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Systems of differential equations which are 
competitive or cooperative: 111. Competing 
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Received 2 September 1987, in final form 19 October 1987 
Accepted by E C Zeeman 

Abstrad. Persistent trojectories of the n-dimensional system ii = xiNi(x', . . . , x") ,  
x i  P 0, are studied under the assumptions that the system is competitive and dissipative 
with irreducible community matrices [ 3 N i / 3 x j ] .  The main result is that there is a 
canonically defined countable (generically finite) family of disjoint invariant open (n - 1) 
cells which attract all non-convergent persistent trajectories. These cells are Lipschiiz 
submanifolds and are transverse to positive rays. In dimension 3 this implies that an 
w limit set of a persistent orbit is either an equilibrium, a cycle bounding an invariant disc, 
or a one-dimensional continuum having a non-trivial first tech cohomology group and 
containing an equilibrium. Thus the existence of a persistent trajectory in the 
three-dimensional case implies the existence of a positive equilibrium. In any dimension it 
is shown that if the community matrices are strictly negative then there is a closed invariant 
(n - 1) cell which attracts every persistent trajectory. This shows that a seemingly special 
construction by Smale of certain competitive systems is in fact close to the general case. 

1. Introduction 

Consider n competing species represented by a system of differential equations: 

ii  = X i N y X ' ,  . . . , x " )  = F'(x', , . . , x " )  ( i = l ,  . . . ,  n )  (1) 
where the vector x = (xl, . . . , x " )  lies in the closed non-negative cone C = R:. The 
per capita growth rates N' are taken to be C' functions satisfying the competition 
condition dN'ldx' =z 0 for i # j .  The C' vector field F generates a flow 3 = { 31}fER in 
C. 

When the N' are affine, equations (1) form the classical Gause-Lotka-Volterra 
system. Even for this special case little is known about the general dynamics of such 
systems, except that it can be complex in dimensions n > 2. In dimension 3 there can 
be periodic orbits (Coste et al 1979, Gilpin 1975) and non-periodic oscillations (May 
and Leonard 1975, Schuster et af 1979, Phillipson et al 1985); in higher dimensions 
there can be numerically chaotic dynamics (Arnedo et a1 1982). See also the papers 
by Coste et al (1978), Kerner (1961) and Levin (1970). 
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52 M W Hinch 

For a survey of competitive and related types of systems see the book by 
Freedman (1980). Recent papers include Hale and Somolinos (1983), Smith and 
Waltman (1988), Smith (1986a, c), Othmer (1976), Tyson and Othmer (1978), 
Freedman and Waltman (1985), Holtz (1987), Hirsch (1982a, 1984, 1985, 1987), and 
those referred to above. 

Only rather special competitive systems have the desirable property that every 
trajectory converges to equilibrium as t + W. These include the classical planar 
Gause-Lotka-Volterra systems, and even planar systems with nonlinear N' 
(Albrecht et al 1974); systems with affine N' and symmetric community matrices 
D N ( x )  (MacArthur 1969); systems where N has a special algebraic form (Grossberg 
1978, Cohen and Grossberg 1983, Chenciner 1977, Coste et al 1978); and C"-' 
systems in R" such that dN'/dx' < O  for ( i  - j l  = 1 and dN' /dxJ  = 0 for li - j l  > 1 
(Smillie 1984). 

Smale (1976) showed that an arbitrary smooth flow in the simplex An-' c R" 
spanned by the unit coordinate vectors can be embedded as an attractor in a system 
of type (1). This result has been interpreted as meaning that the competition 
condition is too weak to have interesting dynamical consequences in higher 
dimensions. 

From the point of view of abstract dynamic complexity of individual orbits this 
interpretation is correct. But from a more global and geometrical perspective it is 
unduly pessimistic. Hirsch (1982a) showed that limit sets of competitive systems are 
subject to severe topological restrictions regarding their embedding in R": they are 
nowhere dense, unknotted and unlinked, and project homeomorphically into 
hyperplanes orthogonal to vectors in C\O. 

We shall show that under mild additional restrictions, competitive systems have a 
special overall structure regarding persistent trajectories, i.e. trajectories whose 
w limit sets are in the interior CO of the positive cone. In many applications only 
persistent trajectories are meaningful. Several authors have studied systems where 
every trajectory in CO is persistent (Butler et a1 1986, Hutson and Law 1985, 
Freedman and Waltman 1985, Hallam et a1 1979). Coste (1985) looked at 
persistence probabilistically. 

The main result of this paper is the following crude but universal description of 
the persistent dynamics of the flow of system (1) under three conditions given 
below. There is a countable disjoint family 9 of invariant open (n - 1) cells which 
attract all non-convergent persistent trajectories. These cells have nice geometrical 
properties and are canonically determined by the system in a way to be described 
shortly. When all equilibria are simple, 9 is finite. In theorem 1.1 below we give a 
detailed statement, followed by discussion and applications. 

Roughly speaking, this result means that the system is essentially (n  - 1) 
dimensional. It also means that Smale's construction is not as special as it seems: the 
attracting cells in 9 play the role of his attracting simplex An-'. Thus a system (1) 
for which all trajectories in CO are persistent is essentially composed of a family of 
disjoint systems, each similar to Smale's construction. 

Smale's construction has the additional properties that dN'ldx' < 0 for all i, j and 
the origin is a source. Theorem 1.7 shows that these conditions essentially 
characterise his examples: they imply the existence of a closed (n  - 1) cell which 
attracts all trajectories in Co\O, and which is homeomorphic to A''-' under radial 
projection. 
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We assume the following three conditions hold for the system (1). 
Dissipation. There is a compact invariant set r, called the fundamental attractor, 

Irreducibility. The community matrix D N  = [dN'/dx'] is irreducible at every 

Competition. d N i / d x i  S 0 for i # j. 
Dissipation, or 'a source at m', is usually satisfied in applications; it means there is 

a ball B with the property that for every compact set K there exists T > 0 such that 
3,K c B for all t > T. Irreducibility means that for any p E CO and distinct 
i, j E (1, . . . , n }  there is a finite sequence i = k l ,  . . . , k,,, = j such that 
d N k r / d x k f + ' ( p )  # 0 for r = 1, . . . , m - 1. The interpretation of this is that each 
species influences every other species, directly or indirectly. It is a mild non- 
degeneracy hypothesis, but without it the main results are not true. Competition is 
the motivation of this paper. It rarely occurs in physics, but is satisfied in many 
models of biological, chemical and economic systems. 

Objects in CO are called positive. A point x (or its orbit, trajectory, or omega 
limit set) is called persistent if its omega limit set o ( x )  is positive. 

The following notation will be used. For vectors x ,  y E R" we write x 3 y if x i  3 y' 
for all i, and x > y  if x i  > y' for all i. If x 3 y  but x # y  we write x b y .  The closed 
non-negative cone is the set C = { x  E R "  : x  3 O}. The interior of C is the open cone 

= { x  E R "  : x  > O } .  For sets A, B we write A < B if a < b for all a E A ,  b E B. 
Related notations such as y d x ,  B > A ,  etc, have the natural meanings. 

For any points x ,  y in R" we define the open order interval [ [ x ,  y ] ]  = { z  E 
R" : x  < z < y } ,  and the closed order interval [x ,  y ]  = { z  E R "  : x  z s y } .  A set in 
R" is order convex if it contains the closed order intervals defined by each pair of its 
elements. 

An open k cell in a space X is a subset homeomorphic to Rk. A closed k cell is a 
subset homeomorphic to the closed unit ball in Rk. 

The closure of a set S c R" is denoted by s or clos(S). If S c A c R" then the 
relative closure of S in A is 

The solution to (1) with initial value y E C is denoted by v C y .  The omega limit 
set of y is denoted by o ( y ) ,  or by o ( y ,  3 )  if more than one flow is under 
consideration. The alpha limit set is denoted by a ( y ) .  Notice that every limit set is 
compact owing to dissipation, and is therefore connected. 

which uniformly attracts each compact set of initial values. 

point in the interior CO of C. 

f l  A = clos,(S). 

The set of equilibria is denoted by 8. 
An equilibrium p is a weak source if in negative time it uniformly attracts some 

non-empty open set U : lime.+- I 3-J - p I = 0 uniformly in x E U. The union of all 
such U is the basin of repulsion R ( p )  of p .  When p E R ( p )  then p is a source. By 
abuse of language we rephrase dissipation by calling w a source, and we define R(m)  
to be { x  E C :  limc+m 13~1 = w}.  Thus a point belongs to R ( w )  if its negative orbit is 
unbounded. 

An equilibrium p is a weak sink if in positive time it uniformly attracts some 
non-empty open set. 

A non-stationary periodic orbit is a cycle. 
When we speak of the trajectory of x converging, or being attracted to a set, it is 

understood that this refers to the forward trajectory v t x  for t 3 0; convergence in 
this context refers to the limit as t+ +CO. If q t x  converges the limit is an 
equilibrium. 
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The following theorem, proved in 94, is the main result concerning system (l), 
which is always assumed to satisfy the conditions of competition, irreducibility and 
dissipation. Notice that no hyperbolicity assumptions are made. 

Theorem 1.1. Let ?JJ be the flow in C of system (1). There is a countable disjoint 
family 9 = {Mi} of invariant open (n - 1) cells in C having the following properties. 

( a )  Every persistent non-convergent trajectory is asymptotic to a trajectory in an 
Mi. More precisely, suppose the trajectory of x is persistent and non-convergent, 
and w ( x )  t Mi n Co. If x Mi then there exists y E Mi such that I?JJj - q,yl+ 0 as 
t-+ a, and either q j  < q , y  for all t E R  or else q t x  > q , y  for all t E R .  

( 6 )  Each Mi is a Lipschitz submanifold. 
(c) For every Mi in 9, no two points of Mi are related by <, and no two points 

(d )  The cardinality of 9 i s  at most 1 plus the number of weak sources in Co. 
of Mi n CO are related by 4. 

The family 9 of (n - 1) cells of theorem 1.1 is canonical. In order to describe it 
we make the following definitions. 

The basin of lower repulsion of a weak source p is the set R - ( p )  of points x in 
the basin of repulsion R ( p )  such that there exists to < 0 with q j  < p  for all t < to. 
The basin of upper repulsion R + ( p )  is analogously defined. The basin of lower 
repulsion of CO and the basin of repulsion of are other names for R(W), denoted 
also by R-(w).  

A point z is in the lower boundary 3-S of a set S c R" provided there is a 
sequence {s,} in S converging to z with s, > 2, but no sequence { x i }  in S converging 
to z with xi < z. The upper boundary 3,S is defined analogously. 

Let r denote the fundamental attractor for the flow ?JJ of theorem 1.1. Since the 
theorem is vacuous unless r meets CO, from now on we assume r n  CO is 
non-empty. 

We can now describe the (n  - 1) cells making up the family 9: they are the 
lower boundaries of the basins of lower repulsion of the weak sources in CO, 
together with the lower boundary of the basin of repulsion of a :  9 = { d - R - ( p )  : p  E 
(29 f l  CO) U {a} } .  The fact that these are open (n - 1) cells is proved in 94. 

We now discuss some applications of theorem 1.1. We always assume that 
system (1) satisfies dissipation, irreducibility and competition. 

Roughly speaking, theorem 1.1 means that the interesting dynamics of q comes 
from the dynamics in some invariant Euclidean space of one dimension lower. To 
the extent that systems in Rn-' have simpler dynamics than systems in R", we may 
conclude that competitive systems have simpler dynamics than arbitrary systems. In 
particular, their positive limit sets are restricted in their intrinsic topology and 
dynamics and their position in R". Results of this type were obtained in Hirsch 
(1982a, 1985) (in a somewhat different setting); they imply that the flow in any limit 
set of system (1) is conjugate to the flow in some invariant set of a Lipschitz vector 
field in R"-l. The following consequence of theorem 1.1 sharpens this for positive 
limit sets. 

Theorem 1.2. Every positive limit set lies in an invariant open (n - 1) cell, in which 
the flow is conjugate to the flow of a Lipschitz vector field in an open (n - 1) cell in 
R n - 1  
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A different way to exploit theorem 1.1 is to apply Brouwer's fixed-point theorem 
to certain negatively invariant closed (n - 1) cells to obtain positive equilibria. In 
this way we shall prove the following theorem in 05.  

Theorem 1.3. Let p be an equilibrium satisfying one of the following conditions: 
(a )  p > 0 and p is a source; 
(b) p > 0 and some compact invariant set is > p ;  
(c) p = 0 and p is asymptotically stable. 

Then there is an equilibrium greater than p. 

Much of the literature on competitive systems has focused on dimensions 2 and 3. In 
dimension 2 the main result is that every trajectory converges (see Albrecht et a1 
1974). In his dissertation Holtz (1987) completely classifies two-dimensional 
competitive systems. For results on three-dimensional systems see the papers by 
Coste et a1 (1978, 1979), Freedman and Waltman (1985), Hallam et a1 (1979), May 
and Leonard (1975), Rescigno (1968), Schuster et a1 (1979), Smith (1986d), and 
Smith and Waltman (1988). 

Theorem 1.1 is very powerful for analysing three-dimensional competitive flows 
since it effectively reduces them to planar flows, which have very simple dynamics. 
We obtain the following general result. 

Theorem 1.4. Let n = 3 and let K c CO be a positive limit set. Then one of the 
following holds: 

( a )  K is an equilibrium; 
(b) K is a one-dimensional set containing an equilibrium, and if K does not 

consist entirely of equilibria then the Cech cohomology group f i ' (K)  is non-trivial; 
(c) K is a cycle which bounds a positive invariant disc, and this disc contains an 

equilibrium. 

Corollary 1.5. If n = 3 and there exists a positive limit set then there exists a 
positive equilibrium. 

The following result is a global stability theorem for persistent orbits. 

Theorem 1.6. Suppose n = 3. Assume there is a unique positive equilibrium p and p 
is hyperbolic, and there are no positive cycles. Then every persistent trajectory 
converges to p. 

In higher dimensions it is more difficult to draw general dynamical conclusions from 
theorem 1.1 owing to our lack of knowledge about the dynamical differences 
between systems in R" and systems in R"-'. Moreover Smale (1976) has shown that 
any C' system in an (n - 1) cell can be embedded as an attracting invariant set in a 
system in R" of type (l) ,  with the (n - 1) cell corresponding to the simplex A''-' 
spanned by the unit coordinate vectors. 

In Smale's construction the origin is a source and dNi/dxi  < 0 for all i, j .  Since 
these conditions imply that the only weak source in C is the origin, therefore by 
theorem l.l(c) and the description of SF the only cell in 9 is d - R ( a ) .  In this case it 
turns out that the closure of d - R ( m )  n CO is a closed (n - 1) cell Z which attracts all 



56 M W Hirsch 

forward orbits. We obtain the following result; observe that its hypotheses are 
inherited by the restriction of the system to every face of C. 

Theorem 1.7. In system (1) assume additionally that the origin is a source for the 
flow in C, and that at every equilibrium in C\O we have 3Ni/3xJ < 0 for all i, j .  Then 
every trajectory in C\O is asymptotic to one in 2; and 2 is homeomorphic to A*-' by 
radial projection. 

This result shows that Smale's construction, seemingly very special, is in fact 
typical of the subclass of systems (1) which are totally competitive in the sense that 
all partial derivatives of the N' are negative. 

The attracting cell 2 can be thought of as a generalisation of the carrying 
capacity K of the one-variable logistic equation dxldt = rx(1-  x / K )  with positive 
constants r and K. 

The proof of theorem 1.1 is based on the theorem of Muller (1926) and Kamke 
(1932), which implies that if ?+b is the flow of a competitive system then the reversed 
time flow q = { ~ l , } ~ ~ ~ ,  defined by e), = v-f,  is monotone, together with the analysis 
of monotone flows given in Hirsch (1982a, 1985). 

Properties of q are developed in 002 and 3; the proof of theorem 1.1 is given in 
04; proofs of other results are given in §5. 

2. Invariant cells in strongly monotone flows 

Let v be the solution flow in C to system (1) of the introduction subject to the 
assumptions of dissipation, irreducibility and competition. In this section we 
consider a dynamical system (C, q), where q = {Q)t} tsR is the reversed time flow 
obtained from q, defined by q, = v-,. The fundamental attractor r of I) is now the 
fundamental repellor of q. In terms of q, r is characterised as the set of points with 
bounded orbits, while x E C\r if and only if lim,+m Iq,xl = W. 

The interior of I? is denoted by P. 
.It follows from dissipation that for each x E C the trajectory of x is defined for all 

t in an open interval of the form (-w, G), O <  G a m .  Notice that T, = m  for all 
x E r because r is compact and invariant. Each map q, is a diffeomorphism between 
non-empty relatively open sets in C : q, : 0, + R,. Observe that r c 0, for all t a 0. 

For each equilibrium p we define the following sets in C. 

A ( p )  = the basin of attraction (or stable manifold) 
= { x  E C:lim,, q,x = p }  

A - ( p )  =the basin of lower attraction 

A + ( p )  =the basin of upper attraction 

V - ( p )  = the lower attraction boundary = d - A - ( p )  

V+(p )  = the upper attraction boundary = d + A + ( p ) .  

= { x  E A ( p )  : q& C p  for all sufficiently large t > 0) 

= { x  E A ( p )  : qg > p  for all sufficiently large t > 0} 
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We also assign analogous sets to the fictional equilibrium CO: 

A ( m )  = the basin of attraction of m 

A - ( m )  = A(M) 

A+(m)  = 0 
V-(m) = the lower attraction boundary of CO 

= c\r 

= a-A(w)  

V+(m) = 0. 

It follows from theorem 2.l(c) that A - ( p )  and A + ( p )  are open. Therefore if either 
is non-empty then p is a weak sink. 

The next theorem is the main result of this section. 

Theorem 2.1. Let p ,  q denote elements of 8 U {CO). Then 
( a )  the sets A ( p ) ,  A - ( p ) ,  A + ( p ) ,  V-(p) and V + ( p )  are invariant; 
( b )  A ( p ) ,  A&) and A + ( p )  are order convex; A - ( p )  and A + ( p )  are relatively 

(c) A - ( p )  n A - ( q )  and V - ( p )  f l  V-(q)  are empty if p # q ;  
( d )  V - ( p )  is unordered with respect to <, and V - ( p )  n is unordered with 

respect to 4; 
(e) let PE : R" + E be an orthogonal projection onto a hyperplane E orthogonal 

to a vector >O. Then PE 1 V - ( p )  is a homeomorphism gE:  V-(p)+ U onto an open 
subset U c E ;  g E  and (gE)-' are Lipschitz; 

(f) if A - ( p )  is non-empty then A - ( p )  is an open n cell and V - ( p )  is an open 
(n - 1) cell; 

(g)  if x E clos V - ( p )  and x 4 p then x E V - ( p ) ;  
(h )  results analogous to (c), ( d ) ,  ( e )  and (f) hold for V + ( p )  and A + ( p ) .  

open in C; 

Before giving the proof we develop some properties of the flow q. 
Recall that a map f between subsets of R" is monotone if x ~y implies 

f ( x )  Gf(y) ,  and strongly monotone if x 4 y implies f ( x )  <f (y ) .  A flow { A }  is 
(strongly) monotone if for all t > 0 the map A is (strongly) monotone. 

Proposition 2.2. cp is monotone and the restriction of q to CO is strongly monotone. 
Moreover q& < q r y  provided t > 0, x 4 y, and y E Co. 

Proof. The first statement follows from competition, irreducibility and the Miiller- 
Kamke theorem; see Hirsch (1985, theorem 1.5). The second sentence is proved as 
follows. Choose v E CO, x 4 v  4 y .  Fix t > O  so that x ,  v, y ED,. Then q,xs  
qtv 4 qry  by the first part, whence q j  < q ,y .  

In view of this result we can apply to q the results on monotone flows proved in 
Hirsch (1982a, 1985; hereafter referred to as I and 11). Although these theorems 
were stated for flows in open sets, the proofs are readily adapted to current 
hypotheses. (See also Hirsch (1987) for a more general setting.) In particular the 
following proposition is valid. 



58 M W Hinch 

Proposition 2.3. ( a )  Suppose x E 
q,x < x )  for some t > 0. Then w ( x )  is an equilibrium p > x (respectively, p < x ) .  

o ( y )  n CO or else w ( x )  n CO = w ( y )  n CO c 8. 

{x  EP: w ( x ) n  COc S} is dense in I T  CO. 

and no points of K rl CO are related by <. 

has the property that q j  > x (respectively, 

(b) Suppose x < y  in r and w ( x )  or w ( y )  meets Co. Then either w ( x ) n  CO< 

(c) The set { x  E p: w ( x )  f l  CO 4 S} has Lebesgue measure 0. Therefore the set 

( d )  If x < y  in r then every point of w ( x )  n o ( y )  is a weak sink. 
( e )  If K c r is an alpha or omega limit set then no points of K are related by 4, 

Proof. ( a )  See I, theorem 2.1 or 11, theorem 2.2. 
(b) The proof of 11, theorem 3.8 applies with minor modifications. 
(c) The proof is essentially the same as that of 11, theorem 4.1. 
(d) See lemma 2.1 of I1 or lemma 6.7 of Hirsch (1987). 
( e )  Follows from ( a ) ,  or alternatively from Hirsch (1987), lemma 6.1. 
We proceed to prove theorem 2.1. 

Proof. ( a )  Invariance of A ( p ) ,  A - ( p )  and A + ( p )  is obvious from the definition; 
invariance of V-(p )  and V + ( p )  follows from monotonicity of q, for t z 0. 

(b )  To prove order convexity of A ( p )  suppose x " y S z and x ,  z E A ( p )  where p 
is finite (i.e. p E 8). Then y E r because r is order convex. Fix any E > 0 and choose 
T > 0 so large that q r x  and q,z belong to the E ball B,(p)  for all t > T. By 
monotonicity of cp, and order covexity of E balls, q t y  E B,(p) .  Therefore y  EA(^). 
Order convexity of A - ( p )  and A + ( p )  are similarly proved. To see that A - ( p )  is 
open fix x E A - ( p ) .  We can successively choose positive numbers r, s, t such that 
q j  < qsx < q,x < p .  By order convexity A - ( p )  3 [ q j ,  q ~ ] ,  and the latter set is a 
neighbourhood of qsx.  Since A - ( p )  is invariant and qs is continuous, q; ' [q j ,  q j ]  
is a neighbourhood of x in A - ( p ) .  Similarly for A + ( p ) .  The case of p = w is similar. 

(c) Suppose p # q ;  then A ( p )  cannot meet A(q) ,  proving disjointness of A&) 
and A-(q) .  Disjointness of V - ( p )  and V-(q) follows from the following general fact. 

Lemma 2.4. Let B and B' be disjoint order convex sets. Then d-B and d-B' are 
disjoint, as are a+ B and d+ B'. 

Proof. Let w E d - B  and { y k }  a sequence in B converging to w such that 
w <yk+l C y k  for all k. By order convexity B contains the union of the open order 
intervals [ [ y k ,  y l ] ] ,  which is [ [ w ,  y l ] ] .  Therefore no point of B' can be in [ [ w ,  y l ] ] .  
For any z < w. Then [[z, y l ] ]  is a neighbourhood of w such that if x E [[z,  y l ] ]  and 
x > w then x E [ [w ,  y l ] ] .  Since such an x could not be in B' it follows that w 4 dB' .  

Part (d) of theorem 2.1 follows from the following general result. 

Lemma 2.5. Let V denote the lower or upper boundary of an order convex set B. 
Then V is unordered by <. Moreover if V is invariant under a map which is strongly 
monotone in CO then V n CO is unordered by 4. 

Proof. Suppose it were possible that U < v in V = 3-B.  Fix sequences { x k } ,  { y k }  
in B decreasing monotonically for < to U, 2r respectively. For large k we have 
xk < v C y k ,  so by order convexity B contains the neighbourhood [ [ x k ,  y k ] ]  of v. But 
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this contradicts v being in the boundary of B ;  therefore V is unordered by <. The 
second conclusion now follows because a strongly monotone map converts points 
related by 1 to points related by <. The proof for d + B  is similar. 

We return to the proof of theorem 2.1. Part (e) follows from the following general 
fact. 

Proposition 2.6. Let V c C denote the lower or upper boundary of an order convex 
set B c C. Let U E CO be any positive vector, E c R" its orthogonal hyperplane and 
PE : R" + E orthogonal projection. Then the map g = PE 1 V is a homeomorphism 
onto an open subset of E ;  both g and 8-l are Lipschitz with respect to the Euclidean 
distance function. 

Proof. We assume V = 3-B, the proof for upper boundaries being similar. To see 
that g is injective suppose g ( x )  = g(y) .  Then x = y + Au for some A E R. Since U > 0 
and no two points of V can be related by <, it follows that A = 0; therefore g is 
injective. 

The image of g is open in E and g-' is continuous. To see this fix a E V and set 
g(a) = b E E. Choose c > a so that [ [a, c ] ]  c B (compare the proof of part (b)) .  It is 
easy to show that PE[[a, c ] ]  is a neighbourhood in E of b. For any y E PE[[a, c ] ]  let 
L, denote the line through y parallel to U. Then L, n B has a greater lower bound 
w E L, because B is bounded below, U is a positive vector, and L, meets [ [a ,  c]]. It is 
not hard to see that w E V and g ( w )  = y .  Thus g(V)  is open in E. From this 
construction of w as g-ly it is easy to see that g-' is continuous. This proves g is a 
homeomorphism onto an open set in E. 

Since PE has Lipschitz constant 1, so has g. We show that g-' has a Lipschitz 
constant which depends only on U. Denote by SE the set of all unit vectors in the 
linear subspace E. It is easy to see that SE is disjoint from C, and that there exists a 
number p > 0 with the following property. If x E SE, A E R  and x + hu 4 C then 

We show that 1 + p is a Lipschitz constant for 8-l. Fix two points a, b in E. Set 
a = b = w E E and g- la  - g-lb = v. Then v = w + pu for some p ER. Notice that 
v $ C  because v is the difference between two points of the unordered set V. 
Consider the identity v / lw l=  w/ lwl+  (p / lwl )u .  Since v / lw l$  C we find that 
p / l w l <  p. From the triangle inequality we therefore get Ivl/lwl< 1 + p. This 
completes the proof of proposition 2.6. 

PI < 

We now prove part (f) of theorem 2.1. Suppose p E 8 and V&) is non-empty. 
Then there exists a ,   EA-(^) such that a, < p ;  fix this a,. By order convexity of 
A - ( p )  we have [a , ,  p]\p c A - ( p )  c r0. 

Fix a number 6 in the range 

O<6<min(lpi-a , , l : i=1,  . . . ,  n }  

and define the following sets: 

& ( p ) = { x ~ R " : x s p  and ( x - p l = 6 }  

where (yI is the Euclidean norm of a vector y ;  and 

J%(p) = { x  E S*(p):x < P I .  
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It is easy to see that 

J L ( P )  CSa(P) = [a* ,  Pl\P c A - ( p ) .  
One readily verifies that Sa(p) is diffeomorphic to the closed simplex A"-' via the 
map 

h : A"-l-+sa(p) h ( x )  = p  - lxl-16x 

recalling that A"-' denotes {x  E R :  : Zxi = l}. Moreover h maps the open simplex 
An+l\dA"-l diffeomorphically onto La ( p ) .  

diffeomorphic 
to [[a,, p ] ]  and therefore to R". Observe that U, 3 U, if t > s, because [[a,, p ] ]  is 
invariant under qr if r 2 0 .  Moreover the definition of A - ( p )  implies that 
A - ( p )  = Utao U,, which is a nested union of open n cells. A theorem of Brown 
(1961) implies that such a union, and hence A - ( p ) ,  is homeomorphic to R". 

To prove the second statement of theorem 2.l(f)  consider for each x E Sa(p) the 
ray R, through x emanating from p .  Since A - ( p )  is order convex and bounded, 
R, rl A - ( p )  is a bounded open interval with one endpoint at p .  It is easy to see that 
the other endpoint, denoted by g ( x ) ,  belongs to V-(p),  and that the resulting map 
g : Sa(p) + V-(p)  sends Sa ( p )  homeomorphically onto the set 

For t 2 0 define U, = q-,[ [a*, p ] ] .  Each U, is an open subset of 

D ( p )  = { x  E V-(p)  : x  1 p }  

DO(p) = { x  E V - ( p )  : x  < p } .  

while g maps S z ( p )  homeomorphically onto the set 

Therefore 

D ( p )  = Sa(p) = A"-' 

where = indicates homeomorphism, and also 

DO(p) = So,(p) = R"-'. 
Now observe that for any X E  V-(p) there is a number t,>O such that 

q j  E D o ( p )  for all t t,. To see this fix y > x such that y E A - @ ) ,  and choose tx > 0 
such that q s y  < p  if s 3 t,. Then for t 2 t, we have q,x < q r y  < p .  

We have shown that V-(p) = U,,o q- ,D0(p ) .  Now D o ( p )  is invariant under q, 
for t > 0 by monotonicity, therefore we have expressed V-(p) as a nested union of 
open (n - 1) cells. So by the aforementioned theorem of Brown V-(p)  is an open n 
cell. 

Consider now the case p = W .  Denote by H the closed halfspace of R" 
comprising all vectors of the form y + Au, y E E,  A 3 0. For each y E E denote by p y  
the smallest number such that y + pyu E A(..), which exists because r is compact 
and A(w) = C0\r. It is easy to see that we obtain a homeomorphism h : H+ closure 
of A(w)  by defining h(y  + Au) = y + Au + pyu. Since h ( E )  = V-(w)  it follows that 
V-(w)  is homeomorphic to R"-l. Since h(H\E)=A(w) ,  the latter space is 
homeomorphic to R". This completes the proof of theorem 2.l(f). 

one verifies that h ( E )  is a closed set, which we leave 
to the reader. Suppose now that p is finite and x 4 P is the limit of a sequence {xi} in 
V-(p).  In order to prove x E V-(p)  it suffices by invariance to prove q l x  E V-(p). 
Now q l x  is the limit of the sequence { q l x i }  in V-(p);  and q l x < p  by strong 
monotonicity. Therefore, replacing x by q l x ,  we assume that x < p .  

To prove part (g) for p = 
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Clearly x A - ( p ) .  Now the line segment L from x to p contains points in A - @ )  
because it intersects [ [ a , ,  p ] ]  where a ,  is as in the proof of part (f). It follows that 
there is a maximal point y a x  in L such that the segment x y  does not meet A - ( p ) .  
It is easy to see that the points of L strictly between y and p belong to A - ( p ) ,  and 

We now show y = x .  Suppose not; then x < y .  Pick i so large that xi < y .  Since 
xi  E V - ( p )  there exists U E A - ( p )  with xi < U  < y .  But then y  EA-(^) by order 
convexity. This completes the proof of theorem 2.l(g). 

Y E V-(P). 

Part (h )  is left to the reader. 

Part (f) of theorem 2.1 can be sharpened: if A - ( p )  is non-empty then it is 
diffeomorphic to R". The proof is the same, using the fact that the theorem of 
Brown (1961) is valid (with practically the same proof) in the differentiable 
category. 

It is an interesting open problem to determine conditions under which the 
(n - 1) cells V-(p)  are smooth. Currently there are no examples known where they 
are not smooth. Being Lipschitz, they are differentiable almost everywhere. 

The following result means that the open ( n - 1 )  cells V - ( p )  and V + ( p )  have 
nice tubular neighbourhoods. 

Proposition 2.7. Let V c R" be an open (n - 1) cell which is unordered with respect 
to 4. Then for any u b 0  the map h : V x R - * R "  defined by ( x , A ) + x + A u  is a 
homeomorphism onto an open n cell. 

Proof. It suffices to prove that h is injective. If h(x, A )  = h ( y ,  ,U) then x - y is a 
scalar multiple of U .  Since U > 0 this multiple must be 0 because by hypothesis no 
two points of V are related by 4. 

The proofs of the following two corollaries are left to the reader. Let V be as in 
proposition 2.7. 

Corollary 2.8. The union of V with the set of points related to points of V by 4 or b 
is an open neighbourhood of V. 

Corollary 2.9. Every point of V has a neighbourhood Q in R" with the following 
property: if x E Q then the subsets of V comprising all points ax,  and respectively 
all points G x ,  are compact. 

3. limit sets in eventually strongly monotone flows 

The main goal of this section is to prove the following result concerning the flow Q, 

in C of 92. Recall that Q, is strongly monotone in Co. 

Theorem 3.1. Let K be an alpha or omega limit set which is not a singleton. Then 
there exist p E 8 and q E 8 U {m} such that p < K ,  K < q if q is finite, and 
K fl r0 c V+(p) fl V-(q). For every x E K ,  p is the supremum of the equilibria <x ,  
and q is the infimum of the equilibria >x if such equilibria exist; otherwise q = m. 
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Recall that a point x E r is non-wandering if for every neighbourhood N c r of x 
and every number T > 0 there exists t > T such that ( q , N )  n N #0 (= the empty 
set). All other points of r are wandering. The set of non-wandering points, denoted 
by Q, is a compact invariant subset of r which contains all limit points. 

Lemma 3.2. If x E Q il I? then every neighbourhood of x contains a point z > x such 
that w(z )  contains an equilibrium a x .  

Proof. By proposition 2.3(c)  every neighbourhood of x contains a point z > x  with 
~ ( z )  f l  CO c 8. Because x is non-wandering there are convergent sequences yi -+ x 
in ro and ti+a in R such that q ( t i , y i ) - + x ,  and we can take t i > O  and y $ z .  
Passing to a subsequence we assume q(ti, z )  converges as i+ to a point q. Since q 
is monotone, q(ti ,  y i )  < q(ti, z ) .  Since the relation G is closed, x < q. Therefore 
q E w ( z )  n CO, and so q E 8. 

Lemma 3.3. Let K be a limit set. If q > 0 is an equilibrium and x 4 q for some 
X E K ,  then K < q .  

Proof, By strong monotonicity ~ J J  < q for t > 0, so there are points of K that are 
<q. Suppose K =  a(v). It follows that for any  ER there exists s <t such that 
qSv < q, and therefore qrv < q by monotonicity. Thus the entire orbit of v is <q so 
a(v) s q. In fact a(v)  4 q, since q E a(v)  would imply K = q ;  otherwise K would 
contain two points related by 4, contradicting proposition 2.3(e).  Therefore by 
invariance of K and q and strong monotonocity, a(v)<q.  A similar argument 
applies if K = w(v) .  

Proof of theorem 3.1. For each x E K n r0 pick z, > x  and q, 3 x  such that 
q, E 8 n ~ ( z , ) ;  this is possible by lemma 3.2 .  I claim that the set R of those x in 
K fl I'o for which q, # x  is dense in K n ro. Suppose that this is not so. Then 
x = w(zx)  for every x in some relatively open subset U of K n ro by proposition 
2.3(a)  and strong monotonicity, and therefore U c 8. Fix y E U. Since y is not 
isolated in K and K is compact and unordered, there must be a compact 
neighbourhood N of y in U so small that N 4 b < zy where b is the least upper bound 
of N .  Now N c 8 and so N is invariant. By strong monotonicity q tb  > N for t > 0, 
whence qtb  > b b y  for t > 0. Also qtzy > q,b for t > 0. But this entails qtzy > b b y  
for t > 0, contradicting qtzy --f y .  Therefore q, b x for some x E U, proving that R is 
dense in K f l  r0. 

It now follows from lemma 3.3 that K <q, for every x E R .  Let q E 8 be the 
greatest lower bound of the set of equilibria >K; then q 3 K. In fact q $ K ,  
otherwise K would equal q, contrary to hypothesis, by an application of proposition 
2.3(a)  and strong monotonicity. Thus q b K ,  and by strong monotonicity we 
conclude q > K. 

By choosing the z, < q we see that q, 6 q and therefore q, = q for all x E R .  
Recalling that ~ ( z , )  = q, we find that z,  EA-(^) for all x E R .  Since zx can also be 
taken arbitrarily near x ,  and x $ A - ( q )  for x E R ,  it follows that R c V-(q). Since 
the intersection of V-(q) with the set L of points 4q is closed in L by theorem 
2 . l ( g ) ,  and K is a compact subset of L,  it follows that K n r0 c V-(q). 

Uniqueness of q follows from disjointness of V-(p) and V - ( p ' )  for p f p '  
(theorem 2.1(c) ) .  

To prove the last sentence of theorem 3.2 ,  observe that we have already shown 



Competing species 63 

q > x .  Suppose q f  > x  is an equilibrium. Since x E V-(q)  there must exist a point 
b E A-(q )  such that x < b 4'. Since q t b  --f q as t+ and qtb < q' for all t > 0 it 
follows that q 6 q I. 

The existence of p is proved similarly. 

4. Competing species 

In this section we prove theorem 1.1 concerning the flow v of the system: 

i' = F'(x)  = x'"(x) ( i = l ,  . . . ,  n) 
in the non-negative orthant C, under the hypotheses of competition, irreducibility, 
and dissipation. Recall that r c C is a compact invariant set with non-empty interior 
I?, such that for every compact set S c C, the distance from v t x  to r goes to 0 as 
t - ,  to, uniformly in x E S. It follows that I? is unique. 

Lemma 4.1. I', I? and the closure of 
of P is a compact neighbourhood of the origin in C. 

are invariant and order convex; the closure 

Proof. We have already noted invariance. To prove r order convex we first show 
that if x E C\T and y a x  then y 4 r. To see this observe that w ( x )  is a compact 
subset of r, but a ( x )  cannot be compact: if it were, the closure of the entire orbit of 
x would be a compact invariant set not contained in r. Therefore there is a sequence 
tk + 00 such that I ~ ) - ~ ~ x  I-, or, equivalently, I Q, ,X~+  w. By monotonicity, if y 3 x 
then also I qtk y I -, W. 

To see that r is order convex suppose a, c E r and a d b d c. Then b E C. If b 4 r 
then, by the foregoing, the forward orbit of b under Q, is unbounded, and the same 
would hold for c. But this contradicts compactness and invariance of r. This proves 
order convexity of r. Since the interior and closure of an order convex set are order 
convex, it follows that F' and its closure are order convex. Finally, the closure of 
contains 0 and a point b > 0, so it contains [0, b] which is a neighbourhood of 0 in C. 

As usual Q, denotes the flow obtained from 3 by time reversal. All the results of 002 
and 3 apply to Q,. In order to interpret those results in terms of 1c, we make some 
definitions. Let p be an equilibrium for 3 and R ( p )  its basin of repulsion. We define 
the following sets: 

R - ( p )  =the basin of lower repulsion 
= { x ~ R ( p ) : 3 T ~ R + s u c h t h a t  v j > p  i f t > T }  
= A - ( p )  for Q, (as defined in 0 3 )  

= { x E R ( ~ ) : ~ T E R +  suchthat v j < p  i f t S T }  
R + ( p )  = the basin of upper repulsion 

= A + ( p )  for Q, 

= d - R - ( p )  
M - ( p )  = the lower repulsion boundary 

= lower boundary of R - ( p )  
= V - ( p )  for Q, 
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M + ( p )  = the upper repulsion boundary 

= d + R + ( p )  
= upper boundary of R + ( p )  
= V + ( p )  for Q,. 

For the fictional equilibrium a we define analogous sets: 

= C\r = A(w) for Q, 

R(cQ) = the basin of repulsion of CQ 

R-(a)  = R ( m )  

R+(w) = 0 
M-(w) = the lower repulsion boundary of CQ 

= 3-R(t . )  = V-(w) for Q, 

M + ( m )  = 0. 
Interpreting theorem 2.1 in terms of we have the following result. 

Theorem 4.2. Let p ,  q denote elements of 8 U {a}. Then 
( a )  the sets R ( p ) ,  R - ( p ) ,  R + ( p ) ,  M - ( p )  and M + ( p )  are invariant; 
( b )  R ( p ) ,  R - ( p )  and R + ( p )  are order convex; R - ( p )  and R + ( p )  are relatively 

(c) R - ( p )  n R - ( q )  and M - ( p )  n M - ( q )  are empty if p # q ;  
(d)  M - ( p )  is unordered with respect to 4, and M - ( p )  n P is unordered with 

respect to <; 
( e )  let PE : R" + E be orthogonal projection onto a hyperplane E orthogonal to 

a vector >O. Then PE 1 M - ( p )  is a homeomorphism g E : M - ( p ) +  U onto an open 
subset U c E ;  gE and ( & ) - I  are Lipschitz; 

(f) if R - ( p )  is non-empty then R - ( p )  is an open n cell and M - ( p )  is an open 
(n - 1) cell; 

( g )  if x E clos M - ( p )  and x 4p then x E M - ( p ) ;  
( h )  results analogous to (c), (d), ( e )  and (f) hold for M + ( p )  and R + ( p ) .  
Despite the symmetry in their definitions, the open (n - 1) cells M - ( p )  and 

M + ( p )  have somewhat different geometries as subsets of C, owing to the special role 
the relation L plays in the definition of C. For example, if p E dC then M - ( p )  is 
empty, but M + ( p )  may be non-empty. On the other hand M - ( p )  may intersect dC 
(even if p E CO), whereas one can show that M + ( p )  does not. 

open in C ;  

Interpreting theorem 3.1 in terms of I/J we get the following basic result. 

Theorem 4.3. Let K be a limit set of I/J which is not a singleton. Then there exist 
PE%,  q E 8 U { w }  such that p < K ,  K < q  if q is finite, and K n l ? ' c M + ( p ) n  
M - ( q ) .  For every x E K ,  p is the supremum of the equilibria < x  and q is the 
infimum of the equilibria >x if such equilibria exist; otherwise q = W. 

In preparation for the proof of theorem 1.1 we define the family of sets 
9 = { M - ( q )  : q E 8 U {a}}. By theorem 4.2 the elements of 9 are pairwise disjoint, 
invariant open (n - 1) cells in C. Each of these cells is a Lipschitz submanifold 
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which is unordered with respect to 4; its intersection with CO is unordered with 
respect to <. 

Lemma 4.4.  Let M be one of the invariant (n  - 1) cells of B. Suppose x E Co\M is 
such that w ( x )  c M n CO and q , x  <some point of M for some t E R .  Then there 
exists y E M  fl Co and t o > O  such that Iq ,y  - q,xI+O as t + w  and q r y  > q , x  for all 
t ER.  An analogous result holds if q , x  > some point of M for some t E R .  

Proof. We first show that q , x  < some point of M for all t E R .  Since M is invariant 
and qPs 1 CO is strongly monotone for -s < 0, it suffices to show that there exist 
arbitrarily large t > 0 such that V t x 4  some point of M .  To this end fix z E w ( x ) .  It is 
easy to see that z ,  like every point of M fl CO, has a neighbourhood N in CO so small 
that every point of N\M is related to some point of M by < or >; see proposition 2 .7 .  
Choose a sequence t, + 30 so that q , , x  E N and q t , x  + z as i + E. It is impossible 
that q f 8 x  be related by 2 to points of M for arbitrarily large i, since then it would 
follow by strong monotonicity that q r x  is 2 some point of M for all t E R ,  which is 
contrary to the hypothesis. Therefore for all large I we have q r , x 4  some point of M .  
This verifies the claim that every point on the orbit of x is related by < to some 
point of M .  

By local compactness of M ,  z has a neighbourhood Nl in N such that for any 
p c N I ,  the set S+(p) c M comprising all points of M that are > p  is a compact 
subset of M f l  N .  There exists r > 0 with q r x  E Nl. Since it suffices to prove the 
lemma with x replaced by qq, we assume x E Nl .  For every t 2 0 set B, = S + ( q , x ) ;  
from the first paragraph of this proof we know that B, is non-empty. Therefore if 
q , x  E NI then B, is compact and non-empty. 

Observe that because qPS is monotone for s > 0, it follows that I$,_,B,+, c B, 
whenever t 3 0 and s > 0. 

Let {f,} be an unbounded increasing sequence of numbers such that t , = O  and 
q , x  E N I .  For each i = 0, 1, 2, . . . , put L, = y - , B , ,  which is a non-empty compact 
subset of Bo. Notice that if O<t<t,  then q,L, = q+-,)(Brr) cB,. This proves 
L, c t/.-,Bt for O <  t <  t,, and L, c L,-l. Set L = n L,. Then L is a non-empty 
compact set in M f l  CO such that q tL  c B, for all t 3 0. We shall see that any y E L 
fulfils the requirements of lemma 4.5. 

Fix y E L. Since q , y  E B, for all t 3 0 it follows that q j  s q , y  for all t 2 0. But 
q r x  # q , y  because x $ M and y E M ,  and M is invariant. Therefore q , x  4 y,y for all 
t 3 0. Since any r E R  can be written as - z + t with - z < 0 < t ,  it follows from strong 
monotonicity of qPz that q r x  < q r y  for all r E R .  

To see that Iq,x - $J,y\  -+ 0 as t+ CO, suppose that this is not so. Then there is a 
sequence s, -+ 00 such that q s , x  + a E w ( x )  c M n CO and q s , y  + b E M ;  then neces- 
sarily a 4 b. Applying to a and b we obtain points U E M and U E M with U < U .  

There exists uo E M so near U that U < uO, contradicting M being unordered for <. 

Proof of theorem 2 . 1 .  We take B to be the family of (n  - 1) cells defined above, 
namely the lower boundaries of attraction of the weak sources in Co and of =. The 
properties of the elements of 9 listed in parts (b ) ,  ( c )  and ( d )  of theorem 1.1 were 
proved in theorem 4.2. 

We prove part ( a ) .  Let X E C O  have a persistent trajectory which does not 
converge to a stationary point; set K = w ( x )  c Co. By theorem 4.3 there is a weak 
source q such that K c M-(q) .  Since M - ( q )  is non-empty, q must be in Co U {a}, so 
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M-(q)  belongs to 9. We show that the forward trajectory of x is asymptotic to the 
trajectory of some y E M-(q) .  If x M-(q)  then pick any z E K. By corollary 2.8 z 
has a neighbourhood U in CO such that every point of U\M-(q) is related by < or > 
to some point of M-(q) .  Because K = w ( x )  there exists s > 0 with qsx E U. Then 
there exists IJ E M - ( q )  related by < or > to vsx .  By lemma 4.4 we choose IJ so that 
the forward trajectories of U and q s x  are asymptotic. Set y = I / - ~ I J ;  then y E M - ( q )  
by invariance, and I T)J = q,yl + 0 as t+  m. If x E M-(q)  then set y = x. 

5. Further results 

Let $J denote the flow in C of system (1) of 31, generated by the C' vector field F. In 
this section we prove the results stated in 31 after theorem 1.1, and some other 
results. 

Theorem 2.1 '. Every positive limit set lies in an invariant open (n  - 1) cell in which 
the flow 3 is conjugate, via a Lipschitz homeomorphism, to the flow of a Lipschitz 
vector field in an open (n - 1) cell in R"-'. 

Proof. Let M E 9 (the family of (n  - 1) cells defined in 01). Let g : M +  E denote 
the restriction to M of the orthogonal projection P :  R" + E where E c R" is a 
hyperplane orthogonal to a positive vector. Then g and 8-l are Lipschitz 
homeomorphisms by theorem 2.l(e) because we can take M to be A - ( p )  of theorem 
2.1, define a flow 8 = {e,} in g ( M )  by et = Pq,g-'. Differentiating by t one finds 

d - (eJ) = PF(g-'(B,x)) .  
dt 

This implies 8 is the flow of the locally Lipschitz vector field PFg-' in the open 
(n - 1) cell g ( M ) .  

The following result sharpens theorem 4.3.  

Theorem 5.1. Let K c CO be a positive limit set of q which is not a singleton. 
Suppose K is contained in the open (n - 1) cell M - ( p )  for some p E 8 U {=}. Then 
there exists a negatively invariant closed (n  - 1) cell D such that K t D c M - ( p ) ,  
and D 4 p if p is finite. In fact D depends only on p ,  and D contains every compact 
invariant set in ~ - ( p )  n Co. 

Proof. First assume that p is finite. Define 

D ( p )  = { x  E M - ( p )  : x  4 p }  
D o ( p )  = {x E M - ( p )  : x  < p } .  

We identify M - ( p )  with the set A - ( p )  defined for the time reversal q of q. In the 
proof of theorem 2. l ( f )  we showed that D ( p )  is a closed (n - 1) cell and D o ( p )  is 
an open (n  - 1) cell, and both are positively invariant under q ;  thus they are 
negatively invariant under 3. It also follows from that proof that the sets 
{ I ) ~ D ( ~ ) } ~ ~ ~  form a nested family of closed (n - 1) cells whose union is M - ( p ) .  
Therefore K,  being compact, is contained in one of them; and being invariant, K is 
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contained in all of them. In particular K ,  and every compact invariant set, lies in 
V p 1 D ( p ) .  We set D = V - l D ( p ) .  By strong monotonicity of it follows that 
D < p  if p is finite. 

Now suppose p = x and define the set 

z = cios(M-(q n CO)). 
It is not hard to prove the following properties of I:: it is a closed invariant subset of 
r, and thus compact. Moreover, every ray in C emanating from the origin meets I: 
in a unique point, so that radial projection maps bijectively on the simplex A"-'; 
and this map is a homeomorphism. Setting D = 2 completes the proof of theorem 
5.1. 

Theorem 1.3'. Let p be an equilibrium satisfying one of the following conditions: 
( a )  p > 0 and p is a source; 
( b )  p > 0 and some compact invariant set is > p ;  
(c) p = 0 and p is asymptotically stable. 

Then there is an equilibrium > p .  

Proof. ( a )  If p > O  is a source then p must be in the interior of the fundamental 
attractor r. Consider a ray emanating from p in a direction parallel to a vector ZJ b 0: 
eventually the ray must enter A ( m ) .  Therefore there is a unique number c(v) > 0 
such that p + C(ZJ)V E M-(w)  = the lower boundary of the basin of repulsion of m. 

Define a map h : A"-'+ M-(w)  by h ( x )  = p  + c ( x ) x .  One easily proves h continuous 
and injective. Thus the image of h is a closed (n  - 1) cell B in M-(w) .  Geometrically 
we can describe B as the boundary in M - ( w )  of the set of points bp in M-(w) .  It is 
important to note that B c CO because p > 0. 

Now B is negatively invariant; in fact for t < 0 we have V,B > p  because Vt is 
strongly monotone in Co. This implies V,B c B\dB, since dB = h(dA"-') = { y  E 
B : y 4 p } .  A well known application of Brouwer's fixed-point theorem implies that 
any semiflow in a closed cell has an equilibrium. Therefore V has an equilibrium 
q E B\dB; thus q > p .  

( b )  One uses the existence of a compact invariant set > p  to conclude that 
p E Int r; the rest of the proof is the same as that of part (a). 

(c) From asymptotic stability of the origin there must exist a point x > 0 in I' 
such that for some T > 0 we have V T x  < x. Set y = V T x .  Then for the time reversal 
q of I) we have q T y  >y. Therefore by proposition 2.3 the omega limit set of y for q 
is an equilibrium q-for both q and I)-and q > y > 0. 

Theorem 1.4'. Let n = 3 and let K c CO be a positive limit set. Then one of the 
following holds: 

( a )  K is an equilibrium; 
( b )  K is a one-dimensional set containing an equilibrium, and if K does not 

(c) K is a cycle which bounds a positive invariant disc, and this disc contains an 
consist entirely of equilibria then the t e c h  cohomology group f? ' (K)  is non-trivial; 

equilibrium. 

Proof. Suppose ( a )  does not hold. Then K lies in some invariant 2-cell M ,  either d C  
or an element of 9. It is a well known consequence of the Poincark-Bendixson 
theorem that K is at most one dimensional. Since K is connected and not a singleton 
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it cannot be zero dimensional; thus dim K = 1. Statement ( b )  is proved for general 
planar flows in Hirsch and Pugh (1987). Suppose K does not contain an equilibrium. 
Then the theorem of PoincarC-Bendixson applied to the flow in M implies that K is 
a cycle, which must bound a disc in M by Schoenflies’ theorem; and the disc contains 
a stationary point by Brouwer’s fixed-point theorem, so that (c) holds. 

Theorem 1.6’. Suppose n = 3. Assume there is a unique positive equilibrium p and 
p is hyperbolic, and there are no positive cycles. Then every persistent trajectory 
converges to p .  

Proof. Suppose K c CO is the w-limit set of a persistent trajectory. It suffices to 
show that K is an equilibrium. 

By theorem 1.2 K lies in an invariant open 2-cell M and K is the w limit set of a 
trajectory in M .  Referring to theorem 1.4 we see that the proof is complete once we 
rule out the possibility that K is a one-dimensional set which contains an equilibrium 
and separates M .  Suppose that K had this form; then p E K. Therefore p ,  being 
hyperbolic, must be a saddle. Otherwise p would be a source or a sink; and K ,  being 
a limit set containing p ,  would reduce to p ,  contradicting K having dimension 1. 
Thus p is a saddle. It follows that K contains points other than p on the stable and 
unstable manifolds of p (see, e.g., Freedman and Waltman 1985). 

Let y # p  be a point in the intersection of K with the unstable manifold of p .  
Then w ( y )  c K ;  since there are no positive cycles, w(y)  contains p ;  therefore w ( y )  
contains a point z # p  in the stable manifold of p .  By considering the way the 
forward orbit of y meets an arc in M transverse at z to the orbit of z ,  one proves 
that z is on the forward orbit of y .  This shows that p is a homoclinic equilibrium for 
the flow in M :  one branch of its unstable manifold coincides with a branch of its 
stable manifold. This branch together with p forms a Jordan curve L in M .  

Since M is homeomorphic to the plane, L bounds an invariant disc D in M .  By 
hypothesis D contains no cycles and no equilibrium except p .  It follows from the 
PoincarC-Bendixson theorem that p is in both the alpha and omega limit set of 
every point U in the interior of D. Since p is hyperbolic it is impossible for either the 
forward or the backward trajectory of U to converge to p .  Therefore both these 
trajectories spiral toward the boundary L of D from the interior of D. But this 
implies they must cross, which is impossible. This contradiction proves that K = p  
after all. 

Next 
CO]. 

we prove theorem 1.7. Recall that for this theorem I: denotes clos[a_R(x) n 

Theorem 1.7‘. In system (1) assume additionally that the origin is a source for the 
flow in C, and that at every equilibrium in C\O we have dN‘/dx’ < 0 for all i, j .  Then 
every trajectory in C\O is asymptotic to one in 2 and 2 is homeomorphic to An-’ by 
radial projection. 

Proof. The proof goes by induction on n. If n = 1 then is an interval [0, b ]  for 
some number b > 0. By hypothesis every positive equilibrium is an attractor, so b is 
the unique positive equilibrium. It is clear that all trajectories are attracted to 
2 = { b } ,  and the last sentence of the theorem is trivial. 
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From now on we assume n > 1. The induction hypothesis is that the theorem 
holds for systems in R" if m < n. 

Let H denote a k-dimensional face of C, 16 k 6 n - 1, defined by setting n - k 
coordinates equal to zero. By relabelling the remaining k coordinates we identify H 
with Rk. The hypotheses of theorem 1.7 are inherited by the restriction of the 
system to H. Therefore by the induction hypothesis we conclude that every 
trajectory in H\O is attracted to H n 2.  

From the application of the theorem to each face of C one proves easily that 
I: n dC = clos[M+(O) n X I .  We denote this set by 82. Observe that no points of dI: 
are related by 1. 

We now prove that I: = clos M+(O). It suffices to prove that I: n CO = M+(O) n Co. 
Every ray from the origin through a point of CO meets M+(O) and I: in points x and 
y ,  respectively, and it suffices to prove x = y. Suppose that for some ray x # y.  Then 
0 4 x  4 y ,  and both x and y are in r. I claim that for every U E [[x, y ] ] ,  a(v)  is an 
equilibrium. Suppose not; then by theorem 3.1 applied to the time reversal cp of q, 
a ( v )  n CO c M+(O) f l  M-(m). I claim that @ ( U )  is disjoint from the closure of 
CO n M+(O). To see this, suppose there exists z E a ( v )  f l  clos[Co n M+(O)]. Then 
from strong monotonocity of qi and the fact (easily proved) that the closure of 
M+(O) f l  CO is unordered for 4, it follows that z is a common omega limit point 
under Q, of x and U .  Then by proposition 2.3(d) ,  z is a weak sink for cp and thus a 
weak source for q. Now under the hypothesis the vector field F has negative 
divergence in a neighbourhood of every equilibrium in C\O, and it is easily proved 
that at a weak source the divergence of F is 3 0 .  Therefore the origin is the only 
candidate for a weak source for t/J, so z = 0. But 2 ,  being in M+(O), is >O,  so we 
have reached a contradiction. This shows that a(v)  is disjoint from the closure of 
CO n M+(O). A similar argument proves a(v)  disjoint from clos(Co f l  I:). Therefore 
a(v)  c [M+(O) U I:] n dC. It now follows from the preceding paragraph that 
@ ( U )  c 32. Since 92 is unordered, monotonicity of cp implies that every w E a(.) is a 
common omega limit point under cp of both U and x. By proposition 2.3(c) such a w 
must be a weak sink for cp, and w is therefore a weak source for t/J which is >O; as 
we have seen, this implies w = 0, a contradiction. This proves that a ( v )  is an 
equilibrium for every v E [[x, y ] ] .  We show next that this leads to another 
contradiction. 

Let J c [[x, y ] ]  be a simply ordered arc. For every U E J denote by p ( v )  the 
equilibrium which is ~ ( v ) .  The map sending v to p ( v )  is injective, otherwise some 
p ( v )  would be a weak source different from 0. By monotonicity the set of p ( v )  is 
simply ordered by S .  Let H denote a face of C having minimal dimension among all 
faces such that H\dH contains uncountably many p ( v ) .  Then there exists a 
sequence {vi} in J and a point v, E J  such that { p ( v , ) }  is a simply ordered sequence 
of distinct points in H\dH converging to p ( v * )  E H\dH. 

The flow 6 = cp I H is strongly monotone for the vector ordering in H ,  i.e. if we 
identify H with the open positive cone in R" then Q, 1 H is strongly monotone; this 
follows from the hypothesis and proposition 2.2. We reach a contradiction by 
applying the following result. 

Lemma 5.2. Let 6 be the flow of a vector field G in an open set W c R" satisfying 
dG'/dxj> 0 for all i, j = 1, . . . , m. Then there cannot exist a simply ordered 
convergent sequence of distinct equilibria. 
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Proof. Suppose to the contrary that q E W is the limit of such a sequence qi. Since 
the matrix DG(q)  has only positive entries, by the Perron-Frobenius theorem it has 
a positive eigenvalue A, and A has a positive eigenvector U ;  moreover any 
eigenvector b0 is a multiple of U .  Fix t > 0 and set A = DB,(q). Then ern is an 
eigenvalue >1 of A ,  and every positive eigenvector of A is a multiple of U .  On the 
other hand, the unit vectors (q  - qi)/lq - qij have a subsequence converging to a 
fixed-point eigenvector w for A ,  as is easily proved from the first-order Taylor 
approximation to 6, at q. Since {si} is simply ordered, w or -w is bo. But w is not a 
multiple of II because w belongs to the eigenvalue 1. This contradiction completes 
the proof. 

We have proved, by contradiction, that clos M+(O) = Z. We now complete the proof 
of theorem 1.7. Let K = w ( x )  for some x b 0. Since 0 is a source, 0 4 K. Therefore 
K, being invariant, cannot meet the basin of repulsion R(0). Similarly K cannot 
meet R(m). Let y E K. We showed above that the ray from the origin through y 
meets 2 in a unique point yo, and every other point of the ray is in R(0) U R ( m ) .  
Therefore y = yo, proving K c 2. 
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