the number of GPIO pins and general-purpose timers to control the

stimulation waveform. Each stimulation channel consumes 3 GPIOs and 1 general-purpose

timer. Consequently, the current framework can support at most 4 stimulation channels.

117

8.2. Artifact Cancellation on MCU

As of now, the implementation of real-time stimulus artifact cancellation relies on the

computing power in backend device. This method is easy to apply without much effort to

optimize the algorithm to reach the goal of real-time operation and relatively fast to produce a

functional prototype. However, multiple disadvantages exist for this off-chip solution.

1. The recorded neural signal in remote device is offloaded to backend through wireless

communication. Using wireless communication protocol for data exchange creates

difficulty for generating a trigger signal as a cue of new periods of stimulation which

is a crucial for template-subtraction-based artifact cancellation algorithm. Therefore,

in current implementation, anchor points are statistically determined, which

introduces potential errors.

2. Mentioned in Figure 6-8, the anchor points used to form templates are determined

with the assumption that the recorded stimulus artifact are much larger than the

meaningful neural signal, which does not always hold. In applications where the

stimulating and recording electrodes are far apart, artifacts and signal of interests

could be the same order of magnitude. In this case, the proposed algorithm fails

completely.

3. As an ultimate goal, it is desired to develop a closed-loop neural interface based on

the current framework. As an important feature, closed-loop neural interface should

be capable of eliciting stimulation to the subject, and adjusting stimulation parameters

given the recent artifact-free neural response. With the current design and algorithm,

an external backend device with high-performance CPU is a prerequisite. Not only an

external device with high-end CPU is cost-ineffective, but also generate additional

118

delay to return parameter update command which might be significant for time-

sensitive neural modulations.

Limitations above can be greatly alleviated by migrating a highly optimized artifact cancellation

algorithm to be executed on MCU. Due to the limiting computing power and memory space of

CC2652RSIP, extra cautions are needed to directly migrate the artifact cancellation algorithm

implemented in MATLAB to MCU. Two major aspects need to be considered: size of SRAM,

computation time.

Discussed in Section 2.1, the maximum SRAM available in CC2652RSIP is 88KB. To

remove artifact on-chip without the support of external backend device, samples of neural signals

need to be stored in SRAM temporarily to construct artifact template and perform the subtraction

operation. While IIR filter and other hyper-parameters occupy space of SRAM, ADC samples

are the major limiting factor since thousands of samples are required to form artifact template for

low-frequency stimulation. Take the low-frequency stimulation protocol in Table 4-12 as an

example. Assume it takes 20ms for the compartment voltage settles. The stimulus artifact

duration can be calculated as the following to estimate the minimum duration of artifact

template/segment.

𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑏𝑢𝑟𝑠𝑡_𝑐𝑜𝑢𝑛𝑡 × 𝑏𝑢𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑣𝑜𝑙𝑡𝑎𝑔𝑒_𝑠𝑒𝑡𝑡𝑙𝑒_𝑡𝑖𝑚𝑒

= 20 × 9 + 20 = 200𝑚𝑠

Then, the minimum number of samples for artifact template/segment would be:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 0.2 × 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 3200

119

As the resolution of ADS131M04 is 24-bit, a single-precision floating number which takes 4-

bytes memory space, can be used to store artifact segments. Therefore, the memory space needed

for each artifact segment is:

𝐵𝑦𝑡𝑒𝑠 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑓𝑜𝑟 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 × 4 = 12800

Discussed in section 6.2, for the optimal performance, artifact template should be the average of

10 to 20 artifact segments. However, with 88KB SRAM, the maximum number of artifact

segments CC2652RSIP can accommodate would be the following:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑓𝑙𝑜𝑜𝑟(88𝐾𝐵 ∗
1024

12800
) = 7

 In terms of computation time, CC2652RSIP is equips with hardware division and single-

cycle multiply instruction [3], which significantly reduces computation time when performing

average calculation and filtering the input signal. In CC2652RSIP, multiplication operation takes

1 clock cycle and division operation takes 2-12 clock cycles depending on the values.

For the IIR filter used to remove DC drifting, in the current implementation in MATLAB,

a 4th-order IIR high-pass filter achieves reasonably good performance. The time-main equation

of a 4th-order IIR filter in recursive form is the following:

𝑦[𝑛] = ∑ 𝑏𝑘𝑥[𝑛 − 𝑘] − ∑ 𝑎𝑘𝑦[𝑛 − 𝑘]

4

𝑘=1

4

𝑘=0

In this recursive equation, 8 addition/subtraction and 9 multiplication operations are needed for

each sample. Processing time to filter 1 sample and the delay between adjacent samples can be

calculated as the following:

120

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑡𝑜 𝐹𝑖𝑙𝑡𝑒𝑟 1 𝑆𝑎𝑚𝑝𝑙𝑒 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

(8 × 1 + 9 × 1)

48000000
) = 350𝑛𝑠

𝐷𝑒𝑙𝑎𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 =
1

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒
= 62.5µ𝑠

With hardware acceleration for multiplication, runtime to filter 1 sample is significantly shorter

than the delay between adjacent samples so that the real-time operation can be guaranteed.

 To obtain the artifact template, significant amount of addition and division is needed. For

the current implementation in MATLAB, the artifact template updates with every new artifact

segment. Therefore, the computation time for the update of template and its subtraction from the

raw input signal must be shorter than the stimulation period less the duration of pulse trains and

voltage settle time. This condition can be illustrated in Figure 8-1 below.

Figure 8-1: Illustration of Maximum Runtime

121

Again, take the stimulation protocol in table 4-12 as an example. The maximum runtime allowed

is 300ms. Runtime mainly consists of for loops, summation of artifact segments, and division.

Assume 7 artifact segments are used to form artifact template and 1 segment includes 3200

samples, as mentioned previously. An estimated runtime assuming division takes the maximum

12 clock cycles and 1 iteration of for loop take 20 clock cycles can be calculated as the

following:

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝐹𝑜𝑟 𝐿𝑜𝑜𝑝𝑠 + 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 + 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛

=
7 × 3200 × 20 + 3200 × 7 × 1 + 3200 × 12

48000000
= 10.6𝑚𝑠

 Analysis above shows that the hardware accelerator for division and multiplication

dramatically reduces the runtime of updating artifact template and subtracting template from raw

input signal. However, the limited space of SRAM may prevent proper convergence of the

artifact template due to the limited number of artifact segments used for averaging when the

stimulation protocol dictates long pulse train. Therefore, other efficient matrix-operation-based

method such as Kalman filter to remove stimulus artifact is worth investigating.

122

Reference

[1] Culaclii, S. (2019). Design of a System for Cancelling Stimulus Artifact in Multi-

Channel Neural Interfaces (Order No. 27668462). Available from ProQuest Dissertations

& Theses Global. (2329741339). https://www.proquest.com/dissertations-theses/design-

system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512

[2] Culaclii, S., Wang, P. M., Taccola, G., Yang, W., Bailey, B., Chen, Y. P., ... & Liu, W.

(2021). A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform

Stimulation Protocols. Frontiers in Neuroscience, 943.

[3] CC2652RSIP SimpleLink™ Multiprotocol 2.4-GHz wireless system ... - ti.com. (n.d.).

Retrieved June 2, 2022, from https://www.ti.com/lit/ds/symlink/cc2652rsip.pdf

[4] CC1352R. CC1352R data sheet, product information and support | TI.com. (n.d.).

Retrieved June 1, 2022, from https://www.ti.com/product/CC1352R

[5] Introduction to bluetooth low energy (BLE). Argenox. (n.d.). Retrieved June 1, 2022, from

https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-

energy-v4-0/

[6] Woolley, M. (2022, March 29). Exploring bluetooth 5 -going the distance. Bluetooth®

Technology Website. Retrieved June 1, 2022, from

https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/

[7] Townsend, K., Cufí, C., Akiba, & Davidson, R. (n.d.). Getting started with Bluetooth Low

Energy. O'Reilly Online Learning. Retrieved June 1, 2022, from

https://www.proquest.com/dissertations-theses/design-system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512
https://www.proquest.com/dissertations-theses/design-system-cancelling-stimulus-artifact-multi/docview/2329741339/se-2?accountid=14512

123

https://www.oreilly.com/library/view/getting-started-

with/9781491900550/ch04.html#gatt_udd

[8] Introduction to SPI interface. Introduction to SPI Interface | Analog Devices. (n.d.).

Retrieved June 1, 2022, from https://www.analog.com/en/analog-

dialogue/articles/introduction-to-spi-interface.html

[9] Understanding UART - youtube. (n.d.). Retrieved June 2, 2022, from

https://www.youtube.com/watch?v=sTHckUyxwp8

[10] Lo, Y. K., Chang, C. W., & Liu, W. (2014). Bio-impedance characterization technique

with implantable neural stimulator using biphasic current stimulus. Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering

in Medicine and Biology Society. Annual International Conference, 2014, 474–477.

https://doi.org/10.1109/EMBC.2014.6943631

[11] Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., ... &

Denison, T. (2012). Design and validation of a fully implantable, chronic, closed-loop

neuromodulation device with concurrent sensing and stimulation. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 20(4), 410-421.

[12] Zhou, A., Johnson, B. C., & Muller, R. (2018). Toward true closed-loop neuromodulation:

artifact-free recording during stimulation. Current opinion in neurobiology, 50, 119-127.

https://doi.org/10.1109/EMBC.2014.6943631

124

[13] Brown, E. A., Ross, J. D., Blum, R. A., Nam, Y., Wheeler, B. C., & DeWeerth, S. P.

(2008). Stimulus-artifact elimination in a multi-electrode system. IEEE transactions on

biomedical circuits and systems, 2(1), 10-21.

[14] Johnson, B. C., Gambini, S., Izyumin, I., Moin, A., Zhou, A., Alexandrov, G., ... & Muller,

R. (2017, June). An implantable 700μW 64-channel neuromodulation IC for simultaneous

recording and stimulation with rapid artifact recovery. In 2017 Symposium on VLSI

Circuits (pp. C48-C49). IEEE.

[15] Heer, F., Hafizovic, S., Ugniwenko, T., Frey, U., Franks, W., Perriard, E., ... &

Hierlemann, A. (2007). Single-chip microelectronic system to interface with living cells.

Biosensors and Bioelectronics, 22(11), 2546-2553.

[16] Smith, W. A., Uehlin, J. P., Perlmutter, S. I., Rudell, J. C., & Sathe, V. S. (2017, June). A

scalable, highly-multiplexed delta-encoded digital feedback ECoG recording amplifier

with common and differential-mode artifact suppression. In 2017 Symposium on VLSI

Circuits (pp. C172-C173). IEEE.

[17] Mendrela, A. E., Cho, J., Fredenburg, J. A., Nagaraj, V., Netoff, T. I., Flynn, M. P., &

Yoon, E. (2016). A bidirectional neural interface circuit with active stimulation artifact

cancellation and cross-channel common-mode noise suppression. IEEE Journal of Solid-

State Circuits, 51(4), 955-965.

[18] Nag, S., Sikdar, S. K., Thakor, N. V., Rao, V. R., & Sharma, D. (2015). Sensing of

stimulus artifact suppressed signals from electrode interfaces. IEEE Sensors Journal, 15(7),

3734-3742.

125

[19] Zhou, A., Santacruz, S. R., Johnson, B. C., Alexandrov, G., Moin, A., Burghardt, F. L., ...

& Muller, R. (2019). A wireless and artefact-free 128-channel neuromodulation device for

closed-loop stimulation and recording in non-human primates. Nature biomedical

engineering, 3(1), 15-26.

