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ABSTRACT OF THE DISSERTATION 

Selective attention and its roles in enhancing                                                  

sensory information processing and perceptual performance  

by 

Sirawaj Itthipuripat 

Doctor of Philosophy in Neurosciences 

University of California, San Diego, 2017 

Professor John Serences, Chair 

 

 In a complex visual environment—such as a crowed street—driving would be 

impossible if drivers do not have an intact attentional system. They have to monitor 

surrounding vehicles, while attending to traffic lights and pedestrians. Under this 

scenario, drivers need to divide their attention into multiple spotlights and flexibly 

change the size of their attention field such that only relevant information is efficiently 

processed. In the first experiment (Chapter 2), we provided neural evidence showing 

that attention could be divided into multiple spotlights. Using a stimulus-frequency-

tagging technique where we flashed two visual targets and a distractor at the 
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intermediate location at different frequencies, we were able to monitor changes of 

steady state visually evoked potentials (SSVEPs) that oscillated at the same 

frequencies as the target and distractor stimuli. We found the significant divergence of 

the target-related and distractor-related SSVEPs ~150-350ms before human 

participants correctly discriminated the two targets. In the second experiment (Chapter 

3), we examined the neural basis underlying changes of the spatial scope of attention 

and studied how such changes may alter the way sensory information is encoded in the 

visual cortex. By manipulating the spatial extent of visual target in a stream of 

flickering non-target stimuli, we observed changes in the spread of cortical activity in 

the contralateral visual cortex measured using functional magnetic resonance imaging 

(fMRI). Importantly, we found that this attentional spread modulated the magnitude of 

sensory signals measured via SSVEPs in the way that was consistent with predictions 

from computational models based on divisive normalization. Lastly, in the third 

experiment (Chapter 4), we made a further step to examine the quantitative 

relationship between attentional gain modulations of neural signals and attention-

related improvements in behavioral performance. We found that attentional gain 

modulations of early visually evoked responses could sufficiently predict attention-

related improvements in perceptual performance, without the need to invoke other 

alternative mechanisms, such as noise reduction or efficient read-out mechanisms. 

Taken together, the results from these three experiments suggest that selective 

attention enhances sensory information processing via changes in gain modulations of 

early sensory signals and these attentional gain modulations play a critical role in 

supporting attention-related improvement in perceptual performance. 
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The Neuroscientist

© The Author(s) 2015 
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1073858415603312
nro.sagepub.com

Introduction
The ultimate goal of neuroscience is to understand links 
between brain activity and behavior from micro to macro 
levels of analysis (Sejnowski 1991; Sejnowski and others 
2014). This goal is being pursued using ever more 
advanced tools to assay neural activity, coupled with 
increasingly nuanced computational models to link neu-
ral data to behavioral outcomes. However, these advances 
also pose a formidable set of challenges as new technol-
ogy is often deployed before we fully understand how the 
new measurements relate to more traditional assays of 
neural activity. For example, there is still an unclear link 
between single-unit spiking activity and the pattern of 
responses observed with large-scale measurements such 
as electroencephalography (EEG), the blood-oxygenation 
level dependent (BOLD) response as measured using 
functional magnetic resonance imaging (fMRI), voltage-
sensitive dye imaging (VSDI), and calcium imaging. 
Whereas the severity of this problem varies, each method 
comes with its own unique set of inference issues. 
Moreover, different methods are often sensitive to at least 
partially independent aspects of neuronal and cortical 
activity (e.g., membrane potentials, action potentials, cal-
cium concentrations, neurovascular activity), so failing to 
formally link data collected using different techniques at 
different spatial and temporal scales represents a signifi-
cant missed opportunity.

The main purpose of this update article is to highlight 
these challenges by focusing on efforts to link selective 
attentional modulations in visual cortex with behavior. 
This is an ideal case study in many respects because 
research in this area has been done in a variety of species 
using a variety of techniques, and there is a long history 
of using quantitative models to link changes in neural 
activity with changes in perceptual sensitivity and behav-
ioral performance.

Selective Attention, Neural 
Modulations, and Changes in 
Perceptual Sensitivity
Attention is an essential cognitive operation that selec-
tively enhances the processing of relevant information 

603312 NRO XXX10.1177/1073858415603312The NeuroscientistItthipuripat and Serences
research-article2015

1Neurosciences Graduate Program, University of California, San 
Diego, La Jolla, CA, USA
2Department of Psychology, University of California, San Diego, La 
Jolla, CA, USA
3Kavli Institute for Brain and Mind, University of California, San Diego, 
La Jolla, CA, USA

Corresponding Author:
Sirawaj Itthipuripat, Neuroscience Graduate Program, University of 
California, San Diego, 9500 Gilman Dr., 92093, La Jolla, CA 92093, 
USA. 
Email: itthipuripat.sirawaj@gmail.com

Integrating Levels of Analysis in Systems 
and Cognitive Neurosciences: Selective 
Attention as a Case Study

Sirawaj Itthipuripat 1 and John T. Serences 1,2,3

Abstract
Neuroscience is inherently interdisciplinary, rapidly expanding beyond its roots in biological sciences to many areas 
of the social and physical sciences. This expansion has led to more sophisticated ways of thinking about the links 
between brains and behavior and has inspired the development of increasingly advanced tools to characterize the 
activity of large populations of neurons. However, along with these advances comes a heightened risk of fostering 
confusion unless efforts are made to better integrate findings across different model systems and to develop a better 
understanding about how different measurement techniques provide mutually constraining information. Here we 
use selective visuospatial attention as a case study to highlight the importance of these issues, and we suggest that 
exploiting multiple measures can better constrain models that relate neural activity to animal behavior.

Keywords
attention, systems neuroscience, cognitive neuroscience, levels of analysis, behavior
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while simultaneously suppressing the processing of irrel-

evant information. Attention deficits are apparent in 

many clinical populations, including patients with schizo-

phrenia (Heinrichs and Zakzanis 1998), attention-deficit 

hyperactivity disorder (Stefanatos and Baron 2007), and 

Parkinson’s disease (Botha and Carr 2012). Given these 

clinical implications, it is not surprising that thousands of 

experiments have been carried out to examine the neural 

mechanisms that support selective information process-

ing. Here we focus on three general mechanisms for illus-

trative purposes, but several more comprehensive reviews 

have recently been published and go into far more detail 

(e.g., Anton-Erxleben and Carrasco 2013; Carrasco 2011; 

Krauzlis and others 2014; Sprague and others 2015).

Generally speaking, attention has been proposed to 

operate by enhancing the gain of neural responses associ-

ated with relevant stimuli (sensory gain models), by 

reducing the variability of neural responses in order to 

increase encoding fidelity (noise reduction models), and 

by enhancing the efficiency of the “read-out” of early 

sensory responses by downstream decision circuits (effi-
cient read-out models). Although there is considerable 

evidence that supports all three of these mechanisms and 

they are by no means mutually exclusive, it is challenging 

to predict when one mechanism might play a dominant 

role in attentional selection and this has motivated much 

debate in the literature. For example, differences in the 

physical characteristics of the stimulus can play a large 

role in generating different patterns of attentional modu-

lation observed in visual cortex (Herrmann and others 

2010; Itthipuripat and others 2014b; Reynolds and Heeger 

2009). However, we argue that another source of vari-

ability relates directly to the methods that are used to 

measure neural modulations and the methods that are 

used to relate those modulations to behavior. We start 

with a brief overview of the three different models of 

attentional modulation that we will consider here, and we 

then highlight how results from different methods sup-

port different theories, even in situations where behav-

ioral paradigms are strikingly similar.

Sensory Gain, Noise Reduction, and 
Efficient Read-Out Mechanisms
In one widely used attention task, subjects must deter-

mine which of two successive stimulus intervals (first or 

second) contains a “test” stimulus rendered in a slightly 

higher contrast than a “standard” stimulus (i.e., a two-

interval forced choice, or 2IFC, task; see Fig. 1A). The 

smallest discriminable change in contrast can be mea-

sured by adjusting the difference in contrast between the 

test stimulus and the standard stimulus. This procedure 

can be repeated using standard stimuli of different con-

trasts to map out a full threshold versus contrast curve 

(TvC; Fig. 1B). While behavioral thresholds are assessed 

at each standard contrast level, neural responses in visual 

cortex can also be concurrently measured to estimate the 

magnitude of cortical responses, producing a contrast 
response function (CRF; Fig. 1C) (Boynton and others 

1999). Using this general approach, studies can deter-

mine how attention changes the relationship between 

neural activity and behavior by systematically manipulat-

ing the focus of attention with either a focused-attention 

cue or with a divided-/distributed-attention cue at the 

beginning of each trial (Fig. 1A; Hara and Gardner 2014; 

Itthipuripat and others 2014a; Pestilli and others 2011).

Linking attentional modulations of neural responses 

and behavior can then be achieved by using signal detec-

tion theory (SDT) to relate the slope and the variability at 

each point along the neural CRF to the shape of the psy-

chophysical TvC function (Boynton and others 1999; 

Itthipuripat and others 2014a; Pestilli and others 2011). In 

STD, perceptual sensitivity (termed d′) is proportional to 

the magnitude of the differences between two neural sig-

nals (∆R) that are evoked by two different stimuli, 

weighted by the variability of each signal (σ) (Boynton 

and others 1999; Tanner and Swets 1954). In cases of 

pure sensory gain, d′ increases as ∆R or the slope of the 

CRF increases, while σ is constant (Fig. 2A). In noise 

reduction models, d′ increases when the overlap between 

the signal distributions associated with each stimulus is 

reduced (Fig. 2B). In contrast, efficient read-out models 

hold that sensory gain and noise reduction are not suffi-

cient to explain behavior. Instead, these models posit that 

an additional read-out rule is implemented so that the out-

put from neural populations that encode relevant infor-

mation is over-weighted compared to neural populations 

that encode irrelevant information (Fig. 2C and D) 

(Eckstein and others 2009; Hara and Gardner 2014; 

Palmer and others 2000; Pelli 1985; Pestilli and others 

2011; Shaw 1984). Importantly for our current purposes, 

the link between each neural model and behavioral per-

formance can be understood through a common, and rela-

tively simple, theoretical framework based on SDT.

Linking Sensory Gain to Behavioral 
Performance
Empirical support for sensory gain models (Fig. 2A) 

comes primarily from single-unit recordings in monkeys 

and from EEG studies in human subjects (Di Russo and 

others 2001; Hillyard and others 1998; Itthipuripat and 

others 2014a; Itthipuripat and others 2014b; Kim and oth-

ers 2007; Lauritzen and others 2009; Lee and Maunsell 

2009, 2010; Martínez-Trujillo and Treue 2002; Reynolds 

and others 2000; Störmer and others 2009; Wang and 

Wade 2011). Early monkey single-unit recording studies 

reported that attention increases the gain of the CRF at 
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mid-level contrasts in visual areas such as V4 and MT 
(termed contrast gain) (Fig. 3A; Martínez-Trujillo and 
Treue 2002; Reynolds and others 2000). This attentional 
enhancement of responses should, in theory, facilitate 
contrast discrimination by creating more separable neural 

response distributions, particularly for mid-contrast 
visual stimuli (cf., Carrasco and others 2004).

While some of these studies support a link between 
sensory gain at mid-level contrasts and behavior, differ-
ent patterns of sensory gain in the CRF have also been 

Figure 1.  Linking changes in perceptual sensitivity to contrast response functions (CRFs) in visual cortex. In a standard two-
interval-force choice (2IFC) contrast discrimination tasks (see panel A for example), subjects have to report which of the 
two successive stimulus intervals (1st or 2nd) contains a “test” stimulus that is rendered with a slightly higher contrast than 
a “standard” stimulus. The minimum detectable contrast change is then measured as function of each “standard” stimulus 
contrast (along x-axis) to estimate the minimum change in contrast (threshold) required to make an accurate discrimination. This 
produces “threshold versus contrast” curves (TvCs in panel B). In these tasks, responses in visual cortex can be concurrently 
measured, yielding neural contrast response functions (CRFs in panel C). The link between TvCs and CRFs can be made using 
signal detection theory (STD). For example, the psychophysical contrast threshold (∆c in panel B) at any given level of the 
standard contrast (c) is approximately proportional to the differential neural responses evoked by the standard stimulus and test 
stimuli (∆R in panel C), divided by the derivative of the CRF (dR/dC). According to STD, perceptual sensitivity (d�) will increase 
when ∆R increases as well as when trial-by-trial variability (σ) of neural responses decreases. This logic can be applied to link 
changes in TvC curves with attention-induced changes in neural CRFs. For example, in the focused-attention condition (left side 
of panel A), subjects were cued to attend to the location that contained the target contrast increment. In the divided-attention 
condition (right side of panel B), subjects were cued that either location could contain the target stimulus. In these tasks, TvCs 
and CRFs for both focused- and divided-attention conditions (blue and green curves in panels B and C) were measured, and the 
link between attention-induced changes in TvCs and CRFs could be made using quantitative modeling (see Fig. 2).
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Figure 2.  Alternative models of attention. (A) Sensory gain models posit that attention amplifies neural responses in sensory 
cortex. In a contrast discrimination task, attention-induced sensory gain will increase the slope of the CRF and thereby magnify 
the differential responses (∆R) evoked by a standard stimulus and a test stimulus that has a slightly higher contrast, resulting in 
enhanced perceptual sensitivity. (B) In contrast, noise reduction models propose that attention achieves a similar increase in 
d� by reducing the trial-by-trial variability of neural responses. When attention reduces the trial-by-trial variability of sensory 
responses (σ) associated with pedestal and test stimuli, perceptual sensitivity will increase even when if there no change in ∆R 
because the responses distributions will overlap less. (C) Post-sensory readout models hold that neither sensory gain nor noise 
modulation sufficiently accounts for attention-induced changes in behavior because using some measurement techniques such 
as fMRI, attention does not change the gain (slope) or the noise characteristics, but instead induces an additive shift of CRFs 
(also see Fig. 3G and H and right panels in Fig. 4). The read-out model proposes that the responses to all stimuli in each interval 
are first pooled, and then a decision is based on the interval that has the larger pooled response. Moreover, sensory responses 
evoked by target (Rtg) and nontarget stimuli (Rntg) are combined into the pooled response (Rpool) using a max-pooling operation 
(see equation in the yellow box) that uses exponentiation (k) to overweight high amplitude responses. In turn, larger changes 
in the pooled response between the first and second interval will support better performance (∆Rpool). Because of the additive 
shift in the fMRI-based CRFs induced by attention, this exponentiation will overweight responses to attended target stimuli over 
responses to ignored nontarget stimuli (blue vs. red curves). However, in the distributed-/divided-attention condition, there is a 
smaller additive increase in the response to the target stimulus (green vs. purple curves); thus, when nontarget stimuli happen to 
be rendered at higher contrasts than the target stimulus, the model will overweight responses to nontarget stimuli, resulting in 
lower perceptual sensitivity in the divided-/distributed-attention compared with the focused-attention condition.  
(D) Simulation of the max-pooling rule showing the differential response pooled from signals evoked by the interval containing 
the standard stimuli and the interval containing the standards plus the target increment (∆Rpool) across divided- and focused-
attention conditions (green vs. blue curves). When k = 1, ∆Rpool is the same across divided- and focused-attention conditions. 
However, when k increases, ∆Rpool in the divided-attention condition sharply decreases and becomes much lower than ∆Rpool in 
the focused-attention condition. Thus, as k increases, perceptual sensitivity in the divided-attention condition will decrease under 
the assumption that the noise of the pooled responses is identical across focused- and divided-attention conditions.
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Figure 3.  Different patterns of attentional gain modulation in contrast response functions (CRFs) measured using different 
methods. (A-B) Single-unit eletrophysiological studies in monkeys typically observe either contrast gain (Reynolds and other 2000) 
or response gain patterns of the CRFs measured in early visual cortices (Lee and Maunsell 2010, respectively). Similar contrast and 
response gain patterns have been observed in the CRFs measured using steady-state visually evoked responses (SSVEPs) in human 
EEG (C-D; Itthipuripat and others 2014b) and in the CRFs measured using human psychophysics (E-F; Herrmann and others 2010). 
These studies have found that the pattern of gain modulation (contrast or response gain) depends on the relative size between 
attention and a stimulus, consistent with the prediction of the normalization model of attention (Reynolds and Heeger 2009). 
Specifically, when the scope of attention is larger than a stimulus (C and E; distributed attention), contrast gain effects are observed. 
On the other hand, when the scope of attention is smaller than a stimulus (D and F; focused attention), response gain effects are 
observed. (G-H) On the other hand, distributed attention and focused attention do not produce contrast and response gain effects 
on CRFs measured using fMRI (Pestilli and others 2011). Instead, both attention conditions induced baseline increases (an additive 
shift) in the fMRI-based CRFs with a higher degree of baseline increase with focused-attention compared to distributed-attention 
conditions. All figures replotted based on original data for color consistency (with permission of authors).
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reported. For example, many single-unit electrophysiology 
studies in monkeys (Lee and Maunsell 2009, 2010) and 
EEG studies in humans (Di Russo and others 2001; 
Itthipuripat and others 2014a; Itthipuripat and others 2014b; 
Kim and others 2007; Lauritzen and others 2009; Wang and 
Wade 2011) have also found that spatial attention can 
enhance gain at higher contrasts as opposed to just inducing 
gain at mid-level contrasts (termed response gain) (Fig. 3B 
and D). In a recent EEG study carried out in our lab 
(Itthipuripat and others 2014a), we found that focused 
attention induced response gain of the early visually 
evoked response peaking at ~80 to 100 ms following a 

stimulus (i.e., the P1 component). Using SDT, we found 
that this response gain could sufficiently account for 
attention-induced changes in perceptual sensitivity, with-
out the need to invoke either noise reduction or efficient 
read-out mechanisms (left panels in Fig. 4). Consistent 
with our findings, Störmer and others (2009) used EEG to 
show that this early sensory gain is highly correlated with 
subjects’ reports of attention-induced increases in per-
ceived contrast (see Carrasco and others 2004).

Even though the exact pattern of sensory gain could be 
different (either contrast or response gain), the same basic 
linking hypothesis that relates changes in the slope of the 

Figure 4.  Comparing studies that link changes in perceptual sensitivity and attentional modulation of visual responses measured 
using EEG (Itthipuripat and others 2014a) and fMRI (Pestilli and others 2011). (A-B) Across both studies, focused attention reduced 
contrast discrimination thresholds, compared to divided/distributed attention. (C) Focused attention induced a multiplicative 
response gain (increase in slope) of the CRFs based on the amplitude of the early sensory P1 component (80–130 ms poststimulus) 
measured using EEG. (D) In contrast, focused attention induced a baseline increase of the CRFs measured using fMRI. Accordingly, 
the sensory gain model, which relies on a change in the slope of the CRF, could sufficiently account for the relationship between 
changes in perceptual sensitivity and attentional modulations based on the P1 EEG response (E) but not on the fMRI response (F). 
To account for the baseline increase in the fMRI response, a postsensory efficient read-out mechanism based on a max-pooling 
rule is required (Fig. 2C). All figures replotted based on original data for color consistency (with permission of authors).
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CRF and improved perceptual sensitivity still holds. In 
addition, it is likely that many of the subtle differences in 
sensory gain may be related to the size of the stimulus 
and the spatial scope of attention (see Reynolds and 
Heeger 2009 for more details). For example, human EEG 
(Itthipuripat and others 2014b) and human psychophysics 
studies (Herrmann and others 2010) provide converging 
evidence that when the spread of attention is larger than a 
stimulus (distributed attention), contrast gain effects are 
observed (Fig. 3C and E). On the other hand, when the 
spread of attention is smaller than a stimulus (focused 
attention), response gain effects are observed (Fig. 3D 
and F). However, this relationship between the spatial 
scope of attention and stimulus size cannot explain all 
differences observed in CRFs and their relationship to 
behavior, as studies using fMRI consistently reveal no 
change in the gain of fMRI-based CRFs across focused- 
and distributed-attention conditions (Fig. 3G and H and 
right panels in Fig. 4) (Hara and Gardner 2014; Pestilli 
and others 2011). Instead, spatial attention enhances the 
baseline offset of fMRI-based CRFs and does not affect 
the slope of these CRFs (see also Buracas and Boynton 
2007; Murray 2008). Since the slope of fMRI-based 
CRFs does not change, it is challenging to link attentional 
modulations of fMRI signals to behavior within the sim-
ple SDT framework and more elaborate models have to 
be developed (see below).

Linking Changes in Neural Noise to 
Behavioral Performance
In addition to sensory gain modulations, single- and 
multi-unit electrophysiology studies reveal that attention 

can also reduce trial-to-trial variability in neuronal 
responses as well as modulate noise correlations between 
pairs of neurons (Fig. 5A and B) (Cohen and Maunsell 
2009; Herrero and others 2013; Mitchell and others 2007, 
2009; Niebergall and others 2011). According to SDT, the 
reduction in trial-to-trial variability in neuronal responses 
(σ) should increase perceptual sensitivity (d′) (Fig. 2B). 
That said, previous studies have suggested that the reduc-
tion in pairwise noise correlation between neurons may 
have a large impact on the signal-to-noise ratio of neural 
populations compared to sensory gain alone, and this may 
contribute to higher d′ by increasing the separability of 
population responses when discriminating two stimuli 
(Fig. 5C) (Cohen and Maunsell 2009; Mitchell and others 
2008, 2009). However, the relationship between noise 
correlations and stimulus discriminability is complex, as 
Ruff and Cohen (2014) recently demonstrated that atten-
tion can either decrease or increase pairwise noise corre-
lations between neurons in V4. While this finding is in 
line with theoretical analysis of optimal patterns of neural 
noise (Abbott and Dayan 1999), more work will be 
needed to directly link these changes to changes to behav-
ioral performance. Moreover, different measurement 
techniques such as VSDI, which indexes the summed 
membrane potentials across larger populations of neu-
rons, have reported that attention has no impact on neuro-
nal noise (Chen and Seidemann 2012). The absence of 
attention-induced changes in trial-by-trial variability of 
neural activity has also been reported in studies using 
EEG (Itthipuripat and others 2014a) and fMRI (Pestilli 
and others 2011). So, as is the case with pure sensory  
gain accounts, these discrepant results that arise from dif-
ferent methodological approaches raise several questions:  

Figure 5.  Attention induces reductions in neuronal noises (Mitchell and others 2009; also see Cohen and Maunsell 2009).  
(A) Attention reduces trial-by-trial variability of neural responses (fano factor or variance divided by the mean firing rate) in 
monkey V4. (B) Attention also reduces noise correlations between pairs of neurons. (C) Quantitative modeling suggests that a 
model-based noise reduction leads to a higher degree of signal-to-noise ratio pooled across neuronal population than a model 
based on sensory gain alone (i.e., the increase in firing rates). All figures replotted based on original data for color consistency 
(with permission of authors).
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(a) methods such as VSDI, EEG, and fMRI may not be 
sensitive to trial-to-trial response variability compared to 
single- and multi-unit electrophysiology, or (b) noise 
modulations may not play an important role in all behav-
ioral tasks, especially when looking at activity aggregated 
over large neuronal populations.

Linking Changes in Efficient  
Read-Out to Behavioral Performance
Recently, several reports converge on the hypothesis that 
changes in sensory gain or neural noise may not be the 
primary mechanisms by which attention affects percep-
tual sensitivity (see an example in right panels of Fig. 4). 
As mentioned above, Pestilli and others (2011) found that 
focused attention selectively increased the baseline offset 
of CRFs measured using fMRI (Fig. 3G and H and Fig. 
4D). Since these additive shifts are almost completely 
independent of stimulus contrast and do not change the 
slope of CRFs (see also Buracas and Boynton 2007; 
Murray 2008), models based on sensory gain fail to pre-
dict attention-induced changes in psychophysical data 
based on fMRI CRFs (Fig. 4G). When testing a noise 
reduction model of the fMRI data, an unrealistically large 
amount of noise reduction has to be implemented to 
explain the relationship between the fMRI signals and 
behavioral performance (~400% reduction; Hara and 
Gardner 2014; Pestilli and others 2011) compared to 
~50% reduction in monkey electrophysiological studies 
(Cohen and Maunsell 2009; Mitchell and others 2009). 
Thus, Pestilli and others (2011) proposed a postsensory 
max-pooling rule that acts to overweight the influence of 
responses evoked by the attended stimulus so that these 
responses have a larger impact on postsensory decision 
mechanisms (Fig. 2C-D) (see also Eckstein and others 
2009; Palmer and others 2000; Pelli 1985; Shaw 1984). 
Specifically, the max-pooling equation (yellow box in 
Fig. 2C) uses an exponent (k) to overweight high- 
amplitude responses. In turn, this exponentiation overam-
plifies responses evoked by attended target stimuli over 
ignored nontarget stimuli because of the large additive 
shift in the fMRI-based CRFs in the focused-attention 
condition (blue vs. red curves). However, in the distrib-
uted-/divided-attention condition, responses evoked by 
target and nontarget stimuli are similar in amplitude 
(green vs. purple curves). Thus, when nontarget stimuli 
happen to be rendered at higher contrasts than the target 
stimulus, the model will overweight responses to nontar-
get stimuli, resulting in lower perceptual sensitivity in the 
divided-/distributed-attention condition compared to 
focused-attention condition.

While at odds with much of the single-unit physiology 
data, this model raises the important possibility that study-
ing single neurons might cloud important modulations that 

happen in large-scale populations that are thought to 
drive fMRI responses. For instance, Hara and others 
(2014) proposed that the summed response over a large 
population of neurons that undergo both contrast and 
response gain should give rise to an additive shift in the 
fMRI signal with attention, and that this additive shift 
should accurately predict corresponding changes in per-
ceived contrast (Cutrone and others 2014). If true, then 
using measures such as fMRI may provide a more accu-
rate picture of the link between large-scale population 
codes and behavior. However, this proposal still needs to 
be refined and extended, as other population-level mea-
sures such as EEG are more in line with observations of 
contrast and response gain, similar to those observed with 
single-unit physiology (Di Russo and others 2001; 
Martínez-Trujillo and Treue 2002; Reynolds and others 
2000; Itthipuripat and others 2014a; Itthipuripat and oth-
ers 2014b; Kim and others 2007; Lauritzen and others 
2009; Lee and Maunsell 2009, 2010; Wang and Wade 
2011; but see Williford and Maunsell 2006). Moreover, a 
recent EEG study, which employed a task similar to the 
task used by Cutrone and others (2014), has shown that 
sensory gain in the early evoked potential (P1) is closely 
related to subjects’ reports of attention-induced increase 
in stimulus contrast (Störmer and others 2009). In addi-
tion, we have recently shown that this EEG component 
undergoes response gain modulation and not an additive 
shift like fMRI signals. Finally, psychophysical data, 
which presumably reflect the output of large population 
responses, is largely consistent with models that assume 
underlying contrast and response gain at the neural level 
(Herrmann and others 2010).

Reconciling Different Accounts and 
Different Measurements
Single-unit and multi-unit recording studies and human 
EEG studies point to sensory gain and noise reduction as 
important factors that mediate selective attention  
(Cohen and Maunsell 2009; Di Russo and others 2001; 
Herrero and others 2013; Hillyard and others 1998; 
Itthipuripat and others 2014a; Itthipuripat and others 
2014b; Kim and others 2007; Lauritzen and others 2009; 
Lee and Maunsell 2009, 2010; Martínez-Trujillo and 
Treue 2002; Mitchell and others 2007, 2009; Niebergall 
and others 2011; Reynolds and others 2000; Wang and 
Wade 2011), and in some cases these modulations are suf-
ficient to almost completely account for changes in per-
ceptual sensitivity (Cohen and Maunsell 2009; Itthipuripat 
and others 2014a). On the other hand, some studies that 
use fMRI point to efficient-selection as the main mecha-
nism of attention (Hara and Gardner 2014; Pestilli and 
others 2011). These conflicting findings raise an impor-
tant challenge regarding how results from different neural 
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measures should be interpreted. Potential resolutions 
involve (a) developing more formal and mechanistic 
models to link neural activity to the outcome measure in 
each methodological domain and (b) making more formal 
and quantitative models to link neural measurements to 
changes in behavior (e.g., accuracy, reaction times, detec-
tion/discrimination thresholds).

For example, EEG may be more sensitive to the atten-
tional modulation of local stimulus-evoked spiking activity 
than fMRI, as EEG has been closely linked to spiking activ-
ity in visual cortex (Whittingstall and Logothetis 2009), and 
gain patterns observed using EEG on human subjects are 
similar to those observed using single unit electrophysiol-
ogy in nonhuman primates (Di Russo and others 2001; 
Martínez-Trujillo and Treue 2002; Reynolds and others 
2000; Itthipuripat and others 2014a; Itthipuripat and others 
2014b; Kim and others 2007; Lauritzen and others 2009; 
Lee and Maunsell 2009, 2010; Wang and Wade 2011; but 
see Williford and Maunsell 2006). Gain amplification of the 
EEG response has also been closely linked to perceptual 
reports of stimulus contrast (Störmer and others 2009) and 
contrast detection and discrimination thresholds (Campbell 
and Kulikowski 1972; Itthipuripat and others 2014a). Taken 
together, these findings suggest that increased spiking activ-
ity in visual cortex, which may be more accessible in 
humans using EEG, may be tightly linked to attention-
induced changes in perception (e.g., increase in perceived 
stimulus contrast) and overt behavior (e.g., improved dis-
crimination thresholds).

On the other hand, measures such as fMRI may be 
more sensitive to detect increased synaptic input caused 
by anticipatory/top-down effects of spatial attention, as 
opposed to the interaction between top-down signals and 
stimulus-evoked spiking activity per se (Cardoso and oth-
ers 2012; Kastner and others 1999; Logothetis 2002, 
2008; Logothetis and Wandell 2004; Serences and others 
2004; Sirotin and Das 2009; Sylvester and others 2009; 
Viswanathan and Freeman 2007). This is consistent with 
the observation that changes in the gain of fMRI signals 
closely predict behavior in simple visual detection and 
discrimination tasks where there is no systematic manipu-
lation of attention (Boynton and others 1999; Ress and 
Heeger 2003; Ress and others 2000). However, when spa-
tial attention is manipulated, fMRI-based CRFs undergo 
an additive shift and thus changes in sensory gain cannot 
predict behavior and efficient read-out must be invoked 
(right panels in Fig. 4) (Hara and Gardner, 2014; Pestilli 
and others 2011). Similar to fMRI, spatial attention also 
induces a baseline increase in VSDI data obtained as a 
function of position along the surface of V1 (Fig. 6; Chen 
and Seidemann 2012). Interestingly, attention-induced 
changes in behavior that were related to manipulations of 
focused versus divided spatial attention could not be 
accounted for by modulations in the VSDI data (Chen and 

Seidemann 2012). Thus, fMRI and VSDI measures might 
not be particularly sensitive to attention-induced changes 
in perceptual sensitivity, and instead might primarily 
index the overall strength of top-down attentional modula-
tions since the strength of top-down inputs does not vary 
as a function of stimulus contrast and position along the 
surface of visual cortex, respectively. If this speculative 
account is correct, it opens up the exciting possibility that 
measures such as fMRI and VSDI might be combined 
with other measures such as EEG and single- and multi-
unit recording to simultaneously track changes the magni-
tude of top-down attentional signals and the impact that 
these changes have on spiking activity and behavior.

Beyond the domain of EEG, fMRI, and VSDI, 
Anderson and others (2013) have recently found that 
although attention generally increases the spiking rate of 
neurons in V4, it also reduces burstiness and action 
potential height. These findings pose a challenge for 
other new imaging methods, such as calcium imaging, 
which has recently been developed in rodent and nonhu-
man primate model systems to assay the activity across 
large populations of neurons (Grienberger and Konnerth 
2012; Heider and others 2010). Studies have reported two 
key observations. First, Ca2+ generally increases with 
increasing stimulus intensity, suggesting that these sig-
nals will also increase with attention (Issa and others 
2014; Nauhaus and others 2012). However, bursts are 
also strongly related to Ca2+ signals (Bayazitov and oth-
ers 2013; Coulon and others 2009; Grienberger and oth-
ers 2014; Peters and others 2014). Therefore, this presents 
a potential quandary: if attention increases gain, but 
decreases burstiness, then how will that affect the overall 
magnitude of Ca2+ signals? Furthering our understanding 
of this relatively new measurement technique, along with 
developing formal models to link Ca2+ modulations with 
spiking activity will be needed to link these two measure-
ment techniques and to exploit the strengths of each 
method to further our understanding of attentional modu-
lations in visual cortex. Employing new neuroimaging 
techniques also raises challenges about understanding 
nonlinearities between measures. For instance, recent 
studies have documented a nonlinear relationship 
between electrophysiology and population-level mea-
sures like VSDI (Chen and others 2012) and calcium 
imaging (Nauhaus and others 2012). However, it is still 
unknown how these measures relate to perceptual sensi-
tivity because many of these studies were performed in 
nonbehaving animals. Therefore, major hurdles must be 
overcome to effectively combine information from multi-
modal imaging methods to behavior, and this will not 
only involve developing integrative computational 
frameworks to relate single measures to behavior but also 
developing formal frameworks to relate different mea-
sures to each other.
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Conclusions

Over the past three decades, more than 3000 studies have 
investigated the empirical link between selective atten-
tion and changes in behavioral performance (reviewed in 
Carrasco 2011). Studies employing a variety of tech-
niques (monkey electrophysiology, human EEG, fMRI, 
and VSDI to name a few) seem to support qualitatively 
distinct linking hypotheses. At first glance, this might be 
seen as a cause for pessimism about how much progress 
we can make given available techniques, particularly if 
we also factor in differences in species, training regimes, 
and experimental paradigms that all might contribute to 
data supporting different linking hypotheses. However, 
these seemingly inconsistent findings can also be viewed 
under a much more optimistic light—the very fact that 

different measures produce distinct modulations and sup-
port different linking hypotheses suggests that each 
approach can provide complementary information to bet-
ter inform theoretical frameworks.

However, realizing the potential afforded by combin-
ing information across multiple measurement modalities 
presents many clear challenges. First, researchers need to 
be increasingly transparent about the limitations of mea-
surements they use, and any assumptions that link those 
measurements to both neural processes and to behavior 
should be explicitly stated and formalized to the fullest 
extent possible. For example, explicit neurovascular cou-
pling models (Buxton and others 1998; Friston and others 
2000) can be used to link neural activity with the fMRI 
response, providing a framework for integrating studies in 
nonhuman model systems with measures such as fMRI 

Figure 6.  Attention effects on voltage-sensitive dye imaging in monkeys (VSDI; Chen and Seidemann 2012). (A-B) Focused 
attention enhances subjects’ performance in a target detection task: accuracy increases and reaction times decrease for focused 
attention, compared to distributed attention conditions. (C) There are no changes in the Gaussian amplitude of VSDI signals 
across all attention conditions. (D) The baseline of the VSDI signals increases for attended, compared to ignored stimuli, and 
there is no difference in the baseline parameter between the focused and distributed attention conditions, even though significant 
behavioral differences were observed across these two conditions (A-B). All figures replotted based on original data for color 
consistency (with permission of authors).
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that can assay larger neural populations in humans. While 

no model that bridges such disparate levels is perfect, for-

malizing this relationship is nevertheless important because 

it will at least make all the assumptions explicit and thus 

foster attempts to falsify and subsequently improve spe-

cific components of the model (and this logic goes for link-

ing hypotheses in all measurement modalities). Second, a 

potentially more important and practical challenge is that 

our grants, promotions, and livelihood depend on publish-

ing, and this is most efficiently accomplished by down-

playing methodological differences and by making the 

most of the specific tools and model systems that we have 

invested years in mastering. This working model is not 

particularly conducive to collaborative, cross-disciplinary 

work, and raises the concern that we will continue to amass 

an ever larger body of data with little ability to integrate 

across scales of analysis in order to make progress toward 

understating how complex patterns of neural activity give 

rise to equally complex patterns of human behavior.
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Itthipuripat S, Garcia JO, Serences JT. Temporal dynamics of
divided spatial attention. J Neurophysiol 109: 2364–2373, 2013. First
published February 6, 2013; doi:10.1152/jn.01051.2012.—In natural-
istic settings, observers often have to monitor multiple objects dis-
persed throughout the visual scene. However, the degree to which
spatial attention can be divided across spatially noncontiguous objects
has long been debated, particularly when those objects are in close
proximity. Moreover, the temporal dynamics of divided attention are
unclear: is the process of dividing spatial attention gradual and
continuous, or does it onset in a discrete manner? To address these
issues, we recorded steady-state visual evoked potentials (SSVEPs) as
subjects covertly monitored two flickering targets while ignoring an
intervening distractor that flickered at a different frequency. All three
stimuli were clustered within either the lower left or the lower right
quadrant, and our dependent measure was SSVEP power at the target
and distractor frequencies measured over time. In two experiments,
we observed a temporally discrete increase in power for target- vs.
distractor-evoked SSVEPs extending from 350 to 150 ms prior to
correct (but not incorrect) responses. The divergence in SSVEP power
immediately prior to a correct response suggests that spatial attention
can be divided across noncontiguous locations, even when the targets
are closely spaced within a single quadrant. In addition, the division
of spatial attention appears to be relatively discrete, as opposed to
slow and continuous. Finally, the predictive relationship between
SSVEP power and behavior demonstrates that these neurophysiolog-
ical measures of divided attention are meaningfully related to cogni-
tive function.

attention; decision making; electroencephalography; steady-state vi-
sual evoked potentials

IN EVERYDAY PERCEPTION, organisms must often monitor multiple
noncontiguous objects that are arrayed across the visual field.
Early models proposed that spatial attention operates as a
unitary “spotlight” that only covers one circumscribed region
of the visual field and may switch rapidly among multiple
relevant objects (Posner et al. 1980). Later models incorporated
the notion of a variable-sized spotlight (“zoom lens”) that can
be reshaped on the basis of perceptual demands (Barriopedro
and Botella 1998; Erkisen and St. James 1986; Eriksen and
Yeh 1985; Heinze et al. 1994; McCormick and Jolicoeur 1994;
Müller et al. 2003b). In contrast to these earlier models,
“flexible allocation” models postulate that spatial attention can
be allocated to noncontiguous regions of space (Awh and
Pashler 2000; Baldauf and Deubel 2008; Bichot et al. 1999;
Carlson et al. 2007; Castiello and Umiltà 1992; Cavanagh and
Alvarez 2005; Dubois and Hamker 2009; Gobell et al. 2004;
Godijn and Theeuwes 2003; Hahn and Kramer 1998; Howe et
al. 2011; Kraft et al. 2005; Kramer and Hahn 1995; Mali-

nowski et al. 2007; McMains and Somers 2004, 2005; Müller
et al. 2003a; Niebergall et al. 2010, 2011). However, the extent
to which attention can be divided across multiple locations is
still controversial (Cave et al. 2010; Jans et al. 2010), and here
we investigated three main theoretical issues related to this
debate.
First, the extent to which attention can be divided between

objects that are in close proximity is unclear, particularly when
those items fall within the same hemifield/quadrant of space
(Maertens and Pollmann 2005; Malinowski et al. 2007; Mc-
Mains and Somers 2004; Pollmann et al. 2003; Sereno and
Kosslyn 1991). Second, few studies have evaluated the tem-
poral dynamics of divided spatial attention, so it is unclear
whether the division of spatial attention arises slowly and
gradually over time, or whether attention can be divided in a
discrete manner analogous to a unitary spotlight that splits into
multiple foci. Finally, predictive relationships between neuro-
physiological measures of divided spatial attention and behav-
ior have not been clearly established.
In this study, we evaluated these issues by monitoring neural

activity associated with attended targets and ignored distractors
using steady-state visual evoked potentials (SSVEPs). This
method provides a temporally continuous measure of electro-
physiological responses that oscillate at the same temporal
frequency as a visual stimulus (Regan 1989), and is thus useful
for investigating the temporal dynamics of attentional phenom-
ena (e.g., Andersen and Müller 2010; Müller et al. 1998). In
two experiments, subjects performed a multiple-object dis-
crimination task in which two visual targets and an intervening
distractor were presented in either the lower left or the lower
right quadrant (Fig. 1). The targets and the distractor were
presented at different frequencies to elicit separable SSVEPs.
In addition, we calibrated task difficulty for each subject by
adjusting the contrast of the targets to yield 66% correct
responses. By setting accuracy at this below-ceiling level, we
sought to ensure that we had enough power to compare
stimulus- and response-locked SSVEP responses on correct
and incorrect trials.
Using this approach, we did not find robust evidence that

differences in stimulus-locked target and distractor SSVEP
power predicted behavioral performance. However, when SS-
VEP power was time-locked to the behavioral response, we
observed an abrupt divergence of target- and distractor-evoked
SSVEP power immediately preceding a correct behavioral
response. These results suggest that spatial attention can be
divided between objects in the same visual quadrant, that this
division happens in a relatively discrete manner, and that the
degree of segregation between target- and distractor-evoked
responses predicts behavioral performance.
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MATERIALS AND METHODS
Subjects. Forty-eight neurologically healthy volunteers with nor-

mal or corrected-to-normal vision were recruited from the University
of California, San Diego (UCSD). All participants provided written
informed consent for this study, which was approved by the human
subjects Institutional Review Board at UCSD. Eleven subjects (4
females, mean age 22 yr) participated in SSVEP experiment 1 (E1), 15
subjects (9 females, mean age 21 yr) participated in SSVEP E2, 10
subjects (7 females, mean age 23 yr) participated in behavioral control
experiment 1 (CE1), and 13 subjects (7 females, mean age 21 yr)
participated in behavioral CE2. Data from one subject in E2 were
excluded from analysis due to excessive eye movement artifacts (see
below). All subjects received either class credit or monetary compen-
sation for participation ($15/h for E1 and E2 and $10/h for CE1 and
CE2).
Stimuli and experimental design. The experiment was carried out

using a personal computer running Windows XP. Stimulus presenta-
tion was controlled using MATLAB (The MathWorks, Natick, MA)
with the Psychophysics Toolbox (version 3; Brainard 1997; Pelli
1997), and all stimuli were rendered on a 20-in. CRT monitor (HP
P1203; Hewlett-Packard, Palo Alto, CA) running at 75 Hz. Subjects
were seated 60 cm from the computer screen and instructed to fixate
at the center of the screen for the duration of each trial. Stimulus
timing was directly measured via fiber-optic cables that were linked to
photocells and attached to the stimulus monitor. The gain and sensi-
tivity of this custom-built fiber-optic photocell system (Javi’s Photo-
transmogrifier 2000; Electronic Development and Repair Facility,
Department of Physics, UCSD) was adjusted to give accurate and fast
sampling of stimulus parameters (i.e., precise timing of the flickering
stimuli), and the output was fed directly into the electroencephalo-
gram (EEG) data files for later use during data analysis.
An example of the stimulus presentation paradigm is illustrated in

Fig. 1. Before the start of each trial, a central fixation point was
presented for 700 ms, followed by the onset of three white squares (72
cd/m2) that were presented at an isoeccentric distance from fixation
(9.5° visual angle) in either the lower left or the lower right quadrant
(positions in the lower left and lower right quadrants, arranged from
upper to lower eccentric locations, are hereby referred to as L1, L2, L3
and R1, R2, R3, respectively; see Fig. 1). The background was
medium gray (mean luminance 21 cd/m2). Each square stimulus
subtended 2.4° 2.4° visual angle with equal spacing between each
square (3.8° visual angle between the centers of adjacent squares).

The two outer squares were always to be attended (L1/L3 or R1/R3),
and each square contained a small light gray rectangle-shaped mark
(0.1° 0.2° visual angle; 0.035% of the area of each square stimulus)
on one of its edges. The contrast between the attended stimuli and the
small markings was adjusted across a range from 10 to 30% depend-
ing on subjects’ performance on the block-by-block basis (see details
below). The marked location on the two attended stimuli (L1/L3 or
R1/R3) could be the same, offset clockwise or counterclockwise by
90°, or offset by 180°; each of these target configurations was
presented with equal probability. The middle square (L2 or R2) was
located between the two targets and served as a distractor that
contained no additional markings. During the experiment, subjects
were asked to respond to the target configuration by pressing one of
three buttons on a keyboard with their right index, middle, or ring
finger indicating if the marked locations targets were in the same
orientation, offset by 90°, or offset by 180° (yielding a 3-alternative
forced-choice design, or 3AFC). The small and low contrast markings
on the attended stimuli were designed to make the task very difficult
and to encourage subjects to continuously attend to both target objects
for an extended period of time.
In E1, we separately assessed target- and distractor-related SSVEPs

by flickering the two targets at the same frequency while the middle
distractor was flickered at a different frequency (the targets and
distractor were flickered at either 6.9 or 10.4 Hz, counterbalanced
within subjects across repeated testing blocks). To discourage the
possibility that divided attention was supported by grouping based on
target frequency, and to ensure that our results were not specific to our
exact choice of stimulus frequencies in E1 (6.9 and 10.4 Hz), we
conducted E2 using a similar design except that all three squares were
flickered at different frequencies (15, 18.76, and 25.02 Hz). The six
possible frequency combinations were counterbalanced within ob-
server across blocks of trials. In both experiments, the stimulus array
was presented for 3,200 ms on each trial with an intertrial interval of
1,500 ms.
Our main focus was to compare responses on correct and incorrect

trials, as opposed to comparing responses to each stimulus when it
was attended versus ignored. Although this design deviates from most
previous efforts, it allowed us to link EEG response modulation to
behavioral performance while still maintaining perfectly matched
sensory stimulation across conditions (since the stimuli were identical
on correct and incorrect trials). To ensure that enough trials were
acquired to support a comparison of SSVEP power on correct and
incorrect trials, the luminance of the small square markings on each
target stimulus was adjusted on a block-by-block basis to maintain
performance at 66% correct (which is 2 times chance given the
3AFC design). Subjects were instructed to respond as quickly and
accurately as possible and were free to respond before the termination
of the stimulus array.
Before each recording session, subjects practiced for 20 min to

gain familiarity with the task and to calibrate initial difficulty thresh-
olds. Each recording session consisted of 10 blocks of 60 trials and
contained an equal number of stimulus arrays presented in the lower
left and right quadrants (in a pseudorandomly selected order). Each
block lasted 5 min, resulting in a 1.5-h-long experiment session,
including EEG preparation and short breaks in between each block.
In addition, we also ran two additional behavioral control experi-

ments (CE1 and CE2) to evaluate the efficacy of the intermediate
distractor. CE1 was identical to E1 and CE2 was identical to E2,
except that only half of the trials contained the intermediate distractor
and the other half did not.
EEG recording, preprocessing, and SSVEP analysis. EEG data

were recorded using a 128-channel Geodesic Sensor Net coupled with
a NetAmps 200 amplifier [Electrical Geodesics Inc. (EGI), Eugene,
OR]. EEG data were sampled at 1,000 Hz and referenced to the
central channel. Electrode impedances were kept below 50 k , which
is standard with high input impedance amplifiers like the EGI system.
Blinks and vertical eye movements were monitored by four built-in

R1

R2
R3L3

L2

L1

L1

L2

L3

zoom in

Fig. 1. Depiction of the stimulus display. On a given trial, subjects maintained
central fixation and viewed 3 stimuli presented in either the lower left or the
lower right quadrant. Their task was to make a discrimination on the upper and
the lower stimuli (either R1 and R3 or L1 and L3; see text for details) while
ignoring the intervening distractor (either R2 or L2). A trial in which the
stimuli were presented in the lower right quadrant is shown. The dashed lines
surrounding each potential stimulus location were not visible in the actual
experiment.
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electrodes placed above and below the left and right eyes. Horizontal
eye movements were monitored by two built-in electrodes placed at
the outer canthi of the eyes. Blink suppression and fixation control
were verbally encouraged throughout the experiment.
We used customized MATLAB scripts for EEG preprocessing and

SSVEP analysis. First, we applied a high-pass Butterworth filter with
2-dB attenuation at 2 Hz to remove slow drifts and a bandstop
Butterworth filter with 30-dB attenuation between 58 and 62 Hz to
attenuate line noise. Second, the continuous EEG recordings from
each subject were segmented into single-trial epochs extending from
1,000 ms before to 3,500 ms after stimulus onset. Individual trials that
exhibited prominent blink, electro-oculogram, or electromyogram
artifacts were discarded using threshold rejection (more than 100
V deviation from the mean) and visual inspection, which resulted in
the removal of 15% of trials across subjects [with the exception of
the single subject in E2 that was discarded from further analysis due
to 45% rejected trials based on these criteria]. Principal components
were then computed and selected for removal on the basis of visual
analysis to attenuate any residual artifacts. Third, each of the trials
was cropped to an integer number of cycles using the photocell traces
that directly measured stimulus onset timing during each trial. Fourier
coefficients were then computed on the epoched data from each trial
using the fast-Fourier transform algorithm implemented in MATLAB.
Power across the entire trial interval at each target and distractor
frequency was calculated as the squared real component of the Fourier
coefficients.
The power of the SSVEP response over the entire trial at each

target- and distractor-specific frequency was then binned on the basis
of spatial position (left or right) and the subject’s performance (correct
response or incorrect response; all trials in which a response was
omitted were excluded from the SSVEP analysis, see RESULTS). For
the main analysis, we selected three EEG channels in the occipital-
parietal area that exhibited the highest SSVEP power as electrodes of
interest (EOIs); this selection process was carried out separately for
each stimulus location and frequency assignment. Separate electrodes
were used in each condition because of expected differences in
distribution of SSVEP power across the scalp as a function of target
position and frequency. For example, Fig. 2 illustrates the topograph-
ical maps of averaged SSVEP power collapsed across all frequency
assignments in E1 (top) and in E2 (bottom). SSVEP power was
standardized across channels so that the positive and negative values
indicate responses above and below the mean value, respectively (in
units of z scores). Note that the EOIs for both target- and distractor-
evoked SSVEPs were clustered in the occipital-parietal area contralat-
eral to the locus of visual stimulation, consistent with the known
contralateral mapping of external spatial locations to internal cortical
representations. To evaluate the reliability and the specificity of power
at each stimulus presentation frequency, we compared the magnitude
of the SSVEP response across the entire trial divided by the power in
four surrounding frequency bins. This produces a measure of the
signal-to-noise (SNR) ratio of the response at the specific flicker
frequency of each stimulus (see e.g., Kim and Verghese 2012; Sutoyo
and Srinivasan 2006; Srinivasan et al. 2006). Figure 3 illustrates these
SNR measures at the flicker frequencies of 6.9 (A) and 10.4 Hz (B) in
E1 and at the flicker frequencies of 15 (C), 18.76 (D), and 25 Hz (E)
in E2. Across all flicker frequencies, there is a clear and sharply tuned
increase in power.
Finally, we calculated the power at each stimulus frequency across

time from each set of EOIs using an analytic Gabor basis function
(Gaussian-weighted complex-valued sinusoid; see Bruns 2004;
Canolty et al. 2007) with a fractional bandwidth of 0.5 Hz and a
time-domain standard deviation that varied with the frequency of the
stimulus (36 and 54 ms for the 10.4- and 6.9-Hz stimuli in E1, and 15,
20, and 25 ms for the 25-, 18.76-, and 15-Hz stimuli in E2; Canolty
et al. 2007). The resulting SSVEP power time courses were then
averaged at each time point across the three electrodes of interest.
Normalization was performed by dividing the power at each time

point by the mean power from 500 to 0 ms before stimulus onset, and
then this baseline was subtracted. We then collapsed the data across
all flicker frequencies assigned to like conditions and across left and
right stimulation epochs. The target and distractor responses for
correct and incorrect trials were then time-locked to either stimulus
onset or response onset, and averaged across all subjects.
Statistical analysis. Average accuracy was calculated separately for

stimulus arrays presented in the left and right visual fields and also for
each combination of target and distractor frequency assignments (2
combinations in E1 and 6 combinations in E2). Response times (RTs)
were analyzed in a corresponding manner separately on correct and
incorrect trials. In E1, two-way repeated-measures analysis of vari-
ance (ANOVA) tests were used to evaluate accuracy and RT data,
with separate factors for stimulus location (left, right) and target
frequency (6.9 Hz, 10.4 Hz). In E2, a similar statistical approach was
performed, but there were six levels of the target frequency factor.
False discovery rate (FDR)-corrected post hoc t-tests were also

performed to further examine any significant effects revealed by the
repeated-measures ANOVAs. For the analysis of stimulus-locked
SSVEP power and response-locked SSVEP power, we first performed
repeated-measures t-tests to test for differences between target- and
distractor-evoked responses at each time point on correct and incor-
rect trials. To correct for family-wise error rates, we then calculated
the P values associated with the t scores for each time point. We
sorted the P values in ascending order (P1, P2, P3, . . ., Pk, . . ., PM)
and determined a threshold according to the following: Pk (K· )/M,
where Pk is the FDR-corrected -value (P 0.05), K is the rank of the
P value corresponding to the threshold, is 0.05, and M is the total
number of comparisons. All significant effects were defined as having
a P value 0.05 after FDR correction. In addition, repeated-measures
ANOVAs were performed on SSVEP power averaged across time
windows identified as being significant based on the t-tests to evaluate

R2R1+ R3L1+L3L2E1

E2 
R3     L3     L2 1RR2L1

1

0

-1

S
S

V
E

P
 p

o
w

e
r (z

)

0.1

0.0

E
O

Is

1

0

-1

S
S

V
E

P
 p

o
w

e
r (z

)

0.1

0.0

E
O

Is

Fig. 2. Posterior-occipital view of topographical maps depicting steady-state
visual evoked potentials (SSVEP) power averaged across the 3.2-s stimulus
duration (z scores; top rows) and electrode-of-interest (EOI) probability maps
(bottom rows; color bars indicate the probability with which each electrode
was included in an EOI across subjects), corresponding to each of the possible
target (blue dotted frame) and distractor locations (red dotted frame) in
experiment 1 (E1, n 11; top) and experiment 2 (E2, n 14; bottom). Note
that in E1, the 2 targets flickered at the same frequency so that only 2
topographical maps were produced, 1 for trials in the lower left quadrant and
1 for trials in the lower right quadrant. In contrast, the 2 targets in E2 flickered
at different frequencies, yielding 6 distinct topographical maps corresponding
to the lower left and lower right targets. Also, note that SSVEP power
associated with left targets was most prominent over right occipital/parietal
cortex, and SSVEP power associated with right targets was most pronounced
over left visual cortex. This pattern is expected based on the contralateral
mapping of external visual space to internals cortical representations.
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possible interactions between accuracy (correct/incorrect) and stimu-
lus type (target/distractor). FDR correction was also applied to the
analysis of behavioral data.

RESULTS

Behavioral results. In E1, the average percent correct, per-
cent incorrect, and percent misses, collapsed across hemifields
and flicker frequencies, were 65.4% (SD 8.3%), 25.8% (SD
11.0%), and 8.8% (SD 6.7%), respectively. A two-way repeat-
ed-measures ANOVA revealed no effect of stimulus location
[F(1,10) 2.44, P 0.15], target frequency [F(1,10) 0.004,
P 0.95], and no interaction between these factors on accu-
racy [F(1,10) 0.12, P 0.74]. Average RTs on correct and
incorrect trials were 1,980 ms (SD 114.1 ms) and 2,092 ms (SD
171.6 ms), respectively. Two-way repeated measures ANOVAs re-
vealed no main effect of stimulus location or flicker frequency
on either correct or incorrect RTs, and no interaction between
stimulus location and flicker frequency (all F values 1.08, all
P values 0.32).
In E2, the average percent correct and percent incorrect,

collapsed across hemifields and flicker frequencies, were
68.5% (SD 7.4%) and 31.5% (SD 7.4%), respectively (with no
misses). A two-way repeated-measures ANOVA revealed a
significant effect of target frequency on accuracy [F(5, 65)

11.86, P 0.001] but no effect of stimulus location [F(1, 13)
0.031, P 0.826] and no interaction between target frequency
and stimulus location [F(5, 65) 1.024, P 0.41]. Post hoc
t-tests revealed that the main effect of frequency resulted from
higher performance when stimuli in positions 1, 2, and 3 were
flickered at 25, 18.76, and 15 Hz, respectively (compared with
the other 5 combinations) and from higher performance when
stimuli were flickered at 18.76, 15, and 25 Hz compared with
when stimuli were flickered at either 18.76, 25, and 15 Hz or
15, 25, and 18.76 Hz, respectively (all t values 2.43, all P
values 0.05, FDR corrected). This slight impairment when
the distractor frequency was higher than both target frequen-
cies might be due to the fact that lower frequencies translate
into fewer presentation cycles across a fixed stimulus duration.
However, this scenario was rare (only 9.5% of all compari-
sons), and we did not observe this effect in E1. Therefore, it is
difficult to determine the ultimate cause of this frequency
assignment effect in E2. Average RTs for correct and incorrect
trials were 1,818 ms (SD 134 ms) and 1,847 ms (SD 231 ms).
Two-way repeated-measures ANOVAs on the RT data re-
vealed no significant effects of either frequency or stimulus
location, and no interaction between these factors (this was true
for RTs on both correct and incorrect trials, all F values 1.89,
all P values 0.107).
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We also computed d=on trials where the small target squares
were offset by 0°, 90°, and 180° (where hits were defined as
reporting that the offset was X° when it was in fact X°, and
false alarms were defined as reporting that the offset was X°
when it was either Y° or Z°). No significant differences in the
sensitivity were observed as a function of target offset [d=for
E1: 1.02 (SD 0.72), 1.13 (SD 0.47), 1.05 (SD 0.66) for 0°, 90°,
180° offsets, respectively, F(2, 20) 0.698, P 0.509; d=for
E2: 0.97 (SD 0.49), 0.97 (SD 0.32), 0.85 (SD 0.41) for 0°, 90°,
180° offsets, respectively, F(2, 28) 2.452, P 0.104].
However, there was a modest but reliable difference in RTs on
correct trials as a function of target offset [for E1: F(2,20)
7.169, P 0.004; for E2: F(2,28) 4.181, P 0.029]. Post
hoc t-tests revealed that in E1, responses on 0° offset trials
[1,921.5 ms (SD 168.3 ms)] were significantly shorter than
responses on either 90° [2,009.8 ms (SD 193.8 ms), t(10)
3.063, P 0.012] or 180° trials [2,003.6 ms (SD 1,837 ms),
t(10) 4.165, P 0.002]. In E2, there was only a difference
between responses on trials with a 0° degree offset [1,783.3 ms
(SD 155.1 ms)] and trials with a 180° offset [1,855.6 ms (SD
183.2 ms), t(13) 2.640, P 0.02].
SSVEP results. Figure 4, top, shows stimulus-locked SSVEP

power across the entire stimulus interval for correct and incor-
rect trials in E1. Power increased significantly above baseline
from 50 to 3,200 ms poststimulus for both correct and
incorrect target- and distractor-evoked SSVEPs [minimum
t-value across this temporal window: t(10) 2.25, P 0.05].
There were no significant differences in SSVEP power asso-
ciated with targets and distractors across time on either correct
[all t(10) 2.01, not significant (n.s.)] or incorrect trials [all
t(10) 1.41, n.s.]. However, both targets had a different flicker
frequency than the single distractor, and this sensory difference
may have obscured any differences in the overall responses to
targets and distractors. In contrast, comparisons between target

(or distractor) responses on correct and incorrect trials are
controlled for sensory differences. However, there were no
power differences in the target-evoked SSVEPs on correct and
incorrect trials [all t(10) 2.90, n.s.] or in the distractor-
evoked SSVEPs on correct and incorrect trials [all t(10)
2.49, n.s.].
When the normalized power was locked to the response,

however, significant differences emerged. On correct trials
(Fig. 4, bottom left), we found a significant increase in the
power of the target-evoked SSVEP compared with the distrac-
tor-evoked SSVEP extending from 350 to 150 ms before the
response [minimum t-value: t(10) 3.12, all P values 0.05].
However, no differences in target- and distractor-evoked
SSVEP power were observed on incorrect trials [maximum
t-value: t(10) 3.06, n.s.; Fig. 4, bottom right]. A repeated-
measures ANOVA with factors for accuracy (correct/incorrect)
and stimulus type (target/distractor) revealed no main effect of
accuracy [F(1, 10) 0.55, n.s.] but a significant main effect of
stimulus type [F(1, 10) 6.82, P 0.026] and a significant
interaction between accuracy and stimulus type on SSVEP
power averaged across a response window extending from 350
to 150 ms before the behavioral response [F(1, 10) 13.39,
P 0.004].
To address the possibility that attention might be efficiently

split only in the trials in which subjects identified the targets
quickly, we conducted an auxiliary analysis on the SSVEP data
in E1, specifically sorting the data into trials with short and
long RTs via a median split. Figure 5 shows the stimulus-
locked (left) and response-locked SSVEP data (right) sorted
into short RT trials (top) and long RT trials (bottom). As in the
main analysis (Fig. 4), we observed no significant difference
between target- and distractor-evoked SSVEP responses on
correct trials at any time point [t(10) 2.55, n.s.]. However,
response-locked SSVEP responses significantly increased right
before a correct response was made, and this was true for trials
with short RTs [ 350 to 150 ms: t(10) 3.17, P 0.05]
and long RTs [ 330 to 260 ms: t(10) 3.14, P 0.05].
Importantly, no response-locked differences were found on
incorrect trials [t(10) 2.31 for short RTs and t(10) 2.08 for
long RTs]. This pattern gave rise to a significant interaction
between stimulus type (target/distractor) and accuracy on short
RT trials [F(1, 10) 5.101, P 0.047] and a marginally
significant interaction on long RT trials [F(1, 10) 3.887,
P 0.077].
To evaluate the possibility that the divergence in the SSVEP

power associated with targets and distractors on correct trials
was driven by motor activity preceding the response, which
was presumably focused contralateral to the right hand, we also
tested SSVEP power separately when the stimuli were in the
left and right visual fields. On correct trials, we found a
significant divergence in target- and distractor-evoked SSVEP
power for stimuli presented in both the left hemifield [t(10)
2.34, P 0.04, averaged across a window 350 to 150 ms
before the response] and the right hemifield [t(10) 2.89, P
0.05, averaged across a window 350 to 150 ms before the
response]. The observation of a qualitatively similar effect in
both hemifields argues against motor preparation as the main
factor in driving the divergence of SSVEP power associated
with targets and distractors on correct trials.
Furthermore, to evaluate the possibility that the increased

target-evoked power on correct trials was facilitated by group-
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Fig. 4. Normalized power of target- and distractor-evoked SSVEPs on correct
and incorrect trials in E1, time-locked to either the stimulus onset (top) or the
onset of the behavioral response (bottom). Note that for response-locked data,
responses on correct and incorrect trials are plotted separately for clarity. For
all plots, the zero point on the x-axis represents the time of either stimulus
onset or response onset for stimulus-locked and response-locked data, respec-
tively. Red horizontal bar (bottom left) indicates the temporal window over
which the target-evoked SSVEP power was significantly greater than the
distractor evoked SSVEP power on correct trials [P 0.05, false discovery
rate (FDR) corrected]. Shaded areas in all plots represent 1 SE across
subjects; n.s, not significant.
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ing the targets on the basis of a common flicker frequency, we
used separate flicker frequencies for all three stimuli in E2
(Fig. 6). This experiment also speaks to the “motor prepara-
tion” account referred to above, because the flicker rates used
in E2 were well above the theta range typically associated with
motor preparation (e.g., Luu and Tucker 2001; Makeig et al.
2004). In addition, assigning (and counterbalancing) a unique
flicker frequency to each stimulus allowed for a more balanced
comparison between the SSVEP responses associated with

targets and distractors (compared with E1, where both targets
shared a common flicker frequency).
The SSVEP results in E2 were highly consistent with those

in E1 (Fig. 6). For stimulus-locked data (Fig. 6, top), power
increased significantly above baseline from 50 to 3,200 ms
poststimulus for both target- and distractor evoked SSVEPs
[minimum t-value: t(13) 2.20, P 0.05]. However, just as
in E1, there were no significant differences in SSVEP power
between target- and distractor-evoked SSVEPs at any time
point for either correct [all t(13) 3.30, n.s.] or incorrect trials
[all t(13) 3.36, n.s.] and no significant differences in power
across correct and incorrect trials for either target [all t(13)
2.60, n.s.] or distractor-evoked SSVEP [all t(13) 2.49, n.s.].
When the data were aligned to response onset (Fig. 6, bottom

left), we found a significant increase in the target-related
SSVEP compared with the distractor-related SSVEP across a
window extending from 350 to 150 ms before the response
[collapsed across left and right stimulus presentations: mini-
mum t-value: t(13) 2.56; left stimuli only: all t(13) 2.49;
right stimuli only: all t(13) 2.70; all P values 0.05]. No
power differences were observed on incorrect trials [maximum
t-value: t(13) 2.22, all n.s.; Fig. 6, bottom right]. A repeated-
measures ANOVA with factors for accuracy and stimulus type
revealed no main effect of accuracy [F(1, 13) 3.10, n.s.] but
a significant main effect of stimulus type [F(1, 13) 7.32, P
0.018] and a significant interaction between accuracy and
stimulus type on SSVEP power averaged across a window
from 350 to 150 ms before the response [F(1, 13) 9.744,
P 0.008].
Just as in E1, we also analyzed SSVEPs separately on trials

with the fastest and slowest RTs. Figure 7 shows the stimulus-
locked (left) and response-locked SSVEP data (right) sorted
into short RT trials (top) and long RT trials (bottom). When
time-locked to stimulus onset, there were no significant differ-
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ences between target- and distractor-evoked SSVEP responses
on correct trials [t(13) 2.837, n.s.]. However, the response-
locked SSVEPs were significantly different right before a
correct response for both short RT [ 400 to 200 ms: t(10)
3.17, P 0.05] and long RT trials[ 300 to 150 ms: t(10)
3.14, P 0.05]. Importantly, no response-locked differences
were found on incorrect trials [t(10) 2.31 for short RTs and
t(10) 2.08 for long RTs]. This pattern gave rise to a
significant interaction between stimulus type (target/distractor)
and accuracy on short RT trials [F(1, 13) 6.036, P 0.029]
and on long RT trials [F(1, 13) 11.464, P 0.005].
Finally, we performed two control experiments (CE1 and

CE2) to determine if the interleaved distractors used in E1 and
E2 actually interfered with target processing. We found that in
both control studies, subjects were significantly slower when
an intervening distractor was presented compared with when
no distractor was present [CE1: mean RT with a distractor
1,674 ms, mean RT without a distractor 1598 ms, t(9)
3.606, P 0.0057; CE2: mean RT with a distractor 1,697
ms, mean RT without a distractor 1,611 ms, t(12) 7.086,
P 0.0001]. Subjects were also less accurate when a distractor
was present versus absent [CE1: %correct with a distractor
69.6%, %correct without a distractor 72.83%, t(9) 2.457,
P 0.036; CE2: %correct with a distractor 71.88%, %cor-
rect without a distractor 74.62%, t(12) 2.317, P 0.039].
Together, these two control experiments suggest that the inter-
vening distractors did compete with target processing and thus
are likely to encourage split attention foci.

DISCUSSION

To study the temporal dynamics of divided attention, we
employed a multiple-object discrimination task, where two
visual targets and an intervening distractor were presented in a
single quadrant at different flicker frequencies. An analysis of

SSVEPs was used to continuously monitor the responses as-
sociated with each stimulus. In both experiments, we failed to
observe a difference between target- and distractor-evoked
responses when the normalized SSVEP power was time-locked
to the onset of the stimulus. Such effects may have been
obscured in E1, because a direct comparison between target
and distractor evoked responses may have been confounded
due to the common flicker frequency of the target stimuli.
However, a comparison of target and distractor evoked re-
sponses on correct and incorrect trials, which controls for this
sensory difference, also revealed no stimulus-locked effects.
Moreover, each stimulus in E2 had a unique frequency, and
similar null results were observed. That said, we did not
measure responses to the targets and distractors when they
were attended and when they were unattended, so this null
result should be interpreted with caution. In contrast, however,
when the data were locked to the onset of the behavioral
response, target-evoked SSVEP power was selectively larger
compared with distractor-evoked SSVEP power approximately
150–350 ms before correct (but not incorrect) responses.
Taken together, this evidence suggests that 1) attention can be
divided across noncontiguous regions of space even when the
stimuli are presented in close proximity within the same visual
quadrant, 2) the division of spatial attention can occur in a
temporally discrete manner, and 3) there is a strong predictive
relationship between the magnitude of responses tied to spa-
tially distinct stimuli and the success of perceptual decision
making.
Over the past several decades, evidence supporting the

flexible division of attention has been accumulating based on
tasks such as multiple object tracking (reviewed by Cavanagh
and Alvarez 2005; Intriligator and Cavanagh 2001; Pylyshyn
and Annan 2006; Pylyshyn and Storm 1988). However, studies
that have reported neuronal evidence in favor of divided
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attention typically employed visual stimuli that were spaced
quite far from one another, often crossing the vertical meridian
or spanning the entire visual field (e.g., McMains and Somers
2004, 2005; Müller et al. 2003a). In one notable exception,
McMains and Somers (2004) found evidence for divided at-
tention between two locations in a single quadrant. However,
in their study, one target stimulus was always located at
fixation and the other target was located peripherally. There-
fore, the extent to which attention can be efficiently divided
between objects that are in close spatial proximity is still
unclear, particularly when more than one relevant stimulus
falls within the same hemifield/quadrant of space (Maertens
and Pollmann 2005; Pollmann et al. 2003; Sereno and Kosslyn
1991). More recently, Malinowski et al. (2007) also tested
whether attention could be divided into multiple spotlights
when the stimuli were spaced closely together (i.e., within the
same hemifield) using an SSVEP design. In contrast to the
present study, they did not find consistent evidence for divided
attention. Instead, they observed divided attention effects only
when subjects attended to stimuli in the upper left but not in the
lower left quadrant. The authors suggested that these mixed
results may have been caused by the higher perceived saliency
of the intermediate distractor in the lower quadrant. However,
computing the average SSVEP power over the entire stimulus
period ( 2–3 s) [as done by Malinowski et al. (2007)] may
have reduced their ability to detect evidence for divided atten-
tion, particularly if the effect has a discrete onset that imme-
diately precedes the behavioral response as in the current
study.
Consistent with some aspects of Malinowski et al. (2007),

our stimulus-locked analysis yielded no significant power dif-
ference between target- and distractor-evoked SSVEPs. At first
glance, the results from this stimulus-locked analysis are con-
sistent with spotlight models in which attention is always
unitary (Posner et al. 1980) or zoomed/reshaped based on task
demands (Barriopedro and Botella 1998; Erkisen and St. James
1986; Eriksen and Yeh 1985; Heinze et al. 1994; McCormick
and Jolicoeur 1994; Müller et al. 2003b). However, our data
argue against this account on the basis of two key pieces of
evidence. First, the unitary spotlight models predict that the
overall level of stimulus-locked SSVEP power should predict
discrimination success. Instead, we observed that overall stim-
ulus-locked SSVEP power did not predict successful perfor-
mance on the discrimination task. Second, a unitary spotlight
model cannot account for a response-locked increase in SSVEP
power that immediately precedes successful discriminations,
an observation that strongly favors the divided attention hy-
pothesis (Awh and Pashler 2000; Baldauf and Deubel 2008;
Bichot et al. 1999; Carlson et al. 2007; Castiello and Umiltà
1992; Cavanagh and Alvarez 2005; Dubois et al. 2009; Gobell
et al. 2004; Godijn and Theeuwes 2003; Hahn and Kramer
1998; Howe et al. 2011; Kraft et al. 2005; Kramer and Hahn
1995; Malinowski et al. 2007; McMains and Somers 2004,
2005; Müller et al. 2003a, 2003b; Niebergall et al. 2010, 2011).
This response-locked increase in power that predicted success-
ful performance was replicated in two experiments, and the
temporal window of the divergence between target- and dis-
tractor-evoked SSVEP power was consistently found to occur
350 to 150 ms preceding correct responses. The significant

main effect of stimulus type (target vs. distractor) and interac-
tion between stimulus type and accuracy on SSVEP power

averaged across a 350- to 150-ms window prior to the response
further suggests that successful discrimination was achieved by
a temporally discrete segregation of neuronal responses tied to
targets and distractors, respectively.
Although we cannot directly assess the degree to which our

results were driven by active neuronal suppression, our find-
ings complement recent single-unit electrophysiological data
recorded from the middle temporal visual area (MT) of ma-
caques. The monkeys were trained to attend to two translating
objects while ignoring an intermediate distractor located inside
the receptive field of the neuron that was being monitored
(Niebergall et al. 2011). Niebergall et al. (2011) found that
when the monkey attended to the two translating objects,
neuronal responses associated to the distractor were either
suppressed or remained unaltered, providing strong evidence in
support of divided spatial attention. Taking these findings
together with the present observations, it is possible that the
division of spatial attention is achieved not only by enhancing
responses to attended targets but also by actively suppressing
responses to ignored distractors. Future research in humans
using SSVEP could further explore this issue by using para-
digms in which a clear baseline SSVEP response is maintained
throughout a block of trials, thereby providing a benchmark for
evaluating relative degrees of enhancement and suppression
(see e.g., Andersen and Müller 2010 for an example of this
approach).
Since the difference between target- and distractor-evoked

SSVEP power was observed only when the data were locked to
behavioral responses, it is possible that this difference simply
reflects a broadband increase in power related to the prepara-
tion of a motor response. However, this is unlikely because we
obtained sharply tuned SSVEP signals peaking only at the
stimulus frequencies in both E1 and E2 (Fig. 3). Furthermore,
there are several other factors that argue against a broadband
frequency modulation. First, if the effect reflects a broadband
increase in power related to response preparation, there should
have been an additive effect for both target- and distract-
evoked SSVEP responses. Instead, we observed a significant
divergence of target- and distractor-evoked SSVEP responses,
which rules out a broadband source of our main effect of
interest. Second, the observed divergence in power on correct
and incorrect trials was consistent across the two experiments
even though stimulus frequencies ranged widely, from 6.9 to
25 Hz. Thus the effect is unlikely to be specific to any intrinsic
oscillation related to response preparation.
Among past psychophysical studies that reported evidence

in support of divided attention, some assumed that attention
can be split into multiple spotlights only in a rapid and discrete
manner and thus limited their cue-to-stimulus intervals (CSIs)
to 200 ms (e.g., Baldauf and Deubel 2008; Bichot et al. 1999;
Kramer and Hahn 1995). On the other hand, others assumed
that the division of attention can be sustained over a longer
period of time and thus employed longer CSIs ( 500 ms to 10
s; e.g., Awh and Pashler 2000; Gobell et al. 2004; Kraft et al.
2005). To more directly address this issue, Dubois et al. (2009)
conducted a psychophysical experiment in which CSIs were
varied and found that divided attention could occur only over
very short timescales (CSIs less than 200 ms). In contrast,
Müller et al. (2003a) observed divided attention effects on
SSVEP responses averaged over the entire stimulus interval
( 2–3 s) and thus proposed that divided spatial attention could
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be sustained over several seconds. However, an effect that is
based on the averaged SSVEP power over a long temporal
window could be driven either by a truly sustained process or
by a temporally discrete process that has a large impact on the
overall average power of the SSVEP response. In the present
study, we examined changes of target- and distractor-evoked
SSVEP power across time to characterize the temporal prop-
erties of divided attention, and the data support a temporally
discrete splitting process that occurs immediately preceding
correct responses and is sustained for only several hundred
milliseconds (which is broadly consistent with the temporal
estimates based on the behavioral data reported by Dubois et
al. 2009). Nevertheless, our conclusion that attention can be
divided in a temporally discrete manner must be qualified as
our stimuli were close together and always presented in the
same visual quadrant. It is possible, for example, that sustained
divided attention might be more feasible when the targets are
in different hemifields (Maertens and Pollmann 2005; Poll-
mann et al. 2003; Sereno and Kosslyn 1991), and it is also
possible that cross-hemispheric division might operate on a
more graded timescale due to anatomic constraints governing
cross-hemispheric communication (e.g., McMains and Somers
2004, 2005; Müller et al. 2003). Thus future studies are needed
to further explore the relationship between the time course of
divided attention and the spatial properties of the visual dis-
play.
Finally, given that the focus of spatial attention can be

alternated rapidly, it is possible that subjects were switching
between the two target stimuli as opposed to continuously
dividing attention. In the present studies, we observed a diver-
gence in SSVEP power right before a correct response across
a relatively brief temporal window that lasted for 200 ms.
Although estimates of switching time vary considerably across
studies, if the lower limit of 100 ms proposed by Jans et al.
(2010) is adopted, then subjects in our task may in fact have
been switching attention rapidly between the two target stimuli
(and this would also pose a challenge for many previous
studies as well; e.g., Baldauf et al. 2006; Gobell et al. 2004;
McMains and Somers 2004, 2005; Müller et al. 2003a). How-
ever, the lower bound of 100 ms is based on studies that could
not rule out parallel encoding accounts, so this may be an
underestimate of the actual switch time (e.g., Czerwinski et al.
1992; Kramer and Hahn 1995). On the other hand, if a more
conservative estimate of switching time in the range of 200–
250 ms (or more) is adopted (e.g., Duncan et al. 1994; Kröse
and Julesz 1989; Weichselgartner and Sperling 1987), then it is
less likely that a rapid-switching account can explain the
present data or the results reported by others. That said, the
temporal scale at which attention can be switched is still an
issue of debate, and it is difficult to conclusively rule out all
forms of this account. However, even in light of this ambiguity,
the present data provide a high temporal resolution metric that
we think plausibly reflects the division of attention immedi-
ately preceding a successful perceptual discrimination.
In summary, our data suggest that dividing attention across

noncontiguous locations is possible even when the stimuli are
in close proximity and located within the same visual quadrant.
Moreover, the multifocal division of attention within a quad-
rant onsets in a discrete manner and is primarily time-locked to
the onset of a correct behavioral response. Thus these data
suggest a tight temporal relationship between the transient

division of spatial attention and successful perceptual decision
making.
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Castiello U, Umiltà C. Splitting focal attention. J Exp Psychol Hum Percept

Perform 18: 837–848, 1992.
Cavanagh P, Alvarez GA. Tracking multiple targets with multifocal attention.
Trends Cogn Sci 9: 349–354, 2005.

Cave KR, Bush WS, Taylor TG. Split attention as part of a flexible
attentional system for complex scenes: comment on Jans, Peters, and De
Weerd. Psychol Rev 117: 685–696, 2010.

Czerwinski M, Lightfoot N, Shiffrin RM. Automatization and training in
visual search. Am J Psychol 105: 271–315, 1992.

Dubois J, Hamker FH. Attentional selection of noncontiguous locations: the
spotlight is only transiently “split”. J Vis 9: 1–11, 2009.

Duncan J, Ward R, Shapiro KL. Direct measurement of attentional dwell
time in human vision. Nature 369: 313–315, 1994.

Eriksen CW, St. James JD. Visual attention within and around the field of
focal attention: a zoom lens model. Percept Psychophys 40: 225–240, 1986.

Eriksen CW, Yeh YY. Allocation of attention in the visual field. J Exp

Psychol Hum Percept Perform 11: 583–597, 1985.
Gobell JL, Tseng C, Sperling G. The spatial distribution of visual attention.
Vision Res 44: 1273–1296, 2004.

TEMPORAL DYNAMICS OF DIVIDED SPATIAL ATTENTION

J Neurophysiol • doi:10.1152/jn.01051.2012 • www.jn.org



	

 

26 

 

 

Godijn R, Theeuwes J. Parallel allocation of attention prior to the execution
of saccade sequences. J Exp Psychol Hum Percept Perform 29: 882–896,
2003.

Hahn S, Kramer AF. Further evidence for the division of attention between
noncontiguous locations. Vis Cogn 5: 217–256, 1998.

Heinze HJ, Luck SJ, Münte TF, Gös A, Mangun GR, Hillyard SA.
Attention to adjacent and separate positions in space: an electrophysiolog-
ical analysis. Percept Psychophys 56: 42–52, 1994.

Howe PD, Drew T, Pinto Y, Horowitz TS. Remapping attention in multiple
object tracking. Vision Res 51: 489–495, 2011.

Intriligator J, Cavanagh P. The spatial resolution of visual attention. Cogn
Psychol 43: 171–216, 2001.

Jans B, Peters JC, De Weerd P. Visual spatial attention to multiple locations
at once: the jury is still out. Psychol Rev 117: 637–684, 2010.

Kim YJ, Verghese P. The selectivity of task-dependent attention varies with
surrounding context. J Neurosci 32: 12180–12191, 2012.

Kraft A, Müller NG, Hagendorf H, Schira MM, Dick S, Fendrich RM,
Brandt SA. Interactions between task difficulty and hemispheric distribu-
tion of attended locations: implications for the splitting attention debate.
Cogn Brain Res 24: 19–32, 2005.

Kramer AF, Hahn S. Splitting the beam: distribution of attention over
noncontiguous regions of the visual field. Psychol Sci 6: 381–386, 1995.

Kröse BJ, Julesz B. The control and speed of shifts of attention. Vision Res
29: 1607–1619, 1989.

Luu P, Tucker DM. Regulating action: alternating activation of midline
frontal, and motor networks. Clin Neurophysiol 112: 1295–1306, 2001.

Maertens M, Pollmann S. Interhemispheric resource sharing: decreasing
benefits with increasing processing efficiency. Brain Cogn 58: 183–192,
2005.

Makeig S, Delorme A,Westerfield M, Jung TP, Townsend J, Courchesne
E, Sejnowski TJ. Electroencephalographic brain dynamics following man-
ually responded visual targets. PLoS Biol 2: 176, 2004.

Malinowski P, Fuchs S, Müller MM. Sustained division of spatial attention
to multiple locations within one hemifield. Neurosci Lett 414: 65–70, 2007.

McCormick PA, Jolicoeur P. Manipulating the shape of distance effects in
visual curve tracing: further evidence for the zoom lens model. Can J Exp
Psychol 48: 1–24, 1994.

McMains SA, Somers DC. Multiple spotlights of attentional selection in
human visual cortex. Neuron 42: 677–686, 2004.

McMains SA, Somers DC. Processing efficiency of divided spatial attention
mechanisms in human visual cortex. J Neurosci 25: 9444–9448, 2005.

Müller MM, Malinowski P, Gruber T, Hillyard SA. Sustained division of
the attentional spotlight. Nature 424: 309–312, 2003a.

Müller MM, Teder-Sälejärvi W, Hillyard SA. The time course of cortical
facilitation during cued shifts of spatial attention. Nat Neurosci 1: 631–634,
1998.

Müller NG, Bartelt OA, Donner TH, Villringer A, Brandt SA. A physio-
logical correlate of the “zoom lens” of visual attention. J Neurosci 23:
3561–3565, 2003b.

Niebergall R, Huang L, Martinez-Trujillo JC. Similar perceptual costs for
dividing attention between retina- and space-centered targets in humans. J
Vis 10: 1–14, 2010.

Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC. Multifocal atten-
tion filters targets from distracters within and beyond primate MT neurons’
receptive field boundaries. Neuron 72: 1067–1079, 2011.

Pelli DG. The VideoToolbox software for visual psychophysics: transforming
numbers into movies. Spat Vis 10: 437–442, 1997.

Pollmann S, Zaidel E, von Cramon DY. The neural basis of the bilateral
distribution advantage. Exp Brain Res 153: 322–333, 2003.

Posner MI, Snyder CR, Davidson BJ. Attention and the detection of signals.
J Exp Psychol Hum Percept Perform 109: 160–174, 1980.

Pylyshyn ZW, Annan V Jr. Dynamics of target selection of multiple object
tracking (MOT). Spat Vis 19: 485–504, 2006.

Pylyshyn ZW, Storm WS. Tracking multiple independent targets: evidence
for a parallel tracking mechanism. Spat Vis 3: 179–197, 1988.

Regan D. Human brain electrophysiology: evoked potentials and evoked

magnetic fields in science and medicine. New York: McGraw-Hill, 1989.
Sereno AB, Kosslyn SM. Discrimination within, and between hemifields: a
new constraint on theories of attention. Neuropsychologia 29: 659–675,
1991.

Srinivasan R, Bibi FA, Nunez PL. Steady-state visual evoked potentials:
distributed local sources and wave-like dynamics are sensitive to flicker
frequency. Brain Topogr 18: 167–187, 2006.

Sutoyo D, Srinivasan R. Nonlinear SSVEP responses are sensitive to the
perceptual binding of visual hemifields during conventional ‘eye’ rivalry
and interocular ‘percept’ rivalry. Brain Res 1251: 245–255, 2009.

Weichselgartner E, Sperling G. Dynamics of automatic and controlled visual
attention. Science 238: 778–780, 1987.

TEMPORAL DYNAMICS OF DIVIDED SPATIAL ATTENTION

J Neurophysiol • doi:10.1152/jn.01051.2012 • www.jn.org



	

	

27 

Chapter 2, in full, is a reprint of the material as it appears in an article entitled 

“Temporal dynamics of divided spatial attention” published in Journal of Neurophysiology 

2013. Itthipuripat, S.; Garcia, Javier O.; Serences, John T., American Physiological Society, 

2013. The dissertation author was the primary author of the manuscript. Supported by 

National Institute of Mental Health (NIMH) Grant R01-MH092345 to J.S.T. and by NIMH 

Grant R01-MH68004 G.J.O. We thank Candace Linscheid, Tony Abuyo, and Danna Lee for 

help with data collection.  

 

 



	

       28 
	

 

 
 

 

Chapter 3:  

Changing the spatial scope of attention 

alters patterns of neural gain in  

human cortex  

 



	

 

29 

 

Behavioral/Cognitive

Changing the Spatial Scope of Attention Alters Patterns of
Neural Gain in Human Cortex

Sirawaj Itthipuripat,1 Javier O. Garcia,2 Nuttida Rungratsameetaweemana,3,4 Thomas C. Sprague,1

and John T. Serences1,2
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3Psychology and 4Mathematics, Middlebury College, Middlebury, Vermont 05753

Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These
conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we
used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly
focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention
primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural
modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention.

Introduction
Selective attention is the mechanism by which behaviorally rele-
vant sensory inputs are preferentially processed at the expense of
distracters. This selective information processing is thought to
partially depend on changes in the gain of neurons within striate
and extrastriate visual cortices. However, developing a parsimo-
nious model to account for gain modulation has been challenging
because different studies have found disparate attention effects
on stimulus evoked neural responses (Reynolds et al., 2000;
Martínez-Trujillo and Treue, 2002; Williford and Maunsell,
2006; Buracas and Boynton, 2007; Kim et al., 2007; Lee and
Maunsell, 2009, 2010a,b).

In a canonical paradigm (Reynolds et al., 2000; Martínez-
Trujillo and Treue, 2002), attention is covertly deployed to one of
two stimuli, whereas stimulus contrast is systematically varied to
generate contrast-response functions (CRFs) based on the activ-
ity level of visually responsive neurons. Whereas some studies
report that attention primarily enhances already strong responses
(response gain; see Fig. 1A; Di Russo et al., 2001; Kim et al., 2007;
Lee and Maunsell, 2010a), others report that attention enhances
only responses to midcontrast stimuli (contrast gain; see Fig. 1B;
Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002). Fi-

nally, other studies report patterns that resemble a combination
of different gain modulations (Williford and Maunsell, 2006; Bu-
racas and Boynton, 2007; Murray, 2008; Pestilli et al., 2011).

The normalization model of attention (NMA; Reynolds et al.,
1999; Lee and Maunsell, 2009, 2010b; Reynolds and Heeger,
2009) suggests that these inconsistent modulatory patterns might
arise via changes in the size of the stimulus and the attention field.
The NMA is based on the premise that, in the absence of atten-
tion, two factors determine the firing rate of a visually responsive
neuron. First, a facilitatory component (stimulus drive) is deter-
mined by the contrast of the stimulus placed in the receptive field
(RF) of a neuron. Second, a suppressive drive is determined by
the summed activity of other neighboring neurons, serving to
normalize the overall spike rate of the cell in question via mutual
inhibition (Heeger 1992). Attention modulates the pattern of
neural activity by altering the balance between these facili-
tatory and suppressive drives (Reynolds and Heeger, 2009).
Thus, a highly focused attention field leads to response gain
(see Fig. 1A) because attentional gain is applied primarily to
the stimulus drive. Conversely, a larger attention field leads to
contrast gain because attention increases both the stimulus
and the suppressive drives, and this normalizes responses at
high contrasts (see Fig. 1B).

A previous psychophysical study has reported a pattern of
behavioral performance that is consistent with the NMA (Herr-
mann et al., 2010). However, existing studies have not measured
neural CRFs to determine whether manipulating the size of the
attention field with respect to a constant stimulus size selectively
alters the gain pattern of neural CRFs. Here, we evaluated this
relationship in human subjects by measuring steady-state visual
evoked potentials (SSVEPs) elicited by attended and ignored
flickering visual stimuli.

Materials and Methods
Electroencephalography subjects. We initially recruited eight neurologi-
cally healthy human subjects (21–27 years old, four females) with normal
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or corrected-to-normal vision. The recruitment of eight subjects is
within the typical range for studies using similar multisession approaches
(Di Russo et al., 2001; Morrone et al., 2002, 2004; Carrasco et al., 2004;
Pestilli and Carrasco 2005; Ling and Carrasco 2006; Pestilli et al., 2007,
2009, 2011; Herrmann et al. 2010). All subjects signed an informed con-
sent form approved by the Institutional Review Board at the University of
California, San Diego (UCSD) and participated in the study for monetary
compensation of $15 per hour. They were behaviorally trained for 1.5 h
on the task 1 d before undergoing multiple electroencephalography
(EEG) sessions (10 –15 sessions, 3840 –5760 trials in total). Data from
one subject were discarded due to a failure to complete the experimental
protocol (the subject withdrew after the first EEG session). Of the other
seven subjects, four completed 10 sessions, one completed 11 sessions,
one completed 13 sessions, and one completed 15 sessions of EEG
recording.

EEG task design. EEG data were recorded while subjects performed an
attention task that required the covert allocation of either focused or
distributed spatial attention (see Fig. 2 A, B). We monitored SSVEPs elic-
ited by flickering a series of small disks (1.22° radius) concurrently in the
lower left and right visual field quadrants at a rate of either 21.25 Hz (25%
on– off duty cycle) or 28.33 Hz (33.33% on– off duty cycle), respectively
(and vice versa in half of the trials). By flickering the left and right stim-
ulus arrays at different frequencies, we were able to isolate the neural
response to stimuli presented in each location via a frequency-domain
analysis of the stimulus-locked SSVEP response. These high flicker-
frequencies were chosen based on previously established methods (Mül-
ler et al., 1998a; Breakspear et al., 2010; Bridwell and Srinivasan, 2012;
Garcia et al., 2013; Itthipuripat et al., 2013) in an effort to restrict our
measurements to entrained activity in visual cortex. The small disk ap-
peared randomly within a circular area with a radius of 4.90° (marked by
an imaginary black ring in Fig. 2A, centered 8.58° from a central fixation
point, which was located 3.50° above the center of the display). The
contrast of the flickering disks was systematically varied across trials over
a range extending from 2.5 to 90.0% (Michelson contrast: 100 ! (Is "
I

b
)/(Is # Ib), where Is is the luminance of the gray disk, and Ib is the

luminance of the dark gray background fixed at 2.7 cd/m 2).
We manipulated the spatial extent of attention by varying the potential

location of an occasional target stimulus that was presented on 25% of
the trials. The target was a circular oriented grating with the same mean
contrast and the same size as the nontarget disk, and subjects pressed one
of two buttons to indicate whether the orientation of the grating was 10°
clockwise or 10° counterclockwise relative to vertical. In both the focused
and the distributed conditions, nontarget disks were presented in a circle
(radius, 4.90°; marked by the black ring in Fig. 2). Within this 4.90° radius
circle, the location of each nontarget disk was randomly drawn from a
nonuniform distribution, approximating a Gaussian, such that there was
a higher probability of the disk appearing near the center of the stimulus
window than near the edges. In the focused-attention condition (see Fig.
2A, left), targets always appeared within a small circle (marked by the
blue dotted ring in the figure; radius, 2.04°). Thus, the region of space in
which a target disk could appear (the attention field) was smaller than the
size of the stimulus drive in the focused-attention condition. In the
distributed-attention condition (see Fig. 2A, right), targets could be pre-
sented inside a larger circle (marked by the cyan dotted ring in the figure;
radius, 6.54°). Thus, the size of the attention field (6.54°) was larger than
the size of the stimulus drive (4.90°) in the distributed-attention condi-
tion. Critically, the spatial extent of the stimulus drive is fixed across the
focused and distributed conditions. Thus we predicted more response
gain in the focused-attention condition because the attention field is
relatively small compared to the stimulus drive, and more contrast gain
in the distributed-attention condition because the attention field is rela-
tively large compared to the stimulus drive (Fig. 1 A, B). Note also that
these predictions hold as long as the relative size of the attention field is
larger in the distributed-attention condition compared to the focused-
attention condition (Fig. 1C–E for model simulations as described below,
Additional model simulations).

The schematic of the trial structure is shown in Figure 2B. Each trial
started with a fixation point and a 1 s arrow cue instructing subjects to
covertly attend to the left or to the right stimulus, followed by a 50 ms

auditory cue (400 or 1500 Hz) instructing the subjects to implement
either a focused- or distributed-attention strategy. Two seconds after the
arrow cue onset, the small flickering nontarget disks appeared in the
lower left and lower right quadrants for 7 s. A second 50 ms auditory cue
was then presented after a pseudorandomly selected interval of 3– 4 s
from the stimulus onset and instructed subjects to either maintain or
switch their attentional strategy. The intertrial interval (ITI) was 2 s. All
trial types were pseudorandomized so that the occurrence of the target-
present trials was unpredictable. To ensure that subjects were actively
engaged in the task for the duration of each trial, the grating targets were
briefly presented for 11.7 ms in the first half of the trial, in the second half
of the trial, or in both intervals with equal probability. In addition, the
time at which the target appeared was pseudorandomly selected from a
uniform distribution to decrease the predictability of the target onset
time. Target stimuli could appear only on the attended side (100% cue
validity). This was done to ensure that subjects focused only on the
attended location and did not divide their attention across hemifields.

EEG experimental procedures. Stimuli were presented on a PC running
Windows XP using MATLAB (MathWorks) and the Psychophysics
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Figure 1. A, The NMA predicts that focused attention leads to response gain, or an upward
shift of the CRF. B, On the other hand, distributed attention should lead to contrast gain, or a
leftward shift of the CRF. The spatial distribution of the stimulus response and the size of the
attention field used here are based on the parameters used in the main EEG experiment. C, D,
We also specified the stimulus size and the attention field size in relation to expected RF sizes
across striate and extrastriate visual areas (V1, V2, and V4) and found that the NMA generates
consistent results across regions. E, The NMA simulation (using the RF parameters from V4) in
which the stimulus size is fixed at 4.9° but the size of the attention field varies from 2.0 to 6.5°
consecutively in 0.5° steps. The model predicts that as the size of the attention field increases,
response gain will decrease and contrast gain will increase in a continuous manner. See model
parameters for all figures in Table 1 and simulation procedures in Material and Methods.
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Toolbox (version 3.0.8) (Brainard, 1997; Pelli, 1997). Precise stimulus
onset times were recorded from the CRT monitor (HP P1203, 85 Hz
refresh rate) via small fiber-optic cables attached to the screen. The gain
and sensitivity of the fiber-optic system (custom built by the Electronic
Development and Repair Facility, Department of Physics, University of
California, San Diego; schematics available upon request) were adjusted
to give accurate and fast sampling to record the precise timing of the
flickering stimuli. Participants were seated 70 cm from the monitor in a
dark room and used two buttons on a keyboard to make their responses.

Analysis of behavioral data. Only correct button presses occurring be-
tween 200 and 1500 ms after the onset of a target were counted as correct.
Repeated-measures ANOVAs were used for all behavioral analyses. Note
that subjects made no correct responses on trials in which the stimulus
contrast was set to 2.5%, as the stimuli were nearly invisible at this level.
Thus, the analysis of response time data included only trials from the five
higher contrast levels (i.e., from 5–90%). This is reflected in the smaller
degrees of freedom [4, 24] in the ANOVA that assessed the effects of
contrast on RT.

EEG data acquisition and analysis. EEG data were recorded using a
128-channel Geodesic Sensor Net coupled with a NetAmps 300 amplifier
(Electrical Geodesics), sampled at 1000 Hz and referenced to the central
channel. Electrode impedances were kept below 50 k!, which is standard
for this system. Blinks and eye movements were monitored by six built-in
electrodes placed above, below, and beside the left and right eyes.

The EEG data were filtered by applying a high-pass Butterworth filter
with 2 dB attenuation at 2 Hz and a band-stop Butterworth filter with 30
dB attenuation between 58 and 62 Hz. The EEG data were then seg-
mented into epochs extending from 3000 ms before stimulus onset to
3000 ms after stimulus offset. Trials that exhibited prominent blink,
electrooculogram, or electromyogram artifacts were discarded using
threshold rejection (more than "75 !V deviation from the mean) and
visual inspection on trial-by-trial basis, which resulted in the removal of
#20% of trials across subjects. Principal components were then com-
puted and selected for removal based on visual analysis to attenuate any
residual artifacts.

Fourier coefficients were calculated at frequencies of 21.25 and 28.33
Hz (the two stimulus frequencies) and 40 surrounding frequency bins
separately for the first half (from 0 –3 s after the flicker onset) and the
second half of the trial (from 0 –3 s after the second auditory cue), and for
each spatial cue type (attend left or right), attention condition (focused
or distributed), stimulus location (left or right), and stimulus contrast
level (six levels). To avoid spectral leakage, we truncated the FFT calcu-
lation window to have a length equal to the number of integer stimulus
cycles nearest to the 3 s interval. Specifically, for a stimulus flicker of 21.25
Hz, the 3 s interval was truncated to 2.9172 s, giving a central frequency of
21.2547 and a 0.3428 Hz spectral resolution. For the stimulus flicker at
28.33 Hz, the 3 s interval was truncated to 2.9647 s, giving a central
frequency of 28.3305 Hz and a 0.3373 Hz spectral resolution. All figures
and analyses are based only on the data from nontarget trials on which no
false alarm was made. Analyzing only nontarget trials was critical because
it prevented confounds related to target detection- and response-related
activity, and it also ensured that all sensory aspects of the displays were
identical across changes in the size of the attentional field. The signal-to-
noise ratio (SNR) of the SSVEP response was calculated on a trial-by-trial
basis by dividing the power at the frequency bin centered on the stimulus
frequency by the mean power in the two frequency bins 0.69 Hz above
and below the center frequency of 21.25 Hz (corresponding to two bins
on either side of the center frequency) and 0.68 Hz above and below the
center frequency of 28.33 Hz. This SNR metric has been used in previous
SSVEP studies (Bridwell and Srinivasan, 2012; Kim and Verghese, 2012;
Bridwell et al., 2013; Garcia et al., 2013), and we focused on analyzing the
SNR rather than the raw power/amplitude of the SSVEP to ensure that
the modulations of the SSVEP were not confounded by any changes in
broadband power at " frequencies.

The five electrodes in each subject with the highest median SNR com-
puted across all stimulus contrast levels and attentional conditions at
each stimulus frequency and each stimulus location were then defined as
electrodes of interest [EOIs; see Fig. 3A, bottom; see similar methods in
the studies by Itthipuripat et al. (2013) and Müller et al. (2003)]. The EOI

approach strengthens the power of our analysis due to a slight variation
of SSVEP topography across subjects. Also, the selection of EOIs based on
data collapsed across focused- and distributed-attention conditions and
across all contrast levels avoids biasing our analysis to favor either one of
the alternative patterns of gain (i.e., response or contrast gain). The me-
dian SNR in each set of EOIs was then computed for each stimulus
contrast level to construct contrast response functions separately for at-
tended and ignored stimuli in the focused and distributed conditions (see
Fig. 4).

To quantitatively examine the pattern of gain (either response or con-
trast gain) separately for the focused and distributed conditions, the
grand-averaged SSVEP contrast response functions obtained across all
subjects were fit with a Naka–Rushton equation (Geisler and Albrecht,
1997):

R$c% # a$cn/&cn $ C50
n '% $ b (1)

where R is the magnitude of the SSVEP response as a function of contrast
(c), a is a response amplitude parameter (multiplicative gain factor), C50

is the semisaturation constant (the contrast value at half the maximum
response), n is an exponent that determines the slope of the contrast
response function, and b is the baseline response level. In this analysis, b
was defined as the lowest SNR of each data set, and n was fixed at 2 (see
Herrmann et al., 2010; Carandini and Heeger, 2011). Then, a and C50

were estimated using MATLAB’s fminsearch function. The fitting pro-
cedure was constrained under the assumption that the CRF reaches as-
ymptote before or at the maximal contrast. This constraint was
implemented to ensure that the amplitude parameter did not exceed the
maximum SSVEP response and the semisaturation constant did not vary
outside the range of contrast values that were used in the present exper-
iment (1–90% contrast).

A bootstrapping procedure was then performed to assess significant
differences between conditions and to establish 95% confidence intervals
on the best fitting model parameters (see Fig. 4C, E, G). First, we resa-
mpled EEG trials with replacement for each individual subject. Next, we
averaged the resampled trials across subjects to generate a CRF for each
experimental condition, and then we fit the averaged CRFs to generate an
estimate of a and C50. This resampling and fitting procedure was then
repeated 10,000 times to create bootstrapped distributions from which
confidence intervals associated with each parameter (a and C50) were
computed. To evaluate the interaction between attention field size (fo-
cused/distributed) and the locus of attention (attended/ignored) on the
model parameters, we compiled bootstrapped distributions of the differ-
ences between the estimated fit parameters in the focused-attention
condition and the distributed-attention condition, i.e., (focused: at-
tended ( ignored) ( (distributed: attended ( ignored), and computed
the percentage of values in the tail of this distribution that were greater or
less than zero. Then, post hoc comparisons were performed to test for
additional differences between pairs of conditions by evaluating boot-
strapped distributions of differences and then computing the percentage
of the values in the tails of these distributions that were greater or less
than zero. We used two-tailed statistical tests to be conservative and
because the NMA does not make specific predictions about the influence
of attention field size on CRFs associated with ignored stimuli (Reynolds
and Heeger, 2009). All p values associated with post hoc comparisons
were Bonferroni corrected, resulting in a corrected threshold for eight
comparisons of % # 0.0063 (two tailed).

fMRI subjects. fMRI data were obtained from five neurologically
healthy human subjects (21–31 years old, three females), three of whom
participated in the main EEG experiments. All subjects signed an in-
formed consent form approved by the Institutional Review Board at
UCSD and participated in the study for monetary compensation of $20
per hour. Each subject participated in a 2 h scanning session to acquire
fMRI for the experimental task, high-resolution anatomical images, and
functional localizer scans. Retinotopic mapping for all subjects was car-
ried out in a separate session using standard procedures (Engel et al.
1994; Sereno et al., 1995).

fMRI task design. We conducted this control fMRI experiment to in-
dependently verify that the manipulation of attentional field size success-
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fully modulated the spatial extent of activation in early visual areas. The
protocol and stimulus parameters of the fMRI version of the experiment
were similar to the main EEG experiment (see above, EEG task design),
except that the auditory cue was replaced by a colored arrow cue (red or
blue), there was only one attention strategy used on each trial, and the
stimulus flicker frequency was either 20 or 30 Hz (which was limited by
the 60 Hz refresh rate of the projector and varied only slightly from the
21.25 and 28.33 Hz flicker rates used in the EEG study). Stimuli were
front-projected on a screen (90 cm width), located 380 cm from the
subject’s eyes. The stimulus contrast was fixed at 20.3%, the contrast level
at which SSVEP responses reached about half of their maximal response.
The gray nontarget stimulus disk (radius, 0.60 o) was flickered in an area
with a radius of 2.00 o. The spatial extent of the target stimulus in the
focused-attention condition and the distributed-attention conditions
were 0.93 o and 2.65 o in radius, respectively. Note that the stimulus pa-
rameters used in the fMRI study are smaller than those in the EEG study,
which was caused by a limited visible screen area due to the narrow
scanner bore. However, the respective ratio of the stimulus parameters
across conditions are closely matched to those used in the EEG study.

Each trial started with an arrow cue pointing to the left or the right side
of the visual field (duration, 2 s), instructing subjects to covertly shift
their attention to the left or the right (with equal probability). Subjects
applied the focused- and distributed-attention strategies when the arrow
cue was red and blue, respectively. The flickering nontarget disks then
appeared in the left and right lower visual fields at 20 and 30 Hz, respec-
tively (and vice versa on one-half of the trials) for 3 s, followed by a
passive-fixation ITI of 3 s. Each run contained 12 focused-attention non-
target trials, 12 distributed-attention nontarget trials, 4 focused-
attention target trials, 4 distributed-attention target trials, and 5 null
trials (null trial duration, 8 s of passive fixation) in pseudorandomized
order. Each subject completed 9 –10 runs of the main fMRI experiment.

fMRI functional localizer task. Subjects also performed two runs of a
functional localizer task to identify voxels that were visually responsive to
the portion of the visual field subtended by the maximum area over
which a target stimulus could be presented during the distributed-
attention condition in the fMRI main task (radius, 2.65°). Note that the
size of the localizer stimulus is larger than the region over which the
flickering nontarget disks were presented (i.e., the stimulus drive had a
radius, 2.00°; see respective ratio in Fig. 2A). Subjects maintained fixation
while covertly attending to a single flickering circular checkerboard with
100% contrast that was alternately presented in the left and right stimulus
locations for 12 s/trial. Subjects responded with a button press when they
perceived a brief and small contrast change in the checkerboard; contrast
detection targets could appear between one and three times per 10 s trial.

fMRI retinotopic mapping procedure. Striate and extrastriate visual ar-
eas (V1, V2v, V3v, V2d, V3d) were defined by standard retinotopic
mapping procedures (using a rotating counterphase flickering checker-
board), and the data were projected onto a computationally inflated
gray/white matter boundary surface reconstruction for visualization
(Engel et al. 1994; Sereno et al., 1995).

fMRI data acquisition, preprocessing, and analysis. All subjects were
scanned on a 3T GE MR750 scanner at the Center for Functional mag-
netic Resonance Imaging at UCSD. Functional images were collected
using a gradient EPI pulse sequence and a 32-channel head coil (Nova
Medical), except one subject with whom an 8-channel head coil was used.
Functional acquisition parameters were otherwise identical (19.2 ! 19.2
cm FOV, 64 ! 64 matrix size, 35 3-mm-thick slices with 0 mm gap, TR "
2000 ms, TE " 30 ms, 90° flip angle), yielding a voxel size of 3 ! 3 ! 3
mm. We acquired axial slices that covered the entire occipital cortex. In
addition, we obtained a high-resolution anatomical scan (fast spoiled
gradient-recalled-echo T1-weighted sequence, TR " 11 ms, TE " 3.3 ms,
TI " 1100 ms, 172 slices, 18° flip angle, 1 mm 3 resolution). EPI images
were first unwarped using the FMRIB Software Library (Oxford, UK).
Then, BrainVoyager 2.3 (Brain Innovations) was used to perform slice-
time correction, 3D motion correction, temporal high-pass filtering
(three cycles per run), and transformation into Talairach space.

In the main analysis, we first used a general linear model (GLM) to
identify voxels that showed a significant response to contralateral versus
ipsilateral epochs of visual stimulation during the independent func-

tional localizer task [single-voxel false discovery rate (FDR)-corrected
threshold, p # 0.05]; voxels showing a significant response in each area
were then retained for further analysis in the main experimental task.
Next, we ran a GLM with eight regressors (focused attention left, focused
attention right, distributed attention left, distributed attention right, fo-
cused attention left target trial, focused attention right target trial, dis-
tributed attention left target trial, and distributed attention right target
trial) on each retained voxel in each visual area. Note that in the main
fMRI task, we only analyzed the nontarget trials to keep the stimulus
drive fixed across the focused and distributed conditions and to prevent
possible confounds from target-evoked sensory responses, decision pro-
cesses, and/or motor-related processes. Each regressor was constructed
by convolving a boxcar model of the stimulus sequence with the standard
difference-of-two-gamma function hemodynamic response function
model implemented in Brain Voyager. We then preformed t tests on the
resulting beta weights to assess the proportion of voxels in each visual
area that showed a significant response on trials where attention was
directed to the contralateral visual field. A sign test was then performed to
determine whether the number of visual areas in which more voxels were
significantly active in the distributed condition (compared to the focused
condition) was different from the number of areas expected by chance.
Since these areas are retinotopically mapped, a higher proportion of
significant voxels in one condition compared to another should translate
into a larger spatial extent of activation, allowing us to infer changes in
the relative size of the attention field. To ensure that the results were not
biased by the exact choice of a single-voxel statistical threshold, we used
three p values, p # 0.10, p # 0.05, and p # 0.01, all FDR corrected. We
also repeated this analysis across a large range of statistical thresholds (a
range of t values from $1 to 10; see Fig. 5B). At each point in these
cumulative plots, we computed the percentage of voxels within each
unilateral ROI (30 ROIs total) with t values exceeding each t threshold. At
each t threshold, we then compared whether more ROIs had more voxels
active during the distributed-attention condition compared to the
focused-attention condition than would be expected by chance using a
sign test, correcting for multiple comparisons using FDR ( p # 0.05).

Finally, we examined the response in all voxels within each localizer-
defined ROI to determine whether the least active voxels in the focused-
attention condition became more active in the distributed-attention
condition. We sorted voxels from each ROI into 20 evenly spaced bins
based on the ! coefficient corresponding to the focused-attention con-
dition. Next, we computed the average response across all voxels within
each of the 20 bins on both focused- and distributed-attention trials. We
then evaluated, for each bin, whether average betas increased in more
ROIs than would be expected by chance using a sign test (corrected for
multiple comparisons at an FDR threshold of p # 0.05).

Additional model simulations. Since EEG measurements are presum-
ably influenced by distributed activity across visual areas with different
RF sizes, we modified the NMA as written by Reynolds and Heeger
(2009) to use the exact stimulus/task parameters used in the EEG study
(for model parameters, see Table 1) and constrained the simulation of RF
sizes in each modeled visual area based on estimates from monkey neu-
rophysiology (Gattass et al., 1981, 1988; Freeman and Simoncelli, 2011).
The stimulus is assumed to have a Gaussian shape. This is consistent with
the fact that the potential location of the small nontarget disk is randomly
drawn from a nonuniform distribution, with higher probability associ-
ated with the disk appearing near the center of the stimulus window than
near the edges, similar to a Gaussian. The attention field, excitatory field,
and suppressive field are also assumed to have Gaussian shape similar to
the original NMA (Reynolds and Heeger, 2009). Given the eccentricity of
our stimuli in the EEG experiment (8.58°), the RF sizes were fixed at
V1 " 1.46°, V2 " 4.33°, and V4 " 6.86° (Gattass et al., 1981, 1988;
Freeman and Simoncelli, 2011). In the RF-size-constrained model, the
size of the excitatory field was set equal to the estimated RF size of neu-
rons in each region. The bandwidth of the suppressive field is set to be
two times larger than the stimulation field (Cavanaugh et al., 2002); thus
the size of the suppressive field is linearly scaled with the RF size. We
convolved the excitatory field with the stimulus ( E) and applied the
attentional field ( A) via multiplication to estimate the stimulus drive as
enhanced by attention (AE). Then, we convolved the suppressive field
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with AE (the stimulus drive that is already enhanced by attention) to
generate the suppressive drive ( S). Finally, we divided AE by S to generate
a predicted population response. The model predicts similar patterns of
gain modulation across all simulated visual areas (Fig. 1C). Specifically,
in the focused-attention condition, there is clear response gain pattern
(i.e., attention enhances already strong responses). These enhanced re-
sponses are normalized when the attention field becomes larger, result-
ing in a pattern resembling contrast gain in the distributed-attention
condition. The observation of similar effects in all areas is particularly
relevant as our scalp recorded SSVEP signals likely reflect the combined
activity across several early visual areas in occipital cortex.

Although the SSVEP signals that we measure reflect oscillatory activity
evoked by stimuli spanning the entire stimulus drive (4.9°), we also con-
sidered a model in which the stimulus drive consisted of a single presen-
tation of a 1.2° nontarget disk (Fig. 1D). Under these conditions, the
NMA still predicts the same general shift from relatively more response
gain to relatively more contrast gain as the size of the attention field
increases. Note that the simulation parameters in Figure 1D are the same
as C, except that the stimulus is 1.2° in radius and has a square-wave
shape (consistent with the shape of the small disk used in the EEG exper-
iment). We also ran the stimulation (using the parameters from V4) in
which the stimulus size is fixed at 4.9° but the size of the attention field
varies from 2.0° to 6.5° consecutively in 0.5° steps (Fig. 1E). The model
simulation predicts that as the size of the attention field increases, re-
sponse gain will decrease and contrast gain will increase in a continuous
manner. This highlights the importance of the relative size between the
attention field and stimulus drive, and a shift from response to contrast
gain should be observed as long as the size of the attention field increases
and the stimulus drive remains constant.

Results
Behavioral results
Subjects’ accuracy during the EEG experiment significantly im-
proved (Fig. 2C, left; F(5,30) ! 128.547, p " 0.001), and reaction
times (RTs) on correct trials significantly decreased as a function
of stimulus contrast (Fig. 2C, right; F(4,24) ! 18.151, p " 0.001).
Although accuracy was unaffected by changes in the spatial scope
of attention, subjects responded more slowly in the distributed
condition than in the focused condition (F(1,6) ! 7.159 p !
0.037), consistent with the increased uncertainty of the target
location. This selective influence of attention field size on RT, as
opposed to accuracy, is consistent with our instructions that the
subjects emphasize responding accurately.

SSVEP results
SSVEPs are well suited to evaluate the impact of changes in the
spatial scope of attention on neural CRFs because they reflect
synchronized activity pooled across neurons in visual cortex
(Regan 1989; Rager and Singer, 1998; Srinivasan et al., 1999), and
models such as the NMA make predictions regarding changes in
the gain pattern of neural activity at the population level under
the assumption that individual neurons in the population share a
similar dependence on stimulus contrast (Reynolds and Heeger,
2009). In addition, previous research has established that SSVEP
signals are influenced by attention and thus provide a sensitive
measure to study patterns of sensory gain modulation (Müller et

al., 1998a,b, 2003; Kim et al., 2007). Figure 3A shows the scalp
topography of the grand-averaged SSVEPs collapsed across the
focused- and distributed-attention conditions and all stimulus
contrast levels. We obtained reliable SSVEP responses for both
21.25 and 28.33 Hz stimuli that peaked over posterior– occipital
regions contralateral to the stimulus. Note that the attention ef-
fects (third row) were slightly less lateralized than the responses
in each condition considered in isolation; this occurred because
responses to attended stimuli not only had a higher SNR, but
were also slightly broader in their spatial distribution. Since the
peak distribution of SSVEP responses for each stimulus fre-
quency assignment varied slightly across individuals, we selected
five focal EOIs for each frequency from each observer for further
analysis (collapsing across contrast levels; Fig. 3A, bottom; see
Materials and Methods).

The grand-averaged SSVEPs are plotted as a function of stim-
ulus contrast and attention in Figure 4A: the focused-attention
condition yielded a pattern that qualitatively resembles response

Table 1. Model parameters used in Figure 1A–E

Figure label Stimulus size (in degrees)

Attention field size (in degrees) Receptive field size (in degrees) Suppressive field size (in degrees)

Focused Distributed V1 V2 V4 V1 V2 V4

A 4.90 2.04 6.86 13.72
B 4.90 6.54 6.86 13.72
C 4.90 2.04 6.54 1.46 4.33 6.86 4.94 8.66 13.72
D 1.20 2.04 6.54 1.46 4.33 6.86 4.94 8.66 13.72
E 4.90 2.0 to 6.5 in 0.5 steps 6.86 13.72
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Figure 2. A, The spatial attention task required either a focused- or distributed-attention
strategy. In the focused-attention condition (left), the location of a small oriented-grating
target was constrained to an area (a blue dotted ring, not shown in the actual display) that was
smaller than the spatial extent of the nontarget disks (a black ring, not shown in the actual
display). In the distributed-attention condition (right), the target could appear across a larger
region of space (a cyan dotted ring, not shown in the actual display). B, Trial structure. Each trial
began with a 2 s arrow cue that instructed subjects to attend to either the left or the right
stimulus, followed by a 50 ms auditory cue, and the pitch (high/low) instructed subjects to
either adopt a focused- or distributed-attention strategy. A second auditory cue was then pre-
sented after a pseudorandomly selected interval of 3– 4 s, and instructed the subjects to either
maintain or switch their attention strategy. The small flickering nontarget disks in the lower left
and lower right quadrants were updated at 21.25 and 28.33 Hz, respectively (or vice versa on
one-half of the trials). The stimulus contrast was set to 2.5, 5.3, 9.6, 20.6, 46.5, or 90.0% on each
trial. The ITI was 2 s. No target was presented on 75% of the trials, and these nontarget trials
formed the basis for all subsequent analyses of the EEG signal. On the remaining 25% of the
trials, a single square-wave grating target stimulus could appear briefly for 11.7 ms (green
cross, bottom) in the first half of the trial, in the second half of the trial, or in both. C, Behavioral
accuracy (left) and reaction times for correct trials (right) as a function of stimulus contrast. Note
that no correct responses were made when at the 2.5% contrast level, as the stimuli were nearly
invisible. All error bars are #1 SEM across subjects.
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gain (left), and the distributed-attention condition yielded a pat-
tern that qualitatively resembles contrast gain (right). As an ini-
tial evaluation of attention-related differences between the CRFs
shown in Figure 4A, we performed a three-way repeated-
measures ANOVA. There was a significant main effect of the
locus of attention (response to attended versus ignored stimulus,
F(1,6) ! 15.287, p ! 0.008), a main effect of stimulus contrast
(F(5,30) ! 12.573, p " 0.001), and an interaction between the
locus of attention and stimulus contrast (F(5,30) ! 6.584, p "
0.001). In addition, there was a significant three-way interaction

between the size of the attention field, the locus of attention, and
stimulus contrast (F(5,30) ! 8.972, p " 0.001), demonstrating that
changes in the size of the attention field lead to different patterns
of CRF modulation. This pattern can also be qualitatively seen in
the scalp distribution of the SSVEP SNR (Fig. 3B). Importantly,
this pattern of results was reproduced when data from the first
half (Fig. 4D) and the second half (F) of each trial were analyzed
separately. Specifically, there was a significant main effect of the
locus of attention (first half, F(1,6) ! 9.690, p ! 0.021; second half,
F(1,6) ! 22.184, p ! 0.003), a main effect of stimulus contrast
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Figure 3. A, Topographies of the grand-averaged SNR of the SSVEPs, collapsed across focused- and distributed-attention conditions, the first half and the second half of the trial, and all stimulus
contrast levels. SSVEPs for attended (first row) and ignored (second row) stimuli peaked at posterior occipital sites contralateral to the stimulus that evoked the response. Attention boosted the SNR
of the SSVEPs (third row). Five focal electrodes were selected separately for each frequency assignment and each stimulus location as EOIs. The fourth row shows the probability of each electrode
being included as an EOI across all subjects. B, Topographical maps for each attention condition and each stimulus contrast level. The plot is collapsed across stimulus frequencies and stimulus
locations. The left half and the right half of the head model correspond to electrodes ipsilateral and contralateral to the stimulus location, respectively. Consistent with the main CRF results (Fig. 4),
the SNR of the SSVEP increases as a function of stimulus contrast. In the focused-attention condition, the response at the highest contrast level is most enhanced by attention. In contrast, responses
to high-contrast stimuli are relatively attenuated in the distributed-attention condition, and response enhancement is most evident at midlevel contrasts instead. C, Posterior– occipital view of the
grand-averaged SNR of the SSVEPs for each stimulus frequency assignment during the first and second halves of the trial. Data were collapsed across focused- and distributed-attention conditions
and across all stimulus contrast levels. Blue and red lines show the response to attended and ignored stimuli, respectively. For each frequency assignment, there are clear SSVEPs that are sharply
tuned to the flicker frequency of each stimulus and that peak in posterior– occipital electrodes contralateral to the stimulus location. Green boxes highlight sets of electrodes that responded robustly
to stimuli in each location and stimulus frequency assignment.
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(first half, F(5,30) ! 10.345, p " 0.001; sec-
ond half, F(5,30) ! 13.087, p " 0.001), an
interaction between the locus attention
and stimulus contrast (first half, F(5,30) !
3.598, p ! 0.011; second half, F(5,30) !
3.881, p ! 0.008), and an interaction be-
tween the size of attention field, the locus
of attention, and stimulus contrast (first
half, F(5,30) ! 4.213, p ! 0.005; second
half, F(5,30) ! 3.869, p ! 0.008). Note that
consistent results were observed when raw
SSVEP amplitudes were analyzed as op-
posed to SNR (data not shown).

Although the ANOVA presented
above confirms that there is an effect of
attention field size on the CRFs, it does
not directly address the selectivity of
changes in terms of response or contrast
gain. Therefore, we next fit a Naka–
Rushton equation (Eq. 1) to the CRFs as-
sociated with each condition to evaluate
the influence of attention field size on re-
sponse gain (as indexed by the response
amplitude model parameter, a; Fig. 4C,
left) and contrast gain (as indexed by the
semisaturation constant model parame-
ter, C50; Fig. 4C, right).

Using a bootstrapping procedure (see
Materials and Methods), we found a sig-
nificant two-way interaction between the
size of the attention field and the locus of
attention on the response amplitude pa-
rameter, a (p " 0.0001; Fig. 4C, left). This
two-way interaction was primarily driven
by higher response amplitude for at-
tended compared to ignored stimuli in the
focused-attention condition (p " 0.0001;
this and all other p values associated with
post hoc pairwise comparisons are Bonfer-
roni corrected with ! " 0.0063), but not
in the distributed-attention condition
[not significant (n.s.), p ! 0.3986]. We
also observed higher response amplitude
for attended stimuli in the focused-
attention condition compared to the
distributed-attention condition (p !
0.0026; Fig. 4C, left, compare dark blue,
cyan bars). Finally, there was no signifi-
cant difference in the response amplitude
for ignored stimuli across the focused-
and distributed-attention conditions
(n.s., p ! 0.0448; Fig. 4C, left, compare
red, orange bars).

As shown in the right panel in Figure
4C, right, we also found a significant two-
way interaction between the size of the at-
tention field and the locus of attention on
the semisaturation contrast parameter C50

(p ! 0.0021). The interaction was pri-
marily driven by a significant decrease in
C50 for attended compared to ignored
stimuli in the distributed-attention con-
dition (p ! 0.0010) and no difference in
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Figure 4. A, CRFs based on the grand-averaged SNR (N ! 7) associated with attended and ignored stimuli separately for the
focused-attention (dark blue for the attended stimulus, red for the ignored stimulus) and distributed-attention conditions (cyan
for the attended stimulus, orange for the ignored stimulus). The continuous curves represent fits based on a Naka–Rushton
equation (see Materials and Methods). In the focused-attention condition, R 2 was 0.958 and 0.989 for attended and ignored
responses, respectively. In the distributed-attention condition, R 2 was 0.835 and 0.987 for the attended and ignored responses,
respectively. Focused attention led to a pattern of response gain (left), and distributed attention led to a pattern of contrast gain
(right). B, The attentional modulation for focused and distributed conditions (the difference between the data shown in left and
right panels in A). Asterisks indicate significant differences as assessed with by post hoc t test with Bonferroni correction for multiple
comparisons (both t(6) values#3.901; p values"0.00833, two-tailed). C, Results from the bootstrapping analysis demonstrating
changes in the response amplitude parameter, a (left), and the semisaturation contrast, C50 (right), as a function of the size of the
attention field and the locus of attention. The interaction between the size of the attention field and the locus of attention are
significant for both a and C50, with more pronounced response gain in the focused-attention condition and more pronounced
contrast gain in the distributed-attention condition. D, F, Similar results were observed when data from the first half (D) and the
second half (F ) of each trial were analyzed separately. E, G, Pattern of results was also observed when data from the first half (E)
and the second half (G) of each trial were analyzed separately. FA, Focused attended; FI, focused ignored; DA, distributed attended;
DI, distributed ignored. For C, E, and G, asterisks indicate significant differences as assessed with post hoc comparisons (Bonferroni
corrected for 8 comparisons, all p values " 0.0063, two-tailed). Hash marks indicate differences without Bonferroni correction (all
p values " 0.05). Error bars in A, B, D, and F are $1 SEM across subjects. All error bars in C, E, and G represent 95% confidence
intervals of the bootstrap distributions.
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C50 between attended and ignored CRFs in the focused-attention
condition (n.s., p ! 0.5302). No significant differences were ob-
served for attended stimuli in the focused-attention condition
compared to the distributed-attention or for ignored stimuli in
the focused-attention condition compared to the distributed-
attention (n.s., p ! 0.0146 and p ! 0.0642, respectively).

Overall, these results demonstrate that the CRFs associated
with attended stimuli undergo response and contrast gain in the
focused-attention and distributed-attention conditions, respec-
tively. Importantly, a similar pattern of amplitude and semisatu-
ration parameters were observed when data from the first half
(Fig. 4E) and the second half (G) of each trial were analyzed
separately. Specifically, the interaction between the size of the
attention field and the locus of attention is significant for both a
(first half, p ! 0.0018; second half, p ! 0.0225) and C50 (first half,
p ! 0.0147; second half, p ! 0.032), with more pronounced
response gain in the focused-attention condition and more pro-
nounced contrast gain in the distributed-attention condition.

fMRI results
To independently determine whether the spatial scope of atten-
tion was larger in the distributed compared to the focused-
attention condition, we performed a control study using fMRI to
examine the extent of activation within retinotopically mapped
regions of early visual cortex. We tested two complementary pre-
dictions. First, we predicted that more voxels overall would be
significantly active in the distributed compared to the focused-
attention condition. Given that these areas are retinotopically
organized, a higher proportion of significantly active voxels
should correspond to a larger area of the visual field. Second, we
reasoned that voxels showing the least activation in the focused-
attention condition should undergo a relatively large increase in
activation in the distributed-attention condition (compared to
voxels that already showed a high activation level in the focused-
attention condition). Again, this prediction is based on the reti-
notopic organization of these areas: voxels with spatial receptive
fields near the center of the stimulus should respond strongly in
both the focused and the distributed conditions, whereas voxels
with a spatial receptive field that is farther from the center of the
stimulus should respond more in the distributed compared to the
focused-attention condition. Note that the first prediction con-
cerns only voxels that show a significant positive response (i.e.,
does the total spatial extent of voxels passing a fixed threshold
change with attentional demands?). In contrast, the second pre-
diction concerns systematic changes in the responses of all voxels
within a visual area, regardless of whether their responses are
significantly higher than baseline in any given condition.

With respect to the first prediction, we observed a higher pro-
portion of significant voxels in the distributed-attention condi-
tion compared to the focused-attention condition across most
localizer-defined regions of V1, V2, and V3 (at an individual-
voxel FDR-corrected threshold of p " 0.05; Fig. 5A, middle; 23 of
30 areas had a higher proportion of active voxels in the distrib-
uted compared to the focused-attention condition, where left
and right V1, V2, and V3 were considered separately for each
subject; p " 0.005 by sign test). Similar results were also obtained
at FDR-corrected individual-voxel thresholds of p ! 0.10 (Fig.
5A, left) and p ! 0.01 (Fig. 5A, right), indicating that the result
does not just reflect a thresholding artifact (all p values " 0.01 by
sign test; Fig. 5B, results showing the higher proportion of voxels
in the distributed- compared to focused-attention conditions
across a wider range of t thresholds). Similar results were also
observed when only responses in area V1 were considered. Note

that only about #40 –50% of voxels were significant across the
focused- and distributed-attention conditions. This is consistent
with the fact that the contrast of the stimulus used in the main
fMRI experiment (20.03%) was lower than the contrast of the
localizer stimulus (100%), and the area of stimulation was also
smaller than the size of the localizer (see Materials and Methods).
Finally, note that for all analyses we first removed the mean of the
BOLD response across the entire brain on a volume-by-volume
basis, so the differences between the focused and distributed con-
ditions in unlikely to be related to changes in global activation
levels associated with general arousal. In addition, Figure 5C
shows representative activation maps from two subjects who par-
ticipated in both the EEG and fMRI experiments. In the
distributed-attention condition, there is a visibly broader patch
of activation on the cortical sheet in left/right V1, V2d, and V3d
compared to the focused-attention condition (Figure 5C, orange–
yellow color represents significance above baseline; p " 0.05,
FDR corrected).

We next tested our second prediction that the least active
voxels in the focused-attention condition should undergo the
largest positive change in the distributed-attention condition. To
assess this possibility, we examined the response in all voxels
within each localizer-defined ROI to determine whether the least
active voxels in the focused-attention condition became more
active in the distributed-attention condition (as we would predict
if the spatial scope of attention increased). We first sorted voxels
in left and right V1, V2, and V3 from low to high based on !
values (i.e., the GLM-estimated response magnitude) in the
focused-attention condition. Because each participant had a dif-
ferent number of voxels in each ROI, we evenly sorted the data
from each ROI into 20 bins. Then, we compared the averaged !
values for voxels in each bin across the focused- and distributed-
attention conditions (Fig. 5D). Across all subjects, voxels with
relatively low activation (low ! values) in the focused-atten-
tion condition showed significantly higher activation in the
distributed-attention condition (Figs. 5D, far left bins marked by
a red asterisks; p " 0.05, sign test across participants and visual
areas, FDR-corrected). In contrast, voxels with higher activation
in the focused-attention condition underwent a smaller change
with attentional strategy (the far right bins; Fig. 5E, individual
subject panels). Note that the modulation is primarily in voxels
that have either negative or low positive ! weights; however, the
sign of the weight is only relevant with respect to the passive-
fixation null trials (Stark and Squire, 2001), and so any increase
(in this case, ! values becoming less negative) is consistent with a
more diffuse spatial response profile in the distributed-attention
condition. In addition, note that the large response increases in
voxels with a low ! weight is not inconsistent with the data pre-
sented in Figure 5A, as the data in Figure 5A simply indicate that
more total voxels fall above an FDR-corrected threshold in each
condition (i.e., a small percentage of voxels shift from nonsignif-
icant to significant when attention is diffuse). Thus, these two
analyses provide consistent and complementary evidence that
the spatial scope of attention changed as a function of our task
instructions.

Discussion
Over the last several decades, spatial attention has been shown to
modulate the contrast response functions of neurons in visual
cortex in many different ways, with some studies suggesting re-
sponse gain, others suggesting contrast gain, and still others sug-
gesting a combination of both (McAdams and Maunsell, 1999;
Reynolds et al., 1999, 2000; Di Russo et al., 2001; Martínez-
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Trujillo and Treue, 2002; Williford and Maunsell, 2006; Buracas
and Boynton, 2007; Kim et al., 2007; Murray, 2008; Lee and
Maunsell, 2009, 2010a,b; Carrasco 2011; Pestilli et al., 2011; Ser-
ences, 2011; Andersen et al., 2012; Fig. 1). In turn, the heteroge-
neous pattern of neural modulation is consistent with the wide
variety of gain patterns inferred using psychophysical methods
(Morrone et al., 2002, 2004; Carrasco et al., 2004; Ling and Car-
rasco 2006; Pestilli et al., 2007, 2009).

Previously, the NMA (Lee and Maunsell, 2009, 2010b; Reyn-
olds and Heeger, 2009) offered a potential solution as to how
these apparently inconsistent attentional gain patterns might
arise via changes in the relative size of the stimulus and the atten-
tion field. The NMA generates the output of sensory neurons by
multiplying the stimulus drive (E) from the classical excitatory
RF with the attention field (A). This combined influence of the
stimulus drive and attention (AE) is then divided by the suppres-
sive drive (S), obtained from the convolution between AE and the
nonclassical inhibitory receptive field. Given a fixed size of E and
S, the size of the attention field (A) relative to the stimulus drive
(E) will influence the pattern of gain of the modeled population
responses. For example, an attention field smaller than the stim-
ulus drive (focused attention) will lead to response gain because
attentional gain enhances the entire stimulus drive, but only en-
hances the center of the suppressive field. In contrast, an atten-
tion field larger than the stimulus drive (distributed attention)
will lead to contrast gain because attentional gain is applied
equally to the stimulus drive and suppressive field. Consistent
with this prediction, a post hoc survey of previous studies suggests
that different patterns of gain modulation may be due to changes
in the size of the attention field (Table 2). For example, Reynolds
et al., 2000 used a large rectangular cue to direct animals’ atten-
tion to a location that contained a smaller target stimulus. This
display may have induced a relatively large attention field with
respect to the stimulus, which is consistent with the observation
of pure contrast gain. In contrast, other studies instructed ani-
mals to attend to a peripheral stimulus that was located on either
the left or the right side of a video display (Williford and Maun-
sell, 2006; Lee and Maunsell, 2010a). The same location was at-
tended for a long sequence of trials, and no physical cue or
placeholder was used to mark the target position. In this case, the
size of the attention field may have closely matched (or been
smaller than) the size of the target, which is consistent with the
observation of response gain in many cells.

Here, we used EEG to monitor SSVEPs in human subjects
performing an attentionally demanding task in which the spatial
scope of attention was systematically manipulated (focused vs
distributed attention) while keeping the spatial extent of visual
stimulation constant across trials. We found that highly focused
spatial attention primarily enhanced neural responses to high-
contrast stimuli (response gain), whereas distributed attention
primarily enhanced responses to medium-contrast stimuli (con-
trast gain). Together, these data suggest that different patterns of
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Figure 5. fMRI results independently address how the distributed-/focused-attention ma-
nipulation changed the spatial extent of activation in retinotopically organized regions of early
visual cortex. A, At an individual voxel threshold of p ! 0.05 (FDR corrected) for determining a
significant response (middle), we observed a higher proportion of significant voxels in the
distributed-attention condition compared to the focused-attention condition across most V1,
V2, and V3 regions of interest ( p " 0.005 by sign test). Similar results were also obtained at
FDR-corrected individual voxel thresholds of p ! 0.10 (left) and p ! 0.01 (right), indicating
that the result does not just reflect a thresholding artifact (all p values " 0.01, sign test). Given
that these areas are retinotopically organized, a higher proportion of voxels should translate
into a broader spatial representation across the cortical surface in the distributed-attention
condition. B, The higher proportion of voxels in the distributed-attention condition compared
to the focused-attention condition across V1, V2, and V3 was also observed across a wide range
of t thresholds. C, Representative activation maps from two subjects. In the distributed-
attention condition, there is a visibly broader patch of activation on the cortical sheet in left/
right V1, V2d, and V3d compared to the focused-attention condition (orange–yellow color
represents significant voxels above the baseline; p " 0.05, FDR corrected). These data illustrate
the effects reported in A and demonstrate that the experimental manipulation led to a larger
attention field in the distributed-attention compared to the focused-attention condition. Crit-
ically, since the stimulus drive in our experiment was always fixed and the size of the attention
field is larger in the distributed condition compared to the focused condition, the NMA predicts
higher response gain and lower contrast gain in the focused condition compared to the distrib-
uted condition (see Fig. 1A–E, model simulations). D, Voxels in left and right V1, V2, and V3
were sorted by the ! values for the focused-attention condition (low to high) and evenly
divided into 20 bins. The averaged ! values for the focused- and distributed-attention
conditions were compared across these 20 bins (left). Voxels with low activation in the

4

focused-attention condition underwent a significant increase in activation in the distributed
condition, but those with higher activation did not. The difference between the ! values for
distributed and focused conditions was significant (above zero) for bins with low ! values, but
not in bins with higher ! values (bottom), suggesting that the spatial pattern of activity in the
distributed condition is more diffuse compared to the focused condition. E, The sorted ! results
(same as D) in individual subjects. Red asterisks in B and D indicate significance, as determined
by sign tests ( p " 0.05, FDR corrected). Gray asterisks indicate uncorrected difference. Error
bars in all figures are #1 SEM across all unilateral regions of interest from each subject (left/
right V1, V2, and V3; 30 total ROIs).
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neural modulation do not reflect fundamentally different neural
mechanisms, but instead reflect changes in the spatial scope of
attention.

It is possible that, in the distributed-attention condition, sub-
jects’ attention might be captured by high-contrast ignored stim-
uli on the opposite side of the display, and the attention field
might actually extend across the vertical meridian to the ignored
stimulus. In turn, this spread of attention to high-contrast ig-
nored stimuli might attenuate any amplitude modulation (i.e.,
the a parameter from the Naka–Rushton equation) in the
distributed-attention condition. However, we view this scenario
as unlikely for two reasons. First, the stimuli were presented in
different hemifields, and the spatial separation was large even
with respect to the size of the attention field in the distributed-
attention condition. Second, this account predicts that behav-
ioral response times should be inflated when the ignored stimulus
was high contrast and thus more salient, but no such differential
inflation of response times was observed (n.s., F(1,6) ! 0.034, p !
0.86; Fig. 2C, right).

Interestingly, although the two types of CRF modulation that
we report here (contrast gain and response gain) are generally
consistent with previous observations from electrophysiological

(Reynolds et al., 2000; Di Russo et al., 2001; Martínez-Trujillo
and Treue, 2002; Kim et al., 2007; Lee and Maunsell, 2009,
2010a,b; Andersen et al., 2012) and psychophysical studies (Mor-
rone et al., 2002, 2004; Carrasco et al., 2004; Ling and Carrasco
2006; Pestilli et al., 2007, 2009), several studies have now reported
that the BOLD response measured using fMRI shows a purely
additive shift such that the effects of attention on the BOLD re-
sponse are constant across contrast levels (Buracas and Boynton,
2007; Murray, 2008; Pestilli et al., 2011; Table 2). Some authors
have suggested that this additive effect may be due to the BOLD
response pooling activity across neurons that show different at-
tention effects, which would result in an aggregate response that
more closely resembles an additive shift as opposed to either
contrast or response gain (Williford and Maunsell, 2006; Pestilli
et al., 2011). However, the SSVEP signal that we measured in the
present study also pools signals across large neural populations,
but we observed contrast and response gain effects that more
closely resemble patterns typically observed in single neurons
(Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002; Lee
and Maunsell, 2009, 2010a,b). Thus, the present data suggest that
the SSVEP and fMRI measurements may tap into at least partially
different signals associated with attentional modulation in visual

Table 2. A post hoc survey of studies examining the influence of attention on the gain pattern of neural CRFs

Studies
Stimulus type/stimulus size
(visual angle)

Attention field size relative to the
stimulus

Observed gain modulation
Visual area(s)/
electrode positionResponse gain Contrast gain Additive gain

Single-unit studies (macaque
electrophysiology)

Reynolds et al. (2000) Bar-shaped grating, 0.4 "
1.5–2°

Larger (a cue box larger than a stimulus) X V4

Martínez-Trujillo and
Treue (2002)

Random dot motion/variable Larger or equal (monitor two stimuli in
the same hemifield)

X MT

Williford and Maunsell
(2006)

Garbor patch/variable Smaller or equal (sustain attention to a
long sequence of stimuli/a small cue
at the center of stimulus location)

X X X V4

Lee and Maunsell (2010a) Garbor patch, #0.51° mean SD
of Gaussian envelope

Smaller or equal (sustain attention to a
long sequence of stimuli)

X MT

Scalp-EEG studies (large-scale
human electrophysi-
ology)

Di Russo et al. (2001) Square-shaped grating, 9 " 9° Smaller or equal (sustain attention to a
long sequence of large stimuli)

X Posterior occipital
electrodes

Kim et al. (2007) Circular grating, 2.45° in radius Smaller or equal (sustain attention to
the long sequence of stimuli)

X Posterior occipital
electrodes

The present study Circular disk flickering in a large
stimulation area of

Focused attention 4.90 o in radius Smaller (2.04° in radius) X posterior occipital
electrodes

Distributed attention 4.90 o in radius Larger (6.54° in radius) X
fMRI studies (large-scale

human hemody-
namic response)

Buracas and Boynton
(2007)

Circular grating, 3.00° in radius Smaller or equal (monitor one stimulus
in each hemifield)

X V1, V2, V3, MT$

Murray (2008) Circular grating, 3.00° in radius Larger or equal (monitor two stimuli in
the same hemifield)

X V1, V2, V3

Pestilli et al. (2011) Circular grating
Focused attention 2.45° in radius Smaller or equal (monitor one stimulus

in a quadrant)
X V1, V2, V3, hV4

Distributed attention 2.45° in radius Larger or equal (monitor four stimuli in
the entire visual field)

X

A post hoc survey of past studies suggests that different patterns of gain modulation may be due to differences in the size of the attention field relative to the size of the stimulus. The criteria used to estimate whether the size of attention
is smaller, larger, or equal to the stimulus drive, based on task manipulation and the nature of the display across different studies, are shown in the parenthesis in the third column. Note that the spatial scope of attention seems to have no
effect on the gain pattern of the CRFs measured by hemodynamic responses, unlike other electrophysiological measures (see Discussion).
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cortex. One possibility is that BOLD and SSVEP responses are
differentially influenced by factors other than stimulus-evoked
neural activity. For example, BOLD signals are highly sensitive to
both stimulus-evoked and non-stimulus-evoked activity (Kast-
ner et al., 1999; McMains et al., 2007; Murray, 2008; Sirotin and
Das, 2009). Thus, relatively high BOLD responses to the attended
low-contrast (and also 0% contrast) stimuli in past fMRI studies
(Buracas and Boynton, 2007; Murray, 2008; Pestilli et al., 2011)
may be largely attributable to anticipatory activity that is not
directly evoked by the stimulus. In contrast, SSVEP signals, by
definition, reflect stimulus-driven neural responses that are se-
lectively entrained at the stimulus frequency (Regan 1989; Srini-
vasan et al., 1999; Rager and Singer, 1998; Müller et al., 1998a,b,
2003; Kim et al., 2007). Future studies could use multimodal
imaging techniques (e.g., combining scalp-EEG SSVEPs and
fMRI) to further examine the relationship between results ob-
tained using these two imaging modalities.

Previous single-unit recording studies measuring neural CRFs
have reported both response and contrast gain, fueling a long-
running debate about the mechanisms of selective attention (Mc-
Adams and Maunsell, 1999; Reynolds et al., 1999, 2000;
Martínez-Trujillo and Treue, 2002; Williford and Maunsell,
2006; Lee and Maunsell, 2009, 2010a,b). Here, we show that these
discrepant modulatory effects can each be observed, depending
on changes in the spatial extent of attention. This interaction
between the size of the attention field and the gain pattern of the
SSVEP-derived neural CRFs is consistent with a prediction of the
NMA (Lee and Maunsell, 2009, 2010b; Reynolds and Heeger,
2009): a small attention field will result in relatively more re-
sponse gain, and a larger attention field will result in relatively
more contrast gain, given a constant stimulus drive (Fig. 1).
However, it is important to note that the NMA is intentionally
agnostic about other aspects of attentional modulation, such as
the relationship between the size of the attention field and re-
sponses evoked by ignored stimuli, which the model assumes to
be very far away from the focus of attention. For example, we
observed modest, albeit nonsignificant, modulations of CRFs as-
sociated with ignored stimuli (Fig. 4C), and a similar observation
was also reported in a previous psychophysical study (Herrmann
et al., 2010). Since the NMA does not explicitly specify the exact
spatial function that governs the attention field (Reynolds and
Heeger, 2009), future studies will be required to determine how
changes in the size and/or shape of the attention field mediate
interactions between attended and ignored stimuli across the ex-
tent of the visual scene. That said, the present demonstration that
changes in the size of the attention field can lead to a shift from
response to contrast gain supports a key prediction of the NMA,
and the general theoretical framework can be expanded as justi-
fied by new data.
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