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ABSTRACT OF THE DISSERTATION

Analysis of Multiple Antenna Ultra-Wideband and Millimeter Wave Communication

Systems

by

Preeti Nagvanshi

Doctor of Philosophy in Electrical Engineering (Communications Theory and Systems)

University of California, San Diego, 2007

Professor Elias Masry, Co-Chair

Professor Laurence B. Milstein, Co-Chair

The home and office environments are experiencing an ever increasing pene-

tration of consumer electronic devices, often requiring data rates well in excess of tens

of megabits per second. Communication to and from such devices has mostly relied on

wireline technologies such as USB, DVI and IEEE1394.

Ultra-wideband (UWB) and millimeter-wave (mmW) systems have been pro-

posed to replace these wireline communication systems with short range high speed

wireless networks. The significantly higher occupied bandwidth of UWB and mmW

systems provides immense advantages in terms of higher data rates, while at the same

time presenting new challenges such as greater susceptibility to interferers and possibly

complex transceiver design. This dissertation addresses several technical challenges in

the design of UWB and mmW systems. Multiple antenna techniques to improve the

interference suppression capabilities and reliability of the UWB and mmW systems are

employed. First, a MIMO beamforming system is analyzed. In the presence of antenna

correlation and noisy channel estimates, an optimal MIMO beamforming scheme is pro-

posed. The performance of this scheme is analyzed through a closed-form expression

for the probability of error, and the combined effects of channel estimation errors and

diversity on the system performance are studied. At the receiver, a fixed length antenna

xiii



array is considered due to spatial constraints. For such an array, it is shown that there

exists an optimal number of receive antenna elements for a given array length.

The performance of a DS-CDMA-based UWB system with multiple antennas

at the receiver is then analyzed. An optimal spatio-temporal receiver is proposed and

its performance evaluated in the presence of narrowband interference, multiple access

interference, antenna correlation and channel estimation errors. For a fixed array length

and fixed maximum diversity level, the tradeoff between the number of antennas and the

number of temporal taps in order to achieve the best performance is investigated.

A 60 GHz mmW system is considered next. Multiple antenna equalization

scheme to suppress both the intersymbol interference and multiple access interference

is employed. A spectrally efficient multilevel quadrature amplitude modulation and a

realistic IEEE channel model are used for analysis. The combined effect of interference

suppression and spatial correlation on the system performance is studied through an an-

alytically derived expression for bit error rate. It is shown that joint spatial and temporal

processing can significantly improve the system performance.

xiv



I

Introduction

I.A Consumer Electronics and Home Networking

The recent surge of digital consumer electronic devices within the home, such

as DVD players, cable and satellite televisions, digital cameras and portable music play-

ers, has created a need for high-speed, short-range home entertainment networks. The

increase in number of devices increases the complexity and number of wires required

for connecting these devices together.

A typical living room entertainment setup could consist of a DVD player, a

cable set-top box and a digital video recorder, amongst other devices, such as the one

shown in Figure I.1. These devices may then connect to a television and to an audio

receiver via cables. The complexity and sheer mess of cables surrounding such a home

entertainment setup is calling for high speed, short-range wireless networks which could

make an average user’s entertainment setup aesthetically more pleasing, and easier to

connect.

A home or office desk is another instance which could benefit significantly

from such high speed networks. A typical desk may have a computer, a monitor, a

printer, a high speed external storage device and a personal digital assistant, among other

devices. All these consumer electronics and personal computing peripherals frequently

require data rates in excess of a few tens of megabits per second for reliable connectiv-

1
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Figure I.1: A typical living room entertainment setup.

ity. The next section enumerates the wireless networking technologies available to the

average home or office user.

I.B Home Wireless Networking

Various wireless data networking technologies are available to the home or

office user. Most of them can be classified in one of the following two categories:

1. Wireless Personal Area Networks (WPAN): These networks are designed for rel-

atively short-range communication, within distances of a few feet. Bluetooth [1]

and infra-red are prime examples of this technology. To maintain low cost and low

power consumption, Bluetooth was designed for very low data rates. The latest

rendition of Bluetooth supports a maximum raw data rate of 3.0 Mbps, which is

too low to support the above mentioned consumer electronic devices. Due to the

limitation of it’s data-rate, Bluetooth has been relegated to low data-rate applica-
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tions such as wireless headsets.

2. Wireless Local Area Networks (WLAN): WLAN networks encompass technolo-

gies such as the ubiquitous WiFi (802.11 a/b/g) networks and home RF. These

networks are designed to operate across an average user’s home or office, and can

cover a few hundred feet in distance. WiFi offers raw data rates up to 54 Mbps

[2]. WiFi also consumes a significant amount of power, and sustained usage of

WiFi in mobile devices can drastically reduce battery life.

I.C Short Range High Data Rate Wireless Networking

The Federal Communications Commission (FCC) has recently allocated two

large chunks of spectrum (3.1 - 10.6 GHz and 57 - 64 GHz) for unlicensed wireless com-

munication usage. These spectral bands have opened up new possibilities for realizing

short range, high data rate wireless communication systems and set off a flurry of activ-

ity in both industry and academia. Several proposals have been presented to efficiently

utilize these newly available spectra.

I.C.1 Ultra Wideband

The spectrum from 3.1 - 10.6 GHz is designated for Ultra Wideband (UWB)

communication usage. The FCC defines UWB as any transmission system that occupies

either a minimum bandwidth of 500 MHz or more than 20% of the center frequency [3]

[4]. Since this spectrum overlaps with various other bands such as WiFi, Bluetooth,

radar and cellular, the transmit power of the UWB system has to be low enough so as

to have minimal impact on these other systems. To this end, the FCC has mandated

that the power spectral density (PSD) of a UWB transmitter should be less than -41.3

dBm/MHz. The allowed spectral mask for UWB systems is shown in Figure I.2. Due

to its low transmission power levels and large spectral occupancy, UWB makes it possi-

ble to realize a large number of low power applications requiring high speed access over

short distances. The fine time resolution of UWB signals also makes it a highly effective
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solution for high precision position location in dense environments. In order to realize

the many attractive features of UWB, a system designer faces several formidable chal-

lenges. Since a UWB system is envisioned to operate in a dense wireless environment, it

has to cope with the interference it receives from other UWB-enabled devices operating

in close proximity, as well as strong inband interference from the overlaying narrow-

band systems such as WiFi. In addition, they need to comply with the FCC imposed

power limitations and be of sufficiently low complexity to reduce cost and increase ease

of implementation.
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Figure I.2: FCC designated spectral mask for Ultra Wideband systems. Allowed emis-

sion level is in dBm/MHz [3].

I.C.2 Millimeter Wave Band

In the 57 - 64 GHz band, the FCC mandates a system bandwidth greater than

100 MHz, and limits the transmit power to less than 10 W [5]. This frequency band is
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of great interest because of the attenuation characteristics of millimeter waves (mmW).

Since free space path loss increases quadratically with frequency, at 60GHz, there is

a large attenuation of 68 dB at a distance of 1m [6], [7]. Considering even larger dis-

tances (several km), there is an additional attenuation due to atmospheric oxygen of 15.1

dB/km [8], thus, making the band ideally suited for short range communication and a

dense deployment scenario, such as a home or office. Multiple independent links can

be created in a house, as the interference level experienced from similar mmW devices

placed in adjacent rooms would be low. This is because the signal would be highly at-

tenuated when passing through a wall. Due to the relaxed emission specifications (when

compared to the spectral mask for UWB), the use of directional antennas is permitted

for mmW devices. This is advantageous, as directional antennas can help improve the

range of mmW devices. Also, due to its shorter wavelength, the mmW band offers the

possibility of smaller components and antennas, thus reducing the overall size of these

devices.

Systems in both these bands (UWB and mmW) can offer very high data rates,

due to the significantly higher available bandwidth. Due to large bandwidth, both of

these systems experience fine multipath resolution and lack of significant fading. The

received energy is distributed thinly over a large number of these multipath components,

consequently, the energy-per-path is very low. This, thus, presents great difficulties in

accomplishing tasks such as channel estimation, synchronization and multipath com-

bining. Also, the presence of co-channel interference when multiple such systems are

operating in close proximity in a dense wireless environment further complicates these

tasks.

I.D Dissertation Focus and Outline

This dissertation addresses several technical challenges in the design of UWB

and mmW systems. One of the major issues is the ability to coexist in an environment

with multiple interferers. Both of these systems would benefit significantly from the use



6

of efficient interference-suppression techniques. One way to mitigate interference is to

use multiple antenna beamforming, which exploits the spatial signature of an interferer

in order to suppress it. In this thesis, we consider such spatial processing techniques in

conjunction with temporal processing to enhance the interference suppression capabili-

ties and reliability of these systems.

MIMO systems, with multiple antennas at the transmitter and the receiver,

have been shown to improve robustness and increase throughput in wireless communi-

cation channels [9], [10]. Effective utilization of spatial domain through techniques such

as spatial multiplexing and space-time coding have been proposed to achieve higher data

rates, diversity and coding gains [11], [12], [13]. These multiple antenna techniques,

therefore, subsume great significance as powerful tools for improving the performance

of a wireless communication system. Therefore, in Chapter II, we first consider a MIMO

system. In the presence of both imperfect channel estimation and antenna correlation,

an optimum MIMO beamforming scheme is proposed, and an exact closed-form ex-

pression for the probability of error of the system is derived. The impact of channel

estimation accuracy and diversity on the performance of the system is studied.

In Chapter III, we consider a DS-CDMA UWB system and analyze its error

rate performance under the conditions of imperfect channel estimation and the presence

of both narrowband interference (NBI) and multiple access interference (MAI). An opti-

mal spatio-temporal receiver is designed that first forms an estimate of the channel in the

presence of NBI and MAI, and then uses it to optimally combine the multipath compo-

nents such that the output signal-to-interference-plus-noise-ratio is maximized. An ex-

act closed-form expression for the probability of error is established when the temporal

correlation between the NBI during the channel-estimation phase and the data-detection

phase is negligible.

Chapter IV focuses on the performance analysis of a millimeter wave com-

munication system at 60 GHz. A multiple-antenna equalization scheme is employed

to combat both intersymbol interference and multiple-access interference. In order to

increase the spectral efficiency, a higher order modulation format is used. The perfor-
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mance of this system through an analytically derived expression for the bit error rate is

investigated. Finally, Chapter V concludes the thesis with an overview of this research.



II

Optimum Transmit-Receive

Beamforming with Noisy Channel

Estimates for Correlated MIMO

Rayleigh Channels

II.A Introduction

MIMO systems can significantly enhance link reliability by realizing trans-

mit and receive diversity to mitigate the effects of channel fading [14, 15]. Full spatial

diversity can be achieved using space-time coding when no channel knowledge is avail-

able at the transmitter, whereas when the transmitter and the receiver have access to

perfect channel state information (CSI), a spatial diversity scheme known as maximum

ratio transmission (also known as beamforming) [14] was proposed. In this scheme, the

transmitter utilizes CSI to select the strongest eigenmode for transmission so that the

output signal-to-noise ratio is maximized, and the independently fading MIMO channel

enables multiple independent reception of the same signal to realize the full diversity

order. The performance of this scheme in terms of exact probability of error expression

was studied by Dighe et.al [15]. Central to [14,15] is the assumption of perfect channel

8
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knowledge and independent fading.

Practical channel estimation schemes are, however, prone to errors, and fades

at the antenna elements could be significantly correlated due to proximity of the ele-

ments. Typically, known pilot symbols are exploited for channel estimation. The accu-

racy of the estimates depends on the particular channel estimation scheme, the channel

conditions and the pilot and data multiplexing scheme [16]. Also, in a practical scenario,

spatial constraints limit the size of an antenna array. In such a situation, an increase in

the number of antenna elements is brought about by reduction in inter-element spacing,

and a subsequent increase in correlation between the fades. In this chapter, we extend the

work in [14], [15] and design a jointly optimum transmitter receiver scheme for MIMO

channels that takes into account the combined effects of correlated fading and imperfect

channel estimation, with the aim of minimizing the average probability of error.

The effect of antenna correlation on different aspects of MIMO system design

and performance has been addressed previously. Specifically, the impact of antenna

correlation on the capacity of MIMO channels has been studied in [17]-[19]. In [20],

an optimum transmitter scheme and a necessary and sufficient condition under which

beamforming is capacity-achieving is determined. However, it is assumed that perfect

CSI is available at the receiver, and only partial CSI at the transmitter. In the context of

channel estimation for MIMO systems, issues related to design of an optimal training

sequence for uncorrelated and correlated MIMO channels, respectively, have been stud-

ied in [21] and [22]. For uncorrelated MIMO channels, the effect of channel estimation

on the precoder and decoder design for a multimode MIMO system with MSE as the

performance criterion was considered in [23]. Also addressed in [23] was the power

allocation tradeoff between channel estimation and data transmission. This work was

later extended in [24], [25] to include the effects of receiver antenna correlation. How-

ever, note that work in [23]-[25] considers MSE as the performance metric and does not

present any probability of error analysis.

Our work, both here and in [26], differs significantly from all of the above

works in the following respect. We design an optimal MIMO beamforming scheme in
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the presence of both imperfect channel estimation and antenna correlation, and analyze

its performance through a closed-form expression for the probability of error [27]. In

our system, the receiver forms an estimate of the MIMO channel using the pilot symbols

and makes it available to the transmitter through an error-free feedback channel. We

assume that spatially correlated fading exists at one end of the communication channel,

and independent fading at the other. To model the correlated fading, the physical MIMO

channel correlation model of [28] has been adopted.

Based on knowledge of the channel estimate, we design the optimum trans-

mitter and receiver beamforming structures that maximizes the output signal-to-noise

ratio (SNR) and therefore minimizes the average probability of error. We establish an

exact closed-form expression for the probability of error of the system and, based on this

expression, study the combined effect of channel estimation errors and diversity on the

performance. At the receiver, we consider a physically constrained linear array, where

the effective aperture of the array is fixed. For such an array, we show that there exists

an optimal number of receive antenna elements, and that the optimum value depends

both on the available transmit and receive diversity and the quality of the estimates.

Note that higher fade correlation leads to improved channel estimation on one hand, but

lower diversity on the other. We next show that for a given number of transmit and re-

ceive antennas, as the correlation between the channel coefficients increases due to poor

scattering, the system performance degrades. This is because the benefits of improved

channel estimation accuracy are offset by the loss in diversity order.

The rest of the chapter is organized as follows. In Section II.B, the system

model and channel estimation scheme are described. The optimal transceiver is derived

in Section II.C. In Section II.D, we obtain an exact closed-form expression for the

probability of error. This is followed by numerical results and discussion in Section

II.E. Finally, we state the conclusions in Section II.F.
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Figure II.1: System block diagram - Data transmission

II.B System Model

II.B.1 Signal and Channel Model

Consider a single-user MIMO system with binary signaling, operating over

a frequency flat slowly fading channel with Nt transmitter antennas and Nr receiver

antennas. We employ the transmitter/receiver beamforming technique where the single

binary data stream at the input, denoted as d[n], is transmitted from the Nt transmit

antennas with antenna weights {wt,i}Nt
i=1, as shown in the Figure II.1. In the figure, φ(t)

is the impulse response of a wave shaping filter satisfying the Nyquist criterion. At the

receiver, after demodulation, matched filtering and sampling, the signal from each of the

receiver antennas is combined with weights ({wr,i}Nr
i=1) across the array. Assuming that

perfect carrier and bit synchronization have been established, the output test statistic for

the ath transmitted bit can be written as

ra = Re(wH
r Hwt)d[a] + Re(wH

r na) (II.1)

where (·)H denotes the Hermitian operator, wr is an Nr×1 weight vector at the receiver,

wt is an Nt×1 weight vector at the transmitter, d[a] is the binary data at the ath sampling
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instant, and na is the iid complex Gaussian noise vector with zero mean and covariance

E[nan
H
a ] = NoI. We assume that the total transmit power is constant, irrespective of

the number of transmit antennas, i.e., wH
t wt = Po.

The channel is assumed to be Rayleigh fading, therefore, the channel fade

between each transmit and receive antenna pair is complex Gaussian. The Nr × Nt

MIMO channel matrix H, formed by collecting all Nr Nt channel fades, is multivari-

ate circularly symmetric complex Gaussian distributed. We denote this distribution as

∼ CN(0,P), where CN(A,B) represents a complex normal distribution with mean

matrix A and covariance matrix B. The covariance matrix P captures the spatially cor-

related fading. We will adopt the well-known Kronecker product model for channel

covariance matrix [29] and denote P = E[vec(HT )vec(HT )H ] = Σ ⊗ Ψ, where ⊗
is the Kronecker product [31], and the vec(·) operator stacks up all the columns of its

argument to form one long column vector [31]. This implies that the covariance of the

ijth and lmth entry of H is modelled as E[(H)i,j(H)∗l,m] = (Σ)i,l(Ψ)j,m, where the

elements of the Nr × Nr matrix Σ denote the covariance of any column of H, and is

the fade covariance at the receiver side, and the Nt × Nt matrix Ψ is the covariance of

any row of H and is the fade covariance at the transmitter. Both Σ and Ψ are positive

definite Hermitian matrices.

In our setup, it is assumed that independent fading exists at one end of the

communication link and correlated fading at the other. This implies that either Σ or Ψ

is an identity matrix, while the other one is an arbitrary covariance matrix. This is a

reasonable assumption in an uplink or downlink of a communications system where a

fixed length antenna array is deployed at the mobile station. The closely spaced antenna

elements would lead to correlated fading at the mobile end, whereas the space consid-

erations, and consequently, the correlatedness assumption, can be relaxed at the base

station. To model correlated fading, we adopt the physical MIMO channel correlation

model of [28], the specifics of which will be discussed in Section II.E.
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II.B.2 Channel Estimation

The channel matrix H is unknown at the receiver. An estimate, Ĥ, of H is

obtained based on a received pilot. For simplicity, orthogonal pilot symbols are used on

each transmitter antenna. In [21], it was shown that an orthogonal pilot is optimal for

estimating uncorrelated MIMO channels. The transmitted pilot vector from Nt trans-

mitters is denoted by
s

Pp

Nt
c[n]T

∆
=

s
Pp

Nt
{c1[n], c2[n], . . . , cNt [n]}, where ci[n] is the pilot

symbol transmitted from the ith antenna at the nth time instant, and Pp is the pilot power-

per-symbol. The pilot transmission takes place for a duration of q, for integer q, symbol

intervals. The output pilot from all the antennas, after matched filtering and sampling,

can be written in matrix form as

Y =

√
Pp

Nt

HCH + Ñ (II.2)

where C is a q × Nt matrix of known pilot symbols with the ith row of the matrix

given by c[i]T , for i = 0, . . . , q − 1, and Ñ is an Nr × q spatio - temporal uncorrelated

complex Gaussian noise matrix, i.e., Ñ ∼ CN(0, No(I⊗I)). Since the transmitted pilot

is orthogonal in space, we have CHC = qI. Multiplying the pilot matrix Y in (II.2) by

C, we get

X
∆
= YC =

√
Pp q2

Nt
H + ÑC (let G

∆
= ÑC). (II.3)

An example of the pilot transmission is shown in Figure II.2. As C is a de-

terministic matrix, ÑC is complex Gaussian with zero mean, and its covariance matrix

is given by No(I ⊗ CHC) = qNo(I ⊗ I). Thus, G in (II.3) can be viewed as the new

Gaussian noise matrix with the aforementioned properties.

Next, we use the received pilot X to form a linear minimum mean-square

error (LMMSE) estimate, Ĥ. Since the statistics are Gaussian, Ĥ is given by the mean

of the posterior pdf [30], i.e., Ĥ = E[H|X]. Note that an expression for Ĥ can easily

be obtained from an equivalent expression for ĥ
∆
= vec(ĤT ). Thus, we define h

∆
=

vec(HT ) and g
∆
= vec(GT ), so that x

∆
= vec(XT ) =

√
Pp q2

Nt
h+g. From these definitions
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Figure II.2: System block diagram - Pilot transmission

and [30, eq. 15.61], we have

ĥ = E[h|x] = E[h] + ChxC
−1
xx(x − E[x])

=
√

γChh(γChh + Cgg)
−1x

=
√

γ(Σ ⊗ Ψ)(γΣ ⊗ Ψ + qNo(I ⊗ I))−1x (II.4)

where γ
∆
= Pp q2

Nt
. In the second equality above, E[h] = 0, E[x] = 0, the covariance

matrix of the received pilot Cxx is given by Cxx = E[(
√

γh + g)(
√

γh + g)H ] =

γChh + Cgg, where Chh = P = (Σ ⊗ Ψ) is the channel covariance matrix and

Cgg = qNo(I ⊗ I) is the covariance matrix of the noise during the channel estima-

tion phase. The covariance between the channel and the received pilot is given by

Chx = E[h(
√

γh+g)H ] =
√

γChh. Now, letting Ψ = I in (II.4) yields

ĥ =
√

γ(Σ ⊗ I)(γΣ ⊗ I + qNoI ⊗ I)−1x

= vec({√γΣ(γΣ + qNoI)
−1X}T ). (II.5)

The properties [31, (see eqs. (4), (11a), (8), (5) and (14) of Section 2.4)] of the Kro-

necker product were used to simplify the second equality in (II.5). Similarly, if we set



15

Σ = I in (II.4), we can show that ĥ = vec({X(
√

γΨ(γΨ + qNoI)
−1)T}T ). Since

ĥ = vec(ĤT ), an expression for Ĥ, under these special cases, can be shown to be given

by

Ĥ =

⎧⎨⎩
√

Pp q2

Nt
Σ(qNoI + Pp q2

Nt
Σ)−1X, if Ψ = I

X(
√

Pp q2

Nt
Ψ(qNoI + Pp q2

Nt
Ψ)−1)T , if Σ = I.

(II.6)

Notice that Ĥ in (II.6) depends on the covariance matrices Σ or Ψ, contingent

on whether correlation exists at the receiver or at the transmitter. Thus, the optimal linear

estimator in (II.6) effectively utilizes the antenna correlation information while forming

the estimate. The extent of correlation between the fades impacts the channel estimation

accuracy, which in turn effects the system performance. Later, in the numerical results,

we will study this effect by examining the behavior of MMSE and the probability of

error as the correlation is varied.

Also, Ĥ is a statistical quantity and is characterized by a Gaussian distri-

bution with zero mean and covariance Cĥĥ = ChxC
−1
xxCxh =

√
γChh(γChh +

Cgg)
−1√γChh = (

√
γΣ ⊗Ψ)(γΣ ⊗ Ψ + qNoI⊗ I)−1(

√
γΣ ⊗ Ψ).

As before, we simplify Cĥĥ for the case when Ψ = I or Σ = I. Upon

simplification, the estimator can be shown to have the distribution Ĥ ∼ CN(0, Σ̄⊗ Ψ̄),

where

Σ̄ =

⎧⎨⎩
Ppq

NtNo
Σ(I + Ppq

NtNo
Σ)−1Σ, if Ψ = I

I, if Σ = I

and Ψ̄ =

⎧⎨⎩ I, if Ψ = I

Ppq

NtNo
Ψ(I + Ppq

NtNo
Ψ)−1Ψ, if Σ = I.

(II.7)

II.C Optimum Transceiver

With knowledge of the channel estimate available, we wish to find the optimal

transmitter and receiver weights, wt and wr, that maximize the conditional output SNR

(conditioned on Ĥ) under a fixed transmit power constraint. For the LMMSE estimate,

we can express the unknown channel matrix H as H = Ĥ + H̃, where H̃ is the esti-

mation error matrix. From the properties of LMMSE [30], we know that Ĥ and H̃ are
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uncorrelated and H̃ is Gaussian distributed H̃ ∼ CN(0,Σe ⊗ Ψe) (further details are

provided below). Thus, (II.1) can be written as

ra = Re(wH
r Ĥwt)d[a] + Re(wH

r H̃wt)d[a] + Re(wH
r na). (II.8)

Conditioned on Ĥ, the three terms in (II.8) are uncorrelated. We then state the following

lemma:

Lemma 1 The conditional output SNR as a function of wr and wt is given by

SNR(wr,wt|Ĥ) =
2(Re(wH

r Ĥwt))
2

((wH
r Σewr)(wH

t Ψewt)) + NowH
r wr

(II.9)

where the parameters Σe and Ψe in (II.9) are given by

Σe =

⎧⎨⎩ Σ − Ppq

NtNo
Σ(I + Ppq

NtNo
Σ)−1Σ, if Ψ = I

I, if Σ = I

and Ψe =

⎧⎨⎩ I, if Ψ = I

Ψ − Ppq
NtNo

Ψ(I + Ppq
NtNo

Ψ)−1Ψ, if Σ = I.

(II.10)

Proof. The proof is presented in Appendix II.H.1.

It is interesting to contrast expression (II.9) with the corresponding expres-

sion when the channel is perfectly known. In the latter case, SNR(wr,wt|H) =

2(Re(wH
r Hwt))2

NowH
r wr

. Thus, there is an additional term in the denominator of (II.9) due to

the channel estimation errors. Σe and Ψe in the first term in the denominator of (II.9)

define the covariance of the channel estimation error matrix H̃. Our goal is to maximize

(II.9) with respect to wr and wt, such that wH
t wt = Po. Thus, we consider the following

optimization problem:

max
wr, wt

SNR(wr,wt|Ĥ) such that wH
t wt = Po. (II.11)

The above constrained optimization can be reduced to an equivalent uncon-

strained optimization problem in (II.12), where wt is set equal to wt =
√

Po z/‖z‖
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(which defines z) in the SNR expression, and the resulting SNR is now maximized with

respect to wr and z.

max
wr, z�=0 SNR

(
wr,

√
Poz
‖z‖ |Ĥ

)
=

(
2
Po

No

)
max
wr, z

(
(Re(wH

r Ĥ z))2

((wH
r Σewr)(zHΨez) Po

No
) + wH

r wr ‖z‖2

)
. (II.12)

We want to solve (II.12) for the special cases: Ψ = I or Σ = I. Next we show that,

under these special cases, (II.12) reduces to the maximization problem in Lemma 2.

Lemma 2 Suppose we wish to obtain

max
x, y

(
(Re(xHAy))2

(xHBx) (yHCy)

)
(II.13)

where B, p × p, and C, q × q, are arbitrary Hermitian positive definite matrices and

A is a p × q matrix. Then the maximum value in (II.13) is λmax(C
−1AHB−1A) and is

obtained when x∗ = αB−1Ay∗ and y∗ = vmax(C
−1AHB−1A). Here, x∗ and y∗ stand

for the optimum x and y respectively, and α is a real-valued scalar. λmax(D) denotes

the maximum eigenvalue of the matrix D, and vmax(D) denotes the eigenvector of D

corresponding to λmax(D).

Proof. The proof is presented in Appendix II.H.2.

When Ψ = I, (II.12) reduces to (2 Po

No
) max

wr , z

(
(Re(wH

r Ĥ z))2

(wH
r ( Po

No
Σe+I)wr) (zHz)

)
, which

has the same form as (II.13) with the following substitution: x = wr, y = z, A = Ĥ,

B = ( Po

No
Σe + I) and C = I. Thus, the optimum weights and the corresponding value

for the maximum SNR are given by

wt =
√

Po z/‖z‖ =
√

Po vmax

(
ĤH
[

Po

No
Σe + I

]−1

Ĥ

)
wr = αB−1Az =

[
Po

No
Σe + I

]−1

Ĥ vmax

(
ĤH
[

Po

No
Σe + I

]−1

Ĥ

)
(II.14)

max SNR(Ĥ) =

(
2
Po

No

)
λmax

(
ĤH
[

Po

No
Σe + I

]−1

Ĥ

)
. (II.15)

Since the matrix ĤH [ Po

No
Σe + I]−1Ĥ is Hermitian, the norm of the vector z is unity in

the above.
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Similarly, when Σ = I, (II.12) simplifies to

(2 Po

No
) max

wr , z

(
(Re(wH

r Ĥ z))2

(wH
r wr)(zH [ Po

No
Ψe+I]z)

)
. Substituting x = wr, y = z, A = Ĥ,

B = I and C = ( Po

No
Ψe + I), the optimum wt and wr and the maximum SNR for this

case are

wt =
√

Po z/‖z‖ =
√

Po

vmax

([
Po

No
Ψe + I

]−1

ĤHĤ

)
‖vmax(·)‖

wr = αB−1Az = Ĥ vmax

([
Po

No
Ψe + I

]−1

ĤHĤ

)
(II.16)

max SNR(Ĥ) =

(
2
Po

No

)
λmax

([
Po

No
Ψe + I

]−1

ĤHĤ

)
. (II.17)

The scalar α in the expressions for wr, (II.14) and (II.16), has been dropped, as it does

not affect the output SNR. Upon examining the set of equations (II.14), (II.15), (II.16)

and (II.17), we note their dependence on Ψe or Σe, the channel estimation error co-

variance matrices. Also, recall that the channel estimate, Ĥ, is a Gaussian random

matrix where its covariance, as given by (II.7), depends on the covariance structure at

the transmitter or at the receiver. Dighe et.al [15] analyzed a special case when perfect

knowledge of the channel is available and the entries of the MIMO channel matrix, H,

are iid. As can be readily verified, the above results can be reduced to the corresponding

results in [15].

Mathematically, the two expressions, (II.15) and (II.17), for maximum SNR,

are equivalent. This follows because the maximum SNR in each of the two cases is

expressed in terms of the maximum eigenvalue of a matrix quadratic form, which is

either correlated Wishart or pseudo-Wishart distributed [36], depending on whether the

quadratic form is full rank or reduced rank, respectively. Thus, the maximum eigen-

value in the two cases can be shown to have the same distribution with the same set of

parameters. The distribution parameters depend on the matrix Ψe in one case and on

Σe in the other. Therefore, if we appropriately replace Ψe by Σe and vice versa, the

two distributions would be the same. This also implies that the statistical properties of

the maximum SNR, and therefore the average probability of error, in the two cases, are
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alike. From a systems point-of-view, this means that with imperfect channel estimation

the performance is identical if there is independent fading at, say L, transmitters (i.e.,

Ψ = I) and correlated fading at, say M , receivers, compared to the case when there is

correlated fading at M transmitters and independent fading at L receivers (i.e., Σ = I).

The equivalence of these two systems is a consequence of the reciprocity of the wireless

channel. Thus, from now on, we only consider the case where there is independent fad-

ing at the transmitter and correlated fading at the receiver (Σ is an arbitrary covariance

matrix).

In the following section, we present a closed-form expression for the proba-

bility of error and evaluate the transceiver’s performance using this expression.

II.D Probability of Error

In the BPSK system with Gaussian statistics, the average probability of error

is given by

Pe =

∫ ∞

0

Q(
√

x)fλmax(x) dx (II.18)

where Q(x) = 1√
2π

∫∞
x

e−
y2

2 dy and fλmax(x) is the probability density function (pdf)

for the maximum output SNR (see (II.15), (II.17)). In order to evaluate the integral in

(II.18), we need to find an expression for fλmax(x). Considering the maximum SNR in

(II.15), the exact closed-form expression for its pdf, fλmax(x), is given by Theorem 1

below.

We define an Nr × Nr matrix Φ by

Φ
∆
= 2

Po

No
[
Po

No
Σe + I]−

1
2 Σ̄[

Po

No
Σe + I]−

1
2 , (II.19)

and denote its eigenvalues by { 1
λi
}Nr

i=1. Throughout the rest of this chapter, we assume

that the eigenvalues of the matrix Φ are distinct and satisfy 0 < 1
λNr

< 1
λNr−1

< · · · <

1
λ1

.

Theorem 1 The expression for fλmax(x) is given by the following:

A : (Nt ≥ Nr) fλmax(x) = ã xNt−Nr |G(x)| (II.20)
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where | · | denotes the determinant, and the ij th element of the Nr × Nr, G(x) is given

by

(G(x))1,j = e−λj x

(G(x))i,j = xλ−Nt+i−1
j Γ(Nt − i + 1, x λj)

−λ−Nt+i−2
j Γ(Nt − i + 2, x λj)

for i = 2, . . . , Nr, j = 1, . . . , Nr in the above, and

ã =
(|Φ|)−Nt[∏Nr

i=1

∏Nr

j=i+1(λj − λi)
] [∏min(Nr ,Nt)

i=1 Γ(Nt − i + 1)
] . (II.21)

B : (Nt < Nr) fλmax(x) = ã |F(x)| (II.22)

where the ijth element of the Nr × Nr matrix F(x) is given by

(F(x))1,j = e−λjx

(F(x))i,j = xλ−Nt+i−1
j Γ(Nt − i + 1, x λj)

−λ−Nt+i−2
j Γ(Nt − i + 2, x λj) for i = 2, . . . , Nt

(F(x))i,j = λi−Nt−1
j for i = Nt + 1, . . . , Nr

j = 1, . . . , Nr in all of the above and the constant ã is defined in (II.21). The function,

Γ(j + 1, xa) =
∫ xa

0
e−yyj dy is the incomplete gamma function and Γ(j + 1) = j! is

the gamma function [33].

Proof. The proof is given in Appendix II.H.3.

Remark. In [17], the authors provided without proof an expression for the cumulative

distribution function (cdf) of the maximum eigenvalue of the correlated Wishart and

pseudo-Wishart matrices. The expression for the density function presented in Theorem

1 can be obtained by direct differentiation of the cdf in [17]. This approach is adopted

in Appendix II.H.3. In particular, in the proof of Theorem 1 in Appendix II.H.3, we

first exploit the specific structure of the matrices L(x) and M(x) that appears in the

corresponding cdf expressions, and are given in (II.33) and (II.34) of Appendix II.H.3,

respectively, and then apply the simplified formula, (II.36) (also in Appendix II.H.3), for
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the derivative of a determinant to obtain the desired densities. Alternatively, Theorem 1

can be proved by obtaining the marginal density of the largest eigenvalue, starting with

the joint density of all the eigenvalues given in [39] and [36]. This latter approach is

detailed in Appendix II.H.6.

Note that our approach in Theorem 1 is different from that of [34], [35], and

results in much simpler pdf expressions that render themselves easily to further manipu-

lations and, in particular, allow us to obtain a closed-form expression for the probability

of error in Theorem 3.

Figure II.3 is a plot of fλmax(x), in Theorem 1, for the two cases of Nt =

3, Nr = 7 and Nt = 7, Nr = 3. Note that the two curves are different due to different

covariance structures at the transmitter and the receiver. Here, we have assumed that

independent fading exists at the transmitter and correlated fading at the receiver. For

the case when both transmitter and the receiver experience independent fading, the two

curves in Figure II.3 would coincide.

Next we proceed to evaluate the probability of error, Pe, given by (II.18), i.e.,

carry out the integration in (II.18). To this end, fλmax(x) from (II.20) and (II.22) must

be simplified in a manner that the functional dependence on the variable x becomes

explicit, as presented in Theorem 2.

Theorem 2 The density fλmax(x) is given by

fλmax(x) =

min(Nr ,Nt)∑
j=1

(Nr
j )∑

m=1

jNt−j2∑
l=(Nt−Nr)+

e−ηj,m(λ) x xl dj,m,l (II.23)

where ηj,m(λ)
∆
= (λu1,m + λu2,m + · · · + λuj,m

) is a function of the eigenvalues

λ1, λ2, · · · , λNr and (x)+ = max(x, 0). The integer set S1,j,m = {u1,m, u2,m, · · · , uj,m}
represents the mth way of picking j distinct integers from the set S1 = {1, 2, · · · , Nr},
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with the total number of possible ways being
(

Nr

j

)
. The constant dj,m,l is given by

d j,m,l =

ã

(Q−1
j−1)∑
i=1

∑
1

∑
2

sign(T )

×

Q−j summations︷ ︸︸ ︷
1∑

k1=0

· · ·
1∑

kQ−j=0

j−1 summations︷ ︸︸ ︷
Nt−v1,i∑

p1=0

· · ·
Nt−vj−1,i∑
pj−1=0

(
(af1,i, tf1,i

, k1) · · ·

k1+···+kQ−j+p1+···+pj−1=l−(Nt−Nr)+

× · · · (afQ−j,i, tfQ−j,i
, kQ−j

).(ζv1,i, tv1,i , p1) · · · (ζvj−1,i, tvj−1,i , pj−1
)
)⎛⎝(Nr−Nt−1)+∏

p=0

λp
tp+Nt+1

⎞⎠
(II.24)

where Q = min(Nr, Nt), (v1,i, · · · , vj−1,i, f1,i, · · · , fQ−j,i) are Q − 1 distinct integers

from the set S2 = {2, 3, · · · , Q}. Index i denotes the ith way of partitioning the set S2
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into two sets of size (j − 1) and (Q − j).∑
1 is the sum over all permutations (t1, tv1,i

, · · · , tvj−1,i
) of S1,j,m and

∑
2 is the sum

over all permutations (tf1,i
, · · · , tfQ−j,i

) of S1 − S1,j,m, if Nt ≥ Nr, and sum over

all permutations (tf1,i
, · · · , tfQ−j,i

, tNt+1, · · · , tNr) of S1 − S1,j,m, if Nt < Nr. Thus,

T
∆
= (t1, tv1,i

, · · · , tvj−1,i
, tf1,i

, · · · · · · , tfQ−j,i
, tNt+1, · · · , tNr), arranged with increas-

ing values of the subscripts, are permutations of the set S1. The function sign(T ) is

positive if this permutation is even and negative if it is odd [31]. Also, a i,j,0
∆
= ξi,j,

ai,j,1
∆
= θi,j, ζi,j,l are defined in (C.3), and ã is given in (II.21).

Using fλmax(x) from Theorem 2, we now present a closed-form expression for Pe in

Theorem 3.

Theorem 3 The probability of error is given by

Pe =

min(Nr ,Nt)∑
j=1

(Nr
j )∑

m=1

jNt−j2∑
l=max(Nt−Nr,0)

dj,m,l l!

2 ηj,m(λ)l+1

×
[
1 − 1√

1 + 2ηj,m(λ)

l∑
k=0

(
2k

k

)[
ηj,m(λ)

2 + 4ηj,m(λ)

]k]
(II.25)

where dj,m,l and ηj,m(λ) are defined in Theorem 2.

Theorem 2 and Theorem 3 are proved in Appendix II.H.4 and Appendix II.H.5, respec-

tively.

The expression for fλmax(x) in Theorem 1 and 2, and the Pe expression in

Theorem 3, are valid under the assumption that all the eigenvalues of the matrix Φ

are distinct. In the case when some of the eigenvalues, λ1, λ2, · · · , λNr , are equal, the

approach in [37] can be adopted to provide corresponding limiting expressions. Specifi-

cally, it can be shown that when all the eigenvalues are equal to unity, our results reduce

to the corresponding fλmax(x) and Pe expressions in [15].
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II.E Numerical Results

We consider independent fading at the transmitter (Ψ = I) and correlated

fading at the receiver. Using the correlation model of [28], the lmth element of the

receiver covariance matrix Σ is given by

(Σ)l,m =

Io

(√
κ2 − 4π2∆2

l,m

λ2 +
j4πκ sin(µ)∆l,m

λ

)
Io(κ)

(II.26)

where l, m = 1, 2, . . . , Nr, Io(.) is the modified Bessel function of the first kind and

zeroth order, κ (≥ 0) controls the width of the angle of arrival (AOA) (or, in other

words, the angular spread) and ranges from 0 (isotropic scattering) to infinity (non-

isotropic scattering), the parameter µ(∈ [−π, π)) accounts for the mean direction of the

AOA, and ∆l,m is the spacing between the lth and mth antenna elements. In (II.26), we

notice that there are three parameters controlling the correlation: κ, ∆l,m and µ. In all

our results, we will concentrate on a broadside array with µ = 0. Correlation increases

as κ is increased, and/or ∆l,m is decreased.

At the receiver, we consider a physically constrained linear array where the

effective aperture of the array is fixed. For such an antenna array, increasing the number

of receiver antenna elements would lead to reduced inter-element spacing. This, in turn,

would cause higher correlation between the channel coefficients at each element. Also,

for a fixed aperture array, the total power collected by the array is constant, irrespective

of the number of elements [75]. For such an antenna array, an increase in the number of

the elements is brought about by decreasing the size of each element [78]. In turn, the

power captured by each element decreases with the decrease in its effective aperture.

Examples of such an array are a collinear array of dipoles and an array of microstrip

antennas [42]. In our results, the total length of the antenna array is constrained to λ

(the carrier wavelength). To capture the effect of fixed received power in our analysis,

we introduce an additional factor, say β, in the signal term in Equations (II.1) and (II.2).

The factor β can be conveniently absorbed in the signal power Po and the pilot power Pp,

and can be thought of as a normalizing constant, i.e., βPo and βPp, respectively. With
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β = 1/Nr, the total received power remains fixed. Lastly, for simplicity, we ignore the

effects of mutual coupling between the antenna elements [75], [42].

Thus, for a fixed aperture antenna array, the power received by each antenna

element reduces as more antenna elements are added to the array. This effectively means

that the SNR-per-element decreases. Therefore, during the channel estimation phase,

with a larger number of antenna elements, there are more parameters to estimate and

less power available to make each estimate, resulting in higher channel estimation noise.

Also, the non-coherent combining loss increases when a larger number of these noisy

estimates are combined.

The quality of the channel estimate is determined by both the fade correlation

and the received pilot power-per-antenna element. We evaluate the impact of these

factors on the channel estimation with the help of an example. Consider the MMSE for

the estimator, i.e., eMMSE = tr(Ch̃h̃) = tr(Σe ⊗ Ψe) = tr(Σe)tr(Ψe), where eMMSE

denotes the MMSE and Ch̃h̃ is given in (II.29). For the case Ψ = I, the MMSE is given

by eMMSE = Nt tr(Σe). Substituting for Σe, and denoting UΩUH as the eigenvalue

decomposition of Σ, where Ω
∆
= diag(ω1, · · · , ωNr) and {ωi}Nr

i=1 are the eigenvalues,

eMMSE can be simplified as

eMMSE = Nt tr
(
Ω − γΩ (γΩ + qNoI)

−1 Ω
)

= Nt

Nr∑
i=1

(
ωi − ω2

i ρ

1 + ρ ωi

)

= Nt

Nr∑
i=1

(
ωi

1 + ρ ωi

)
(II.27)

where ρ
∆
= γ

qNo
. Substituting for γ, and replacing Pp by βPp, we obtain ρ = βPpq

NtNo
=

SNRp

NrNt
, where SNRp

∆
= Ppq

No
is the pilot SNR, and β is set to 1/Nr. Now consider the

two extreme cases, when receive fades are uncorrelated (Σ = I) i.e., {ωi}Nr
i=1 are all

unity, and the case when receive fades are perfectly correlated i.e., w.l.o.g, ω1 = Nr

and {ωi}Nr
i=2 = 0 (note that

∑Nr

i=1 ωi = tr(Σ) = Nr). For the former case, (II.27)

reduces to euncorr
MMSE = (NtNr

1+ρ
) = ( NtNr

1+
SNRp

NrNt

), whereas for the latter case it becomes
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ecorr
MMSE = ( NtNr

1+Nrρ
) = ( NtNr

1+
SNRp

Nt

). Note that the MMSE is lower for the perfect cor-

relation case. Thus, for a given Nr, as correlation is increased by reducing the inter-

element spacing and/or reducing the scattering, the MMSE reduces. This implies that

an increase in correlation between the channel fades makes channel estimation easier.

However, note that both these expressions are increasing in Nr and Nt. It can be shown

that euncorr
MMSE and ecorr

MMSE, respectively, upper and lower bound the MMSE (i.e., eMMSE).

Furthermore, notice that the term SNRp/Nr, which is the pilot SNR-per-element, ap-

pears in the denominator of euncorr
MMSE. Thus, for the uncorrelated fades, the estimator loses

performance because of the decreasing pilot SNR-per-element as Nr is increased.

The performance of the system is governed by the net effect of the available

diversity and the channel estimation errors. First, we investigate the performance of

the channel estimator. Figure II.4 is a plot of the MMSE normalized by the number of

transmit antennas (eMMSE/Nt), as a function of κ, and for different Nr. The number

of transmitters is fixed to Nt = 2, the number of receivers is varied from Nr = 1 to 6,

µ = 0, and the pilot SNR is 20dB. Also plotted in the figure is euncorr
MMSE/Nt, and is shown

by the curves without any markers. There is one such curve in each of the six groups

for the six Nr values. Note that the curves for euncorr
MMSE are not a function of κ, because,

by assumption, they always correspond to uncorrelated fading. Except for the curves

Nr = 1 and Nr = 2, the MMSE (i.e., eMMSE/Nt) decreases as κ is increased. This is

because a higher value of κ (poor scattering) leads to higher correlation, which aids in

channel estimation. For the case Nr = 2, the receiver antenna elements are spaced far

enough apart so that the correlation does not change much for the observed values of

κ. The case Nr = 1 corresponds to a single receiver antenna, thus, κ does not affect its

performance according to the model in (II.26). Note that both MMSE and euncorr
MMSE/Nt

increase with Nr, but the MMSE is lower than the corresponding euncorr
MMSE/Nt for higher

values of Nr (Nr ≥ 3). For Nr < 3, the curves corresponding to the MMSE and

euncorr
MMSE/Nt are almost indistinguishable because the fade correlation is sufficiently low.

Thus, as correlation is increased by reducing the inter-element spacing and/or reducing

scattering, the MMSE value decreases when compared to euncorr
MMSE/Nt.
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Figure II.4: Minimum mean-square error normalized by the number of transmitters vs.

κ for different number of receivers (Nr), Nt = 2, pilot SNR is 20dB, and µ = 0. The

MMSE (i.e., eMMSE/Nt) is given by the curves with markers. Also plotted in the figure

is euncorr
MMSE/Nt, and is shown by the curves without any markers. There is one such curve

in each of the six groups for the six Nr values.

Figure II.5 is a plot of probability of error, (II.25), versus the number of re-

ceiver antennas Nr, when the data SNR and the pilot SNR are both 20dB, Nt is varied

from 1 to 2, and κ = 2. Observe the convexity of the curves and the existence of an opti-

mal value for Nr. For the given parameters, Nr = 4 is optimal for the two curves. Note

that the performance of the system is determined by the net effect of the available diver-

sity and the channel estimation errors, as mentioned earlier. When Nr is increased from

1 to 4 in Figure II.5, the diversity order of the system increases initially, whereas the

performance of the channel estimator degrades (eMMSE increases). Clearly, the effect

of diversity is winning over the effect of channel estimation, as the overall performance

improves. Any further increase in Nr provides only a marginal increase in diversity,
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Figure II.5: BER vs number of receivers (Nr) for fixed κ(= 2), pilot and data SNR are

20dB, and µ = 0

and a continued increase in the estimation noise (as the overall MMSE increases), re-

sulting in an increase in the bit error rate. Note also, from Figure II.5, that the system

with Nt = 2 performs better than the one with Nt = 1 due to higher transmit diversity,

although the channel estimates are noisier for Nt = 2 than for Nt = 1. This is because

the total transmit power in the two systems is the same and there are more parameters

to estimate when Nt = 2 than when Nt = 1, leading to higher estimation noise in the

former than the latter.

Figure II.6 is a bit error rate plot for the same set of parameters as in Figure

II.5, except that the pilot and data SNR are now lowered to 9dB. Note that the optimal

Nr for each of the two Nt values is different, i.e., Nr = 2 is optimal for Nt = 2, whereas

Nr = 3 is optimal for Nt = 1. A lower value of Nr is optimal for Nt = 2 due to higher

estimation noise in this case when compared to Nt = 1.
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Figure II.6: BER vs number of receivers (Nr) for κ = 2, µ = 0, and pilot and data SNR

are 9dB

Figure II.7 is a plot of the probability of bit error for various κ (the extent of

scattering). We fix Nt = 2 and vary Nr from 1 to 6, while maintaining the data and pilot

SNRs at 20dB. Higher values of κ (reduced scattering) result in lower diversity and

higher channel estimation accuracy due to increased correlation between the receive

fades. Note from Figure II.7 that the performance of the system degrades as κ increases.

This implies that the loss in diversity order outweighs the gain in channel estimation

accuracy as κ is increased. The plot for Nt = 2 and Nr = 2 is unaffected by varying κ,

as the receiver antenna elements are spaced far apart.

Observing the curves in Figure II.7 along any vertical line, corresponding to a

fixed value of κ, reveals the same trends as in Figure II.5, i.e., the existence of an optimal

Nr. As an example, the curve corresponding to Nt = 2 in Figure II.5 can be obtained

from Figure II.7 for κ = 2. Also, it is interesting to note the crossovers by the curve
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Figure II.7: BER vs. κ for different number of receivers (Nr), Nt = 2, pilot and data

SNR are 20dB, and µ = 0

corresponding to Nt = 2, Nr = 3, as κ is increased. For lower κ, the configuration

Nt = 2, Nr = 4 performs better than Nt = 2, Nr = 3 because the increase in diversity

order more than compensates for the increase in the non-coherent combining loss in

going from Nt = 2, Nr = 3 to Nt = 2, Nr = 4. Thus, the optimum Nr depends on the

value of κ and the data and the pilot SNRs.

Finally, in Figure II.8, bit error rate is plotted versus κ, where the product

of the number of transmitters and receivers is kept constant. This fixes the maximum

diversity of the system in the two cases, where the product is either 12 or 16 in the

figure. Since the transmit fades are assumed uncorrelated, it is evident that the system

with more transmitters leads to better performance when the product NtNr is fixed, due

to higher diversity.
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Figure II.8: BER vs. κ when the product of number of transmitters and receivers, NtNr,

is fixed, pilot and data SNR are 20dB, and µ = 0

II.F Conclusion

In this work, the error rate performance of a MIMO beamforming system in

correlated Rayleigh fading was analyzed under the conditions of imperfect channel es-

timation. An optimum beamforming structure and an exact closed-form expression for

the probability of error of the system were derived. The impact of channel estimation

accuracy and diversity on the performance of the system was studied. It was shown

that performance degrades as the extent of scattering decreases (i.e., the width of the

angle-of-arrival decreases). The increased fade correlation due to poor scattering leads

to improved channel estimation on one hand, but lower diversity on the other. The per-

formance degrades because the benefits of improved channel estimation accuracy are

offset by the loss in diversity order. For a fixed length antenna array where the effective

aperture of the array is fixed, it was also shown that there is an optimum number of re-
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ceiver antennas that depends on the available transmit and receive diversity, the quality

of the estimates, and the length of the array.
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II.H Appendices for Chapter II

II.H.1 Proof of Lemma 1

From (II.8), the conditional output SNR is defined as

SNR(wr,wt|Ĥ)
∆
=

(Re(wH
r Ĥwt))

2

E[(Re(wH
r H̃wt))2|Ĥ] + E[(Re(wH

r na))2|Ĥ]
. (II.28)

We denote the two terms in the denominator of (II.28) as Var1
∆
= E[(Re(wH

r H̃wt))
2|Ĥ]

and Var2
∆
= E[(Re(wH

r na))
2|Ĥ]. In order to obtain a simplified expression for Var1

and Var2, we first note that h̃ ∼ CN(0,Σe ⊗ Ψe). This follows because the estimation

error vector h̃(= h − ĥ) is Gaussian with zero mean and covariance given by Ch̃h̃ =

Chh −Cĥĥ. Using the expression for Cĥĥ in Section II.B, Ch̃h̃ simplifies to

Ch̃h̃ = Σ ⊗Ψ − (
√

γΣ ⊗ Ψ)(γΣ ⊗ Ψ + qNoI ⊗ I)−1(
√

γΣ ⊗ Ψ)

=

⎧⎨⎩ (Σ − γΣ(γΣ + qNoI)
−1Σ) ⊗ I, if Ψ = I

I ⊗ (Ψ − γΨ(γΨ + qNoI)
−1Ψ), if Σ = I.

(II.29)

For compactness, we can express Ch̃h̃ = E[vec(H̃T )vec(H̃T )H ] = Σe ⊗Ψe, where Σe

and Ψe are defined in Lemma 1. The variance of the linear transform wH
r H̃wt of H̃ can

now be obtained as

CwH
r

eHwt

∆
= E[wH

r H̃wtw
H
t H̃Hwr|Ĥ]

= wH
r (wT

t ⊗ I)KNtNrE[vec(H̃T )vec(H̃T )H |Ĥ]KNrNt(w
∗
t ⊗ I)wr

= wH
r (wT

t ⊗ I)(Ψe ⊗ Σe)(w
∗
t ⊗ I)wr

= (wH
t Ψewt)(w

H
r Σewr). (II.30)

The second equality in (II.30) follows since H̃wt = vec(H̃wt) = (wT
t ⊗ I)vec(H̃) =

(wT
t ⊗ I)KNtNrvec(H̃T ) and KNrNt = KT

NtNr
, where KNtNr is a commutation matrix

[31]. In the third equality in (II.30) we have used KNtNr(Σe⊗Ψe)KNrNt = (Ψe⊗Σe).

From [30], we have Var1 = CRe(wH
r

eHwt)
= 1

2
CwH

r
eHwt

= 1
2
(wH

t Ψewt)(w
H
r Σewr).

Finally, Var2 can be simplified as Var2 = CRe(wH
r na) = 1

2
CwH

r na
= 1

2
Now

H
r wr.
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II.H.2 Proof of Lemma 2

Without loss of generality, we define x̃
∆
= B1/2x and ỹ

∆
= C1/2y and simplify

(II.13) as

max
x̃, ỹ

(
(Re(x̃HB−1/2AC−1/2ỹ))2

(x̃H x̃) (ỹH ỹ)

)
. (II.31)

The function of x̃ and ỹ that we are trying to maximize in (II.31) can be upper bounded

as shown below:

(Re(x̃HB−1/2AC−1/2ỹ))2

(x̃H x̃) (ỹH ỹ)
= (Re(x̃Ha))2

x̃H x̃

(i)

� aHa

aHa = ỹHC−1/2AHB−1AC−1/2ỹ
‖ỹ‖2

(ii)

� λmax(C
−1/2AHB−1AC−1/2) (II.32)

where a
∆
= B−1/2AC−1/2 ỹ

‖ỹ‖ . Inequality (i), above, follows from the Cauchy-Schwarz

inequality [32, eq. 5.1.5] and inequality (ii) follows from the Rayleigh-Ritz Theorem

[32, page 176]. From (II.32), it is evident that the maximum value of the function

in (II.31) is λmax(C
−1/2AHB−1AC−1/2), or equivalently λmax(C

−1AHB−1A), and is

obtained when the weights x̃ and ỹ are chosen such that the inequalities in (i) and (ii),

above, are satisfied with an equality.

The equality in (i) holds iff x̃ = α a, [32, page 261]. This implies that, x̃ =

αB−1/2AC−1/2 ỹ
‖ỹ‖ . Thus, the optimum x is x = αB−1AC−1/2 ỹ

‖ỹ‖ ⇒ x = αB−1A y
‖ỹ‖ .

On the other hand, the equality in (ii) is satisfied if ỹ is the eigenvector corresponding

to the eigenvalue λmax(C
−1/2AHB−1AC−1/2), i.e., ỹ = vmax(C

−1/2AHB−1AC−1/2).

Since the matrix C−1/2AHB−1AC−1/2 is Hermitian, the norm of the vec-

tor vmax(C
−1/2AHB−1AC−1/2) is unity, i.e., ‖ỹ‖ = 1. This implies that opti-

mum x in terms of optimum y is given by x∗ = αB−1Ay∗. The optimum y

is y∗ = C−1/2vmax(C
−1/2AHB−1AC−1/2), simplifying using matrix algebra [31],

y∗ = vmax(C
−1AHB−1A).
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II.H.3 Proof of Theorem 1

Using the notation developed so far, it can be shown that the cdf in [17] can

be written as

1) (Nt ≥ Nr) Fλmax(x) = ã |L(x)| (II.33)

where the ijth (i, j = 1, 2, . . . , Nr) element of the Nr × Nr matrix L(x) is given by

(L(x))i,j = λ−Nt+i−1
j Γ(Nt − i + 1, x λj).

2) (Nt < Nr) Fλmax(x) = ã |M(x)| (II.34)

where the ijth (i, j = 1, 2, . . . , Nr) element of the Nr × Nr matrix M(x) is given

by (M(x))i,j = λ−Nt+i−1
j Γ(Nt − i + 1, x λj) for i = 1, 2, . . . , Nt and (M(x))i,j =

λi−Nt−1
j for i = Nt + 1, . . . , Nr.

The constant ã in the above is the same as in Theorem 1. In order to differen-

tiate (II.33) and (II.34), we use the following formula for the derivative of a determinant

[38]:

d |D(x)|
dx

= |D(x)|
(
D(x)−1 dD(x)

d x

)
= trace

(
DAdj(x)

dD(x)

dx

)
(II.35)

since |D(x)|D(x)−1 = DAdj(x), where DAdj(x) is the adjoint of an Nr × Nr matrix

D(x) [31]. From [38], (II.35) can be simplified to

d |D(x)|
dx

=

Nr∑
i=1

∣∣∣∣{(D(x))1, (D(x))2, · · · ,
d (D(x))i

d x
, · · · , (D(x))Nr

}∣∣∣∣ (II.36)

where (D(x))j denotes the jth row of D(x), thus D(x) =

{(D(x))1, (D(x))2, · · · , (D(x))Nr}. Note that the matrix L(x) has a specific

structure that we will exploit in arriving at the density

expressions. To do this, we first define γi,j(x) in terms of entries of L(x) as

shown below:

γi,j(x)
∆
= x (L(x))i,j − (L(x))i−1,j .
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Next we establish that the derivative of γi,j(x) (see (II.37) below) equals the ijth element

of L(x). This is an important property that leads to much simplification in carrying out

the differentiation of (II.33) using (II.36).

d γi,j(x)

d x
= x

d (L(x))i,j

dx
+ (L(x))i,j − d (L(x))i−1,j

dx

= (L(x))i,j . (II.37)

The above follows, since d (L(x))i,j

dx
= λ−Nt+i−1

j
d Γ(Nt−i+1,x λj)

d x
= xNt−i e−λj x, where

we have used d Γ(n,x a)

dx
= an xn−1 e−ax. From this, it follows that x

d (L(x))i,j

d x
=

d (L(x))i−1,j

d x
.

We first provide proof of Part A of Theorem 1, and then outline a similar

method to prove Part B. We define a new matrix L̃(x) and use the basic properties of a

determinant to write

|L(x)| = x−Nr+1 |L̃(x)| (II.38)

where (L̃(x))1,j
∆
= (L(x))1,j for j = 1, 2, . . . , Nr

(L̃(x))i,j
∆
= γi,j(x) = x (L(x))i,j − (L(x))i−1,j for i = 2, . . . , Nr.

(II.39)

In the above, L̃(x) is an Nr × Nr matrix whose ith (i = 2, · · · , Nr) row is obtained

by multiplying the ith row of L(x) by x and then subtracting the (i − 1)th row of L(x)

from it. The determinant of L̃(x) would thus differ from that of L(x) by a multiplicative

factor of x−Nr+1. Note that the matrix L̃(x) is designed so as to make use of (II.37).

Now we are ready to apply (II.36) to (II.33) to obtain the density in (II.20):

fλmax(x) =
dFλmax(x)

dx
= ã

d |L(x)|
dx

= ã
d (x−Nr+1 |L̃(x)|)

d x

= ã x−Nr+1
Nr∑
i=1

∣∣∣∣∣
{

(L̃(x))1, · · · ,
d (L̃(x))i

dx
, · · · , (L̃(x))Nr

}∣∣∣∣∣
−ã (Nr − 1)x−Nr |L̃(x)|
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= ã x−Nr+1

∣∣∣∣∣
{

d (L̃(x))1

d x
, (L̃(x))2, · · · , (L̃(x))Nr

}∣∣∣∣∣
+ã x−Nr+1

Nr∑
i=2

∣∣∣∣∣
{

(L̃(x))1, · · · ,
d (L̃(x))i

d x
, · · · , (L̃(x))Nr

}∣∣∣∣∣
−ã (Nr − 1)x−NrxNr−1|L(x)|

(a)
= ã x−Nr+1

∣∣∣{({xNt−1 e−λj x}Nr
j=1), (L̃(x))2, · · · , (L̃(x))Nr

}∣∣∣
+ã x−Nr+1

Nr∑
i=2

∣∣∣{(L̃(x))1, · · · , (L(x))i, · · · , (L̃(x))Nr

}∣∣∣
−ã (Nr − 1) x−1 |L(x)|

= ã xNt−Nr

∣∣∣{({xNt−1 e−λj x}Nr
j=1), (L̃(x))2, · · · , (L̃(x))Nr

}∣∣∣
+ã x−Nr+1

Nr∑
i=2

(
xNr−2 |L(x)|)− ã (Nr − 1)x−1 |L(x)|

= ã xNt−Nr

∣∣∣{({xNt−1 e−λj x}Nr
j=1

)
, (L̃(x))2, · · · , (L̃(x))Nr

}∣∣∣ .
(II.40)

In the equality (a) in (II.40), we have used d (eL(x))1

d x
= d (L(x))1

d x
=

{xNt−1 e−λj x}Nr
j=1 and d (eL(x))i

dx
= d (x (L(x))i−(L(x))i−1)

dx
= (L(x))i, for i =

2, · · · , Nr (from (II.39) and (II.37)). A close examination of the determinant in-

side the summation in the second term of the equality (a) in (II.40) reveals that

|{(L̃(x))1, · · · , (L(x))i, · · · , (L̃(x))Nr}| = xNr−2 |L(x)|. This follows from the def-

inition in (II.39) and the basic properties of determinants. Finally, note that the last

equality in (II.40) is the desired expression in (II.20).

The proof of part B parallels that of part A. In order to prove part B, we define

a new matrix M̃(x) and write a similar expression for M(x) as in (B.6):

|M(x)| = x−Nt+1 |M̃(x)| (II.41)

where (M̃(x))1,j
∆
= (M(x))1,j

(M̃(x))i,j
∆
= ρi,j(x)

∆
= x (M(x))i,j − (M(x))i−1,j for i = 2, . . . , Nt

(M̃(x))i,j
∆
= (M(x))i,j for i = Nt + 1, . . . , Nr. (II.42)

In the above, M̃(x) is an Nr × Nr matrix and d ρi,j(x)

dx
= (M(x))i,j . To arrive at the
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density in (II.22), we now apply (II.36) to (II.34) and follow the same steps as in Part A.

II.H.4 Proof of Theorem 2.

From (II.20), we have

fλmax(x) = ã xNt−Nr |G(x)|. (II.43)

Using the fact that Γ(j + 1, x a) = Γ(j + 1)(1 −∑j
k=0

(ax)k

k!
e−ax) and Γ(j + 1) = j!

[33], the ijth (i = 2, . . . , Q and j = 1, 2, . . . , Nr) element of G(x) can be simplified to

(G(x))i,j = x θi,j + ξi,j + e−λjx

(Nt−i∑
l=0

xl ζi,j,l

)
(II.44)

where θi,j = λ−Nt+i−1
j Γ(Nt − i + 1);

ξi,j = −λ−Nt+i−2
j Γ(Nt − i + 2)

and ζi,j,l = λ−Nt+i+l−2
j

[
(Nt − i)!

l!

]
(Nt − i − l + 1)

for 0 ≤ l ≤ (Nt − i), (II.45)

while (G(x))1,j = e−λjx for j = 1, 2, . . . , Nr.

Next, we note the following well-known formula for determinant of an m × m matrix

A [31]:

|A| =
∑′

sign(t1, t2, · · · , tm) (A)1,t1 (A)2,t2 · · · (A)m,tm . (II.46)

The sum in (II.71) is over all the permutations (t1, t2, · · · , tm) of (1, 2, · · · , m). Using

(II.71), fλmax(x) in (II.43) can then be written as

fλmax(x)

= ã xNt−Nr
∑′

sign(t1, t2, · · · , tNr)(G(x))1,t1 (G(x))2,t2 · · · (G(x))Nr,tNr
.

(II.47)

We now want to find a simplified expression for∑′ sign(t1, t2, · · · , tNr)(G(x))1,t1 (G(x))2,t2 · · · (G(x))Nr ,tNr
. For the time being,
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we neglect sign(t1, t2, · · · , tNr) and simplify the expression
∑′(G(x))1,t1 (G(x))2,t2

· · · (G(x))Nr ,tNr
. The above sum consists of terms that have a common factor of

e−(λu1,m+λu2,m+···+λuj,m
)x, where the set S1,j,m = {u1,m, u2,m, · · ·uj,m} is comprised of

j distinct integers, as has been defined in the statement of Theorem 2. We collect all

such terms, and after some algebraic manipulations, write it in a general form as

Nr∑
j=1

(Nr
j )∑

m=1

e−(λu1,m+λu2,m+···+λuj,m)x

jNt−Nt+Nr−1
2

j2−3
2

j+1∑
k=0

xk� j,m,k (II.48)

where � j,m,k is the coefficient of e−(λu1,m+λu2,m+···+λuj,m)x xk and is given by � j,m,k =

d j,m,k+Nt−Nr when Nt ≥ Nr; dj,m,l is given in (II.24).

Now, the presence of sign(t1, t2, · · · , tNr) simplifies the sum in (II.47), since

various terms can be shown to cancel. Specifically, it can be shown that ( 1
2
j2 − 3

2
j + 1)

terms are cancelled from the third summation in (II.48). This gives us the final expres-

sion for fλmax(x) as

Case:(Nt ≥ Nr)

fλmax(x) = ã xNt−Nr

Nr∑
j=1

(Nr
j )∑

m=1

e−ηj,m(λ) x

jNt−Nt+Nr−j2∑
k=0

xk� j,m,k

= ã
Nr∑
j=1

(Nr
j )∑

m=1

e−ηj,m(λ) x

jNt−j2∑
l=Nt−Nr

xl� j,m,l−Nt+Nr . (II.49)

Starting from (II.22), and following the same steps as above, it can be shown that

Case:(Nt < Nr)

fλmax(x) = ã
Nt∑
j=1

(Nr
j )∑

m=1

e−ηj,m(λ) x

jNt−j2∑
l=0

xlς j,m,l

where ς j,m,l = d j,m,l

if Nt < Nr.
(II.50)

The two expressions in (II.49) and (II.50) can be combined to yield (II.23).
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II.H.5 Proof of Theorem 3.

Using the expression for fλmax(x) from Theorem 2, we simplify (II.18). In

order to do this, we need to compute the integral
∫∞
0

Q(
√

x) e−ρ xxl dx:∫ ∞

0

Q(
√

x) e−ρ xxl dx =
1

π

∫ π
2

0

∫ ∞

0

e
−x

2 sin2θ e−ρ xxl dx dθ

=
l!

ρl+1

1

π

∫ π
2

0

(
sin2θ

1
2ρ

+ sin2θ

)l+1

dθ

=
l!

ρl+1

1

2

[
1 − 1√

1 + 2ρ

l∑
k=0

(
2k

k

)[
ρ

2 + 4ρ

]k]
.

(II.51)

The last equality in (II.51) follows from [43]. From (II.18), (II.23) and (II.51), we obtain

the desired expression for the probability of error in (II.25).

II.H.6 Alternative Proof of Theorem 1

In order to prove Theorem 1, we first note the following lemmas and corollar-

ies.

Lemma 3 Let Z be m × n and Z ∼ CN(0,Θ ⊗ Ω), where Θ, m × m, and Ω, n × n,

are positive definite matrices and m ≤ n. Then, S
∆
= ZZH is Hermitian positive definite

and its density is given by

fS(X) =
|Θ|−n|Ω|−m

Γ̃m(n)
|X|n−m F̃

(n)
00 (Ω−1,−Θ−1X) (II.52)

where F̃
(n)
00 (A,B)

∆
=
∑∞

k=0

∑
κ

eCκ(A) eCκ(B)

k! eCκ(In)
is the hypergeometric function of matrix

argument and Γ̃m(n)
∆
= π

1
2

m(m−1)(
∏m

i=1 Γ(n − i + 1)). A and B are n × n matrices

and C̃κ(A) is the zonal polynomial of A (for the definitions see [36]).

Proof. The pdf of S when Z is a real matrix is given in [44]. Following the same

recipe for the case when Z is complex, the pdf can be shown to be given by (II.52). The

above expression in terms of an arbitrary constant q appears in [45].
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Lemma 4 Given the density of S in Lemma 1, the joint pdf of its eigenvalues, w̃1 >

w̃2 > · · · > w̃m > 0, is given by

f ew1,··· , ewm(w1, · · · , wm) = g({wl}m
l=1) c |W|n−m

∞∑
k=0

∑
κ

C̃κ(Ω
−1)

k! C̃κ(In)

C̃κ(Θ
−1)C̃κ(−X)

C̃κ(Im)

(II.53)

where W = diag(w1, w2, · · · , wm), c
∆
= |Θ|−n|Ω|−meΓm(n)

and g({wl}m
l=1)

∆
=

πm(m−1)eΓm(m)

∏m
i=1

∏m
j=i+1(wi − wj)

2.

Proof. In order to find the joint pdf of the eigenvalues of S, we use the following

result in [36]. If fA(Y) is the density function of an m × m Hermitian positive definite

matrix A, then the density of its latent roots (eigenvalues), µ̃1, µ̃2, · · · , µ̃m, is given by

feµ1,··· ,eµm(µ1, · · · , µm) = πm(m−1)eΓm(m)

m∏
i<j

(µi − µj)
2

∫
U(m)

fA(UYUH) dU (II.54)

where, µ̃1 > µ̃2 > · · · > µ̃m, are the m distinct roots, U(m) is m × m unitary matrix

and µ1, · · · , µm are m eigenvalues of Y. Applying the above result to the pdf of S in

(II.52), the joint pdf of all the eigenvalues, (w̃1 > w̃2 > · · · > w̃m), of S can be written

as

f ew1,··· , ewm(w1, · · · , wm) = g({wl}m
l=1)

∫
U(m)

fS(UXUH) dU

= g({wl}m
l=1) c

×
∫

U(m)

|UXUH |n−m F̃
(n)
00 (Ω−1,−Θ−1UXUH) dU

(II.55)

Simplifying |UXUH |n−m = (|UUH ||X|)n−m = (|I||X|)n−m = (|W|)n−m, where W

is the diagonal matrix of the eigenvalues, (w1, · · · , wm), of X and using the definition

of F̃
(·)
00 (·, ·), we have

= g({wl}m
l=1) c |W|n−m

∞∑
k=0

∑
κ

C̃κ(Ω
−1)

k! C̃κ(In)

∫
U(m)

C̃κ(−Θ−1UXUH) dU. (II.56)

Finally, applying the following property of the zonal polynomials [45]∫
U(m)

C̃κ(AUBUH) dU =
C̃κ(A)C̃κ(B)

C̃κ(Im)
(II.57)
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in (II.56), we obtain (II.53).

We now specialize the result of Lemma 4 when Ω = I or Θ = I

Corollary 1 a) If Ω = I, the result of Lemma 4 can be simplified to

f ew1,··· , ewm(w1, · · · , wm) = g({wl}m
l=1) c |W|n−m

∞∑
k=0

∑
κ

C̃κ(In)C̃κ(Θ
−1)C̃κ(−X)

k! C̃κ(In)C̃κ(Im)

=
πm(m−1)

Γ̃m(m)

m∏
i<j

(wi − wj)
2 |Θ|−n

Γ̃m(n)
|W|n−mF̃

(m)
00 (−Θ−1,X).

(II.58)

b) If Θ = I, the result of Lemma 4 reduces to

f ew1,··· , ewm(w1, · · · , wm) = g({wl}m
l=1) c |W|n−m

∞∑
k=0

∑
κ

C̃κ(Ω
−1)C̃κ(Im)C̃κ(−X)

k! C̃κ(In)C̃κ(Im)

=
πm(m−1)

Γ̃m(m)

m∏
i<j

(wi − wj)
2 |Ω|−m

Γ̃m(n)
|W|n−mF̃

(n)
00 (−Ω−1,X).

(II.59)

The equalities in (II.58) and (II.59) follow from the definition of F̃
(·)
00 (·, ·). The forms of

the expressions in (II.58) and (II.59) appear identical, but are not. The matrix arguments

of the function F̃
(·)
00 (·, ·) in (II.58) have the same dimension, namely m×m, whereas in

(II.59) they have different dimensions, i.e., n×n and m×m for the first and the second

arguments, respectively. Also, note that F̃
(·)
00 (·, ·) depends on its matrix arguments only

through its eigenvalues [36]. Using this fact it is shown later that different expressions

for F̃
(·)
00 (·, ·) result for the two cases. To reach this end, we note the following result in

[37], where a simplified expression for the hypergeometric function is given

F̃
(k)
00 (U,V) = |(euivj )| Γ(k)(k)/[αk(U)αk(V)] (II.60)

where αk(U) =
∏k

i<j(ui − uj), Γ(k)(k) = Γ̃k(k)/π
1
2

k(k−1), U = diag(u1, · · · , uk) such

that u1 > · · · > uk and V = diag(v1, · · · , vk) such that v1 > · · · > vk. |(euivj )|
denotes determinant of the matrix whose ij th entry is euivj , where i, j = 1, 2, · · · , k.

Upon examination, we note that the above expression holds only when all the u i’s and

vi’s are distinct. This is true because the determinant |(euivj )| and αk(U) become zero
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when some of the ui are equal, and |(euivj )| and αk(V) become zero when some of the

vi are equal, leading to an indeterminate form of 0/0 for (II.60). In this case a limiting

form for (II.60) must be obtained, as has been suggested in [37]. For our purpose we

need to obtain an expression for (II.60) when some of ui’s are equal while all vi’s are

distinct. Note that (II.60) is symmetric in the arguments, U and V. Hence, the limiting

expression for the case when U has some of the eigenvalues equal whereas V has all the

eigenvalues distinct, is the same (after an appropriate interchange of arguments U and

V) when U has all distinct whereas V has some of the eigenvalues equal. Therefore,

only one of these cases is considered and the result is summarized in Lemma 5.

Lemma 5 Assume that U has r distinct eigenvalues, namely, ũ1, ũ2, · · · , ũr with multi-

plicities h1, h2, · · · , hr such that h1 + h2 + · · ·+ hr = k. Without loss of generality we

can assume that ũ1 > ũ2 > · · · > ũr. Then

F̃
(k)
00 lim(U,V) =

Γ(k)(k)

αk(V)

N(U,V)

D(U)
(II.61)

where

D(U) =

( r−1∏
i=1

r∏
j=i+1

(ũi − ũj)
hihj

)( r∏
j=1

(

hj−1∏
l=1

l!)

)
(II.62)

and

N(U,V) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eeu1v1 ··· eeu1vk

−v1eeu1v1 ··· −vkeeu1vk

...
. . .

...
(−1)h1−1v

h1−1
1 eeu1v1 ··· (−1)h1−1v

h1−1
k eeu1vk

...
. . .

...
...

. . .
...

eeurv1 ··· eeurvk

−v1eeurv1 ··· −vkeeurvk

...
. . .

...
(−1)hr−1vhr−1

1 eeurv1 ··· (−1)hr−1vhr−1
k eeurvk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (II.63)

Proof. When some of the ui’s are equal the expression in (II.60) becomes indeter-

minate of the form 0/0. Hence, we apply the Ĺ Hospital rule to obtain the limiting

expression in (II.61).
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Corollary 2 The expressions in (II.62) and (II.63) can be simplified for the following

two cases:

1. Let r = k and h1 = h2 = · · · = hk = 1: This corresponds to the case when all the

eigenvalues are distinct. Thus (II.62) reduces to D(U) =

(∏k−1
i=1

∏k
j=i+1(ũi −

ũj)

)
= αk(U) and (II.63) becomes N(U,V) = |(eeuivj )|. Substitution of this in

(II.61) results in (II.60), as expected.

2. Let r = 1, h1 = k: This corresponds to the case when all the eigenvalues are

equal. Thus (II.62) and (II.63) reduce to D(U) = (
∏k−1

l=1 l!) and N(U,V) =

eeu1(v1+v2+···+vk)αk(V), respectively. Substituting these in (II.61) and assigning

ũ1 = 1, results in the expected form for F̃
(k)
00 lim(I,V) = etr(V).

Using the results in Lemma 3, 4 and 5, we now give the proof for Theorem 1.

Proof of Theorem 1. We want to find an expression for the pdf, fλmax(x), of the

maximum output SNR in , or in other words, we want to find the pdf of the largest

eigenvalue of the random matrix A
∆
= (2Po

σ2 ĤH [Po

σ2 Σe + I]−1Ĥ). A can be written

as A = (ĤHF−1/2F−1/2Ĥ) = YHY, where F
∆
= [Po

σ2 Σe + I]( σ2

2Po
) and Y

∆
= F−1/2Ĥ.

Recall that Ĥ ∼ CN(0, Σ̄⊗Ψ̄). It is easy to verify that Y ∼ CN(0,F−1/2Σ̄F−1/2⊗Ψ̄).

For the case, Ψ = I, we have Y ∼ CN(0,F−1/2Σ̄F−1/2 ⊗ I). Note also that, if

Nt < Nr, then YHY is positive definite with probability 1 and its density exists. If

Nt ≥ Nr, then YHY is positive semidefinite, whereas YYH is positive definite, with

probability 1 . The non-zero eigenvalues of YYH and YHY are identical. In short,

1. If Nt ≥ Nr, then YYH > 0 (positive definite) and Y ∼ CN(0,Φ ⊗ I), where

Φ = F−1/2Σ̄F−1/2.

2. If Nt < Nr, then YHY > 0 (positive definite). Let B
∆
= YH then B ∼ CN(0, I⊗

Φ) and YHY = BBH > 0.

As a generalization of the above two cases, consider

ZZH , where Z is a m × n, m ≤ n and Z ∼ CN(0,Θ ⊗Ω). (II.64)
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ZZH is positive definite with probability 1 and its density is given in Lemma 3. Also,

cases 1 and 2 above follow from (II.64) due to the following assignment: m = Nr,

n = Nt, Z = Y, Θ = Φ and Ω = I for case 1 and m = Nt, n = Nr, Z = B = YH ,

Θ = I and Ω = Φ for case 2.

The joint pdf of all the eigenvalues of S = ZZH is given in Lemma 4. The

corresponding expressions for the special cases 1 and 2, above, are dealt with in part a)

and b), respectively, of Corollary 1, after performing the appropriate substitutions for

m, n, Z, Θ and Ω, as indicated above. Using (II.58) and (II.59), we wish to obtain the

desired expression for the density of the largest eigenvalue. We present two separate

proofs for Part A and Part B of Theorem 1. We prove Part A, below, starting with (II.58)

and then outline a similar method for proving Part B, starting with (II.59).

PART A: Starting with (II.58), the joint density of the eigenvalues (w̃1, w̃2, · · · , w̃m)

of S, or YYH when Nt ≥ Nr, is given by

f ew1,··· , ewm(w1, · · · , wm) = a (αm(W))2|W|n−mF̃
(m)
00 (−Θ−1,X) (II.65)

In (II.65), the notation developed in the text after Equation (II.60) for αm(W) is used

and a
∆
= πm(m−1)eΓm(m)

|Θ|−neΓm(n)
. Using (II.60) in (II.65),

f ew1,··· , ewm(w1, · · · , wm) = a (αm(W))2|W|n−m |(e−λiwj )| Γ(m)(m)

[αm(−Λ)αm(W)]

= ã

m∏
i=1

m∏
j=i+1

(wi − wj) (

m∏
i=1

wn−m
i ) |(e−λiwj)|. (II.66)

ã
∆
=

a Γ(m)(m)

αm(−Λ)
, (−λ1, · · · ,−λm) are eigenvalues of −Θ−1 and Λ

∆
= diag(λ1, · · · , λm)

where λ1 < · · · < λm. Notice that
∏m

i=1

∏m
j=i+1(wi − wj) is the determinant of a

Vandermonde matrix [31], i.e.,

m∏
i=1

m∏
j=i+1

(wi − wj) =

∣∣∣∣∣∣∣
1 1 ··· 1

wm wm−1 ··· w1

w2
m w2

m−1 ··· w2
1

...
...

.. .
...

wm−1
m wm−1

m−1 ··· wm−1
1

∣∣∣∣∣∣∣ (II.67)
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where w1 > w2 > · · · > wm. Clearly, the density of the largest eigenvalue w̃1 is given

by the marginal density

f ew1(x) =

∫
0<wm<···<w2<x

f ew1, ew2,··· , ewm(x, w2, · · · , wm)

m∏
i=2

d wi

= ã

∫
R

m∏
i=2

m∏
j=i+1

(wi − wj)

m∏
j=2

(x − wj)

×(
m∏

i=2

wn−m
i ) xn−m |(e−λiwj)|

m∏
i=2

d wi

= ã xn−m

∫
R

m∏
i=2

m∏
j=i+1

(wi − wj)

m∏
i=2

ai(x) |(e−λiwj )|
m∏

i=2

d wi (II.68)

where R
∆
= 0 < wm < · · · < w2 < x and ai(x)

∆
= (x − wi)w

n−m
i . The second equality

in the above is obtained by substituting (II.66) and simplifying such that the dependence

on variable x is explicit. In (II.68) note that

m∏
i=2

m∏
j=i+1

(wi − wj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0

wm wm−1 · · · w2 0

w2
m w2

m−1 · · · w2
2 0

...
...

. . .
...

...

wm−2
m wm−2

m−1 · · · wm−2
2 0

0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (II.69)

Through matrix manipulations, the integrand in (II.68) can be expressed as the determi-

nant shown below. ∏m
i=2

∏m
j=i+1(wi − wj)

∏m
i=2 ai(x) |(e−λiwj)|

=

∣∣∣∣∣∣∣∣
Pm

i=2 e−λmwiai(x)
Pm

i=2 e−λm−1wiai(x) ··· Pm
i=2 e−λ1wiai(x)Pm

i=2 e−λmwiwiai(x)
Pm

i=2 e−λm−1wiwiai(x) ··· Pm
i=2 e−λ1wiwiai(x)

...
...

. . .
...Pm

i=2 e−λmwiwm−2
i ai(x)

Pm
i=2 e−λm−1wiwm−2

i ai(x) ··· Pm
i=2 e−λ1wiwm−2

i ai(x)

e−λmx e−λm−1x ··· e−λ1x

∣∣∣∣∣∣∣∣ .
Using the compact notation for determinant, i.e., | · |, the above can be simplified to

=
∑

(l2,l3,··· ,lm)

|V|. (II.70)
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The ijth entry of the matrix V, denoted as (V)i,j, is given by (V)i,j =

(e−λm+1−j wli+1 wi−1
li+1

ali+1
(x)) and (V)m,j = e−λm+1−jx for i = 1, 2, · · · , (m − 1) and

j = 1, 2, · · · , m. In (II.70), (l2, l3, · · · , lm) are all the permutations of (2, 3, · · · , m).

We also note the following formula for a determinant of, m × m, A:

|A| =
′∑

sign(t1, t2, · · · , tm) (A)1,t1 (A)2,t2 · · · (A)m,tm . (II.71)

The sum in (II.71) is over all the permutations (t1, t2, · · · , tm) of (1, 2, · · · , m), and

sign(t1, t2, · · · , tm) is positive if the permutation is even and negative if the permutation

is odd [31]. Thus, (II.68) can be written as

f ew1(x) = ã xn−m

∫
R

∑
(l2,l3,··· ,lm)

|V|
m∏

i=2

d wi. (II.72)

Using (II.71) in (II.72)

f ew1(x) = ã xn−m
∑

(l2,l3,··· ,lm)

∫
R

′∑
sign(t1, t2, · · · , tm)

×(V)1,t1 (V)2,t2 · · · (V)m,tm

m∏
i=2

d wi

= ã xn−m
∑

(l2,l3,··· ,lm)

′∑
sign(t1, t2, · · · , tm) (e−λm+1−tmx)

×
∫

R

m∏
k=2

(e−λm+1−tk−1
wlk wk−2

lk
alk(x))

m∏
i=2

d wi. (II.73)

Using Lemma 1 of [46] in (II.73) and substituting for ak(x) = (x − wk)w
n−m
k

f ew1(x) = ã xn−m

′∑
sign(t1, t2, · · · , tm) (e−λm+1−tmx)

×
m∏

k=2

∫ x

0

(e−λm+1−tk−1
wk wk−2

k (x − wk)w
n−m
k ) d wk (II.74)

In order to simplify the integral in (II.74), consider
∫ x

0
e−awwj d w. With the substitution

w = y/a ⇒ d w = d y/a, we get
∫ xa

0
e−y(y/a)j (d y/a) = a−j−1

∫ xa

0
e−yyj d y =

a−j−1 Γ(j + 1, xa). Using this in (II.74), we obtain

f ew1(x) = ã xn−m
′∑

sign(t1, t2, · · · , tm) (e−λm+1−tmx)(

m∏
k=2

βk−1,tk−1
(x)) (II.75)
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where

βi,j(x)
∆
=
(
x[λ−n+m−i

m+1−j Γ(n − m + i, xλm+1−j)]

− [λ−n+m−i−1
m+1−j Γ(n − m + i + 1, xλm+1−j)]

)
. (II.76)

From (II.71), it is immediately seen that (II.75) can be expressed in terms of the deter-

minant shown below:

f ew1(x) = ã xn−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1,1(x) β1,2(x) · · · β1,m(x)

β2,1(x) β2,2(x) · · · β2,m(x)
...

...
. . .

...

βm−1,1(x) βm−1,2(x) · · · βm−1,m(x)

e−λmx e−λm−1x · · · e−λ1x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(II.77)

where ã is defined earlier and can be simplified to

ã =
|Θ|−n

[
∏m

i=1

∏m
j=i+1(λj − λi)]

∏m
i=1 Γ(n − i + 1)

. (II.78)

Substituting m = Nr, n = Nt and Θ = Φ in (II.77) and (II.78), we obtain (II.20) and

(II.21), respectively. This proves Part A of Theorem 1. Next, we give the outline for

proving Part B.

PART B: We intend to find the pdf of the largest eigenvalue using the joint pdf of all

the eigenvalues in (II.59), i.e., the joint pdf of YHY for the case Nt < Nr. Equation

(II.59) can be rewritten as

f ew1,··· , ewm(w1, · · · , wm) = b αm(W)2 |W|n−mF̃
(n)
00 (−Ω−1,X) (II.79)

where b
∆
= πm(m−1)eΓm(m)

|Ω|−meΓm(n)
. As in the proof for the Part A, we want to simplify (II.79)

by finding a expression for F̃
(n)
00 (−Ω−1,X). Since F̃

(n)
00 (−Ω−1,X) depends on −Ω−1

and X only through its eigenvalues, we can write F̃
(n)
00 (−Ω−1,X) = F̃

(n)
00 (−Λ,W).

Recall that −Λ and W are the diagonal matrices of the eigenvalues of −Ω−1 and X,

respectively.

The expression in (II.60) assumes that U and V are of the same dimension

and all their eigenvalues are distinct, whereas in Lemma 5, U and V are still of the
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same dimension but all the eigenvalues of U are not necessarily distinct. Also, notice

that some of the eigenvalues can be zero in Lemma 5. An expression for F̃
(n)
00 (−Λ,W),

where −Λ and W are of different dimensions, i.e., n × n and m × m, respectively, and

m ≤ n, can be written. Since W is of lower dimension, a positive semidefinite matrix,

say U, of dimension n×n, which has m non zero distinct eigenvalues of W and n−m

zero eigenvalues can be constructed. Next, we apply Lemma 5, when the arguments to

the function F̃
(n)
00 lim(·, ·) are U and −Λ, and with the substitution k = n, r = m + 1,

h1 = h2 = · · · = hm = 1, hm+1 = n − m and ũ1 = w1, · · · , ũm = wm, ũm+1 = 0. The

following limiting expression is thus obtained:

F̃
(n)
00 lim(U,−Λ) =

Γ(n)(n)

αn(−Λ)

N(U,−Λ)

D(U)
(II.80)

where D(U) =

( m∏
i=1

m∏
j=i+1

(ũi − ũj)

)( m∏
i=1

ũn−m
i

) ( n−m−1∏
i=1

i!

)

= αm(W) |W|n−m

( n−m−1∏
l=1

l!

)
(II.81)

N(U,−Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

e−λ1w1 · · · e−λ1wm 1 λ1 λ2
1 · · · λn−m−1

1

e−λ2w1 · · · e−λ2wm 1 λ2 λ2
2 · · · λn−m−1

2

...
. . .

...
...

...
...

. . .
...

e−λnw1 · · · e−λnwm 1 λn λ2
n · · · λn−m−1

n

∣∣∣∣∣∣∣∣∣∣∣∣
(II.82)

Substituting (II.80) in the joint pdf of all the eigenvalues of S in (II.79), we get

f ew1,··· , ewm(w1, · · · , wm) = b αm(W)2 |W|n−m

×

⎡⎢⎢⎣ Γ(n)(n) N(U,−Λ)

αn(−Λ)αm(W) |W|n−m

(∏n−m−1
l=1 l!

)
⎤⎥⎥⎦

= b̃ αm(W) N(U,−Λ). (II.83)

In the above, b̃
∆
= b Γ(n)(n)/

(
αn(−Λ)

∏n−m−1
l=1 l!

)
. From this point onwards, proceed-

ing in the same manner as in Part A, the following expression for the largest eigenvalue



50

is obtained:

f ew1(x) = b̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−λ1x e−λ2x · · · e−λnx

γ2,1(x) γ2,2(x) · · · γ2,n(x)

γ3,1(x) γ3,2(x) · · · γ3,n(x)
...

...
. . .

...

γm,1(x) γm,2(x) · · · γm,n(x)

1 1 · · · 1

λ1 λ2 · · · λn

...
...

. . .
...

λn−m−1
1 λn−m−1

2 · · · λn−m−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(II.84)

where γi,j(x)
∆
= x λ−m+i−1

j Γ(m − i + 1, x λj) − λ−m+i−2
j Γ(m − i + 2, x λj) for

i = 2, · · · , m and j = 1, · · · , n; b̃ can be simplified to

b̃ =

[
|Ω|−m(∏m

i=1 Γ(m − i + 1)
)
(
∏n

i=1

∏n
j=i+1(λj − λi))

]
. (II.85)

Substituting m = Nt, n = Nr and Ω = Φ in (II.84) and (II.85), we obtain (II.22).
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Performance of Multiple Antenna

DS-CDMA UWB System With Noisy

Channel Estimates and Narrow-Band

Interference

III.A Introduction

Due to the large spectral occupancy and low transmission power levels (−41.3

dBm/MHz for indoor and hand-held peer-to-peer systems [3]), UWB systems have been

proposed to overlay licensed narrowband services that occupy various portions of the

radio spectrum. Interference arising from the coexisting narrowband systems, however,

limits the performance of a UWB system (for example, the strong inband interference

from the IEEE 802.11a WLAN services that operate with output power in the range 40–

800 mW when compared to maximum average EIRP of 0.56 mW for UWB systems [2],

[55]). This mandates that an adequate interference suppression measure be employed

at the UWB receiver, which in addition has to estimate a large number of low energy

multipath components to leverage multipath diversity.

For UWB systems, temporal processing techniques involving the use of an

51
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MMSE receiver and tunable notch filters have been proposed to enhance the system per-

formance [47]–[50]. Our work, here, considers the use of spatial processing techniques

in addition to temporal processing to enhance the interference suppression capabilities

and reliability of a UWB system [51], [52]. A DS-CDMA UWB system is considered,

as it is one of the candidate techniques for multiple access UWB communications [53].

Note that the DS-CDMA system proposed in [53] is carrier based. Initially, UWB

communications systems were based on carrier-less impulse radio (IR) technology [54].

However, the modulation formats considered for the commercial UWB applications are

carrier-based [55], [56], such as the single carrier DS-CDMA [53] and the multicarrier

frequency-hopping orthogonal frequency division multiplexing (FH-OFDM) [57] sys-

tems. The carrier-based solution was preferred because the severe restrictions placed by

the FCC on the out-of-band emission for a UWB-enabled device makes the use of the

baseband pulse, such as the one employed in the IR technology, very difficult [56].

There has been a growing research interest in applying multiple-input-

multiple-output (MIMO) techniques to UWB systems [62]–[68]. MIMO systems, with

multiple antennas at the transmitter and the receiver, have been shown to increase

throughput and improve robustness in wireless communication channels [9], [58], [59].

The use of multiple antennas to improve the interference suppression capability of a

CDMA system, over and above what is achievable through their processing gain, has

been addressed in [60], [61]. In the context of UWB, employing multiple antennas

to achieve higher data rates through spatial multiplexing has been considered in [62],

[63]. In these latter works, an interference-free UWB link is assumed, where the chan-

nel between each transmit and receive antenna pair is independently faded. In [64],

beamforming to combat interference in a time hopping impulse radio UWB system is

examined. However, both [63] and [64] assume that perfect knowledge of the channel is

available at the receiver. Issues related to the design of a space-time coding scheme for a

single-band UWB system and space-time-frequency coding for a multi-band UWB sys-

tem are studied in [65], [66], respectively. Characterization of a multiple antenna UWB

channel and the study of antenna effects, such as coupling on the performance, is car-
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ried out in [67], [68] through measurements. In particular, [68] considers the design of a

UWB antenna array operating in the 3.1–4.5 GHz range, and presents the performance

of a space-time RAKE receiver based upon measured data.

In this work, the performance of a single-input-multiple-output UWB link

with multiple users and NBI is analytically investigated. A spatio-temporal receiver

is employed, where each antenna element at the receiver array utilizes an FIR filter. To

benefit from the large multipath diversity inherent in a UWB system, the receiver first

forms an estimate of the channel in the presence of multi-access interference (MAI) and

NBI, and then uses it to optimally determine the spatio-temporal tap weights such that

the output signal-to-interference-plus-noise-ratio (SINR) is maximized. We investigate

the performance of this system, in particular, studying the effects of both quality of

channel estimates and antenna correlation. We show that for a fixed total diversity, there

is an optimal combination of the number of antennas and the number of temporal taps in

order to achieve the best performance, and that the optimal combination depends both

on the signal-to-interference ratio and the quality of the estimates.

The rest of the chapter is organized as follows. In Section III.B, the sys-

tem model along with the data detection and channel estimation scheme are described.

The optimal receiver is derived in Section III.C. In Section III.D, we obtain an exact

closed-form expression for the probability of error for a special case when the temporal

correlation between the NBI during the estimation and the data detection phases is neg-

ligible. This is followed by numerical results and discussion in Section III.E. Finally,

we state the conclusions in Section III.F.

III.B System Model

III.B.1 Transmitted Signal and Channel Model

Consider a conventional DS-CDMA system with binary signaling operating

over a frequency selective slowly fading channel with a single transmitter antenna and

M receiver antennas. A block diagram for the system is shown in Figure III.1. With K
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Figure III.1: System block diagram

users in the system, the transmitted signal of the kth user is given by

yk(t) = Re

(√
P̃k

∞∑
n=−∞

dk,� n
N
	 ck,n φ(t − nTc) ej2πft

)
(III.1)

where dk,� n
N
	 and ck,n are the transmitted binary data sequence and the spreading se-

quence, respectively, φ(t) is the impulse response of the chip wave shaping filter and

conforms to FCC regulations [3], and P̃k is the transmitted power. We assume that the

chip sequence of the desired user (k = 1) is deterministic, whereas for each of the K−1

interfering users it is an iid random binary sequence. The processing gain, N , of the sys-

tem is N = T
Tc

, where T is the bit duration and Tc is the chip duration. Denoting Φ(f) as

the Fourier transform of φ(t), the wave-shaping filter has the following characteristics:

Φ(f) =

⎧⎨⎩
√

Tc, if f ∈ [−1/2Tc, 1/2Tc]

0, else.
(III.2)

We will adopt the tapped delay line UWB channel model proposed in [69].

Using this model, the complex low-pass equivalent impulse response of the kth user’s

channel as seen at the mth receive antenna can be written as

hk,m(t) =

J−1∑
i=0

βk,m,i δ(t − τ̃k,m,i) (III.3)
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where J is the number of multipath components, βk,m,i is the complex channel fade for

the ith path,1 and the τ̃k,m,i are the multipath delays given by τ̃k,m,i = iTc, where Tc is

the time resolution of the channel. It has been shown through measurements that the

temporal correlation between various multipath components is negligible [69]. Thus,

βk,m,i for all i and k are independent random variables. However, for different values of

m, the βk,m,i are spatially correlated. According to the UWB channel model proposed

in [69], the amplitude of the channel fade is modeled as a Nakagami distributed random

variable where the parameters of the Nakagami distribution, i.e., fading figure (µ) and

the second moment, are modeled as random variables. We will adopt an approximation

to this model by first fixing the random distribution parameters to their mean values, as

in [71], and then approximating the Nakagami density with a Ricean. Such an approxi-

mation holds when the Nakagami fading figure µ is greater than unity. In this case, the

Ricean factor, Kr, can be related to µ as [70]

Kr =

√
µ2 − µ(

µ −√µ2 − µ
) . (III.4)

Since µ is greater than 2.5 in our results, we model the complex fades βk,m,i

as Gaussian. Expressing these fades in vector form, we denote the (MJ × 1) channel

vector for user k by βk, which comprises the multipath coefficients at each of the receive

antennas, i.e.,

βT
k

∆
= [βT

k,1, β
T
k,2, · · · , βT

k,M ],

where βT
k,m

∆
= [βk,m,0, · · · , βk,m,J−1], for m = 1, · · · , M. (III.5)

The distribution of βk can now be written as βk ∼ CN(µk,Σk), where CN(y,X)

represents a complex normal distribution with mean vector y and covariance matrix X.

Since the multipaths are assumed temporally uncorrelated, the covariance matrix, Σk,

has the following structure: Σk = SMJ diag{Bk,0,Bk,1, · · · · · · ,Bk,J−1}SJM , where

the M × M matrix Bk,i denotes the spatial correlation matrix of the ith path, and SMJ

and SJM are the commutation matrices [32].
1Since in our work we consider a carrier-based system, it is common to include a phase shift. Thus, the path gain

is complex.
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III.B.2 Data Detection

The lowpass equivalent of the signal after passing through the channel in the

presence of NBI and received at the mth antenna is given by

rm(t) =

K∑
k=1

J−1∑
i=0

βk,m,i

∞∑
n=−∞

√
Pk dk,� n

N
	 ck,n

×φ(t − τk − iTc − nTc) + INBI
m (t) + ITherm

m (t) (III.6)

where Pk is the received power and τk is the time delay of user k. Note that the Pk and P̃k

(see (III.1)) are related by the path loss model of [69]. We assume that the signal appears

to be narrowband to the antenna due to the fact that the fractional bandwidth of the signal

is much less than unity [77]. The time delay of the desired user (k = 1) is assumed to

be tracked, i.e., τ1 = 0, but for the interfering users, k = 2, · · · , K, τk, is a random

variable uniformly distributed over [0, T ]. The thermal noise component, I Therm
m (t), is

modeled as a zero-mean complex Gaussian process with two-sided spectral density No,

and is assumed spatially uncorrelated. INBI
m (t) denotes the lowpass equivalent of the

narrow-band interference, which is modeled as a zero-mean WSS complex Gaussian

process with power spectral density given by

PNBI(f) =

⎧⎨⎩ Jo, if f ∈ [−W/2, W/2]

0, elsewhere.
(III.7)

The space-time autocorrelation function of the NBI can be written as θNBI
m1,m2

(τ) =

(B)m1,m2

(
sinπWτ

πτ

)
Jo, where m1 and m2 denote the antenna indices, and B is the

M × M spatial correlation matrix of the NBI. The spatial correlation depends on the

physical characteristics of the propagation environment, which in the case of an in-

door operating environment can be assumed to be slowly changing due to low mobility.

In such an environment, it is reasonable to assume that the spatial correlation is time-

invariant. As a result, the joint space-time correlation function of the NBI can be written

in a factored form as shown above. The specific model for the spatial correlation is

presented in Section III.E.

The signal at each receive antenna is passed through a P -tap transversal filter

with tap weights {wm,p}P
p=1 at the mth antenna, and tap separation Tc. Despreading the
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chip matched filter output samples and then combining the weighted signal across the

antenna array yields the output test statistic for the lth transmitted bit

rl = Re(wH zl) (III.8)

where w is an MP × 1 vector containing the spatio-temporal weights, i.e., wT ∆
=

[wT
1 ,wT

2 , · · · ,wT
M ] and wT

m
∆
= [wm,1, wm,2, · · · , wm,P ], m = 1, · · · , M , and the vec-

tor zl is given by

zl =
√

P1 D1,l β1d1,l +
K∑

k=2

Dk,l βk + γNBI
l + γTherm

l . (III.9)

The first term in (III.9) is due to the desired user’s signal and its multipaths, but the inter-

symbol interference component is ignored both because the multipath spread is assumed

to be less than the symbol duration and the multipath intensity profile is exponentially

decaying. The second term is the contribution from the multiple interfering users, and

the third and the fourth terms are due to NBI and thermal noise, respectively. The matri-

ces {Dk,l}K
k=2, of dimension MP ×MJ , are expressed in terms of the cross-correlation

of the desired user’s spreading sequence with those of the interfering users over a bit du-

ration of N chips, and the matrix D1,l is defined by the partial correlation of the desired

user’s spreading sequence with itself. These matrices are given by

Dk,l
∆
= IM ⊗ Gk,l (k = 1, · · · , K) (III.10)

where

(G1,l)i,j
∆
=

lN+N−1+(j−i)−∑
q=lN+(j−i)+

c1,q+i−j c1,q

and

(Gk,l)i,j
∆
=
√

Pk

lN+N−1∑
q=lN

∞∑
n=−∞

c1,q dk,� n
N
	 ck,n

× x((q + i − j − n)Tc − τk) (k = 2, · · · , K). (III.11)

In the above, ⊗ stands for the Kronecker product, (z)+ ∆
= max(z, 0), (z)− ∆

= min(z, 0),

(Gk,l)i,j, denotes the ijth entry of the (P × J) matrix Gk,l, and x(t) is defined by



58

x(t) = sin(πt/Tc)
πt/Tc

. The vectors γNBI
l and γTherm

l can each be written as

γs
l

∆
=

lN+N−1∑
q=lN

c1,q {us(t) 	 φ(−t)}|t=qTc (III.12)

where 	 denotes convolution operation, the superscript ’s’ stands for either ’NBI’

or ’Therm’, us(t)T ∆
= [us

1(t)
T ,us

2(t)
T , · · · ,us

M(t)T ] and us
m(t)T ∆

= [Is
m(t), Is

m(t +

Tc), · · · , Is
m(t + PTc − Tc)], for m = 1, · · · , M .

Note that the Dk,l, k = 2, · · · , K, is a random matrix due to τk and ck,n. In

our analysis, the MAI term, namely,
∑K

k=2 Dk,l βk in (III.9), is approximated as being

Gaussian due to a large number of interfering users. With this approximation, the vector

zl, conditioned on the data d1,l, is Gaussian.

III.B.3 Channel Estimation

The channel vector β1 is unknown at the receiver. An estimate of the channel

is obtained based on a transmitted pilot which is time-multiplexed with the data. Since

the receiver combines the first P (≤ J) multipaths, an estimate of P multipath coeffi-

cients at each receive antenna is formed. A spread tone is used for the pilot signal. At

the receiver, the pilot symbols are demodulated, chip-matched filtered, despread and ac-

cumulated over LN chip intervals, where L is a positive integer. The output pilot from

all the antennas can be written in an analogous form to (III.9) as

y =
√

Pp D̃1,el β1 +

K∑
k=2

D̃k,el βk + γNBIel + γThermel (III.13)

where l̃ denotes the start of the bit boundary for the estimation period of LN chips, Pp

is the received pilot power and γNBIel , γThermel are MP × 1 spatio - temporal complex

Gaussian vectors due to NBI and thermal noise, respectively. Equation (III.13) is similar

to (III.9), except that the data d1,l, in (III.9), is set to unity, the sampled time instant, l in

(III.9), has been changed to l̃ in (III.13) for pilot reception/channel estimation, and the

pilot is accumulated over LN chips, as opposed to N chips in (III.9). The matrix D̃k,el
is defined as D̃k,el ∆

= IM ⊗ G̃k,el, where (G̃1,el)i,j
∆
=
∑elN+LN−1

q=elN c1,q+i−j c1,q, and G̃k,el, for
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k = 2, · · · , K, is the same as (III.11) except the first summation in (III.11) is replaced

by
∑elN+LN−1

q=elN . A similar change of limits in the summation in (III.12) would lead to the

definitions for γNBIel , γThermel in (III.13).

Using vector notation, the MP multipath coefficients to be estimated can be

represented by the vector β
(1)
1 . The remaining (J −P )M coefficients are represented as

β
(2)
1 . Note that taken together, β(1)

1 and β
(2)
1 constitute all the elements of β1. The mean

and covariance matrices associated with β
(1)
1 and β

(2)
1 are denoted as {µ(1)

1 , Σ
(1)
1 }, and

{µ(2)
1 , Σ

(2)
1 }, respectively, and are obtained from {µ1, Σ1} of β1. With these defini-

tions, the first term in (III.9) can be further simplified to separate out the contribution

due to self-interference (SI), i.e., we have√
P1 D1,l β1d1,l

=
√

P1 (Nβ
(1)
1 + D

(1)
1,l β

(1)
1 + D

(2)
1,l β

(2)
1 ) d1,l. (III.14)

Note that the second and the third terms in (III.14) are the SI terms. The off-main-

diagonal entries of the matrix G1,l, constituting D1,l, result from the non-zero autocor-

relation of the spreading sequence for non-zero lag. This, in turn, leads to SI which, by

an appropriate partition of the matrix G1,l, is identified in (III.14). Thus, the following

definitions are in order: D
(1)
1,l

∆
= IM ⊗ G

(1)
1,l and D

(2)
1,l

∆
= IM ⊗ G

(2)
1,l , where the (P × P )

matrix G
(1)
1,l and the (P × (J − P )) matrix G

(2)
1,l are formed by partitioning G1,l. If the

main diagonal entries of G1,l are first set to zero, then the first P columns of G1,l is

the matrix G
(1)
1,l , whereas the last (J − P ) columns is G

(2)
1,l . Similarly, the first term of

(III.13) can be simplified and quantities D̃
(1)

1,el and D̃
(2)

1,el can be defined.

Next we use the pilot y to form a linear minimum mean-square error

(LMMSE) estimate, β̂1

(1)
. From [30], β̂1

(1)
is given by the mean of the posterior pdf,2

i.e., β̂1

(1)
= E[β

(1)
1 |y]. Thus, we have

β̂1

(1)
= µ

(1)
1 + GH (y − E[y]), (III.15)

where G = C−1
yy C

yβ(1)

1

. The channel estimate, β̂1

(1)
, is Gaussian-distributed with mean

2Since the LMMSE channel estimator is employed, the second order statistics of the channel and interference are
assumed known.
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µ
(1)
1 and covariance given by

Cdβ1

(1)dβ1

(1) = C
β(1)

1 y
C−1

yyC
yβ(1)

1

. (III.16)

It can be shown that the mean-square error in estimation tends to zero at a rate 1/L as L

tends to infinity. Note that the same processes, NBI and MAI, interfere during channel

estimation and data detection. Since the NBI during channel estimation is correlated to

itself during data detection, there is temporal correlation between the received pilot in

(III.13), and the received data in (III.9). Later, in the numerical results, we will study

the impact of this correlation on the system performance.

III.C Receiver Design

With knowledge of the channel estimate available, we wish to design the op-

timal receiver, i.e., determine the weights, w, such that the conditional output SINR

(conditioned on β̂1

(1)
) is maximized. The optimal weights thus determined depend on

the channel estimates. Before designing the receiver, we first establish an expression for

the conditional probability of error.

III.C.1 Conditional Probability of Error

The test statistic in (III.8) can be rewritten in the form shown below:

rl = x1 d1,l + x2 + x3 + x4 (III.17)

where x1
∆
= Re(

√
P1w

H D1,l β1), x2
∆
= Re(wH

∑K
k=2 Dk,l βk), x3

∆
= Re(wHγNBI

l ),

and x4
∆
= Re(wHγTherm

l ). The optimum weight vector, w, depends on the channel

estimate, β̂1

(1)
(see part (a) of Lemma 6 in Section III.C.2), thus, conditioned on β̂1

(1)

and d1,l, the test statistic in (III.17) is Gaussian. Note that, conditioned on the estimate

β̂1

(1)
, the terms in (III.17) are correlated as well. An expression for the conditional
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probability of error, as a function of w, can be written as

Pe(β̂1

(1)
)

= 1
2
P [ν1 < 0|d1,l = 1, β̂1

(1)
]

+ 1
2
P [ν2 > 0|d1,l = −1, β̂1

(1)
]

= 1
2
Q

⎛⎝E[ν1|β̂1

(1)
]

σ
ν1|dβ1

(1)

⎞⎠+ 1
2
Q

⎛⎝−E[ν2|β̂1

(1)
]

σ
ν2|dβ1

(1)

⎞⎠ (III.18)

where ν1
∆
= x1+x2+x3+x4 and ν2

∆
= −x1+x2+x3 +x4. Simplifying the conditional

mean and variances that appear in (III.18), the conditional probability of error can be

written as shown in Theorem 4.

Theorem 4 The conditional probability of error is given by

Pe(β̂1

(1)
) = 1

2
Q

(
m1 + m2

σ1

)
+ 1

2
Q

(
m1 − m2

σ2

)
(III.19)

where Q(x) = 1√
2π

∫∞
x

e−y2/2dy. Expressions for the parameters appearing inside the

Q(·) function in (III.19) are given below:

m1
∆
= Re

(
wH
(
h + Y β̂1

(1)
))

m2
∆
= Re

(
wH

(
Λ C−1dβ1

(1)dβ1

(1)

[
β̂1

(1) − µ
(1)
1

]))
(III.20)

where h =
√

P1 D
(2)
1,l ( µ

(2)
1 − Zµ

(1)
1 ), Y =

√
P1 (D

(2)
1,l Z + D̂), Z =√

Pp Σ
(2)
1 (D̃

(2)

1,el )T GC−1dβ1

(1)dβ1

(1) , D̂ = (NIMP + D
(1)
1,l ), and Λ = (Ωl,el + Ξl,el)H G.

The variances in (III.19) are given by

σ2
1

∆
= 1

2

(
wH
(
C1 − C2 C−1dβ1

(1)dβ1

(1)C
H
2

)
w

)
and σ2

2
∆
= 1

2

(
wH
(
C3 − C4 C−1dβ1

(1)dβ1

(1)C
H
4

)
w

)
. (III.21)

Proof. The proof is given in Appendix III.H.1.
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The expressions m1 and m2, in (III.20), are obtained by simplifying the condi-

tional means in (III.18). Specifically, the mean m2 results because of the temporal corre-

lation between the pilot and the data. This can be seen through its dependence on matri-

ces Ωl,el and Ξl,el constituting Λ above. The matrix Ωl,el = E[(γNBIel )(γNBI
l )H ], appear-

ing in the definition of Λ, is given by the cross-correlation of the NBI component during

estimation and data detection phases, and Ξl,el = E[(
∑K

k=2 D̃k,el βk) ×(
∑Kek=2 Dek,l βek)H ]

is given by the cross-correlation of the MAI component during the estimation phase and

the MAI during the data detection phase. Similarly, the two separate expression for the

variances in (III.21) are obtained by simplifying the conditional variances that appear

in (III.18). Expressions for the covariance matrices C1, C2, C3 and C4, in (III.21), and

matrices Ωl,el and Ξl,el, are given in Appendix III.H.2.

Consider now a special case when the correlation between the NBI during the

channel estimation phase and the data detection phase is weak and can be neglected,

i.e., mathematically, W [(l − l̃ − L)N ]Tc >> 1. For this case, the expression in (III.19)

simplifies to

Pe(β̂1

(1)
) = Q

(m1

σ

)
(III.22)

where σ1 = σ2 = σ. Note that the expression in (III.22) is exact when the cross-

correlation of the NBI during estimation and data detection phases is zero, and the cor-

responding cross-correlation of the MAI components is zero. In this case, the matrices

Ωl,el and Ξl,el are each zero, and the two expressions for σ1 and σ2, in (III.21), are equal.

This is denoted as σ2
1 = σ2

2 = σ2 = 1
2
(wH C w). The mean m2 depends on Ωl,el and Ξl,el

and is equal to zero in (III.22).

III.C.2 SINR Maximization

To determine the tap weights, w, we maximize the output SINR. The condi-

tional SINR (conditioned on β̂1

(1)
) is defined as

SINR(w|β̂1

(1)
) =

(
Re

(
wH
(
h + Y β̂1

(1)
)))2

1
2
(wH Cw)

. (III.23)
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The SINR expression in (III.23) corresponds to the case when the cross correlation of

the NBI during the channel estimation and the data detection phases is zero. Thus,

the SINR in (III.23) relates to the argument of the Q(.) function appearing in the error

probability in (III.22). Specifically, SINR(w|β̂1

(1)
) = m2

1/σ
2.

The function in (III.23) can be maximized using the Cauchy-Schwarz (CS)

inequality. The optimum weights resulting from such a maximization (see Appendix

III.H.3) are given below in part (a) of Lemma 6.

Lemma 6 : (a) The optimum weights are: w = C−1 (h + Y β̂1

(1)
).

By substituting the optimal weights in (III.23), the maximum SINR can be

written as

max SINR(β̂1

(1)
) = 2

(
β̂1

(1) H
YHC−1Y β̂1

(1)

+ β̂1

(1) H
YHC−1 h

+ hHC−1Y β̂1

(1)
+ hHC−1 h

)
.

Let us define aT ∆
= [Re(β̂1

(1)
)T Img(β̂1

(1)
)T ], and

F(X)
∆
=

⎡⎣ Re(X) −Img(X)

Img(X) Re(X)

⎤⎦ , (III.24)

which is a matrix-valued function of a matrix. Since the complex Gaussian vec-

tor β̂1

(1)
is of length PM , the dimension of a is (2PM × 1). Recall that

β̂1

(1) ∼ CN(µ
(1)
1 , Cdβ1

(1)dβ1

(1)); this implies that a ∼ N(µa, Caa), where µT
a =

[Re(µ
(1)
1 )T Img(µ

(1)
1 )T ] and Caa = 1

2
F(Cdβ1

(1)dβ1

(1)) (see [30]).

The maximum output SINR can be further simplified to (III.25) in part (b) of

Lemma 6 shown below.

Lemma 6: (b) The maximum output SINR is given by

max SINR(β̂1

(1)
) =
(
aT Aa + aT g + e

)
(III.25)
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where A = 2F(YHC−1Y), e = 2hHC−1 h,

and gT = 4
[
Re(YHC−1 h)T , Img(YHC−1 h)T

]
.

Note that (III.25) is a quadratic form in real Gaussian random variables. The

maximum SINR in (III.25) also minimizes the probability of error for the special case

in (III.22).

With this choice of the optimal w, the conditional probability of error in

(III.19) and (III.22) can be simplified, and the unconditional probability of error can

be obtained by numerical averaging using (III.19), and in a closed-form using (III.22)

as shown in the next section.

III.D Probability of Error

For the special case when the cross correlation between the received pilot and

the received data can be neglected, and using the optimal weights in Lemma 6 (a), we

establish a closed-form expression for the unconditional probability of error given in

Theorem 5.

Theorem 5 For the case when the correlation between the NBI during the channel es-

timation phase and the data detection phase is zero, the probability of error is given

by

Pe =
B(1

2
, ν+1

2
)

2 π � ν/2

[ ∞∑
k=0

ξk 2F1

(
k +

ν

2
,
ν + 1

2
;
ν

2
+ 1;

−1

�

)]
(III.26)

where ν = 2PM , B(x, y) is the beta function, and 2F1(α1, α2; b; z) is the hypergeomet-

ric function [74]. The coefficients ξk in (III.26) are obtained recursively as

ξo = 1

ξk =
1

k

k−1∑
r=0

χk−r ξr, k ≥ 1

χk =
1

2

ν∑
j=1

(
1 − λj

�

)k

− k

8 �

ν∑
j=1

b2
j

λj

(
1 − λj

�

)k−1

, k ≥ 1. (III.27)
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Let UΛUT be the eigenvalue decomposition (evd) of C1/2
aa AC

1/2
aa , and b

∆
= UT C

1/2
aa (g+

2Aµa). Then in (III.27), bj is the jth component of the vector b, λj is the jth diagonal

element of the matrix Λ, and � is a positive constant such that � > λmax > 0, where

λmax denotes the maximum eigenvalue.

Proof. The proof is given in Appendix III.H.4.

III.E Numerical Results

The system parameter values considered for the numerical results are as fol-

lows: the signal and NBI bandwidths are 500 MHz and 5 MHz, respectively, the pro-

cessing gain, N , is 50, the number of users (with equal received power), K, is 20, the

number of multipath components, J , is 20, the signal-to-pilot ratio is 0 dB, the channel

estimation period is over 50 chips, and signal-to-NBI (SNBI) ratio is fixed to −10 dB

at Eb/No = 0 dB unless specified otherwise. Note that we fix the NBI power inde-

pendent of the signal power, thus the signal-to-NBI ratio improves as signal power is

increased. At the receiver, we consider a physically constrained linear array where the

effective aperture of the array is fixed. For such an antenna array, increasing the num-

ber of receiver antenna elements leads to reduced inter-element spacing. This, in turn,

causes higher correlation between the channel coefficients at each element. Also, for

a fixed aperture array, the total power collected by the array is constant, irrespective of

the number of elements [75]. For such an antenna array, an increase in the number of

the elements is brought about by decreasing the size of each element [78]. In turn, the

power captured by each element decreases with the decrease in its effective aperture.

In our results, the total length of the antenna array is constrained to 2λ, where λ is the

carrier wavelength.

Thus, for a fixed aperture antenna array, the power received by each antenna

element reduces as more antenna elements are added to the array.3 This effectively

means that the SNR-per-element decreases. Therefore, during the channel estimation
3Note that in our results the total received power is kept fixed through normalization.
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phase, with a larger number of antenna elements, there are more parameters to estimate

and less power available to make each estimate. The normalized minimum mean square

error (NMMSE) in estimation (normalized by MP ) depends on the combination of two

factors; pilot power-per-antenna element and fade correlation. When the number of

antenna elements M is initially increased, the fade correlation is low, and the NMMSE

increases due to reduced pilot power-per-antenna element. However, when the inter-

element spacing is sufficiently reduced as M continues to increase, the NMMSE value

remains largely the same. This is because the advantage of increased correlation is

balanced out by a corresponding reduction in the pilot SNR. However, note also that

the non-coherent combining loss keeps increasing as a larger number of these noisy

estimates are combined.

Also, for a fixed length array, we know, from antenna theory [77], that the

beamwidth or the spatial resolution of an antenna array depends on the length of the

array. Consequently, the ability to discriminate and suppress interference through spatial

selectivity, for a fixed length array, is potentially limited.

We assume an indoor operating environment. It has been shown through mea-

surements that for an indoor channel (2–8 GHz band) the Non Line Of Sight (NLOS)

component experiences wide-angle scattering, which is, in general, frequency depen-

dent [72]. The data measurement results in [72] focused on a system bandwidth of 6

GHz (2–8 GHz band), and the wide angle-of-arrival for the NLOS link was shown to

be particularly true for the 2.5–3 GHz and 6–8 GHz frequency intervals. For these fre-

quency intervals of operation and a signal bandwidth of 0.5 GHz, as in our case, an

assumption of wide angle scattering for the NLOS is justified. To capture this effect

through a mathematically tractable model for spatial correlation, we employ the model

of [28], according to which the m1 m2th element of the spatial correlation matrix (say

Q) of each multipath component can be written as

(Q)m1,m2

= Io

(√
κ2 − 4π2∆2

m1,m2

λ2 +
j4πκ sin(eµ)∆m1,m2

λ

)
/ Io(κ) (III.28)
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Figure III.2: BER plot for varying number of antenna elements M for fixed P and

Eb/No.

where m1, m2 = 1, 2, . . . , M , Io(.) is the modified Bessel function of the first kind

and zeroth order, κ (≥ 0) controls the width of the angle-of-arrival (AOA) and ranges

from zero (isotropic scattering) to infinity (non-isotropic scattering), the parameter µ̃(∈
[−π, π)) accounts for the mean direction of the AOA, and ∆m1,m2 is the spacing between

the m1th and m2th antenna elements. A rich scattering environment is simulated by

setting the parameter κ to small values (close to zero).

For the optimal combining scheme in Section III.C.2, the system performance

for a varying number of antenna elements M and a fixed value of number of temporal

taps (P = 6) with Eb/No being a parameter is shown in Figure III.2. For a fixed P , as

the number of antennas is initially increased, the system is able to suppress interference

better through spatial filtering. However, as seen from Figure III.2, for the fixed length

array, as M is continued to increase the improvement in performance is marginal. This

is because, firstly, for fixed length array, interference suppression capability is limited,
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and secondly, the continued increase in correlation as more antennas are added provides

only small improvement in diversity. On the other hand, since the channel is estimated,

the non-coherent combining loss increases as a larger number of the noisy estimates are

combined, as mentioned earlier. Figure III.2 shows the net effect of these factors on the

performance.

The labels ’Corr’ and ’Uncorr’, in Figure III.2, correspond to the average prob-

ability of error obtained through numerical averaging in (III.19) and (III.22), respec-

tively, and ’Uncorr CF’ corresponds to the closed-form expression in (III.26). Note that

the performance for all these three cases is almost indistinguishable. This is shown in

Figure III.2 by the curve with a circle that corresponds to Eb/No = 10 dB. Similarly,

when Eb/No = 15 dB, the curve with a cross in Figure III.2 shows essentially the same

performance for the three average BER expressions. The curves labeled ’Corr’ and ’Un-

corr’ are very close because the optimum weights suppress the NBI component of the

output test statistic, which in turn lowers the impact of temporal correlation between

the NBI during channel estimation and during data detection on the performance. Also,

as expected, curves ’Uncorr’ and ’Uncorr CF’ are very close, i.e., the results obtained

through numerical averaging in (III.22) agree with the theoretical results predicted from

(III.26).

Figure III.3 plots the performance when P is fixed at 2, and M takes on values

{1, 4}. The SNBI is lowered to −25 dB. With a smaller number of spatial and tempo-

ral taps, as when M = 1 and P = 2 in Figure III.3, the system is unable to suppress

the NBI. For this case, accounting for the temporal correlation between the NBI during

estimation and data detection phases has a significant effect on the performance, in par-

ticular, the performance improves. This is evident from Figure III.3 where, for M = 1,

the curve ’Corr’ achieves a lower BER when compared to both ’Uncorr’ and ’Uncorr

CF’. However, as the number of antennas is increased to 4 and P is kept fixed at 2, the

NBI is suppressed sufficiently because of which performance for the three cases is al-

most the same (shown by the curve with a cross in Figure III.3). Thus, the average BER

predicted by the two expressions, namely (III.26) and numerical averaging of the condi-
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Figure III.3: BER plot for P = 2 and M takes on values {1, 4}. The SNBI is −25 dB.

tional probability of (III.19), would differ when there is insufficient NBI suppression.

For all the subsequent plots, the BER obtained from numerical averaging in

(III.19) and (III.22), and in closed-form in (III.26), resulted in nearly the same perfor-

mance. Thus, for clarity, we only present BER results from (III.26). Figure III.4 shows

the probability of error when M is fixed (M = 2) while P is varied from 2 to 20.

By increasing P, the system is able to capture additional multipath energy and suppress

the interference better; however, the estimation quality degrades. This is because the

lower SNR associated with the multipath coefficients with larger delays due to the ex-

ponentially decaying intensity profile results in higher estimation noise. For the system

parameter values considered in Figure III.4, we observe that the performance improves

as P is increased, indicating that the enhanced interference suppression with larger P

dominates the performance.

Figure III.5 plots the performance when the product of the number of antennas

and temporal taps is fixed at 12. This also fixes the maximum diversity of the system.
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Note from Figure III.5, that the configuration M = 3, P = 4 performs the best. Thus,

there is an optimal combination of the number of antennas and the temporal taps that

achieves the best performance, and this optimal combination depends on the signal-to-

interference ratio and the estimation quality. Also note in Figure III.5 the crossover by

the curves M = 6, P = 2 and M = 2, P = 6. As mentioned earlier, signal-to-NBI

ratio improves as signal power is increased. This implies that NBI is more relevant in

the lower SNR regime. For the higher SNR values, the performance is mainly limited

by the MAI. Therefore, as SNR is increased, the configuration M = 6, P = 2 has an

advantage over M = 2, P = 6 mainly because the larger number of antenna elements

leads to enhanced MAI suppression.

Figure III.6 plots the performance for the same set of parameters as in Figure

III.5, except that now ISI is taken into account. The dashed curves in Figure III.6 are

for the case when ISI is considered, whereas the solid curves corresponds to when ISI

is neglected. Since we have an interference-limited UWB system, where the presence
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Figure III.5: BER plot for the case when the product of M times P is fixed to 12.

of both narrowband interference and multiple access interference, in addition to channel

estimation errors, limit the performance, the impact of ISI is not significant. This is

evident from Figure III.6.

III.F Conclusion

In this work, the error rate performance of a multiple antenna DS-CDMA

UWB system was analyzed under the conditions of imperfect channel estimation and

the presence of NBI and MAI. An optimal spatio-temporal receiver was designed that

first forms an estimate of the channel in the presence of NBI and MAI, and then uses

it to optimally combine the received signal. An exact closed-form expression for the

probability of error for the special case when the correlation between the NBI during

the channel estimation phase and the data detection phase is negligible was derived.

Spatial processing, in addition to temporal processing, was shown to improve the system

performance. The effects of channel estimation accuracy, interference suppression, and
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spatial correlation on the performance were studied. It was shown that, for a fixed total

diversity, there is an optimal combination of the number of antennas and the number of

temporal taps in order to achieve the best performance, and that the optimal combination

depends on the signal-to-interference ratio and the quality of the estimates.
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III.H Appendices for Chapter III

III.H.1 Proof of Theorem 4

The probability of error in (III.19) is obtained from (III.18) by simplifying

the conditional means and variances that appear in the expression in (III.18). From the

definition of ν1 (see after (III.18)), we have E[ν1|β̂1

(1)
] = E[x1|β̂1

(1)
]+E[x2+x3|β̂1

(1)
],

where E[x4|β̂1

(1)
] = 0, since the thermal noise component x4 is independent of β̂1

(1)

and has zero mean. Consider

E
[
x1

∣∣∣β̂1

(1)
]

= E

[
Re
{√

P1w
H D1,l β1

} ∣∣∣β̂1

(1)
]

= E

[
Re
{√

P1w
H
(

D̂β
(1)
1 + D

(2)
1,l β

(2)
1

)} ∣∣∣β̂1

(1)
]

= Re

{√
P1w

H
(

D̂E
[
β

(1)
1

∣∣β̂1

(1)]
+ D

(2)
1,l E
[
β

(2)
1

∣∣β̂1

(1)] )}
, (III.29)

where the first equality in (III.29) is obtained by substituting for x1 defined after (III.17),

and the second equality is obtained by using the decomposition of D1,l β1 in (III.14).

Since β
(1)
1 , β

(2)
1 and β̂1

(1)
are jointly Gaussian, the conditional means in the last equality

in (III.29) can be further simplified using the relation E[x|y] = E[x] + CxyC
−1
yy (y −

E[y]) for jointly Gaussian x and y, from [30]. The expression obtained after carrying

out this simplification is the expression for the mean m1 in (III.20). Now consider

q1
∆
= (
∑K

k=2 Dk,l βk + γNBI
l ) and the definition of x2 and x3 after (III.17). We have

E
[
(x2 + x3)

∣∣β̂1

(1)]
= Re

(
wH E

[
q1

∣∣β̂1

(1)])
. (III.30)

The mean m2 in (III.20) is obtained from (III.30) after simplifying the conditional mean

in (III.30) using the joint Gaussianity approach mentioned above.

To obtain a simplified expression for the conditional variances, we first define

the following quantities: q2
∆
= [

√
P1 D̂ (β

(1)
1 − β̂1

(1)
) + D

(2)
1,l β

(2)
1 ], p̃

∆
= q1 + q2 +
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γTherm
l , and p̂

∆
= q1 − q2 + γTherm

l . Then we have

σ2
1 = σ2

ν1|dβ1

(1) = E
[(

ν1 − E[ν1|β̂1

(1)
]
)2∣∣∣β̂1

(1)
]

= 1
2
(wH Cep|dβ1

(1)w),

and σ2
2 = σ2

ν2|dβ1

(1) = E
[(

ν2 − E[ν2|β̂1

(1)
]
)2∣∣∣β̂1

(1)
]

= 1
2
(wH C

p̂|dβ1

(1)w). (III.31)

As p̂, p̃ and β̂1

(1)
are jointly Gaussian, the property Cx|y = Cxx − CxyC

−1
yyCyx from

[30] can be used to further simplify the conditional covariances Cep|dβ1

(1) and C
p̂|dβ1

(1) in

(III.31). Upon doing so, the conditional variances σ2
1 and σ2

2 in (III.31) can be expressed

as in (III.21), and the covariance matrices C1, C2, C3 and C4, in (III.21), can now be

identified as: C1 = Cepep, C2 = Cepdβ1

(1) , C3 = Cp̂p̂ and C4 = C
p̂

dβ1

(1) . An expression

for these matrices is given in Appendix III.H.2.

III.H.2 Covariance Matrices

Matrices C1, C2, C3 and C4 are given by: C1 = Ψ − Υ, C2 = Λ + Γ, C3 =

Ψ + Υ, and C4 = Λ − Γ, where Υ =
√

P1 (D̂ΛH + ΛD̂T ), and Γ and Ψ are defined

by

Γ
∆
=
√

P1Pp D
(2)
1,l Σ

(2)
1 (D̃

(2)

1,el )T G,

Ψ
∆
= A1 + A2 + A3 + A4 − A5 + A6, (III.32)

respectively. In the above, A5 =
√

P1 (D̂ΓH + Γ D̂T ), and the matrices appearing in

the sum in (III.32) are defined as follows:

A1
∆
= P1 D̂ Cgβ1

(1)gβ1

(1) D̂T ,

A2
∆
=

lN+N−1∑
q=lN

lN+N−1∑
q̂=lN

c1,q c1,q̂ Rq,q̂,

A3
∆
=
(
B ⊗ (IP ⊗ cT

1,l)ΘNBI(IP ⊗ c1,l)
)

A4
∆
= P1 D

(2)
1,l Σ

(2)
1 (D

(2)
1,l )

T

Ωl,el ∆
= (IMP ⊗ c̃T

1,el) Ω̃l,el (IMP ⊗ c1,l) (III.33)
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where β̃1

(1)
= β1

(1) − β̂1

(1)
is the channel estimation error vector, and Cgβ1

(1)gβ1

(1)

denotes the estimation error covariance matrix. Also, B is the M×M spatial correlation

matrix of the NBI. The vectors c1,l and c̃1,el, in (III.33), are of dimensions (N × 1) and

(LN × 1), respectively, and are defined as cT
1,l

∆
= [c1,lN , c1,lN+1, · · · , c1,lN+N−1] and

c̃T
1,el ∆

= [c1,elN , c1,elN+1, · · · , c1,elN+LN−1].

Matrix Ξl,el has the same definition as of A2, except the first sum is changed to∑elN+LN−1

q=elN , and A6, the covariance of the thermal noise component, is obtained from

A3 by setting B to IM , and ΘNBI to ΘTherm.

Matrices Rq,q̂ and Ω̃l,el are of dimension MP × MP and PLNM × PNM ,

respectively, whereas Θs, where the subscript ’s’ stands for either ’NBI or ’Therm’, is

of dimension PN × PN . These are given by

(Θs)i,j = θ̃s((g(i) − g(j))Tc)

(Rq,q̂)i,j =

g1(i)J∑
k̂=(g1(i)−1)J+1

g1(j)J∑
ek=(g1(j)−1)J+1

(H)ek,k̂

× δq−q̂−u(j,P )+u(i,P )+u(k̂,J)−u(ek,J)

(Ω̃l,el)i,j = (B)v(i,PNL),v(j,PN)

× θ̃NBI

((
(l̃ − l)N + g(i, LN) − g(j, N)

)
Tc

)
respectively, where H =

∑K
k=2 Pk(Σk + µkµ

H
k ). The autocorrelation functions are

given by

θ̃NBI(αTc) = Jo
SinπWαTc

πα
and θ̃Therm(αTc) = Noδα.

Also, u(i, A) = (i−1)modA
, v(i, A) = 
 i

A
�, g(i) = u(i, N)+v(i, N), g1(i) = v(i, P ),

and g(i, A) = u(i, A) + u(v(i, A), P ).

III.H.3 Optimum Weights

Without loss of generality, we define x̃
∆
= C1/2w and simplify the conditional

SINR in (III.23) to the quantity on the left side of the inequality below:

2
(
Re (x̃HC−1/2b̃)

)2
/(x̃H x̃) � 2 b̃HC−1b̃ (III.34)
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where b̃
∆
= (h + Y β̂1

(1)
). The upper bound in (III.34) follows from the CS inequality

[32, eq. (5.1.5)]. The equality in (III.34) holds iff x̃ = α C−1/2b̃, [32, page 261].

Thus, the optimum weight x̃, or equivalently w that achieves the bound in (III.34) is

w = α C−1b̃. The real scalar α in the expression for w can be dropped as it does not

affect the output SINR.

III.H.4 Proof of Theorem 5

The conditional probability of error expression for the special case is given in

(III.22). Using the optimal weights in Lemma 1 (a), the average probability of error for

this case can be written as

Pe =

∫ ∞

0

Q(
√

x)fmax SINR(x) dx (III.35)

where fmaxSINR(x) is the probability density function (pdf) for the maximum output

SINR (see (III.25)). Using the Craig’s formula for Q(.), the Pe can be simplified to

Pe =
1

π

∫ ∞

0

(∫ π
2

0

e
−x

2 sin2θ dθ

)
fmax SINR(x) dx. (III.36)

Since the integrand is positive in (III.36), the order of integration can be swapped and

Pe can be written as

Pe =
1

π

∫ π
2

0

∫ ∞

0

e
−x

2 sin2θ fmax SINR(x) dx dθ

=
1

π

∫ π
2

0

ϕmax SINR

( −1

2 sin2θ

)
dθ (III.37)

where ϕmaxSINR(x) is the moment generating function (mgf) of the max SINR. As seen

in (III.25), the max SINR is quadratic in the Gaussian random variables. From [73], the

mgf of a general quadratic form denoted as Q(ã) =
(
ãT Ãã + ãT g̃ + ẽ

)
, is given by

ϕQ(ea)(s) = exp

{
s
(
µTea Ãµea + µTea g̃ + ẽ

)
+

s2

2

ν∑
j=1

b2
j (1 − 2sλj)

−1

} ν∏
j=1

(1 − 2sλj)
−1/2

for all real s such that for λj with odd multiplicity

s <
1

2λj
. (III.38)
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In (III.38) ã is defined as ã ∼ N(µea, Ceaea) such that Ceaea > 0 and the constant matrix Ã

is symmetric, i.e., Ã = ÃT . Let UΛUT be the evd of C
1/2eaea ÃC

1/2eaea , and b
∆
= UT C

1/2eaea (g̃+

2Ãµea). Then in (III.38), bj is the jth component of the vector b, and λj is the jth

diagonal element of the matrix Λ. The constant ν is the rank of the matrix C
1/2eaea ÃC

1/2eaea .

Note that the max SINR has the same form as the general quadratic Q(ã) after

the following assignments: Ã = A, g̃ = g, ẽ = e, µea = µa, and Ceaea = Caa, where the

covariance matrix, namely Caa, of the Gaussian vector a, and the matrix A appearing

in the SINR expression are both positive definite.

Based on the limits of the integration in (III.37), the mgf is evaluated over the

range s ∈ (−∞,−1/2]. Notice that for this range of s, the expression for the mgf in

(III.38) is valid and can be used to simplify the integral in (III.37). Thus, we have the

probability of error (Pe) expression in (III.37), which is expressed as a single integral

over the mgf obtained from (III.38). Notice that the Pe expression as given in (III.37) is

not in closed-form and requires numerical integration. We are thus motivated to obtain

a closed-form expression for Pe.

Using the following series expansion

ln(1 + x) =

∞∑
k=1

(−1)k+1xk

k
and (1 − x)−1 =

∞∑
k=0

xk valid for |x| < 1(III.39)

and adopting the approach in [73], we will show that mgf in (III.38) can be expressed as

a series. This particular form for the mgf is useful because when applied to the integral

equation in (III.37), and after swapping the order of integration and summation (justified

later), integration over each term of the series can be performed. This, thus, allows us

to write a closed-form expression for Pe as a series. We next present the series result for

the mgf as given in the following lemma.

Lemma 7 By defining the constant η
∆
= (µTea Ãµea+µTea g̃+ ẽ− 1

4
bTΛ−1b) and assuming

that λj > 0, ∀j, the mgf of the random variable Q(ã) − η can be written as

ϕQ(ea)−η(s) =

∞∑
k=0

ξk

(
(−2s�)k

(1 − 2s�)k+ν/2

)
(III.40)
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where the coefficients ξk are given in (III.27) and � is a positive constant satisfying

� > λmax > 0. The expression in (III.40) is valid for any real s, such that

s <
1

2� (1 + ϑ)
(III.41)

where ϑ
∆
= max

j

(∣∣∣1 − λj

�

∣∣∣). With � satisfying � > λmax > 0, we have 0 < ϑ < 1.

Proof. The proof is given in Appendix III.H.5.

Based on the limits of the integral in (III.37), we have the mgf of the max

SINR evaluated over the interval s ∈ (−∞,−1/2]. Clearly, this interval satisfies the

condition in (III.41), thus, the mgf in (III.40) can be applied to the integral in (III.37).

With the substitutions Ã = A, g̃ = g, ẽ = e, µea = µa, and Ceaea = Caa in (III.40), the

mgf of the max SINR can be written as

ϕmaxSINR(s) =

∞∑
k=0

ξk

(
(−2s�)k

(1 − 2s�)k+ν/2

)
esη. (III.42)

Due to the structures of the matrix A, vector g, and scalar e (see after (III.25)) we show

later in this Appendix that η is zero in our case. Thus, we can write the mgf for the max

SINR as

ϕmaxSINR(s) =
∞∑

k=0

ξk

(
(−2s�)k

(1 − 2s�)k+ν/2

)
. (III.43)

Using (III.43), we simplify the Pe integral in (III.37).

Pe =
1

π

∫ π
2

0

∞∑
k=0

ξk (�/sin2θ)k
(
1 + (�/sin2θ)

)−k−ν/2
dθ

=
1

π

∫ π
2

0

∞∑
k=0

ξk �k

(
(sin2θ)ν/2

(sin2θ + �)k+ν/2

)
dθ

=
1

π

∞∑
k=0

ξk �k

[∫ π
2

0

(
(sin2θ)ν/2

(sin2θ + �)k+ν/2

)
dθ

]

=
1

π

∞∑
k=0

ξk �k [I1,k] (III.44)

where I1,k is defined as the integral inside the square brackets in the third equality in

the set of equations in (III.44) and can be further simplified by substituting (sin2θ) = z.
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The integral then reduces to

I1,k =
1

2

∫ 1

0

(z + �)−(k+ν/2) (1 − z)−1/2 z(ν−1)/2 dz

=
1

2
B

(
1

2
,
ν + 1

2

)
�−(k+ν/2)

× 2F1

(
k +

ν

2
,
ν + 1

2
;
ν

2
+ 1;

−1

�

)
. (III.45)

The expression in (III.45) is obtained by using the formula [74, (3.383, eq. (8), page

315)]. Upon substituting (III.45) in (III.44), we obtain the desired expression for Pe in

(III.26).

We next show that the interchange of the order of summation and integration

in the third equality in (III.44) is justified. In that equation, since the range of integration

is finite, it suffices to show that the series converges uniformly in θ, i.e., we need to show

that

I2
∆
=

1

π

∞∑
k=0

| ξk| (�/sin2θ)k
(
1 + (�/sin2θ)

)−k−ν/2

≤ L̃ < ∞
where L̃ is independent of θ ∈

[
0,

π

2

]
. (III.46)

In order to establish a bound on I2, we first bound the coefficients ξk. In [76], the authors

gave a bound using Cauchy’s inequality for the coefficients of a general power series.

We use this bound for the coefficients ξk corresponding to the power series in (III.43),

as given in the following lemma.

Lemma 8 As suggested in [76], the coefficients ξk can be bounded using Cauchy’s in-

equality, i.e.,

|ξk| ≤ ζ(γ) γ−k where ζ(γ)
∆
=
(

max
|µ|=γ

|f(µ)|
)

. (III.47)

where γ is a positive constant such that 1 < γ < 1/ϑ. The function f(µ) as defined in

(III.61) is used to obtain a bound for ζ(γ). The function ζ(γ) is bounded as

ζ(γ) ≤ B(γ) = exp

{
γ

8 �

ν∑
j=1

b2
j

λj
(1 + γ − λjγ

�
)−1

}
ν∏

j=1

(
1 − γ +

λjγ

�

)−1/2

.(III.48)
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Proof. The proof is given in Appendix III.H.6.

Note that B(γ) is finite and independent of k. The bound of the form (III.47)

can also be obtained when 0 < γ ≤ 1, however, this is not useful for our case. Using

(III.47), the series in (III.46) can now be bounded as

I2 ≤ B(γ)

π

∞∑
k=0

γ−k
(
�/sin2θ

)−ν/2

×
(

(�/sin2θ)

1 + (�/sin2θ)

)k+ν/2

<
B(γ)

π

( ∞∑
k=0

γ−k

) (
�−ν/2(sin2θ)ν/2

)
(III.49)

<
B(γ)

π

(
γ

(γ − 1)

) (
�−ν/2

)
< ∞. (III.50)

The inequality in (III.49) follows by noting that
(

(�/sin2θ)

1+(�/sin2θ)

)
< 1. The inequality in

(III.50) is obtained first by noting that (sin2θ) ≤ 1, and second by simplifying the sum

in (III.49) as
(∑∞

k=0 γ−k
)

= (1 − (1/γ))−1. Note that this series converges, since γ

is greater than unity. The upper bound on I2 in (III.50) is finite and is independent of

θ ∈ [0, π
2
], thus, the interchange of summation and integration order in the second last

equality in (III.44) is justified.

We next show that η is zero. By defining y
∆
= UT C

−1/2
aa µa, b1

∆
= UT C

1/2
aa g,

and f
∆
=

√
2 C−1/2h, the vector b (see after (III.27)) can be written as b = (b1 + 2Λy),

and η can be rewritten as

η =

[
µT

aAµa + µT
ag + e − 1

4
bT Λ−1b

]
=

[
yTΛy + yTb1 + fHf

− 1

4
(b1 + 2Λy)TΛ−1(b1 + 2Λy)

]

=

[
fHf − 1

4
bT

1 Λ−1b1

]
. (III.51)
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The third equality in (III.51) follows due to cancellation of terms. Using the property

F(XY) = F(X)F(Y) and F(XH) = F(X)T (see Appendix III.H.7), we have

A = 2F(YHC−1/2C−1/2Y)

= 2F(YHC−1/2)F(C−1/2Y)

= (Â)T Â, (III.52)

where Â
∆
=

√
2 F(C−1/2Y). Using this, and substituting for g, b1 can be written as

b1 = 2
√

2 UT C1/2
aa

× [Re(YHC−1/2 f)T , Img(YHC−1/2 f)T
]T

= 2UTC1/2
aa

(√
2 F(YHC−1/2)

)
× [Re(f)T , Img(f)T

]T
= 2UTC1/2

aa (Â)T
[
Re(f)T , Img(f)T

]T
= 2Λ1/2 VT

[
Re(f)T , Img(f)T

]T
(III.53)

where UΛ1/2 VT denotes the singular value decomposition of C
1/2
aa (Â)T .

The second equality in (III.53) is obtained by using the property(
F(X)

[
Re(f)T , Img(f)T

]T
=
[
Re(Xf)T , Img(Xf)T

]T)
. Upon substituting (III.53)

in the last equality of (III.51), we get η equal to zero.

Note that ν is the rank of the matrix C
1/2
aa AC

1/2
aa . Since Caa =

1
2
F(Cdβ1

(1)dβ1

(1)), we can write C
1/2
aa AC

1/2
aa = F(S), where

S
∆
=

((
Cdβ1

(1)dβ1

(1)

)1/2 (
YHC−1Y

) (
Cdβ1

(1)dβ1

(1)

)1/2
)

.

Denoting ŨΛ̃ŨH as the evd of S, we obtain C
1/2
aa AC

1/2
aa = F(ŨΛ̃ŨH) =

F(Ũ) F(Λ̃) F(Ũ)T , which represents the evd of C
1/2
aa AC

1/2
aa . Thus, the rank of

C
1/2
aa AC

1/2
aa is twice the rank of S, which implies that ν is an even number. Since S

is full rank in our case (equal to PM), we have ν = 2PM .
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III.H.5 Proof of Lemma 7

The series result in (III.40) is obtained following the approach in [73]. For

completeness, the detailed steps of the derivation are presented. The series in (III.40) is

obtained with the help of the following two expansions [74]

ln(1 + x) =

∞∑
k=1

(−1)k+1xk

k
and (1 − x)−1 =

∞∑
k=0

xk for |x| < 1. (III.54)

We start out with the mgf in (III.38) and bring it into a form such that the series expan-

sion in (III.54) can be applied and the condition for their applicability is satisfied, i.e.,

|x| < 1 must be satisfied to use the expansion for ln(1 + x) and (1 − x)−1. From the

mgf expression in (III.38), the mgf of the random variable Q(ã) − η can be written as

ϕQ(ea)−η(s) = exp

{
s

4
bTΛ−1b +

s2

2

ν∑
j=1

b2
j(1 − 2sλj)

−1

} ν∏
j=1

(1 − 2sλj)
−1/2.

(III.55)

The above expression can be further simplified as

ϕQ(ea)−η(s) = exp

{
s

4

ν∑
j=1

b2
j

λj
− s

4

ν∑
j=1

b2
j

λj
(−2sλj)(1 − 2sλj)

−1

}

×
ν∏

j=1

(1 − 2sλj)
−1/2

= exp

{
s

4

ν∑
j=1

b2
j

λj
(1 − 2sλj)

−1

} ν∏
j=1

(1 − 2sλj)
−1/2

= exp

{−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − 2sλj)
−1

} ν∏
j=1

(1 − 2sλj)
−1/2. (III.56)

To further simplify (III.56), we carry out the following separate simplification for the

terms that appear in (III.56)

ν∏
j=1

(1 − 2sλj)
−1/2 =

ν∏
j=1

(1 − 2sλj + 2s� − 2s�)−1/2

= (1 − 2s�)−ν/2

ν∏
j=1

(
1 +

−2s�

1 − 2s�

λj

�
− −2s�

1 − 2s�

)−1/2

.(III.57)
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Note that in the set of equations in (III.57), an arbitrary positive constant � is introduced.

Let us now define the following quantities

µ(s) =
−2s�

1 − 2s�
, and αj = 1 − λj

�
. (III.58)

Equation (III.57) can now be expressed in terms of µ(s) and αj as follows

ν∏
j=1

(1 − 2sλj)
−1/2 = (1 − 2s�)−ν/2

ν∏
j=1

(1 − µ(s)αj)
−1/2 . (III.59)

Similarly, we have the following

(1 − 2sλj)
−1 = (1 − 2sλj + 2s� − 2s�)−1

= (1 − 2s�)−1

(
1 − 2sλj

1 − 2s�
+

2s�

1 − 2s�

)−1

= (1 − µ(s)) (1 − µ(s)αj)
−1 . (III.60)

Substituting (III.59) and (III.60) back in (III.56), the mgf can be written as

ϕQ(ea)−η(s) = exp

{−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − µ(s)) (1 − µ(s)αj)
−1

}

× (1 − 2s�)−ν/2

ν∏
j=1

(1 − µ(s)αj)
−1/2

= (1 − 2s�)−ν/2 f(µ(s))

where f(µ(s)) = exp

{−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − µ(s)) (1 − µ(s)αj)
−1

}

×
ν∏

j=1

(1 − µ(s)αj)
−1/2 . (III.61)

We now wish to obtain a series expansion for (III.61) and also identify the region of

convergence (ROC) of this series. To apply the two series expansion stated earlier in

(III.54), we take the natural logarithm of f(µ(s)) in (III.61) and obtain

ln(f(µ(s))) =
−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − µ(s)) (1 − µ(s)αj)
−1

−1

2

ν∑
j=1

ln(1 − µ(s)αj). (III.62)
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Under the condition

|αj µ(s)| < 1, for all j, (III.63)

we are now ready to apply the series expansion in (III.54) to (III.62) where x = αj µ(s).

Thus, applying these expansions in (III.62), we have

ln(f(µ(s))) =
−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − µ(s))

( ∞∑
k=0

(µ(s)αj)
k

)

−1

2

ν∑
j=1

(
−

∞∑
k=1

(µ(s)αj)
k 1

k

)
. (III.64)

Further simplifying (III.64), we have

ln(f(µ(s)))

=
−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

( ∞∑
k=0

(µ(s)αj)
k −

∞∑
k=0

µ(s)k+1αk
j

)

+
1

2

ν∑
j=1

( ∞∑
k=1

(µ(s)αj)
k 1

k

)

=
−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(
1 +

∞∑
k=1

(µ(s)kαk
j ) −

∞∑
k=1

µ(s)kαk−1
j

)

+
1

2

ν∑
j=1

( ∞∑
k=1

(µ(s)αj)
k 1

k

)

=
1

8

ν∑
j=1

b2
j

λ2
j

( ∞∑
k=1

µ(s)k(αk
j − αk−1

j )

)
+

1

2

ν∑
j=1

( ∞∑
k=1

(µ(s)αj)
k 1

k

)

=
∞∑

k=1

µ(s)k

k

(
k

8

ν∑
j=1

b2
j

λ2
j

(
αk

j − αk−1
j

)
+

1

2

ν∑
j=1

αk
j

)

=

∞∑
k=1

µ(s)k

k
χk where χk

∆
=

(
k

8

ν∑
j=1

b2
j

λ2
j

(
αk

j − αk−1
j

)
+

1

2

ν∑
j=1

αk
j

)
.

(III.65)



86

Using the definition of αj in (III.58), we simplify the coefficients χk as

χk =

(
k

8

ν∑
j=1

b2
j

λ2
j

(1 − λj

�
)k−1

(
1 − λj

�
− 1

)
+

1

2

ν∑
j=1

(1 − λj

�
)k

)

=

(
− k

8 �

ν∑
j=1

b2
j

λj
(1 − λj

�
)k−1 +

1

2

ν∑
j=1

(1 − λj

�
)k

)
for k ≥ 1.(III.66)

Thus, we have found the series expansion for the ln of f(µ(s)) as given in (III.65) and

the coefficients for the expansion in (III.66). Note that the ROC of the series for the

natural logarithm (ln) of f(µ(s)) is

|αj µ| < 1 for all j

or equivalently |αj||µ| < 1 for all j

or equivalently |µ| < 1 /
(
max

j
(|αj |)

)
(III.67)

and the radius of convergence is
[
1/
(
max

j
(|αj|)

)]
. Note that in (III.67) the dependence

of µ(s) on s is suppressed. So far � is any positive constant, now let � also satisfy

� > λmax > 0. With this we can see that ϑ
∆
= max

j
(|αj |) = max

j

(∣∣∣1 − λj

�

∣∣∣) is always

less than unity, i.e. ϑ < 1. In fact 0 < ϑ < 1.

We next wish to obtain a power series for f(µ(s)). The following approach is

used to obtain a series for f(µ(s)) [73]. Consider the following power series

ln(g(ω)) = χ0 +

∞∑
k=1

ωk

k
χk (III.68)

that is uniformly convergent in some region of ω, then we can write

g(ω) = exp {χ0 +

∞∑
k=1

ωk

k
χk }. (III.69)

Since exp(x) =
∑∞

n=0
xn

n!
, we can simplify the right hand side of (III.69) and write it

as a power series in ω. The region of convergence of this power series would be the

same as that for ln(g(ω)) in (III.68). Let us express the right hand side of (III.69) as the

following power series (say)

g(ω) =

∞∑
k=0

ξk ωk. (III.70)
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We next need to specify the coefficients ξk in (III.70) and also relate it to the coefficients

χk in (III.69).

For this we carry out term by term differentiation of the power series in

(III.68). This is allowed from Theorem 7 stated in Appendix III.H.8. Thus, differen-

tiating both sides of (III.68) we have

d ln(g(ω))

d ω
=

∞∑
k=1

ωk−1χk

⇒ d g(ω)

d ω
= g(ω)

∞∑
k=1

ωk−1χk

⇒
∞∑

k=1

ξk k ωk−1 =

( ∞∑
k=0

ξkω
k

)( ∞∑
k=1

ωk−1χk

)
(III.71)

⇒
∞∑

k=1

ξk k ωk−1 =

( ∞∑
l=1

∞∑
m=0

ξm χl ωl+m−1

)
. (III.72)

The equation (III.71) is obtained by substituting for g(ω) from (III.70) and performing

differentiation (allowed from Theorem 7 in Appendix III.H.8). By comparing the co-

efficients of ωk−1 on both sides of (III.72), the coefficients ξk and χk can be related.

Consider the r.h.s of the equality in (III.72) and let l + m = k. Since l ∈ [1,∞) and

m ∈ [0,∞), we have k ∈ [1,∞). Also, note that 0 ≤ m ≤ k − 1, thus we can write

⇒
∞∑

k=1

ξk k ωk−1 =

( ∞∑
k=1

k−1∑
m=0

ξm χk−m ωk−1

)
. (III.73)

The coefficients ξk and χk can be related as

ξk =
1

k

k−1∑
r=0

χk−r ξr , k ≥ 1. (III.74)

Also, g(0) = ξ0 and ln(g(0)) = χ0. This implies that ξ0 = eχ0 .

Using the above approach, we can now write a power series for f(µ(s)). We

have already shown that the natural logarithm (ln) of f(µ(s)) can be written as a power
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series in (III.65). By identifying function f(.) as g(.), and µ(s) as ω in (III.68) and

(III.70), we can write a power series for f(µ(s)) as

f(µ(s)) =
∞∑

k=0

ξkµ(s)k (III.75)

where coefficient ξk and χk are given in (III.74) and (III.66), respectively. Since χ0 = 0

in our case (see (III.65)), we have ξ0 = eχ0 = 1. Thus, the coefficients ξk and χk are

completely specified.

The ROC of this series is the same as in (III.67). Note that in (III.75), s, and

therefore µ(s), take on real values. Since µ(s) is function of s, we wish to identify the

interval of s for which the condition in (III.67) is satisfied. This interval, denoted as S1,

can be shown to be

S1 =

(
−∞,

1

2�(1 + ϑ)

)
∪
(

1

2�(1 − ϑ)
,∞
)

. (III.76)

The derivation of (III.76) is presented at the end of this section.

With (III.61) and (III.75), the mgf can be written as

ϕQ(ea)−η(s) = (1 − 2s�)−ν/2

( ∞∑
k=0

ξkµ(s)k

)
. (III.77)

Note that the expression in (III.77) has to be real valued. Since the series inside the

parenthesis in (III.77) is real for real s, the term (1 − 2s�)−ν/2 must be real for odd ν.

This implies that (1 − 2s�) must be positive, which then puts an additional constraint

on s (in addition to s being in S1). According to this constraint, s must belong to the

interval S2 defined as S2 =
(
−∞, 1

2�

)
. Note that with this constraint the condition in

(III.38) is satisfied as well. Thus, the expression in (III.40) is valid for all s that lies

in the intersection of S1 and S2. This intersection interval is
(
−∞, 1

2� (1+ϑ)

)
, implying

that (III.40) is valid for any real s such that s < 1
2� (1+ϑ)

.

Substituting for µ(s) in (III.77) results in the desired expression in (III.40).

1) Derivation of (III.76) - ROC:
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The region of convergence in the ’s’ plane of the series in (III.75) is the set of

all s for which condition in (III.67), reproduced below, is satisfied.

|µ(s)| < 1/ϑ where ϑ = max
j

(|αj|) (III.78)

Recall that ϑ < 1 as shown earlier. Since we are interested in real s, we wish to identify

the interval in s such that (III.78) is satisfied.

Substituting µ(s) = (−2s�)/(1 − 2s�) in (III.78), we have∣∣∣∣ −2s�

1 − 2s�

∣∣∣∣ < 1/ϑ. (III.79)

Simplifying (III.79), we get the following two inequalities

1

2� (1 − ϑ)
< s and s <

1

2� (1 + ϑ)
. (III.80)

Thus, (III.80) are the intervals in s for which (III.78) is satisfied. We denote this interval

as S1 =
(
−∞, 1

2�(1+ϑ)

)
∪
(

1
2�(1−ϑ)

,∞
)

.
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III.H.6 Proof of Lemma 8

For simplicity, we divide the proof of lemma 8 in two parts. The first part

deals with establishing (III.47) and the second part deals with proving (III.48).

1) Proof of (III.47) - Bounding the coefficients:

Consider a power series expansion

g(ω) =
∞∑

k=0

βk ωk (III.81)

that uniformly converges for all complex ω that satisfies

|ω| < R, (III.82)

where R is the radius of convergence (see also Theorem 8 in Appendix III.H.8). The

authors in [76] bound the coefficients, βk, using the Cauchy’s integral formula. It is

worthwhile to point out that [76] states only the final result, i.e., the bound of the form

(III.47), and omits the proof of it in [76]. For clarity, the complete derivation is presented

below.

Note that the coefficients βk in (III.81) can be written as

βk =

(
g(k)(ω)

k!

)∣∣∣∣
ω=0

. (III.83)

The region of convergence |ω| < R symbolizes a circular disk with center at the origin

and radius R as shown in Figure III.7. Now consider a circular path C : |ω| = α, where

0 < α < R. This circle is shown as dashed circle in Figure III.7. Now consider the

following formula

h(k)(zo) =
k!

2πi

∮
eC

h(z)

(z − zo)k+1
dz (III.84)

where h(k)(zo) denotes the kth derivative of the function h(z) evaluated at zo. Equation

(III.84) is from Theorem 9 in Appendix III.H.8. Note that function g(ω) is analytic

from Theorem 6 in Appendix III.H.8, therefore, Theorem 9 of Appendix III.H.8 can be

applied to further simplify (III.83). Thus, applying (III.84) to the r.h.s of (III.83) over

the circular path C and noting that ωo corresponding to zo in (III.84) is zero, we have

βk =
1

2πi

∮
C:|ω|=α

g(ω)

ωk+1
dω. (III.85)



91

ROC

Circle: C
R

Figure III.7: ROC in the complex plane.

The absolute value of the coefficients βk can be written as

|βk| =

∣∣∣∣ 1

2πi

∮
C:|ω|=α

g(ω)

ωk+1
dω

∣∣∣∣ . (III.86)

Now consider the following change of variable in (III.86), ω = αeiφ where φ ∈ [0, 2π],

we have

|βk| =

∣∣∣∣ 1

2πi

∫ 2π

0

g(αeiφ)

αk+1 eiφ(k+1)
αieiφ dφ

∣∣∣∣ .
=

1

2παk

∣∣∣∣∫ 2π

0

g(αeiφ)

eiφk
dφ

∣∣∣∣ . (III.87)

We now bound the coefficients βk as follows:

|βk| ≤ 1

2παk

∫ 2π

0

∣∣∣∣g(αeiφ)

eiφk

∣∣∣∣ dφ

≤ 1

2παk

∫ 2π

0

max
φ∈[0,2π]

∣∣∣∣g(αeiφ)

eiφk

∣∣∣∣ dφ

=
1

αk
max

φ∈[0,2π]

∣∣∣∣g(αeiφ)

eiφk

∣∣∣∣
=

1

αk
max
|ω|=α

|g(ω)| . (III.88)
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(III.88) is the desired bound for the coefficients βk.

Now note that the power series in (III.75) is of the same form as (III.81) with

the radius of convergence being 1/ϑ, where ϑ =
(
max

j
(|αj |)

)
. For simplicity of

notation and without causing any confusion, we drop the dependence of µ(s) on s in

(III.75) for the time being, and rewrite (III.75) as

f(µ) =

∞∑
k=0

ξk µk where |µ| < 1/ϑ. (III.89)

Consider a constant γ such that 1 < γ < 1/ϑ, and a circular path C1 : |µ| = γ. Recall

that ϑ < 1. We can bound the coefficients ξk in the same manner as (III.88) by applying

the Cauchy’s integral formula over the circle C1. The region |µ| < 1/ϑ and the circle

C1 is similar to the grey disk region and circle C in Figure III.7 by simply replacing R

by 1/ϑ and α by γ.

Thus, we can bound the coefficients ξk of the power series in (III.89) as

|ξk| ≤ 1

γk

(
max
|µ|=γ

|f(µ)|
)

. (III.90)

Note that the bound of the form (III.90) is also valid for 0 < γ ≤ 1, however, this is not

useful for our case.

2) Proof of inequality (III.48) - Bounding ζ(γ):

For simplicity of notation and without causing any confusion, we drop the dependence

of µ(s) on s in the expression for the function f(µ(s)) in (III.61) for the time being,

and rewrite it as

f(µ) = exp

{−1

8

ν∑
j=1

b2
j

λ2
j

+
1

8

ν∑
j=1

b2
j

λ2
j

(1 − µ) (1 − µαj)
−1

} ν∏
j=1

(1 − µαj)
−1/2

= exp

{−1

8

ν∑
j=1

b2
j

λ2
j

(1 − αj)
(
µ(1 − µαj)

−1)} ν∏
j=1

(1 − µαj)
−1/2 . (III.91)

We wish to find a bound on ζ(γ) =
(

max
|µ|=γ

|f(µ)|
)
. To carry out this maximization, we

first note that αj < 1 (see the definition of αj in (III.58) and then refer to the discussion
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after equation (III.67)), thus, we have

ζ(γ) =
(

max
|µ|=γ

|f(µ)|
)

=

(
max
|µ|=γ

∣∣∣∣∣exp

{−1

8

ν∑
j=1

b2
j

λ2
j

(1 − αj)
(
µ(1 − µαj)

−1)}

×
ν∏

j=1

(1 − µαj)
−1/2

∣∣∣∣∣
)

. (III.92)

We can now bound ζ(γ) as follows,

ζ(γ) ≤
(

max
|µ|=γ

∣∣∣∣∣ exp

{−1

8

ν∑
j=1

b2
j

λ2
j

(1 − αj)
(
µ(1 − µαj)

−1)}∣∣∣∣∣
)

×
(

max
|µ|=γ

ν∏
j=1

∣∣∣(1 − µαj)
−1/2
∣∣∣)

=

(
max
|µ|=γ

ν∏
j=1

∣∣∣∣ exp

{−b2
j

8 λ2
j

(1 − αj)
(
µ(1 − µαj)

−1)}∣∣∣∣
)

×
(

max
|µ|=γ

ν∏
j=1

∣∣∣(1 − µαj)
−1/2
∣∣∣)

≤
(

ν∏
j=1

max
|µ|=γ

∣∣∣∣ exp

{
b2
j

8 λ2
j

(1 − αj)
(−µ(1 − µαj)

−1)}∣∣∣∣
)

×
(

ν∏
j=1

max
|µ|=γ

∣∣∣(1 − µαj)
−1/2
∣∣∣) . (III.93)

The above maximization is equivalent to the following

=

(
ν∏

j=1

exp

{
b2
j

8 λ2
j

(1 − αj)
[
max
|µ|=γ

Re
(−µ(1 − µαj)

−1)]})

×
(

ν∏
j=1

max
|µ|=γ

∣∣∣(1 − µαj)
−1/2
∣∣∣) . (III.94)

In Equation (III.94) the following identity is used: |ez| = |e(x+iy)| = |exeiy| =

|ex||eiy| = ex = eRe(z) (where z = x + iy is a complex number). The Equation (III.94)

can be further simplified as

=

(
ν∏

j=1

exp

{
b2
j

8 λ2
j

(1 − αj)
[
max
|µ|=γ

Re
(−µ(1 − µαj)

−1)]})

×
(

ν∏
j=1

(
max
|µ|=γ

∣∣(1 − µαj)
−1
∣∣)1/2
)

. (III.95)
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Next, we consider(
max
|µ|=γ

Re
(−µ(1 − µαj)

−1)) =

(
max
|µ|=γ

Re
(
1 − (1 − µαj)

−1) 1

αj

)
=

1

αj

(
1 − min

|µ|=γ
Re
[
(1 − µαj)

−1])
=

1

αj

(
1 − min

φ∈[0,2π]
Re
[(

1 − γeiφαj

)−1
])

=
1

αj

(
1 − (1 + γαj)

−1)
=
(
γ(1 + γαj)

−1) , (III.96)

and similarly,(
max
|µ|=γ

∣∣(1 − µαj)
−1
∣∣) =

(
max

φ∈[0,2π]

∣∣(1 − γeiφαj)
−1
∣∣) = (1 − γαj)

−1. (III.97)

Using (III.96) and (III.97) in (III.92), we have

ζ(γ) ≤ exp

{
1

8

ν∑
j=1

b2
j

λ2
j

(1 − αj)
(
γ(1 + γαj)

−1)} ν∏
j=1

(1 − γαj)
−1/2 . (III.98)

Substituting for αj from (III.58) in (III.98), the final bound for ζ(γ) can be written as

ζ(γ) ≤ exp

{
γ

8�

ν∑
j=1

b2
j

λj

((
1 + γ − γλj

�

)−1
)} ν∏

j=1

(
1 − γ +

γλj

�

)−1/2

. (III.99)

This is the desired expression in (III.48).
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III.H.7 Properties of the function: F(X)

Property 1) F(XY) = F(X)F(Y) :

Let X = X1 + iX2 and Y = Y1 + iY2, then XY = X1Y1−X2Y2 + iX1Y2 + iX2Y1.

Now consider,

F(X)F(Y) =

⎡⎣X1 −X2

X2 X1

⎤⎦⎡⎣Y1 −Y2

Y2 Y1

⎤⎦ =

⎡⎣X1Y1 −X2Y2 −X1Y2 − X2Y1

X1Y2 + X2Y1 X1Y1 − X2Y2

⎤⎦ .

(III.100)

Note that the r.h.s of (III.100) is F(XY).

Property 2) F(XH) = F(X)T :

We have

F(XH) = F(XT
1 − iXT

2 ) =

⎡⎣ XT
1 XT

2

−XT
2 XT

1

⎤⎦ =

⎡⎣X1 −X2

X2 X1

⎤⎦T

= F(X)T , (III.101)

establishing the result.

Property 3) F(X)
[
Re(f)T Img(f)T

]T
=
[
Re(Xf)T Img(Xf)T

]T
:

We have

F(X)
[
Re(f)T Img(f)T

]T
=

⎡⎣X1 Re(f) − X2 Img(f)

X2 Re(f) + X1 Img(f)

⎤⎦ . (III.102)

Using the following

Xf = X1Re(f) − X2Img(f) + i [X1Img(f) + X2Re(f)], (III.103)

the vector
[
Re(Xf)T Img(Xf)T

]T
can be simplified to the r.h.s of (III.102).
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III.H.8 Some useful results

A power series in powers of z − zo is a series of the form
∞∑

n=0

an(z − zo)
n = ao + a1(z − zo) + a2(z − zo)

2 + · · · (III.104)

where z is a complex variable, ao, a1, · · · are complex (or real) constants, called the

coefficients of the series, and zo is a complex (or real) constant, called the center of the

series.

Theorem 6 (Analytic functions. Their derivatives)

A power series with a nonzero radius of convergence R represents an analytic function

at every point interior to its circle of convergence. The derivatives of this function are

obtained by differentiating the original series term by term. All the series thus obtained

have the same radius of convergence as the original series. Hence, by the first statement,

each of them represents an analytic function.

Theorem 7 (Termwise differentiation of a power series)

The derived series of a power series has the same radius of convergence as the original

series.

The derived series in the above means the power series obtained by termwise differenti-

ation of (III.104).

Theorem 8 (Uniform convergence of power series)

A power series of the form (III.104) with a nonzero radius of convergence R is uniformly

convergent in every circular disk |z − zo| ≤ r of radius r < R.

Theorem 9 (Derivatives of an analytic function)

If h(z) is analytic in a domain D, then it has derivatives of all orders in D, which are

then also analytic functions in D. The values of these derivatives at point zo in D are

given by the formula

h(k)(zo) =
k!

2πi

∮
eC

h(z)

(z − zo)k+1
dz (III.105)
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where h(k)(zo) denotes the kth derivative of the function h(z) evaluated at zo, and C̃ is

any simple closed path in D that encloses zo and whose full interior belongs to D; and

we integrate counterclockwise around C̃.



IV

Performance Analysis of QAM

Multiple Antenna Systems at 60 GHz

IV.A Introduction

The FCC has allocated a large bandwidth, spanning several gigahertz, for un-

licensed use around 60 GHz [5]. This spectral band has opened up new possibilities for

realizing short range, high rate wireless communications [79]. There is an abundance

of applications requiring access over short range together with data rates in excess of

hundreds of megabit-per-second, such as a high speed home link between a DVD player

and an HDTV, transmission of pictures between a digital camera and PC server, video-

conferencing and wireless connections between home appliances, laptops, and printers

[80].

The communications band at 60GHz is particularly attractive primarily be-

cause of the availability of 7GHz of contiguous spectrum (57-64 GHz frequency band),

and the attenuation characteristics of the millimeter waves. At 60GHz, there is a large

free space attenuation of 68 dB at a distance of 1m [6], [7]. Considering even larger

distances (several km), there is an additional attenuation due to atmospheric oxygen of

15.1 dB/km [8], thus, making the band ideally suited for short range communications.

When considering indoor applications, the millimeter wave (mmW) transmitter would

98
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typically be communicating to a receiver located within the same home (in a residen-

tial or office environment). It is therefore desirable to characterize the propagation loss

incurred at mmW frequencies.

Measurement results have revealed that the mmW signals are considerably at-

tenuated while passing through a wall. For example, transmission loss through a typical

wall with a 4 inch gap between wall boards of 5/8 inch thickness and 2.5% moisture

content can be as high as 35 dB [81] at 60 GHz. This is advantageous, since the multi-

path components would be mostly confined to a single room, and multipaths that exhibit

large delays would be significantly attenuated. Compared to the signal strength received

over the direct path (or the line-of-sight path) between the transmitter and receiver, the

multipath arriving after being reflected from an adjoining room would be reduced by

about 38dB for frequencies above 8-12 GHz [81]. This also implies that the interference

level experienced from a similar mmW device placed in adjacent rooms would be quite

low. The multipath delay spread would be significantly limited to several nanoseconds

[7] due to the severe attenuation and path-loss.

The range of a mmW device can be improved by the use of directional anten-

nas [7]. However, antenna obstruction (e.g., by either a moving object or a person) can

lead to significant loss in received signal power due to poor diffraction of the millimeter

waves. In order to address the design issues related to a communications system oper-

ating in the 60GHz band, it is important to first characterize the channel behavior and

identify a channel model that is both realistic and yet simple enough to be usable. The

channel modeling subgroup of the IEEE 802.15.3c Task Group (TG) has undertaken

this task and has recently submitted its recommendations for a mmW channel model

based on measurement results [7]. The proposed model accounts for the clustering phe-

nomenon [7], [82]. The cluster model used is the extension of the one proposed by

Saleh-Valenzuela (S-V model) [82], [83]. The channel model has a line-of-sight (LOS)

component and a non-line-of-sight (NLOS) component. The multipath components ar-

rive in clusters. There are several clusters, the number of which is dictated by the room

superstructure (like walls, furniture, doors), and each ray (or the multipath component)
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within a cluster is associated with an amplitude gain, delay and angle of arrival (AoA).

The channel model has been simplified to ignore the correlation between the time of ar-

rival and AoA statistics, and both an unobstructed LOS component and a static channel

are assumed.

As a result of these propagation and bandwidth considerations, the 60 GHz

band is an attractive solution for short range, high rate data communications. The mmW

system has good coexistence properties because of the large attenuation and path-loss,

and offers no interference to systems in the microwave band due to large frequency dif-

ference. Higher transmission speeds, greater than 1gigabit-per-second, can be supported

by a mmW system that has to conform to a simple spectrum mask [84]. In addition, due

to its shorter wavelength, the mmW band offers the possibility of smaller components

and antennas, thus reducing the overall size of these devices.

In order to satisfy the high data rate requirements (in excess of gigabit-per-

second) of the supported applications, the 60GHz band must be effectively utilized. One

way to increase the spectral efficiency would be to employ a higher order modulation

such as M-ary quadrature amplitude modulation (M-QAM). In this work, we consider a

M-QAM based communication system operating at 60GHz with a single antenna at the

transmitter and an antenna array at the receiver side [85]. Due to the attenuation charac-

teristics of the millimeter waves and large bandwidth, the received signal is comprised

of large number of low-energy multipath components. In addition, there is co-channel

interference from a similar mmW devices placed in the same room. In order to capture

the multipath energy, and to suppress both the intersymbol interference and multi-user

interference, we consider the use of a spatio-temporal receiver. Each antenna element

at the receiver array utilizes an equalizer. The equalizer weights are determined jointly

across all the receive antennas. We investigate the performance of this system through

the analytically derived expression for the bit error rate (BER). The channel model used

in our work is the one proposed by the IEEE TG.

The rest of the chapter is organized as follows. In Sections IV.B and IV.C,

the system model is presented, where the transmitted signal, the mmW IEEE channel
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model and the receiver structure are described. In Section IV.D, we obtain an exact BER

expression for QAM signalling in the presence of ISI and MAI. Numerical results and

discussion are presented in Section IV.E. Finally, we state the conclusions in Section

IV.F.

IV.B System Model

IV.B.1 Transmitted Signal and Channel Model

We consider a single-carrier system operating at 60 GHz where a single an-

tenna with directional radiation pattern is employed at the transmitter and an antenna

array with Q omni elements is used at the receiver. A higher order modulation scheme

such as M-QAM is used and a total of K users is assumed. A block diagram for the

system is shown in Figure IV.1. In the Figure, g(t), represents the impulse response of

a wave shaping filter and satisfies the Nyquist criterion. The Q × P weight matrix, W,

represents the spatial and temporal processing at the receiver side. A linear equalizer

with P taps is employed at each of the receive antennas.

We assume a frequency selective fading slowly fading channel. The channel

model used is the one proposed by the IEEE 802.15.3c Task Group [7]. The proposed

model accounts for clustering phenomenon [7], and has a line-of-sight component and

a non-line-of-sight component. Using this model, the complex low-pass equivalent im-

pulse response of the kth user’s channel as seen at the qth receive antenna can be written

as

hk,q(t) = β̃k,q δ(t) +
L−1∑
l=0

Kl−1∑
i=0

ãk,q,l,i δ(t − Tk,l − τ̃k,l,i). (IV.1)

The parameters appearing in (IV.1) are explained below.

• L is the total number of clusters.

• Kl is the total number of rays in the lth cluster.

• Tk,l is the lth cluster delay.
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Figure IV.1: System block diagram

• ãk,q,l,i, τ̃k,l,i are the complex gain and delay, respectively, of the ith ray of the lth

cluster. Delay τ̃k,l,i is measured relative to the cluster arrival time Tk,l.

• β̃k,q is the multipath gain of the LOS component.

The amplitude of the multipath gain ãk,q,l,i is modeled by the log normal distribution.

We assume that the temporal correlation between various multipaths is negligible. As a

result, ãk,q,l,i for all k, l and i are assumed independent random variables. However, for

different values of q, the ãk,q,l,i are spatially correlated. The spatial correlation model is

discussed later in Section IV.E. The power delay profile of the multipaths is given by

E[|ãk,q,l,i|2] = e−Tk,l/Γ e−eτk,l,i/γe−
ek[1−δ̄(i)] (IV.2)

where

• Γ is the cluster decay factor.

• γ is the ray decay factor.

• k̃ is the Rician effect in each cluster [7] and δ̄ is the Kronecker delta.
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Figure IV.2: Directional antenna pattern

Note that the channel model in (IV.1) implicitly accounts for the transmitter

directional radiation pattern. The effect of the directional radiation pattern is captured

in the parameter values for the channel model [7]. The radiation pattern considered in

[7] is given by

Gr(θ) = Goexp(−κθ2) (IV.3)

where Go is the maximum gain, and κ is determined by the half-power beamwidth θ−3dB

as follows [86]

κ =
4log(2)

θ2
−3dB

. (IV.4)

An example of the radiation pattern for −3dB bandwidth of 30o and 60o is shown in

Figure IV.2.

We assume that the multipath arrival times Tk,l + τ̃k,l,i are spaced at least a

symbol interval apart and can take on arbitrary values (not necessarily integer multiples

of symbol interval). The transmitted signal of the kth user is given by

ỹk(t) = Re(sk(t) ej2πft) (IV.5)
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where sk(t) =
√

Pk

∞∑
n=−∞

Ak,ng(t − nT ), (IV.6)

Ak,n is the transmitted complex data sequence (M-QAM symbol), T is the symbol du-

ration, and f is the carrier frequency. After passing through the channel the low-pass

equivalent of the received signal at the qth antenna can be written as

rq(t) =

(
K∑

k=1

β̃k,qsk(t − τ̂k)

+

K∑
k=1

L−1∑
l=0

Kl−1∑
i=0

ãk,q,l,isk (t − Tk,l − τ̃k,l,i − τ̂k) + nq(t)

)
(IV.7)

where τ̂k is the delay of the kth user. The delay of the desired user (k = 1) is assumed

tracked, i.e., τ̂1 = 0 but for the interfering users, k = 2, · · · , K, τ̂k is a random variable

uniformly distributed over [0, T ]. The thermal noise component, nq(t), is modeled as

zero mean complex Gaussian process with two sided spectral density of No, and is

assumed spatially uncorrelated. We assume that the signal is narrowband with respect

to the antenna due to the fact that the fractional bandwidth of the signal is much less

than unity.

We next assume that a single resolvable ray of the lth cluster arrives at the time

delay (Tk,l + τ̃k,l,i), then (IV.7) can be written as

rq(t) =
K∑

k=1

αk,0,qsk(t − τ̂k) +
K∑

k=1

J−1∑
j=1

αk,j,qsk (t − τk,j − τ̂k) + nq(t)

=
K∑

k=1

J−1∑
j=0

αk,j,qsk (t − τk,j − τ̂k) + nq(t) (IV.8)

where τk,j
∆
= Tk,l + τ̃k,l,i is the delay of the jth ray which is the ith ray in the lth cluster,

and J −1 = (K0 +K1 + · · ·+KL−1) is the total number of rays in all the clusters. Also,

αk,0,q
∆
= β̃k,q, αk,j,q

∆
= ãk,q,j, and ãk,q,j is renaming of the multipath gain ãk,q,l,i where

j corresponds to the ith ray of the lth cluster. The delay of the first multipath arrival in

(IV.8) is set to zero.
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After matched filtering with g(−t), and substituting for sk(t) from (IV.6) in

(IV.8), we have

r̃q(t) =

K∑
k=1

√
Pk

∞∑
n=−∞

Ak,n

J−1∑
j=0

αk,j,qx(t − nT − τk,j − τ̂k)

+bq(t) (IV.9)

where bq(t)
∆
= nq(t) 	 g(−t) and x(t) is the raised cosine pulse with a roll off factor �

and is given by

x(t) = g(t) 	 g(−t)

=

[
sin(πt/T )

πt/T

] [
cos(π�t/T )

1 − 4�2t2/T 2

]
. (IV.10)

Let us consider the following definition

yk,q(t)
∆
=

J−1∑
j=0

αk,j,qx(t − τk,j) for k = 1, · · · , K

= xk(t)
T αk,q (IV.11)

where xk(t)
∆
= [x(t − τk,0), x(t − τk,1), · · · , x(t − τk,J−1)], and αk,q

∆
=

[αk,0,q, αk,1,q, · · · , αk,J−1,q]. Using the above definition, (IV.9) can be written as

r̃q(t) =
√

P1

∞∑
n=−∞

A1,ny1,q(t − nT )

+
K∑

k=2

√
Pk

∞∑
n=−∞

Ak,nyk,q(t − nT − τ̂k) + bq(t). (IV.12)

We consider a T -spaced linear equalizer at each of the receive antennas with a total

number of taps P = Pf + Pb, where Pf are the total number of taps after the center tap

and Pb − 1 are the total number of taps before the center tap. Sampling the matched

filtered signal at t = lT and stacking up in a vector form the signal at P taps at the qth

antenna, we have

r̄q(lT )
∆
= [r̃q((l − (Pb − 1))T ), · · · , r̃q(lT ) · · · , r̃q((l + Pf )T )]T . (IV.13)
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Thus, the jth (for j = 1, · · · , P ) element of the vector r̄q(lT ) can be written as

(r̄q(lT ))j = r̃q((l + j − Pb)T )

=
√

P1A1,l y1,q((j − Pb)T ) +
√

P1

∞∑
m=−∞

m�=0

A1,l−m y1,q((m + j − Pb)T )

+
K∑

k=2

√
Pk

∞∑
m=−∞

Ak,l−m yk,q((m + j − Pb)T − τ̂k)

+bq((l + j − Pb)T ). (IV.14)

The second, third and the fourth terms in (IV.14) are the contributions due to the ISI,

MAI and the thermal noise, respectively, at the jth (for j = 1, · · · , P ) equalizer tap of

the qth antenna. Combining the stacked up signal vector r̄q(lT ) with the tap weights wq

we have

rq,l = wH
q r̄q(lT )

=
√

P1A1,l wH
q z1,q +

√
P1

∞∑
m=−∞

m�=0

A1,l−m wH
q z̃1,q,m

+

K∑
k=2

√
Pk

∞∑
m=−∞

Ak,l−m wH
q zk,q,m + wH

q bq,l (IV.15)

where the vectors z1,q, z̃1,q,m and zk,q,m are given below in terms of their jth component

(z1,q)j
∆
= y1,q((j − Pb)T ) = xk((j − Pb)T )T α1,q

(z̃1,q,m)j
∆
= y1,q((m + j − Pb)T ) = xk((m + j − Pb)T )Tα1,q

(zk,q,m)j
∆
= yk,q((m + j − Pb)T − τ̂k) = xk((m + j − Pb)T − τ̂k)

T αk,q

(bq,l)j
∆
= bq((l + j − Pb)T ).

Finally, combining the signal from all the receive antennas we have

r̃l
∆
=

Q∑
q=1

rq,l = wHzl

where zl
∆
=
√

P1A1,l z1 +
√

P1

∞∑
m=−∞

m�=0

A1,l−m z̃1,m

+

K∑
k=2

√
Pk

∞∑
m=−∞

Ak,l−m zk,m + bl (IV.16)
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where the following vector definitions are used w
∆
= [wT

1 ,wT
2 , · · · ,wT

Q]T ,

z1
∆
= [zT

1,1, z
T
1,2, · · · , zT

1,Q]T , z̃1,m
∆
= [z̃T

1,1,m, z̃T
1,2,m, · · · , z̃T

1,Q,m]T , zk,m
∆
=

[zT
k,1,m, zT

k,2,m, · · · , zT
k,Q,m]T , and bl

∆
= [bT

1,l,b
T
2,l, · · · ,bT

Q,l]
T . Note that r̃l in (IV.16)

is complex valued output test statistics. Therefore, Re(r̃l) is the inphase channel output

and Img(r̃l) is the quadrature channel output. Due to symmetry, we only consider the

inphase component for the probability of error analysis. The inphase component can be

written as

Re(r̃l) =
√

P1 Re(A1,lw
Hz1) +

√
P1

∞∑
m=−∞

m�=0

Re(A1,l−mwH z̃1,m)

+
K∑

k=2

√
Pk

∞∑
m=−∞

Re(Ak,l−mwHzk,m) + Re(wHbl). (IV.17)

Consider the following identity:

Re(aHb c) = [Re(a)T , Img(a)T ]

⎡⎣ Re(b), −Img(b)

Img(b), Re(b)

⎤⎦⎡⎣ Re(c)

Img(c)

⎤⎦ (IV.18)

where a and b are complex vectors, and c is a complex scalar. Using (IV.18) in (IV.17),

we have

Re(r̃l) =
√

P1 y1A
(r)
1,l +

√
P1 y2A

(i)
1,l +

√
P1

∞∑
m=−∞

m�=0

(ỹ1,mA
(r)
1,l−m + ỹ2,mA

(i)
1,l−m)

+
K∑

k=2

√
Pk

∞∑
m=−∞

(y1,k,mA
(r)
k,l−m + y2,k,mA

(i)
k,l−m) + Re(wHbl) (IV.19)

where

[y1, y2]
∆
= [Re(w)T , Img(w)T ]

⎡⎣ Re(z1), −Img(z1)

Img(z1), Re(z1)

⎤⎦

[ỹ1,m, ỹ2,m]
∆
= [Re(w)T , Img(w)T ]

⎡⎣ Re(z̃1,m), −Img(z̃1,m)

Img(z̃1,m), Re(z̃1,m)

⎤⎦

[y1,k,m, y2,k,m]
∆
= [Re(w)T , Img(w)T ]

⎡⎣ Re(zk,m), −Img(zk,m)

Img(zk,m), Re(zk,m)

⎤⎦
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and A
(r)
1,l and A

(i)
1,l are the real and imaginary parts, respectively, of the complex data

symbol A1,l. Similarly, A
(r)
k,l−m, and A

(i)
k,l−m denotes the real and imaginary parts of the

complex symbol Ak,l−m for k = 2, · · · , K. To simplify notation we further reduce

(IV.19) to

Re(r̃l) =
√

P1 y1A
(r)
1,l +

√
P1 y2A

(i)
1,l + x1 + x2 + x3 (IV.20)

where x1
∆
=

√
P1

∑∞
m=−∞

m�=0
(ỹ1,mA

(r)
1,l−m + ỹ2,mA

(i)
1,l−m),

x2
∆
=
∑K

k=2

√
Pk

∑∞
m=−∞ (y1,k,mA

(r)
k,l−m + y2,k,mA

(i)
k,l−m), and x3

∆
= Re(wHbl).

IV.C Optimum Weights

We use the MMSE criterion to determine the weights w, where we condition

on the channel of all the users and delays of the interfering users, i.e., we condition on

the set B = {z1, z̃1,m, zk,m}. Since r̃l in (IV.16) is the estimate of the complex symbol

A1,l, using the orthogonality principle we have

E[(r̃l − A1,l)z
H
l |B] = 0 (IV.21)

where zl is given in (IV.16). Simplifying above we have

w =
√

P1c1Ψ
−1z1 (IV.22)

where the correlation matrix Ψ
∆
= E[zlz

H
l |B] and the average symbol power c1

∆
=

E[|A1,l|2] in (IV.22) are given below

Ψ = c1

⎛⎜⎝P1 z1z
H
1 + P1

∞∑
m=−∞

m�=0

z̃1,m z̃H
1,m +

K∑
k=2

Pk

∞∑
m=−∞

zk,mzH
k,m

⎞⎟⎠+ R.

(IV.23)

In the above, R
∆
= E[blb

H
l ]. The cross terms in (IV.23) are zero because of the inde-

pendence of the data of the desired and the interfering users.
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We evaluate the average symbol power c1 for the case of a rectangular M-

QAM where M = MHMV , and MH is the number of symbols for the horizontal PAM

and MV is the number of symbols for the vertical PAM. Then it can be shown that

c1 = E[|A1,l|2] = E[(A
(r)
1,l )

2 + (A
(i)
1,l)

2] =

[
1

3
(M2

H + M2
V − 2)

]
. (IV.24)

Finally, the covariance matrix R is computed as shown below

R
∆
= E[blb

H
l ] = IQ ⊗R1 (IV.25)

where IQ is Q×Q identity matrix and ⊗ denotes the Kronecker product. The correlation

matrix R1 in (IV.25) is defined as R1
∆
= E[bq,lb

H
q,l] any q = 1, · · · , Q. The ijth (i, j =

1, · · · , P ) component of the matrix R1 is given by

(R1)i,j = E[(bq,l)i(b
∗
q,l)j]

= E

[(∫ ∞

−∞
nq((l + i − Pb)T − ε)g(−ε)dε

)
×
(∫ ∞

−∞
nq((l + j − Pb)T − ζ)∗g(−ζ)dζ

)]
= x((i − j)T )No. (IV.26)

IV.D Probability of Error Analysis

Consider the real part of the output test statistics in (IV.20). Note that the

third, fourth and the fifth terms in (IV.20) are due to ISI, MAI, and the thermal noise,

respectively. In this work, we are assume that the total number of interfering users is

small, therefore, the Gaussian approximation for MAI, valid for large number of users,

does not hold in our work. Also, the ISI term is Non-Gaussian.

Next, note that ΥR
∆
= Re(r̃l) conditioned on the terms

{y1, A
(r)
1,l , y2, A

(i)
1,l, x1, x2} is Gaussian. Its conditional distribution can, thus, be

written as ∼ N(µR, σ2
R) where the mean and variance are

µR
∆
=
√

P1 y1A
(r)
1,l +

√
P1 y2A

(i)
1,l + x1 + x2

σ2
R

∆
= E[Re(wHbl)

2] =
1

2
wHE[blb

H
l ]w =

1

2
wHRw. (IV.27)
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IV.D.1 Derivation for the conditional BER for M-QAM

In this section we derive the conditional BER, where the conditioning is on

the channel of all the users, delays of the interfering users, ISI and the MAI, i.e., we

condition on the terms {y1, y2, x1, x2}. Also, note that the derivation in this section, as

well as those in Sections IV.D.2 and IV.D.3, hold for any arbitrary weight vector w.

Consider a rectangular M-QAM configuration. Let the horizontal PAM (H-PAM) be of

dimension MH and vertical PAM (V-PAM) be of dimension MV , then M = MHMV .

The total number of bits transmitted are log2(M) = log2(MH) + log2(MV ). Let us

denote G
∆
= log2(M), GH

∆
= log2(MH), and GV

∆
= log2(MH). Figure IV.7 shows the

square 16-QAM constellation. The complex symbols (shown by the black dots in the

figure) and the corresponding gray encoded bit assignment are shown in the figure. For

the bit assignment shown in the Figure IV.7 for 16-QAM, the first and the third bits

are transmitted through the inphase bit stream and the second and the fourth bits are

transmitted through the quadrature bit stream.

Let us denote the inphase symbols by {s(r)
mr}MH

mr=1 and the corresponding Gray

encoded GH bits by (g̃mr ,GH
, g̃mr ,GH−1, · · · , g̃mr ,1), where g̃mr ,GH

is the most signifi-

cant bit (MSB) and g̃mr ,1 is the least significant bit (LSB). Also, s
(r)
mr takes on values

{±d,±3d, · · · ,±(MH − 1)d}. Similarly, let s
(i)
mi denote the quadrature symbols that

takes values {±d,±3d, · · · ,±(MV − 1)d} and has Gray encoded GV bits given by

(ĝmi,GV
, ĝmi,GV −1, · · · , ĝmi,1). For the QAM constellation, the complex symbols are of

the form

sm = s(r)
mr

+ is(i)
mi

, for m = 1, · · · , M. (IV.28)

The Gray code for sm is obtained from the Gray code for the horizontal and vertical

PAM.

In Figure IV.7 for 16-QAM, in terms of the notation defined above,

(g̃mr ,2, g̃mr,1) are the inphase bits and (ĝmi,2, ĝmi,1) are the quadrature bits for the mth

symbol point in the constellation. Note that the inphase and the quadrature components

of the output test statistics are demodulated independently. Therefore, the bit error prob-
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ability of these two components can be computed separately, infact, for a square QAM

constellation the BER for the two components would be the same. Thus, in the follow-

ing we will concentrate on the BER for the horizontal PAM. The BER for the vertical

PAM for a different dimension can be computed similarly.

Consider the horizontal PAM (for example, see Figure IV.7 for 4-PAM). The

total number of inphase bits are GH . We will compute the BER for each of these bits.

Note that our derivation for BER is more general compared to past works and can be

reduced to the special cases considered before [89], [90]. Unlike the work in [89], [90],

we derive closed-form expression for QAM BER that is valid for any QAM size and

any distribution for the output test statistics. For clarity, detailed steps for derivation

(starting from the basic principles [87]) are presented.

Next, we define the complex signal sets

S1,j
∆
= {all sm with bit g̃mr,j = 1} and

S0,j
∆
= {all sm with bit g̃mr,j = 0} for j = 1, · · · , GH .

Note that the cardinality of these sets are |S1,j| = |S0,j| = M/2. Using these definitions,

the probability of error for the jth (for j = 1, · · · , GH) bit can be written as

P H
e,c(j)

=
1

2|S1,j|
∑

all sm′∈S1,j

Prob
{

ΥR ∈ IH,mr , for all s(r)
mr

such that sm ∈ S0,j

∣∣∣sm′ was transmitted
}

+
1

2|S0,j|
∑

all sm′∈S0,j

Prob
{

ΥR ∈ IH,mr , for all s(r)
mr

such that sm ∈ S1,j

∣∣∣ sm′ was transmitted
}
. (IV.29)

In (IV.29), IH,mr is the interval associated with s
(r)
mr on the I-axis (or H-PAM) given by

IH,mr = [s
(r)
mr − d, s

(r)
mr + d] except for the boundary points for which the intervals as

(−∞,−(MH − 2)d] and [(MH − 2)d,∞).

Let fΥR|eS(x|sm′) denote the conditional pdf of ΥR conditioned on a set S̃, then
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(IV.29) can be written as

P H
e,c(j) =

1

M

⎡⎣ ∑
sm′∈S1,j

∑
sm∈S0,j

∫
IH,mr

fΥR|eS(x|sm′) dx

+
∑

sm′∈S0,j

∑
sm∈S1,j

∫
IH,mr

fΥR|eS(x|sm′)dx

⎤⎦ . (IV.30)

For the bit assignment shown in Figure IV.7 for 16 QAM and similar bit assignments

for higher QAM and from the properties of Gray code, it can be shown that the number

of disjoint intervals over which integration is performed in the first term in (IV.30) is

MH/(2j+1), and for the second term it is (MH/(2j+1))+1 for j = 1, · · · , GH −1. Note

that the intervals for the integral in the second term include the two boundary intervals,

i.e., (−∞, (−MH + 2j)d] and [(MH − 2j)d,∞). Thus, we can write (IV.30) as

P H
e,c(j) =

1

M

∑
s
(i)
mi

∈S̄

⎡⎣ ∑
s
(r)
mr∈Ŝ1,j

MH/(2j+1)∑
l=1

∫ Ul

Ll

fΥR|eS(x|s(r)
mr

, s(i)
mi

) dx

+
∑

s
(r)
mr∈Ŝ0,j

⎛⎝⎧⎨⎩
(MH/(2j+1))−1∑

l=1

∫ Ll+1

Ul

fΥR|eS(x|s(r)
mr

, s(i)
mi

)dx

⎫⎬⎭
+

∫ (−MH+2j)d

−∞
fΥR|eS(x|s(r)

mr
, s(i)

mi
)dx +

∫ ∞

(MH−2j)d

fΥR|eS(x|s(r)
mr

, s(i)
mi

)dx

)]
(IV.31)

for j = 1, · · · , GH − 1. In (IV.31), we have replaced the first summation over the com-

plex symbols in the first and the second terms in (IV.30) with two separate summations

over the inphase and the quadrature symbols. Also, Ll = (−MH +2j(4l−3))d and Ul =

(−MH +2j(4l−1))d. The sets S̄, Ŝ1,j and Ŝ0,j are given by S̄ = {(−MV +2j−1)d}MV
j=1,

Ŝ1,j
∆
= {all s

(r)
mr with bit g̃mr ,j = 1} and Ŝ0,j

∆
= {all s

(r)
mr with bit g̃mr ,j = 0} =



113

Ŝ − Ŝ1,j , where Ŝ = {(−MH + 2j − 1)d}MH
j=1. For j = GH , (IV.30) can be simplified to

P H
e,c(GH) =

1

M

∑
s
(i)
mi

∈S̄

⎡⎢⎣ ∑
s
(r)
mr∈Ŝ1,GH

(∫ ∞

0

fΥR|eS(x|s(r)
mr

, s(i)
mi

) dx

+

∫ 0

−∞
fΥR|eS(x| − s(r)

mr
,−s(i)

mi
) dx

)]
. (IV.32)

In our case, ΥR conditioned on the terms S̃
∆
= {y1, A

(r)
1,l , y2, A

(i)
1,l, x1, x2} is

Gaussian ∼ N(µR, σ2
R) (see before (IV.27)). Thus, its conditional density, condition on

the set S̃, can be written as

fΥR|eS(x) =
1√

2πσR

e
−(x−µR)2

2σ2
R . (IV.33)

Thus, we have∫ Ul

Ll

fΥR|eS(x|s(r)
mr

, s(i)
mi

) dx = Q

(
Ll − µR

σR

)
− Q

(
Ul − µR

σR

)
(IV.34)

where Q(x) = 1√
2π

∫∞
x

e
−y2

2 dy. Substituting (IV.34) in (IV.31), we have

P H
e,c(j) =

1

M

∑
s
(i)
mi

∈S̄

⎡⎣ ∑
s
(r)
mr∈Ŝ1,j

MH/(2j+1)∑
l=1

[
Q

(
Ll−µR(s

(r)
mr ,s

(i)
mi

)

σR

)
− Q

(
Ul−µR(s

(r)
mr ,s

(i)
mi

)

σR

)]

+
∑

s
(r)
mr∈Ŝ0,j

⎛⎝⎧⎨⎩
(MH/(2j+1))−1∑

l=1

[
Q

(
Ul−µR(s

(r)
mr ,s

(i)
mi

)

σR

)
− Q

(
Ll+1−µR(s

(r)
mr ,s

(i)
mi

)

σR

)]⎫⎬⎭
+ Q

(
(MH−2j)d+µR(s

(r)
mr ,s

(i)
mi

)

σR

)
+ Q

(
(MH−2j)d−µR(s

(r)
mr ,s

(i)
mi

)

σR

))]
.

(IV.35)

Note that the conditional mean µR depends on the transmitted inphase and quadrature

symbols (s
(r)
mr , s

(i)
mi), this is made explicit in (IV.35) by the functional form µR(s

(r)
mr , s

(i)
mi).

The conditional mean µR (conditioned on the set S̃ (see before (IV.33))) is given in

(IV.27). Using the notation developed in this section, we rewrite µR as a function of the

transmitted signal (s
(r)
mr , s

(i)
mi) as

µR(s(r)
mr

, s(i)
mi

) = y1s
(r)
mr

+ y2s
(i)
mi

+ x1 + x2 (IV.36)
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where d =
√

P1. Let x1,2
∆
= x1 + x2, then using this definition and substituting (IV.36)

in (IV.35) we have

P H
e,c(j) =

1

M

∑
s
(i)
mi

∈S̄

⎡⎣ ∑
s
(r)
mr∈Ŝ1,j

MH/(2j+1)∑
l=1

[
Q

(
Ll−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)
− Q

(
Ul−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)]

+
∑

s
(r)
mr∈Ŝ0,j

⎡⎣⎧⎨⎩
(MH/(2j+1))−1∑

l=1

[
Q

(
Ul−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)
− Q

(
Ll+1−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)]⎫⎬⎭
+Q

(
(MH−2j)d+y1s

(r)
mr +y2s

(i)
mi

+x1,2

σR

)
+ Q

(
(MH−2j)d−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)]]
.

(IV.37)

From (IV.32), (IV.34) and (IV.36), we have

P H
e,c(GH) =

1

M

∑
s
(i)
mi

∈S̄

⎡⎢⎣ ∑
s
(r)
mr∈Ŝ1,GH

[
Q

(
−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)
+ Q

(
−y1s

(r)
mr−y2s

(i)
mi

+x1,2

σR

)]⎤⎥⎦ .

(IV.38)

The BER for the M-QAM can be written as

Pe,c =
1

G

(
GH∑
j=1

P H
e,c(j) +

GV∑
j=1

P V
e,c(j)

)
. (IV.39)

IV.D.2 The conditional BER for 16-QAM

In this section, we will specialize the results derived in the previous section

for the case of 16 QAM. Note that the BER for 16 QAM derived in this section is

conditioned on the variables {y1, y2, x1, x2}. Based on the BER expression in (IV.39),

the BER for square 16-QAM, shown in Figure IV.7, can be written. For 16-QAM we

have: M = 16, G = 4, GH = GV = 2, and P H
e,c = P V

e,c. Substituting these in (IV.39),

the BER is given by

Pe,c =
1

2

(
2∑

j=1

P H
e,c(j)

)
. (IV.40)
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From Figure IV.7, we identify the sets:

Ŝ1,2 = {all s
(r)
mr with bit g̃mr ,2 = 1} = {−3d,−d}

Ŝ0,2 = {all s
(r)
mr with bit g̃mr ,2 = 0} = {3d, d}

Ŝ1,1 = {all s
(r)
mr with bit g̃mr ,1 = 1} = {3d,−3d}

Ŝ0,1 = {all s
(r)
mr with bit g̃mr ,1 = 0} = {d,−d} and S̄ = {(−MV + 2j − 1)d}MV

j=1 =

{−3d,−d, d, 3d}. P H
e,c(2) is obtained by evaluating (IV.38) over S̄ and Ŝ1,2 given above

and setting M = 16. P H
e,c(1) is obtained by simplifying (IV.37), and is given below

P H
e,c(1) =

1

16

∑
s
(i)
mi

∈S̄

⎡⎣ ∑
s
(r)
mr∈Ŝ1,1

[
Q

(
−2d−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)
− Q

(
2d−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

)]

+
∑

s
(r)
mr∈Ŝ0,1

(
Q

(
2d+y1s

(r)
mr +y2s

(i)
mi

+x1,2

σR

)
+ Q

(
2d−y1s

(r)
mr−y2s

(i)
mi

−x1,2

σR

))⎤⎦ . (IV.41)

Further simplifications result by noting that y2 = 0 for the MMSE receiver.

Note that the BER expression in general can be written in terms of finite sum

over the Q(.) function. The above BER is conditioned on the channel of all the users and

delays of the interfering users, the ISI and the MAI (i.e., terms y1, y2, x1, x2). Thus, the

argument of the Q(.) in the BER expression depends on x1,2 (see after (IV.36)). Next,

we uncondition the BER with respect to the ISI and MAI.

IV.D.3 BER unconditioned over ISI and MAI

In order to uncondition the BER derived in section IV.D.1 with respect to the

ISI and the MAI (note that the conditioning on the channel of all the users and delays of

the interfering users remain), we adopt an approximate Fourier series expression for the

Q(.) function given in [88], obtained using the Chernoff bound and the Fourier series

representation. According to [88], the Q(.) function can be approximated as

Q(z) =
1

2
− 2

π

∞∑
j=−∞
j odd

exp(−j2ω2/2) exp(ijωz)

2ij
+ ξ(z) (IV.42)
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where i =
√−1 and ξ(z) is the approximation error and is bounded by [88]

|ξ(z)| ≤ Q

(
Te

2
− |z|
)

(IV.43)

and ω = 2π/Te is the Fourier series frequency and Te is the Fourier series period [88].

Note that the bound in (IV.43) is a decreasing function of Te. Thus, the approxima-

tion error in (IV.42) (i.e., the second term in (IV.42)) has a tight upper bound when the

following are satisfied: |z| << Te/2 and Te is large, for this case, the error in approxi-

mating the Q(.) function with the series in the first term in (IV.42) is small.

Recall that the conditional BER expression in general can be written in terms

of a finite sum over the Q(.) function, where each Q(.) has the form Q(ãx̃− ãx1− ãx2),

and where ã
∆
= 1/σR and x̃

∆
= ςm − y1s

(r)
mr − y2s

(i)
mi (see, for example, (IV.37)). Thus,

we will average this general form of the Q(.) over x1 and x2. Using (IV.42), we have

Q(ãx̃ − ãx1 − ãx2) =
1

2
− 2

π

∞∑
j=−∞
j odd

exp(−j2ω2/2)

2ij
exp(ijωã(x̃ − x1 − x2))

+ξ(ãx̃ − ãx1 − ãx2). (IV.44)

Next we average (IV.44) w.r.t to x1, yielding

Q1(x̃, x2)
∆
= Ex1 [Q(ãx̃ − ãx1 − ãx2)]

=
1

2
− 2

π

∞∑
j=−∞
j odd

exp(−j2ω2/2)

2ij
exp(ijωã(x̃ − x2))Ex1 [ exp(−x1ijωã)]

+Ex1 [ξ(ãx̃ − ãx1 − ãx2)]. (IV.45)

Note that the order of expectation operator and the infinite summation in (IV.45) com-

mutes. This can be proved as follows: In order to show that the expectation and the

infinite summation order can be swapped, we need to prove the following:

L̃
∆
=

∞∑
j=−∞
j odd

Ex1

[∣∣∣∣exp(−j2ω2/2)

2ij
exp(ijωã(x̃ − x2)) exp(−x1ijωã)

∣∣∣∣] < ∞. (IV.46)
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Simplifying (IV.46), we get

L̃ <
∞∑

j=−∞
j odd

exp(−j2ω2/2)

2|j| = 2
∞∑

j=1
j odd

exp(−j2ω2/2)

2j

<

∞∑
j=1
j odd

exp(−j2ω2/2) < ∞. (IV.47)

The series in (IV.47) converges. Thus, the order of expectation and the infinite summa-

tion in (IV.45) can be swapped.

Let us define f(j)
∆
= exp(−j2ω2/2)

2ij
, ρ(x̃, x2)

∆
= Ex1 [ξ(ãx̃ − ãx1 − ãx2)], c1

∆
=

jωã, and φx1(c1)
∆
= Ex1 [ exp(−x1ijωã)] = Ex1[ exp(−x1ic1)]. Then we can write

(IV.45) as

Q1(x̃, x2) =
1

2
− 2

π

∞∑
j=−∞
j odd

f(j)e(ic1(ex−x2)) φx1(c1) + ρ(x̃, x2). (IV.48)

Note that x1, defined after (IV.20), is given in term of the random data symbols D1
∆
=

{A(r)
1,l−m, A

(i)
1,l−m}∞m=−∞

m�=0
. Using this definition, we obtain φx1(c1) as shown below:

φx1(c1)

= En
A

(r)
1,l−m,A

(i)
1,l−m

o∞
m=−∞

m�=0

[
exp

(
− ic1

[√
P1

∞∑
m=−∞

m�=0

(ỹ1,mA
(r)
1,l−m + ỹ2,mA

(i)
1,l−m)

])]
.

(IV.49)

Further simplifying, we have

φx1(c1) = En
A

(r)
1,l−m

o∞
m=−∞

m�=0
,

⎡⎢⎣ exp

⎛⎜⎝−ic1

√
P1

⎡⎢⎣ ∞∑
m=−∞

m�=0

(
ỹ1,mA

(r)
1,l−m

)⎤⎥⎦
⎞⎟⎠
⎤⎥⎦

×En
A

(i)
1,l−m

o∞
m=−∞

m�=0
,

⎡⎢⎣ exp

⎛⎜⎝−ic1

√
P1

⎡⎢⎣ ∞∑
m=−∞

m�=0

(ỹ2,mA
(i)
1,l−m)

⎤⎥⎦
⎞⎟⎠
⎤⎥⎦
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=

⎡⎢⎣ ∞∏
m=−∞

m�=0

E
A

(r)
1,l−m

[
exp
(
−ic1

√
P1ỹ1,mA

(r)
1,l−m

)]⎤⎥⎦
×

⎡⎢⎣ ∞∏
m=−∞

m�=0

E
A

(i)
1,l−m

[
exp
(
−ic1

√
P1ỹ2,mA

(i)
1,l−m

)]⎤⎥⎦
=

⎛⎜⎝ ∞∏
m=−∞

m�=0

φ(1)
x1

(c1, m)

⎞⎟⎠
⎛⎜⎝ ∞∏

m=−∞
m�=0

φ(2)
x1

(c1, m)

⎞⎟⎠ (IV.50)

where φ
(1)
x1 (c1, m)

∆
= E

A
(r)
1,l−m

[
exp
(
−ic1

√
P1 ỹ1,mA

(r)
1,l−m

)]
and φ

(2)
x1 (c1, m)

∆
=

E
A

(i)
1,l−m

[
exp
(
−ic1

√
P1 ỹ2,mA

(i)
1,l−m

)]
. Letting γ1,m

∆
= c1

√
P1 ỹ1,m, we have

φ(1)
x1

(c1, m) = E
A

(r)
1,l−m

[
exp
(
−iγ1,mA

(r)
1,l−m

)]
=

1

MH
[ exp(iγ1,m) + exp(−iγ1,m) + exp(3iγ1,m) + exp(−3iγ1,m)+

· · · + exp(MH − 1)iγ1,m) + exp(−(MH − 1)iγ1,m)]

=
1

MH

[
MH∑
em=1

e(MH+1−2 em)iγ1,m

]
=

1

MH

[
sin(MHγ1,m)

sin(γ1,m)

]
. (IV.51)

Similarly, we have

φ(2)
x1

(c1, m) =
1

MV

[
sin(MV γ2,m)

sin(γ2,m)

]
(IV.52)

where γ2,m
∆
= c1

√
P1 ỹ2,m. Substituting (IV.51) and (IV.52) in (IV.50), we have

φx1(c1) =

⎛⎜⎝ ∞∏
m=−∞

m�=0

1

MH

[
sin(MHγ1,m)

sin(γ1,m)

]⎞⎟⎠
×

⎛⎜⎝ ∞∏
m=−∞

m�=0

1

MV

[
sin(MV γ2,m)

sin(γ2,m)

]⎞⎟⎠ . (IV.53)
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Next we average Q1 in (IV.48) w.r.t to x2 (note that x1 and x2 are independent):

Q2(x̃)
∆
= Ex2[Q1(x̃, x2)]

=
1

2
− 2

π

∞∑
j=−∞
j odd

f(j)e(ic1ex) φx1(c1)Ex2[e
(−ic1x2)] + Ex2 [ρ(x̃, x2)]

=
1

2
− 2

π

∞∑
j=−∞
j odd

f(j)e(ic1ex) φx1(c1)φx2(c1) + Ex2 [ρ(x̃, x2)] (IV.54)

where φx2(c1)
∆
= Ex2 [ e(−x2ic1)]. Let ρ(x̃)

∆
= Ex2[ρ(x̃, x2)]. Using the similar approach

as above, we can show that

φx2(c1) =

K∏
k=2

⎧⎪⎨⎪⎩
⎛⎜⎝ ∞∏

m=−∞
m�=0

1

MH

[
sin(MHγ1,k,m)

sin(γ1,k,m)

]⎞⎟⎠
×

⎛⎜⎝ ∞∏
m=−∞

m�=0

1

MV

[
sin(MV γ2,k,m)

sin(γ2,k,m)

]⎞⎟⎠
⎫⎪⎬⎪⎭ (IV.55)

where γ1,k,m
∆
= c1

√
Pky1,k,m and γ2,k,m

∆
= c1

√
Pky2,k,m. Thus, (IV.54) is the average

BER (averaged over x1, x2). In the final form, (IV.54) can be written as

Q2(x̃) =
1

2
− 2

π

∞∑
j=1

j odd

exp(−j2ω2/2)

j
sin(jωx̃/σR) φx1(jω/σR)φx2(jω/σR) + ρ(x̃)

(IV.56)

where we have substituted for f(j) = exp(−j2ω2/2)
2ij

, c1 = jωã, ã = 1/σR, and used the

relation sin(x) = (eix − e−ix)/2i.

Next we give a bound on the approximation error ρ(x̃) in (IV.56). Note that

ρ(x̃) is defined after (IV.54), and is repeated below:

ρ(x̃) = Ex2[ρ(x̃, x2)], where ρ(x̃, x2) = Ex1 [ξ(ãx̃ − ãx1 − ãx2)].(IV.57)
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Bounding |ρ(x̃)|, we have

|ρ(x̃)| = |Ex2 [Ex1[ξ(ãx̃ − ãx1 − ãx2)]]|

=

∣∣∣∣∣E(
A

(r)
k,l−m,

A
(i)
k,l−m

)∞

m=−∞

[
E(

A
(r)
1,l−m,

A
(i)
1,l−m

)∞

m=−∞
m �=0

[
ξ

(
ã

(
x̃

−
[√

P1

∞∑
m=−∞

m�=0

(ỹ1,mA
(r)
1,l−m + ỹ2,mA

(i)
1,l−m)

]

−
[

K∑
k=2

√
Pk

∞∑
m=−∞

(y1,k,mA
(r)
k,l−m + y2,k,mA

(i)
k,l−m)

]))]]∣∣∣∣∣
(IV.58)

≤ maxn
X

(r)
1,m,X

(i)
1,m

o∞
m=−∞

m�=0
,n

X
(r)
k,m,X

(i)
k,m

o∞
m=−∞

[
ξ

(
ã

{
x̃ −
[√

P1

∞∑
m=−∞

m�=0

(ỹ1,mX
(r)
1,m + ỹ2,mX

(i)
1,m)

]

−
[

K∑
k=2

√
Pk

∞∑
m=−∞

(y1,k,mX
(r)
k,m + y2,k,mX

(i)
k,m)

]})]
(IV.59)

≤ maxn
X

(r)
1,m,X

(i)
1,m

o∞
m=−∞

m�=0
,n

X
(r)
k,m,X

(i)
k,m

o∞
m=−∞

[
Q

(
Te

2
− ã

{∣∣∣∣∣x̃ −
[√

P1

∞∑
m=−∞

m�=0

(ỹ1,mX
(r)
1,m + ỹ2,mX

(i)
1,m)

]

−
[

K∑
k=2

√
Pk

∞∑
m=−∞

(y1,k,mX
(r)
k,m + y2,k,mX

(i)
k,m)

]∣∣∣∣∣
})]

(IV.60)

≤ maxn
X

(r)
1,m,X

(i)
1,m

o∞
m=−∞

m�=0
,n

X
(r)
k,m,X

(i)
k,m

o∞
m=−∞

Q

(
Te

2
− ã

{
|x̃| +

√
P1

∞∑
m=−∞

m�=0

(|ỹ1,m||X(r)
1,m| + |ỹ2,m||X(i)

1,m|)

+

K∑
k=2

√
Pk

∞∑
m=−∞

(|y1,k,m||X(r)
k,m| + |y2,k,m||X(i)

k,m|)
})

(IV.61)
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= Q

(
Te

2
− µ

)
where µ

∆
= ã

{
|x̃| +

√
P1

∞∑
m=−∞

m�=0

(|ỹ1,m|(MH − 1) + |ỹ2,m|(MV − 1))

+
K∑

k=2

√
Pk

∞∑
m=−∞

(|y1,k,m|(MH − 1) + |y2,k,m|(MV − 1))

}
(IV.62)

where (IV.58) is obtained by substituting for x1 and x2, and noting that the r.v.s x1 and

x2 are defined in term of the random data symbols D1 = {A(r)
1,l−m, A

(i)
1,l−m}∞m=−∞

m�=0
, and

D2
∆
= {A(r)

k,l−m, A
(i)
k,l−m}∞m=−∞, respectively.

The maximization in (IV.59) is over integers {X (r)
1,m, X

(i)
1,m}∞m=−∞

m�=0
, {X(r)

k,m, X
(i)
k,m}∞m=−∞,

where X
(r)
1,m and X

(r)
k,m take values from the set {−MH + 2j − 1}MH

j=1, and X
(i)
1,m, X

(i)
k,m

take values from the set {−MV + 2j − 1}MV

j=1.

The inequality in (IV.60) follows from (IV.43) (with Te chosen such that following are

satisfied: µ << Te/2, and Te is large). Equation (IV.62) is obtained by simplifying the

maximization operation in the previous step (i.e., in (IV.61)). For small approximation

error, the value of Te is chosen such that following are satisfied: µ << Te/2, and

Te is large. Note that µ is finite. This can be seen by first noting that the quantities

ỹ1,m, ỹ2,m, y1,k,m, y2,k,m in µ are defined in terms of the pulse x(t), where the subscript

m in these terms appears inside the pulse, in the form x(mT ). This means that the

infinite sum (with summation index m) in µ is finite (see (IV.10)).

In order to use the series in (IV.42) for obtaining the BER results numerically,

the infinite series must be truncated. The truncated series can be written as

Q(x) =
1

2
− 2

π

eT∑
j=1

j odd

exp(−j2ω2/2) sin(jωx)

j
+ ξ(x) + η eT (x) (IV.63)

where ηeT (x) is the error in truncating the series and is bounded by [88]

|η eT (x)| ≤
√

2πTe

π2T̃
Q

(
2πT̃

Te

)
. (IV.64)

For the choice of T̃ , such that T̃ ≥ Te, the truncation error is very small. For example,

for T̃ = Te, the right side of (IV.64) takes the value
√

2π
π2 Q (2π) = 4.21 × 10−11.
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Thus, truncating the series in the averaged Q(.) function in (IV.56), we have

Q2(x̃) =
1

2
− 2

π

eT∑
j=1

j odd

exp(−j2ω2/2)

j
sin(jωx̃/σR)φx1(jω/σR)φx2(jω/σR)

+ρ(x̃) + η eT (x̃). (IV.65)

Thus, averaging the Q(.) function, with argument (ãx̃ − ãx1 − ãx2), over x1

and x2, results in the expression given in (IV.65). Using this expression in the BER

results in (IV.37), gives the final expression for the BER for the system. Note that this

final expression is conditioned on the channel of all the users and the delays of the

interfering users.

IV.E Numerical Results

Numerical results are obtained by averaging the conditional BER (conditioned

on the channel of all the users and the delays of the interfering users) obtained in Sec-

tion IV.D over different channel realizations and the delay of the interfering users. We

consider an indoor NLOS operating environment, where the LOS is obstructed or there

is no direct path between the mmW transmitter and the receiver. An example of such

an operating environment is an office setting where furnishing typically includes multi-

ple desks, chairs, computers, bookshelves etc. The IEEE 802.15.3c TG has carried out

measurements for several indoor environments and has proposed channel models that

characterize these underlying environments [7].

In general, the parameter values for the channel models proposed in [7] depend

on the beamwidth of the transmit antenna and the direction in which the transmit power

is launched. For channel model CM4, which is for the NLOS office environment, three

separate sets of measurement data are available, based on three different beamwidths

of the transmitter. We denote the three CM4 models as CM4.1, CM4.2 and CM4.3.

The parameter values for these models are given in Table IV.1 [7], where Γ and γ are

the cluster and ray decay factors, respectively, k̃ is the Rician effect in each cluster
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Table IV.1: Parameter values for the NLOS CM4 models

CM4.1 CM4.2 CM4.3
Tx-360◦ Tx-30◦ Tx-omni

Γ[ns] 109.2 134 19.44

γ[ns] 67.9 59 0.42

σc[dB] 3.24 4.37 1.82

σr[dB] 5.54 6.66 1.88

σθ[degree] 60.2 22.2 9.1

k̃[dB] 19 19.2 10

[7] defined in Section IV.B.1, σc and σr are the cluster and ray lognormal standard

deviations, respectively, and σθ is the angle spread.

For obtaining the numerical results, we consider the following system param-

eter values: the data rate is 1 Gbps, the number of users, K, is 2, and the roll off factor,

�, is 0.2. At the receiver, we consider the same antenna array model as described in the

previous chapters, i.e., we consider a fixed length array with fixed effective aperture.

In our results, the total length of the antenna array is constrained to 2λ, where λ is the

carrier wavelength.

We consider a single antenna with directional radiation pattern at the transmit-

ter. The transmitter beamwidth, for the channel models CM4.1, CM4.2 and CM4.3, is

assumed to be the same as given in Table IV.1, above. The spatial correlation between

the antennas at the receive array depends on the mean AoA of the cluster, antenna spac-

ing, angle spread, and the power azimuth profile (density function of the AoA). Based

on the recommendations in [7], the Laplacian density for the AoA is adopted. For this

case, the correlation between the antenna elements is given in [91], which is employed

in our results. Furthermore, we assume that all channel models have the same number of

clusters and the same number of rays within the cluster, and normalize the power in the
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Figure IV.3: BER plot for 4-QAM when Q = 5 and the number of temporal taps P takes

on values {1, 7, 21}. The channel model is CM4.1.

multipath components. The total number of clusters considered is 2, and the number of

rays within a cluster is 4, unless specified otherwise. The mean AoA of the two clusters

of the desired user is assumed at [0◦, 20◦] and that of the interfering user at [10◦, 30◦].

In Figure IV.3, we plot the system performance for 4-QAM for a varying num-

ber of temporal taps P and fixed number of antennas Q = 5. The channel model used

is CM4.1. The angle spread (AS) for the two users is fixed to 60.2◦, same as the value

specified in Table IV.1. Since the interfering and the desired users coexist in the same

environment (for example, the same room) and experience similar type of the scattering,

it is reasonable to assume that the AS for the two users is the same. Note that the perfor-

mance gets better as P is increased, where P being unity corresponds to the case when

no equalization is performed. Clearly, the performance is limited by the ISI, in addition

to the MAI, and the system performance can be improved significantly by the use of an

equalizer. Similar behavior is observed when the channel model CM4.2 is used. Figure
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Figure IV.4: BER plot for 4-QAM when Q = 5 and the number of temporal taps P takes

on values {1, 7, 21}. The channel model is CM4.2.

IV.4, shows the performance for CM4.2, with the same set of parameters as above.

Figure IV.5 shows the performance for CM4.1 when the number of antennas Q

is 5, P is 21, and the angular spread is varied. The AS takes on values {5◦, 10◦, 15◦, 20◦}
in Figure IV.5. Note that the spatial correlation depends on the AS, as mentioned before.

A larger AS corresponds to the case of a richer scattering environment, therefore, a lower

correlation between the antennas. Thus, spatial correlation decreases as AS is increased

due to reduced correlation between the signals received at different antennas. This has

the effect of providing better spatial diversity gains. On the other hand, as the AS of the

interferer increases, the ability to suppress interference through beamforming is reduced.

Thus, for a given Q and P values and interferer location, the performance is determined

by the net effect of these two factors. Note that in Figure IV.5, the performance improves

as AS is increased mainly due to improved diversity.

In Figure IV.6, the performance of channel models CM4.2 and CM4.3 for an
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Figure IV.5: BER plot for 4-QAM when Q = 5, P = 21 and AS is varied

{5◦, 10◦, 15◦, 20◦} for channel model CM4.1

AS value of 15◦ is shown. The number of antennas Q is 5 and the number of temporal

taps P is 21. Note that CM4.3 performs better than CM4.2. For the given Q and P , the

relative performance of the channel models is determined by a combination of the three

factors; residual ISI, MAI and the total available diversity. Note that CM4.2 has a much

slower decaying multipath intensity profile when compared to the CM4.3. This can be

seen from the corresponding Γ and γ values in Table IV.1. This, thus, provides larger

multipath diversity gain for CM4.2, as the multipath coefficients with larger delays are

associated with higher SNR, when compared to CM4.3. Also, CM4.2 would experience

larger ISI levels. Figure IV.6, shows the net effect of these factors for the given Q and

P values. CM4.3 outperforms primarily due to lower interference level (ISI and MAI)

when compared to CM4.2.
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Figure IV.6: BER plot for channel models CM4.2 and CM4.3 for 4-QAM, Q = 5,

P = 21 and AS 15◦.

IV.F Conclusion

In this work, the performance of a 60 GHz communication system employ-

ing multiple antenna equalization scheme to suppress both the intersymbol interference

and multiple-access interference was analyzed. In order to increase spectral efficiency,

a higher order modulation format based upon M-QAM was used. An analytical ex-

pression for the bit error rate was derived for the case of non-Gaussian intersymbol

interference and multiple access interference. A realistic IEEE channel model was used

for this analysis. Joint spatial and temporal processing was shown to improve the system

performance significantly. The combined effects of interference suppression and spatial

correlation on the system performance was then studied.
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V

Conclusion

Ultra wideband and millimeter wave are emerging technologies that hold great

promise to satisfy the need for short range, high speed wireless communication systems.

Such systems are envisioned to pervade the home and office environments, and facili-

tate interconnection of various consumer electronic devices, which require data rates in

excess of tens of megabits per second and often rely on wireline communication. Effec-

tive utilization of the spatial domain through the use of MIMO techniques will further

enhance the viability of UWB and mmW for such wireless consumer electronic devices.

The significantly higher occupied bandwidth of UWB and mmW systems pro-

vides immense advantages in terms of higher data rates, while at the same time present-

ing new challenges such as susceptibility to interferers and possibly complex radio de-

sign. The success of these new technologies will depend, to a significant extent, on the

success of scientists and engineers in overcoming these new challenges, while taking

advantage of the higher data rates offered by these systems. These advantages of UWB

and mmW should come at little or no extra cost to the end user for these technologies to

be successful and pervasive.

This research has focused on furthering the goal of realizing robust and reli-

able UWB and mmW communication systems which provide unprecedented data rates.

The effectiveness of multiple antenna techniques in improving reliability and overall

performance was investigated. The performance of these systems was studied in a real
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world environment.

We first studied the performance of a MIMO beamforming system. In the pres-

ence of both imperfect channel estimation and antenna correlation, an optimal MIMO

beamforming scheme was proposed in Chapter II. The performance of this scheme was

analyzed through a closed-form expression for the probability of error, and the com-

bined effects of channel estimation errors and diversity on the system performance were

studied. It was assumed that spatially-correlated fading exists either at the transmitter or

at the receiver. We showed that, with imperfect channel estimation, the performance is

identical if there is independent fading at, say L, transmitters and correlated fading at,

say M , receivers, compared to the case when there is correlated fading at M transmitters

and independent fading at L receivers. We then focused on the case of independent fad-

ing at the transmitter and correlated fading at the receiver. Due to spatial constraints, we

assumed that a fixed length linear array is deployed at the receiver, where the effective

aperture of the array is fixed. For such an array, it was shown that an optimal number

of receive antenna elements exists, and that the optimum value depends on the available

transmit and receive diversity, the quality of the estimates and the array length.

It was also shown that for a given number of transmit and receive antennas,

as the correlation between the channel coefficients increases due to poor scattering, the

system performance degrades. This indicated that the impact of reduced diversity or-

der on the performance was more pronounced than the benefits of improved channel

estimation accuracy as the fade correlation increases due to poor scattering.

In Chapter III, the performance of a DS-CDMA UWB system with multiple

antennas at the receiver was evaluated. Due to operation in a dense wireless environ-

ment, we assumed the presence of multiple interfering UWB devices, as well as in-

terference from other narrowband systems. A spatio-temporal receiver was designed

that first forms an estimate of the channel in the presence of NBI and MAI, and then

uses it to optimally combine the multipath components such that the output signal-to-

interference-plus-noise-ratio is maximized. An exact closed-form expression for the

probability of error was derived for the case when correlation between the NBI during
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the channel estimation phase and the data detection phase is negligible. The effects of

channel estimation accuracy, interference suppression, and spatial correlation on the per-

formance were studied. At the receiver, we assumed the same antenna array model as in

Chapter II, i.e., we assumed a fixed length array with fixed effective array aperture. For

this antenna model, it was shown that, for fixed maximum diversity, there is an optimal

combination of the number of antennas and the number of temporal taps that achieves

the best performance. This optimal combination depends on the signal-to-interference

ratio and the quality of the estimates.

Chapter IV focused on the performance analysis of a 60 GHz communication

system. A multiple antenna equalization scheme was employed to suppress both the

intersymbol interference and multiple access interference. In order to increase spectral

efficiency, a higher order modulation format based upon M-QAM was used. The per-

formance of this system through an analytically derived expression for the bit error rate

was investigated. A realistic IEEE channel model [7] was used for this analysis. Joint

spatial and temporal processing was shown to improve the system performance signifi-

cantly. The combined effects of interference suppression and spatial correlation on the

system performance was then studied.
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