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Abstract of the Thesis

Discovery and Clinical Decision Support for

Personalized Healthcare

by

Jinsung Yoon

Master of Science in Electrical Engineering

University of California, Los Angeles, 2016

Professor Mihaela van der Schaar, Chair

With the advent of electronic health records, more data is continuously collected

for individual patients and more data is available for review from past patients.

Despite this, it has not yet been possible to successfully use this data to systemat-

ically build clinical decision support systems that can produce personalized clin-

ical recommendations to assist clinicians in providing individualized healthcare.

In this paper, we present a novel approach, Discovery Engine (DE) that discovers

which patient characteristics are most relevant for predicting the correct diagnosis

and/or recommending the best treatment regimen for each patient. We demon-

strate the performance of DE in two clinical settings: diagnosis of breast cancer

as well as personalized recommendation for a speci�c chemotherapy regimen for

breast cancer patients. For each distinct clinical recommendation, di�erent pa-

tient features are relevant; DE can discover these di�erent relevant features and

use them to recommend personalized clinical decisions. The DE approach achieves

a 16.6% improvement over existing state-of-the-art recommendation algorithms in

terms of kappa coe�cients for recommending the personalized chemotherapy reg-

imens. For diagnostic predictions, the DE approach achieves a 2.18% and 4.20%

improvement over existing state-of-the-art prediction algorithms in terms of pre-
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diction error rate and false positive rate, respectively. We also demonstrate that

the performance of our approach is robust against missing information, and that

the relevant features discovered by DE are con�rmed by clinical references.
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CHAPTER 1

Introduction

Clinicians are routinely faced with the practical challenge of integrating high-

dimensional clinical data in order to recommend the most appropriate clinical

decision for a given patient [Ric08]. As the understanding of complex diseases

progresses, the types of available tests and treatments diversify and, as a re-

sult, the di�culty of recommending the optimal clinical decision for a particular

patient increases as well. Current clinical decisions continue to rely on clinical

practice guidelines which, in cases where scienti�c analysis and evidence is scarce,

are largely based on clinical experience and opinion. Also, current clinical prac-

tice guidelines are aimed at a "representative" patient rather than an individual

patient who may display other relevant characteristics. Such "representative"

guidelines may thus miss the opportunity to consider personal traits when recom-

mending clinical decisions [CJK12,RHW98]. For example, the American Cancer

Society (ACS) recently issued new guidelines which suggested that women with

an average risk of breast cancer should start having mammograms at an age of

45 (�ve years later than ACS had previously recommended) [Soc15]. However,

women who have certain risk factors (family history of breast cancer, no children,

etc.) have a higher risk of developing breast cancer, and they would bene�t from

having mammograms at an earlier age. In cases such as these, the ACS guidelines

recommend that a high risk patient consults with her physician to determine an

appropriate screening age and interval, which is based on that particular physi-

cian's experience and opinion. Moreover, statistics show that diagnostic errors
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result in 10% of patient deaths and represent the most frequent type of medical

malpractice claims in the United States [Fre15]. This reality highly underscores

the urgent need for building smart clinical decision support systems (CDSS) and

diagnosis decision support systems (DDSS) that can assist clinicians in making

accurate, personalized clinical recommendations [Ber07]. It has been recently rec-

ognized [AFN15] that medical informatics tools and machine learning techniques

can be successfully used to provide recommendations for personalized diagnosis

and treatment.

The goal of this paper is to develop methods that will enable CDSS to personal-

ize their recommendations based on individual patient characteristics. The wealth

of information being routinely collected as part of the electronic health record

(EHR) provides an unprecedented opportunity to discover appropriate clinical

recommendations for patients given historical information about the clinical deci-

sions administered to similar patients and their actual outcomes [SC13]. However,

using this information is di�cult precisely because there is so much of it. The so-

lution is to extract only the relevant information for the particular patient and the

relevant clinical decisions previously used for similar patients among the wealth

of available information. Extracting only the relevant information is important

because using irrelevant features can signi�cantly hurt the performance of the sys-

tem, unnecessarily increase its complexity, and decrease its learning/adaptation

speed [BL97]. Furthermore, e�cient discovery of relevant patient features can help

clinicians focus on the relevant information available about the patient without

having to sift through a large patient record.

1.1 Paper Contribution

In this paper, we present a novel approach called Discovery Engine which opti-

mizes clinical recommendations by identifying the features in the patient record
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that di�erentiate the individuals who receive a certain clinical decision and re-

spond positively from those who do not. Our approach utilizes the available

contextual information about patients and learns from the large quantities of

observational clinical data to inform clinical recommendations and make better

decisions by learning from similar patients. We show that our DE approach con-

sistently outperforms existing state-of-the-art machine learning algorithms both

in terms of matching individual patients to the optimal treatment regimens as

well as diagnosis accuracy.

One of the biggest challenges faced by this class of recommendation systems

is that the rewards/actual outcomes of clinical decisions (e.g. �ve-year recur-

rence free survival) are usually not available [BH13, LDC12]. Moreover, even if

rewards/actual outcomes of the clinical decisions were available, the counterfac-

tuals rewards/actual outcomes of alternative clinical decisions that were not used,

are never available [LDC12]. What is available, however, is a large medical litera-

ture that reports the results of a wide range of clinical studies, including di�erent

types of patients, di�erent patient characteristics, di�erent types of clinical de-

cisions, and the actual outcomes of these decisions. We use the results of these

studies to construct transfer rewards, which we use as proxies for rewards. This

allows us to train the DE algorithms as well as to evaluate their performance in

comparison to existing methods when the actual outcomes cannot be achieved.

The four primary contributions of this paper are as follows:

● We describe a novel approach for discovering the most relevant information

from the EHR that distinguishes between patients that should receive one

particular clinical decision and the patients who should receive another. For

instance, premenopausal breast cancer patients are more likely to respond

to a speci�c type of chemotherapy such as CEF [Lev01].

● Using the past records in the EHR and external knowledge from the medical

3



Figure 1.1: Personalized clinical decision support system using discovery engine
(DE)

literature, our approach discovers the optimal personalized clinical decision

based on the discovered relevant information (e.g. their clinical test results,

treatment history, and outcomes).

● In lieu of having actual reward values associated with clinical decisions,

we de�ne the transfer rewards, a method for estimating actual outcomes

described in external knowledge (published literature and clinical practice

guidelines) based on their similarities to individual patients given reported

characteristics.

● We apply DE to two medical applications: 1. Personalized treatment rec-

ommendations (chemotherapy regimens) for breast cancer patients and 2.

Diagnosis of breast cancer. DE is used to discover which features are relevant

to make a distinct clinical decision and then uses this knowledge to build

a clinical decision recommendation system. We evaluate the performance

of DE in the context of breast-cancer diagnosis and treatment, and show

that it consistently and signi�cantly outperforms state-of-the-art machine

learning algorithms.
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1.2 Related Work

1.2.1 Personalized Clinical Decision Support Systems

Current medical practice relies on manually curated systematic reviews of the

available scienti�c evidence and clinical guidelines that provide recommendations

for large groups of patients rather than personalized recommendations that are

tailored to individual patients. Clinical decision support systems have been pro-

posed before, but many of them do not consider the speci�c characteristics of pa-

tients and do not provide personalized clinical recommendations; hence, they are

not very accurate and have only limited applicability in practice [Tsu98,XST14,

CJK12,HC10,MPM15,RHW98]. Moreover, clinicians often refer to the medical

literature available through Medline/PubMed, VisualDX, and UpToDate to help

them associate observed �nding with possible conditions and recommended de-

cisions. However, these resources are also not customized to a speci�c patient's

case.

Several CDSSs are currently implemented and used in clinical settings. For

instance, WizOrder was developed to help reduce medical errors and support clin-

ical decisions when entering orders [MWC05]. This system is now used in several

neonatal intensive care units at Vanderbilt University Hospital. Assessment and

Treatment of Hypertension: Evidence-based Automation (ATHENA) is a CDSS

used to manage hypertension in primary care [GCT04]. It was developed to rec-

ommend drug therapies and assess and control their e�ect on blood pressure.

ATHENA is now used in several clinics in Northern California. TherapyEdge-

HIV is a web-based real time alerting system for the treatment of HIV which is

used in over 42 clinical sites [BGS04]. While several CDSS are now implemented

in clinical settings, their evaluations are often mixed. Some papers argue that

CDSS signi�cantly improve the e�ectiveness of clinical practice [KHB05,JSV11],

while others conclude that CDSS do not a�ect mortality and may even moder-

5



ately increase morbidity outcomes [MKL14]. Furthermore, the cost-e�ectiveness

of CDSS has yet to be demonstrated [BCP11].

The advent of Big Data has been identi�ed as an opportunity to improve the

performance of existing CDSS as well as catalyze the development of new CDSS

[VHH15]. A large literature has used data-driven approaches to develop represen-

tative rather than personalized healthcare decision support systems [RZW15]. A

smaller literature is dedicated to developing personalized CDSS. However, most

existing papers in this strand of literature [DJ12,KTM10,DSB15,BDB11,SM06,

MSA14, MWL12] only either just discuss opportunities rather than propose a

concrete algorithm or they apply o�-the-shelf machine learning techniques to the

considered medical problem and do not address the unique characteristics and

challenges of developing personalized CDSS. Diagnosis decision support systems

have been developed for cardiovascular diseases and diabetes using ensemble learn-

ing [EKZ08], SVMs [CAT07], arti�cial neural networks [ZN15] or rule-based algo-

rithms [Ano12]. Although some diagnosis decision support systems issue accurate

diagnostic recommendations for speci�c diseases, most of them are based on a

small number of manually selected features [PG07a,PG07b]. Whenever the num-

ber of features (contexts) is large, these methods fail to perform well [HMN05].

Most importantly, most of the proposed CDSS solely focus on diagnosis rec-

ommendations and do not provide solutions for the equally important problem of

treatment recommendations. A small number of studies attempt to propose CDSS

for treatment recommendations [KSE12]. However, these CDSS di�er signi�cantly

from our DE. For instance, [TVD14] proposes antibiotic recommendation systems

for representative patients but does not use a data-driven approach and [ZWH14]

proposes a CDSS for personalized medicine recommendations, but which uses sim-

ilarity information among drugs and patients that is speci�c to the study at hand

and cannot be easily applied to other diseases - the similarity between patients

is solely based on the ICD 9 codes and the similarity between drugs is based on
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their chemical structure. Hence, the methods in [TVD14,ZWH14] are not widely

applicable to a diverse set of patients and treatments.

In contrast, although our DE was only veri�ed in the context of breast cancer so

far, it is designed to operate in a variety of complex diseases such as breast cancer,

lung cancer, prostate cancer etc. Furthermore, as we will show in our experimental

section, it can perform well even when the number of features used to make a

decision is large because it adopts a novel method to discover the most relevant

features to consider when deciding on certain diagnosis or treatment options for a

speci�c patient. For this, we developed a customized feature selection and decision

making system which signi�cantly outperforms existing o�-the-shelf techniques.

Importantly, based on the authors' knowledge, DE likely is the only one that

considers features speci�c to a given set of clinical treatments and optimized for

a speci�c patient, that are indicative of treatment success in a complex disease

such as breast cancer.

Our work is also related to other works in the �eld of medical informatics

dedicated to improving breast cancer diagnosis and treatment. However, our

work is distinct from prior works, that they only analyzed the impact of spe-

ci�c patient features (such as genetic information or imaging information ex-

tracted from mammograms or other imaging) to improve the performance of

CDSS [WLP14,KDE15,LPP14]. Our DE system is based on a novel set of machine

learning methods developed especially for personalized diagnosis and treatment

discovery which are shown in later sections to signi�cantly outperform existing

methods. Moreover, DE is not only applicable to breast cancer, but can be gen-

erally applied to discover personalized treatment for other complex diseases.
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1.2.2 Relevant Feature Selection

Another strand of literature related to this work is relevant feature selection al-

gorithms including Correlation Feature Selection (CFS) and Mutual Information

Feature Selection (MIFS) [Hal99,PLD05]. These are related to our feature selec-

tion approach. However, our clinical decision dependent feature selection algo-

rithm (CDFS) is very di�erent from existing feature selection algorithms which

focus on the patients' characteristics and not on how these characteristics distinc-

tively impact di�erent clinical decisions. Our approach is capable of discovering

which di�erent features are relevant to each di�erent clinical decision. This makes

CDFS similar to our prior work [TV14,TS15], the RELEAF algorithm. However,

unlike RELEAF, which is very slow because it must compare all possible combina-

tions of features, CDFS is able to discover the relevant features in a very fast and

e�cient manner because it adopts a sequential feature selection approach. This se-

quential approach signi�cantly reduces the sample and computational complexity

of the RELEAF algorithm.

1.2.3 Machine Learning Techniques

Our method also exhibits similarities to the contextual multi-armed bandit prob-

lem (MAB). However, contextual MABs are very ine�cient when the number

of contexts (in our case patient features) is large (see the experimental section

of [TS15]). DE is able to successfully deal with the curse of dimensionality by dis-

covering what information is relevant and making clinical decisions based only on

relevant contexts rather than the entire set of contexts that can be extracted from

the EHR, much of which is irrelevant to the decisions of whether to administer a

speci�c treatment or not.

In Chapter 2, we present the detailed problem formulation under consideration.

Chapters 3 and 4 present the details of the proposed algorithms for discovering rel-
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evant features, recommending the optimal clinical decision and transfer learning,

respectively. Chapter 5 and 6 presents the simulation results for the breast can-

cer patients for evaluating our proposed system against state-of-the-art machine

learning algorithms and feature selection algortihms and Chapter 7 discusses the

results and future works of the paper.
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CHAPTER 2

System Model

In this chapter, we introduce our method - Discovery Engine (DE). The DE dis-

covers/learns which features/characteristics of a patient are most informative in

predicting the success of a clinical decision. For instance, the tumor grade may be

found to be relevant for predicting the success of a certain type of chemotherapy

in a patient, but not the success of another type of chemotherapy. Thus, di�erent

features may be discovered to be relevant for di�erent decisions. Then, when a

clinician requests the recommendation from DE for a speci�c patient, DE decides

the best clinical recommendation for the patient which has the best estimated

outcomes. The outcome of a decision is estimated based on the values of the

relevant features (i.e. the features found to be relevant for that decision) of the

patient. For instance, if the tumor grade was found to be relevant for a certain

chemotherapy that chemotherapy will or will not be recommended to that patient

depending on that patient's tumor grade.

Fig. 1.1 depicts the proposed system, which issues a personalized clinical

recommendation to the physician about certain patients. The outcomes of certain

clinical decisions are used as a reward to train the DE. While the proposed system

is applicable in general, we illustrate its use in the context of breast cancer. (A

nomenclature table summarizing the variables used and their de�nitions can be

found in Appendix.)

Let x = {x1, x2, ..., xD} denote the patient information where D is the total

number of patient features such as age, tumor size, estrogen receptor information

10



etc.; a ∈ A ≜ {a1, a2, ..., aK} denotes the clinical decision (e.g. chemotherapy

regimens or breast cancer diagnosis) that is recommended to the patient. Each

patient feature is denoted as f ∈ F ≜ {f1, f2, ..., fD}. The reward y is derived based

on the actual patient outcomes (e.g. �ve-year survival rates or recurrence rates).

Let x(n), a(n), y(n) be the patient information, clinical decision and reward of

n-th patient and HN = {x(n), a(n), y(n)}Nn=1 be the information available for the

N previously seen patients. This represents the training set.

The outcomes of a clinical decision a do not depend on all the features [PDK13]:

we assume that the outcomes of a clinical decision a depend only on a subset of

features R(a) ⊆ F which we call the relevant features. Let R = ⋃a∈AR(a) be the

set of all relevant features. The DE approach is capable of discovering di�erent

features that are relevant to di�erent clinical decisions. We say that R(a) is

relevant/informative for clinical decision a if the expected reward only depends

on the information contained in R(a).

Our goal is to discover the relevant features of each clinical decision a (this

may be di�erent for each decision) and recommend the optimal clinical decision

that corresponds to the discovered relevant patient information. The optimal

recommended clinical decision is given by

a∗(xR) ≜ argmaxaEy∣a,xR(a)(y∣a,xR(a)) (2.1)

where E() is the expectation of the random variable. Therefore, a∗(xR) is de�ned

as the clinical decision that yields the best expected patient outcome for a patient

characterized by the relevant features xR.
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CHAPTER 3

Algorithms

Discovery engine (DE) consists of two algorithms: a clinical decision dependent

feature selection algorithm (CDFS) and a clinical decision recommendation algo-

rithm. As it can be seen in Fig. 1.1, DE discovers di�erent relevant features for

di�erent clinical decisions using CDFS. The detailed steps of each algorithm are

described in the following subsections and the pseudo-code of DE can be found in

the Appendix.

3.1 Clinical Decision Dependent Feature Selection (CDFS)

To describe CDFS, we start by introducing a few notations. Let ŷa and Na be

the sample mean rewards estimate and the number of patients who received the

clinical decision a, respectively. Similarly let ŷSa (xS) and NS
a (xS) be the sample

mean rewards estimate and the number of patients (whose feature information

contains xS and was provided clinical decision a), respectively. We formalize

these variables as:

Na =∑
n

I{a(n) = a} (3.1)

ŷa =
1

Na
∑
n

I{a(n) = a} × y(n), (3.2)

NS
a (xS) =∑

n

I{xS ⊂ x(n)}I{a(n) = a}, (3.3)

ŷSa (xS) =
1

(NS
a (xs))

∑
n

I{xS ⊂ x(n)}I{a(n) = a} × y(n), (3.4)

12



where I{} is the indicator function. We de�ne the relevance metric hrf(a) as the

variance of the rewards for a certain action a if a given feature xf is considered,

when selecting the action: ∣ŷfa(xf) − ŷa∣. This is weighted by Nf
a (xf )
Na

which rep-

resents the frequency with which feature xf is present when action a is selected.

We formalize this as:

hrf(a) ≜∑
xf

N f
a (xf)

Na

∣ŷfa(xf) − ŷa∣ (3.5)

In addition, we de�ne a redundancy metric hdf,s(a) which measures how the ex-

pected reward made for a given patient is a�ected by considering an additional

feature xs when clinical decision a is recommended. We formalize this as:

hdf,s(a) = − ∑
xf ,xs

N f,s
a (xf , xs)

Na

[ŷf,sa (xf , xs) − ŷ
s
a(xs)] (3.6)

Then, we de�ne Uf(a) as the utility obtained if feature xf is additionally selected

as a relevant feature for clinical decision a. Let R̂(a) be de�ned as the previously

discovered relevant features set for clinical decision a. Then, the utility function

Uf(a) is de�ned as:

Uf(a) = h
r
f(a) −

1

∣R̂(a)∣
∑

s∈R̂(a)
hdf,s(a) (3.7)

where 1/∣R̂(a)∣ is used as a normalization factor. The main steps of the CDFS

are outlined below:

Step 1: For each clinical decision a, initialize R̂(a) as the empty set (i.e. ∅) and

its complementary set (R̂c(a)) as the set of all features (i.e.F ).

Step 2: The algorithm selects the �rst relevant feature which maximizes the
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relevance metric (hrf(a)), i.e.,

G = argmaxf∈R̂c(a)h
r
f(a)

R̂(a)← R̂(a) ∪G

Step 3: The algorithm �nds the subsequent relevant feature that maximizes

utility function (Uf(a)), i.e.,

H = argmaxf∈R̂c(a)Uf(a)

R̂(a)← R̂(a) ∪H

Step 4: The algorithm iteratively runs Step 3 until the utility function Uf(a) is

less than threshold cost C, where C is an input parameter for the algorithm which

can adjust the number of relevant features for handling the trade-o� between the

speed of convergence and the recommendation accuracy, i.e.,

If maxf∈R̂c(a)Uf(a) < C,

then, R̂(a) = R̂(a)

Discovered relevant features are used to recommend the optimal clinical decision

in clinical decision recommendation algorithm.

3.2 Clinical Decision Recommendation Algorithm

The proposed clinical decision recommendation algorithm recommends the opti-

mal clinical decision which maximizes the estimated patient outcome only based

on the relevant contexts (features) discovered by CDFS. The main steps of the

recommendation algorithm are outlined below:

Step 1: Find the set of unresolved clinical decisions (U) for the patient with
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information vector xR̂(a):

U = {a ∈ A∣N
R̂(a)
a (xR̂(a)) < CTH × log(n)} (3.8)

where CTH × log(n) is a control function. CTH is an input parameter which can

adjust the trade-o� between the con�dence of the clinical recommendations and

the learning speed of DE. If a set of unresolved clinical decisions exists (U ≠ ∅),

DE abstains from making clinical decision recommendations and only updates

N
R̂(a)
a (xR̂(a)) and ŷ

R̂(a)
a (xR̂(a)) based on the obtained rewards. In other words,

DE only issues recommendations when it is su�ciently con�dent about its clinical

recommendations and it abstains otherwise.

Step 2: If there is no unresolved clinical decisions (i.e., U = ∅) for the patient

with information vector xR̂(a), the optimal clinical decision with respect to the

relevant feature set R̂(a) is determined as

â(x) = argmaxaŷ
R̂(a)
a (xR̂(a)) (3.9)

This optimization selects the clinical decision with the maximum estimated reward

for the patient with relevant information vector xR̂(a).

After the rewards of the recommended clinical decision are obtained, N R̂(a)â (xR̂(â))

and ŷR̂(a)â (xR̂(â)) are updated as follows:

N
R̂(a)
â (xR̂(a)) =∑

n

I{xR̂(a) ⊂ x(n)} × I{a(n) = â} (3.10)

ŷ
R̂(a)
â (xR̂(a)) =

y(n)

N
R̂(a)
a (xs)

∑
n

I{xR̂(a) ⊂ x(n)} × I{a(n) = â} (3.11)

The computational complexity of DE is O(ND2); hence, DE has a relatively low

run-time complexity with high dimensional datasets.
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3.3 DE with Missing Information

Electronic health records, more often than not, may have missing information for

some patients [LDC12]; hence, DE must be able to operate properly even with

missing information.

Suppose that the dataset contains missing information. We can divide the

feature information vector x into two components: the available features (xav)

and the missing features (xm). Thus, x = {xav,xm}. First, the relevance metric

of CDFS is solely computed based on the available information:

hf(a) ≜∑
xav
f

N f
a (xavf )

Na

∣ŷfa(x
av
f ) − ŷa∣

Therefore, if the feature f is frequently missing, hf(a) decreases, and as a result

the feature f is rarely selected as a relevant feature.

Second, it should also be noted that we can estimate the reward (ŷ
R̂(a)
a (xav

R̂(a)
))

with missing information based on a given patient's available relevant information,

xav
R̂(a)

, for each clinical decision a. More speci�cally, it can be estimated as:

ŷ
R̂(a)
a (xavR̂(a)) = E(ŷ

R̂(a)
a (xavR̂(a),x

m
R̂(a))∣x

av
R̂(a))

= ∑
x
m
R̂(a)

ŷ
R̂(a)
a (xavR̂(a),x

m
R̂(a)) × P (xmR̂(a)∣x

av
R̂(a))

= ∑
x
m
R̂(a)

ŷ
R̂(a)
a (xR̂(a)) × P (xmR̂(a)∣x

av
R̂(a))

We can estimate the conditional probability, P (xm
R̂(a)

∣xav
R̂(a)

), based on the

probability distribution of the features in the training set. Based on this estimation

rule, we can robustly identify the optimal clinical decision even if there is missing

information.
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CHAPTER 4

Transfer Rewards

As discussed in the introduction chapter, the most valuable rewards for most

clinical decision support systems are, in theory, the actual patient outcomes (e.g.

5 year survival rates or recurrence rates in the case of breast cancer). However,

these outcomes are very di�cult to obtain in practice [LDC12]. Instead, we use

a proxy for outcomes based on external knowledge which consists of published

literature and clinical practice guidelines. We refer to all external knowledge

simply as references in the remainder of the paper.

The idea is to match patients to appropriate relevant references. For each pa-

tient and each reference, we de�ne the term similarity as the amount of information

that reference provides about that patient. Similarity is computed by calculating

the posterior probability of that patient feature belonging to the population de-

mography from the reference. Then we aggregate the actual outcomes of certain

clinical decisions for each reference according to the similarity (posterior proba-

bility) and use this as a transfer reward for that clinical decision when applied to

that patient. The system model for transfer reward estimation is illustrated in

Fig. 4.1.

To compute the transfer rewards, we �rst estimate the similarity between a

patient and a reference. The �rst step of estimating this similarity is to �nd the

relevant patient features for each reference; we do this using a sequential feature

selection algorithm based on the mutual information in order to deal with popu-

lation demography [PLD05]. The mutual information between the i-th reference
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Figure 4.1: System model of transfer reward estimation

(Ei) and the k-th feature (fk) is de�ned as:

I(fk;Ei) = ∑
x∈χk

P (x∣Ei) × log
P (x∣Ei)

P (x)
(4.1)

where P (x∣Ei) is the probability of feature x in reference i, P (x) is the probability

of feature x across the entire set of references, and χk is context space of fk. Let

R̂(Ei) be de�ned as the discovered relevant feature set for reference Ei and the

utility function Uf(Ei) is determined as:

Uf(Ei) = I(xf ;Ei) −
1

∣R̂(Ei)∣
∑

s∈R̂(a)
I(xf ∣Ei;xs∣Ei) (4.2)

where 1

∣R̂(Ei)∣
is used as a normalization factor. This utility function measures an

increment of mutual information between relevant feature set and the reference

when feature f is the additionally selected as relevant feature.

The algorithm selects the �rst relevant feature which maximizes the mutual
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information with Ei, i.e.

G = argmaxf∈R̂c(Ei)I(xf ;Ei)

R̂(Ei)← R̂(Ei) ∪G

Then, the algorithm �nds the subsequent relevant feature that maximizes util-

ity function Uf(Ei), i.e.,

H = argmaxf∈R̂c(Ei)Uf(Ei)

R̂(Ei)← R̂(Ei) ∪H

The algorithm iteratively adds new relevant features in R̂(Ei) until the maximum

utility function Uf(a) becomes less than zero.

The second step is to compute a posterior probability of a patient feature set

belonging to the population demography from the reference. Given the n-th pa-

tient, characterized by the feature vector xn = {x1(n), ...xD(n)}, we compute the

posterior probability that the given patient belongs to the population demography

of the reference; we express this value as P (Ei∣X1 = x1(n), ...,XD = xD(n)). We

compute this via Bayes rule; it is computationally convenient to take logarithms:

log(P (Ei∣X1 = x1(n), ...,XD = xD(n))

= log
P (X1 = x1(n), ...XD = xD(n)∣Ei) × P (Ei)

P (X1 = x1(n), ...,XD = xD(n))

≈ logP (Ei) + ∑
l∈R̂(Ei)

log
P (Xl = xl(n)∣Ei)

P (Xl = xl(n))

where we write P (Ei) as the probability of selecting the i-th reference as the

best clinical decision for the entire population. We de�ne this approximation

of posterior probability as a similarity between n-th patient and i-th reference

(SimEi
(xn)). Second, we compute the estimated transfer reward of each clini-
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cal decision a for n-th patient as a weighted sum of actual outcomes of clinical

decisions in each reference according to the similarity (SimEi
(x)). i.e.,

ˆSima∣Ei
(x) =

SimEi
(x)

∑i∶a∈A(Ei) SimEi
(x)

tra(x) = ∑
i∶a∈A(Ei)

ˆSima∣Ei
(x) × r(a∣Ei)

where r(a∣Ei) is an actual patient outcome for clinical decision a in i-th refer-

ence, ( ˆSima∣Ei
(x)) is a normalized similarity for clinical decision a, and A(Ei) is

the set of clinical decisions considered in i-th reference. We de�ne this estimated

reward as the transfer reward (tra(x)). These provide a complete ranking of each

clinical decision for each patient. The clinical decision with the highest transfer

reward is the optimal clinical decision for the given patient. The pseudo-code for

estimating transfer rewards is given in Appendix.
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CHAPTER 5

Experiment1: Chemotherapy Recommendation for

Breast Cancer Patients

While our DE algorithm can be applicable in general clinical decision support

systems, in this chapter, we illustrate its use in the context of a personalized

recommendation system of chemotherapy regimens for breast cancer patients in

this section. Fig. 5.1. illustrates the system model of this application.

5.1 Data Description

From an initial set of 2,353 references (performing a narrow search of breast can-

cer chemotherapy regimens using PubMed Clinical Queries), 32 references were

selected for further analysis. (The complete list of the 32 references is provided in

Appendix.) The list was compiled based on the following two criteria: (1) Refer-

ences contain the clinical outcomes for at least one of the 6 standard chemotherapy

regimens for breast cancer patients [BL97,BLS14,FGR15]; (2) References contain

the demographic information of the breast cancer patients enrolled in the ran-

domized trials. The sample size of reported references ranged from 50 to 3,934

individuals. There was no cross over of individual subjects between these refer-

ences. A summary of the population demographics, chemotherapy regimens and

actual outcomes in references is provided in Appendix. We evaluate our DE al-

gorithm and benchmarks on the de-identi�ed database of 10,000 breast cancer

patients which was created based on the patients participating in the National
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Figure 5.1: Personalized chemotherapy recommendation system for breast cancer
patients using DE algorithm

Surgical Adjuvant Breast and Bowel Project (NSABP) in the United States and

Canada. The patients were diagnosed with operable and palpable breast cancer

by core needle biopsy or �ne needle aspiration. The patient data is characterized

by 15 features summarized in Table 5.2 and those are also corresponding with the

patient features in 32 references.

Table 5.1: Code for each chemotherapy regimen
Code Speci�c Chemotherapy Regimen
AC Doxorubicin + Cyclophosphamide
ACT Doxorubicin + Cyclophosphamide + Taxanes
AT Doxorubicin + Taxanes
CAF Cyclophosphamide + Doxorubicin + 5-Fluorouracil
CEF Cyclophosphamide + Epirubicin + 5-Fluorouracil
CMF Cyclophosphamide + Methotrexate + 5-Fluorouracil

We iteratively evaluated the performance of the algorithms based on 10 rounds

with 10 di�erent training sets and reported the average performance as a �nal

performance of each algorithm. In each round, we used a randomly selected
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training set of 4,000 patients among 10,000 entire patients and a disjoint testing

set of 6,000 patients. In other words, no training data were used during testing of

the model, but 10 di�erent models were used to derive the average performance.

We select 4,000 patients to be in the training set, since the performance of all

algorithms (besides ACL) saturated beyond this number of patients.

Table 5.2: Summary of patient information features

Feature Range Feature Range
Age 30s ∼ 60+ PLNC* 0 ∼ 10+
Menopausal Pre/Post Lymph Node Sta-

tus
Pos/Neg

Race White/Black/OtherWHO Score∗ 0 ∼ 5
Estrogen Recep-
tor

Pos/Neg Surgery Type BCT∗/MRM∗/
No

Progesterone Re-
ceptor

Pos/Neg Prior Radiother-
apy

Exp / No

HER2NEU∗ Pos/Neg/Neu Prior Chemother-
apy

Exp / No

Tumor Stage T1 ∼ T4 Histology Ductal / Mix /
Lobular

Tumor Grade G1 ∼ G3
*PLNC: positive axillary lymph node count
*BCT: breast conservative therapy. MRM: modi�ed radical mastectomy
*HER2NEU: human epidermal growth factor receptor 2
*WHO score: Eastern Cooperative Oncology Group (ECOG) score which is widely
used in publications by the World Health Organization (WHO)
*Features with categorical values are changed mutually exclusive binary indicator
for the evaluation.

5.2 Benchmarks

We compare the performance of DE with 9 state-of-the-art classi�cation algo-

rithms, ensemble learning algorithms and feature selection algorithms which are

widely used in CDSS and also commonly used benchmarks in medical and machine

learning references:
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● Correlation Feature Selection (CFS): a well-known feature selection algo-

rithm [Hal99];

● All Contextual Learning (ACL): a well-known contextual learning algorithm

which uses all features. This is a modi�ed o�ine version of the contextual

bandit algorithm of Slivkins [GOS08];

● Multivariate Logistic Regression (Logit);

● Linear Regression (Linear);

● Multivariate Support Vector Machines (SVM); we use a radial basis function

(RBF) kernel SVM;

● Support Vector Machines with Feature Selection (SVMs-f) [WMC00];

● Adaptive Boosting (AdaBo);

● Classi�cation Tree (CTree);

● Regularized Multivariate Logistic Regression using Lasso (ReLog);

● Regularized Linear Regression using Lasso (ReLin);

5.3 Success of the Optimal Chemotherapy Recommenda-

tion for Breast Cancer Patients

Given a patient, both our algorithm and the benchmark algorithm recommend a

chemotherapy regimen corresponding to particular references. If the recommended

chemotherapy has the highest estimated transfer reward for the patient among all

six chemotherapy regimens, we regard the algorithm in question as making the

correct recommendation for that patient; i.e. it has recommended the best course

of treatment. (Notice that the best course of treatment may not promise a good
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Figure 5.2: Performance analysis with benchmark algorithms in terms of Kappa
coe�cient

outcome: some cancers are not treatable.) We take the fraction/percentage of

correct recommendations to be the success rate for the algorithm in question.

Given the success rate for the algorithm, we apply two performance metrics:

the simple percent agreement and the Cohen's kappa coe�cient [HJ15]. Simple

percent agreement (p0) is the success rate (the fraction of times the personalized

treatment prediction coincides with the recommendation provided in the medi-

cal literature for the patient). Cohen's kappa coe�cient (κ) is a metric which

measures inter-rater agreement. It is usually considered a more robust measure

than a simple percent agreement (p0), because κ measures the improvement over

chance agreements. If pe is the probability of agreement by chance, then, kappa

coe�cient is de�ned as κ = (p0 − pe)/(1 − pe).

The bar graphs in Fig. 5.3(a) show that the �rst chemotherapy recommenda-

tion of DE is successful (as de�ned above) 73.4% of the time and Fig. 5.3(b) also

shows that one of the �rst two recommendations is successful 88.4% of the time.

This is 7.7% better than the second best approach (SVM) in terms of selecting
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Figure 5.3: Performance analysis with benchmark algorithms (a) 1st simple per-
cent agreement, (b) 2nd simple percent agreement

the optimal chemotherapy on its �rst choice (p-value < 0.01), and 5.6% better in

terms of matching the optimal chemotherapy within the �rst 2 choices (p-value

< 0.01). This is already a signi�cant improvement; however, in terms of kappa

coe�cients, the improvement is even greater: DE works 16.6% better than SVM

which is described in Fig. 5.2 (p-value < 0.01). This is because SVM indiscrimi-

nately recommends the popular chemotherapies and is not robust when classifying

the less popular chemotherapies. Given robustness considerations, which are es-

sential in medical treatment recommendations, kappa coe�cients are more often

used as a performance metric in medical informatics.

When comparing our algorithm with other algorithms that rely on feature

selection, we again see a signi�cant improvement. Again, note that while other

algorithms use feature selection, they do not select relevant features for speci�c

chemotherapies, and it is through this selection that our algorithm achieves im-

provement. CFS achieves only a 48% of simple percent agreement because it

cannot use the e�cacy of the chemotherapy to discriminate the relevant features

and hence the technique is entirely unsupervised. ACL succumbs to the "curse of

dimensionality" because there are 15 features with di�erent ranges, resulting in
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over 7 million combinations to explore. Logistic regression, linear regression, and

SVM perform worse than DE because they do not consider the relevant features

for selecting chemotherapies at all.

5.4 Relevant Features for Each Chemotherapy

Table 5.3 shows the top 4 ranked relevant features discovered by CDFS - tumor

stage, positive axillary lymph node number (PLNC), estrogen receptor etc.- for

recommending AC, ACT, AT, CAF, CEF and CMF chemotherapy. As it can be

seen from Table 5.3, CDFS is able to discover the di�erent relevant features that

are relevant for di�erent chemotherapy regimens.

Table 5.3: Discovered relevant feature for each chemotherapy
Chemotherapy
Code

1st Rel-
evant
Feature

2nd Rele-
vant Fea-
ture

3rd Rele-
vant Fea-
ture

4th Rele-
vant Fea-
ture

AC PLNC tumor Stage estrogen
Receptor

Age

ACT Tumor
Stage

Prior
Chemother-
apry

PLNC Estrogen
Receptor

AT Prior
Chemother-
apy

PLNC Surgery
Type

Age

CAF Surgery
Type

Tumor
Stage

Age Tumor
Grade

CEF PLNC Estrogen
Receptor

Tumor
Stage

Age

CMF Estrogen
Receptor

PLNC Radiotherapy Tumor
Stage

It is important to note the features discovered by DE are indeed con�rmed to

be relevant by clinical studies. Firstly, note that the six considered chemotherapy

regimens are commonly recommended to node positive breast cancer patients, i.e.

patients where cancer has been found in the lymph nodes [FGR15]. It is extremely
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important to know whether lymph nodes are positive or negative. PLNC tells us

both the number of nodes and whether lymph nodes are positive or negative.

For instance, zero PLNC implies node negative breast cancer, while otherwise

indicates node positive breast cancer. Hence, PLNC is selected as a relevant

feature by CDFS. Secondly, the menopausal status is considered important be-

cause medications a�ect cancer di�erently in premenopausal and postmenopausal

women [Lev01]. More speci�cally, the CEF chemotherapy is only recommended

to premenopausal women. Although the menopausal status is not included in

this relevant feature set, women over the age of 50 are usually considered post-

menopausal [Lev01]. Therefore, age was correctly identi�ed by DE to be a dis-

criminative feature for selecting among chemotherapy regimens. Thirdly, tumor

stage is another important feature to consider when deciding among chemother-

apy regimens as described in reference [BLS14]. Medications A(Doxorubicin),

T(Taxotere), E(Epirubicin) are recommended for advanced breast cancer and our

top six chemotherapy regimens include more than one of these medications. There-

fore, DE has correctly discovered that the features that are relevant for these

chemotherapy regimens contain tumor stage information. Finally, the medication

T(Taxotere) is usually recommended to breast cancer patients who do not re-

spond to their current chemotherapy. Thus, the prior chemotherapy information

is correctly discovered by DE to be relevant for AT and ACT therapies.

5.5 Performance when Patient Information is Missing

As explained before, patient information is often missing from the EHR. Moreover,

studies have shown that the missing information is often not random [Coh60].

For example, the age of the patient is easy to record and blood pressure is often

veri�ed several times by a nurse when a patient is seen by a clinician, so it is

typically neither missing nor incorrect. However, HER2NEU may not be recorded
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Figure 5.4: Performance analysis with missing information

depending on the diagnostic tests ordered and capabilities of a medical center.

Fig. 5.4. describes the performance of DE when features are missing with

various rates. It shows the performance degradation of DE and of the benchmark

algorithms as a function of the average degree of incompleteness [Coh60]. We

did not use the percentage of missing features as a metric since the features are

not randomly missing. The percentages of missing features corresponding to each

degree of incompleteness are described in Appendix; these percentages were com-

puted based on statistics extracted from medical records of patients. Fig. 5.4.

shows that the performance of DE degrades from 73.4% to 63.0% (when the av-

erage degree of incompleteness is 50%). However, even with missing information,

DE continues to outperform the other methods. DE discovers relevant features

with low missing probability, and is able to estimate the missing feature informa-

tion based on the available feature information. As a result, the impact of missing

information is minimized. In fact, DE performs better than most other algorithms

even when DE misses signi�cant amounts of information from the EHR while the
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other algorithms make their decision with full information. Hence we can indeed

see that the performance of DE is robust even when information is missing.
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CHAPTER 6

Experiment II: Diagnosis Decision Support System

for Breast Cancer Patients

In this section, we illustrate how the DE algorithm can be used for breast cancer

diagnosis. In this case, we can directly use patients' actual outcomes as the

rewards. Fig. 6.1 describes the system model of this application.

6.1 Data Description

Table 6.1: Summary of the feature information

No Information Type Explanation
1 Radius Mean of distance from center to points on the perimeter
2 Texture Standard deviation of gray-scale values
3 Perimeter The perimeter of tumor cell nucleus
4 Area The area of tumor cell nucleus
5 Smoothness Local variation in radius lengths
6 Compactness Perimeter2/area − 1
7 Concavity Severity of concave portions of the contour
8 Concave Points Number of concave portions of the contour
9 Symmetry Symmetricity of tumor cell nucleus
10 Fractal Dimension Coastline approximation − 1
*Features consist of mean, standard errors and worst of above 10 info types.
*Each info type is computed real value feature for each tumor cell nucleus.

In this section we evaluate the performance of DE for breast cancer diagno-

sis using the UCI Diagnostic Wisconsin Breast Cancer Database [BHC10]. The

dataset contains 30 patient features extracted from needle biopsy features such as
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Figure 6.1: Personalized diagnostic recommendation system for breast cancer pa-
tients using DE algorithm

radius, compactness, or smoothness of tumor cell nucleus. Table 6.1 summarizes

the details of 30 patient features. The number of instances in this dataset is 569

and the diagnosis (label) for each instance is either malignant or benign.

6.2 Benchmarks

We compare the performance of DE in this clinical setting with all the benchmarks

describes in Section VI-B. In addition, we add 3 existing state-of-the-art feature

selection algorithms as the benchmarks in order to compare the performance of

our feature selection algorithm (CDFS) separately.

● Mutual Information Feature Selection (MIFS): a well-known feature selec-

tion algorithm based on mutual information [PLD05];

● Relevance Learning with Feedback (RELEAF): an action dependent rele-

vance learning algorithm based on the expected rewards [TV14,TS15];
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● Principal Component Analysis (PCA): a statistical procedure to discover

linearly uncorrelated variables based on orthogonal transformation [AN07]

6.3 Experiments Setup

First, we compare our DE algorithm against state-of-the-art machine learning

algorithms: logistic/linear regressions, rbf kernel SVM, adaptive boosting algo-

rithms, classi�cation tree and regularized logistic/linear regressions. We use 10-

fold cross-validation in order to evaluate the performance of algorithms. We per-

formed 10 independent cross validation runs and report the average performance

of 10 runs.

To highlight the impacts of CDFS, we performed two additional sets of exper-

iments. In the �rst set, we compared the performance of our DE system using

CDFS with the performance of the DE system where CDFS was replaced with

one of the four di�erent feature selection algorithms: CFS, MIFS, RELEAF, and

PCA. This comparison shows the impact of CDFS on the overall performance of

the DE. Other experiment settings are exactly the same as the �rst experiment.

In the second set of additional experiments, we use our feature selection al-

gorithm CDFS in conjunction with the diagnostic recommendation made by the

benchmark algorithms - linear regression, logistic regression, SVM - to highlight

the speci�c impact of our feature selection algorithm. Other experiment settings

are exactly the same as the �rst experiment.

6.4 Performance of Diagnostic Recommendation for Breast

Cancer Patients

Given a patient, DE and the other benchmark algorithms classify the tumors as

malignant or benign. To quantify their performance, we apply three di�erent per-
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formance metrics: the prediction error rate (PER), the false positive rate (FPR),

and the false negative rate (FNR). PER is de�ned as the fraction of times the rec-

ommended diagnosis of our algorithm is di�erent from the actual label. FPR and

FNR are de�ned as the diagnosis error rate for benign instances and for malignant

instances, respectively. The main goal of DDSS is to minimize the FPR given an

allowable threshold for FNR as selected by the clinicians. In practice, this is often

set to be below 2% [PG07a]. Therefore, in this experiment, the FNR threshold

is also set to be 2%. Using this threshold, we can characterize our performance

metrics as follows.

minimize FPR

subject to FNR ≤ 2%

6.4.1 Comparison with Machine Learning Algorithms

Table 6.2: Comparison with state-of-the-art machine learning techniques

% DE Logit Linear SVMs SVMs-f Adabo CTree ReLog ReLin
PER 2.23 11.77 8.47 4.41 4.52 9.12 11.45 6.71 5.51
FPR 2.62 18.3 13.55 6.82 7.03 14.86 18.64 10.11 9.15
FNR 1.92 1.96 1.98 1.99 1.98 1.91 1.95 1.92 1.93

As the Table 6.2 shows, our DE algorithm has 2.23% prediction error rates

and 2.62% false positive rates which is 2.18% and 4.20% better than the second

best algorithm (SVMs) when the tolerable threshold of FNR is set to below 2%

(p-value < 0.01). There are two reasons for the outstanding performance of the DE

approach. First, our diagnostic recommendation algorithm yields high accuracy

for classi�cation, because it is able to provide personalized diagnosis, while other

comparable algorithms apply the same model for all patients. Second, DE can

discover di�erent relevant features for di�erent diagnosis based on CDFS, while the
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other algorithms (Logistic/Linear Regression, SVMs, AdaBoost and Classi�cation

Tree) base their decisions on all the features without relevant feature discovery.

6.4.2 Comparison with Feature Selection Algorithms

In this subsection, we demonstrate the impact of the CDFS algorithm on the DE

system. We compare the performance of the DE using CDFS with the performance

of DE using di�erent feature selection algorithms.

Table 6.3: CDFS Performance comparison with other feature selection algorithms

% CDFS RELEAF CFS MIFS PCA
PER 2.23 18.37 2.76 3.19 3.94
FPR 2.62 24.11 3.90 3.99 6.44
FNR 1.92 1.96 1.98 1.90 1.94

As seen in Table 6.3, CDFS outperforms all other feature selection algorithms

when the tolerable threshold of FNR is set to below 2%. This is because CDFS

is capable of discovering diagnosis relevant features based on their impact on

the expected diagnosis accuracies. Although RELEAF also considers the depen-

dence between diagnosis accuracy and feature selection, it is extremely slow when

the number of features is large, as is the case for this and many other medical

datasets. Furthermore, combinatorial approach (RELEAF) requires a relatively

large amount of training sets to accurately discover the relevant feature, which is

not the case for the medical dataset available to us.

Next, we replace DE's recommendation algorithms with various existing ma-

chine learning algorithms in order to demonstrate the impact of the CDFS compo-

nent of DE on the diagnostic decisions. As seen in Table 6.4, CDFS improves the

performance of all benchmark algorithms because it is able to accurately discover

and select the (di�erent) features that are relevant for di�erent diagnosis.
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Table 6.4: Impact of the CDFS in conjunction with alternative machine learning
algorithms

PER (%) PER (%)
CDFS w/o CDFS CDFS w/o CDFS

Linear 5.49 8.47 8.88 13.55
Logit 7.84 11.77 12.70 18.30
SVMs 4.01 4.41 5.51 6.82

6.5 Relevant Features for Diagnostic Decision

Table 6.5 shows the top 5 ranked relevant features discovered by CDFS: worst

perimeter, concave points concavity, radius and area etc. for diagnosing malignant

or benign cancer among all of the features summarized in Table 6.1. As seen in

Table 6.2, CDFS is able to discover the di�erent features that are relevant for

di�erent diagnoses.

Table 6.5: Discovered relevant features for each diagnosis
Malignant Benign

1st Relevant Feature Worst perimeter Worst concave points
2nd Relevant Feature Worst concave points Mean concave points
3rd Relevant Feature Worst radius Worst perimeter
4th Relevant Feature Mean concavity Worst radius
5th Relevant Feature Worst area Mean concavity

It should be noted that the relevance of the features discovered by DE con�rms

�ndings of prior clinical studies. For instance, studies of breast biopsies [Per01]

state that the 3 most important factors to diagnose tumor cell nuclei as malignant

or benign are the relative size ratio between nucleus and cytoplasm, irregular

shape, and irregular chromatin. However, because chromatin feature information

is not available in our dataset, only the relative size and irregular shape can be

potential candidates as the relevant features. The size related features are radius,

perimeter, and area, and the shape related features are the concavity and concave
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points [Per01]. The top 5 features found to be relevant by DE to classify malignant

and benign tumor cell nuclei are all related to the tumor shape and relative size,

which is in accordance to reference [Per01]. Features such as texture, smoothness,

compactness, symmetry, and fractal dimension are not found to be relevant by DE

and are not mentioned as important features in reference [Per01]. Hence, we can

conclude that DE can discover the relevant features for making a correct diagnosis

without prior medical knowledge.
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CHAPTER 7

Discussion and Future Works

We proposed a novel approach that discovers the most relevant information from

the EHR to determine which clinical decision to recommend for a patient. Fur-

thermore, our approach uses this information to provide personalized recommen-

dations to assist physicians in their decision making process. Our results demon-

strate that DE outperforms existing machine learning, prediction, and feature

selection methods in both CDSS and DDSS applications. These superior recom-

mendations are extremely important because they have the potential to prevent

medical errors and thus improve the quality of medical care. We also showed that

our method is robust against missing information, which is important in numerous

clinical settings.

The limitations of the thesis can be summarized as follows. First, we assume

that the matching a patient to a population distribution in literatures will achieve

similar clinical rewards for the same treatment. However, it is hard to distinguish

in practice. Therefore, it would be interesting to further improve Chapter 4 using

propensity score matching, similarity learning approach or o�-policy estimation

methods to estimate the counterfactual rewards. Second, even though our DE

approach can be applicable in general, its performance is only validated on breast

cancer patients. Therefore, it would be interesting to apply diverse complex dis-

eases for validating the generality and the outperformance of DE approach.

Future work will consider that feature information (such as the tumor size,

PLNC number and tumor radius in the case of a breast tumor) may change over
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time. The time dependence may also in�uence the duration of a therapy and

the selection of future therapies. Another DE extension will consider the global

sequence of treatment decisions that optimizes long-term outcomes (e.g. overall

survival rate or 5-year recurrence rate).

In conclusion, we believe that our proposed contextual learning approach

demonstrates promise towards providing useful personalized clinical recommen-

dations. As new types of treatment are evaluated and approved for medical use,

clinicians will have an increasingly di�cult time determining which clinical deci-

sions are most e�ective for individual patients. DE provides a pathway towards

providing computational methods for personalized clinical decision recommenda-

tions.
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CHAPTER 8

Appendix

8.1 Nomenclature Table

Table 8.1: Nomenclature table

Notation Interpretation Notation Interpretation

A
Entire set of clinical de-

cisions
n Current patient number

A(Ei)
Set of clinical decisions

considered in reference i
P (.)

Probability of random

variable

a Clinical decision P (x∣Ei)
Probability of feature x

in i-th reference

a∗(x)
Optimal recommended

clinical decision
p0

Simple percent agree-

ment

ak k-th clinical decision pe
The probability of agree-

ment by chance

â(x)

Recommended clin-

ical decision by DE

approach

R
Relevant feature set for

all a

C Threshold cost R(a)
Relevant feature set for

clinical decision a

Continued on next page
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Table 8.1 � continued from previous page

Notation Interpretation Notation Interpretation

CTH
Coe�cient of control

function
R̂(a)

Discovered relevant fea-

ture set for clinical deci-

sion a

D Total number of features R̂(Ei)
Discovered relevant fea-

ture set for reference i

Ei i-th reference r(a∣Ei)
Actual patient outcome

for a in i-th reference

E()
Expectation of random

variable
Sim(Ei)(x)

Similarity between Ei

and x

F
Entire set of patient fea-

tures
ˆSim(a∣Ei)(x)

Normalized similarity

for clinical decision a

f Patient feature tra(x)
Transfer reward of a

given x

fk k-th patient feature Uf Utility function

HN

Available information

for N previous patients
x

Patient information vec-

tor

hdf,s Redundancy metric xR
Relevant feature infor-

mation

hrf Relevance metric xk
Patient information of

k-th feature

I(f ;E)
Mutual information be-

tween f and E
xav

Available patient fea-

tures

κ Cohen's kappa statistics xmiss Missing patient features

N Total patient number y Rewards

Continued on next page
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Table 8.1 � continued from previous page

Notation Interpretation Notation Interpretation

Na

Number of patients with

clinical decision a
ŷSa (xs)

Sample mean reward es-

timator for patients con-

tains xs

NS
a (xs)

Number of patients con-

tains xs
ŷa

Sample mean reward es-

timator of clinical deci-

sion a
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8.2 Pseudo-codes

Algorithm 1: Discovery Engine (DE)

Initialize: R̂(a) = ∅, R̂c(Ei) = {f1, f2, ..., fD} for each a
while n ≥ 1 do
(1) Clinical Decision Dependent Feature Selection
for each clinical decision a do

G = argmaxf∈R̂c
(a)h

r
f(a)

R̂(a) = R̂(a) ∪G
while maxf∈R̂c

(a)Uf(a) > 0 do

H = argmaxf∈R̂c
(a)Uf(a)

R̂(Ei) = R̂(Ei) ∪H
end while

end for
(2) Optimal clinical decision recommendation

U = {a ∈ A∣N R̂(a)a (x
R̂(a)) < CTH × log(n)}

if U = ∅ then
â(x) = argmaxaŷ

R̂

a (xR̂)
end if
(3) Update

N
R̂(a)
â (x

R̂(a) = ∑n I{xR̂(a) ⊂ x(n)} × I{a(n) = â}
ŷ
R̂(a)
a (x

R̂(a)) =
y(n)

NR̂(a)a (xs)
∑n I{xR̂(a) ⊂ x(n)} × I{a(n) = â}

end while

Figure 8.1: Pseudo-code I: Discovery engine (DE).

Algorithm 2: Transfer Reward Estimation
Initialize : R̂(Ei) = ∅, R̂c(Ei) = {f1, f2, ..., fD} for each reference Ei
for each reference Ei do

G = argmaxf∈R̂c
(Ei)

I(xf ;Ei)
R̂(Ei) = R̂(Ei) ∪G
while maxf∈R̂c

(Ei)
Uf(Ei) > 0 do

H = argmaxf∈R̂c
(Ei)

Uf(Ei)
R̂(Ei) = R̂(Ei) ∪H

end while
SimEi

(x) = logP (Ei) +∑l∈R̂(Ei)
log P (Xl=xl(n)∣Ei

P (Xl=xl(n)

for each clinical decision a do
ˆSima∣Ei

(x) = SimEi
(x)

∑i∶a∈A(Ei)
SimEi

(x)

tra(x) = ∑i∶a∈A(Ei)
ˆSima∣Ei

(x) × r(a∣Ei)
end for

end for

Figure 8.2: Pseudo-code II: Transfer reward estimation.
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8.3 Summary of the Information in References

Table 8.2: Summary of the information in references

Medical Paper No Paper 1 Paper 2 ... Paper 32
Entire Pa-
pers

Population
Demo

Age

30s: 21% 30s: 15%

...

30s: 16% 30s: 16%
40s: 32% 40s: 35% 40s: 47% 40s: 40%
50s: 27% 50s: 30% 50s: 22% 50s: 27%
60s: 20% 60s: 20% 60s: 15% 60s: 16%

Estrogen
Receptor

Pos: 61%
Missing ...

Pos: 26% Pos: 63%
Neg: 22% Neg: 74% Neg: 33%
Miss:
17%

Miss: 0% Miss: 4%

Tumor
Grade

Missing Missing ...

G1: 7% G1: 15%
G2: 47% G2: 41%
G3: 40% G3: 38%
Miss: 6% Miss: 6%

... ...

Tumor
Size

Missing

T1: 19%

...

T1: 41% T1: 37%
T2: 58% T2: 51% T2: 40%
T2: 58% T2: 51% T2: 40%
T2: 58% T2: 51% T2: 40%
T2: 58% T2: 51% T2: 40%

Lymph
Node
Status

Pos: 99%
Missing ...

Pos: 66% Pos: 33%
Neg: 0% Neg: 36% Neg: 66%
Miss: 1% Miss: 0% Miss: 0%

Chemotherapy AC AT
...

CEF
CMF CAF CMF

Actual Outcomes AC: 95% AT: 72%
...

CEF: 82%
(5 year survival rates) CMF: 92% CAF: 78% CMF: 81%
*We can use various actual outcomes from references.
(e.g. 5 year recurrence free survival rates)
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8.4 Full Lists of 32 Medical References for Experiment I

Table 8.3: Entire lists of 32 medical references for exper-

iment 1

No Reference

1 A. Di Leo, D. Gancberg, D. Larsimont, M. Tanner, T. Jarvi-

nen, G. Rouas and M. J. Piccart, "HER-2 ampli�cation and

topoisomerase II α gene aberrations as predictive markers in

node-positive breast cancer patients randomly treated either

with an anthracycline-based therapy or with cyclophosphamide,

methotrexate, and 5-�uorouracil," Clinical Cancer Research, vol.

8, no. 5, pp. 1107-1116, 2002.

2 P. Therasse, L. Mauriac, M. Welnicka-Jaskiewicz, P. Bruning,

T. Cufer, H. Bonnefoi and M. J. Piccart, "Final results of a

randomized phase III trial comparing cyclophosphamide, epiru-

bicin, and �uorouracil with a dose-intensi�ed epirubicin and cy-

clophosphamide+ �lgrastim as neoadjuvant treatment in locally

advanced breast cancer: an EORTC-NCIC-SAKK multicenter

study," Journal of clinical oncology, vol. 21, no. 5, pp. 843-850,

2003.

3 S. M. Bang, D. S. Heo, K. H.. Lee, J. H. Byun, H. M. Chang,

D. Y. Noh and N. K. Kim, "Adjuvant doxorubicin and cy-

clophosphamide versus cyclophosphamide, methotrexate, and 5

�uorouracil chemotherapy in premenopausal women with axillary

lymph node positive breast carcinoma," Cancer, vol. 89, no. 12,

pp. 2521-2526, 2000.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

4 B. Fisher, S. Anderson, E. Tan-Chiu, N. Wolmark, D. L. Wicker-

ham, E. R. Fisher and W. B. Farrar, "Tamoxifen and chemother-

apy for axillary node-negative, estrogen receptor negative breast

cancer: �ndings from National Surgical Adjuvant Breast and

Bowel Project B-23," Journal of clinical oncology, vol. 19, no.

4, pp. 931-942, 2001.

5 L. J. Goldstein, A. O'Neill, J. A. Sparano, E. A. Perez, L. N. Shul-

man, S. Martino and N. E. Davidson, "Concurrent doxorubicin

plus docetaxel is not more e�ective than concurrent doxorubicin

plus cyclophosphamide in operable breast cancer with 0 to 3 pos-

itive axillary nodes: North American Breast Cancer Intergroup

Trial E 2197," Journal of Clinical Oncology, vol. 26, no. 25, pp.

4092-4099, 2008.

6 J. Jassem, T. Pienkowski, A. Piuzanska, S. Jelic, V. Gorbunova,

Z. Mrsic-Krmpotic and C. Weil, "Doxorubicin and paclitaxel ver-

sus �uorouracil, doxorubicin, and cyclophosphamide as �rst-line

therapy for women with metastatic breast cancer: �nal results

of a randomized phase III multicenter trial," Journal of Clinical

Oncology, vol. 19, no. 6, pp. 1707-1715, 2001.

7 P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlen-

berg, A. Robidoux and N. Wolmark, "Preoperative chemother-

apy: updates of national surgical adjuvant breast and bowel

project protocols B-18 and B-27," Journal of Clinical Oncology,

vol. 26, no. 5, pp. 778-785, 2008.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

8 H. D. Bear, S. Anderson, A. Brown, R. Smith, E. P. Mamounas,

B. Fisher and N. Wolmark, "The e�ect on tumor response of

adding sequential preoperative docetaxel to preoperative doxoru-

bicin and cyclophosphamide: preliminary results from National

Surgical Adjuvant Breast and Bowel Project Protocol B-27,"

Journal of Clinical Oncology, vol. 21, no. 22, pp. 4165-4174,

2003.

9 S. Jones, F. A. Holmes, J. O'Shaughnessy, J. L. Blum, S. J.

Vukelja, K. J. McIntyre and M. A. Savin, "Docetaxel with cy-

clophosphamide is associated with an overall survival bene�t com-

pared with doxorubicin and cyclophosphamide: 7-year follow-up

of US Oncology Research Trial 9735," Journal of Clinical Oncol-

ogy, vol. 27, no. 8, pp. 1177-1183, 2009.

10 M. Martin, A. Lluch, M. A. Segui, A. Ruiz, M. Ramos, E.

Adrover, and J. R. Mel, "Toxicity and health-related quality of

life in breast cancer patients receiving adjuvant docetaxel, dox-

orubicin, cyclophosphamide (TAC) or 5-�uorouracil, doxorubicin

and cyclophosphamide (FAC): impact of adding primary prophy-

lactic granulocyte-colony stimulating factor to the TAC regimen,"

Annals of oncology, vol. 17, no. 8, pp. 1205-1212, 2006.

11 M. Martin, T. Pienkowski, J. Mackey, M. Pawlicki, J. P.

Guastalla, C. Weaver and C. Vogel, "Adjuvant docetaxel for node-

positive breast cancer," New England Journal of Medicine, vol.

352,no. 22, pp. 2302-2313, 2005.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

12 J. M. Nabholtz, J. R. Mackey, M. Smylie, A. Paterson, D. R.

Noel, T. Al-Tweigeri, and A. Riva, "Phase II study of docetaxel,

doxorubicin, and cyclophosphamide as �rst-line chemotherapy for

metastatic breast cancer," Journal of clinical oncology, vol. 19,

no. 2, pp. 314-321, 2001.

13 A. Rody, T. Karn, R. Gatje, A. Ahr, C. Solbach, K. Kourtis, and

M. Kaufmann, "Gene expression pro�ling of breast cancer pa-

tients treated with docetaxel, doxorubicin, and cyclophosphamide

within the GEPARTRIO trial: HER-2, but not topoisomerase II

α and microtubule-associated protein tau, is highly predictive of

tumor response," The Breast, vol. 16, no. 1, pp. 86-93, 2007.

14 M. Martin, A. Villar, A. Sole-Calvo, R. Gonzalez, B. Massuti, J.

Lizon and E. Diaz-Rubio, "Doxorubicin in combination with �u-

orouracil and cyclophosphamide (iv FAC regimen, day 1, 21) ver-

sus methotrexate in combination with �uorouracil and cyclophos-

phamide (iv CMF regimen, day 1, 21) as adjuvant chemotherapy

for operable breast cancer: a study by the GEICAM group," An-

nals of Oncology, vol. 14, no. 6, pp. 833-842, 2003.

15 K. S. Albain, W. E. Barlow, S. Shak, G. N. Hortobagyi, R. B.

Livingston, I. T. Yeh and Breast Cancer Intergroup of North

America, "Prognostic and predictive value of the 21-gene recur-

rence score assay in postmenopausal women with node-positive,

oestrogen-receptor-positive breast cancer on chemotherapy: a ret-

rospective analysis of a randomised trial," The lancet oncology,

vol. 11, no. 1, pp. 55-65, 2010.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

16 J. L. Misset, M. di Palma, M. Delgado, R. Plagne, P. Chollet, P.

Fumoleau and G. Mathe, "Adjuvant treatment of node-positive

breast cancer with cyclophosphamide, doxorubicin, �uorouracil,

and vincristine versus cyclophosphamide, methotrexate, and �uo-

rouracil: �nal report after a 16-year median follow-up duration,"

Journal of clinical oncology, vol. 14, no. 4, pp. 1136-1145, 1996.

17 M. N. Levine, V. H. Bramwell, K. L. Pritchard, B. D. Norris, L. E.

Shepherd, H. Abu-Zahra and D. Tu, "Randomized trial of inten-

sive cyclophosphamide, epirubicin, and �uorouracil chemotherapy

compared with cyclophosphamide, methotrexate, and �uorouracil

in premenopausal women with node-positive breast cancer. Na-

tional Cancer Institute of Canada Clinical Trials Group," Journal

of Clinical Oncology, vol. 16, no. 8, pp. 2651-2658, 1998.

18 A. S. Knoop, H. Knudsen, E. Balslev, B. B. Rasmussen, J. Over-

gaard, K. V. Nielsen and B. Ejlertsen, "Retrospective analysis

of topoisomerase II α ampli�cations and deletions as predictive

markers in primary breast cancer patients randomly assigned to

cyclophosphamide, methotrexate, and �uorouracil or cyclophos-

phamide, epirubicin, and �uorouracil: Danish Breast Cancer Co-

operative Group," Journal of Clinical Oncology, vol. 23, no. 30,

pp. 7483-7490, 2005.

19 K. I. Pritchard, L. E. Shepherd, F. P. O'Malley, I. L. Andrulis,

D. Tu, V. H. Bramwell and M. N. Levine, "HER2 and responsive-

ness of breast cancer to adjuvant chemotherapy," New England

Journal of Medicine, vol. 354, no. 20, pp. 2103-2111, 2006.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

20 A. Webb, D. Cunningham, J. H. Scar�e, P. Harper, A. Norman,

J. K. Jo�e and M. Meehan, "Randomized trial comparing epiru-

bicin, cisplatin, and �uorouracil versus �uorouracil, doxorubicin,

and methotrexate in advanced esophagogastric cancer," Journal

of Clinical Oncology, vol. 15, no. 1, pp. 261-267, 1997.

21 B. Fisher, J. Dignam, E. P. Mamounas, J. P. Costantino, D.

L. Wickerham, C. Redmond and R. G. Margolese, "Sequential

methotrexate and �uorouracil for the treatment of node-negative

breast cancer patients with estrogen receptor-negative tumors:

eight-year results from National Surgical Adjuvant Breast and

Bowel Project (NSABP) B-13 and �rst report of �ndings from NS-

ABP B-19 comparing methotrexate and �uorouracil with conven-

tional cyclophosphamide, methotrexate, and �uorouracil," Jour-

nal of Clinical Oncology, vol. 14, no. 7, pp. 1982-1992, 1996.

22 R. C. Coombes, J. M. Bliss, J. Wils, F. Morvan, M. Es-

pie, D. Amadori and M. Marty, "Adjuvant cyclophosphamide,

methotrexate, and �uorouracil versus �uorouracil, epirubicin, and

cyclophosphamide chemotherapy in premenopausal women with

axillary node-positive operable breast cancer: results of a ran-

domized trial. The International Collaborative Cancer Group,"

Journal of clinical oncology, vol. 14, no. 1, pp. 35-45, 1996.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

23 M. Colozza, A. Sidoni, A. M. Mosconi, A. Cavaliere, G. Bisagni,

S. Gori and Italian Oncology Group for Clinical Research, "HER2

overexpression as a predictive marker in a randomized trial com-

paring adjuvant cyclophosphamide/methotrexate/5-�uorouracil

with epirubicin in patients with stage I/II breast cancer: long-

term results," Clinical breast cancer, vol. 6, no. 3, pp. 253-259,

2005.

24 G. Bonadonna, E. Brusamolino, P. Valagussa, A. Rossi, L.

Brugnatelli, C. Brambilla and U. Veronesi, U, "Combination

chemotherapy as an adjuvant treatment in operable breast can-

cer," New England Journal of Medicine, vol. 294, no. 8, pp.

405-410, 1976.

25 G. Bonadonna, P. Valagussa, A. Moliterni, M. Zambetti and C.

Brambilla, "Adjuvant cyclophosphamide, methotrexate, and �u-

orouracil in node-positive breast cancer - the results of 20 years of

follow-up," New England Journal of Medicine, vol. 332, no. 14,

pp. 901-906, 1995.

26 F. JÃ¿nicke, A. Prechtl, C. Thomssen, N. Harbeck, C. Meisner,

M. Untch and German Chemo N0 Study Group, "Randomized

adjuvant chemotherapy trial in high-risk, lymph node - negative

breast cancer patients identi�ed by urokinase-type plasminogen

activator and plasminogen activator inhibitor type 1," Journal of

the National Cancer Institute, vol. 93, no. 12, pp. 913-920, 2001.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

27 L. Mauriac, M. Durand, J. Chauvergne, J. M. Diluydy and F.

Bonichon, "Randomized trial of adjuvant chemotherapy for oper-

able breast cancer comparing iv CMF to an epirubicin-containing

regimen," Annals of oncology, vol. 3, no. 6, pp. 439-443, 1992.

28 S. Menard, P. Valagussa, S. Pilotti, L. Gianni, E. Biganzoli, P.

Boracchi and G. Bonadonna, "Response to cyclophosphamide,

methotrexate, and �uorouracil in lymph node - positive breast

cancer according to HER2 overexpression and other tumor bio-

logic variables," Journal of clinical oncology, vol. 19, no. 2, pp.

329-335, 2001.

29 J. M. Nabholtz, C. Falkson, D. Campos, J. Szanto, M. Martin,

S. Chan and TAX 306 Study Group, "Docetaxel and doxorubicin

compared with doxorubicin and cyclophosphamide as �rst-line

chemotherapy for metastatic breast cancer: results of a random-

ized, multicenter, phase III trial," Journal of Clinical Oncology,

vol. 21, no. 6, pp. 968-975, 2003.

30 M. Bontenbal, G. J. Creemers, H. J. Braun, A. C. de Boer, J. T.

Janssen, R. B. Leys and C. Seynaeve, "Phase II to III study com-

paring doxorubicin and docetaxel with �uorouracil, doxorubicin,

and cyclophosphamide as �rst-line chemotherapy in patients with

metastatic breast cancer: results of a Dutch Community Setting

Trial for the Clinical Trial Group of the Comprehensive Cancer

Centre," Journal of clinical oncology, vol. 23, no. 28, pp. 7081-

7088, 2005.

Continued on next page
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Table 8.3 � continued from previous page

No Reference

31 T. J. Evans, A. Yellowlees, E. Foster, H. Earl, D. A. Cameron,

A. W. Hutcheon and J. L. Mansi, "Phase III randomized trial

of doxorubicin and docetaxel versus doxorubicin and cyclophos-

phamide as primary medical therapy in women with breast can-

cer: an anglo-celtic cooperative oncology group study," Journal

of Clinical Oncology, vol. 23, no. 13, pp. 2988-2995, 2005.

32 J. A. Sparano, A. N. Makhson, V. F. Semiglazov, S. A. Tjulandin,

O. I. Balashova, I. N. Bondarenko and W. R. Racko�, "Pegylated

liposomal doxorubicin plus docetaxel signi�cantly improves time

to progression without additive cardiotoxicity compared with do-

cetaxel monotherapy in patients with advanced breast cancer pre-

viously treated with neoadjuvant-adjuvant anthracycline therapy:

results from a randomized phase III study," Journal of Clinical

Oncology, vol. 27, no. 27, pp. 4522-4529, 2009.
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8.5 Degree of Incompleteness for Experiment II

Table 8.4: Degree of incompleteness for experiment II
Corresponding degree of in-
completness

Average Degree of Incompleteness 10% 20% 30% 40% 50%

Feature

Age 0.43 0.87 1.3 1.73 2.16
Menopausal 10.53 21.06 31.59 42.12 52.65

Race 9.12 18.23 27.35 36.47 45.58
Estrogen Receptor 5.9 11.81 17.71 23.61 29.51

Progesterone Receptor 8.63 17.26 25.89 34.52 43.15
HER2NUE 13.72 27.44 41.16 54.87 68.59
Tumor Stage 5.25 10.5 15.75 20.99 26.24
Tumor Grade 12.5 25.01 37.51 50.02 62.52

PLNC 8.29 16.57 24.86 33.14 41.43
Lymph Node Status 10.17 20.35 30.52 40.7 50.87

WHO Score 15.38 30.76 46.14 61.52 76.9
Surgery Type 6.62 13.24 19.86 26.48 33.1

Prior Radiotherapy 13.57 27.14 40.71 54.28 67.84
Prior Chemotherapy 14.21 28.43 42.64 56.86 71.07

Histology 15.67 31.35 47.02 62.7 78.37
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