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Abstract

Endogenous Econometric Models and Multi-Stage Estimation in High-Dimensional
Settings: Theory and Applications

by

Ying Zhu

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor James Powell, Co-Chair
Professor J. Miguel Villas-Boas, Co-Chair

Econometric models based on observational data are often endogenous due to mea-
surement error, autocorrelated errors, simultaneity and omitted variables, non-random
sampling, self-selection, etc. Parameter estimates of these models without corrective
measures may be inconsistent. The potential high-dimensional feature of these models
(where the dimension of the parameters of interests is comparable to or even larger
than the sample size) further complicates the statistical estimation and inference. My
dissertation studies two different types of high-dimensional endogenous econometrics
problems in depth and develops statistical tools together with their theoretical guaran-
tees.

The first essay in this dissertation explores the validity of the two-stage regular-
ized least squares estimation procedure for sparse linear models in high-dimensional
settings with possibly many endogenous regressors. The second essay is focused on the
semiparametric sample selection model in high-dimensional settings under a weak non-
parametric restriction on the form of the selection correction, for which a multi-stage
projection-based regularized procedure is proposed. The number of regressors in the
main equation, p, and the number of regressors in the first-stage equation, d, can grow
with and exceed the sample size n in the respective models. The analysis considers the
sparsity case where the number of non-zero components in the vectors of coefficients
is bounded above by some integer which is allowed to grow with n but slowly com-
pared to n, or the vectors of coefficients can be approximated by exactly sparse vectors.
Simulations are conducted to gain insight on the small-sample performance of these
high-dimensional multi-stage estimators. The proposed estimators in the second essay
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are also applied to study the pricing decisions of the gasoline retailers in the Greater
Saint Louis area.

The main theoretical results of both essays are finite-sample bounds from which
sufficient scaling conditions on the sample size for estimation consistency and variable-
selection consistency (i.e., the multi-stage high-dimensional estimation procedures cor-
rectly select the non-zero coefficients in the main equation with high probability) are
established. A technical issue regarding the so-called “restricted eigenvalue (RE) con-
dition” for estimation consistency and the “mutual incoherence (MI) condition” for
selection consistency arises in these multi-stage estimation procedures from allowing
the number of regressors in the main equation to exceed n and this paper provides
analysis to verify these RE and MI conditions. In particular, for the semiparamet-
ric sample selection model, these verifications also provide a finite-sample guarantee of
the population identification condition required by the semiparametric sample selection
models.

In the second essay, statistical efficiency of the proposed estimators is studied via
lower bounds on minimax risks and the result shows that, for a family of models with ex-
actly sparse structure on the coefficient vector in the main equation, one of the proposed
estimators attains the smallest estimation error up to the (n, d, p)−scaling among a
class of procedures in worst-case scenarios. Inference procedures for the coefficients of
the main equation, one based on a pivotal Dantzig selector to construct non-asymptotic
confidence sets and one based on a post-selection strategy (when perfect or near-perfect
selection of the high-dimensional coefficients is achieved), are discussed. Other theo-
retical contributions of this essay include establishing the non-asymptotic counterpart
of the familiar asymptotic “oracle” type of results from previous literature: the estima-
tor of the coefficients in the main equation behaves as if the unknown nonparametric
component were known, provided the nonparametric component is sufficiently smooth.
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Chapter 1

Introduction

The past decade has witnessed research activities in high-dimensional statistics that
considers estimation of models in which the dimension of the parameters of interests is
comparable to or even larger than the sample size. The rapid advance of data collection
technology is a major driving force of the development of high-dimensional statistics:
it allows for not only more observations but also more explanatory variables to be col-
lected. A great deal of attention in the literature has been given to high-dimensional
sparse linear regression models and the l1−penalized least squares. In particular, the
Lasso and the Dantzig selector are the most studied techniques (see, e.g., Tibshirani,
1996; Candès and Tao, 2007; Bickel, Ritov, and Tsybakov, 2009; Belloni, Chernozhukov,
and Wang, 2011; Belloni and Chernozhukov, 2011b; Loh and Wainwright, 2012; Negah-
ban, Ravikumar, Wainwright, and Yu, 2012). Variable selection when the dimension
of the problem is larger than the sample size has also been studied in the likelihood
method setting with penalty functions other than the l1−norm (see, e.g., Fan and Li,
2001; Fan and Lv, 2011). Lecture notes by Koltchinskii (2011), as well as recent books
by Bühlmann and van de Geer (2011) and Wainwright (2015) have given a more com-
prehensive introduction to high-dimensional statistics.

Recently, these l1−penalized techniques have been applied in a number of econo-
metric papers. Caner (2009) studies a Lasso-type GMM estimator. Rosenbaum and
Tsybakov (2010) study the high-dimensional errors-in-variables problem where the non-
random regressors are observed with additive error and they present an application
to hedge fund portfolio replication. Belloni and Chernozhukov (2011a) study the
l1−penalized quantile regression and illustrate its use on an international economic
growth application. Fan, Lv, and Li (2011) review the literature on sparse high-
dimensional econometric models including the vector autoregressive model for mea-
suring the effects of monetary policy, panel data model for forecasting home price, and
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volatility matrix estimation in finance. Their discussion is not restricted to l1−based
regularization methods. Manresa (2014) considers settings where outcomes depend on
an agent’s own characteristics and on the characteristics of other agents in the data
and applies a Lasso type estimator to study individuals generating spillovers and their
strength using panel data on outcomes and characteristics. Bonaldi, Hortacsu, and
Kastl (2014) propose a new measure of systemic risk based on estimating spillovers
between funding costs of individual banks with a Lasso type procedure applied to the
panel of each individual bank to recover the financial network. Belloni, Chen, Cher-
nozhukov, and Hansen (2012) estimate the optimal instruments using the Lasso and
in an empirical example dealing with the effect of judicial eminent domain decisions
on economic outcomes, they find the Lasso-based instrumental variable estimator out-
performs an intuitive benchmark. Belloni, Chernozhukov, and Hansen (2014) propose
robust methods for inference on the effect of a treatment variable on a scalar outcome
in the presence of many controls with an application to abortion and crime.

Belloni and Chernozhukov (2011b) discuss the l1−based penalization methods with
various econometric problems including earning regressions and instrumental selection
in Angrist and Krueger data (1991). In particular, they consider the following linear
instrumental variable model which has a single endogenous regressor but many instru-
ments:

yi = θ0 + θ1x1i + xT2iγ + εi

x1i = zTi β + xT2iδ + ηi,

with E(εi|x2i, zi) = E(ηi|x2i, zi) = 0. Here yi, x1i, and x2i denote wage, education
(the endogenous regressor), and a vector of other explanatory variables (the exogenous
regressors) respectively, and zi denotes a vector of instrumental variables that have
direct effect on education but are uncorrelated with the unobservables (i.e., εi) such as
innate abilities in the wage equation. They show the instruments selected by the Lasso
technique in the first-stage regression can produce an efficient estimator with a small
bias at the same time.

In many applications, the number of endogenous regressors is also large relative to
the sample size. The case of many endogenous regressors and many instrumental vari-
ables has been studied in the context of Method of Moments by Gautier and Tsybakov
(2011) and Fan and Liao (2014). Fan and Liao show that the penalized GMM and
penalized empirical likelihood are consistent in both estimation and selection. Gautier
and Tsybakov propose a new estimation procedure called the Self Tuning Instrumen-
tal Variables (STIV) estimator based on the moment conditions E(ziεi) = 0. To the
best of my knowledge, the two-stage regularized least squares estimation of a linear
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instrumental variable model that has a large number of endogenous regressors relative
to the sample size has not been studied in the literature, even though the two-stage
least squares estimator is one of the most popular tools used to correct for endogene-
ity in empirical economic research. Chapter 2 in this dissertation aims to explore the
validity of these two-step estimation procedures for the triangular simultaneous linear
equation models in the high-dimensional setting under the sparsity scenario. In partic-
ular, the number of endogenous regressors in the main equation and the instruments
in the first-stage equations can grow with and exceed the sample size n. The analysis
concerns the exact sparsity case, i.e., the maximum number of non-zero components in
the vectors of parameters in the first-stage equations, k1, and the number of non-zero
components in the vector of parameters in the second-stage equation, k2, are allowed
to grow with n but slowly compared to n. I consider the high-dimensional version of
the two-stage least squares estimator where one obtains the fitted regressors from the
first-stage regression by a least squares estimator with l1- regularization (the Lasso or
Dantzig selector) when the first-stage regression concerns a large number of instruments
relative to n, and then construct a similar estimator using these fitted regressors in the
second-stage regression.

Another important class of endogenous econometric models that have not been con-
sidered in high-dimensional settings is the sample selection model. Selection models
are central in many marketing applications. For example, on the demand side, con-
sumers often face choosing a service or brand followed by the amount of utilization
or the number of quantities to purchase conditional on the chosen service or brand.
On the supply side, firms first decide on the product positioning and then a pricing
scheme based on the chosen product type. Selection models are also seen in the auc-
tion literature. In estimating the underlying selection models to study these empirical
problems, only a low-dimensional set of explanatory variables has been considered even
though the actual information available to these empirical problems can be far richer
than what has been used by the researchers. The lack of estimation methods that deal
with these “data-rich” selection problems may have limited the use of high-dimensional
techniques in many economics and marketing problems. Chapter 3 in this dissertation
aims to provide estimation tools together with their theoretical guarantees for this im-
portant but little studied topic. In particular, the number of regressors in the outcome
equation, p, and the number of regressors in the selection equation, d, can grow with
and exceed the sample size n. The analysis considers the exact sparsity case where the
number of non-zero components in the vectors of coefficients is bounded above by some
integer which is allowed to grow with n but slowly compared to n, and also considers
the approximate sparsity case, where the vectors of coefficients can be approximated by
exactly sparse vectors.
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1.1 An Overview of the Lasso
I will begin with an overview of the Lasso for estimating the vector of coefficients in
the following high-dimensional sparse linear models

yi = xTi β
∗ + εi =

p∑
j=1

xijβ
∗
j + εi, i = 1, ..., n, (1.1)

where E(xiεi) = 0 for i = 1, ..., n. Assume p, the number of regressors, in the above
equation grows with and exceeds the sample size n. Let us first consider the class of
models where β∗ has at most k non-zero parameters, where k is also allowed to increase
to infinity with n but slowly compared to n. The Lasso procedure is a combination of
the residual sum of squares and a l1−regularization defined by the following program

β̂Las ∈ arg min
β∈Rp

{ 1
2n |y −Xβ|

2
2 + λn|β|1

}
, (1.2)

where λn > 0 is some regularization or tuning parameter. Denote the minimizer to the
above program by β̂Las. A necessary and sufficient condition of β̂Las is that 0 belongs
to the subdifferential of the convex function β 7→ 1

2n |y − Xβ|
2
2 + λn|β|1. This implies

that the Lasso solution β̂Las satisfies the constraint∣∣∣∣ 1
2nX

T (y −Xβ̂Las)
∣∣∣∣
∞
≤ λn.

The Dantzig selector of the linear regression function is defined as a vector having the
smallest l1−norm among all β satisfying the above constraint, i.e.,

β̂Dan ∈ arg min
{
|β|1 :

∣∣∣∣ 1
2nX

T (y −Xβ)
∣∣∣∣
∞
≤ λn

}
.

Under the exact sparsity assumption, Bickel et al., 2009 shows that the Lasso and the
Dantzig selector exhibit similar behavior.

Note that, by Lagrangian duality theory, the following constrained version of the
Lasso

β̂Las ∈ arg min
β∈Rp

1
2n |Y −Xβ|

2
2 such that |β|1 ≤ R.

is equivalent to (1.2). For example, for any choice of radius R > 0 in the constrained
variant of the Lasso, there is a tuning parameter λn(R) ≥ 0 such that solving the
Lagrangian form of the Lasso is equivalent to solving the constrained version. Consider
the constrained Lasso program above with radius R = |β∗|1. With this setting, the
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true parameter vector β∗ is feasible for the problem. By definition, the estimate β̂Las
minimizes the quadratic loss function L(β; (y, X)) = 1

2n |y − Xβ|
2
2 over the l1−ball of

radius R. As n increases, we expect that β∗ should become a near-minimizer of the
same loss, so that L(β̂Las; (y, X)) ≈ L(β∗; (y, X)). But when does closeness in the
loss imply that the error vector v := β̂Las − β∗ is also small? The link between the
excess loss L(β̂Las)−L(β∗) and the size of the error v = β̂Las− β∗ is the Hessian of the
loss function, ∇2L(β) = 1

n
XTX, which captures the curvature of the loss function. In

the low-dimensional setting where p < n, as long as rank(X) = p, we are guaranteed
that the Hessian matrix, Σ̂ = 1

n
XTX, of the loss function is positive definite, i.e.,

vT Σ̂v ≥ δ > 0 for v ∈ Rp\{0}. In the high-dimensional setting with p > n, the Hessian
is a p× p matrix with rank at most n, so that it is impossible to guarantee that it has
a positive curvature in all directions.

In the high-dimensional setting, a sufficient condition for the l2- consistency of the
Lasso estimator β̂Las is the restricted eigenvalue (RE) condition related to the positive
definiteness of the Gram matrix XTX

n
over a restricted set (see, e.g., Bickel, et. al.,

2009; Meinshausen and Yu, 2009; Raskutti, et al., 2010; Bühlmann and van de Geer,
2011; Loh and Wainwright 2012; Negahban, et. al., 2012; etc.). The restricted eigen-
value (RE) condition is one of the plausible ways to relax the stringency of the uniform
curvature condition. The RE condition assumes that the Hessian matrix, Σ̂ = 1

n
XTX,

of the loss function is positive definite on a restricted set (the choice of this set is asso-
ciated with the l1−penalty and to be explained shortly). In this dissertation, I will use
the following definition (see, Negahban, et. al., 2012; Wainwright, 2015).

Definition 1.1 (RE): The matrix X ∈ Rn×p satisfies the RE condition over a sub-
set S ⊆ {1, 2, ..., p} with parameter (δ, γ) if

1
n
|Xv|22
|v|22

≥ δ > 0 for all v ∈ C(S; γ)\{0},

where
C(S; γ) := {v ∈ Rp | |vSc |1 ≤ γ|vS|1} for some constant γ ≥ 1

with vS denoting the vector in Rp that has the same coordinates as v on S and zero
coordinates on the complement Sc of S.

When the unknown vector β∗ ∈ Rp is exactly sparse, a natural choice of S is the
support set of β∗, i.e., J(β∗). RE is a weaker condition than other restrictions in the
literature including the pairwise incoherence condition (Donoho, 2006; Gautier and Tsy-
bakov, 2011, Proposition 4.2) and the restricted isometry property (Candès and Tao,
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2007). As shown by Bickel et al., 2009, the restricted isometry property implies the
RE condition but not vice versa. Additionally, Raskutti et al., 2010 give examples of
matrix families for which the RE condition holds, but the restricted isometry constants
tend to infinity as (n, |S|) grow. Furthermore, they show that even when a matrix
exhibits a high amount of dependency among the covariates, it might still satisfy RE.
To be more precise, they show that, if X ∈ Rn×p is formed by independently sampling
each row Xi ∼ N(0, Σ), then there are strictly positive constants (κ1, κ2), depending
only on the positive definite matrix Σ, such that

|Xv|22
n
≥ κ1|v|22 − κ2

log p
n
|v|21, for all v ∈ Rp,

with probability at least 1− c1 exp(−c2n) for some universal constants c1 and c2. The
bound above ensures the RE condition holds with δ = κ1

2 and γ = 3 as long as n >
32κ2

κ1
k log p. To see this, note that for any v ∈ C(J(β∗), 3), we have |v|21 ≤ 16|vJ(β∗)|21 ≤

16k|vJ(β∗)|22. Given the lower bound above, for any v ∈ C(J(β∗); 3), we have the lower
bound

|Xv|22
n
≥
(
κ1 − 16κ2

k log p
n

)
|v|22 ≥

κ1

2 |v|
2
2,

where the final inequality follows as long as n > 32(κ2
κ1

)2k log p. An appropriate choice
of the tuning parameter λn in the Lasso program ensures v̂ := β̂Las−β∗ ∈ C(J(β∗); 3).
Rudelson and Zhou (2011) as well as Loh and Wainwright (2012) extend this type of
RE analysis from the case of Gaussian designs to the case of sub-Gaussian designs.
The sub-Gaussian assumption says that the explanatory variables need to be drawn
from distributions with well-behaved tails like Gaussian. In contrast to the Gaussian
assumption, sub-Gaussian variables constitute a more general family of distributions.
In this dissertation, I make use of the following definition for a sub-Gaussian matrix.

Definition 1.2: A random variable X with mean µ = E[X] is sub-Gaussian if there is
a positive number σ such that

E[exp(t(X − µ))] ≤ exp(σ2t2/2) for all t ∈ R,

and a random matrix A ∈ Rn×p is sub-Gaussian with parameters (ΣA, σ
2
A) if (a) each

row ATi ∈ Rp is sampled independently from a zero-mean distribution with covariance
ΣA, (b) for any unit vector u ∈ Rp, the random variable uTATi is sub-Gaussian with
parameter at most σ2

A.
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Chapter 2

High-Dimensional Linear Models
with Endogeneity and Sparsity

2.1 Introduction
The objective of this chapter is consistent estimation and selection of regression coef-
ficients in models with a large number of endogenous regressors relative to the sample
size. One example concerns the nonparametric regression model with endogenous ex-
planatory variables. Consider the model yi = f(xi) + εi where εi ∼ N (0, σ2) and
f(·) is an unknown function of interest. Assume E(εi|Xi) 6= 0 for all i. Suppose we
want to approximate f(xi) by linear combinations of some set of basis functions, i.e.,
f(xi) = ∑p

j=1 βjφj(xi), where {φ1, ..., φp} are some known functions. Then, we end up
with a linear regression model with many endogenous regressors.

Empirical examples of many endogenous regressors can be found in hedonic price
regressions of consumer products (e.g., personal computers, automobiles, pharmaceuti-
cal drugs, residential housing, etc.), where the number of explanatory variables formed
by the characteristics (and the transformations of these characteristics) of the products
can be very large. For example, in the study of hedonic price index analysis in personal
computers, the data considered by Benkard and Bajari involved 65 product character-
istics (Benkard and Bajari, 2005). Together with the various transformations of these
characteristics, the number of the potential regressors can be very large. On the other
hand, it is plausible that only a few of these variables matter to the underlying prices
but which variables constitute the relevant regressors are unknown to the researchers.
Housing data also tends to exhibit a similar high-dimensional but sparse pattern in
terms of the underlying explanatory variables (e.g., Lin and Zhang, 2006; Ravikumar,
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et. al, 2009). Moreover, product characteristics are likely to be endogenous because
just like price, product characteristics are typically choice variables of firms, and it is
possible that they are correlated with unobserved components of price (Ackerberg and
Crawford, 2009). An alternative is to use product characteristics of other firms (other
markets) as instruments. In demand estimation literature, this type of instruments are
sometimes referred to as BLP instruments, e.g., Berry, et. al., 1995 (respectively, Haus-
man instruments, e.g., Nevo, 2001). Another empirical example of many endogenous
regressors concerns the study of network or community influence. For example, Man-
resa (2014) looks at how a firm’s production output is influenced by the investment of
other firms. As a future extension, she suggests an alternative model that looks at the
network influence in terms of the output of the other firms rather than their investment:

yit = αi + ζt + xTitθ +
∑

j∈{1,...,n}, j 6=i
βjiyjt + εit, i = 1, ..., n, t = 1, ..., T

xit denotes a vector of exogenous regressors specific to firm i (e.g., investment) at period
t. αi and ζt are the fixed effects of firm i and period t, respectively. Notice that yjt, the
output of other firms enters the right-hand-side of the equations above as additional
regressors and βji, j = 1, ..., n, and j 6= i are interpreted as the network influence
arising from other firms’ output on firm i’s output. Furthermore, the influence on firm
i from firm j is allowed to differ from the influence on firm j from firm i. Endogeneity
arises from the simultaneity of the output variables when cov(εit, εjt) 6= 0 (e.g., presence
of unobserved network characteristics that are common to all firms). As a result, the
number of endogenous regressors in the model above is of the order O(n), which exceeds
the number of periods T in the application considered by Manresa (2014).

The following sets up the models of interests and highlights the major contributions
made by this chapter. We consider the linear model

yi = xTi β∗ + εi =
p∑
j=1

xijβ
∗
j + εi, i = 1, ..., n (2.1)

where εi is a zero-mean random error possibly correlated with xi and β∗ is an unknown
vector of parameters of our main interests. The jth component of β∗ is denoted by β∗j .
A component in the p−dimensional vector xi is said to be endogenous if it is correlated
with εi (i.e., E(xiεi) 6= 0) and exogenous otherwise (i.e., E(xiεi) = 0). Without loss
of generality, I will assume all regressors are endogenous throughout the rest of this
chapter for notational convenience (a modification to allow mix of endogenous and ex-
ogenous regressors is trivial.). When endogenous regressors are present, the classical
least squares estimator will be inconsistent for β∗ (i.e., β̂OLS

p9 β∗) even when the
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dimension p of β∗ is small relative to the sample size n. The classical solution to this
problem of endogenous regressors supposes that there is some L-dimensional vector of
instrumental variables, denoted by zi, which is observable and satisfies E(ziεi) = 0 for
all i. In particular, the two-step estimation procedures including the two-stage least
square (2SLS) estimation and the control function approach play an important role in
accounting for endogeneity that comes from individual choice or market equilibrium
(e.g., Wooldridge, 2002). Consider the following “first stage” equations for the compo-
nents of xi

xij = zTijπ∗j + ηij =
dj∑
l=1

zijlπ
∗
jl + ηij, i = 1, ...., n, j = 1, ..., p. (2.2)

For each j = 1, ..., p, zij is a dj×1 vector of instrumental variables, and ηij a zero-mean
random error which is uncorrelated with zij, and π∗j is an unknown vector of nuisance
parameters. I will refer to equation (2.1) as the main equation (or second-stage equa-
tion) and the equations in (2.2) as the first-stage equations. Throughout the rest of
this chapter, I will impose the following assumption. Without loss of generality, this
assumption implies a triangular simultaneous equations model structure.

Assumption 2.1.1: The data {yi, xi, zi}ni=1 are i.i.d. with finite second moments;
E(zijεi) = E(zijηij) = 0 for all j = 1, ..., p and E(zijηij′ ) = 0 for all j 6= j

′ .

High dimensionality arises in the triangular simultaneous equations structure (2.1) and
(2.2) when the dimension p of β∗ is large relative to the sample size n (namely, p� n)
or when the dimension dj of π∗j is large relative to the sample size n (namely, dj � n)
for at least one j. The linear instrumental variable model with a single or a few en-
dogenous regressors and many instruments (the case where dj � n for at least one j
but p� n) has been studied in the econometrics literature on high dimensional models
(e.g., Belloni and Chernozhukov, 2011b). In this chapter, I consider the scenario where
p � n and dj � n for all j, or p � n and dj � n for at least one j, and the number
of non-zero coefficients in β∗ and π∗j is small relative to n (i.e., β∗ and π∗j for j = 1, ..., p
are exactly sparse). To the best of my knowledge, the case where p� n and dj � n for
all j, or the case where p� n and dj � n for at least one j in the context of triangular
simultaneous equations with a 2SLS type of estimation procedure has not been studied
in the literature. In the presence of endogenous regressors, the direct implementation
of the Lasso or Dantzig selector fails as sparsity of coefficients in equation (2.1) does
not correspond to sparsity of linear projection coefficients. Nevertheless, one can still
use the ideas of the 2SLS estimation together with the Lasso technique. For instance,
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in the case where p� n and dj � n for all j, one can obtain the fitted regressors by a
standard least squares estimation on each of the first-stage equations separately as usual
and then apply a Lasso-type technique with these fitted regressors in the second-stage
regression. Similarly, in the case where p � n and dj � n for all j, one can obtain
the fitted regressors by performing a regression with a Lasso-type estimator on each of
the first-stage equations separately and then apply another Lasso-type estimator with
these fitted regressors in the second-stage regression.

Compared to existing two-stage techniques which limit the number of regressors
entering the first-stage equations or the second-stage equation or both, the two-stage
estimation procedures with l1−regularization in both stages are more flexible and par-
ticularly powerful for applications in which the vector of parameters of interests is sparse
and there is lack of information about the relevant explanatory variables and instru-
ments. In terms of practical implementations, these above-mentioned high-dimensional
two-stage estimation procedures are intuitive and can be easily implemented using ex-
isting software packages for the standard Lasso-type technique for linear models without
endogeneity. In analyzing the statistical properties of these estimators, the extension
from models with a few endogenous regressors to models with many endogenous re-
gressors (p � n) in the context of triangular simultaneous equations with two-stage
estimation is not obvious. Chapter 2 aims to explore the validity of these two-step
estimation procedures for the triangular simultaneous linear equation models in the
high-dimensional setting under the sparsity scenario.

An important contribution of this chapter is to introduce analysis that is suitable
for showing estimation consistency and selection consistency of the two-step type of
high-dimensional estimators. When endogeneity is absent from model (2.1), there is
a well-developed theory on what conditions on the design matrix X ∈ Rn×p are suf-
ficient (sufficient and necessary) for an l1−based regularized estimator to consistently
estimate (respectively, select) β∗. In some situations one can impose these conditions
directly as an assumption on the underlying design matrix. However, when employing
a regularized 2SLS estimator in the context of triangular simultaneous linear equation
models in the high-dimensional setting, namely, (2.1) and (2.2), there is no guarantee
that the random matrix X̂T X̂ (with X̂ obtained from regressing X on the instrumen-
tal variables) would automatically satisfy these previously established conditions for
estimation or selection consistency. This chapter explicitly shows that these conditions
for estimation consistency indeed hold for X̂T X̂ with high probability under a broad
class of sub-Gaussian design matrices formed by the instrumental variables allowing for
correlations among the covariates. It also establishes the sample size required for X̂T X̂
to satisfy these conditions. Furthermore, with an additional stronger assumption on
the structure of the design matrices formed by the instrumental variables, this chap-
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ter shows X̂T X̂ also satisfies the conditions for selection consistency under a stronger
sample size requirement.

I begin in Section 2.2 with notation used in this chapter. Results regarding the
estimation consistency and selection consistency of the high-dimensional 2SLS proce-
dure under the sparsity scenario are established in Section 2.3. Section 2.4 presents
simulation results. Section 2.5 concludes this chapter and discusses future extensions.
All the proofs are collected in Section 2.6.

2.2 Notation
Notation. For the convenience of the reader, I summarize here notations to be used
throughout this chapter. The lq norm of a vector v ∈ m × 1 is denoted by |v|q,
1 ≤ q ≤ ∞ where |v|q := (∑m

i=1 |vi|q)
1/q when 1 ≤ q < ∞ and |v|q := maxi=1,...,m |vi|

when q =∞. For a matrix A ∈ Rm×m, write |A|∞ := maxi,j |aij| to be the elementwise
l∞- norm of A. The l2-operator norm, or spectral norm of the matrix A corresponds
to its maximum singular value; i.e., it is defined as ||A||2 := supv∈Sm−1 |Av|2, where
Sm−1 = {v ∈ Rm | |v|2 = 1}. The l∞ matrix norm (maximum absolute row sum) of A
is denoted by ||A||∞ := maxi

∑
j |aij| (note the difference between |A|∞ and ||A||∞). I

make use of the bound ||A||∞ ≤
√
m||A||2 for any symmetric matrix A ∈ Rm×m. For a

square matrix A, denote its minimum eigenvalue and maximum eigenvalue by λmin(A)
and λmax(A), respectively. For functions f(n) and g(n), write f(n) % g(n) to mean that
f(n) ≥ cg(n) for a universal constant c ∈ (0, ∞) and similarly, f(n) - g(n) to mean
that f(n) ≤ c

′
g(n) for a universal constant c′ ∈ (0, ∞). f(n) � g(n) when f(n) % g(n)

and f(n) - g(n) hold simultaneously. For some integer s ∈ {1, 2, ...,m}, the l0-ball
of radius s is given by Bm0 (s) := {v ∈ Rm | |v|0 ≤ s} where |v|0 := ∑m

i=1 1{vi 6= 0}.
Similarly, the l2-ball of radius r is given by Bm2 (r) := {v ∈ Rm | |v|2 ≤ r}. Also, write
K(s, m) := Bm0 (s) ∩ Bm2 (1) and K2(s, m) := K(s, m) × K(s, m). For a vector v ∈ Rp,
let J(v) = {j ∈ {1, ..., p} | vj 6= 0} be its support, i.e., the set of indices corresponding
to its non-zero components vj. The cardinality of a set J ⊆ {1, ..., p} is denoted by |J |.

2.3 High-dimensional 2SLS estimation
Suppose from performing a first-stage regression on each of the equations in (2.2) sep-
arately, we obtain estimates π̂j and let x̂j := Zjπ̂j for j = 1, ..., p. Denote the fitted
regressors from the first-stage estimation by X̂, where X̂ = (x̂1, ..., x̂p). For the second-
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stage regression, consider the following Lasso program:

β̂H2SLS ∈ argminβ∈Rp : 1
2n |y − X̂β|

2
2 + λn|β|1. (2.3)

The following is a standard assumption in the literature on sparsity for high-dimensional
linear models.

Assumption 2.3.1: The numbers of regressors p(= pn) and dj(= djn) for every
j = 1, ..., p in (2.1) and (2.2) can grow with and exceed the sample size n. The number
of non-zero components in π∗j is at most k1(= k1n) for all j = 1, ..., p, and the number
of non-zero components in β∗ is at most k2(= k2n). Both k1 and k2 can increase to
infinity with n but slowly compared to n.

I first present a general bound on the statistical error measured by the quantity |β̂H2SLS−
β∗|2.

Lemma 2.3.1 (General upper bound on the l2−error). Let Γ̂ = 1
n
X̂T X̂ and e =

(X − X̂)β∗ + ηβ∗ + ε. Suppose the random matrix Γ̂ satisfies the RE condition in
Definition 1.1 from Chapter 1 with γ = 3 and the vector β∗ is supported on a subset
J(β∗) ⊆ {1, 2, ...p} with its cardinality |J(β∗)| ≤ k2. If a solution β̂H2SLS, defined in
(2.3) has λn satisfying

λn ≥ 2| 1
n
X̂T e|∞ > 0,

for any given n, then there is a constant c > 0 such that

|β̂H2SLS − β∗|2 ≤
c

δ

√
k2λn.

The proof for Lemma 2.3.1 is provided in Section 2.6.1.
In order to apply Lemma 2.3.1 to prove consistency, we need to show (i) Γ̂ = 1

n
X̂T X̂

satisfies the RE condition in Definition 1.1 from Chapter 1 with γ = 3 and (ii) the term
| 1
n
X̂T e|∞ - f(k1, k2, d1, ..., dp, p, n) with high probability, and then we can show

|β̂H2SLS − β∗|2 -
√
k2f(k1, k2, d1, ..., dp, p, n)

by choosing λn � f(k1, k2, d1, ..., dp, p, n). The assumption√
k2f(k1, k2, d1, ...dp, p, n) = o(1)
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will therefore imply the l2-consistency of β̂H2SLS. Applying Lemma 2.3.1 to the triangu-
lar simultaneous equations model (2.1) and (2.2) requires additional work to establish
conditions (i) and (ii) discussed above, which depends on the specific first-stage esti-
mator for X̂. It is worth mentioning that, while in many situations one can impose the
RE condition as an assumption on the design matrix (e.g., Belloni and Chernozhukov,
2011b; Belloni, Chen, Chernozhukov, and Hansen, 2012) in analyzing the consistency
property of the Lasso, appropriate analysis is needed in this chapter to verify that
1
n
X̂T X̂ satisfies the RE condition because X̂ is obtained from a first-stage estimation

and there is no guarantee that the random matrix 1
n
X̂T X̂ would automatically sat-

isfy the RE condition. To the best of my knowledge, previous literature has not dealt
with this issue directly. Consequently, the RE analysis introduced in this chapter is
particularly useful for analyzing the statistical properties of the two-step type of high-
dimensional estimators in the simultaneous equations model context. As discussed
previously, this chapter focuses on the case where p � n and dj � n for all j and
the case where p � n and dj � n for at least one j. The following two subsections
present results concerning estimation consistency and variable-selection consistency for
the exact sparsity case.

2.3.1 Estimation consistency for the sparsity case
To derive the non-asymptotic bounds and asymptotic properties (i.e., estimation consis-
tency and selection consistency) for β̂H2SLS, I impose the following regularity conditions.

Assumption 2.3.2: The error terms ε and ηj for j = 1, ..., p are i.i.d. zero-mean
sub-Gaussian vectors with parameters σ2

ε and σ2
η, respectively. The random matrix

Zj ∈ Rn×dj is sub-Gaussian with parameters (ΣZj , σ
2
Z) for j = 1, ..., p.

Assumption 2.3.3: For every j = 1, ..., p, x∗j := Zjπ
∗
j . The matrix X∗ ∈ Rn×p is

sub-Gaussian with parameters (ΣX∗ , σ
2
X∗) where the jth column of X∗ is x∗j .

Assumption 2.3.4: For every j = 1, ..., p, wj := Zjvj where vj ∈ K(k1, dj) :=
Bdj0 (k1) ∩ Bdj2 (1). The matrix W ∈ Rn×p is sub-Gaussian with parameters (ΣW , σ

2
W )

where the jth column of W is wj.

Assumption 2.3.5: The first-stage estimator π̂T ∈ Rp×d satisfies the bound

max
j=1,...,p

|π̂j − π∗j |2 ≤
cσZση

λmin(ΣZ)

√
k1 log max(d, p)

n
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with probability at least 1 − c1 exp(−c2 log max(d, p, n)) for some universal constants
c1 and c2, where d = maxj=1,...,p dj and λmin(ΣZ) = minj=1,...,p λmin(ΣZj).

Assumption 2.3.6: For every j = 1, ..., p, the first-stage estimator π̂j achieves the
selection consistency (i.e., it recovers the true support J(π∗j )) or has at most k∗j compo-
nents that are different from the components in J(π∗j ) where k∗j � n, with probability
at least 1 − c1 exp(−c2 log max(d, p, n)) for some universal constants c1 and c2, where
d = maxj=1,...,p dj. For simplicity, we consider the case where the first-stage estimator
recovers the true support J(π∗j ) for every j = 1, ..., p.

Remarks
Assumption 2.3.2 is common in the literature (see, Loh and Wainwright, 2012; Negah-
ban, et. al 2012; Rosenbaum and Tsybakov, 2013). The assumption that Zj ∈ Rn×dj is
sub-Gaussian with parameters (ΣZj , σ

2
Z) for all j provides a primitive condition which

guarantees that the random matrix formed by the instrumental variables satisfies the
RE condition with high probability.

Based on the second part of Assumption 2.3.2 that Zj ∈ Rn×dj is sub-Gaussian
with parameters (ΣZj , σ

2
Z) for all j, we have that Zjπ∗j := x∗j and Zjvj := wj are sub-

Gaussian vectors where vj ∈ K(k1, dj) := Bdj0 (k1) ∩ Bdj2 (1). Therefore, the conditions
that X∗ ∈ Rn×p is a sub-Gaussian matrix with parameters (ΣX∗ , σ

2
X∗) where the jth

column of X∗ is x∗j (Assumption 2.3.3) and W ∈ Rn×p is a sub-Gaussian matrix with
parameters (ΣW , σ

2
W ) where the jth column of W is wj (Assumption 2.3.4) are mild

extensions. In terms of the instrumental variables and their linear combinations, As-
sumptions 2.3.2-2.3.4 together with Assumption 2.3.5 on the first-stage estimation error
provide primitive conditions which guarantee that the random matrix 1

n
X̂T X̂ formed

by the fitted regressors x̂j(:= Zjπ̂j) for j = 1, ..., p satisfies the RE condition with high
probability.

Many existing high-dimensional estimation procedures such as the Lasso or Dantzig
selector (see, e.g., Candès and Tao, 2007; Bickel, et. al, 2009; Negahban, et. al.
2012; Loh and Wainwright, 2012) are shown to satisfy the error bound in Assumption
2.3.5 with high probability. It is worth noting that while the l2−error from applying
the Lasso on a single first-stage equation should be of the order O

(√
k1 log d
n

)
with

probability at least 1 − c1 exp(−c2 log max(d, n)), the extra term log p in the error
maxj=1,...,p |π̂j−π∗j |2 and the probability guarantee 1−c1 exp(−c2 log max(d, p, n)) with
which these errors hold comes from the application of a union bound which takes into
account the fact that there are p endogenous regressors in the main equation and hence,
p equations to estimate in the first-stage. As a result, it is not hard to see that the
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sample size required for consistently estimating p equations simultaneously when a
Lasso-type procedure is applied on each of the first-stage equations separately should
satisfy

√
k1 log max(d, p)

n
= o(1) as opposed to the condition

√
k1 log d
n

= o(1) for the case
where a single equation is estimated with a Lasso-type procedure.

Assumption 2.3.6 says that the first-stage estimators correctly select the non-zero
coefficients with probability close to 1. In analogy to the various sparsity assumptions
on the true parameters in the high-dimensional statistics literature (including the case
of exact sparsity assumption meaning that the true parameter vector has only a few
non-zero components, or approximate sparsity assumption based on imposing a certain
decay rate on the ordered entries of the true parameter vector), Assumption 2.3.6 can be
interpreted as an exact sparsity constraint on the first-stage estimate π̂j for j = 1, ..., p,
in terms of the l0- ball, given by

Bdj0 (k1) :=

π̂j ∈ Rdj |
dj∑
l=1

1{π̂jl 6= 0} ≤ k1

 for j = 1, ..., p.

It is known that under some stringent conditions such as the “irrepresentable condition”
(Zhao and Yu, 2006; Bühlmann and van de Geer, 2011) or the “mutual incoherence con-
dition” (Wainwright, 2009) together with the “beta-min condition” (Bühlmann and van
de Geer, 2011), Lasso and Dantzig types of selectors can recover the support of the true
parameter vector with high probability. The “irrepresentable condition”, as discussed
in Bühlmann and van de Geer, 2011, is in fact a sufficient and necessary condition
to achieve variable-selection consistency with the Lasso. Furthermore, they show that
the “irrepresentable condition” implies the RE condition. Assumption 2.3.6 is the key
condition that differentiates the upper bounds in the two theorems to be presented
immediately. Similar to the problem of estimating p equations as in the discussion of
Assumption 2.3.5, the sample size required for consistently selecting the coefficients in
each of the p equations simultaneously when a Lasso-type selector is applied on each
of the first-stage equations separately should satisfy

√
k1 log max(d, p)

n
= O(1) as opposed

to the condition
√

k1 log d
n

= O(1) for the case where a single equation is estimated with
a Lasso-type selector. In addition, the “beta-min” condition for consistent selection in
the p-equation problem needs to satisfy minj=1,...,p minl∈J(π∗j ) |π∗jl| ≥ O

(√
log max(d, p)

n

)
as opposed to minj=1,...,p minl∈J(π∗j ) |π∗jl| ≥ O

(√
log d
n

)
for the consistent selection in a

single equation problem.
First, I present two results for the case where p � n and dj � n for at least

one j. The key difference between the two theorems is that the bound in the second
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theorem hinges on the additional assumption that the first-stage estimators correctly
select the non-zero coefficients with probability close to 1, i.e., Assumption 2.3.6. With
this assumption, the scaling of the sample size required for estimation consistency is
guaranteed to be no greater (and in some cases strictly smaller) than that without
Assumption 2.3.6.

Theorem 2.3.2: Suppose Assumptions 2.1.1, 2.3.1-2.3.3, and 2.3.5 hold. Then, if

k1k
2
2 log max(d, p)

n
= O(1),

and the tuning parameter λn satisfies

λn � k2

√
k1 log max(d, p)

n
,

we have

|β̂H2SLS − β∗|2 - max{ϕ1

√
k2

√
k1 log max(d, p)

n
, ϕ2

√
k2 log p
n
},

where

ϕ1 =
max {ση, σX∗ , σε}σZση

√
λmax(ΣZ)|β∗|1

λmin(ΣZ)λmin(ΣX∗)
,

ϕ2 = max
{
σX∗ση|β∗|1
λmin(ΣX∗)

,
σX∗σε

λmin(ΣX∗)

}
,

with probability at least 1− c1 exp(−c2 log max(min(p, d), n)) for some universal pos-
itive constants c1 and c2. If we also have k2

√
k1k2 log max(d, p)

n
= o(1), then the two-stage

estimator β̂H2SLS is l2−consistent for β∗.

Theorem 2.3.3: Suppose Assumptions 2.1.1, 2.3.1-2.3.6 hold. Then, if

min
{
k1k

2
2 log max(d, p), minr∈[0, 1] max

{
k3−2r

1 log d, k3−2r
1 log p, kr1k2 log d, kr1k2 log p

}}
= O(n)

and the tuning parameter λn satisfies

λn � k2

√
k1 log max(d, p)

n
,
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we have the same upper bound on |β̂H2SLS − β∗|2 as in Theorem 2.3.2 with probability
at least 1 − c1 exp(−c2 log max(min(p, d), n)) for some universal positive constants c1
and c2.

The proofs for Theorems 2.3.2 and 2.3.3 are provided in Sections 2.6.2 and 2.6.3, re-
spectively. The proofs for Theorems 2.3.2 and 2.3.3 each consist of two parts. The first
part is to show 1

n
X̂T X̂ satisfies the RE condition in Definition 1.1 from Chapter 1 and

the second part is to bound the term | 1
n
X̂T e|∞ from above. Based on Lemma 2.3.1, the

upper bound on | 1
n
X̂T e|∞ pins down the scaling requirement of λn.

From Theorems 2.3.2 and 2.3.3, in the simple case of ση = 0 (for example, η = 0 with
probability 1 as in a high-dimensional linear regression model without endogeneity), the
l2−errors in Theorems 2.3.2 and 2.3.3 reduce to |β̂H2SLS−β∗|2 - σX∗σε

λmin(ΣX∗ )

√
k2 log p
n

, where
the factor σX∗σε

λmin(ΣX∗ ) has a natural interpretation of an inverse signal-to-noise ratio. For
instance, when X∗ is a zero-mean Gaussian matrix with covariance ΣX∗ = σ2

X∗I, one
has λmin(ΣX∗) = σ2

X∗ , so
σX∗σε

λmin(ΣX∗)
= σε
σX∗

,

which measures the inverse signal-to-noise ratio of the regressors in a high-dimensional
linear regression model without endogeneity. Hence, the statistical error of the pa-
rameters of interests in the main equation matches the scaling of the upper bound
for the Lasso in the context of the high-dimensional linear regression model without
endogeneity, i.e.,

√
k2 log p
n

.
Under the assumption that the first-stage estimators correctly select the non-zero

coefficients with high probability (Assumption 2.3.6), the scaling of the sample size
required in Theorem 2.3.3 is guaranteed to be no greater (and in some cases strictly
smaller) than that in Theorem 2.3.2. For instance, if p ≤ d , then letting r = 1 yields

max {k1 log d, k1 log p, k1k2 log d, k1k2 log p} = k1k2 log d
≤ k1k

2
2 log max(d, p) = k1k

2
2 log d.

In this example, Theorem 2.3.2 suggests that the choice of sample size needs to satisfy
k1k2

2 log d
n

= O(1) while Theorem 2.3.3 suggests that the choice of sample size only needs
to satisfy k1k2 log d

n
= O(1).

The estimation error of the parameters of interests in the main equation can be
bounded by the maximum of a term involving the first-stage estimation error and a
term involving the second-stage estimation error, which partially confirms the spec-
ulation in Gautier and Tsybakov (2011) (Section 7.2) that the two-stage estimation
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procedure can achieve the estimation error of an order
√

log p
n

. My results show that√
log p
n

is achieved either when the second-stage estimation error dominates the first-stage
estimation error, or when p is large relative to d. In the case where the second-stage
estimation error dominates the first-stage estimation error, the statistical error of the
parameters of interests in the main equation matches (up to a factor of |β∗|1) the order
of the upper bound for the Lasso estimate in the context of the high-dimensional linear
regression model without endogeneity, i.e.,

√
k2 log p
n

. An example of the second case
where p is large relative to d is when the first-stage estimation concerns regressions in
low-dimensional settings and the result for this specific example is formally stated in
Corollary 2.3.4 below.

Corollary 2.3.4 (First-stage estimation in low-dimensional settings): Suppose As-
sumptions 2.1.1, 2.3.2, and 2.3.3 hold. Assume the number of regressors p(= pn) in (1)
can grow with and exceed the sample size n; the number of non-zero components in β∗
is at most k2, which is allowed to increase to infinity with n but slowly compared to
n; also d = maxj=1,...,p dj � n and does not grow with n. Suppose that the first-stage
estimator π̂ satisfies the bound maxj=1,...,p |π̂j − π∗j |2 -

√
log p
n

with probability at least
1−O( 1

max(p, n)). Then, if
k2 log p
n

= O(1),

and the tuning parameter λn satisfies

λn � k2

√
log p
n

,

we have

|β̂H2SLS − β∗|2 - max{ϕ1

√
k2

√
log p
n

, ϕ2

√
k2 log p
n
},

with probability at least 1−O( 1
max(p, n)), where ϕ1 and ϕ2 are defined in Theorem 2.3.2.

If we also have k2

√
k2 log p
n

= o(1), then the two-stage estimator β̂H2SLS is l2−consistent
for β∗.

Note that Corollary 2.3.4 is a special case of Theorem 2.3.3 and hence the result is
obvious from Theorem 2.3.3.

Under the condition that the first-stage estimators correctly select the non-zero
coefficients with probability close to 1, we can also compare the high-dimensional two-
stage estimator β̂H2SLS with another type of multi-stage procedure. These multi-stage
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procedures include three steps. In the first step, one carries out the same first-stage es-
timation as before such as applying the Lasso or Dantzig selector. Under some stringent
conditions that guarantee the selection-consistency of these first-stage estimators (such
as the “irrepresentable condition” or the “mutual incoherence condition” described ear-
lier), we can recover the supports of the true parameter vectors with high probability.
In the second step, we apply OLS with the regressors in the estimated support set to
obtain π̂OLSj for j = 1, ..., p. In the third step, we apply a Lasso technique to the main
equation with these fitted regressors based on the second-stage OLS estimates. This
type of procedure is in the similar spirit as the literature on sparsity in high-dimensional
linear models without endogeneity (see, e.g., Candès and Tao, 2007; Belloni and Cher-
nozhukov, 2013).

Under this three-stage procedure, Corollary 2.3.4 above tells us that the statistical
error of the parameters of interests in the main equation is of the orderO

(
|β∗|1

√
k2 log p
n

)
,

which is at least as good as β̂H2SLS. Nevertheless, this improved statistical error is at
the expense of imposing stringent conditions that ensure the first-stage estimators to
achieve selection consistency. These assumptions only hold in a rather narrow range of
problems, excluding many cases where the design matrices exhibit strong (empirical)
correlations. If these stringent conditions in fact do not hold, then the three-stage proce-
dure may not work. On the other hand, even in the absence of the selection-consistency
in the first-stage estimation, β̂H2SLS is still a valid procedure and the bound as well
as the consistency result in Theorem 2.3.2 still hold. Therefore, β̂H2SLS may be more
appealing in the sense that it works for a broader range of problems in which the first-
stage design matrices (formed by the instruments) Zj ∈ Rn×dj for j = 1, ..., p exhibit a
relatively high amount of dependency among the covariates.

For Theorems 2.3.2 and 2.3.3, the results are derived for the case where each of the
first-stage equations is estimated separately with a Lasso-type procedure. Depending on
the specific structures of the first-stage equations, other methods that take into account
the interrelationships between these equations might yield a smaller first-stage estima-
tion error and consequently a potential improvement on the l2−error of β̂H2SLS. This
chapter does not pursue these more efficient first-stage estimators but rather considers
the extension of Theorem 2.3.2 in the following manner. Notice that for Theorem 2.3.2,
we give an explicit form of the first-stage estimation error in Assumption 2.3.5 and as
discussed earlier, Lasso type of techniques yield this estimation error. However, the
estimation error of the parameters of interests in the main equation can be bounded by
the maximum of a term involving the first-stage related error and a term involving the
second-stage related error, which holds for general first-stage estimation errors. This
claim is formally stated in Theorem 2.3.5 below.
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Theorem 2.3.5: Suppose Assumptions 2.1.1 and 2.3.1-2.3.3 hold. Also, assume the
first-stage estimator π̂ satisfies the bound

max
j=1,...,p

|π̂j − π∗j |2 ≤M(d, p, k1, n)

with probability 1− α. Then, if

max
{
k2

2M
2(d, p, k1, n), k2 log p

n

}
= O(1),

and the tuning parameter λn satisfies

λn � k2 max

M(d, p, k1, n),
√

log p
n

 ,
we have

|β̂H2SLS − β∗|2 - max{ϕ1

√
k2M(d, p, k1, n), ϕ2

√
k2 log p
n
},

where

ϕ1 =
max {ση, σX∗ , σε}

√
λmax(ΣZ)|β∗|1

λmin(ΣX∗)
,

ϕ2 = max
{
σX∗ση|β∗|1
λmin(ΣX∗)

,
σX∗σε

λmin(ΣX∗)

}
,

with probability at least 1 − α − c1 exp(−c2 log max(p, n)) for some universal positive
constants c1 and c2. If we also have k2 max

{√
k2M(d, p, k1, n),

√
k2 log p
n

}
= o(1), then

the two-stage estimator β̂H2SLS is l2−consistent for β∗.

2.3.2 Variable-selection consistency
This section addresses the following question: given an optimal two-stage Lasso solution
β̂H2SLS, when do we have P[J(β̂H2SLS) = J(β∗)] → 1? The property P[J(β̂H2SLS) =
J(β∗)] → 1 is referred to as variable-selection consistency. For consistent variable se-
lection with the standard Lasso in the context of linear models without endogeneity,
it is known that the so-called “neighborhood stability condition” (Meinshausen and
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Bühlmann, 2006) for the design matrix, re-formulated in a nicer form as the “irrepre-
sentable condition” by Zhao and Yu, 2006, is sufficient and necessary. A further refined
analysis is given in Wainwright (2009), which presents under a certain “incoherence
condition” the smallest sample size needed to recover a sparse signal. In this chapter, I
adopt the analysis by Wainwright (2009), Ravikumar, Wainwright, and Lafferty (2010),
and Wainwright (2015) to analyze the selection consistency of β̂H2SLS. In particular, I
need the following assumption.

Assumption 2.3.7:
∥∥∥∥E [X∗T1,J(β∗)cX

∗
1,J(β∗)

] [
E(X∗T1,J(β∗)X

∗
1,J(β∗))

]−1
∥∥∥∥
∞
≤ 1 − φ for some

φ ∈ (0, 1].

Remarks
Assumption 2.3.7, the so-called “mutual incoherence condition” originally formalized
by Wainwright (2009), captures the intuition that the large number of irrelevant co-
variates cannot exert an overly strong effect on the subset of relevant covariates. In the
most desirable case, the columns indexed by j ∈ J(β∗)c would all be orthogonal to the
columns indexed by j ∈ J(β∗) and then we would have φ = 1. In the high-dimensional
setting, this perfect orthogonality is not possible, but one can still hope for a type of
“near orthogonality” to hold.

Assumptions 2.1.1 and 2.3.3 ensure that the left-hand-side of the inequality in As-
sumption 2.3.7 falls in [0, 1). Under Assumptions 2.1.1 and 2.3.3, we know that each
column X∗j , j = 1, ..., p is consisted of i.i.d. sub-Gaussian variables. Without loss of
generality, we can assume E(X∗1j) = 0 for all j = 1, ..., p. Consequently, from a standard
bound for the norms of zero-mean sub-Gaussian vectors and a union bound,

P
[

max
j=1,...,p

|X∗j |2√
n
≤ κc

]
≥ 1− 2 exp(−cn+ log p) ≥ 1− 2 exp(−c′n),

where the last inequality follows from n � log p. For example, if X∗ has a Gaussian
design, then we have

max
j=1,...,p

|X∗j |2√
n
≤ max

j=1,...,p
Σjj

1 +
√

32 log p
n

 ,
where maxj=1,..,p Σjj corresponds to the maximal variance of any element of X∗(see
Raskutti, et. al, 2011).

Theorem 2.3.6 (Selection consistency): Suppose Assumptions 2.1.1, 2.3.1-2.3.3, 2.3.5,
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and 2.3.7 hold. If
1
n
k3

2 log p = O(1),
1
n
k1k

2
2 log max(d, p) = o(1),

and the tuning parameter λn satisfies

λn � k2

√
k1 log max(d, p)

n
,

then, we have: (a) The Lasso has a unique optimal solution β̂H2SLS, (b) the support
J(β̂H2SLS) ⊆ J(β∗),
(c) |β̂H2SLS, J(β∗) − β∗H2SLS, J(β∗)|∞ ≤ cmax

{
ϕ1

√
k1k2 log max(d, p)

n
, ϕ2

√
k2 log p
n

}
:= B

where

ϕ1 =
max {ση, σX∗ , σε}σησZ

√
λmax(ΣZ)|β∗|1

λmin(ΣZ)λmin
(
E
[
X∗T1,J(β∗)X

∗
1,J(β∗)

]) ,

ϕ2 = max

 σX∗ση|β∗|1
λmin

(
E
[
X∗T1,J(β∗)X

∗
1,J(β∗)

]) , σX∗σε

λmin
(
E
[
X∗T1,J(β∗)X

∗
1,J(β∗)

])
 ,

with probability at least 1− c1 exp(−c2 log max(min(p, d), n)), (d) if minj∈J(β∗) |β∗j | >
B, then J(β̂H2SLS) ⊇ J(β∗) and hence β̂H2SLS is variable-selection consistent, i.e.,
J(β̂H2SLS) = J(β∗).

The proof for Theorem 2.3.6 is provided in Section 2.6.6. The proof for Theorems
2.3.6 hinges on an intermediate result that shows the “mutual incoherence” assumption
on E[X∗T1 X∗1 ] (the population version of 1

n
X∗TX∗) guarantees that, with high probabil-

ity, analogous conditions hold for the estimated quantity 1
n
X̂T X̂, formed by the fitted

regressors from the first-stage regression. This result is established in Lemma 2.6.4 in
Section 2.6.5.

Theorem 2.3.6 includes four parts. Part (a) guarantees the uniqueness of the optimal
solution of the two-stage Lasso procedure, β̂H2SLS. Based on this uniqueness claim, one
can then talk unambiguously about the support of the two-stage Lasso estimate. Part
(b) guarantees that the Lasso does not falsely include elements that are not in the
support of β∗. Part (c) ensures that β̂H2SLS, J(β∗) is uniformly close to β∗J(β∗) in the



23

l∞−norm. The last claim is a consequence of this uniform norm bound: as long as
the minimum value of |β∗j | over j ∈ J(β∗) is not too small, then the two-stage Lasso
does not falsely exclude elements that are in the support of β∗ with high probability.
The minimum value requirement of |β∗j | over j ∈ J(β∗) is comparable to the so-called
“beta-min” condition in Bühlmann and van de Geer (2011). Combining the claims from
(b) and (d), the two-stage Lasso is variable-selection consistent with high probability.

2.4 Simulations
In this section, simulations are conducted to gain insight on the finite sample perfor-
mance of the regularized two-stage estimators. I consider the triangular simultaneous
equations model (2.1) and (2.2) from Section 2.1 where dj = d for all j = 1, ..., p,
(yi, xTi , zTi , εi, ηi) are i.i.d., and (εi, ηi) have the following joint normal distribution

(εi, ηi) ∼ N




0
0
...
0

 ,


σ2
ε ρσεση · · · · · · ρσεση

ρσεση σ2
η 0 · · · 0

... 0 σ2
η · · ·

...
... ... ... . . . 0

ρσεση 0 · · · 0 σ2
η




.

The matrix zTi is a p × d matrix of normal random variables with identical variances
σz, and zTij is independent of (εi, ηi1, ..., ηip) for all j = 1, ..., p. With this setup, I
simulate 1000 sets of (yi, xTi , zTi , εi, ηi)ni=1 where n is the sample size (i.e., the num-
ber of data points) in each set, and perform 14 Monte Carlo simulation experiments
constructed from various combinations of model parameters (d, k1, p, k2, β∗, σε, and
ση), the design of zi, the random matrix formed by the instrumental variables, as well
as the types of first-stage and second-stage estimators employed (Lasso vs. OLS). For
each replication t = 1, ..., 1000, I compute the estimates β̂t of the main-equation pa-
rameters β∗, l2−errors of these estimates, |β̂t − β∗|2, and selection percentages of β̂t
(computed by the number of the elements in β̂t sharing the same sign as their corre-
sponding elements in β∗, divided by the total number of elements in β∗). Table 4.1
displays the designs of the 14 experiments. For Experiment 1 and Experiments 3-14,
I set the number of parameters in each first-stage equation d = 100, the number of
parameters in the main equation p = 50, the number of non-zero parameters in each
first-stage equation k1 = 4, the number of non-zero parameters in the main equation
k2 = 5. Also, choose (π∗j1, ..., π∗j4) = 1, (π∗j5, ..., π∗j100) = 0 for all j = 1, ..., 50; and
(β∗1 , ..., β∗5) = 1, (β∗6 , ..., β∗50) = 0. For convenience, in the following discussion, I will



24

refer to those non-zero parameters as “relevant” parameters and those zero parameters
as “irrelevant” parameters. Experiment 2 sets d = 4, p = 5, (π∗j1, ..., π∗j4) = 1, and
(β∗1 , ..., β∗5) = 1. The motivations of these experiments are explained in the following
discussion.
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The baseline experiment (Experiment 1) applies the two-stage Lasso procedure to the
endogenous sparse linear model with a triangular simultaneous equations structure
(2.1) and (2.2). For each data point i = 1, ..., n, the instruments zTi is a p × d matrix
of independent standard normal random variables. As a benchmark for Experiment
1, Experiment 2 concerns the classical 2SLS procedure when both stage equations are
in the low-dimensional setting and the supports of the true parameters in both stages
are known a priori. As another benchmark for Experiment 1, Experiment 3 applies
a one-step Lasso procedure (without instrumenting the endogenous regressors) to the
same main equation model (2.1) as in Experiment 1.

Experiments 4-6 concern, in a relatively large sample size setting with sparsity,
the performance of alternative “partially” regularized or non-regularized estimators:
first-stage-OLS-second-stage-Lasso (Experiment 4), first-stage-Lasso-second-stage-OLS
(Experiment 5), and first-stage-OLS-second-stage-OLS (Experiment 6). Experiments
7-14 return to the two-stage Lasso procedure with changes applied to the model pa-
rameters that generate the data. Experiment 7 (Experiment 8) increases the standard
deviation of the “noise” in the main equation, σε (respectively, the standard deviation
of the “noise” in the first-stage equations, ση); Experiment 9 reduces σz, the standard
deviation of the “signal”, i.e., the instrumental variables; Experiment 10 introduces cor-
relations between the rows of the design matrix zTi . Notice that each row of zTi ∈ Rp×d

is associated with each of the endogenous regressors and the row-wise correlation in
zTi hence introduces correlations between the “purged” regressors X∗j and X∗

j
′ for all

j 6= j
′ . The level of the correlation is set to 0.5, i.e., corr(zijl, zij′ l) = 0.5 for j 6= j

′ and
l = 1, ..., d (notice that we still have corr(zijl, zijl′ ) = 0 for l 6= l

′ and j = 1, ..., p; i.e.,
there is no column-wise correlation in zTi ). Experiment 11 (Experiment 12) increases
the “noise” level in the main equation (respectively, the “noise” level in the first-stage
equations) and introduces the correlations between the “purged” regressors X∗j and X∗

j′

for all j 6= j
′ simultaneously. Experiment 13 reduces the “signal” level of the instrumen-

tal variables and introduces the correlations between the “purged” regressors X∗j and
X∗
j′
for all j 6= j

′ simultaneously. Experiment 14 reduces the magnitude of (β∗1 , ... , β∗5)
from (1, ... , 1) to (0.01, ... , 0.01).

The tuning parameters λ1n in the first-stage Lasso estimation (in Experiments 1,
5, 7-14) are chosen according to the standard Lasso theory of high-dimensional es-
timation techniques (e.g., Bickel, 2009); in particular, λ1n = 0.4

√
log d
n

. The tun-
ing parameters λ2n in the second-stage Lasso estimation (in Experiments 1, 3, 4,
7-14) are chosen according to the scaling condition in Theorem 2.3.3; in particu-
lar, λ2n = 0.1 · k2 max

{√
k1 log d
n

,
√

log p
n

}
in Experiments 1, 3, 4, 7-13 and λ2n =
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0.001·k2 max
{√

k1 log d
n

,
√

log p
n

}
in Experiment 14. The value of λ2n in Experiments 1, 3,

4, 7-13 exceeds the value of λ2n in Experiments 14 by a factor of 0.01. This adjustment
reflects the fact that the non-zero parameters (β1, ..., β5) = (1, ... , 1) in Experiments 1,
3, 4, 7-13 exceed the non-zero parameters (β1, ..., β5) = (0.01, ... , 0.01) in Experiment
14 by a factor of 0.01.

Figure 4.1a plots (in ascending values) the 1000 estimates of β∗5 when the sample size
n = 47. The estimates of other “relevant” main-equation parameters behave similarly
as the estimates of β∗5 . Figure 4.1b plots (in ascending values) the 1000 estimates of
β∗6 when the sample size n = 47. The estimates of other “irrelevant” main-equation
parameters behave similarly as the estimates of β∗6 . The sample size 47 satisfies the
scaling condition in Theorem 2.3.3. With the choice of d = 100, k1 = 4, p = 50, k2 = 5
in Experiments 1 and 3, the sample size n = 47 represents a high-dimensional setting
with sparsity. Figure 4.1c (Figure 4.1d) is similar to Figure 4.1a (Figure 4.1b) except
that the sample size n = 4700.

With the 1000 estimates of the main-equation parameters from Experiments 1-3, Ta-
ble 4.2 shows the mean of the l2−errors of these estimates (computed as 1

1000
∑1000
t=1 |β̂t−

β∗|2), the mean of the selection percentages (computed in a similar fashion as the
mean of the l2−errors of the estimates of β∗), the mean of the squared l2−errors
(i.e., the sample mean squared error, SMSE, computed as 1

1000
∑1000
t=1 |β̂t − β∗|22), and

the sample squared bias ∑50
j=1( ¯̂

βj − β∗j )2 (where ¯̂
βj = 1

1000
∑1000
t=1 β̂

t
j for j = 1, ..., 50).

To provide a sense of how well the first-stage estimates behave, Table 4.2 also dis-
plays the “averaged” mean of the l2−errors of the first-stage estimates (computed as
1
50
∑50
j=1

1
1000

∑1000
t=1 |π̂tj − π∗j |2), the “averaged” mean of the selection percentages of the

first-stage estimates (computed in a similar fashion as the “averaged” mean of the
l2−errors of the first-stage estimates), the “averaged” mean of the squared l2−errors
(i.e., the “averaged” SMSE, computed as 1

50
∑50
j=1

1
1000

∑1000
t=1 |π̂tj − π∗j |22), and the “av-

eraged” sample squared bias 1
50
∑50
j=1

∑100
l=1(¯̂πjl − π∗jl)2 (where ¯̂πjl = 1

1000
∑1000
t=1 π̂

t
jl for

j = 1, ..., 50 and l = 1, ..., 100).
Compared to the two-stage Lasso procedure, in estimating the “relevant” main-

equation parameters with both sample sizes n = 47 and n = 4700, Figures 4.1a and
4.1c show that the classical 2SLS procedure where the supports of the true parameters
in both stages are known a priori produces larger estimates while the one-step Lasso
procedure (without instrumenting the endogenous regressors) produces smaller esti-
mates. The two-stage Lasso outperforms the classical 2SLS above the 60th percentile of
the estimates while underestimates the “relevant” main-equation parameters below the
60th percentile relative to the classical 2SLS procedure. The one-step Lasso procedure
(without instrumenting the endogenous regressors) produces the poorest estimates of
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the “relevant” main-equation parameters. The mean ¯̂
β5 of the 1000 estimates β̂5 from

the two-stage Lasso is 0.931 (respectively, 1.000 from the classical 2SLS and 0.826
from the one-step Lasso) when n = 47 and 0.997 (respectively, 1.000 from the classical
2SLS and 0.988 from the one-step Lasso) when n = 4700. The fact that the two-stage
Lasso yields smaller estimates of the “relevant” main-equation parameters relative to
the classical 2SLS for both sample sizes is most likely due to the shrinkage effect from
the l1−penalization in the second-stage estimation of the two-stage Lasso procedure.

In estimating the “irrelevant” main-equation parameters, the estimates of (β∗6 , ..., β∗50)
from both the two-stage Lasso and the one-step Lasso are exactly 0 at the 5th percentile,
the median, and the 95thpercentile when n = 47 and n = 4700. The mean statistics of
the estimates of (β∗6 , ..., β∗50) range from −0.001 (−2.938×10−4) to 0.001 (3.403×10−4)
when n = 47, and −6.926 × 10−5 (0) to 5.593 × 10−5 (3.076 × 10−6) when n = 4700
for the two-stage Lasso (respectively, the one-step Lasso). Table 4.2 shows that the
selection percentages of the main-equation estimates from the two-stage Lasso and the
one-step Lasso are high for the designs considered. Figures 4.1b and 4.1d show that,
in estimating the “irrelevant” main-equation parameters, the one-step Lasso performs
slightly better relative to the two-stage Lasso procedure below the 2nd percentile and
above the 98th percentile.

In terms of estimation errors and sample bias, from Table 4.2 we see that the mean
of the l2−errors of the estimates β̂H2SLS of β∗ (or the “averaged” mean of the l2−errors
of the first-stage estimates) from the two-stage Lasso are greater than those of β̂2SLS
(respectively, of the first-stage estimates) from the classical 2SLS procedure for both
n = 47 and n = 4700. As n increases, the mean of the l2−errors of β̂H2SLS and the
mean of the l2−errors of β̂2SLS become very close to each other as in the case when
n = 4700. Also, the sample bias of β̂H2SLS (or, the “averaged” sample bias of the first-
stage estimates) from the two-stage Lasso are greater by a magnitude of 100 ∼ 1000
(respectively, 1000 ∼ 104) than those of β̂2SLS (respectively, of the first-stage estimates)
from the classical 2SLS procedure for both sample sizes.

For more investigation on how the l2−error and sample bias of β̂H2SLS compare
to those of β̂2SLS, I have also considered designs where σε and/or ση are increased or
decreased while everything else in Experiments 1 and 2 remains the same. In these
modified designs except for those with very large values of σε under n = 47, the mean
of the l2−errors of β̂H2SLS are generally greater than those of β̂2SLS. The sample bias
of β̂H2SLS are consistently greater by a magnitude of 10 ∼ 105 than those of β̂2SLS for
both sample sizes. This suggests that the shrinkage effect from the l1−penalization
in both the first and second stage estimations of the two-stage Lasso procedure might
have made its bias term converge to zero at a slower rate relative to the classical 2SLS
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for the designs considered here. Whether this conjecture holds true for general designs
is an interesting question for further research. Compared to the two-stage Lasso and
the classical 2SLS, the one-step Lasso procedure without instrumenting the endoge-
nous regressors yields the largest l2−errors as well as sample bias of the main-equation
estimates for both n = 47 and n = 4700, which is expected. Finally notice that the
l2−errors (and the sample bias) shrink as the sample size increases. |β̂2SLS−β∗|2 being
proportional to 1√

n
is a known fact in low-dimensional settings. From Section 2.3.1, we

also have that the upper bounds for |β̂H2SLS−β∗|2 are proportional to 1√
n
up to factors

involving log d, log p, k1, and k2.
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Figure 4.1a: Estimates of the fifth parameter (n = 47)
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Figure 4.1b: Estimates of the sixth parameter (n = 47)
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Figure 4.1c: Estimates of the fifth parameter (n = 4700)
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Figure 4.1d: Estimates of the sixth parameter (n = 4700)
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Table 4.2: l2−errors, SMSE, bias, and selection (Exp. 1-3)
Mean n = 47 n = 4700

Exp. # 1 2 3 1 2 3
2nd−stage select % 97.3 NA 99.5 98.1 NA 100
2nd−stage l2−error 0.288 0.156 0.412 0.018 0.015 0.026
2nd−stage SMSE 0.099 0.028 0.179 3.38 × 10−4 2.43 × 10−4 7.07 × 10−4

2nd−stage squared bias 0.024 1.49 × 10−5 0.154 5.04 × 10−5 1.84 × 10−7 6.66 × 10−4

1st-stage select % 0.977 NA NA 0.985 NA NA
1st−stage l2−error 0.349 0.115 NA 0.028 0.011 NA
1st−stage SMSE 0.132 0.003 NA 7.92 × 10−4 2.78 × 10−5 NA

1st−stage squared bias 0.097 1.07 × 10−5 NA 6.31 × 10−4 1.23 × 10−7 NA

In the following relatively large sample size setting (i.e., n = 4700) with sparsity, I
compare the performance of the two-stage Lasso estimator with the performances of
the alternative “partially” regularized or non-regularized estimators as mentioned ear-
lier. Figure 4.2a plots (in ascending values) the 1000 estimates of β∗5 when the sample
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size n = 4700. Figure 4.2b plots (in ascending values) the 1000 estimates of β∗6 when
the sample size n = 4700. With the 1000 estimates of the “relevant” (“irrelevant”)
main-equation parameters from Experiment 1 and Experiments 4-6, Figures 4.2c-4.2f
(respectively, Figures 4.2g-4.2j) display the 5th percentile, the median, the 95th per-
centile, and the mean of these estimates. The mean of the l2−errors and the mean of
the selection percentages of the main-equation estimates together with the “averaged”
mean of the l2−errors and the “averaged” mean of the selection percentages of the
first-stage estimates from these “partially” regularized or non-regularized estimators
are displayed in Table 4.3.

Figure 4.2a and Figures 4.2c-4.2f show that, compared to the two-stage Lasso proce-
dure, in estimating the “relevant” main-equation parameters when n = 4700, the first-
stage-Lasso-second-stage-OLS estimator and the first-stage-OLS-second-stage-OLS es-
timator produce larger estimates while the first-stage-OLS-second-stage-Lasso estima-
tor produces smaller estimates. In estimating the “irrelevant” main-equation parame-
ters when n = 4700, Figure 4.2b and Figures 4.2g-4.2j show that the two-stage Lasso
and the first-stage-OLS-second-stage-Lasso estimator perform well while the first-stage-
Lasso-second-stage-OLS and the first-stage-OLS-second-stage-OLS do poorly (also see
Table 4.3 for a comparison between the selection percentages of these estimators). This
suggests that employing regularization in the second-stage estimation helps selecting
the “relevant” main-equation parameters.

Turning to the comparison with “partially” regularized or non-regularized estimators
in terms of l2−errors, from Table 4.3 we see that the two-stage Lasso estimator achieves
the smallest l2−error of the main-equation estimates among all the estimators consid-
ered here. The fact that the l2−error (of the main-equation estimates) of the two-stage
Lasso estimator is smaller than the l2−errors of the first-stage-OLS-second-stage-Lasso
estimator and the first-stage-OLS-second-stage-OLS estimator could be attributed to
the following. Based on the first-stage estimation results from these experiments, the
first-stage Lasso estimator outperforms the first-stage OLS estimator in both estima-
tion errors and variable selections even in the relatively large sample size setting with
sparsity. Recall in Section 2.3, we have seen that, the estimation error of the parameters
of interests in the main equation can be bounded by the maximum of a term involv-
ing the first-stage estimation error and a term involving the second-stage estimation
error. Given the choices of p, d, k1, and k2 in Experiment 1 and Experiments 4-6,
these results agree with the theorems in Section 2.3.1. Additionally, compared to the
first-stage-OLS-second-stage-OLS estimator, the fact that the l2−error (of the main-
equation estimates) of the two-stage Lasso estimator is smaller than the l2−error of the
first-stage-OLS-second-stage-OLS estimator can also be explained by the fact that the
two-stage Lasso reduces the l2−error of the first-stage-OLS-second-stage-OLS estimates
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from O
(√

max(p, d)
n

)
to O

(√
log max(p, d)

n

)
, as we have seen in Section 2.3. Similarly, the

fact that the l2−error (of the main-equation estimates) of the two-stage Lasso estimator
is smaller than the l2−error of the first-stage-Lasso-second-stage-OLS estimator can be
explained by the fact that the two-stage Lasso reduces the l2−error of the first-stage-
Lasso-second-stage-OLS estimates from O

(√
max(p, log d)

n

)
to O

(√
log max(p, d)

n

)
.
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Figure 4.2a: Estiamtes of the fifth parameter (n = 4700)
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Figure 4.2b: Estimates of the sixth parameter (n = 4700)
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Figure 4.2c: Estimates of "relevant" parameters (5th percentile)
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Figure 4.2d: Estimates of "relevant" parameters (median)
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Figure 4.2e: Estimates of "relevant" parameters (95th percentile)
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Figure 4.2f: Estimates of "relevant" parameters (mean)
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Figure 4.2g: Estimates of "irrelevant" parameters (5th percentile)
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Figure 4.2h: Estimates of "irrelevant" parameters (median)
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Figure 4.2i: Estimates of "irrelevant" parameters (95th percentile)
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Figure 4.2j: Estimates of "irrelevant" parameters (mean)
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Table 4.3: l2−errors and selection (Exp. 1, 4-6)
Mean n = 4700

Exp. # 1 4 5 6
2nd−stage select % 98.1 98.1 55.0 54.5
2nd−stage l2−err 0.018 0.038 0.062 0.054
1st-stage select % 98.5 52.0 98.5 52.0
1st−stage l2−err 0.028 0.059 0.028 0.059

In the next group of experiments which explore the sensitivity of the results for the
two-stage Lasso estimator to design parameters, changes are applied to σε, ση, σz, and
the correlations between the rows of the design matrix zTi ∈ Rp×d for all i = 1, ..., n.
Figure 4.3a plots (in ascending values) the 1000 estimates of β∗5 when the sample size
n = 47. Figure 4.3b plots (in ascending values) the 1000 estimates of β∗6 when the
sample size n = 47. Figures 4.3c-4.3f (Figures 4.3g-4.3j) displays the 5th percentile,
the median, the 95th percentile, and the mean of the estimates of the “relevant” (“ir-
relevant”) main-equation parameters from Experiment 1 and Experiments 7-13. The
mean of the l2−errors and the mean of the selection percentages of the main-equation
estimates together with the “averaged” mean of the l2−errors and the “averaged” mean
of the selection percentages of the first-stage estimates from these experiments are dis-
played in Table 4.4.

Overall, we see from Table 4.4 that, relative to the baseline experiment (Experiment
1), the mean of the l2−errors of the estimates of the main-equation parameters increase
in Experiments 7-13; the mean of the selection percentages of the estimates of the
main-equation parameters decrease in Experiments 7, 8, 10-13. The “averaged” mean
of the l2−errors of the first-stage estimates increase the most in Experiments 8, 9, 12,
and 13 while those first-stage statistics in Experiment 10 are comparable to those in
Experiment 1. This makes sense since Experiments 8, 9, 12, and 13 involve increasing
the noise level ση or decreasing the signal level σz of the instruments in the first-stage
model while introducing correlations between the rows of the design matrix zTi (for
i = 1, ..., n) (Experiment 10) should have little impact on the first-stage estimates,
which are obtained by performing the Lasso procedure on each of the 50 first-stage
equations separately. Note that since Experiment 7 (Experiment 11) has exactly the
same first-stage set up as Experiment 1 (respectively, Experiment 10), there is no need
to look at the behavior of their first-stage estimates separately.

From Figure 4.3a, we see that, below the 10th percentile, compared to the baseline
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experiment (Experiment 1), introducing correlations between the rows of the design
matrix zTi (for i = 1, ..., n) improves the estimates of the “relevant” main-equation
parameters while the other changes to the data generating process yield worse esti-
mates; above the 80th percentile, Figure 4.3a shows that, any changes made to the data
generating process yield worse estimates of the “relevant” main-equation parameters;
at the median (or mean), Figures 4.3a and 4.3d (respectively, Figure 4.3f) show that,
increasing the standard deviation of the “noise” in the main equation, σε, and reduc-
ing the standard deviation of the “signal”, σz, yield worse estimates of the “relevant”
main-equation parameters. Figures 4.3b and 4.3j show that, in estimating the “irrel-
evant” main-equation parameters, any changes to the data generating process yield
worse estimates; in particular, those that involve introducing correlations between the
rows of the design matrix zTi (for i = 1, ..., n) (Experiments 10-13) yield the poorest
estimates of the “irrelevant” main-equation parameters (also see Table 4.4 for a com-
parison between the selection percentages of these experiments). Recall that each row
of zTi ∈ Rp×d is associated with each of the endogenous regressors and row-wise cor-
relations in zTi hence introduce correlations between the “purged” regressors X∗j and
X∗
j′

for all j 6= j
′ . As seen in Section 2.3.2, selection consistency hinges on Assump-

tion 2.3.7 (the “mutual incoherence condition”), whose violation can lead the Lasso
to falsely include elements that are not in the support of β∗, namely, the violation of
Part (b) in Theorems 2.3.7 and 3.8. For the baseline experiment (Experiment 1), the
quantity

∥∥∥∥E [X∗T1,J(β∗)cX
∗
1,J(β∗)

] [
E(X∗T1,J(β∗)X

∗
1,J(β∗))

]−1
∥∥∥∥
∞

in Assumption 2.3.7 equals 0
(because zTi is a p × d matrix of independent standard normal random variables) and
Assumption 2.3.7 is easily satisfied. For Experiments 10-13, this quantity increases,
and therefore in these experiments, the estimates of the “irrelevant” main-equation pa-
rameters are worse relative to the baseline experiment.
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Figure 4.3a: Estimates of the fifth parameter (n = 47)
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Figure 4.3b: Estiamtes of the sixth parameter (n = 47)
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Figure 4.3c: Estimates of "relevant" parameters (5th percentile)
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Figure 4.3d: Estimates of the "relevant" parameters (median)
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Figure 4.3e: Estimates of the "relevant" parameters (95th percentile)
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Figure 4.3f: Estimates of the "relevant" parameters (mean)
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Figure 4.3g: Estimates of the "irrelevant" parameters (5th percentile)
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Figure 4.3h: Estimates of the "irrelevant" parameters (median)
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Figure 4.3i: Estimates of the "irrelevant" parameters (95th percentile)
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Figure 4.3j: Estimates of the "irrelevant" parameters (mean)
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Table 4.4: l2−errors and selection (Exp. 1, 7-13)
Mean n = 47

Exp. # 1 7 8 9 10 11 12 13
2nd−stage select % 97.3 94.3 93.8 97.3 87.0 85.4 87.8 87.1

2nd-stage l2−err 0.288 0.422 0.376 0.497 0.365 0.557 0.471 0.626
1st−stage select % 97.7 97.7 90.8 97.7 97.7 97.7 90.8 97.7
1st−stage l2−err 0.349 0.349 0.789 0.552 0.352 0.352 0.793 0.557

In the final experiment 14 where (β∗1 , ... , β∗5) = (0.01, ... , 0.01) (as opposed to
(β∗1 , ... , β∗5) = (1, ... , 1) in the previous experiments), based on the estimates obtained
from the two-stage Lasso procedure, I count the number of occurrences that each es-
timate β̂H2SLS, 1, ... , β̂H2SLS, 5 equals exactly 0, respectively, over the 1000 replications
(Table 4.5). Because the “relevant” main-equation parameters are reduced by a factor
of 100, it is clearly more difficult for the two-stage Lasso procedure to distinguish the
“relevant” coefficients from the “irrelevant” coefficients and Table 4.5 verifies this. Re-
call in Experiments 10-13, by introducing correlations between the “purged” regressors
X∗j and X∗

j′
for all j 6= j

′ , the estimates of the “irrelevant” main-equation parameters
become worse. On the other hand, making the “relevant” main-equation parameters
sufficiently smaller results in worse estimates of the “relevant” main-equation parame-
ters. This observation confirms Part (d) of Theorems 2.3.7 and 2.3.8; i.e., the violation
of the “beta-min” condition can lead the Lasso to mistake the “relevant” coefficients for
the “irrelevant” coefficients. In terms of the l2−errors and overall selection percentages,
from Table 4.5 we see that poorer estimation of the “relevant” parameters also results
in larger l2−errors1 and worse selection percentages, as expected. The significant drop
in the overall selection percentages suggests that not only the estimation of the “rel-
evant” coefficients becomes less accurate in Experiment 14 but also the estimation of
the “irrelevant” coefficients.

1To compensate for the fact that (β1, ..., β5) = (1, ... , 1) in Experiment 1 exceeds the parameters
(β1, ..., β5) = (0.01, ... , 0.01) in Experiments 14 by a factor of 0.01, the l2−error in Experiment 14

is adjusted as
[∑5

j=1
(β̂j−β∗

j )2

0.012 +
∑j=50
j=6 (β̂j − β∗

j )2
]1/2

. The unadjusted l2−error in Experiment 14 is
0.388.
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Table 4.5: Exp. 14

n = 47
# of zeros

2nd−stg select % 2nd−stg l2−err
β1 β2 β3 β4 β5

Exp. 1 0 0 0 0 0 97.3 0.288
Exp. 14 187 187 218 194 193 57.7 11.5

2.5 Conclusion and extensions
This chapter has explored the validity of the two-stage estimation procedure for sparse
linear models in high-dimensional settings with possibly many endogenous regressors.
In particular, the number of endogenous regressors in the main equation and the num-
ber of instruments in the first-stage equations are permitted to grow with and exceed n.
Sufficient scaling conditions on the sample size for estimation consistency in l2−norm
and variable-selection consistency of the high-dimensional two-stage estimators have
been established. I provide theoretical justifications to a technical issue (regarding the
RE condition and the MI condition) that arises in the two-stage estimation procedure
from allowing the number of regressors in the main equation to grow with and ex-
ceed n. Depending on the underlying assumptions that are imposed, the scaling of the
sample size required to obtain these consistency results differs by factors involving the
sparsity parameter k2. Simulations are conducted to gain insight on the small-sample
performance of the high-dimensional two-stage estimator. The approach and results of
this chapter suggest a number of possible extensions including the ones listed in the
following.

1. The approximate sparsity case. It is useful to extend the analysis for the
high-dimensional 2SLS estimator to the approximate sparsity case, i.e., most of the co-
efficients in the main equation and/or the first-stage equations are too small to matter.
One can have the approximate sparsity assumption in the first-stage equations only
(and assume the main equation parameters are sparse), the main equation only (and
assume the first-stage equations parameters are sparse) or both-stage equations. Re-
sults on this extension are established in Zhu (2014).

2. Minimax lower bounds for the high-dimensional linear models with
endogeneity. It would be worthwhile to establish the minimax lower bounds on the
parameters in the main equation for the linear models in high-dimensional settings with
endogeneity. In particular, the goal is to derive lower bounds on the estimation error
achievable by any estimator, regardless of its computational complexity. Obtaining
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lower bounds of this type is useful because on one hand, if the lower bound matches the
upper bound up to some constant factors, then there is no need to search for estimators
with a lower statistical error (although it might still be useful to study estimators with
lower computational costs). On the other hand, if the lower bound does not match
the best known upper bounds, then it is worthwhile to search for new estimators that
potentially achieve the lower bound. A recent result of Zhu (2014) shows that, for the
class of triangular simultaneous equations models (2.1) and (2.2) with exactly sparse
structure on the coefficient vector in the main equation (2.1), the estimator β̂H2SLS is
minimax optimal up to the (n, d, p)−scaling and the upper bound on the

√
MSE of

β̂H2SLS exceeds the minimax lower bound by a factor of k2.

3. Control function approach in high-dimensional settings. As an alter-
native to the “two-stage” estimation proposed here, it would be interesting to explore
the validity of the high-dimensional two-stage estimators based on the “control func-
tion” approach in the high-dimensional setting. When both the first and second-stage
equations are in low-dimensional settings (i.e., p � n and dj � n for all j = 1, ..., p)
and the supports of the true parameters in both stages are known a priori, the 2SLS
procedure is algebraically equivalent to a “control function” estimator of β∗ that in-
cludes first-stage residuals η̂ij = xij − zTijπ̂j as “control variables” in the regression of
yi on xi (e.g., Garen, 1984). Such algebraic equivalence no longer holds for regularized
estimators because the regularization employed destroys the projection algebra. The
extension for the 2SLS estimator from low-dimensional settings to high-dimensional set-
tings is somewhat more natural than the extension for the two-stage estimator based
on the control function approach. In particular, it is useful to explore under what
conditions one can translate the sparsity or approximate sparsity assumption on the
coefficients β∗ in the triangular simultaneous equations model (2.1) and (2.2) to the
sparsity or approximate sparsity assumption on the coefficients β∗ and α∗ in the model
yi = xTi β∗ + ηiα

∗ + ξi where E(ηiξi) = E(xiξi) = 0. A simple sufficient condition for
such a translation is to impose the joint normality assumption of the error terms εi
and ηi = (ηi1, ..., ηip). Then, by the property of multivariate normal distributions, we
have E(εi|ηi) = ΣεηΣ−1

ηη ηTi . If we further assume only a few of the correlation coeffi-
cients (ρεiηi1 , ..., ρεiηip) (associated with the covariance matrix Σεη) are non-zero or most
of these correlation coefficients are too small to matter, the sparsity or approximate
sparsity can be carried to the model yi = xTi β∗ + ηiα

∗ + ξi. Then, we can obtain
consistent estimates of η, η̂, from the first-stage regression by either a standard least
square estimator when the first-stage regression concerns a small number of regressors
relative to n, or a least square estimator with l1- regularization (the Lasso or Dantzig
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selector) when the first-stage regression concerns a large number of regressors relative
to n, and then apply a Lasso technique in the second stage as follows

β̂HCF ∈ argminβ,α∈Rp : 1
2n |y −Xβ − η̂α|

2
2 + λn (|β|1 + |α|1) .

The statistical properties of β̂HCF can be analyzed in the same way as those of β̂H2SLS.
How this argument can be extended to non-Gaussian error settings is an interesting
question for future research.

2.6 Proofs for results in Chapter 2
For technical simplifications, in the following proofs, I assume without loss of generality
that the first moment of (yi, xi, zi) is zero for all i (if it is not the case, we can simply
subtract their population mean). Also, for notational simplicity, assume dj = d for
all j = 1, ..., p; additionally, as in most high-dimensional statistics literature, I assume
the regime of interest is p ≥ n and d ≥ n (except for Corollary 2.3.4 where d � n is
assumed). The modification to allow p < n or d < n or dj 6= dj′ for some j and j

′

is trivial. Also, as a general rule for the proofs, b constants denote positive constants
that do not involve n, p, d, k1 and k2 but possibly the sub-Gaussian parameters defined
in Assumptions 2.3.2-2.3.4; c constants denote universal positive constants that are
independent of both n, p, d, k1 and k2 as well as the sub-Gaussian parameters. The
specific values of these constants may change from place to place.

2.6.1 Lemma 2.3.1
Proof. First, write

y = Xβ∗ + ε = X∗β∗ + (Xβ∗ −X∗β∗ + ε)
= X∗β∗ + (ηβ∗ + ε)
= X̂β∗ + (X∗ − X̂)β∗ + ηβ∗ + ε

= X̂β∗ + e,

where e := (X∗ − X̂)β∗ + ηβ∗ + ε. Define v̂0 = β̂H2SLS − β∗ and the Lagrangian
L(β; λn) = 1

2n |y − X̂β|
2
2 + λn|β|1. Since β̂H2SLS is optimal, we have

L(β̂H2SLS; λn) ≤ L(β∗; λn) = 1
2n |e|

2
2 + λn|β∗|1,
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Some algebraic manipulation of the basic inequality above yields

0 ≤ 1
2n |X̂v̂

0|22 ≤
1
n
eT X̂v̂0 + λn

{
|β∗J(β∗)|1 − |(β∗J(β∗) + v̂0

J(β∗), v̂
0
J(β∗)c)|1

}
≤ |v̂0|1|

1
n
X̂T e|∞ + λn

{
|v̂0
J(β∗)|1 − |v̂0

J(β∗)c|1
}

≤ λn
2
{

3|v̂0
J(β∗)|1 − |v̂0

J(β∗)c |1
}
,

where the last inequality holds as long as λn ≥ 2| 1
n
X̂T e|∞ > 0. Consequently, |v̂0|1 ≤

4|v̂0
J(β∗)|1 ≤ 4

√
k2|v̂0

J(β∗)|2 ≤ 4
√
k2|v̂0|2. Note that we also have

1
2n |X̂v̂

0|22 ≤ |v̂0|1|
1
n
X̂T e|∞ + λn

{
|v̂0
J(β∗)|1 − |v̂0

J(β∗)c |1
}

≤ 4
√
k2|v̂0|2λn.

Since we assume in Lemma 2.3.1 that the random matrix Γ̂ = X̂T X̂ satisfies the RE
condition in Definition 1.1 from Chapter 1 with γ = 3, we have

|β̂H2SLS − β∗|2 ≤
c
′

δ

√
k2λn.

2.6.2 Theorem 2.3.2
As discussed in Section 2.3, the l2-consistency of β̂H2SLS requires verifications of two
conditions: (i) Γ̂ = X̂T X̂ satisfies the RE condition in Definition 1.1 from Chapter 1
with γ = 3, and (ii) the term | 1

n
X̂T e|∞ - f(k1, k2, d, p, n) with high probability. This

is done via Lemmas 2.6.1 and 2.6.2.

Lemma 2.6.1 (RE condition): Under Assumptions 2.1.1, 2.3.1, 2.3.3, 2.3.5 and the
condition

n % max{k1 log d, k1 log p},

we have, for some universal constants c, c1, and c2,

|X̂v0|22
n

≥ κ1|v0|22 − cκ2

√
k1 log max(p, d)

n
|v0|21, for all v0 ∈ Rp,
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with probability at least 1− c1 exp(−c2 log max(p, d)), where

κ1 = λmin(ΣX∗)
2 , κ2 = max {b0, b1} ,

b0 = λmin(ΣX∗) max
{

σ4
X∗

λ2
min(ΣX∗)

, 1
}
,

b1 =
σησZ

√
λmax(ΣZ)

λmin(ΣZ)
Proof. We have∣∣∣∣∣v0T X̂

T X̂

n
v0
∣∣∣∣∣+

∣∣∣∣∣v0T
(
X∗TX∗ − X̂T X̂

n

)
v0
∣∣∣∣∣ ≥

∣∣∣∣∣v0TX
∗TX∗

n
v0
∣∣∣∣∣ ,

which implies∣∣∣∣∣v0T X̂
T X̂

n
v0
∣∣∣∣∣ ≥

∣∣∣∣∣v0TX
∗TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣v0T
(
X∗TX∗ − X̂T X̂

n

)
v0
∣∣∣∣∣

≥
∣∣∣∣∣v0TX

∗TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣X∗TX∗ − X̂T X̂

n

∣∣∣∣∣
∞

∣∣∣v0
∣∣∣2
1

≥
∣∣∣∣∣v0TX

∗TX∗

n
v0
∣∣∣∣∣−

(∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

+
∣∣∣∣∣(X̂ −X∗)T X̂n

∣∣∣∣∣
∞

) ∣∣∣v0
∣∣∣2
1

≥
∣∣∣∣∣v0TX

∗TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

∣∣∣v0
∣∣∣2
1

−
∣∣∣∣∣(X̂ −X∗)TX∗n

∣∣∣∣∣
∞

∣∣∣v0
∣∣∣2
1
−
∣∣∣∣∣(X̂ −X∗)T (X̂ −X∗)

n

∣∣∣∣∣
∞

∣∣∣v0
∣∣∣2
1
.

To bound the term
∣∣∣∣X∗T (X̂−X∗)

n

∣∣∣∣
∞
, first note that by Lemma 2.13 in Loh and Wainwright

(2012), under Assumption 2.3.5 and the condition n % max{k1 log d, k1 log p}, we have

max
j=1,...,p

√√√√ 1
n

n∑
i=1

[
zij(π̂j − π∗j )

]2
≤
cσησZ

√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

with probability at least 1− c1 exp(−c2 log max(d, p)) where

λmin(ΣZ) = min
j=1,...,p

λmin(ΣZj),

λmax(ΣZ) = max
j=1,...,p

λmax(ΣZj).
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As a consequence,

max
j′ , j

∣∣∣∣ 1nx∗Tj′ (x̂j − x∗j )
∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

x∗ij′zij(π̂j − π
∗
j )
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

x∗2
ij′

√√√√ 1
n

n∑
i=1

[
zij(π̂j − π∗j )

]2

≤ c
′ σX∗σησZ

√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

where the last inequality follows from an application of Lemma 2.6.7 and a union bound.
To bound the term

∣∣∣∣ (X̂−X∗)T (X̂−X∗)
n

∣∣∣∣
∞
, we have,

∣∣∣∣∣(X̂ −X∗)T (X̂ −X∗)
n

∣∣∣∣∣
∞
≤ c

′′ σ2
ησ

2
Zλmax(ΣZ)
λ2

min(ΣZ)
k1 log max(d, p)

n

with probability at least 1− c1 exp(−c2 log max(p, d)).
Putting everything together, under the condition n % max{k1 log d, k1 log p} and

applying Lemma 2.6.9 with r = 0, we have∣∣∣∣∣v0T X̂
T X̂

n
v0
∣∣∣∣∣ ≥

∣∣∣∣∣v0TX
∗TX∗

n
v0
∣∣∣∣∣− c0

σX∗σησZ
√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

∣∣∣v0
∣∣∣2
1

≥ λmin(ΣX∗)
2

∣∣∣v0
∣∣∣2
2
− c0

σX∗σησZ
√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

∣∣∣v0
∣∣∣2
1

with probability at least 1 − c1 exp(−c2 log max(p, d)) (given d > n and p > n is the
regime of our interests). Notice the last inequality can be written in the form

|X̂v0|22
n

≥ κ1|v0|22 − cκ2

√
k1 log max(p, d)

n
|v0|21, for all v0 ∈ Rp.

�
In proving Lemma 2.3.1, upon our choice of λn, we have shown

v̂ = β̂H2SLS − β∗ ∈ C(J(β∗), 3),

which implies |v̂0|21 ≤ 16|v̂0
J(β∗)|21 ≤ 16k2|v̂0

J(β∗)|22. Therefore, if we have the scaling

1
n
k1k

2
2 log max(p, d) = O(1),
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so that

κ2k2

√
k1 log max(p, d)

n
< κ1,

then, ∣∣∣∣∣v̂0T X̂
T X̂

n
v̂0
∣∣∣∣∣ ≥ c0λmin(ΣX∗)

∣∣∣v̂0
∣∣∣2
2
,

provided ση, σZ , σX∗ , and λmax(ΣZ) are bounded from above while λmin(ΣZ) and
λmin(ΣX∗) are bounded away from 0. The above inequality implies RE (3).

Lemma 2.6.2 (Upper bound on | 1
n
X̂T e|∞): Under Assumptions 2.1.1, 2.3.1-2.3.3,

2.3.5, and the condition max{k1 log d, k1 log p}
n

= O(1), we have

| 1
n
X̂T e|∞ - max

ϕ1

√
k1 log max(p, d)

n
, ϕ2

√
log p
n

 ,
where

ϕ1 =
max {ση, σX∗ , σε}σZση

√
λmax(ΣZ)|β∗|1

λmin(ΣZ)λmin(ΣX∗)
,

ϕ2 = max
{
σX∗ση|β∗|1
λmin(ΣX∗)

,
σX∗σε

λmin(ΣX∗)

}
,

with probability at least 1 − c1 exp(−c2 log min(p, d)) for some universal constants c1
and c2.

Proof. We have
1
n
X̂T e = 1

n
X̂T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
= 1

n
X∗T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
+ 1
n

(X̂ −X∗)T
[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
.

Hence,

| 1
n
X̂T e|∞ ≤ | 1

n
X∗T (X̂ −X∗)β∗|∞ + | 1

n
X∗Tηβ∗|∞ + | 1

n
X∗T ε|∞ (2.4)

+ | 1
n

(X̂ −X∗)T (X̂ −X∗)β∗|∞ + | 1
n

(X̂ −X∗)Tηβ∗|∞ + | 1
n

(X̂ −X∗)T ε|∞.
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We need to bound each of the terms on the right-hand-side of the above inequality. Let
us first bound | 1

n
X∗T (X̂ −X∗)β∗|∞. We have

1
n
X∗T (X̂ −X∗)β∗ =


∑p
j=1 β

∗
j

1
n

∑n
i=1 x

∗
i1(x̂ij − x∗ij)

...∑p
j=1 β

∗
j

1
n

∑n
i=1 x

∗
ip(x̂ij − x∗ij)

 .
For any j ′ = 1, ..., p, we have

|
p∑
j=1

β∗j
1
n

n∑
i=1

x∗ij′ (x̂ij − x
∗
ij)| ≤ max

j′ , j
| 1
n

n∑
i=1

x∗ij′ (x̂ij − x
∗
ij)||β∗|1

=
∣∣∣∣∣X∗T (X̂ −X∗)

n

∣∣∣∣∣
∞
|β∗|1.

In proving Lemma 2.6.1, under the condition log max(p, d)
n

= O(1), we have,

∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞
≤ c

σX∗σησZ
√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n
,

with probability at least 1− c1 exp(−c2 log max(p, d)). Therefore,

| 1
n
X∗T (X̂ −X∗)β∗|∞ ≤ c|β∗|1

σX∗σησZ
√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n
.

The term | 1
n
(X̂−X∗)T (X̂−X∗)β∗|∞ can be bounded using a similar argument and we

have,

| 1
n

(X̂ −X∗)T (X̂ −X∗)β∗|∞ ≤ c|β∗|1
σ2
ησ

2
Zλmax(ΣZ)
λ2

min(ΣZ)
k1 log max(d, p)

n
,

with probability at least 1 − c1 exp(−c2 log max(p, d)). For the term | 1
n
X∗Tηβ∗|∞, we

have

| 1
n
X∗Tηβ∗|∞ ≤ max

j′ , j
| 1
n

n∑
i=1

x∗ij′ηij||β
∗|1

≤ cσX∗ση|β∗|1

√
log p
n

,
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with probability at least 1− c1 exp(−c2 log p). The last inequality follows from Lemma
2.6.7 and Assumption 2.1.1 that E(zij′ηij) = 0 for all j ′ , j as well as Assumption 2.3.2
that ηj is an i.i.d. zero-mean sub-Gaussian vector with parameter σ2

η for j = 1, ..., p,
and the random matrix Zj ∈ Rn×dj is sub-Gaussian with parameters (ΣZj , σ

2
Z) for

j = 1, ..., p. For the term | 1
n
(X∗ − X̂)Tηβ∗|∞, we have,

| 1
n

(X∗ − X̂)Tηβ∗|∞ ≤ c|β∗|1
σ2
ησZ

√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

with probability at least 1− c1 exp(−c2 log max(p, d)).
To bound the term | 1

n
X∗T ε|∞, note under Assumptions 2.3.2 and 2.3.3 as well as

Assumption 2.1.1 that E(zijεi) = 0 for all j = 1, ..., p, again by Lemma 2.6.7,

| 1
n
X∗T ε|∞ ≤ cσX∗σε

√
log p
n

,

with probability at least 1− c1 exp(−c2 log p).
For the term | 1

n
(X∗ − X̂)T ε|∞, we have

| 1
n

(X∗ − X̂)T ε|∞ ≤ c
σησZσε

√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

with probability at least 1− c1 exp(−c2 log max(p, d)).
Putting everything together, under the condition max{k1 log d, k1 log p}

n
= O(1), the claim

in Lemma 2.6.2 follows. �
Combining Lemmas 2.3.1, 2.6.1, and 2.6.2, we have

|β̂H2SLS − β∗|2 - max{ϕ1

√
k2

√
k1 log max(d, p)

n
, ϕ2

√
k2 log p
n
},

with probability at least 1 − c1 exp(−c2 log min(p, d)) for some universal positive con-
stants c1 and c2, which proves Theorem 2.3.2. �

2.6.3 Theorem 2.3.3
The verification of the RE condition in Definition 1.1 from Chapter 1 is done via Lemma
2.6.3. Combining Lemmas 2.6.2 and 2.6.3 yields the desired result.
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Lemma 2.6.3 (RE condition): Let r ∈ [0, 1]. Under Assumptions 2.1.1, 2.3.1, 2.3.3-
2.3.6, and the condition n % k3−2r

1 log max(p, d), we have, for some universal constants
c, c′ , c1, and c2,

|X̂v0|22
n

≥

κ1 − cκ2k
3/2−r
1

√
log max(p, d)

n

 |v0|22 − c
′
κ3
kr1 log max(p, d)

n
|v0|21,

for all v0 ∈ Rp, with probability at least 1− c1 exp(−c2 log max(p, d)), where

κ1 = λmin(ΣX∗)
2 , κ2 = max(b2b

−1
1 , b3b

−2
1 ), κ3 = max

{
b0, b2b

−1
1 , b3b

−2
1

}
,

b0 = λmin(ΣX∗) max
{

σ4
X∗

λ2
min(ΣX∗)

, 1
}
,

b1 = λmin(ΣZ)
ση

,

b2 = max
{
σX∗σW , sup

v∈K(2s, p)×K(k1, d1)×...×K(k1, dp)

∣∣∣v0T
[
E(x∗1j′z1jv

j)
]
v0
∣∣∣} ,

b3 = max
{
σ2
W , sup

v∈K(2s, p)×K2(k1, d1)×...×K2(k1, dp)

∣∣∣∣v0T
[
E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣
}
.

Proof. Again,∣∣∣∣∣v0T X̂
T X̂

n
v0
∣∣∣∣∣ ≥

∣∣∣∣∣v0TX
∗TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣v0T
(
X∗TX∗ − X̂T X̂

n

)
v0
∣∣∣∣∣

≥
∣∣∣∣∣v0TX

∗TX∗

n
v0
∣∣∣∣∣−

(∣∣∣∣∣v0TX
∗T (X̂ −X∗)

n
v0
∣∣∣∣∣+

∣∣∣∣∣v0T (X̂ −X∗)T X̂
n

v0
∣∣∣∣∣
)

≥
∣∣∣∣∣v0TX

∗TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣v0TX
∗T (X̂ −X∗)

n
v0
∣∣∣∣∣

−
∣∣∣∣∣v0T (X̂ −X∗)TX∗

n
v0
∣∣∣∣∣−

∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n

v0
∣∣∣∣∣ .

To bound the above terms, I apply a discretization argument motivated by the idea
in Loh and Wainwright (2012). This type of argument is often used in statistical
problems requiring manipulating and controlling collections of random variables indexed
by sets with an infinite number of elements. For the particular problem in this paper,
I work with the product space K(2s, p) × K(k1, d1) × ... × K(k1, dp) and K(2s, p) ×
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K2(k1, d1) × ... × K2(k1, dp). For s ≥ 1 and L ≥ 1, recall the notation K(s, L) :=
{v ∈ RL | |v|2 ≤ 1, |v|0 ≤ s}. Given V j ⊆ {1, ..., dj} and V 0 ⊆ {1, ..., p}, define
SV j = {v ∈ Rdj : |v|2 ≤ 1, J(v) ⊆ V j} and SV 0 = {v ∈ Rp : |v|2 ≤ 1, J(v) ⊆
V 0}. Note that K(k1, dj) = ∪|V j |≤k1SV j and K(2s, p) = ∪|V 0|≤2sSV 0 with s = s(r) :=
1
c

n
kr1 log max(p, d) min

{
λ2

min(ΣX∗ )
σ4
X∗

, 1
}
, r ∈ [0, 1]. The choice of s is explained in the proof

for Lemma 2.6.9. If Vj = {tj1, ..., tjmj} is a
1
9 -cover of SV j (V

0 = {t01, ..., t0m0} is a
1
9 -cover

of SV 0), for every vj ∈ SV j (v0 ∈ SV 0), we can find some tji ∈ Vj (t0i′ ∈ V
0) such that

|4vj|2 ≤ 1
9 (|4v0|2 ≤ 1

9), where 4v
j = vj − tji (respectively, 4v0 = v0 − t0

i′
). By

Ledoux and Talagrand (1991), we can construct Vj with |Vj| ≤ 81k1 and |V0| ≤ 812s.
Therefore, for v0 ∈ K(2s, p), there is some SV 0 and t0

i′
∈ V0 such that

v0TX
∗T (X̂ −X∗)

n
v0 = (t0i′ + v0 − t0i′ )

TX
∗T (X̂ −X∗)

n
(t0i′ + v0 − t0i′ )

= t0Ti′
X∗T (X̂ −X∗)

n
t0i′ + 24v0TX

∗T (X̂ −X∗)
n

t0i′

+4v0TX
∗T (X̂ −X∗)

n
4v0

with |4v0|2 ≤ 1
9 . Recall for the (j ′ , j) element of the matrix X∗T (X̂−X∗)

n
, we have

1
n

x∗Tj′ (x̂j − x∗j ) =
(

1
n

n∑
i=1

x∗ij′zij
)

(π̂j − π∗j ).

Let λmin(ΣZ)
cση

= b1. Notice that, under Assumptions 2.3.5 and 2.3.6,

|π̂j − π∗j |2b1

√
n

k1 log max(p, d) ≤ 1

and |supp(π̂j − π∗j )| ≤ k1 for every j = 1, ..., p. Define π̄j = (π̂j − π∗j )b1
√

n
k1 log max(p, d)

and hence, π̄j ∈ K(k1, dj) = ∪|V j |≤k1SV j . Therefore, there is some SV j with |V j| ≤ k1

and tji ∈ Vj (where Vj = {tj1, ..., tjmj} is a
1
9 -cover of SV j) such that

1
n
x∗Tj′ zj(π̂j − π∗j ) = 1

n
x∗Tj′ zj(tji + π̄j − tji )b−1

1

√
k1 log max(p, d)

n

= b−1
1

√
k1 log max(p, d)

n

( 1
n
x∗Tj′ zjtji + 1

n
x∗Tj′ zj4vj

)
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with |4vj|2 ≤ 1
9 . Denote a matrix A by

[
Aj′j

]
, where the (j ′ , j) element of A is Aj′j.

Define v = (v0, v1, ..., vp) ∈ SV := SV 0 × SV 1 × ...× SV p . Hence,∣∣∣∣∣v0TX
∗T (X̂ −X∗)

n
v0 − E(v0TX

∗T (X̂ −X∗)
n

v0)
∣∣∣∣∣

≤ sup
v∈SV

b−1
1

√
k1 log max(p, d)

n

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

≤ b−1
1

√
k1 log max(p, d)

n
{max
i′ , i

∣∣∣∣t0Ti′ [ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
t0i′
∣∣∣∣

+ sup
v∈SV

∣∣∣∣t0Ti′ [ 1
n
x∗Tj′ zj4vj − E(x∗1j′z1j4vj)

]
t0i′
∣∣∣∣

+ sup
v∈SV

2
∣∣∣∣4v0T

[ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
t0i′
∣∣∣∣

+ sup
v∈SV

2
∣∣∣∣4v0T

[ 1
n
x∗Tj′ zj4vj − E(x∗1j′z1j4vj)

]
t0i′
∣∣∣∣

+ sup
v∈SV

∣∣∣∣4v0T
[ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
4v0

∣∣∣∣
+ sup

v∈SV

∣∣∣∣4v0T
[ 1
n
x∗Tj′ zj4vj − E(x∗1j′z1j4vj)

]
4v0

∣∣∣∣}
≤ b−1

1

√
k1 log max(p, d)

n
{max
i′ , i

∣∣∣∣t0Ti′ [ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
t0i′
∣∣∣∣

+ sup
v∈SV

1
9

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

+ sup
v∈SV

2
9

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

+ sup
v∈SV

2
81

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

+ sup
v∈SV

1
81

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

+ sup
v∈SV

1
729

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣},
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where the last inequality uses the fact that 94vj ∈ SV j and 94v0 ∈ SV 0 . Therefore,

sup
v∈SV

b−1
1

√
k1 log max(p, d)

n

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣

≤ 729
458b

−1
1

√
k1 log max(p, d)

n
max
i′ , i

t0Ti′
[ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
t0i′

≤ 2b−1
1

√
k1 log max(p, d)

n
max
i′ , i

t0Ti′
[ 1
n
x∗Tj′ zjtji − E(x∗1j′z1jt

j
i )
]
t0i′ .

Under Assumptions 2.3.3 and 2.3.4, x∗
j′
is a sub-Gaussian vector with parameter at most

σX∗ for every j
′ = 1, ..., p, and Zjtji := wj is a sub-Gaussian vector with parameter at

most σW ∗ . An application of Lemma 2.6.7 and a union bound yields

P
(

sup
v∈SV

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj

]
v0 − v0T

[
E(x∗1j′z1jv

j)
]
v0
∣∣∣∣ ≥ t

)
≤

812sk1812s2 exp(−cnmin( t2

σ2
X∗σ

2
W

,
t

σX∗σW
)),

where the exponent 2sk1 in 812sk1 uses the fact that there are at most 2s non-zero
components in v0 ∈ SV 0 and hence only 2s out of p entries of v1, ..., vp will be multiplied
by a non-zero scalar, which leads to a reduction of dimensions. Let

Ω = K(2s, p)×K(k1, d1)× ...×K(k1, dp).

A second application of a union bound over the
(

dj
bk1c

)
≤ dk1 choices of V j and

respectively, the
(

p
b2sc

)
≤ p2s choices of V 0 yields

P
(

sup
v∈Ω

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj

]
v0 − v0T

[
E(x∗1j′z1jv

j)
]
v0
∣∣∣∣ ≥ t

)

≤ p2sd2sk1 · 2 exp(−cnmin( t2

σ2
X∗σ

2
W

,
t

σX∗σW
))

≤ 2 exp(−cnmin( t2

σ2
X∗σ

2
W

,
t

σX∗σW
) + 2sk1 log d+ 2s log p).
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With the choice of s = s(r) := 1
c

n
kr1 log max(p, d) min

{
λ2

min(ΣX∗ )
σ4
X∗

, 1
}
, r ∈ [0, 1] from the

proof for Lemma 6.9 and t = c
′
k1−r

1 σX∗σW for some universal constant c′ ≥ 1, we have∣∣∣∣∣v0TX
∗T (X̂ −X∗)

n
v0 − E[v0TX

∗T (X̂ −X∗)
n

v0]
∣∣∣∣∣

≤
(

sup
v∈Ω

∣∣∣∣v0T
[ 1
n
x∗Tj′ zjvj − E(x∗1j′z1jv

j)
]
v0
∣∣∣∣
)
b−1

1

√
k1 log max(p, d)

n

≤ c
′
b−1

1 k1−r
1

√
k1 log max(p, d)

n
σX∗σW

with probability at least

1− c′1 exp(−c′2nk1−r
1 )− c′′1 exp(−c′′2 log max(p, d)) = 1− c1 exp(−c2 log max(p, d))

(given d > n and p > n is the regime of our interests). Therefore, we have
∣∣∣∣∣v0TX

∗T (X̂ −X∗)
n

v0
∣∣∣∣∣ ≤

(
sup
v∈Ω

∣∣∣v0T
[
E(x∗1j′z1jv

j)
]
v0
∣∣∣) b−1

1

√
k1 log max(p, d)

n

+ c
′
b−1

1 k
3/2−r
1

√
log max(p, d)

n
σX∗σW

≤ cb2b
−1
1 k

3/2−r
1

√
log max(p, d)

n
,

where b2 = max
{
σX∗σW , supv∈Ω

∣∣∣v0T
[
E(x∗1j′z1jv

j)
]
v0
∣∣∣}. Notice that the term

sup
v∈Ω

∣∣∣v0T
[
E(x∗1j′z1jv

j)
]
v0
∣∣∣

is bounded above by the spectral norm of the matrix
[
E(x∗1j′z1jv

j)
]
for some v1×...×vp ∈

K(k1, d1)× ...×K(k1, dp).
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The term
∣∣∣∣v0T (X̂−X∗)T (X̂−X∗)

n
v0
∣∣∣∣ can be bounded using a similar argument. In par-

ticular, for the (j ′ , j) element of the matrix (X̂−X∗)T (X̂−X∗)
n

, we have

1
n

(x̂j′ − x∗j′ )
T (x̂j − x∗j ) = (π̂j′ − π∗j′ )

T

(
1
n

n∑
i=1

zij′zij
)

(π̂j − π∗j )

= 1
n

(tj
′

i′
+ π̄j′ − t

j
′

i′
)TzTj′zj(t

j
i + π̄j − tji )b−2

1
k1 log max(p, d)

n

= b−2
1
k1 log max(p, d)

n
{ 1
n
tj
′
T

i′
zTj′zjt

j
i + 1

n
4vj

′
TzTj′zjt

j
i

+ 1
n
tj
′
T

i′
zTj′zj4v

j + 1
n
4vj

′
TzTj′zj4v

j}

Combining with

v0T (X̂ −X∗)T (X̂ −X∗)
n

v0 = t0Ti′′
(X̂ −X∗)T (X̂ −X∗)

n
t0i′′

+24v0T (X̂ −X∗)T (X̂ −X∗)
n

t0i′′

+4v0T (X̂ −X∗)T (X̂ −X∗)
n

4v0,

Define SV := SV 0 × S2
V 1 × ...× S2

V p . After some tedious algebra, we obtain∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n

v0 − E(v0T (X̂ −X∗)T (X̂ −X∗)
n

v0)
∣∣∣∣∣

≤ sup
v∈SV

b−2
1
k1 log max(p, d)

n

∣∣∣∣v0T
[ 1
n
vj
′

zTj′zjv
j − vj

′

E(zT1j′z1j)vj
]
v0
∣∣∣∣

≤ b−2
1
k1 log max(p, d)

n
{max
i′′ , i′ , i

∣∣∣∣t0Ti′′ [ 1
n
tj
′
T

i′
zTj′zjt

j
i − E(tj

′

i′
zT1j′z1jt

j
i )
]
t0i′′
∣∣∣∣

+3439
6561 sup

v∈SV

∣∣∣∣v0T
[ 1
n
vj
′
TzTj′zjv

j − E(vj
′

zT1j′z1jv
j)
]
v0
∣∣∣∣}.

Hence,
sup
v∈SV

b−2
1
k1 log max(p, d)

n

∣∣∣∣v0T
[ 1
n
vj
′

zTj′zjv
j − E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣
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≤ 6561
3122b

−2
1
k1 log max(p, d)

n
max
i′′ , i′ , i

∣∣∣∣t0Ti′′ [ 1
n
tj
′
T

i′
zTj′zjt

j
i − E(tj

′

i′
zT1j′z1jt

j
i )
]
t0i′′
∣∣∣∣

≤ 3b−2
1
k1 log max(p, d)

n
max
i′′ , i′ , i

∣∣∣∣t0Ti′′ [ 1
n
tj
′
T

i′
zTj′zjt

j
i − E(tj

′

i′
zT1j′z1jt

j
i )
]
t0i′′
∣∣∣∣ .

Let
Ω1 = K(2s, p)×K2(k1, d1)× ...×K2(k1, dp).

An application of Lemma 2.6.7 and a sequence of union bounds yields

P
(

sup
v∈Ω1

∣∣∣∣v0T
[ 1
n
vj
′

zTj′zjv
j
]
v0 − v0T

[
E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣ ≥ t

)

≤ 2 exp(−cnmin( t
2

σ4
W

,
t

σ2
W

) + 4sk1 log d+ 2s log p).

Under the choice of s = s(r) := 1
c

n
kr1 log max(p, d) min

{
λ2

min(ΣX∗ )
σ4
X∗

, 1
}
, r ∈ [0, 1] from the

proof for Lemma 2.6.9 and t = c
′′
k1−r

1 σ2
W for some universal constant c′′ ≥ 1, we have,∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)

n
v0 − E[v0T (X̂ −X∗)T (X̂ −X∗)

n
v0]
∣∣∣∣∣

≤
(

sup
v∈Ω1

∣∣∣∣v0T
[ 1
n
vj
′

zTj′zjv
j
]
v0 − v0T

[
E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣
)
b−2

1
k1 log max(p, d)

n

≤ c
′′
b−2

1
k2−r

1 log max(p, d)
n

σ2
W

with probability at least

1− c′1 exp(−c′2nk1−r
1 )− c′′1 exp(−c′′2 log max(p, d)) = 1− c1 exp(−c2 log max(p, d))

(given d > n and p > n is the regime of our interests). Therefore, we have∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n

v0
∣∣∣∣∣ ≤

(
sup
v∈Ω1

∣∣∣∣v0T
[
E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣
)
b−2

1
k1 log max(p, d)

n
+ c

′′
b−2

1
k2−r

1 log max(p, d)
n

σ2
W
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≤ cb3b
−2
1
k2−r

1 log max(p, d)
n

,

where b3 = max
{
σ2
W , supv∈Ω1

∣∣∣∣v0T
[
E(vj

′
zT1j′z1jv

j)
]
v0
∣∣∣∣}. Notice that the term

sup
v∈Ω1

∣∣∣∣v0T
[
E(vj

′

zT1j′z1jv
j)
]
v0
∣∣∣∣

is bounded above by the spectral norm of the matrix
[
E(vj

′
zT1j′z1jv

j)
]
for some (v1 ×

...× vp)× (v1 × ...× vp) ∈ K2(k1, d1)× ...×K2(k1, dp).
By Lemma 2.6.8, the bound∣∣∣∣∣v0TX

∗T (X̂ −X∗)
n

v0
∣∣∣∣∣ ≤ cb2b

−1
1 k

3/2−r
1

√
log max(p, d)

n
∀v0 ∈ K(2s, p)

implies∣∣∣∣∣v0TX
∗T (X̂ −X∗)

n
v0
∣∣∣∣∣ ≤ 27cb2b

−1
1 k

3/2−r
1

√
log max(p, d)

n
(|v0|22 + 1

s
|v0|21) ∀v0 ∈ Rp.

(2.5)
Similarly, the bound∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)

n
v0
∣∣∣∣∣ ≤ c

′′
b3b
−2
1
k2−r

1 log max(p, d)
n

for all v0 ∈ K(2s, p) implies∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n

v0
∣∣∣∣∣ ≤ 27c′′b3b

−2
1
k2−r

1 log max(p, d)
n

(|v0|22+1
s
|v0|21) ∀v0 ∈ Rp.

(2.6)
Therefore, applying Lemma 2.6.9 by choosing

s = s(r) := 1
c

n

kr1 log max(p, d) min
{
λ2

min(ΣX∗)
,

σ4
X∗ , 1

}

r ∈ [0, 1], under the condition n % k3−2r
1 log max(p, d), we have

|X̂v0|22
n

≥

κ1 − cκ2k
3/2−r
1

√
log max(p, d)

n

 |v0|22 − c
′
κ3
kr1 log max(p, d)

n
|v0|21,



65

for all v0 ∈ Rp, with probability at least 1 − c1 exp(−c2 log max(p, d)), where κ1, κ2,
and κ2 are defined in the statement of Lemma 2.6.3.�

Again, recalling in proving Lemma 2.3.1, upon our choice λn, we have shown

v̂ = β̂H2SLS − β∗ ∈ C(J(β∗), 3),

and |v̂0|21 ≤ 16|v̂0
J(β∗)|21 ≤ 16k2|v̂0

J(β∗)|22. Therefore, if we have the scaling

minr∈[0, 1] max
{
k3−2r

1 log d, k3−2r
1 log p, kr1k2 log d, kr1k2 log p

}
n

= O(1),

so that

cκ2k
3/2−r
1

√
log max(p, d)

n
+ c

′
κ3
k2k

r
1 log max(p, d)

n
< κ1,

then, ∣∣∣∣∣v̂0T X̂
T X̂

n
v̂0
∣∣∣∣∣ ≥ c0λmin(ΣX∗)

∣∣∣v̂0
∣∣∣2
2
.

The above inequality implies the RE condition in Definition 1.1 from Chapter 1. Be-
cause the argument for showing Lemma 2.6.1 and that it implies the RE condition in
Definition 1.1 from Chapter 1 also works under the assumptions of Lemma 2.6.3, we
can combine the scaling k1k2

2 log max(p, d)
n

= O(1) from the proof for Lemma 2.6.1 with
the scaling minr∈[0, 1] max{k3−2r

1 log d, k3−2r
1 log p, kr1k2 log d, kr1k2 log p}
n

= O(1) from above to obtain
a more optimal scaling of the required sample size

min
{
k1k

2
2 log max(p, d), minr∈[0, 1] max

{
k3−2r

1 log d, k3−2r
1 log p, kr1k2 log d, kr1k2 log p

}}
=

O(n).

2.6.4 Corollary 2.3.4 and Theorem 2.3.5
Corollary 2.3.4 is obvious from Theorem 2.3.3. The proof for Theorem 2.3.5 is com-
pletely identical to that for Theorem 2.3.2 except we replace the inequality in Assump-
tion 2.3.5 by

max
j=1,...,p

|π̂j − π∗j |2 ≤M(d, p, k1, n).
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2.6.5 Lemma 2.6.4
Lemma 2.6.4: Suppose Assumption 2.3.7 holds. Let J(β∗) = K, ΣKcK := E

[
X∗T1,KcX∗1,K

]
,

Σ̂KcK := 1
n
X∗TKcX∗K , and Σ̃KcK := 1

n
X̂T
KcX̂K . Similarly, let ΣKK := E

[
X∗T1,KX

∗
1,K

]
,

Σ̂KK := 1
n
X∗TK X∗K , and Σ̃KK := 1

n
X̂T
KX̂K . If the assumptions in Lemmas 2.6.1 and

2.6.2 hold, then under the condition
1
n
k3

2 log p = O(1),
1
n
k1k

2
2 log max(p, d) = o(1),

the sample matrix 1
n
X̂T X̂ satisfies an analogous version of the “mutual incoherence”

assumption with high probability, i.e.,

P
[∥∥∥∥∥ 1
n
X̂T
KcX̂K

( 1
n
X̂T
KX̂K

)−1∥∥∥∥∥
∞
≥ 1− φ

4

]
≤ O

(
1

min(p, d)

)
.

Proof. I use the following decomposition similar to the method used in Ravikumar,
et. al. (2010)

Σ̃KcKΣ̃−1
KK − ΣKcKΣ−1

KK = R1 +R2 +R3 +R4 +R5 +R6,

where

R1 = ΣKcK [Σ̂−1
KK − Σ−1

KK ],
R2 = [Σ̂KcK − ΣKcK ]Σ−1

KK ,

R3 = [Σ̂KcK − ΣKcK ][Σ̂−1
KK − Σ−1

KK ],
R4 = Σ̂KcK [Σ̃−1

KK − Σ̂−1
KK ],

R5 = [Σ̃KcK − Σ̂KcK ]Σ̂−1
KK ,

R6 = [Σ̃KcK − Σ̂KcK ][Σ̃−1
KK − Σ̂−1

KK ].

By Assumption 2.3.7, we have ∥∥∥ΣKcKΣ−1
KK

∥∥∥
∞
≤ 1− φ.

It suffices to show that ||Ri||∞ ≤ φ
6 for i = 1, ..., 3 and ||Ri||∞ ≤ φ

12 for i = 4, ..., 6.
For the first term R1, we have

R1 = −ΣKcKΣ−1
KK [Σ̂KK − ΣKK ]Σ̂−1

KK ,
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Using the sub-multiplicative property ||AB||∞ ≤ ||A||∞||B||∞ and the elementary in-
equality ||A||∞ ≤

√
a||A||2 for any symmetric matrix A ∈ Ra×a, we can bound R1 as

follows:

||R1||∞ ≤
∥∥∥ΣKcKΣ−1

KK

∥∥∥
∞

∥∥∥Σ̂KK − ΣKK

∥∥∥
∞

∥∥∥Σ̂−1
KK

∥∥∥
∞

≤ (1− φ)
∥∥∥Σ̂KK − ΣKK

∥∥∥
∞

√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2
,

where the last inequality follows from Assumption 2.3.7. Using bound (2.13) from the
proof for Lemma 2.6.10, we have∥∥∥Σ̂−1

KK

∥∥∥
2
≤ 2
λmin(ΣKK)

with probability at least 1 − c1 exp(−c2n). Next, applying bound (2.8) from Lemma
2.6.10 with ε = φλmin(ΣKK)

12(1−φ)
√
k2
, we have

P
[∥∥∥Σ̂KK − ΣKK

∥∥∥
∞
≥ φλmin(ΣKK)

12(1− φ)
√
k2

]
≤ 2 exp(−bnmin{ 1

k3
2
,

1
k

3/2
2
}+ 2 log k2).

Then, we are guaranteed that

P[||R1||∞ ≥
φ

6 ] ≤ 2 exp(−bnmin{ 1
k3

2
,

1
k

3/2
2
}+ 2 log k2).

For the second term R2, we first write

||R2||∞ ≤
√
k2

∥∥∥Σ−1
KK

∥∥∥
2

∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

≤
√
k2

λmin(ΣKK)
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
.

An application of bound (2.7) from Lemma 2.6.10 with ε = φ
6
λmin(ΣKK)√

k2
to bound the

term
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

yields

P[||R2||∞ ≥
φ

6 ] ≤ 2 exp(−bnmin{ 1
k3

2
,

1
k

3/2
2
}+ log(p− k2) + log k2).

For the third term R3, by applying bounds (2.7) from Lemma 2.6.10 with ε = φλmin(ΣKK)
6

to bound the term
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

and (2.9) from Lemma 2.6.10 to bound the term∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
∞
, we have
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P[||R3||∞ ≥
φ

6 ] ≤ 2 exp(−bnmin{ 1
k2

2
,

1
k2
}+ log(p− k2) + log k2).

Putting everything together, we conclude that

P[||Σ̂KcKΣ̂−1
KK ||∞ ≥ 1− φ

2 ] ≤ O

(
exp(−bnmin{ 1

k3
2
,

1
k

3/2
2
}+ 2 log p)

)
.

For the fourth term R4, we have, with probability at least 1−c exp(−bnmin{ 1
k3

2
, 1
k

3/2
2
}+

2 log p),

||R4||∞ ≤
∥∥∥Σ̂KcKΣ̂−1

KK

∥∥∥
∞

∥∥∥Σ̃KK − Σ̂KK

∥∥∥
∞

∥∥∥Σ̃−1
KK

∥∥∥
∞

≤ (1− φ

2 )
∥∥∥Σ̃KK − Σ̂KK

∥∥∥
∞

√
k2

∥∥∥Σ̃−1
KK

∥∥∥
2
,

where the last inequality follows from the bound on ||Σ̂KcKΣ̂−1
KK ||∞ established previ-

ously. Using bounds (2.18) from the proof for Lemma 2.6.11, we have∥∥∥Σ̃−1
KK

∥∥∥
2
≤ 4
λmin(ΣKK)

with probability at least 1 − c1 exp(−c2 log max(p, d)). Next, applying bound (2.15)
from Lemma 2.6.11 with ε = φλmin(ΣKK)

48(1−φ2 )
√
k2

to bound the term
∥∥∥Σ̃KK − Σ̂KK

∥∥∥
∞

yields,

P[||R4||∞ ≥ φ

12] ≤ 6 exp(min{ −bn2

k1k3
2 log max(p, d) ,

−bn3/2

k
3/2
2

√
k1 log max(p, d)

}+ 2 log k2)

+c1 exp(−c2 log max(p, d)),

For the fifth term R5, using bound (2.13) from the proof for Lemma 2.6.10, we have

||R5||∞ ≤
√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2

∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞

≤ 2
√
k2

λmin(ΣKK)
∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞
.

An application of bound (2.14) from Lemma 2.6.11 with ε = φλmin(ΣKK)
24
√
k2

to bound the
term

∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞

yields

P[||R5||∞ ≥ φ

12] ≤ 6 exp(min{ −bn2

k1k3
2 log max(p, d) ,

−bn3/2

k
3/2
2

√
k1 log max(p, d)

}+ 2 log p)

+c1 exp(−c2 log max(p, d)),
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For the sixth term R6, by applying bounds (2.14) and (2.16) to bound the terms∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞

and
∥∥∥Σ̃−1

KK − Σ̂−1
KK

∥∥∥
∞

respectively, with ε = φ
12
λmin(ΣKK)

8 for (2.14),
we are guaranteed that

P[||R6||∞ ≥ φ

12] ≤ 6 exp(min{ −bn2

k1k2
2 log max(p, d) ,

−bn3/2

k2

√
k1 log max(p, d)

}+ 2 log p)

+c1 exp(−c2 log max(p, d)),

Under the assumptions in Lemmas 2.6.1 and 2.6.2 and the condition

1
n
k3

2 log p = O(1),
1
n
k1k

2
2 log max(p, d) = o(1),

putting the bounds on R1 −R6 together, we conclude that

P[||Σ̃KcKΣ̃−1
KK ||∞ ≥ 1− φ

4 ] ≤ O

(
1

min(p, d)

)
.

�

2.6.6 Theorem 2.3.6
The proof for Theorem 2.3.6 is based on a construction called Primal-Dual Witness
(PDW) method developed by Wainwright (2009) (also see Wainwright, 2015). This
method constructs a pair (β̂, µ̂). When this procedure succeeds, the constructed pair
is primal-dual optimal, and acts as a witness for the fact that the Lasso has a unique
optimal solution with the correct signed support. The procedure is described in the
following.

(i) Set β̂J(β∗)c = 0.

(ii) Obtain (β̂J(β∗), µ̂J(β∗)) by solving the oracle subproblem

β̂J(β∗) ∈ arg min
βJ(β∗)∈Rk2

{ 1
2n |y − X̂J(β∗)βJ(β∗)|22 + λn|βJ(β∗)|1},

and choose µ̂J(β∗) ∈ ∂|β̂J(β∗)|1, where ∂|β̂J(β∗)|1 denotes the set of subgradients at
β̂J(β∗) for the function | · |1 : Rk2 → R.
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(iii) Solve for µ̂J(β∗)c via the zero-subgradient equation

1
n
X̂T (y − X̂β̂) + λnµ̂ = 0,

and check whether or not the strict dual feasibility condition |µ̂J(β∗)c |∞ < 1 holds.

The proof for the first claim in Theorem 2.3.6 is established in Lemma 2.6.5, which
shows that β̂H2SLS = (β̂K , 0) where β̂K is the solution obtained in step 2 of the PDW
construction (recall we let J(β∗) := K and J(β∗)c := Kc for notational convenience in
Lemma 2.6.4). The second and third claims are proved using Lemma 2.6.6. The last
claim is a consequence of the third claim.

Lemma 2.6.5: If the PDW construction succeeds and if λmin(ΣKK) ≥ Cmin > 0,
then the vector (β̂K , 0) ∈ Rp is the unique optimal solution of the Lasso.

Proof. The proof for Lemma 2.6.5 adopts the proof for Lemma 1 from Chapter 6.4.2 of
Wainwright (2015). If the PDW construction succeeds, then β̂ = (β̂K , 0) is an optimal
solution with associated subgradient vector µ̂ ∈ Rp satisfying |µ̂Kc |∞ < 1, and

〈
µ̂, β̂

〉
=

|β̂|1. Suppose β̃ is another optimal solution. Letting F (β) = 1
2n |y− X̂β|

2
2, then F (β̂) +

λn
〈
µ̂, β̂

〉
= F (β̃)+λn|β̃|1, and hence F (β̂)−λn

〈
µ̂, β̃ − β̂

〉
= F (β̃)+λn

(
|β̃|1 −

〈
µ̂, β̃

〉)
.

However, by the zero-subgradient2 conditions for optimality, we have λnµ̂ = −∇F (β̂),
which implies that F (β̂) +

〈
∇F (β̂), β̃ − β̂

〉
−F (β̃) = λn

(
|β̃|1 −

〈
µ̂, β̃

〉)
. By convexity

of F , the left-hand side is non-positive, which implies that |β̃|1 ≤
〈
µ̂, β̃

〉
. But since

we also have
〈
µ̂, β̃

〉
≤ |µ̂|∞|β̃|1, we must have |β̃|1 =

〈
µ̂, β̃

〉
. Since |µ̂Kc |∞ < 1, this

equality can only occur if β̃j = 0 for all j ∈ Kc. Thus, all optimal solutions are sup-
ported only on K, and hence can be obtained by solving the oracle subproblem in the
PDW procedure described in Section 2.3.2. If λmin(ΣKK) ≥ Cmin > 0, this subproblem
is strictly convex, and hence it has a unique minimizer. �

2Given a convex function g : Rp 7→ R, µ ∈ Rp is a subgradient at β, denoted by µ ∈ ∂g(β), if
g(β + 4) ≥ g(β) + 〈µ, 4〉 for all 4 ∈ Rp. When g(β) = |β|1, notice that µ ∈ ∂|β|1 if and only if
µj = sign(βj) for all j = 1, ..., p, where sign(0) is allowed to be any number in [−1, 1].
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Lemma 2.6.6: Suppose Assumptions 1.1, 3.1-3.3, 3.5 and 3.7 hold. Let

ϕ1 =
ση
√
λmax(ΣZ)|β∗|1

λmin(ΣZ)λmin(ΣKK) ,

ϕ2 = max
{
σX∗ση|β∗|1
λmin(ΣKK) ,

σX∗σε
λmin(ΣKK)

}
,

ϕ3 =
max {ση, σX∗ , σε}σησZ

√
λmax(ΣZ)|β∗|1

λmin(ΣZ)

With the choice of the tuning parameter

λn ≥ c
′ 48(2− φ

4 )
φ

max

ϕ3

√
k1 log max(p, d)

n
, σX∗ση|β∗|1

√
log p
n

, σX∗σε

√
log p
n


� k2

√
k1 log max(p, d)

n
,

and under the conditions
1
n
k3

2 log p = O(1),
1
n
k1k

2
2 log max(p, d) = o(1),

we have |µ̂Kc|∞ ≤ 1 − φ
8 with probability at least 1 − c1 exp(−c2 log min(p, d)). Fur-

thermore,

|β̂K − β∗K |∞ ≤ cmax

ϕ1k2

√
k1 log max(p, d)

n
, ϕ2

√
k2 log p
n

 ,
with probability at least 1− c1 exp(−c2 log min(p, d)).

Proof. By construction, the sub-vectors β̂K , µ̂K , and µ̂Kc satisfy the zero-subgradient
condition in the PDW construction. Recall e := (X − X̂)β∗ + ηβ∗ + ε from Lemma
2.3.1. With the fact that β̂Kc = β∗Kc = 0, we have

1
n
X̂T
KX̂K

(
β̂K − β∗K

)
+ 1
n
X̂T
Ke+ λnµ̂K = 0,

1
n
X̂T
KcX̂K

(
β̂K − β∗K

)
+ 1
n
X̂T
Kce+ λnµ̂Kc = 0.
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From the equations above, by solving for the vector µ̂Kc ∈ Rp−k2 , we obtain

µ̂Kc = − 1
nλn

X̂T
KcX̂K

(
β̂K − β∗K

)
− X̂T

Kc

e

nλn
,

β̂K − β∗K = −
( 1
n
X̂T
KX̂K

)−1 X̂T
Ke

n
− λn

(
X̂T
KX̂K

n

)−1

µ̂K ,

which yields

µ̂Kc =
(
Σ̃KcKΣ̃−1

KK

)
µ̂K +

(
X̂T
Kc

e

nλn

)
−
(
Σ̃KcKΣ̃−1

KK

)
X̂T
K

e

nλn
.

By the triangle inequality, we have

|µ̂Kc|∞ ≤
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

+
∣∣∣∣X̂T

Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

∣∣∣∣X̂T
K

e

nλn

∣∣∣∣
∞
,

where the fact that |µ̂K |∞ ≤ 1 is used in the inequality above. By Lemma 2.6.4, we
have

∥∥∥Σ̃KcKΣ̃−1
KK

∥∥∥
∞
≤ 1− φ

4 with probability at least 1− c exp(− log min(p, d)). Hence,

|µ̂Kc|∞ ≤ 1− φ

4 +
∣∣∣∣X̂T

Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

∣∣∣∣X̂T
K

e

nλn

∣∣∣∣
∞

≤ 1− φ

4 +
(

2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
.

Therefore, it suffices to show that
(
2− φ

4

) ∣∣∣X̂T e
nλn

∣∣∣
∞
≤ φ

8 with high probability. This
result is established in Lemma 2.6.12. Thus, we have |µ̂Kc |∞ ≤ 1− φ

8 with high proba-
bility.

It remains to establish a bound on the l∞−norm of the error β̂K − β∗K . By the
triangle inequality, we have

|β̂K − β∗K |∞ ≤

∣∣∣∣∣∣
(
X̂T
KX̂K

n

)−1
X̂T
Ke

n

∣∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1∥∥∥∥∥∥
∞

∣∣∣∣∣X̂T
Ke

n

∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1∥∥∥∥∥∥
∞

,

Using bound (2.18) from Lemma 2.6.11, we have∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1∥∥∥∥∥∥
∞

≤ 2
√
k2

λmin(Σ̂KK)
≤ 4

√
k2

λmin(ΣKK) .
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By Lemma 2.6.2, we have, with probability at least 1− c1 exp(−c2 log min(p, d)),

| 1
n
X̂T e|∞ - max

{
ϕ3

√
k1 log max(p, d)

n
, σX∗ση|β∗|1

√
log p
n
, σX∗σε

√
log p
n

}
.

Putting everything together, with the choice of λn given in the statement of Lemma
2.6.6, we obtain

|β̂K − β∗K |∞ ≤ cmax

ϕ1

√
k1k2 log max(p, d)

n
, ϕ2

√
k2 log p
n

 ,
with probability at least 1− c1 exp(−c2 log min(p, d))), as claimed. �

2.6.7 Lemmas 2.6.7-2.6.12
Lemma 2.6.7: If X ∈ Rn×p1 is a zero-mean sub-Gaussian matrix with parameters
(ΣX , σ

2
X), then for any fixed (unit) vector v ∈ Rp1 , we have

P(
∣∣∣|Xv|22 − E[|Xv|22]

∣∣∣ ≥ nt) ≤ 2 exp(−cnmin{ t
2

σ4
X

,
t

σ2
X

}).

Moreover, if Y ∈ Rn×p2 is a zero-mean sub-Gaussian matrix with parameters (ΣY , σ
2
Y ),

then
P(|Y

TX

n
− cov(yi, xi)|∞ ≥ t) ≤ 6p1p2 exp(−cnmin{ t2

σ2
Xσ

2
Y

,
t

σXσY
}),

where xi and yi are the ith rows of X and Y , respectively. In particular, if n % log p,
then

P(|Y
TX

n
−cov(yi, xi)|∞ ≥ c0σXσY

√
log (max{p1, p2})

n
) ≤ c1 exp(−c2 log (max{p1, p2})).

Remark. Lemma 2.6.7 is Lemma 14 in Loh and Wainwright (2012).

Lemma 2.6.8: For a fixed matrix Γ ∈ Rp×p, parameter s ≥ 1, and tolerance τ > 0,
suppose we have the deviation condition

|vTΓv| ≤ τ ∀v ∈ K(2s, p).

Then,
|vTΓv| ≤ 27τ

(
|v|22 + 1

s
|v|21

)
∀v ∈ Rp.



74

Remark. Lemma 2.6.8 is Lemma 12 in Loh and Wainwright (2012).

Lemma 2.6.9: Under Assumptions 2.1.1 and 2.3.3, we have

|X∗v0|22
n

≥ κ1|v0|22 − κ2
kr1 log max(p, d)

n
|v0|21, for all v0 ∈ Rp, r ∈ [0, 1]

with probability at least 1− c1 exp(−c2n), where

κ1 = λmin(ΣX∗)
2

and κ2 = c0λmin(ΣX∗) max
{

σ4
X∗

λ2
min(ΣX∗ ) , 1

}
.

Proof. First, we show

sup
v0∈K(2s, p)

∣∣∣∣∣v0T
(
X∗TX∗

n
− ΣX∗

)
v0
∣∣∣∣∣ ≤ λmin(ΣX∗)

54

with high probability, where ΣX∗ = E(X∗TX∗). Under Assumption 2.3.3, we have that
X∗ is sub-Gaussian with parameters (ΣX∗ , σX∗). Therefore, by Lemma 2.6.8 and a
discretization argument similar to those in Lemma 2.6.3, we have

P
(

sup
v0∈K(2s, p)

∣∣∣∣∣v0T
(
X∗TX∗

n
− ΣX∗

)
v0
∣∣∣∣∣ ≥ t

)
≤ 2 exp(−cnmin( t2

σ4
X∗
,

t

σ2
X∗

) + 2s log p),

for some universal constants c > 0. By choosing t = λmin(ΣX∗ )
54 and

s = s(r) := 1
c′

n

kr1 log max(p, d) min
{
λ2

min(ΣX∗)
σ4
X∗

, 1
}
, r ∈ [0, 1],

where c′ is chosen sufficiently small so that s ≥ 1, we get

P
(

sup
v0∈K(2s, p)

∣∣∣∣∣v0T
(
X∗TX∗

n
− ΣX∗

)
v0
∣∣∣∣∣ ≥ λmin(ΣX∗)

54

)
≤ 2 exp(−c2nmin(λ

2
min(ΣX∗)
σ4
X∗

, 1)).

Now, by Lemma 2.6.8 and the following substitutions

Γ = X∗TX∗

n
− ΣX∗ , and τ := λmin(ΣX∗)

54 ,
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we obtain ∣∣∣∣∣v0T
(
X∗TX∗

n
− ΣX∗

)
v0
∣∣∣∣∣ ≤ λmin(ΣX∗)

2

(
|v0|22 + 1

s
|v0|21

)
,

which implies

v0TX
∗TX∗

n
v0 ≥ v0TΣX∗v

0 − λmin(ΣX∗)
2

(
|v0|22 + 1

s
|v0|21

)
.

Recalling the choice of

s = s(r) := 1
c′

n

kr1 log max(p, d) min
{
λ2

min(ΣX∗)
σ4
X∗

, 1
}
, r ∈ [0, 1],

where c′ is chosen sufficiently small so s ≥ 1, the claim follows. �

Lemma 2.6.10: Suppose Assumptions 2.1.1 and 2.3.3 hold. For any ε > 0 and
constant c, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
≥ ε

}
≤ (p− k2)k2 · 2 exp(−cnmin{ ε2

4k2
2σ

4
X∗
,

ε

2k2σ2
X∗
}), (2.7)

P
{∥∥∥Σ̂KK − ΣKK

∥∥∥
∞
≥ ε

}
≤ k2

2 · 2 exp(−cnmin{ ε2

4k2
2σ

4
X∗
,

ε

2k2σ2
X∗
}). (2.8)

Furthermore, under the scaling n % k2 log p, for constants b1 and b2, we have
∥∥∥Σ̂−1

KK − Σ−1
KK

∥∥∥
∞
≤ 1
λmin(ΣKK) , (2.9)

with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)
4k2σ4

X∗
, λmin(ΣKK)

2
√
k2σ2

X∗
}).

Proof. Denote the element (j ′ , j) of the matrix difference Σ̂KcK − ΣKcK by uj′j. By
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the definition of the l∞matrix norm, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
≥ ε

}
= P

max
j′∈Kc

∑
j∈K
|uj′j| ≥ ε


≤ (p− k2)P

∑
j∈K
|uj′j| ≥ ε


≤ (p− k2)P

{
∃j ∈ K | |uj′j| ≥

ε

k2

}
≤ (p− k2)k2P

{
|uj′j| ≥

ε

k2

}
≤ (p− k2)k2 · 2 exp(−cnmin{ ε2

k2
2σ

4
X∗
,

ε

k2σ2
X∗
}),

where the last inequality follows the deviation bound for sub-exponential random vari-
ables, i.e., Lemma 2.6.7. Bound (2.8) can be obtained in a similar way except that the
pre-factor (p− k2) is replaced by k2. To prove the last bound (2.9), write∥∥∥Σ̂−1

KK − Σ−1
KK

∥∥∥
∞

=
∥∥∥Σ−1

KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
∞

=
√
k2

∥∥∥Σ−1
KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
2

=
√
k2

∥∥∥Σ−1
KK

∥∥∥
2

∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2

≤
√
k2

λmin(ΣKK)
∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2
. (2.10)

To bound the term
∥∥∥ΣKK − Σ̂KK

∥∥∥
2
in (2.10), applying Lemma 2.6.7 with XTX = Σ̂KK

and t = λmin(ΣKK)
2
√
k2

yields
∥∥∥Σ̂KK − ΣKK

∥∥∥
2
≤ λmin(ΣKK)

2
√
k2

,

with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)
4k2σ4

X∗
, λmin(ΣKK)

2
√
k2σ2

X∗
}).

To bound the term
∥∥∥Σ̂−1

KK

∥∥∥
2
in (2.10), note that we can write

λmin(ΣKK) = min
||h′ ||2=1

h
′TΣKKh

′

= min
||h′ ||2=1

[
h
′T Σ̂KKh

′ + h
′T (ΣKK − Σ̂KK)h′

]
≤ hT Σ̂KKh+ hT (ΣKK − Σ̂KK)h (2.11)
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where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̂KK . Applying Lemma 2.6.7
yields ∣∣∣hT (ΣKK − Σ̂KK

)
h
∣∣∣ ≤ λmin(ΣKK)

2
with probability at least 1− c1 exp(−c2n). Therefore,

λmin(ΣKK) ≤ λmin(Σ̂KK) + λmin(ΣKK)
2

=⇒ λmin(Σ̂KK) ≥ λmin(ΣKK)
2 , (2.12)

and consequently, ∥∥∥Σ̂−1
KK

∥∥∥
2
≤ 2
λmin(ΣKK) . (2.13)

Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
∞
≤

√
k2

λmin(ΣKK)
λmin(ΣKK)

2
√
k2

2
λmin(ΣKK) = 1

λmin(ΣKK) .

with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)
4k2σ4

X∗
, λmin(ΣKK)

2
√
k2σ2

X∗
}). �

Lemma 2.6.11: Suppose the assumptions in Lemmas 2.6.1 and 6.2 hold. For any
ε > 0, under the condition k1k2

2 log max(p, d)
n

= o(1), we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤

6(p− k2)k2 · exp(−cnmin{ nε2

k1k2
2 log max(p, d) ,

√
nε

k2

√
k1 log max(p, d)

})

+c1 exp(−c2 log max(p, d)), (2.14)

P
{∥∥∥Σ̃KK − Σ̂KK

∥∥∥
∞
≥ ε

}
≤

6k2
2 · exp(−cnmin{ nε2

k1k2
2 log max(p, d) ,

√
nε

k2

√
k1 log max(p, d)

})

+c1 exp(−c2 log max(p, d)). (2.15)
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Furthermore, we have

∥∥∥Σ̃−1
KK − Σ̂−1

KK

∥∥∥
∞
≤ 8
λmin(ΣKK) with probability at least 1−c1 exp(−c2 log max(p, d)).

(2.16)
Proof. Denote the element (j ′ , j) of the matrix difference Σ̃KcK− Σ̂KcK by wj′j. Using
the same argument as in Lemma 2.6.10, we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤ (p− k2)k2P

{
|wj′j| ≥

ε

k2

}
.

Following the derivation of the upper bounds on
∣∣∣∣ (X̂−X∗)TX∗n

∣∣∣∣
∞

and
∣∣∣∣ (X̂−X∗)T (X̂−X∗)

n

∣∣∣∣
∞

in the proof for Lemma 2.6.2 and the identity

1
n

(
Σ̃KcK − Σ̂KcK

)
= 1
n
X∗TKc(X̂K−X∗K)+ 1

n
(X̂Kc−X∗Kc)TX∗K+ 1

n
(X̂Kc−X∗Kc)T (X̂K−X∗K),

we notice that to upper bound |wj′j|, it suffices to upper bound 3 ·
∣∣∣ 1
n
x∗T
j′

(x̂j − x∗j )
∣∣∣.

From the proof for Lemma 2.6.2, we have
∣∣∣∣ 1nx∗Tj′ (x̂j − x∗j )

∣∣∣∣ ≤
√√√√ 1
n

n∑
i=1

x∗2
ij′

√√√√ 1
n

n∑
i=1

[
zij(π̂j − π∗j )

]2

≤ c

√√√√ 1
n

n∑
i=1

x∗2
ij′

σησZ
√
λmax(ΣZ)

λmin(ΣZ)

√
k1 log max(d, p)

n

and

P
[
max
j′

1
n

n∑
i=1

x∗2ij′ ≥ σ2
X∗ + t

]
≤ 6(p− k2) exp(−cnmin{ t2

σ2
X∗σ

2
Z

,
t

σX∗σZ
}).

Under the condition k1k2
2 log max(p, d)

n
= o(1), setting t = ε

σ2
X∗λmin(ΣZ)

cσησZ
√
λmax(ΣZ)

√
n

k1k2
2 log max(p, d)

for any ε > 0 yields
P
[
|wj′j| ≥

ε

k2

]
≤

6 exp(−cnmin{ nε2

k1k2
2 log max(p, d) ,

√
nε

k2

√
k1 log max(p, d)

})

+c1 exp(−c2 log max(p, d)).
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Therefore,
P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤

6(p− k2)k2 · exp(−cnmin{ nε2

k1k2
2 log max(p, d) ,

√
nε

k2

√
k1 log max(p, d)

})

+c1 exp(−c2 log max(p, d)).
Bound (2.15) can be obtained in a similar way except that the pre-factor (p − k2) is
replaced by k2.

To prove bound (2.16), by applying the same argument as in Lemma 2.6.10, we have
∥∥∥Σ̃−1

KK − Σ̂−1
KK

∥∥∥
∞
≤

√
k2

λmin(Σ̂KK)

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2

≤ 2
√
k2

λmin(ΣKK)
∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2
,

where the last inequality comes from bound (2.12).
To bound the term

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2
, applying bound (2.15) with ε = λmin(ΣKK)√

k2
yields∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2
≤

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
∞

≤ λmin(ΣKK)√
k2

, (2.17)

with probability at least

1− 6k2
2 · exp(−cnmin{ n

k1k3
2 log max(p, d) ,

√
n

k
3/2
2

√
k1 log max(p, d)

})

−c1 exp(−c2 log max(p, d)) ≥ 1−O
(

1
max(p, d)

)

if k
1/2
1 k2

2 log max(p, d)
n

= O(1).
To bound the term

∥∥∥Σ̃−1
KK

∥∥∥
2
, again we have,

λmin(Σ̂KK) ≤ hT Σ̃KKh+ hT (Σ̂KK − Σ̃KK)h
≤ hT Σ̃KKh+ k2

∣∣∣Σ̂KK − Σ̃KK

∣∣∣
∞

≤ hT Σ̃KKh+ bk2

√
k1 log max(p, d)

n
,
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where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̃KK . The last inequality follows
from the bounds on

∣∣∣∣ (X̂−X∗)TX∗n

∣∣∣∣
∞

and
∣∣∣∣ (X̂−X∗)T (X̂−X∗)

n

∣∣∣∣
∞

from the proof for Lemma 2.6.1

with probability at least 1 − c1 exp(−c2 log max(p, d)). Therefore, if k1k2
2 log max(p, d)

n
=

o(1), then we have

λmin(Σ̃KK) ≥ λmin(Σ̂KK)
2

=⇒
∥∥∥Σ̃−1

KK

∥∥∥
2
≤ 2

λmin(Σ̂KK)

≤ 4
λmin(ΣKK) , (2.18)

where the last inequality follows from bound (2.12) from the proof for Lemma 2.6.10.
Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ̃−1

KK

∥∥∥
∞
≤ 2

√
k2

λmin(ΣKK)
λmin(ΣKK)√

k2

4
λmin(ΣKK) = 8

λmin(ΣKK) .

with probability at least 1− c1 exp(−c2 log max(p, d)).

Lemma 2.6.12: Suppose the conditions in Lemma 2.6.2 hold. With the choice of
the tuning parameter

λn ≥ c
′ 8(2− φ

4 )
φ

max

ϕ3

√
k1 log max(p, d)

n
, σX∗ση|β∗|1

√
log p
n

, σX∗σε

√
log p
n


� k2

√
k1 log max(p, d)

n
,

for some sufficiently large constant c > 0, then, we have(
2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
≤ φ

8 ,

with probability at least 1− c1 exp(−c2 log min(p, d)).
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Proof. From the proof for Lemma 2.6.2, given the choice of λn in Lemma 2.6.12
for some sufficiently large constant c′ > 0, we have(

2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
≤ φ

8 ,

with probability at least 1− c1 exp(−c2 log min(p, d)).�



82

Chapter 3

High-Dimensional Semiparametric
Sample Selection Models

3.1 Introduction
The object of interest of this chapter is a class of high-dimensional selection mod-
els under a weak nonparametric restriction on the form of the selection correction.
Observational studies are rarely based on pure random samples. When a sample, in-
tentionally or unintentionally, is based in part on values taken by a dependent variable
(e.g., Gronau, 1973; Heckman, 1974), parameter estimates without corrective measures
may be inconsistent. Such samples can be broadly defined as selected samples. Se-
lection may be due to self-selection, with the outcome of interest determined in part
by individual choice of whether or not to participate in the activity of interest. It can
also result from endogenous stratification, with those who participate in the activity of
interest deliberately oversampled - an extreme case being sampling only participants.

In the classical low-dimensional selection models, parameter estimates obtained from
OLS may be inconsistent unless corrective measures are taken. For the parametric case
where the error terms are jointly normally distributed and homoskedastic, the most
well-known estimator is Heckman’s two-step procedure (1974, 1976). For semiparamet-
ric estimation of the parameters of selection models when the joint distribution of the
error terms is of unknown form, many estimators have adopted the two-step estima-
tion strategy similar to Heckman’s, under an additional “single-index” restriction on
the form of the selection equation. Several estimators of the parameters of the selec-
tion equation have been proposed in the literature on semiparametric estimation; while
some of these methods sidestep estimation of the unknown distribution function of the
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errors (e.g., Manski, 1975 and 1985; Han, 1987), others use nonparametric regression
methods to estimate this distribution function along with the parameters of the under-
lying regression function (e.g., Cosslett, 198l; Ichimura, 1987; Klein and Spady, 1987).
Similarly, the methods for estimation of the parameters in the second stage also involve
nonparametric regression methods, which are applied either to estimation of the selec-
tion correction function directly (Lee, 1982; Cosslett, 1991; Gallant and Nychka, 1987;
Ichimura and Lee, 1991; Newey, 1991) or to estimation of other regression functions
which depend upon the estimated single index (Powell, 1989; Ahn and Powell, 1993).

Selection models have not been considered in high-dimensional settings even though
many economic applications actually fit into this setup. On the demand side, selection
models are used in the context where a consumer faces choosing a service (such as
electricity, cell phone service, etc.) or brand followed by the amount of utilization
or the number of quantities to purchase conditional on the chosen service or brand
(e.g., Krishnamurth and Raj, 1988; Chintagunta, 1993; Fox, Kim, and Yang, 2013).
On the firms’ side, selection models are useful for situations where a firm first decides
on its product positioning and then a pricing scheme based on the chosen product
type. For example, a grocery store sometimes needs to choose which products to put
on sales or promotions and then the amount of discount on these chosen products; a
gas station first chooses to be either a two-product station offering both self-service
and full-service gasoline or a single-product station offering only full-service or self-
service gasoline, and then decides on a pricing scheme conditional on the choice of
the station type (Iyer and Seetharaman, 2003). Selection models are also seen in the
auction literature (e.g., Roberts and Sweeting, 2011, 2012); in particular, by estimating
a Heckman selection model with the exclusion restriction that potential competition
affects a bidder’s decision to enter an auction, but has no direct effect on the values of
the bids, Roberts and Sweeting (2011) presents reduced form evidence that the auction
data are best explained by a selection model.

In estimating the underlying selection models to study these empirical problems,
analysis has been restricted to only a low-dimensional set of explanatory variables in
both the selection equation and the main equation. However, the actual information
available to these empirical problems can be far richer than what has been used by the
researchers. More importantly, economic theory is not always explicit about the vari-
ables that belong to the true model (e.g., Sala-i-Martin, 1997 concerning development
economics). In the selection models used for consumer demand estimation, the number
of explanatory variables formed by the characteristics (and the transformations of these
characteristics) of a service or brand can be very large. In the grocery store example,
when choosing whether to put a product on sale and the amount of discount, the store
often considers not only the own characteristics of this product but also character-
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istics of other products. All these characteristics can potentially exceed the number
of products chosen to be on sale (namely, the sample size of the observations in the
main-equation), which makes it a high-dimensional selection problem. Similarly, in the
bidder example, when deciding whether to enter an auction, a bidder considers poten-
tial competition from other bidders; when deciding on the values of its bid upon the
entry decision, the bidder may still consider competition from the set of other “enters”.
Consequently, the number of explanatory variables entering the selection equation and
the main equation may grow with the number of bidders.

In the gasoline example mentioned above, besides the large number of station charac-
teristics and demographic characteristics which amount to approximately 400 regressors
with only 700 gas stations in the data studied by Iyer and Seetharaman (2008), more
explanatory variables can be obtained by utilizing the geographic information and spa-
tial data. In particular, geographic information may be used to analyze the interaction
between different gas stations and identify the competitive market structure, as will be
shown in Section 3.6. Despite that the explanatory variables in the examples above are
high-dimensional, it is plausible that only a small set of these variables (relative to the
sample size) matter to the underlying response variables but which variables constitute
the relevant regressors are unknown to the researchers.

The following sets up the models of interests and highlights the major contributions
made by this chapter. In particular, we consider estimation and selection of regression
coefficients in the class of selection models captured by the following system: for all
i = 1, ..., n,

y1i = I
{
wTi θ

∗ + ε1i > 0
}
,

y2i = y1i
(
xTi β

∗ + ε2i
)
, (3.1)

E (ε2i|wi, xi, y1i = 1) = g(wTi θ∗),

where xi is a p−dimensional vector of explanatory variables and the dimension p of β∗
is large relative to the sample size n (namely, p � n or even p � n). Furthermore,
g(·) is an unknown function and wi is a d−dimensional vector of explanatory variables
with an unknown coefficient vector θ∗. Note here the dimension d of θ∗ can also be
large relative the sample size n (namely, d � n or even d� n). This chapter considers
the exact sparsity case of β∗ and θ∗ where the number of non-zero components in
the vectors of coefficients is bounded above by some integer which is allowed to grow
with n but slowly compared to n, and also considers the approximate sparsity case,
where the vectors of coefficients can be approximated by exactly sparse vectors. The
definition of approximate sparsity is based on the notion of lq2−“balls” where q2 ∈ [0, 1]
and to be introduced formally in Section 3.2. The third equation in (3.1) is known
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as the “single-index” restriction used in Powell (1989), Newey (1991), and Ahn and
Powell (1993). Newey (1991) and Powell (1994) discuss sufficient conditions for this
restriction. In particular, it is implied by independence of the errors (ε1i, ε2i) and the
regressors (wi, xi). Note that the second equation of model (3.1) implies

y2i = xTi β
∗ + g(wTi θ∗) + ηi whenever y1i = 1, (3.2)

where by construction E [ηi|wi, xi, y1i = 1] = 0. Throughout the rest of this chapter,
when it is clear from the context that only the selected sample is of our interests, the
notation y1i = 1 will be suppressed. In addition, the values of n will vary according
to whether we are working with the whole sample (the observations in the selection
equation) or the selected sample (the observations in the main equation). Motivated
by the Frisch-Waugh Theorem, applying a projection idea used in Engle, Granger,
Rice, and Weiss (1986) and Robinson’s semilinear models (1988) yields the following
equivalent model

vi0 = viβ
∗ + ηi, (3.3)

where

vi =
(
xi1 − E

(
xi1|wTi θ∗

)
, ... , xip − E

(
xip|wTi θ∗

))
,

vi0 = y2i − E
(
y2i|wTi θ∗

)
.

For convenience, the first equation in (3.1) is referred to as the selection equation and
the second equation in (3.1) as the main equation.

High dimensionality arises in selection model (3.1) when the dimension p of β∗ is
large relative to the sample size n (namely, p � n or p � n) in the main equation. In
addition, a weak nonparametric restriction is imposed on the form of the selection cor-
rection. Specifically, the selection effect is assumed to depend on the linear combination
of some observable selection variables. The selection model under this nonparametric
restriction on the form of the selection correction when p ≥ n has apparently not been
studied in the literature. As in classical low-dimensional selection models where pa-
rameter estimates obtained from OLS may be inconsistent, direct implementation of
the Lasso or the Dantzig selector fails as sparsity of coefficients in the main equation
in (3.1) may not correspond to sparsity of linear projection coefficients and “bias” from
parameter estimates by the direct Lasso procedure without corrective measures is found
to be only exacerbated in the high-dimensional setting. This evidence is given by the
Monte-Carlo simulation results in Section 3.5. The selection equation in (3.1) is a linear
latent variable model and the selection bias g(·) is assumed to be an unknown function
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of the single index wTi θ∗. This setup allows us to consider special cases where the di-
mension d of θ∗ is also large relative to the sample size n (namely, d � n or d � n)
in the selection equation described by some of the most popular binary response mod-
els. It is worth noting that the general results provided by this chapter also hold for
the more general structure where E (ε2i|wi, y1i = 1) = g(h(wTi , θ∗)) and h(wTi , θ∗) is a
scalar unobservable index, under appropriate identification assumptions.

The proposed estimation procedure for the high-dimensional linear coefficients in
the main equation in this chapter is the penalized version of a projection-type strat-
egy. In the first-stage, given consistent estimates θ̂ of θ∗ in the selection equation
obtained using one of several methods recently proposed in the high-dimensional statis-
tics literature, estimates wTi θ̂ of the “single index” variables wTi θ∗ are formed. In the
second-stage, nonparametric regression is performed to obtain estimate Ê

(
xij|wTi θ̂

)
of

E
(
xij|wTi θ∗

)
for j = 1, ..., p and Ê

(
y2i|wTi θ̂

)
of E

(
y2i|wTi θ∗

)
; then the estimated resid-

uals v̂i =
(
xi1 − Ê

(
xi1|wTi θ̂

)
, ... , xip − Ê

(
xip|wTi θ̂

))
of vi and v̂i0 = y2i− Ê

(
y2i|wTi θ̂

)
of

vi0 are formed. This step is motivated by the estimator of Robinson (1988) for semilin-
ear models. The second-stage estimation in this chapter involves p + 1 nonparametric
regressions where p � n or p � n, and in contrast to the classical low-dimensional
settings (e.g., Robinson 1988), a more careful control for the noise from the p + 1
nonparametric regressions is required. In particular, the prediction errors of the non-
parametric procedures are shown in this chapter to satisfy

P


√√√√ 1
n

n∑
i=1

[
Ê
(
zij|wTi θ̂

)
− E

(
zij|wTi θ̂

)]2
≥ t

 ≤ c exp
(
−nt2

)
where zij = xij for j = 1, ..., p and zi0 = y2i, and as a consequence,

P

 max
j=0,...,p

√√√√ 1
n

n∑
i=1

[
Ê
(
zij|wTi θ̂

)
− E

(
zij|wTi θ̂

)]2
≥ t

 ≤ c exp
(
−nt2 + log p

)

= O

(
1
p

)

where the last equality holds provided n is sufficiently large. The tail bounds above
can be ensured by considering the family of nonparametric least squares estimators
or regularized nonparametric least squares estimators defined in van de Geer (2000).
This family of estimators include linear regression as the simplest case, sparse linear
regressions, convex regression, Lipschitz and Isotonic regression, kernel ridge regression
based on reproducing kernel Hilbert spaces, estimators based on series expansion, sieves
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and spline methods. A procedure based on Lipschitz regression for the second-stage
nonparametric estimation is illustrated in this chapter for a leading case example.

In the third-stage, regressing v̂i0 on v̂i with l1−regularization to estimate the main-
equation coefficients β∗. In particular, for the third-stage estimation, this chapter
considers a non-pivotal Lasso procedure whose regularization parameter depends on the
unknown variance of ηi, and a pivotal Dantzig selector whose regularization parameter
does not involve the unknown variance of ηi. This pivotal Dantzig selector was originally
proposed by Gautier and Tsybakov (2011) in the context of instrumental variables
regression. A by-product of the pivotal procedure is a set of non-asymptotic confidence
intervals (which also do not involve the unknown variance of ηi). Upon the availability of
estimates of the high-dimensional linear coefficients, two different estimation strategies
for the selection bias function are proposed: one is a closed form estimator and the
other is a nonparametric least squares estimator. Despite that the nonparametric least
squares estimator of g(wTi θ∗) is computationally more involved relative to the closed-
form estimator, its rate of convergence turns out to be faster. In particular, when β∗
is approximately sparse in the sense that it belongs to the l1−ball, the closed-form
estimator cannot achieve MSE-consistency even if n → ∞ while the nonparametric
least squares estimator is consistent in MSE in this special case.

While existing semiparametric estimation techniques for the selection models limit
the number of regressors entering the selection equation and the main equation, the
multi-stage estimation procedure with l1−regularization in the first- and third-stage are
more flexible and particularly powerful for applications in which the vector of param-
eters of interests is high-dimensional but sparse and there is lack of information about
the relevant explanatory variables. Moreover, this above-mentioned high-dimensional
multi-stage estimation procedure is intuitive and can be easily implemented using ex-
isting software packages. In particular, it decomposes the joint search of the optimal
values for the high-dimensional linear coefficients and the nonparametric selection bias
component into several sequential searches with each search defined over a much smaller
parameter space. In particular, the second-stage estimation incurs a computational cost
linear in p as it involves solving p+1 independent subproblems and each subproblem can
be in general solved with a polynomial-time algorithm. The computational efficiency of
the first-stage and third-stage estimations is guaranteed by existing algorithms devel-
oped for solving the Lasso or the Dantzig program. Upon the availability of estimates
of the high-dimensional linear coefficients, the estimator for the selection bias function
is simply a closed form estimator or a nonparametric least squares estimator. In addi-
tional to the computational efficiency, as we will see in Section 3.4.4 that, under some
conditions and when β∗ is exactly sparse, the proposed procedures for estimating β∗
and g(·) are overall statistically efficient up to the (n, d, p)−factors, relative to any
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procedure constructed based on model (3.2) for estimating model (3.1), regardless of
its computational cost.

The main theoretical results of this chapter are finite-sample bounds from which
sufficient scaling conditions on the sample size for estimation consistency in l2−norm
and variable-selection consistency (i.e., the multi-stage high-dimensional estimator cor-
rectly selects the non-zero coefficients in the main equation with high probability) are
established. These results imply that the estimate from performing the Lasso-type
procedures in the third-stage estimation is l2−consistent as long as β∗ belongs to the
lq2−“balls” with q2 ∈ [0, 1] but inconsistent when q2 > 1. A technical issue related to a
set of high-level assumptions on the regressors for estimation consistency and selection
consistency arises in the multi-stage estimation procedure from allowing the number of
regressors in the main equation to exceed n and this chapter provides analysis to ver-
ify these conditions. These verifications also provide a finite-sample guarantee of the
population identification condition required by the semiparametric selection models.
It is worth mentioning that the multi-stage estimator and the general results in this
chapter can be applied to other high-dimensional sparse semiparametric models. Sec-
tion 3.4.5 discusses estimation of a certain type of high-dimensional semilinear models
with the proposed multi-stage strategy when the number of parameters in the linear
and (additive) nonparametric components are large relative to the sample size. Sta-
tistical efficiency of the proposed estimators is studied via lower bounds on minimax
risks and the result shows that, for a class of models with exactly sparse β∗ that has
at most k2 non-zero coefficients, the overall convergence rate of the estimator of the
high-dimensional linear coefficients in the main equation and the nonparametric least
squares estimator of the selection bias function matches the theoretical lower bound
up to the (n, d, p)−factors, and exceeds it at most by a factor of k3/2

2 . This statistical
efficiency result, however, does not apply to the case where β∗ is approximately sparse.

Other theoretical contributions of this chapter include establishing the non-asymptotic
counterpart of the familiar asymptotic “oracle” type of results from previous litera-
ture: the estimator of the coefficients in the main equation behaves as if the unknown
nonparametric component were known, provided the nonparametric component is suffi-
ciently smooth. This new “oracle” result holds for a unified framework of nonparametric
least squares estimators and regularized nonparametric least squares estimators consid-
ered in the second-stage estimation. In general, for a semiparametric model with two
additive components one parametric (linear in parameters) and the other nonparamet-
ric, if the prediction error or the

√
MSE (the square root of the mean squared error) of

the nonparametric estimation per se is Op(tn), this chapter shows that the error arising
from not knowing the functional form contributes Op (t2n) in the l2−error of the esti-
mator of β∗. The driver behind this “oracle” result lies in the projection strategy. An
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application of this general result to classical low-dimensional semilinear models would
imply that the nonparametric component needs to be estimated at a rate no slower than
O
(
( 1
n
) 1

4
)
in order for the estimator of the parametric component to achieve the rate

of O
(√

1
n

)
. In contrast to the semilinear models, the low-dimensional selection models

require the rate of the nonparametric component to be at least O
(
( 1
n
) 1

3
)
because the

nonparametric component in the selection model involves the unknown parameters θ∗
that also need to be estimated.

The high-dimensional multi-stage procedure is illustrated with an application to
the retail gasoline market in the Greater Saint Louis area. Gasoline stations choose
to be either a two-product station offering both self-service and full-service gasoline
or a single-product station offering only full-service or self-service gasoline. While a
single-product station is unable to price discriminate, a two-product station can charge
different prices for full- and self-service gasoline and induce consumers with different
valuations to choose the products consistent with their preferences. Similar to Iyer and
Seetharaman (2003), this chapter models a retailer’s incentive to price discriminate by
choosing either single-product or multi-product as a function of market and station
characteristics and then models the retailer’s pricing decision, conditional on the choice
of the product type. However, Iyer and Seetharaman (2003) did not account for interac-
tions between the gas stations in their empirical analysis. This chapter uses geographic
information and spatial data to introduce, in the main equation related to the retailers’
pricing decisions, a set of variables that are high-dimensional to control for interactions
between the gas stations and employ a proposed estimator to identify the competitive
market structure. In contrast to other heuristic ways of defining competitive markets
as typically seen in the retail gasoline industry literature, the proposed method in this
chapter is natural and data-driven. The empirical finding highlights the importance of
accounting for potential interactions between stations and suggests that competition
effects from retailers that are not in the same local market should not be overlooked.

Section 3.2 presents identification assumptions required for model (3.1) in high-
dimensional settings. The estimation procedures are introduced in Section 3.3. Theo-
retical results are established in Section 3.4. Small-sample performance of the proposed
multi-step high-dimensional estimator is evaluated with Monte-Carlo simulations in
Section 3.5 and applied to the retail gasoline market in Section 3.6. Section 3.7 con-
cludes this chapter. Proofs of the main results are collected in Section 3.8, with the
remaining proofs of technical lemmas contained in Section 3.9.
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3.2 Identification assumptions
Notation. The lq norm of a vector v ∈ p × 1 is denoted by |v| q, 1 ≤ q ≤ ∞ where
|v| q := (∑p

i=1 |vi|q)
1/q when 1 ≤ q < ∞ and |v| q := maxi=1,...,p |vi| when q = ∞. For a

matrix A ∈ Rp×p, write |A|∞ := maxi,j |aij| to be the elementwise l∞−norm of A. The
l2−operator norm, or spectral norm of the matrix A corresponds to its maximum singu-
lar value; i.e., it is defined as ‖A‖ 2 := supv∈S |Av| 2, where S = {v ∈ Rp | |v| 2 = 1}. The
l∞ matrix norm (maximum absolute row sum) of A is denoted by ‖A‖∞ := maxi

∑
j |aij|

(note the difference between |A|∞ and ‖A‖∞). For a square matrix A, denote its min-
imum eigenvalue and maximum eigenvalue by λmin(A) and λmax(A), respectively. The
L2(P)−error of a vector ∆(x), denoted by |∆|L2(P), is given by [EX(∆(x))2]

1
2 . Define

Pn := 1
n

∑n
i=1 δxi that places a weight 1

n
on each observation xi for i = 1, ..., n, and

the associated L2(Pn)−norm of the vector ∆ := {∆(xi)}ni=1, denoted by |∆|n, is given
by

[
1
n

∑n
i=1 (∆(xi))2

] 1
2 . For a vector v ∈ Rp, let J(v) = {j ∈ {1, ..., p} | vj 6= 0} be

its support, i.e., the set of indices corresponding to its non-zero components vj. The
cardinality of a set J ⊆ {1, ..., p} is denoted by |J |. For functions f(n) and g(n), write
f(n) % g(n) to mean that f(n) ≥ cg(n) for a universal constant c ∈ (0, ∞) and sim-
ilarly, f(n) - g(n) to mean that f(n) ≤ c

′
g(n) for a universal constant c′ ∈ (0, ∞),

and f(n) � g(n) when f(n) % g(n) and f(n) - g(n) hold simultaneously. Also denote
max{a, b} by a ∨ b and min{a, b} by a ∧ b.

The following assumptions are imposed on model (3.1).

Assumption 3.2.1 (Sampling): The data {y1i, y2i, wi, xi} are i.i.d. with finite second
moments.

Remark. The identicalness of {y1i, y2i, wi, xi} in Assumption 3.2.1 can be relaxed
with the condition that {ε1i, ηi} are identically distributed but {wi, xi} are not.

Assumption 3.2.2 (Sparsity): The coefficient vector β∗ ∈ Rp belongs to the lq2−“balls”
Bpq2(Rq2) for a “radius” of Rq2 and some q2 ∈ [0, 1], where the lq−“balls” of “radius” R
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for q ∈ [0, 1] are defined by

Bpq(R) :=

β ∈ Rp | |β|qq =
p∑
j=1
|βj|q ≤ R

 for q ∈ (0, 1]

Bp0(R) :=

β ∈ Rp | |β|0 =
p∑
j=1

I [βj 6= 0] ≤ R

 for q = 0.

Remark. Assumption 3.2.2 requires the coefficient vector to be “sparse”. As one might
expect, if the high-dimensional model lacks any additional structure, then there is no
hope of obtaining consistent estimators of β∗ when the ratio p

n
stays bounded away

from 0. For this reason, when working in settings in which p > n, it is necessary to
impose some type of sparsity assumptions on the unknown coefficient vector β∗ ∈ Rp.
Assumption 3.2.2 formalizes the sparsity condition by considering the lq−“balls” Bpq(Rq)
of “radius” Rq where q ∈ [0, 1]. The exact sparsity on β∗ corresponds to the case of
q = q2 = 0 with Rq2 = k2 (in this chapter, the subscript “2” is generally reserved for
the main-equation related parameters and the subscript “1” for the selection-equation
related parameters), which says that β∗ has at most k2 non-zero components, where
the sparsity parameter k2 is also allowed to increase to infinity with n but slowly com-
pared to n. In the more general setting q2 ∈ (0, 1], membership in Bpq2(Rq2) has various
interpretations and one of them involves how quickly the ordered coefficients decay.
When q2 ∈ [0, 1), the set Bpq2(Rq2) is non-convex and the l1−ball is the closest con-
vex approximation of these non-convex sets. In terms of algorithm design, the idea of
approximating non-convex problems with their closest convex member (so called “con-
vex relaxation”) provides a tremendous computational advantage. This is one of the
reasons for favoring the l1−penalization techniques such as the Lasso (in solving high-
dimensional regression problems with sparsity described by the lq−constraint where
q ∈ [0, 1]) over estimators based on the lq−penalty with q ∈ [0, 1) which are compu-
tationally more difficult (see the Bridge estimator in Huang, Horowitz, and Ma, 2008
as an example of these nonconvex penalization procedures) and estimators based on
lq−penalty with q > 1 (such as the ridge-penalty) which are not the closest convex
approximations. On the other hand, if the coefficient vector belongs to an Euclidean
ball (the l2−ball), then it would make more sense to apply a ridge penalty. The focus
of this chapter is on high-dimensional sparse β∗ that belongs to Bpq2(Rq2) for q2 ∈ [0, 1].

Assumption 3.2.3 (Restricted Identifiability): For a subset S ⊆ {1, 2, ..., p} and
all non-zero ∆ ∈ C(S; q2, ϕ) ∩ Sδ where

C(S; q2, ϕ) := {∆ ∈ Rp : |∆Sc |1 ≤ ϕ|∆S|1 + (ϕ+ 1)|β∗Sc |1} for some constant ϕ ≥ 1,
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(with ∆S denoting the vector in Rp that has the same coordinates as ∆ on S and zero
coordinates on the complement Sc of S) and

Sδ := {∆ ∈ Rp : |∆|2 ≥ δ} ,

the matrix E
[
y1iv

T
i vi

]
satisfies

∆TE
[
y1iv

T
i vi

]
∆

|∆|22
≥ κL > 0,

where
vi =

(
xi1 − E

(
xi1|wTi θ∗

)
, ... , xip − E

(
xip|wTi θ∗

))
.

Remark. Assumption 3.2.3 is the high-dimensional counterpart of the familiar identi-
fication assumption in the low-dimensional selection model literature (e.g., Powell 1989;
Newey, 1991; Ahn and Powell, 1993), which assumes the matrix E

[
y1iv

T
i vi

]
is positive

definite uniformly over all ∆ ∈ Rp\{0}. When vi is a zero-mean Gaussian matrix with
covariance E

[
y1iv

T
i vi

]
= σ2Ip×p, the smallest eigenvalue of E

[
y1iv

T
i vi

]
is σ2, so the

traditional identification condition in the low-dimensional case naturally carries to the
high-dimensional case. However, for more general structures on E

[
y1iv

T
i vi

]
, while this

traditional identification condition is plausible for small p, it may become harder to be
satisfied when p is large. Assumption 3.2.3 relaxes the uniform positive definiteness but
only requires it to hold over a restricted set C(S; q2, ϕ) ∩ Sδ so that the special case
of xi ⊂ wi is allowed even in the high-dimensional settings (the choices of δ and S will
be made clear in Section 3.4 when the theoretical results are presented.). If xi ⊂ wi,
Assumption 3.2.3 says that for any non-zero vector λ ∈ C(S; q2, ϕ) ∩ Sδ, there is no
measurable function f(wTi θ∗) such that xTi λ = f(wTi θ∗) when y1i = 1. Consequently,
there is at least one component wij with θ∗j in the support set of θ∗ (namely, the set of
non-zero components in θ∗) such that wij is excluded from xi. This necessary condition
is the high-dimensional extension of the familiar “exclusion restriction” condition in the
low-dimensional selection model literature.

When β∗ is exactly sparse (namely, q2 = 0), we can take δ = 0 and choose S = J(β∗)
(where J(β∗) denotes the support of β∗), which reduces the set C(S; q2, ϕ) ∩ Sδ to the
following cone:

C(J(β∗); 0, ϕ) :=
{

∆ ∈ Rp : |∆J(β∗)c|1 ≤ ϕ|∆J(β∗)|1
}
.

The sample analog of Assumption 3.2.3 over the cone C(J(β∗); 0, ϕ) is the so-called re-
stricted eigenvalue condition on the Gram matrix vT v

n
, studied in Bickel, et. al. (2009),
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Meinshausen and Yu (2009), Raskutti, et al. (2010), Bühlmann and van de Geer
(2011), Loh and Wainwright (2012), Negahban, et. al. (2012), etc. Note that in the
low-dimensional setting where p < n, as long as rank(v) = p, we are guaranteed that
the Gram matrix vT v

n
is positive definite. In the high-dimensional setting with p > n,

the matrix vT v
n

is a p × p matrix with rank at most n, so it is impossible to have the
uniform positive definiteness. It is well-known that the restricted eigenvalue assump-
tion, defined more precisely below, is a sufficient condition for the l2- consistency of the
Lasso estimator for the sparse linear regression models in high-dimensional settings. To
motivate the restricted set C(J(β∗); 0, ϕ), note that the vectors ∆ in this cone have
a substantial part of their “mass” concentrated on a set of the cardinality of J(β∗).
The vectors ∆ of interests often concern the error β̂ − β∗ where β̂ is some estimate of
β∗. When the high-dimensional sparse linear regression models are estimated by the
l1−penalized techniques, an appropriate choice of the regularization parameter would
generally ensure the error β̂ − β∗ to be in this restricted set.

In the high-dimensional setting, a sufficient condition for the l2- consistency of the
Lasso estimator β̂Las is the restricted eigenvalue (RE) condition related to the positive
definiteness of the Gram matrix XTX

n
over a restricted set (see, e.g., Bickel, et. al.,

2009; Meinshausen and Yu, 2009; Raskutti, et al., 2010; Bühlmann and van de Geer,
2011; Loh and Wainwright 2012; Negahban, et. al., 2012; etc.). Consider the following
definition of the RE condition given by Negahban, et. al. (2012) andWainwright (2015).

Definition 3.2.1 (RE condition). For q ∈ [0, 1], the matrix X ∈ Rn×p satisfies the RE
condition over a subset S ⊆ {1, 2, ..., p} with parameters (q, δ, κ, ϕ) if

1
n
|X∆|22
|∆|22

≥ κ > 0 for all nonzero ∆ ∈ C(S; q, ϕ) ∩ Sδ, (3.4)

where C(S; q, ϕ) ∩ Sδ is defined in Assumption 3.2.3.

As discussed previously, when the unknown vector β∗ ∈ Rp is exactly sparse, the set
C(S; q, 3)∩Sδ is reduced to the cone C(J(β∗); 0, 3). When β∗ is approximately sparse
(namely, q ∈ (0, 1]), in sharp contrast to the case of exact sparsity, the set C(S; q, 3)
is no longer a cone but rather contains a ball centered at the origin. As a consequence,
it is never possible to ensure that |X∆|22

n
is bounded from below for all vectors ∆ in the

set C(S; q, 3) (see Negahban, et. al., 2012 for a geometric illustration of this issue).
For this reason, in order to obtain a general applicable theory, it is crucial to further
restrict the set C(S; q, 3) for q ∈ (0, 1] by introducing the set

Sδ := {∆ ∈ Rp : |∆|2 ≥ δ} ,
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where δ > 0 is some parameter depending on the choice of the regularization parameter
λn in the Lasso program (3.6). Provided the parameter δ and the set S are suitably
chosen, the intersection C(S; q, 3)∩Sδ excludes many “flat” directions (with eigenvalues
of 0) in the space for the case of q ∈ (0, 1]. To the best of my knowledge, the necessity
of this additional set Sδ, essential for the approximately sparse case of q ∈ (0, 1], is first
recognized explicitly in Negahban, et. al. (2012).

Raskutti et al. (2010) shows that the RE condition (3.4) is satisfied by the design
matrix X ∈ Rn×p formed by independently sampling each row Xi ∼ N(0, Σ). Rudelson
and Zhou (2011) as well as Loh and Wainwright (2012) extend the verification of the
RE condition from the case of Gaussian designs to the case of sub-Gaussian designs.
The sub-Gaussian assumption says that the explanatory variables need to be drawn
from distributions with well-behaved tails like Gaussian. In contrast to the Gaussian
assumption, sub-Gaussian variables constitute a more general family of distributions.

When applying the proposed multi-stage procedure in this chapter to estimate the
high-dimensional selection models, there is no guarantee that the random matrix v̂T v̂

n

(where v̂i are the estimates of vi = xi−E
(
xi|wTi θ∗

)
for i = 1, ..., n) would automatically

satisfy these previously established conditions for estimation consistency. For a broad
class of sub-Gaussian matrices formed by the true residuals vi = xi−E

(
xi|wTi θ∗

)
for i =

1, ..., n whenever y1i = 1, this chapter provides results that imply the RE condition (3.4)
holds for v̂T v̂ with high probability provided Assumption 3.2.3 is satisfied. Verifications
of the RE condition provide a finite-sample guarantee of Assumption 3.2.3 when the
unknown residuals v are replaced with their estimate v̂ and the expectation is replaced
with a sample average.

While the RE assumption is a natural sufficient condition for analyzing l2−consistency
of the Lasso estimator β̂Las, l2−consistency of the Dantzig selector β̂Dan can be related
to a different sufficient condition, the sensitivity characteristics, on the term |XTXv|∞.
These sensitivity characteristics were originally introduced in Ye and Zhang (2010)
as the cone invertibility factors and used in Gautier and Tsybakov (2011) for high-
dimensional instrumental variable regressions. Gautier and Tsybakov (2011) shows
that the sensitivity characteristics can be larger than the usual RE condition of Bickel,
et. al (2009) and therefore the Dantzig-type estimators may lead to better results in
certain cases1. The analysis of a pivotal Dantzig selector in this chapter for estimating
the high-dimensional linear coefficients relies on the following definition based on Gau-
tier and Tsybakov (2011):

1Recently, another weaker version of the RE condition tailored to the square-root Lasso is developed
in Belloni, Chernozhukov, and Wang (2014).
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Definition 3.2.2 (l2−sensitivity). The matrix X ∈ Rn×p satisfies the l2−sensitivity
condition over a subset S ⊆ {1, 2, ..., p} with parameters (q, δ, κ′ , ϕ) if

1
n
|XTX∆|2∞
|v|22

≥ κ
′
> 0 for all nonzero ∆ ∈ C(S; q, ϕ) ∩ Sδ (3.5)

where C(S; q, ϕ) ∩ Sδ is defined in Assumption 3.2.3.

When the response variable is a latent variable with only an observable sign, other
models such as the high-dimensional binary response models may be considered. In
analyzing these models, the RE condition can be replaced with a similar notion, the
restricted strong convexity (RSC) condition, originally formalized by Negahban, et. al.
(2012) in the context of the regularized M -estimation with a general, convex and dif-
ferentiable loss function. The following definition from Negahban, et. al. (2012) is
adopted in this chapter to analyze the theoretical properties of an estimator for the
high-dimensional logit and probit model:

Definition 3.2.3 (RSC condition). A convex and differentiable loss function L(θ; zn1 )
satisfies the RSC condition over a subset S ⊆ {1, 2, ..., p} with parameters (q, δ, κ′′ , ϕ)
where κ′′ > 0 if

L(θ∗ + ∆; zn1 )− L(θ∗; zn1 )− 〈∇L(θ∗; zn1 ), ∆〉 ≥ κ
′′ |∆|22

for all nonzero ∆ ∈ C(S; q, ϕ)∩Sδ, where ∇L(θ∗; zn1 ) denotes the derivative of L(θ; zn1 )
evaluated at θ = θ∗, and C(S; q, ϕ) ∩ Sδ is defined in Assumption 3.2.3.

3.3 Estimation procedures
This section presents a 3-stage estimation procedure for the high-dimensional linear
coefficients in the main equation and two estimators of the selection bias function. In
terms of applicability, the proposed estimators enjoy many computational advantages
and can be easily implemented using existing software packages.

3.3.1 The multi-stage estimator of the high-dimensional
linear coefficients

To facilitate the presentation of the multi-stage estimator, we reverse the order of the
three stages when discussing the estimation procedure; in particular, we will introduce
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the third-stage estimator and then followed by the second-stage and the first-stage es-
timators. Note that the second- and third-stage estimations concern only the selected
sample (observations with y1i = 1) and the first-stage estimation concerns the entire
sample. For the third-stage estimation, this chapter considers a non-pivotal Lasso pro-
cedure whose regularization parameter depends on the unknown variance of ηi, and a
pivotal Dantzig selector (Gautier and Tsybakov, 2011) whose regularization parameter
does not involve the unknown variance of ηi.

Non-pivotal third-stage estimation
Revisiting equation (3.3) in Section 3.1 suggests that if an estimate of(

E
(
xi1|wTi θ∗

)
, ... ,E

(
xip|wTi θ∗

))
is available to us, then we can form estimates

v̂i =
(
xi1 − Ê

(
xi1|wTi θ̂

)
, ... , xip − Ê

(
xip|wTi θ̂

))
,

v̂i0 = y2i − Ê
(
y2i|wTi θ̂

)
.

of the nonparametric residuals

vi =
(
xi1 − E

(
xi1|wTi θ∗

)
, ... , xip − E

(
xip|wTi θ∗

))
,

vi0 = y2i − E
(
y2i|wTi θ∗

)
.

Then, an estimator of the high-dimensional linear coefficients in the main equation (the
third-stage estimator) can be obtained by performing the following Lasso program:

β̂HSEL ∈ argminβ∈Rp : 1
2n |v̂0 − v̂β|22 + λn,3|β|1, (3.6)

where λn,3 > 0 is some regularization parameter whose choice is to be discussed in
Section 3.4. In general, the choice of λn,3 depends on E(v2

ij) and E(η2
i ). To make λn,3

and the estimate β̂HSEL independent of the effect from E(v2
ij), we can impose weights

on the penalty term as follows

minβ∈Rp : 1
2n |v̂0 − v̂β|22 + λn,3

p∑
j=1

σ̂vj |βj|, (3.7)

where σ̂vj :=
√

1
n

∑n
i=1 v̂

2
ij. To make λn,3 not depend on the unknown variance of ηi,

we can consider the pivotal version of the Dantzig selector as in Gautier and Tsybakov
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(2011).

Pivotal third-stage estimation
Set vj∗ := maxi∈{1,...,n} (max {|2xij| , |v̂ij|}) for j = 1, ... , p and denote D the diagonal
p× p matrix with diagonal entries v−1

j∗ . Consider the following optimization problem:

min
(β, σ)∈A

:
(∣∣∣D−1β

∣∣∣
1

+ Cσ
)

(3.8)

where

A =
{

(β, σ) : β ∈ Rp, σ > 0, 1
n

∣∣∣Dv̂T (v̂0 − v̂β)
∣∣∣
∞
≤ σξ,

1
n
|v̂0 − v̂β|22 ≤ σ2

}
for some tuning parameter ξ > 0 (to be specified in Section 3.4). The computational
aspect of this pivotal estimator is detailed in Gautier and Tsybakov (2011).

Remark. The third-stage estimation needs not to be restricted to the Lasso or the
Dantzig selector. Other methods with different loss functions (such as the square-root
Lasso in Belloni, et. al 2011, 2014) or with different penalty functions (such as the
SCAD in Fan and Li, 2001, or the MCP in Zhang, 2010) can be used. This chapter
focuses on the analysis of the non-pivotal Lasso and the pivotal Dantzig selector laid
out above for the third-stage estimation.

Second-stage estimation
To simplify the notations in the following, write E

(
xij|wTi θ

)
:= mj(wTi θ), Ê

(
xij|wTi θ

)
:=

m̂j(wTi θ), E
(
y2i|wTi θ

)
:= m0(wTi θ), and Ê

(
y2i|wTi θ

)
:= m̂0(wTi θ). To estimatemj(wTi θ∗)

for each j = 0, ..., p, we first need some estimate θ̂ of θ∗in the selection equation. Sup-
posing such an estimate is available, to obtain a (second-stage) estimator ofmj(wTi θ∗),
we consider the following least squares estimator

m̂j ∈ arg min
m̃j∈Fj

{
1
n

n∑
i=1

(
zij − m̃j(wiθ̂)

)2
}
, (3.9)

or the regularized least-squares estimator

m̂j ∈ arg min
m̃j∈Fj

{
1
n

n∑
i=1

(
zij − m̃j(wiθ̂)

)2
+ λnj,2 |m̃j|2Fj

}
, (3.10)

where |·|Fj is a norm associated with the function class Fj and λnj,2 ≥ 0 is a regular-
ization parameter and zi0 = y2i and zij = xij for each j = 1, ..., p. The choice of λnj,2 is
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specified in Section 3.4. A nonparametric regression problem based on (3.9) or (3.10)
is a standard setup in many modern statistics books (e.g., van der Vaart and Wellner,
1996; van de Geer, 2000; Wainwright, 2015, etc).

In words, the solutions to program (3.9) are least-squares estimators based on im-
posing explicit constraints on the function class Fj. The function m̂j is chosen such
that the vector (

m̂j(w1θ̂), ..., m̂j(wiθ̂), ..., m̂j(wnθ̂)
)

is closest in l2−norm to the observation (z1j, ..., zij, ..., znj) for j = 0, ..., p in terms
of the “selected” sample. Examples of (3.9) include the linear regression as the sim-
plest case, sparse linear regressions, convex regression where Fj is the class of convex
functions (e.g., Guntuboyina and Sen, 2013), Lipschitz and Isotonic regression where
Fj is the class of monotone Lipschitz functions (e.g., Kakade, Kalai, Kanade, and
Shamir, 2011), etc. In general, this optimization problem defining the non-parametric
least squares estimator m̂j is infinite-dimensional in nature, since m̂j ranges over the
function class Fj. If the function class is “too large”, the solution may not exist, in
which case Fj is chosen to be a compact subset of some larger function class by in-
troducing a ball radius in some norm. From the computational point of view, it is
sometimes more convenient to implement estimators based on explicit penalization or
regularization terms as in (3.10). Examples of (3.10) include kernel ridge regression
where |·|Fj is the norm associated with a reproducing kernel Hilbert space (see e.g.,
Gu, 2002; Berlinet and Thomas-Agnan, 2004; Wainwright, 2015), estimators based on
series expansion (e.g., Cencov, 1962; Andrews, 1991; Newey, 1994, 1997), as well as
sieves (e.g., van de Geer, 2000; Chen, 2008) and spline methods (e.g., Wahba, 1980,
1990). A procedure based on Lipschitz regression for the second-stage nonparametric
estimation is illustrated in Section 3.4 for a leading case.

It is worth mentioning that although the theoretical guarantees of the multi-stage
procedure provided by this chapter requires the second-stage estimation to fit into ei-
ther (3.9) or (3.10), other nonparametric methods including kernel density estimators,
local polynomials, etc., could also be a valid second-stage estimator for the multi-stage
procedure in the context of high-dimensional semiparametric selection models and ver-
ifying those methods both theoretically and empirically is an open question for future
research.

First-stage estimation
Note that in the second-stage estimation ofmj(wTi θ∗) for each j = 0, ..., p, the coefficient
vector θ∗ is unknown and needs to be replaced by some “consistent” first-stage esti-
mate θ̂. Parametric and semiparametric estimation of θ∗ in the classical low-dimensional
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settings when the dimension of θ∗ is small relative to the sample size n is well-studied
(see, e.g., Powell 1994; Pagan and Ullah, 1999). In the high-dimensional settings where
the dimension of θ∗ grows with and exceeds n, estimation of θ∗ in recent development
of high-dimensional statistics has been focused on the case where θ∗ is either exactly
sparse or approximately sparse, and a distributional assumption is imposed on the er-
ror term in the linear latent utility models in (3.1). Theoretical guarantees have been
established for the high-dimensional binary logit models in the context of Generalized
Linear Models (GLM) and M -estimation (e.g., van de Geer, 2008; Bühlmann and van
de Geer, 2011; Negahban, et. al, 2012; Loh and Wainwright, 2013). While the main
theoretical results of this chapter concern estimators of the high-dimensional linear co-
efficients β∗ in the main equation and estimators of the selection bias function g(·),
we illustrate here and also in later sections the high-dimensional parametric estimation
procedure for the binary logit and probit models as they are considered the work-horse
of many empirical literatures and probit models are widely applied to study selection
problems.

As for the high-dimensional sparse linear models, it is natural to consider the esti-
mator based on the l1−regularized maximum likelihood for the binary logit and probit
models, namely,

θ̂ ∈ arg min
θ∈Rd

{
− 1
n

n∑
i=1

y1iφ1(wTi θ) + 1
n

n∑
i=1

φ2(wTi θ) + λn,1 |θ|1

}
(3.11)

where n is the sample size of all observations. One can easily verify that when φ1(wTi θ) =
wTi θ and φ2(wTi θ) = log(1 + exp(wTi θ)), the loss function in the above program corre-
sponds to a binary logit model; when

φ1(wTi θ) = log Φ(wTi θ)
1− Φ(wTi θ)

,

φ2(wTi θ) = − log
[
1− Φ(wTi θ)

]
(Φ(·) is the standard normal c.d.f.), the loss function corresponds to a binary probit
model. The loss function in (3.11) is written in terms of the negative of the likelihood
and hence the optimization program is a convex minimization problem. This chapter
extends the analysis of the theoretical properties of these estimators from the high-
dimensional binary logit models to the high-dimensional probit models, and focuses on
the semiparametric estimation of β∗ instead of θ∗. Developing semiparametric estima-
tion techniques for the high-dimensional sparse discrete choice models based upon weak
restrictions on the error distribution is left for future research.
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Remark. Upon solving (3.11), strategies such as the thresholded-Lasso or the post-
Lasso may be used before the second-stage estimation, which might boost the perfor-
mance of the multi-stage estimator in certain situations.

3.3.2 Estimators of the selection bias function
Given the estimates θ̂ and β̂ of θ∗ and β∗, there are two ways to estimate the selection
bias function g(wTi θ∗). Recalling (3.2) from Section 3.1,

y2i = xTi β
∗ + g(wTi θ∗) + ηi.

where by construction E [ηi|wi, xi, y1i = 1] = 0. Taking the conditional expectation of
the above leads to

E
(
y2i|wTi θ∗

)
= E

(
xi |wTi θ∗

)
β∗ + g(wTi θ∗),

and as a result,
g(wTi θ∗) = E

(
y2i|wTi θ∗

)
− E

(
xi |wTi θ∗

)
β∗, (3.12)

where
E
(
xi |wTi θ∗

)
:=
(
E
(
xi1|wTi θ∗

)
, ... ,E

(
xip|wTi θ∗

))
.

Replacing E
(
y2i|wTi θ∗

)
, E

(
xi |wTi θ∗

)
, and β∗ with their estimates from Section 3.3.1

yields the estimator ĝ(wTi θ̂) of g(wTi θ∗):

ĝ(wTi θ̂) := Ê
(
y2i |wTi θ̂

)
− Ê

(
xi |wTi θ̂

)
β̂, (3.13)

where Ê
(
xi |wTi θ̂

)
:=

(
Ê
(
xi1|wTi θ̂

)
, ... , Ê

(
xip|wTi θ̂

))
is the second-stage estimate of

E
(
xi |wTi θ∗

)
:=
(
E
(
xi1|wTi θ∗

)
, ... ,E

(
xip|wTi θ∗

))
.

Alternatively, like how we obtain the second-stage estimates in Section 3.3.1, one
can estimate g(wTi θ∗) by solving the following least-squares estimator

g̃ ∈ arg min
f∈F

1
n

n∑
i=1

(
y2i − xTi β̂ − f(wTi θ̂)

)2
, (3.14)

or the regularized least-squares estimator

g̃ ∈ arg min
f∈F

{
1
n

n∑
i=1

(
y2i − xTi β̂ − f(wTi θ̂)

)2
+ λ∗n |f |

2
F

}
,
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where λ∗n ≥ 0 is a regularization parameter. Although this alternative estimator
g̃(wTi θ̂) of g(wTi θ∗) is computationally more involved relative to the closed-form es-
timator ĝ(wTi θ̂), its rate of convergence turns out to be faster in a leading case as we
will see in Section 3.4.

3.4 Main theoretical results
For notational simplicity, in the main theoretical results presented below, we assume
the regime of interest is p ≥ n and d ≥ n (i.e., the number of regressors grows with
and exceed the sample size n). The modification to allow p < n or d < n is trivial.
Also, as a general rule for this chapter, all the b constants denote positive constants
that are independent of n, p, d, Rq1 and Rq2 but possibly depending on model specific
parameters; all the c constants denote universal positive constants that are independent
of n, p, d, Rq1 and Rq2 as well as model specific parameters. The specific values of these
constants may change from place to place.

Recall from programs (3.9) and (3.10), m̃j(·) ∈ Fj. Suppose mj(·) ∈ F∗j , which may be
different from Fj. Define the shifted version of the function class Fj

F̄j :=
{
f = f

′ − f ′′ : f ′ , f ′′ ∈ Fj
}
.

The following assumptions are imposed to obtain the theoretical results in this section.

Assumption 3.4.1: For any j = 0, ..., p, F̄j is a star-shaped function class; i.e., for any
f ∈ F̄j, the entire line {αf, α ∈ [0, 1]} is also contained within F̄j.

Remark. The star-shaped condition is often seen in literature of nonparametric statis-
tics (see e.g., van der Vaart and Wellner, 1996; Wainwright, 2015; and other textbooks
on mathematical statistics). It is relatively mild; for instance, it is satisfied whenever
the set F̄j is convex and contains the function f = 0. It is also satisfied by various
non-convex sets of functions, such as in the case of sparse linear regression.

Assumption 3.4.2: The random vector vj for j = 0, ..., p is sub-Gaussian with pa-
rameter at most σvj . The matrix v ∈ Rn×p is sub-Gaussian with parameters (Σv, σ

2
v)

where the jth column of v is vj and σv := maxj=0,...,p σvj .

Assumption 3.4.3: The random vector η is sub-Gaussian with parameter at most
ση.



102

Remark. In the literature of nonparametric estimation, common measures of function
complexities associated with sub-Gaussian variables can be controlled with standard
maximal inequalities as in van der Vaart and Wellner (1996) and van de Geer (2000),
etc. There are some special cases of Assumptions 3.4.2 are 3.4.3 where other concen-
tration results (e.g., Maurey, 1991; Ledoux, 1996; Bobkov, 1999; Bobkov and Ledoux,
2000) may provide sharper constants in the tail probability when we relax the identi-
calness of {wi, xi} in Assumption 3.2.1. These special cases include: vj for j = 0, ..., p
and η are (i) sub-Gaussian with strongly log-concave distribution (defined below) for
some γvj > 0 and γη > 0, respectively; or, (ii) a bounded vector2 such that for every
i = 1, ..., n, vij and η are supported on the interval (a′vj , a

′′
vj

) with Bvj := a
′′
vj
− a

′
vj
,

and on (a′η, a
′′
η) with Bη := a

′′
η − a

′
η; or, (iii) a mixture of (i) and (ii) in terms of its

probability measure.

Definition 3.4.1 (Strongly log-concave distributions). A distribution P with den-
sity p (with respect to the Lebesgue measure) is a strongly log-concave distribution if
the function log p is strongly concave. Equivalently stated, the density can be written
in the form p(x) = exp (−ψ(x)), where the function ψ : Rn → R is strongly convex,
meaning that there is some γ > 0 such that

λψ(x) + (1− λ)ψ(y)− ψ(λx+ (1− λ)y) ≥ γ

2λ(1− λ) |x− y|22

for all λ ∈ [0, 1], and x, y ∈ Rn.

Remark. It is easy to verify that the distribution of a standard Gaussian vector
in n dimensions is strongly log-concave with parameter γ = 1. More generally, any
Gaussian distribution with covariance matrix Σ � 0 is strongly log-concave with pa-
rameter γ = λmin(Σ−1). In addition, there are a variety of non-Gaussian distributions
that are also strongly log-concave.

3.4.1 Properties of the non-pivotal Lasso estimator of the
high-dimensional linear coefficients

General upper bounds and l2−consistency

The following theorem (Theorem 3.4.1) provides a general upper bound on the error∣∣∣β̂HSEL − β∗∣∣∣2 when the second-stage estimation concerns a program as in (3.9). This
2A random vector with bounded elements is sub-Gaussian.
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result is an “oracle-inequality” type which does not assume the unknown function m(·)
belongs to the function class over which the nonparametric estimator from (3.9) is
defined. In such settings, the performance of the estimator involves both the estimation
error and an approximation error, arising from the fact that mj /∈ Fj.

To state Theorem 3.4.1, we need to introduce a set of definitions. First, we define
a quantity that measures the complexity of the function class Fj (a notion often used
in nonparametric literature; e.g., van der Vaart and Wellner, 1996; van de Geer, 2000;
Barlett and Mendelson, 2002; Koltchinski, 2006; Wainwright, 2015, etc.). For any
radius rj > 0, define the conditional local complexity

Gn(rj; Fj) := Evj

[
sup

f∈Ω(rj ;Fj)

∣∣∣∣∣ 1n
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ |wTi θ∗

]
,

where variables {vij}ni=1 for j = 0, ..., p are i.i.d. variates that satisfy Assumption 3.4.2,
and

Ω(rj; Fj) =
{
f : f ∈ F̄j |fθ∗|n ≤ rj

}
,

where |fθ∗ |n :=
√

1
n

∑n
i=1 [f(wTi θ∗)]

2. For any star-shaped shifted function class F̄j,
the function t 7→ Gn(t;Fj)

t
is non-decreasing on the interval (0, ∞). Second, let T ∗j :=

supf∈F∗j
1
n

∑n
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
, Tj := supf∈Fj

1
n

∑n
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
, T ′j :=

T ∗j ∨ Tj, and

T1 = max
j∈{0,...,p}

(
T
′

j ∨
√
T
′
j

)
T2 = max

j∈{0,...,p}
t2nj

T3 = max
j∈{0,...,p}

inf
m̃j∈Fj

( 1
n

n∑
i=1

[
m̃j(wTi θ̂)−mj(wTi θ̂)

]2

+
√√√√ 1
n

n∑
i=1

[m̃j(wTi θ∗)−mj(wTi θ∗)]
2)

T4 = σvση

√
log p
n

.

Third, recall in Section 3.2 the set we introduced:

C(S; q2, 3) := {∆ ∈ Rp : |∆Sc|1 ≤ 3|∆S|1 + 4|β∗Sc |1} ,

and the spherical set
Sδ := {∆ ∈ Rp : |∆|2 ≥ δ} ,
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and the intersection of these two sets C(S; q2, 3)∩Sδ. When β∗ is approximately sparse
(namely, q2 ∈ (0, 1]), we choose S in C(S; q2, 3) to be the following thresholded subset

Sτ :=
{
j ∈ {1, 2, ..., p} :

∣∣∣β∗j ∣∣∣ > τ
}

with the threshold parameter τ = λn,3
κL

(recall λn,3 is the third-stage regularization
parameter whose choice is specified in the theorems and the parameter κL is defined
in Assumption 3.2.3, Section 3.2). When β∗ is exactly sparse (namely, q2 = 0), we set
δ = τ = 0 and choose S = J(β∗), which reduces the set C(S; q2, 3)∩Sδ to the following
cone:

C(J(β∗); 0, 3) :=
{

∆ ∈ Rp : |∆J(β∗)c|1 ≤ 3|∆J(β∗)|1
}
.

Theorem 3.4.1: Let the critical radius rnj > 0 be the smallest positive quantity
satisfying the critical inequality

Gn (rnj; Fj) ≤
r2
nj

σvj
.

Suppose the second-stage estimator solves program (3.9) and Assumptions 3.2.1, 3.2.2,
3.4.1-3.4.3 hold. Additionally, let Assumption 3.2.3 hold over C(J(β∗); 0, 3) for the
exact sparsity case (q2 = 0 with Rq2 = k2), and over C(Sτ ; q2, 3) ∩ Sδ where δ �
R

1
2
q2 (λn,3)1− q2

2 and τ = λn,3
κL

for the approximate sparsity case (q2 ∈ (0, 1]), respectively.
For any tnj ≥ rnj, if the third-stage regularization parameter λn,3 satisfies

λn,3 ≥ b(σv, ση) |β∗|1 (T1 + T2 + T3) + T4 := M̄, (3.15)

where b(σv, ση) is a known function that only depend on the parameters σv and ση (and
independent of n, d, p, Rq2), and the condition

Rq2τ
−q2

(
log p
n

+ T1 + T2 + T3

)
= O(κL), (3.16)

holds, then,

|β̂HSEL − β∗|2 ≤
c
′′
R

1
2
q2

κ
1− q2

2
L

[
M̄ ∨ λn,3

]1− q2
2 (3.17)

with probability at least 1 − c1 exp (−c2 log p) − c3
∑p
j=0 exp

(
−nC∗j t2nj

)
for some C∗j

independent of n, d, p, Rq2 .
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The following theorem (Theorem 3.4.2) provides a general upper bound on the er-
ror

∣∣∣β̂HSEL − β∗∣∣∣2 when the second-stage estimation concerns a regularized program as
in (3.10). As in Theorem 3.4.1, this result is an “oracle-inequality” type which does not
assume the unknown function m(·) belongs to the function class over which the non-
parametric estimator from (3.10) is defined. For Theorem 3.4.2, let the local complexity
measure Gn (rj; Fj) be defined over the set

Ω(rj; Fj) =
{
f : f ∈ F̄j |fθ∗|n ≤ rj, |f |Fj ≤ 1

}
where |fθ∗ |n :=

√
1
n

∑n
i=1 [f(wTi θ∗)]

2 and j = 0, ..., p. Also define the following quantities:

T1 = max
j∈{0,...,p}

(
T
′

j ∨
√
T
′
j

)
T2 = max

j∈{0,...,p}
R̄2
j t

2
nj

T3 = max
j∈{0,...,p}

inf
m̃j∈Fj , |m̃j |Fj≤R̄j

( 1
n

n∑
i=1

[
m̃j(wTi θ̂)−mj(wTi θ̂)

]2

+
√√√√ 1
n

n∑
i=1

[m̃j(wTi θ∗)−mj(wTi θ∗)]
2)

T4 = σvση

√
log p
n

,

where T ′j is defined prior to the presentation of Theorem 3.4.1.

Theorem 3.4.2: Let the critical radius rnj > 0 be the smallest positive quantity
satisfying the critical inequality

Gn (rnj; Fj) ≤
R̄jr

2
nj

σvj
,

where R̄j > 0 is a user-defined radius. Suppose the second-stage estimator solves the
regularized program (3.10) and Assumptions 3.2.1, 3.2.2, 3.4.1-3.4.3 hold. Additionally,
let Assumption 3.2.3 hold over the restricted set C(J(β∗); 0, 3) for the exact sparsity
case (q2 = 0 with Rq2 = k2), and over C(Sτ ; q2, 3) ∩ Sδ where δ � R

1
2
q2 (λn,3)1− q2

2

and τ = λn,3
κL

for the approximate sparsity case (q2 ∈ (0, 1]), respectively. For any
tnj ≥ rnj, if the second-stage regularization parameter λnj,2 = 2t2nj + ς for any small
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positive constant ς > 0 and the third-stage regularization parameter λn,3 satisfies (3.15),
and condition (3.16) holds, then, the upper bound (3.17) holds (where the terms Tk,
k = 1, ..., 4 correspond to the ones defined for Theorem 3.4.2) with probability at least

1− c1 exp (−c2 log p)− c3

p∑
j=0

exp
(
−nC∗j R̄2

j t
2
nj

)

for some C∗j independent of n, d, p, Rq2 .

Comments:
(a) For the probability guarantees in Theorems 3.4.1 and 3.4.2, the constant

C∗j = c
γvj ∧ (B2

vj
∨B2

η)−1

σ2
vj
∨ σ2

η

when vj for j = 0, ..., p and η are (i) sub-Gaussian with strongly log-concave distribution
for some γvj > 0 and γη > 0, respectively; or, (ii) a bounded vector such that for every
i = 1, ..., n, vij and η are supported on the interval (a′vj , a

′′
vj

) with Bvj := a
′′
vj
− a

′
vj
,

and on (a′η, a
′′
η) with Bη := a

′′
η − a

′
η; or, (iii) a mixture of (i) and (ii) in terms of its

probability measure.

(b) Condition (3.16) in Theorems 3.4.1 and 3.4.2 ensures that with high probability, v̂T v̂
n

satisfies the RE condition (3.4) over C(J(β∗); 0, 3) for the exact sparsity case (q2 = 0
with Rq2 = k2), and over C(Sτ ; q2, 3) ∩ Sδ where δ � R

1
2
q2 (λn,3)1− q2

2 and τ = λn,3
κL

for
the approximate sparsity case (q2 ∈ (0, 1]), respectively. An implication of this scaling
condition is that it provides a finite-sample guarantee of the population identification
condition (Assumption 3.2.3) subject to the underlying restricted sets. This result is
formalized in the following corollary.

Corollary 3.4.3: Under the assumptions in Theorem 3.4.1 (respectively, the assump-
tions in Theorem 3.4.2), we have, with the same probability guarantees in Theorem
3.4.1 (respectively, in Theorem 3.4.2),

1
n

n∑
i=1

y1i
(
xi − Ê

[
xi |wTi θ̂, y1i = 1

]) (
xi − Ê

[
xi |wTi θ̂, y1i = 1

])T
is nonsingular on the restricted sets subject to those in Theorem 3.4.1 (respectively,
Theorem 3.4.2).
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Remarks on Theorems 3.4.1 and 3.4.2
The main proofs for Theorem 3.4.1, Theorem 3.4.2, and Corollary 3.4.3 are provided

in Sections 3.8.1-3.8.4.
These theorems imply that if λn,3 � M̄ and

c
′′
R

1
2
q2

κ
1− q2

2
L

[b(σv, ση) |β∗|1 (T1 + T2 + T3) + T4]1−
q2
2 → 0,

as n→∞, then the two-stage estimator β̂HSEL is l2−consistent for β∗. From Theorems
3.4.1 and 4.2, it can be seen that the general upper bounds on |β̂HSEL − β∗|2 depend
on four sources of errors, Tk, k = 1, ..., 4. The terms T1, T2, T3, and T4 are related to
the statistical error of the first-stage estimation, the statistical error of the second-stage
nonparametric regression, the approximation error arising from the fact that mj /∈ Fj,
and the statistical error of the third-stage estimation, respectively. Inspecting the error
term T1 suggests that, given appropriate identification assumptions, the upper bounds
on |β̂HSEL − β∗|2 in Theorems 3.4.1 and 3.4.2 also hold for the more general structure
where E (ε2i|wi, y1i = 1) = g(h(wTi , θ∗)) and h(wTi , θ∗) is a scalar unobservable index.

The extra factor |β∗|1 (in the case of exact sparsity,|β∗|1 � k2) in front of T1, T2, and
T3 in the upper bounds on |β̂HSEL−β∗|2 as well as in the choice of λn,3 is unimprovable
and arising from the fact that the estimator is a sequential multi-stage procedure3 based
on plugging the first-stage estimator θ̂ in the place of θ∗. When q2 = 1, the extra factor
|β∗|1 in front of T1, T2, and T3 in the upper bounds on |β̂HSEL − β∗|2 as well as in the
in the choice of λn,3 is crucial in order for the argument in our analysis to go through.
To see this, suppose

√
log p
n

is small relative to T1, T2, and T3, in which case, condition
(3.16) can be reduced to

Rq2 (|β∗|1)−q2 max
k

{
T 1−q2
k : k = 1, 2, 3

}
= O

(
κ1−q2
L

)
.

When q2 = 1, if we set Rq2 = |β∗|1, then Rq2 (|β∗|1)−q2 = 1 so the above condition holds.
On the other hand, when q2 ∈ [0, 1), condition (3.16) is easier to be satisfied.

When T1, T2, and T3 are small relative to T4 and β∗ is exactly sparse with at most k2
non-zero coefficients, if we set κL = λmin(Σv), the upper bounds in Theorems 3.4.1 and
3.4.2 reduce to |β̂HSEL − β∗|2 - σvση

λmin(Σv)

√
k2 log p
n

. Note that the scaling
√

k2 log p
n

is the
3Other plug-in type Lasso estimators for the exactly sparse case such as the ones in Rosenbaum

and Tsybakov (2011) and the high-dimensional two-stage least-squares estimator in Zhu (2013), also
involve the extra factor |β∗|1.
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optimal rate of the Lasso for the usual high-dimensional linear regression model with
exact sparsity, and the factor σvση

λmin(Σv) has a natural interpretation of an inverse signal-
to-noise ratio when vi is a zero-mean Gaussian matrix with covariance Σv = σ2

vIp×p:
one has λmin(Σv) = σ2

v , so
σvση

λmin(Σv) = ση
σv
, which measures the inverse signal-to-noise

ratio of the regressors.
For the case of approximately sparse β∗ with q1, q2 ∈ (0, 1], the rate

c
′′
R

1
2
q2

κ
1− q2

2
L

[b(σv, ση) |β∗|1 (T1 + T2 + T3) + T4]1−
q2
2 (3.18)

can be interpreted with the following heuristic. Suppose we choose to the top s2 coeffi-
cients of β∗ in absolute values to estimate, then the fast decay imposed by the lq2−balls
condition on β∗ would mean that the remaining p−s2 coefficients would have relatively
little impact. With this intuition, the rate for q2 > 0 can be viewed as the rate that
would be achieved by choosing

s2 = c
′′
Rq2

κ−q2
L

[b(σv, ση) |β∗|1 (T1 + T2 + T3) + T4]−q2

and then proceeding as if the problem were an instance of an exactly sparse problem
q2 = 0 with k2 = s2. For such a problem, we would expect to obtain the rate

c
′′√

s2

κL
[b(σv, ση) |β∗|1 (T1 + T2 + T3) + T4] ,

which is exactly equal to (3.18).
Notice that the choice of tnj incurs a trade-off between T2 and O

(∑p
j=0 exp

(
−nt2nj

))
in the probability guarantees in Theorems 3.4.1 and 3.4.2. This is a general phenomenon
for these tail bounds. For the problems considered in this chapter, tnj may be chosen
in the way that T2 is dominated by T1, T3, and T4 while the probability guarantees
are maximized to allow for the least restrictive requirement on the sample size for
l2−consistency. Section 3.4.1.2 provides a specific example in terms of the choice of
tnj. When we set tnj = rnj, note that the statistical error related to the second-stage
nonparametric regression, T2, is on the order of O

(
maxj r2

nj

)
instead of the optimal rate

O (maxj rnj) that one would expect from a nonparametric regression as (3.9) or (3.10).
As long as maxj rnj < 1, we have: maxj r2

nj < maxj rnj, and provided maxj r2
nj is small

relative to T1, T3 and T4, the convergence rate of the estimator of the high-dimensional
linear coefficients in the main equation behaves as if the unknown nonparametric selec-
tion bias were known.
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This result establishes the non-asymptotic counterpart of the familiar asymptotic
“oracle” type of results from previous literature. One of the drivers behind this oracle
result lies on carefully controlling for the term

∣∣∣ 1
n

∑n
i=1 v̂ij

[
m̂j(wTi θ̂)− m̃j(wTi θ̂)

]∣∣∣ utiliz-
ing the fact that v̂ij estimates the true residual vij which is obtained by projecting xij
or y2i onto wTi θ∗, namely, vij = xij − E

(
xij|wTi θ∗

)
or vi0 = y2i − E

(
y2i|wTi θ∗

)
. When

this projection procedure is applied to classical low-dimensional semilinear models with
fixed p and d (in which case, there is no first-stage related error T1), our general upper
bounds would imply that the nonparametric component needs to be estimated at a
rate no slower than O

(
( 1
n
) 1

4
)
in order for the estimator of the parametric component

to achieve the rate of O
(√

1
n

)
. In contrast to the semilinear models, low-dimensional se-

lection models require the rate of the nonparametric component to be at least O
(
( 1
n
) 1

3
)

because the nonparametric component in the selection model involves an unknown sin-
gle index that also needs to be estimated.

Upper bounds and l2−consistency for a leading case example

An important consequence of Theorems 3.4.1 and 3.4.2 is when mj(·) ∈ Fj for every
j = 0, ..., p and Fj in

T
′

j := sup
f∈Fj

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
can be restricted to the class of Lipschitz functions, as a result, T3 = 0 and T

′
j =

1
n

∑n
i=1 L

2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′ . Results regarding this leading case are provided in
the following corollaries (Corollaries 3.4.4 and 3.4.5). Before stating these results, a
procedure based on Lipschitz regression for the second-stage estimation is presented
and its theoretical guarantees are provided in Corollaries 3.4.4 and 3.4.5.

We say that a function f : R→ R is L-Lipschitz if∣∣∣f(t)− f(t′)
∣∣∣ ≤ L

∣∣∣t− t′ ∣∣∣ (3.19)

for all t, t′ ∈ R. When Fj satisfies the Lipschitz assumption, we restrict Fj in (3.9) to
be the class of Lipschitz functions and consider m̃j in this class only, namely,

m̂j ∈ arg min
m̃j : R→ R

m̃j is L-Lipschitz

{
1
n

n∑
i=1

(
zij − m̃j(wiθ̂)

)2
}

for j = 0, ..., p.
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It can be easily verified that F̄j, the shifted class of Lipschitz functions is also Lips-
chitz and satisfies Assumption 3.4.1; i.e., it is star-shaped. By exploiting the structure
of Lipschitz functions, the program above can be converted to an equivalent finite-
dimensional problem by applying the constraint (3.19) to each of the sampled points
wiθ̂ so that there must exist a real-valued vector (z̃1j, ..., z̃ij, ..., z̃nj) which satisfies the
constraints in the following convex program

(ẑ1j, ..., ẑij, ..., ẑnj) ∈ arg min
(z̃1j ,...,z̃ij ,...,z̃nj)

{
1
n

n∑
i=1

(zij − z̃ij)2
}

s.t. z̃ij − z̃i′j ≤ L (wi − wi′ )
T θ̂ for all i, i′ = 1, ..., n. (3.20)

Given an optimal solution (ẑ1j, ..., ẑij, ..., ẑnj), a Lipschitz function m̂j can be con-
structed by interpolating linearly between ẑijs and the resulting function m̂j is an
estimate of mj (namely, the second-stage estimator). Moreover, one can easily see that
m̂j(wTi θ̂) = ẑij. Note that the optimization problem above is a convex program with a

quadratic cost function and a total of
(
n
2

)
linear constraints and n variables (n here

denotes the sample size of the observations for the main equation). There are many
computationally efficient algorithms for solving programs like this (e.g., the interior
point method). When mj(·) is a monotonic Lipschitz function, we can impose addi-
tional monotonicity constraints together with the Lipschitz constraints in the above
convex program. Kakade, et. al (2011) provides an algorithm with provable guarantees
for this type of minimization problems.

In the case where the Lipschitz constant L is unknown, cross-validation methods
can be used to determine L. For example, we can first solve the optimization problem
(3.20) on a subsample of observations by imposing an additional constraint 0 ≤ L ≤ L(0)

for a chosen constant L(0) and obtain (ẑ1j, ..., ẑij, ..., ẑnj, L) := $0. We then test for
the prediction quality of this optimal solution $0 by comparing its predicted values
(from interpolating linearly between ẑijs) for the remaining subsample with the actual
observed values. If the optimal solution $0 returns L ≈ L(0), we can iterate the process
by imposing 0 ≤ L ≤ L(1) = 2L(0) in (3.20) and comparing the new optimal solution
$1 with the previous one $0 and also testing for the prediction quality of $1.

Assumption 3.4.4: The matrix w consists of bounded elements4.

The following proposition (Proposition 3.4.1) regarding the critical radius rnj in Theo-
rems 3.4.1 and 3.4.2 is based on results from van der Vaart and Wellner (1996), van de

4A random matrix with bounded elements is sub-Gaussian.
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Geer (2000), and Wainwright (2015).

Proposition 3.4.1: Let Assumptions 3.2.1 and 3.4.4 hold and mj(·) ∈ Fj for j =
0, ..., p. Suppose Fj belongs to the class of L−Lipschitz functions and the Lipschitz
regression procedure (3.20) is applied. Then, for every j = 0, ..., p, T3 = 0 and
T
′
j = 1

n

∑n
i=1 L

2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′ , and the critical radius rnj = O
(
( |θ
∗|1
n

) 1
3
)
,

in Theorems 3.4.1 and 3.4.2.

The following corollaries (Corollaries 3.4.4 and 3.4.5) provide results regarding the lead-
ing case where for every j = 0, ..., p, T ′j = 1

n

∑n
i=1 L

2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′ ,T3 = 0,
and the critical radius rnj = O

(
( |θ
∗|1
n

) 1
3
)
, in Theorems 3.4.1 and 3.4.2. These conditions

are ensured by Proposition 3.4.1. The two corollaries differ by the upper bounds on
the quantity B′ . Justifications of these upper bounds on B′ are given by Propositions
3.4.2 and 3.4.3. Let Υw,θ∗ be a known function depending only on w and θ∗. The
quantity Υw,θ∗ changes according to the assumptions on w, which is to be made clear
by Propositions 3.4.2 and 3.4.3. To facilitate the discussion and a later comparison
with the minimax lower bounds in Section 3.4.4, the results in Corollaries 3.4.4 and
3.4.5 are presented for the case of exact sparsity on β∗ and θ∗ (q1 = q2 = 0). The case
of general sparsity on θ∗ and β∗ (q1, q2 ∈ [0, 1]) is presented in Corollary 3.4.6 (which
contains Corollary 3.4.4 as a special case).

Corollary 3.4.4 (q1 = q2 = 0): Suppose θ∗ is exactly sparse with at most k1 non-
zero coefficients. Suppose for every j = 0, ..., p, T ′j = 1

n

∑n
i=1 L

2
[
wTi θ̂ − wTi θ∗

]2
:=

L2B
′ ,T3 = 0, and the critical radius rnj = O

(
(k1
n

) 1
3
)
, and

B
′ = 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ cΥw,θ∗

k1 log d
n

with probability at least 1− O
(

1
d

)
. Assume t2nj in T2 is chosen such that |β∗|1 T2 is at

most

O

√ log p
n
∨

|β∗|1
√
k1 log d
n


and nt2nj % log p. Suppose Assumptions 3.2.1, 3.4.2-3.4.4 hold. Additionally, let β∗
satisfy the exact sparsity in Assumption 3.2.2 (q2 = 0 with Rq2 = k2) and Assumption
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3.2.3 hold over the restricted set C(J(β∗); 0, 3). Assume

κ2
k2 log p
n

+ k2

√
k1 log d
n

= O(κ1),

for some strictly positive constants (κ1, κ2) depending only on κL, σv, Υw,θ∗ , and L. If
the third-stage regularization parameter λn,3 satisfies

λn,3 ≥ c

σvση
√

log p
n

 ∨
Lb (σv, ση) |β∗|1

√
Υw,θ∗

√
k1 log d
n

 := M̄

then, with probability at least 1−O
(

1
p∧d

)
, we have

|β̂HSEL − β∗|2 ≤
c1
√
k2

κL

[
M̄ ∨ λn,3

]
where b (σv, ση) is some known function depending only on σv and ση (and independent
of n, d, p, k1, and k2).

The following assumptions and proposition provide an example in which the upper
bound on B′ in Corollary 3.4.4 is achieved. In particular, it requires the eigenvalues of
Σw to be well-behaved over some restricted set.

Assumption 3.4.5: In program (3.11), we have: either (a) φ1(wTi θ) = wTi θ and
φ2(wTi θ) = log(1 + exp(wTi θ)); namely, the loss function corresponds to a binary logit
model. Or, (b) φ1(wTi θ) = log Φ(wTi θ)

1−Φ(wTi θ)
and φ2(wTi θ) = − log

[
1− Φ(wTi θ)

]
; namely, the

loss function corresponds to a binary probit model.

Assumption 3.4.6: The random matrix w is sub-Gaussian with parameters (Σw, σ
2
w).

For all ∆ ∈ C(J(θ∗); 0, 3)\{0}, the matrix Σw satisfies

0 < κwL ≤
∆TΣw∆
|∆|22

≤ κwU <∞

Proposition 3.4.2: Suppose the number of regressors d(= dn) can grow with and
exceed the sample size n and the number of non-zero components in θ∗ is at most k1(=
k1n) and k1 can increase to infinity with n but slowly compared to n. Let Assumptions
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3.2.1, 3.4.5-3.4.6 hold. If θ̂ solves program (3.11) with λn,1 ≥ cσw
√
αu
√

log d
n

and n %

k1 log d, then, with probability at least 1−O
(

1
d

)
,

1
n

n∑
i=1

[
wTi (θ̂ − θ∗)

]2
≤ c

′ κwU
(κwL)2k1

(
(λn,1)2 ∨

(
σ2
wαu

log d
n

))
,

where αu > 0 is a scalar such that φ′′2(u) ≤ αu for all u ∈ R.

Remark. From Proposition 3.4.2, we can set Υw,θ∗ := κwUσ
2
wαu

(κwL)2 in Corollary 3.4.4. The

boundedness on φ′′2(u) holds automatically for the binary logit model and binary probit
model. For the logit model, we have φ′′2(ui) = exp(ui)

1+exp(ui)

(
1− exp(ui)

1+exp(ui)

)
. For the probit

model, note that φ′′2(ui) is 1−V ar (ε1i | ε1i ≤ ui) when y1i = 1 and 1−V ar (ε1i | ε1i ≥ −ui)
when y1i = 0 and the unconditional variance is normalized to 1. Since truncation always
reduces variances (Greene, 2003), φ′′2(u) is bounded from above. If λn,1 � σw

√
αu
√

log d
n

,
then

1
n

n∑
i=1

[
wTi (θ̂ − θ∗)

]2
≤ c

′ κwU
(κwL)2σ

2
wαu

k1 log d
n

.

Corollary 3.4.5: Suppose θ∗ is exactly sparse with at most k1 non-zero coefficients.
Suppose for every j = 0, ..., p, T ′j = 1

n

∑n
i=1 L

2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′ ,T3 = 0, the
critical radius rnj = O

(
(k1
n

) 1
3
)
, and

B
′ = 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ cΥw,θ∗ |θ∗|1

√
log d
n

with probability at least 1− O
(

1
d

)
. Assume t2nj in T2 is chosen such that |β∗|1 T2 is at

most

O

√ log p
n
∨

|β∗|1
(
k2

1 log d
n

) 1
4


and nt2nj % log p. Suppose Assumptions 3.2.1, 3.4.2-3.4.4 hold. Additionally, let β∗
satisfy the exact sparsity in Assumption 3.2.2 (q2 = 0 with Rq2 = k2) and Assumption
3.2.3 hold over the restricted set C(J(β∗); 0, 3). Assume

κ2
k2 log p
n

+ k2

(
k2

1 log d
n

) 1
4

= O(κ1),
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for some strictly positive constants (κ1, κ2) depending only on κL, σv, Υw,θ∗ , and L, if
the third-stage regularization parameter λn,3 satisfies

λn,3 ≥ c
′

σvση
√

log p
n

 ∨
Lb (σv, ση) |β∗|1

√
Υw,θ∗

(
|θ∗|21 log d

n

) 1
4

 := M̄

then, with probability at least 1−O
(

1
p∧d

)
, we have

|β̂HSEL − β∗|2 ≤
c2
√
k2

κL

[
M̄ ∨ λn,3

]
where b (σv, ση) is some known function depending only on σv and ση (and independent
of n, d, p, k1, and k2).

The following proposition provides an example in which the upper bound on B
′ in

Corollary 3.4.5 is achieved. Let ρi, θ := −y1iφ1(wTi θ) + φ2(wTi θ) and ρ′′
i, θ̄

be the second
derivative of ρi, θ, evaluated at θ = θ̄, where θ̄ is some intermediate value between θ∗

and θ̂, the solution to program (3.11). Assumption 3.4.4 implies that there is some
αl > 0 such that ρ′′

i, θ̄
≥ αl for all i = 1, ..., n.

Proposition 3.4.3: Let Assumptions 3.2.1, 3.4.4 and 3.4.5 hold. Suppose the number
of regressors d(= dn) can grow with and exceed the sample size n and the number of
non-zero components in θ∗ is at most k1(= k1n) and k1 can increase to infinity with n
but slowly compared to n. If θ̂ solves program (3.11) with the regularization parameter5

λn,1 ≥ c
√

log d
n

, then,

1
n

n∑
i=1

[
wTi (θ̂ − θ∗)

]2
≤ c1Υw,θ∗ |θ∗|1

√ log d
n
∨ λn,1


with probability at least 1−O

(
1
d

)
, where Υw,θ∗ := α−1

l .

Remarks on Corollary 3.4.4-3.4.5
The proofs for Corollaries 3.4.4-3.4.5 and Propositions 3.4.1-3.4.3 are provided in

Sections 3.8.5-3.8.7.
Corollaries 3.4.4 and 3.4.5 imply that if λn,3 � M̄ and the upper bounds on

|β̂HSEL−β∗|2 tend to 0 as n→∞, then the two-stage estimator β̂HSEL is l2−consistent
5The choice of λn,1 is detailed in Theorems 2.1 or 2.2 in Van de Geer (2008).
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for β∗. The difference between Corollary 3.4.4 and Corollary 3.4.5 lies in that the
statistical error from the first-stage estimation is smaller in Corollary 3.4.4 relative to
Corollary 3.4.5 and as a result, the estimator β̂HSEL has a faster rate of convergence
in Corollary 3.4.4. The smaller first-stage statistical error in Corollary 3.4.4 is at the
expense of imposing conditions on the eigenvalues of Σw, as shown in Proposition 3.4.2.
Consistency of β̂HSEL per se does not require restrictions on the eigenvalues of Σw,
which could be useful in certain applications. Proposition 3.4.3 provides an example
where a slower rate of convergence is obtained by the first-stage estimator upon relaxing
the assumptions on the eigenvalues of Σw.

By Proposition 3.4.1, maxj r2
nj = O

((
k1
n

) 2
3
)
. Let us examine various choices of

t2nj ≥ r2
nj in Corollary 3.4.4 (the analysis for Corollary 3.4.5 is similar). Setting

t2nj �
√

log p
n|β∗|21

∨
√

k1 log d
n
% r2

nj makes the second-stage error |β∗|1 T2 on the same order of√
log p
n
∨
(
|β∗|1

√
k1 log d
n

)
. Under this choice of t2nj, we require

√
n log p
|β∗|21
∨
√
nk1 log d % log p

in order for the upper bound on |β̂HSEL − β∗|2 to hold with probability at least
1−O

(
1
p∧d

)
. Setting t2nj �

(
log p∨(k1 log d)

n

) 2
3 % r2

nj requires n
1
3 (log p ∨ (k1 log d))

2
3 % log p

for the upper bound on |β̂HSEL − β∗|2 to hold with probability at least 1−O
(

1
p∧d

)
. If

instead, we set t2nj = r2
nj, then the probability guarantee of 1 − O

(
1
p∧d

)
would require

k
2
3
1 n

1
3 % log p. Given the exact sparsity of β∗ (so|β∗|21 � k2

2), if k2
2 is sufficiently small

relative to n log p, the first choice of t2nj would provide the least restrictive requirement
on the sample size. A later result that concerns with the selection consistency of β̂HSEL
assumes this choice for t2nj and the scaling condition

√
n log p
|β∗|21

∨
√
nk1 log d % log p on

the sample size. When p and d are fixed and small relative to n, the analysis above
generalizes existing asymptotic “oracle” results in semiparametric estimation of low-
dimensional selection models from specific estimators (such as a series estimator) to a
unified framework of nonparametric least squares estimators and regularized nonpara-
metric least squares estimators.

More generally, when Fj belongs to a Hölder class of order ν > 0, we have maxj r2
nj =

O
((

k1
n

) 2ν
2ν+1

)
. When v ≥ 1, T1 �

√
k1 log d
n

and as long as we choose t2nj �
√

log p
n|β∗|21

∨√
k1 log d
n

, the second-stage error |β∗|1 T2 and consequently the upper bound on |β̂HSEL−

β∗|2 would be on the same order of
√

log p
n
∨
(
|β∗|1

√
k1 log d
n

)
. On the other hand, when v ∈

(0, 1), we have 2ν
2ν+1 >

ν
2 and T1 �

(√
B′
)ν
. Provided B′ ≥ O( 1

n
) (which is indeed the
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case for Corollaries 3.4.4 and 3.4.5) and the choice of t2nj � T4
|β∗|1
∨
(√

B′
)ν
, then |β̂HSEL−

β∗|2 is bounded above by T4 ∨
(
|β∗|1

(√
B′
)ν)

. However, note in the simple example

where B′ = 1
n
and T4 =

√
1
n
, we have T1 =

(
1
n

) ν
2 >

√
1
n
for any ν ∈ (0, 1) and therefore

|β̂HSEL− β∗|2 is bounded above by
(

1
n

) ν
2 . Consequently, the minimum requirement for

the “oracle” result to hold in the low-dimensional semiparametric selection models with
fixed p and d is to have v = 1. For the high-dimensional selection models considered
in Corollary 3.4.4, the minimum requirement is to have O

(
k1 log d
n

) ν
2 = O

(√
log p
n

)
. In

sharp contrast to the low-dimensional semilinear model, the fact that the nonparametric
component in the selection model involves an unknown single index that also needed
to be estimated increases the requirement on the rate of nonparametric estimation per
se.

Note that the regularization parameter λn,3 and the upper bounds on |β̂HSEL−β∗|2
depend on σv and ση, which is intuitive. It is possible to “remove” the dependence
on σv from the choice of λn,3 by imposing weights σ̂vj :=

√
1
n

∑n
i=1 v̂

2
ij , j = 1, ..., p

on the penalty term as in (3.7). An application of Lemmas A.11 and A.12 yields
maxj=1,...,p σ̂vj ≤ 2σv with probability at least 1 − O

(
1
p∧d

)
. The first-stage estimator

θ̂ in Corollaries 3.4.4 and 3.4.5 may be replaced with a post-Lasso estimator where
a usual low-dimensional estimation procedure is performed on the regressors selected
by θ̂ (in a spirit similar to Belloni and Chernozhukov, 2011b, for example); and upon
perfect selection or near-perfect selection6 of θ̂, the term

√
k1 log d
n

from Corollary 3.4.4

and the term
(
k2

1 log d
n

) 1
4 from Corollary 3.4.5 in the upper bounds on |β̂HSEL− β∗|2 can

be reduced to
√

k1
n

and
(
k2

1
n

) 1
4 , respectively.

We now present a result for the general sparsity case where θ∗ and β∗ belong to the
general lq1− and lq2− “balls” with q1, q2 ∈ [0, 1].

Corollary 3.4.6 (q1, q2 ∈ [0, 1]): Suppose for every j = 0, ..., p,

T
′

j = 1
n

n∑
i=1

L2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′
,

T3 = 0, and the critical radius rnj = O
(
( |θ
∗|1
n

) 1
3
)
. Also, assume θ∗ ∈ Bdq1(Rq1) for

6Ravikumar, Wainwright, and Lafferty (2010) studies selection of a l1−regularized logistic regres-
sion in the high-dimensional setting.
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q1 ∈ [0, 1] with “radius” Rq1 , and

B
′ = 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ cΥw,θ∗Rq1

(
log d
n

)1− q1
2

with probability at least 1− O
(

1
d

)
. Assume t2nj in T2 is chosen such that |β∗|1 T2 is at

most O(M̄), where

M̄ := max


√

log p
n

, |β∗|1

(
|θ∗|1
n

) 2
3

, |β∗|1R
1
2
q1

√ log d
n

1− q1
2


and nt2nj % log p. Moreover, condition (3.16) and Assumptions 3.2.1, 3.2.2, 3.4.2-3.4.4
hold. Additionally, let Assumption 3.2.3 hold over the restricted set C(J(β∗); 0, 3) for
the exact sparsity case (q2 = 0 with Rq2 � k2), and over C(Sτ ; q2, 3) ∩ Sδ where δ �
R

1
2
q2 (λn,3)1− q2

2 and τ = λn,3
κL

for the approximate sparsity case (q2 ∈ (0, 1]), respectively.
If the third-stage regularization parameter λn,3 ≥ b0M̄ , then, with probability at least
1−O

(
1
p∧d

)
, we have

|β̂HSEL − β∗|2 ≤
b1
√
Rq2

κ
1− q2

2
L

(
M̄ ∨ λn,3

)1− q2
2

where b0 and b1 are some known functions depending only on σv, ση, Υw,θ∗ , and L (and
independent of n, d, p, Rq1 , and Rq2).

Comment on Corollary 3.4.6. Corollary 3.4.6 contains Corollary 3.4.4 as a spe-
cial case with q2 = 0, Rq2 = k2 and q1 = 0, Rq1 = k1. When q1 = 0 so that Rq1 = k1

and |θ∗|1 � k1, the second term in M̄ is on the order of O
(
|β∗|1

(
k1
n

) 2
3
)
and therefore

dominated by
√

log p
n
∨ |β∗|1

√
k1 log d
n

, as we have seen previously. For more general spar-
sity of θ∗ (q1 ∈ (0, 1]), the second term in M̄ may still be small relative to the first
and third terms and therefore the “oracle” result is likely to hold for a range of scaling
conditions on n, p, d, Rq1 , and |θ∗|1.

Variable-selection consistency of a leading case example with exact sparsity

The following theorem (Theorem 3.4.7) addresses the question: given β̂HSEL, when
does β̂HSEL correctly select the non-zero coefficients in the main equation with high
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probability? This property is referred to as variable-selection consistency, which is
relevant to case of exactly sparse β∗ (and therefore this section assumes β∗ is exactly
sparse with at most k2 non-zero coefficients). We say β̂HSEL achieves perfect selection
if P[J(β̂HSEL) = J(β∗)] → 1 and near-perfect selection if P[J(β̂HSEL) ⊇ J(β∗)] → 1
and the number of wrong components selected is on the order of op(k2). Upon perfect
selection or near-perfect selection of the regressors, we can then apply low-dimensional
techniques to estimate and conduct inference on the important coefficients.

In order for the number of wrong components selected by the standard Lasso to be on
the order of op(k2) in the context of standard linear regression models, it is known that
the so-called “neighborhood stability condition” (Meinshausen and Bühlmann, 2006)
on the design matrix, re-formulated in a nicer form as the “irrepresentable condition”
by Zhao and Yu, 2006, or the “mutual incoherence condition” by Wainwright (2009), is
sufficient and necessary. Furthermore, it can be shown that the “irrepresentable condi-
tion” implies the RE condition (see, e.g., Bühlmann and van de Geer, 2011).

Assumption 3.4.7:
∥∥∥∥E [vT1,J(β∗)cv1,J(β∗)

] [
E(vT1,J(β∗)v1,J(β∗))

]−1
∥∥∥∥
∞
≤ 1 − φ for some

constant φ ∈ (0, 1].

Assumption 3.4.7, the so-called “mutual incoherence condition” originally formalized
by Wainwright (2009), captures the intuition that the large number of irrelevant co-
variates cannot exert an overly strong effect on the subset of relevant covariates. In the
most desirable case, the columns indexed by j ∈ J(β∗)c would all be orthogonal to the
columns indexed by j ∈ J(β∗) and then we would have φ = 1. In the high-dimensional
setting, this perfect orthogonality is hard to achieve, but one can still hope for a type
of “near orthogonality” to hold.

Assumptions 3.2.1 and 3.4.2 ensure that the left-hand-side of the inequality in As-
sumption 3.4.7 always falls in [0, 1). To see this, note that under Assumptions 3.2.1 and
3.4.2, each column vj, j = 1, ..., p is consisted of i.i.d. sub-Gaussian variables. Without
loss of generality, we can assume E(v1j) = 0 for all j = 1, ..., p. Consequently, the
normalization maxj=1,...,p

|vj |2√
n
≤ κc where 0 < κc < ∞ follows from a standard bound

for the norms of zero-mean sub-Gaussian vectors and a union bound

P
[

max
j=1,...,p

|vj|2√
n
≤ κc

]
≥ 1− 2 exp(−cn+ log p) ≥ 1− 2 exp(−c′n),

where the last inequality follows from n > log p. For example, if vj has a Gaussian



119

design, then we have

max
j=1,...,p

|vj|2√
n
≤ max

j=1,...,p
Σjj

1 +
√

32 log p
n

 ,
where maxj=1,..,p Σjj corresponds to the maximal variance of any element of v (see
Raskutti, et. al, 2011).

Theorem 3.4.7: Under the assumptions in Corollary 3.4.4 and Assumption 3.4.7,
if n % (k3

2 log p) ∨ (k2
2k1 log d),

√
n log p
|β∗|21

∨
√
nk1 log d % log p,

√
k1 log d
n

= o(1), and λn,3

satisfies

λn,3 ≥ c
8(2− φ

4 )
φ

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n

 ,
then, we have: (a) the support J(β̂HSEL) ⊆ J(β∗); (b) if minj∈J(β∗) |β∗j | > B̄, where

B̄ := c
√
k2

λmin
(
E
[
vT1,J(β∗)v1,J(β∗)

])
σvση

√
log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n


then J(β̂HSEL) ⊇ J(β∗) and β̂HSEL is variable-selection consistent, i.e., J(β̂HSEL) =
J(β∗), with probability at least 1−O

(
1
p∧d

)
.

Remark. The proof for Theorem 3.4.7 is provided in Section 3.8.8. Part (a) of Theo-
rem 3.4.7 guarantees that the Lasso does not falsely include elements that are not in the
support of β∗. This result hinges on Assumption 3.4.7, namely, the mutual incoherence
condition. Part (b) implies that as long as the minimum value of |β∗j | over j ∈ J(β∗)
is not too small, then the two-stage Lasso does not falsely exclude elements that are in
the support of β∗ with high probability. Combining the claims from (a) and (b), the
multi-stage estimator is variable-selection consistent with high probability.

Inference with perfect or near perfect selection
When the mutual incoherence condition and the assumption that the true parame-

ters β∗j over j ∈ J(β∗) is well separated from 0 are plausible for the empirical problem
of interest, conditioning on the perfect selection or near-perfect selection result from
Theorem 3.4.7, we can then apply low-dimensional techniques to conduct inference on
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the important coefficients. In the following discussion, we consider the simple case
where k1 and k2 are fixed. Then, for example, one can apply the estimator

β̃ :=
(
v̂T
Ĵ
v̂Ĵ

)−1 (
v̂T
Ĵ
v̂0
)

where Ĵ := J(β̂HSEL). In the multi-stage procedure proposed by this chapter, if the
second-stage nonparametric estimation uses the series estimator from Newey (1991),
then the post-selection estimator β̃ can be shown to be algebraically equivalent to the
two-stage estimator of Newey (1991) for the semiparametric selection models when
the linear coefficients in the main equation is low-dimensional. In deriving the

√
n-

consistency and the asymptotic normality of the two-stage estimator, Newey requires√
n-consistency on the first-stage estimator of the coefficients in the selection equation.

This suggests that in order for the results from Newey (1991) to be applied on the
estimator β̃, perfect selection or near-perfect selection of θ̂ defined in (3.11) may be
required. We may consider a variant of β̂HSEL. This variant differs from β̂HSEL in
that, before the second-stage estimation, a post-Lasso procedure is performed on the
regressors selected by the first-stage estimator θ̂ to obtain θ̃, which is then used to form
the single index. Rather than imposing perfect selection or near-perfect selection of
θ̂, another option may be to use the procedure proposed by Ahn and Powell (1993),
which does not require

√
n−consistency on the first-stage estimator and may allow

imperfect selection of θ̂. For all these post-selection estimators discussed here, the
asymptotic covariance matrix is rather complicated as it involves the derivative of the
unobservable selection function. Ahn and Powell (1993) proposes a plug-in estimator
for the asymptotic covariance matrix. Alternatively, bootstrap variance estimation can
be used to obtain the standard errors of these post-selection estimators.

It is worth noting that while selection-consistency is a desirable property of the Lasso
that allows us to conduct post-selection inference, it requires assumptions such as the
mutual incoherence condition or the irrepresentable condition which might not hold in
economic problems where the design matrices exhibit strong (empirical) correlations.
When selection consistency is not achieved by the Lasso procedure, other inference pro-
cedures may be useful. While it is possible to construct confidence intervals for individ-
ual coefficients (e.g., Belloni, Chernozhukov, and Wei, 2013; Belloni, Chernozhukov, and
Hansen, 2014) and linear combinations of several of them in certain high-dimensional
models using a low dimensional projection approach (e.g., Zhang and Zhang, 2013; Ja-
vanmard and Montanari, 2014), general inference theory with high-dimensional data
is still underexplored owing to the complexity of the sampling distributions of exist-
ing estimators (see e.g., Efron, 2010). Rather than relying on distributional theory to
conduct inference, The following section (Section 3.4.2) provides an alternative way of
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constructing confidence sets based on the pivotal Dantzig selector (3.8) from Section
3.3. Although developing inference and asymptotic theory for low-dimensional param-
eters in the high-dimensional selection models is not the focus of this chapter, it makes
an interesting topic for future research.

3.4.2 The pivotal Dantzig selector of the high-dimensional
linear coefficients and confidence sets

The pivotal Dantzig selector (3.8) was originally proposed by Gautier and Tsybakov
(2011) in the context of high-dimensional IV regression. For the particular case of this
chapter where the instruments are the fitted regressors v̂ themselves, this pivotal es-
timator is an extension of the Dantzig selector to accommodate for the fact that the
variance of the noise η is unknown. It can be related to the square-root Lasso of Belloni,
Chernozhukov, and Wang (2010) and Belloni, Chernozhukov, and Wang (2014). The
non-asymptotic bounds derived in this section only apply to the case of exactly sparse
β∗. However, all these results can be extended to the case of approximately sparse
β∗ by applying analysis similar to those from previous sections. The confidence sets
are the by-products of the non-asymptotic bounds on the pivotal estimator. Construc-
tion of confidence sets is based on the following theorem (Theorem 3.4.8), which uses
a bound for moderate deviations of self-normalized sums of random variables estab-
lished by Jing, Shao and Wang (2003). This tool was first applied by Belloni, Chen,
and Chernozhukov (2010) and later by Gautier and Tsybakov (2011) as well as Belloni,
Chernozhukov, and Wang (2014). The following assumption is needed for this deviation
bound to be applied in obtaining Theorem 3.4.8.

Assumption 3.4.8: For all i = 1, ..., n, j = 1, ..., p and some constant δ′ > 0,
E
[
|vijηi|2+δ′

]
<∞ and neither of vijηi is almost surely equal to 0.

Define

bn,δ′ := min
j=1,...,p

√∑n
i=1 E

[
v2
ijη

2
i

]
(∑n

i=1 E
[
|vijηi|2+δ′

])1/(2+δ′ )
.

Given, for j = 1, ..., p, the variables vijηi are i.i.d., we have

bn,δ′ := n
δ
′

4+2δ′ min
j=1,...,p

√
E
[
v2
ijη

2
i

]
(
E
[
|vijηi|2+δ′

])1/(2+δ′ )
. (3.21)
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For a ≥ 1, set

α = 2L
(

1− Φ
(
a
√

2 log p
))

+ 2a0

(
1 + a

√
2 log p

)1+δ′

pa2−1b2+δ′
n, δ′

, (3.22)

where a0 > 0 is the absolute constant from the formula (2.11) in Jing, Shao and Wang
(2003), and Φ(·) is the standard normal c.d.f.

Notation. For Theorem 3.4.8, define the quantities Q̂(β) := 1
n
|v̂0 − v̂β|22, and the

l2−sensitivity

κ∗J(β∗) = inf
∆∈C(J(β∗);0, ϕ)

1
n
|v̂T v̂∆|∞
|∆|2

for some ϕ > 1. Recall from Section 3.4.1 the notation

B
′ := 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ cΥw,θ∗

k1 log d
n

where Υw,θ∗ is a known function depending only on w and θ∗, and from Section 3.3 the
notations

vj∗ := max
i∈{1,...,n}

{|2xij| ∨ |v̂ij|}

for j = 1, ... , p, and D the diagonal p×p matrix with diagonal entries v−1
j∗ , j = 1, ... , p.

Remark. Under Assumptions 3.4.2 and 3.4.3, the condition E
[
|vijηi|2+δ′

]
< ∞ is

implied by the fact that vij (for all j = 1, ..., p) and η are sub-Gaussian. To see this,
note that the random variable vijηi is sub-Exponential (using the fact that the product
of two sub-Gaussian variables is sub-Exponential) and one of the characterizations of
sub-Exponential variables says a zero-mean random variable X is sub-Exponential if
and only if the quantity supk≥2

[
E(Xk)
k!

]1/k
is finite (see, e.g., Wainwright, 2015).

Theorem 3.4.8: Suppose the assumptions in Corollary 3.4.4 and Assumption 3.4.8
hold. For a ≥ 1, choose α as in (3.22) and set the tuning parameter

ξ ≥ amax

c0

√
log p
n

,
(
Q̂(β∗)

)− 1
2 |β∗|1

Lb(σv)
√
B′

minj=1,...,p vj∗

 (3.23)
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where c0 > 1 and b(σv) is some known function depending only on σv. If p ≤ exp
(
b2
n,δ
′

2a2

)
,

then with probability at least 1−α−O
(

1
p∧d

)
, for any solution (β̂, σ̂) of program (3.8),

we have

∣∣∣D−1(β̂ − β∗)
∣∣∣
2
≤ 1

κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗

∣∣∣β̂∣∣∣
1

+ 2ξσ̂
] 1− ξ2

κ∗J(β∗)

−1

·

1− 1
κ∗J(β∗)

[
Lb(σv)

√
k2B

′

(minj=1,...,p vj∗)2

] 1− ξ2

κ∗J(β∗)

−1

−1

. (3.24)

and, for all j = 1, ..., p,

∣∣∣β̂j − β∗j ∣∣∣ ≤ 1
vj∗κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗

∣∣∣β̂∣∣∣
1

+ 2ξσ̂
] 1− ξ2

κ∗J(β∗)

−1

·

1− 1
κ∗J(β∗)

[
Lb(σv)

√
k2B

′

(minj=1,...,p vj∗)2

] 1− ξ2

κ∗J(β∗)

−1

−1

. (3.25)

Furthermore,

Cσ̂ ≤
∣∣∣∆J(β∗)

∣∣∣
1

+ C
√
Q̂(β∗)

≤ |Ψn∆|∞
κ∗J(β∗),J(β∗)

+ C
√
Q̂(β∗). (3.26)

The proof for Theorem 3.4.8 is provided in Section 3.8.9.
To construct confidence sets based on Theorem 3.4.8, notice that the bounds in

(3.24)-(3.26) are meaningful if κ∗J(β∗) ≥ κ̄ > 0 (i.e., the l2−sensitivity is strictly positive
and bounded away from 0). In spite of the appearance, bound (3.24) has the same
scaling as the bound in Corollary 3.4.4. This can be verified by Proposition 9.3 in
Gautier and Tsybakov (2011) which shows that apart from some positive universal
constant, the l2−sensitivity is no smaller than the restricted eigenvalue multiplied by
k
− 1

2
2 . However, in cases where the l2−sensitivity is strictly larger, bound (3.24) would

be sharper than the bound in Corollary 3.4.4. Gautier and Tsybakov (2011) provides
a data-driven approach of computing κ∗J(β∗) without knowing J(β∗). As long as the

tuning parameter ξ is sufficiently small, i.e.,
{√

log p
n
, |β∗|1

√
k1 log d
n

}
−→ 0, then the
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term 1 − ξ2

κ∗
J(β∗)

in (3.24)-(3.25) is close to 1 provided κ∗J(β∗) ≥ κ̄ > 0. The choice
of ξ specified by (3.23) has the same scaling as the choice of λn,3 for the non-pivotal
Lasso estimator in Corollary 3.4.4 (in either case, the scaling of the tuning parameter
needs to match the scaling of the maximum of the first-stage related error and the
third-stage related error) except that the choice of ξ does not involve the unknown
variance of ηi (and hence pivotal). In addition, notice that the upper bounds (3.24)-
(3.25) are also pivotal to the unknown variance of ηi . The only terms that can involve
unknown parameters in the choice of ξ and therefore the upper bounds (3.24)-(3.25)
are: Lb(σv)

√
B′ and

(
Q̂(β∗)

)− 1
2 |β∗|1.

The term Lb(σv)
√
B′ is relatively easy to deal with: b(σv) can be replaced with

b(σ̂v) := b

max
j

√√√√ 1
n

n∑
i=1

v̂2
ij


and an application of Lemma A.11 yields σ̂v ≤ 2σv with probability at least 1−O

(
1
p∧d

)
;

construction of confidence intervals (that do not contain any unknown parameters) for
B
′ has been considered in the context of several Generalized Linear models (see, e.g.,

Van de Geer, 2008) and we will assume in this discussion that these confidence sets
B̂
′ for B′ are available. Consequently, whenever the term Lb(σv)

√
B′ shows up in the

bounds (3.24)-(3.25), we will replace it with Lb(σ̂v)
√
B̂′ . In the case where the constant

L is unknown, Section 3.4.1.2 discusses methods to determine this constant.
The term

(
Q̂(β∗)

)− 1
2 |β∗|1 is the harder one here as β∗ is unknown and in fact the

parameters we want to estimate. One possibility is to consider the following heuristic:

(i) In Step k = 0 (initialization), solve program (3.8) with ξk = c0

√
log p
n

to obtain β̂k
for some c0 > 1; update ξk with

ξk+1 ≥ amax

c0

√
log p
n

,
(
Q̂(β̂k)

)− 1
2
∣∣∣β̂k∣∣∣

1

L̂b(σ̂v)
√
B̂′

minj=1,...,p vj∗

 . (3.27)

(ii) In Step k + 1, solve program (3.8) with ξk+1 to obtain β̂k+1 and update ξk+1

with ξk+2 as in (3.27). Repeat this step till a pre-specified tolerance level on∣∣∣β̂k+1 − β̂k
∣∣∣
2
is reached.

Establishing theoretical guarantees for the heuristic provided above is pursued in a
separate ongoing project. In special cases, we may be able to circumvent the fact that
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β∗ is unknown. For example, when p is large relative to d so that |β∗|1
√

k1 log d
n
�√

log p
n

, then the result in Theorem 3.4.8 is essentially reduced to the case where the
pivotal Dantzig selector is applied to the standard high-dimensional linear models with
exact sparsity. In a related scenario where a post-Lasso procedure is performed on the
regressors selected by the first-stage estimator θ̂ defined in (3.11), upon perfect selection
or near-perfect selection of θ̂, the factor

√
k1 log d
n

is reduced to
√

k1
n
which may be smaller

relative to
√

log p
n

.

3.4.3 Properties of the estimators of the selection bias
function

Given the availability of estimates θ̂ and β̂ of the high-dimensional linear coefficients
from either the non-pivotal procedure or the pivotal procedure, two different estimation
strategies for the nonparametric selection bias are considered: one is the closed form es-
timator (3.13) and the other is the plug-in nonparametric least squares estimator (3.14)
which can be obtained from the Lipschitz regression described in Section 3.4.1.2 if we
assume g(·) belongs to the class F of Lipschitz functions. Despite the fact that (3.14)
is computationally more involved relative to (3.13), its rate of convergence turns out to
be faster as shown in the following. To facilitate the discussion and a later comparison
with the minimax lower bounds in Section 3.4.4, we break down the presentations of the
results into the case of exact sparsity on β∗ and θ∗ (q1 = q2 = 0) in Theorems 3.4.9 and
4.10, and the case of general sparsity on β∗ and θ∗ (q1, q2 ∈ [0, 1]) in Theorems 3.4.11
and 3.4.12 (which contain Theorems 3.4.9 and 3.4.10 as special cases, respectively).

Theorem 3.4.9 (q1 = q2 = 0): Let the assumptions in Corollary 3.4.4 hold. Sup-
pose g(·) belongs to the class F of Lipschitz functions. For the estimator ĝ(·) of g(·)
obtained by (3.13),
(
E
[
ĝ(wTi θ̂)− g(wTi θ∗)

]2) 1
2
≤ cbmax

{
k2

√
log p
n
, |β∗|1

(
k1 log d
n

) 1
4 , k2 |β∗|1

√
k1 log d
n

}
where b is some constant depending only on the model-specific structure (and indepen-
dent of n, d, p, k1, and k2).

Theorem 3.4.10 (q1, q2 ∈ [0, 1]): Let the assumptions in Corollary 3.4.6 hold. Sup-
pose g(·) belongs to the class F of Lipschitz functions. For the estimator ĝ(·) of g(·)
obtained by (3.13),
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(
E
[
ĝ(wTi θ̂)− g(wTi θ∗)

]2) 1
2
≤ cbmax

{
Rq2M̄

1−q2 , |β∗|1R
1
4
q1

(√
log d
n

) 1
2−

q2
4
|β∗|1

(
|θ∗|1
n

) 1
3

}
where M̄ is defined in Corollary 3.4.6 and b is some constant depending only on the
model-specific structure (and independent of n, d, p, Rq1 , and Rq2).

Theorem 3.4.11 (q1 = q2 = 0): Let the assumptions in Corollary 3.4.4 hold. Sup-
pose g(·) belongs to the class F of Lipschitz functions and the random matrix x is
sub-Gaussian with parameters (Σx, σ

2
x). For all ∆ ∈ C(J(β∗); 0, 3)\{0}, the matrix

Σx satisfies ∆TΣx∆
|∆|22

≤ κxU <∞. For the estimator g̃(·) of g(·) obtained by (3.14),

(
E
[
g̃(wTi θ̂)− g(wTi θ∗)

]2) 1
2
≤ c

′
b
′ max


√
k2 log p
n

, |β∗|1

√
k1k2 log d

n
,

(
k1

n

) 1
3


where b′ is some constant depending only on the model-specific structure (and inde-
pendent of n, d, p, k1, and k2).

Theorem 3.4.12 (q1, q2 ∈ [0, 1]): Let the assumptions in Corollary 3.4.6. Suppose g(·)
belongs to the class F of Lipschitz functions and the random matrix x is sub-Gaussian
with parameters (Σx, σ

2
x). For all non-zero ∆ ∈ C(Sτ ; q2, 3)∩Sδ where C(Sτ ; q2, 3)∩Sδ

is defined in Corollary 3.4.6, the matrix Σx satisfies ∆TΣx∆
|∆|22

≤ κxU <∞. For the estima-
tor g̃(·) of g(·) obtained by (3.14),

(
E
[
g̃(wTi θ̂)− g(wTi θ∗)

]2) 1
2
≤ c

′
b
′ max

√Rq2M̄
1− q2

2 ,

(
|θ∗|1
n

) 1
3
 ,

where M̄ is defined in Corollary 3.4.6 and b′ is some constant depending only on the
model-specific structure (and independent of n, d, p, Rq1 , and Rq2).

Remark. The proofs for Theorems 3.4.9-3.4.12 are provided in Sections 3.8.10 and
3.8.11. First let us look at the case of exactly sparse β∗ and θ∗ (q1 = q2 = 0). From
Theorem 3.4.11, notice that the terms

√
k2 log p
n

and |β∗|1
√

k1k2 log d
n

are expected from
the statistical error of β̂ that we plug into the nonparametric regression (3.14); and the
term

(
k1
n

) 1
3 is expected from the fact that g(·) belongs to the class F of Lipschitz func-

tions7. On the other hand, the term
(
k1
n

) 1
3 is suppressed by

(
k1 log d
n

) 1
4 in Theorem 3.4.9

7Note that when ε1i and ε2i in (3.1) are bivariate normal, the selection bias characterized by the
Inverse Mills Ratio is a 1−Lipschitz function (see, e.g., Ruud, 2000). Furthermore, if mj(·) ∈ Fj and
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for the closed-form estimator (3.13). When β∗ is approximately sparse with q2 = 1,
Theorem 3.4.10 implies that the

√
MSE of the closed-form estimator (3.13) is bounded

above by Rq2M̄
1−q2 = |β∗|1. This upper bound is unimprovable and as a result, it

is not possible for (3.13) to achieve MSE-consistency even if n → ∞ when q2 = 1.
In contrast to (3.13), the nonparametric least squares estimator (3.14) is consistent in
MSE as n → ∞ when q2 = 1. The key behind the sharp rate achieved by the plug-in
nonparametric least squares estimator (3.14) in Theorems 3.4.11 and 3.4.12 lies on the
random variables

1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g(wTi θ∗)

]
,

and
Un := sup

δ∈S(r1, r2)

1
n

∣∣∣ηTwδ∣∣∣ ,
where

S(r1, r2) :=
{
δ ∈ Rd | |δ|1 ≤ r1, |δ|2 ≤ r2

}
.

The analysis for controlling the first term uses a “local function complexity” argument
similar to what is done in the proofs for Theorems 3.4.1 and 3.4.2. To upper bound
the second term Un, we can apply a discretization argument over the set S(r1, r2)
together with results on metric entropy and the fact E [ηi|wi] = 0. “Small” values of
r1 and r2 are guaranteed by the upper bounds on |θ̂ − θ∗|2 from Lemma A.7 and as
a result we only need to work with a “small” S(r1, r2). The sharp rates provided by
these types of analysis seem to be driven by the projection nature of the underlying
nonparametric least-squares estimators8. As we will see in the following section, the
overall convergence rate of the estimator β̂ (obtained by either the non-pivotal procedure
or the pivotal procedure) and the plug-in nonparametric least squares estimator (3.14)
is minimax optimal in terms of the (n, d, p)−scaling for the case of exactly sparse β∗.
However, we will also see that this minimax optimality result does not apply to the
case of approximately sparse β∗ because of the first-stage related estimation error.

3.4.4 Statistical efficiency via lower bounds on minimax risks
This section studies efficiency of the proposed estimators by deriving lower bounds on
minimax rates for the case of l2−loss. Minimax lower bounds, applicable to any pro-
cedure regardless of its computational cost, are complementary to the understanding
Fj is the class of L−Lipschitz functions for every j = 1, ..., p, then g(·) is a Lipschitz function.

8In fact, a recent chapter by Chatterjee (2014) shows that the least squares estimators are always
admissible up to a universal constant in many modern statistics problems.
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of computationally efficient methods. First, they can reveal gaps between the perfor-
mance of an optimal procedure in theory and known computationally efficient proce-
dures. Moreover, they can demonstrate regimes in which practical procedures achieve
these lower bounds. While one way of interpreting minimax lower bounds is to view
the choice of unknown parameters in an adversarial manner, and to compare the esti-
mators based on their worst-case performance, many techniques for deriving minimax
lower bounds can be motivated by the Bayesian approach which views the unknown
parameters as random variables (e.g., Guntuboyina 2011).

The minimax lower bounds in this section are derived for model (3.2), implied
by the original selection model (3.1). As a consequence, these lower bounds provide
information-theoretic limits for any procedure constructed based on model (3.2) for
estimating model (3.1), regardless of its computational cost. For q1, q2 ∈ [0, 1], define
H = Bpq2(Rq2) × F ◦ Bdq1(Rq1), where the lq− “ball” is defined in Section 3.2 and F is
the class of functions such that g ∈ F : R → R. When β∗ ∈ Bp0(k2) and θ∗ ∈ Bd0(k1),
model (3.2) corresponds to the case of exact sparsity on β∗ and θ∗. When β∗ ∈ Bpq2(Rq2)
and θ∗ ∈ Bdq1(Rq1) for q ∈ (0, 1], model (3.2) corresponds to the case of approximate
sparsity based upon imposing a certain decay rate on the ordered entries of β∗ and
θ∗. Theorem 3.4.13 (Theorem 3.4.14) presents a minimax lower bound for the case of
exact sparsity q1 = q2 = 0 (respectively, the case of approximate sparsity q1, q2 ∈ (0, 1]).

Assumption 3.4.9: There exists a constant κx > 0 and a function fl(Rq2 , q2, n, p)
such that

1√
n
|xβ|2 ≥ κx |β|2 − fl(Rq2 , q2, n, p) for all β ∈ Bpq2(Rq2).

Assumption 3.4.10: There is no measurable function f(wTi θ) such that xTi λ = f(wTi θ)
when y1i = 1 for λ ∈ Bpq2(Rq2)\{0}.

Remark. Assumptions 3.4.9 and 3.4.10 ensure the identifiability of model (3.2), with-
out which, lower bounds for high-dimensional linear models usually involve a maximum
of two quantities: a term involving the diameter of the null-space restricted to the
lq−ball, measuring the degree of non-identifiability of the model, and a term arising
from the metric entropy structure for lq−balls (see Raskutti, et. al, 2011). Assumption
3.4.9 together with Assumption 3.4.10 incurs an upper bound on the Bpq(R)−kernel
diameter in l2−norm (this result is formalized in Lemma A.10 and proved in Section
3.8.12), and consequently the identifiability of model (3.2).
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Theorem 3.4.13 (q1 = q2 = 0): Let F be the class of L−Lipschitz functions and
Assumptions 3.4.9-3.4.10 hold with fl(Rq2 , q2, n, p) = 0 and κx > 0. Let the parameter
space Θ be the set of elements θ in Bd0(k1) such that for any λ ∈ Bp0(k2)\{0}, @ a mea-
surable g(·) ∈ F , xTi λ = g(wTi θ) when y1i = 1. Moreover, |wθ|2√

n|θ|2
≤ κu for all θ ∈ Θ and

|xβ|2√
n|β|2
≤ κ

′
u for all β ∈ Bp0(k2). If the vector η ∼ N(0, σηIn×n), then, for some constant

b depending only on the model-specific structure (and independent of n, d, p, k1, and
k2),

min
β̃, f̃ , θ̃

max
θ ∈ Θ
f(·) ∈ F
β ∈ Bp0(k2)

(
E
∣∣∣β̃ − β∣∣∣2

2

) 1
2

+
(
E
[
f̃(wTi θ̃)− f(wTi θ)

]2) 1
2

≥ bmax


√
k1 log d
n

,

(
k1

n

) 1
3

,

√
k2 log p
n

 .
Theorem 3.4.14 (q1, q2 ∈ (0, 1]): Let F be the class of L−Lipschitz functions and
Assumptions 3.4.9-3.4.10 hold with fl(Rq2 , q2, n, p) = o

(
R

1
2
q2

(
log p
n

) 1
2−

q2
4
)
and κx > 0.

Moreover, 1√
n

maxj=1,...,d |wj|2 ≤ κw < ∞ and 1√
n

maxj=1,...,p |xj|2 ≤ κx < ∞. If the
vector η ∼ N(0, σηIn×n), then, for some constant b′ depending only on the model-
specific structure (and independent of n, d, p, Rq1 , and Rq2),

min
β̃, f̃ , θ̃

max
θ ∈ Θ
f(·) ∈ F

β ∈ Bpq2(Rq2)

(
E
∣∣∣β̃ − β∣∣∣2

2

) 1
2

+
(
E
[
f̃(wTi θ̃)− f(wTi θ)

]2) 1
2

≥ b
′ max

R
1
2
q1

(
log d
n

) 2−q1
4

,
(
R∗

n

) 1
3
, R

1
2
q2

(
log p
n

) 2−q2
4

 ,
where the parameter space Θ is defined in Theorem 3.4.13 with Bd0(k1) replaced by
Bdq1(Rq1) and Bp0(k2) replaced by Bpq2(Rq2), and R∗ is the “radius” Rq1 when q1 = 1.

Remark. The proofs for Theorem 3.4.13 and Theorem 3.4.14 are provided in Sec-
tions 3.8.12 and 3.8.13, respectively. These proofs are information-theoretic in nature
and based on Fano’s inequality (see, e.g., Guntuboyina, 2011; Wainwright, 2015) and
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results on the metric entropy of the lq−balls. By Lemma A.10, the conditions on
fl(Rq2 , q2, n, p) in Theorems 3.4.13 and 3.4.14 together with Assumption 3.4.10 en-
sure that the kernel diameter for the nullspace of Bpq2(Rq2) is dominated by the term
related to the metric entropy of Bpq2(Rq2). In Theorem 3.4.13, we require Assumption
3.4.9 to hold with fl(Rq2 , q2, n, p) = 0 and κx > 0, which is closely related to the
restricted eigenvalue condition on the matrix xT x

n
over the set Bp0(k2). When x is a

sub-Gaussian matrix with parameters (Σx, σ
2
x) and for all ∆ ∈ Bp0(k2)\{0}, the matrix

Σx satisfies ∆TΣx∆
|∆|22

≥ κx > 0, then Lemma B.2 guarantees Assumption 3.4.9 to hold for
fl(Rq2 , q2, n, p) = 0 with high probability. Additionally, if w is a sub-Gaussian matrix
with parameters (Σw, σ

2
w), ∆TΣw∆

|∆|22
≤ κ̄w < ∞ for all θ ∈ Θ, and ∆TΣx∆

|∆|22
≤ κ̄x < ∞ for

all β ∈ Bp0(k2), Lemma B.2 also guarantees that |wθ|
2
2

n|θ|22
≤ cκ̄w for all θ ∈ Θ and |xβ|

2
2

n|β|22
≤ cκ̄x

for all β ∈ Bp0(k2) hold with high probability (in Theorem 3.4.13). Similarly, the con-
ditions 1√

n
maxj=1,...,d |wj|2 ≤ κw < ∞ and 1√

n
maxj=1,...,p |xj|2 ≤ κx < ∞ (in Theorem

3.4.14) are also implied by Lemma B.2 with high probability given wj (j = 1, ..., d) and
xj (j = 1, ..., p) are sub-Gaussian.

Compare the scaling of the lower bound in Theorem 3.4.13 with the upper bounds
in Corollary 3.4.4 and Theorem 3.4.11. In particular, from the previous upper bounds,
we have (

E
∣∣∣β̂HSEL − β∗∣∣∣22

) 1
2

+
(
E
[
g̃(wTi θ̂)− g(wTi θ∗)

]2) 1
2

- max
{
|β∗|1

√
k2k1 log d

n
,
(
k1
n

) 1
3 ,
√

k2 log p
n

}

(The upper bound on E
∣∣∣β̂HSEL − β∗∣∣∣22 is obtained by converting

∣∣∣β̂HSEL − β∗∣∣∣22 with a
standard integration over the tail probability in the exponential form). Notice that
the scaling in the upper bound above matches the lower bound in Theorem 3.4.13 in
terms of (n, d, p)−factors. The only difference between these bounds is that the upper
bound exceeds the lower bound by a factor of |β∗|1

√
k2 � k

3
2
2 in the term related to

the complexity of the set Θ, which is likely due to the fact that the estimator β̂HSEL
is a sequential multi-stage procedure based on plugging in the first-stage estimator θ̂
in the place of the unknown coefficient θ∗ in the selection equation. In a different
but somewhat related context which concerns with the high-dimensional sparse linear
regression models with many endogenous regressors and instruments (see Zhu 2014), it
is found that the upper bound on the

√
MSE of the l1−regularized two-stage estimator

exceeds the minimax lower bound in Zhu (2014) by a factor of k2 (where k2 is the sparsity
parameter for the second-stage model).
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On the other hand, this minimax optimality result does not apply to the case of
approximately sparse β∗ when we compare the scaling of the lower bound in Theorem
3.4.14 with the upper bounds in Corollary 3.4.6 and Theorem 3.4.12 for the case q2 ∈
(0, 1]. In particular, from the previous upper bounds, we have,

(
E
∣∣∣β̂HSEL − β∗∣∣∣22

) 1
2

+
(
E
[
g̃(wTi θ̂)− g(wTi θ∗)

]2) 1
2

-

√Rq2

[
max

{√
log p
n
, |β∗|1

(
|θ∗|1
n

) 2
3 , |β∗|1R

1
2
q1

(√
log d
n

)1− q1
2
}]1− q2

2
 ∨

{(
|θ∗|1
n

) 1
3
}

.

As in the case of exactly sparse β∗, the terms
√
Rq2

(√
log p
n

)1− q2
2

and
(
|θ∗|1
n

) 1
3 in the

above upper bound match the scalings of the term related to the complexity of the set
Bpq2(Rq2) and the term related to the complexity of the set F , respectively. In sharp
contrast to the case of exactly sparse β∗ where our sequential multi-stage procedure
based on plugging in the first-stage estimator θ̂ only exceeds the minimax optimal
result by a factor of k

3
2
2 in the term related to the complexity of the set Θ, the term√

Rq2

[
|β∗|1R

1
2
q1

(√
log d
n

)1− q1
2
]1− q2

2

in the upper bound above is now worsened by an

exponent of 1− q2
2 and a factor of

√
Rq2 (|β∗|1)1− q2

2 when compared to the term related

to Θ, R
1
2
q2

(√
log p
n

)1− q1
2
, in the lower bound of Theorem 3.4.14. When q2 ∈ [0, 1], note

that R 1
2
q1

√ log d
n

1− q1
2


1− q2
2

≥ R
1
2
q1

√ log d
n

1− q1
2

with “=” holds only if q2 = 0 (the case of exactly sparse β∗).
The lower bound in either Theorem 3.4.13 or Theorem 3.4.14 is a “point” result.

Even if the main equation in the original selection model (3.1) has a normal error, the
normality of η is plausible in model (3.2) only if g(wTi θ∗) = 0, i.e., when there is no
selection activity. Nevertheless, these “point” results provided by Theorems 3.4.13 and
3.4.14 are still useful because whether g(wTi θ∗) equals 0 or not would be unknown in
general and the error from having to estimate g(·) still appears in the lower bounds.
Moreover, even if the “point” result does not hold “globally”, given that the lower
bounds are derived for the minimax risks of the high-dimensional linear coefficients
together with the nonparametric selection bias function, at least the second and third
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terms in the lower bounds of Theorems 3.4.13 and 4.14 should be unimprovable in
any “global” result. It is possible to impose distributional assumptions other than
normality on η but the derivation of the lower bounds in the proofs may involve more
difficult computations related to the Kullback-Leibler divergence or the more general
f−divergence where f is a convex function with f(1) = 0 (see Guntuboyina 2011 for a
unified treatment of existing techniques for obtaining lower bounds). For this reason,
existing literature on minimax lower bounds almost exclusively focuses on the case of
normal errors and lower bounds with less restrictive distributional assumptions other
than normality (e.g., sub-Gaussianity) on a random vector are in general impossible
to obtain. Recent work of efficiency bounds (e.g., Hansen B., 2014) that proposes a
shrinking neighborhood analysis may provide a promising direction for extending these
“point” results to the case where g(wTi θ∗) is in a shrinking neighborhood of 0.

3.4.5 Estimation of high-dimensional semilinear models with
a two-stage projection strategy

In this section, we discuss how the theory developed in this chapter can be applied to the
semilinear models in high-dimensional settings. The multi-stage estimator proposed in
this chapter is also useful for estimating the linear coefficients of the following semilinear
model:

yi = xTi β
∗ + g(wi) + ηi (3.28)

where xi is a p−dimensional vector of regressors (and p can grow with and exceed
the sample size n). Furthermore, g(·) : Rd → R is an unknown function and wi is a
d−dimensional vector of regressors. Our multi-stage projection strategy is now reduced
to a two-stage procedure. Based on the analysis in this chapter, it is straightforward
to see that Theorems 3.4.1 and 3.4.2 remain valid except that there is no first-stage
related error T1 in the upper bounds on the estimator of β∗. As we have mentioned
before in Section 3.4.1, when p and d are fixed and small relative to n, as long as Fj
(j = 0, ..., p) in Theorems 3.4.1 and 3.4.2 are sufficiently smooth so that E(xij |wi) and
E(yi |wi) can be estimated at a rate no slower than O

(
n−

1
4
)
, the “oracle” property will

be achieved.
The case where the dimensions p and d are both large relative to n (namely, p ≥ n

and d ≥ n) generalizes the semilinear model considered in Belloni, et. al (2014) in which
d ≥ n and p remains finite. When p ≥ n, it is unclear whether the procedure proposed
by Belloni, et. al (2014)9 can be easily extended because the effect from imperfect

9When d ≥ n and p remains finite, the procedure from Belloni, et. al (2014) includes three steps:
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selection in the second step of Belloni, et. al (2014) may not be negligible anymore
when the number of components in xi is also large relative to n. Instead, the projection
strategy proposed in this chapter can be used to estimate β∗ in the semilinear model
(3.28) when p ≥ n and d ≥ n. One way to reduce the curse of dimensionality in the
joint multivariate nonparametric component E(zij |wi) (recall zj = xj for j = 1, ..., p
and z0 = y) is to consider the class of additive models of the form (Hastie and Tibshirani,
1999):

E(zij |wi) := fj(wi) =
d∑
l=1

fjl(wil)

where fjl(·) ∈ Fjl for l = 1, ..., d and j = 0, ..., p.
Let us consider the simplest case of fjl(wil) = wilθ

∗
l where θ∗l is a scalar and θ∗ ∈

Bdq1(Rq1) and β∗ ∈ Bpq2(Rq2) for q1, q2 ∈ [0, 1]. Theorem 3.4.1 implies that the l2−error
of the two-stage estimator is bounded above by

O


R 1

2
q2

√ log p
n

1− q2
2
 ∨

R 1
2
q2

|β∗|1Rq1

(
log d
n

)1− q1
2
1− q2

2

 .

For a more general structure on fj, suppose J(fj) := {l : fjl 6= 0} and k1j = |J(fj)|,
the cardinality of J(fj), can increase to infinity with n but slowly compared to n (i.e.,
fj is exactly sparse) and

E(zij |wil) =
∞∑
k=1

ϑjlkφjlk(wil)

where Bjl = (φjlk)∞k=1 is an orthonormal basis for Fjl. For a truncation parameter M ,
also define

EM(zij |wil) =
M∑
k=1

ϑjlkφjlk(wil).

Let Ψjl denote the n×M matrix with Ψjl(i, k) = φjlk(wil). For the first-stage estimation
in our two-stage procedure, consider the following minimization problem:

min
ϑjl∈RM

: 1
2n

∣∣∣∣∣zj −
d∑
l=1

Ψjlϑjl

∣∣∣∣∣
2

2
+ λn

d∑
l=1

√
1
n
ϑTjlΨT

jlΨjlϑjl (3.29)

First, apply the Lasso to the regression of yi on wi; second, apply the Lasso to the regression of xij
on wi for every j = 1, ..., p, respectively; and third, regress yi on xi and the components of wi selected
by the first and second step.
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for some regularization parameter λn > 0. Program (3.29) is the sample version (with
truncation) of the following:

min
fjl∈Fjl

: 1
2E

(
zij −

d∑
l=1

fjl(wil)
)2

+ λn
d∑
l=1

√
E
(
f 2
jl(wil)

)
.

The optimization program (3.29) is considered in Ravikumar, Lafferty, and Wasserman
(2009) and can be viewed as a functional version of the grouped Lasso (Yuan and Lin,
2006). It can be solved with a coordinate descent algorithm proposed by Ravikumar,
et. al (2009).

3.5 Monte-Carlo simulation
In this section, simulations are conducted to gain preliminary understanding of the
small-sample performance of the non-pivotal multi-stage estimator β̂HSEL; ongoing work
involves implementation of the pivotal procedure described in Section 3.4.2. We consider
model (3.1) where w ∈ Rn×d is a matrix consisted of independent uniform zero-mean
random variables on [−2, 2] with variance σw ≈ 1.33 and x takes on the first p columns
of w. The i.i.d. errors ε1i ∼ N (0, 1) for i = 1, ..., n where n denotes the number
of observations generated for the selection equation. We consider two scenarios where
n = 88 and n = 200. Given the setup here, on average 44 (when n = 88) and
100 (when n = 200) observations, respectively, will be used for estimating the main
equation. Conditional on the observations is with y1i = 1, the i.i.d. errors (ε1i, ε2i)
have the following joint normal distribution

(ε1i, ε2i) ∼ N
((

0
0

)
,

(
1 ρσ2
ρσ2 σ2

))
,

where ρ ∈ {0, 0.9} and σ2 ∈ {0.3, 1, 2}. We set d = 90, p = 45, k1 = 4, and k2 = 2.
When n = 88, this setup of dimensionality represents a selection model where the
number of regressors in the selection equation and the main equation, respectively,
exceeds the number of observations used to estimate the corresponding equation, while
the number of relevant regressors (ones with nonzero coefficients) is small relative to
the sample size. We set θ∗j = 0.5 for j = 1, 2, 3, 46 and the rest of components in θ∗
take on values of 0; set β∗1 = β∗45 = 1 and the rest of components in β∗ take on values of
0. This set up ensures that there is at least one component wij with θ∗j in the support
set of θ∗ such that wij is excluded from xi.
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We consider four sets of experiments. The first experiment (Experiment 1) concerns
the multi-stage estimator β̂HSEL. As a benchmark for Experiment 1, Experiment 2 ap-
plies a one-step Lasso procedure (without correcting selection bias) to the same main
equation. Experiments 3 and 4 are benchmarks concerning classical low-dimensional
settings. Experiment 3 applies the Heckman’s 2-step procedure to model (3.1) where
the selection equation and the main equation are in the low-dimensional setting and
the supports of the true parameters in both equations are known a priori; Experiment
4 applies the OLS to the same low-dimensional model as Experiment 3. We simulate
100 sets of data following the process described above. For each set t = 1, ..., 100,
we compute the estimates β̂t of the main-equation parameters β∗, l2−errors of these
estimates, |β̂t − β∗|2, and selection percentages of β̂t (computed by the number of the
elements in β̂t sharing the same sign as their corresponding elements in β∗, divided by
the total number of elements in β∗). Results reported in this section include:

(a) the mean of the relevant estimates 1
100

∑100
t=1 β̂

t
1;

(b) the mean of the relevant estimates 1
100

∑100
t=1 β̂

t
45;

(c) the mean of the averaged irrelevant estimates 1
43
∑
j 6=1, 45

1
100

∑100
t=1 β̂

t
j;

(d) the mean of the l2−errors of the estimates β̂t computed as 1
100

∑100
t=1 |β̂t − β∗|2;

(e) the mean of the selection percentages (computed in a similar fashion as the mean
of the l2−errors of the estimates);

(f) the mean of the squared l2−errors (i.e., the sample mean squared error, SMSE,
computed as 1

100
∑100
t=1 |β̂t − β∗|22);

(g) the sample squared bias∑45
j=1( ¯̂

βj−β∗j )2 (where ¯̂
βj = 1

100
∑100
t=1 β̂

t
j for j = 1, ..., 45).

The results in this section regarding Experiment 1 are based on the choices of the reg-
ularization parameter λn,1 = 0.5

√
log d
n

for the first-stage estimation problem (3.11) and
the regularization parameter λn,3 = 0.2k2

√
k1 log d
ns

for the third-stage estimation prob-
lem (3.6), where ns denotes the number of observations with y1i = 1. The scalings of
λn,1 and λn,3 are chosen according to Proposition 3.4.2 and Corollary 3.4.4, respectively.
The choice of 0.2k2

√
k1 log d
ns

is also used in Experiment 2 for comparing the performance
of the proposed procedure and the Lasso without corrective measures. Note that for
σ2 = 1 and σx = σw ≈ 1.33, 0.2k2

√
k1 log d
ns

is slightly greater than 2σ2 · σx
√

log p
ns

, the
smallest value required for the Lasso estimation of the standard sparse high-dimensional
linear models (e.g., Bickel, et. al, 2009). The second-stage estimation in Experiment
1 is based on solving (3.20) with L = 1. Ongoing work involves implementing the
cross validation procedure described in Section 3.4.1.2 to determine L when ε2i has a
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non-normal distribution.
From Table 5.1, we see that the direct Lasso estimator without correcting selection

bias outperforms the multi-stage estimator β̂HSEL when ρ = 0, and vice versa when
ρ = 0.9. For the design considered here, in the presence of substantial selection ac-
tivity (ρ = 0.9), the mean of the l2−errors (row d) and the sample squared bias of
the estimates (row g) by the direct Lasso procedure without corrective measures are
exacerbated in the high-dimensional setting and this exacerbation mainly comes from
the poorer estimates of the relevant regressors as the mean of the averaged irrelevant
estimates varies little from the case ρ = 0 to the case ρ = 0.9. Other simulation results
(not included here due to space limit) show that when σ2 is increased (decreased) from
1 to 2 (respectively, from 1 to 0.3), β̂HSEL performs worse (respectively, better) relative
to the case σ2 = 1, and similar patterns are observed when wijs are drawn from indepen-
dent uniform zero-mean random variables on [−1, 1] (respectively, on [−4, 4]). Also,
as n increases from 88 to 200, β̂HSEL performs substantially better. These findings are
intuitive and expected. It is worth noting that for the design considered here, in terms
of the mean of the selection percentages (row e), the direct Lasso procedure without
corrective measures is comparable to β̂HSEL even in the case ρ = 0.9. Ongoing work is
exploring situations where variable selection by β̂HSEL substantially outperforms vari-
able selection by the direct Lasso procedure.

Table 5.1: Monte-Carlo simulation results for n = 88, σ2 = 1
ρ = 0 ρ = 0.9

HSEL LASSO HECK OLS HSEL LASSO HECK OLS
a 0.703 0.730 1.005 1.010 0.627 0.605 1.007 1.002
b 0.742 0.736 0.996 0.994 0.762 0.757 1.006 1.020
c -0.001 -0.001 NA NA -0.001 -0.001 NA NA
d 0.446 0.430 0.159 0.161 0.474 0.495 0.145 0.164
e 0.969 0.965 NA NA 0.981 0.979 NA NA
f 0.227 0.209 0.032 0.033 0.249 0.262 0.025 0.034
g 0.155 0.143 4× 10−5 9× 10−5 0.197 0.217 9× 10−5 4× 10−4

3.6 An empirical application to the retail gasoline
market

Having established the theoretical properties of the 3-step estimators, we now apply
one of these estimators to an empirical example of price-discrimination in the retail
gasoline market. When consumers have different valuations for a good and a firm knows
the distribution of consumer valuations in the market but not the exact valuation of
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any specific consumer prior to the sale, the firm can offer a menu of different prices,
appropriately bundled with other aspects of the product (such as product quality), and
force consumers to choose bundles consistent with their preferences. When differences
in costs incurred to produce various bundles in the menu are small compared to the
differences in prices, this menu-based offering is a price discrimination mechanism.
Retail gasoline markets present a good context to study price discrimination as different
gasoline stations in a market typically face similar costs of procuring gasoline (e.g.,
Shepard, 1991; Iyer and Seetharaman, 2003, etc.). Therefore, any price differences
across gasoline stations are likely due to reasons unrelated to the cost of procuring
gasoline. Gasoline retailers can choose to be either a two-product station offering both
self-service and full-service gasoline or a single-product station offering only full-service
or self-service gasoline. While a single-product station is unable to price discriminate,
a two-product station can charge different prices for full- and self-service gasoline and
induce consumers with different valuations to choose the products consistent with their
preferences.

Shepard (1991) estimates pricing decisions of gasoline stations without endogenizing
their decisions to price discriminate, i.e., their choice to be single versus multi-product.
Iyer and Seetharaman (2003) explicitly examines a firm’s incentive to price-discriminate.
In doing so, they highlight the importance of accounting for self selectivity considera-
tions in empirical analysis of price discrimination based on market data. Specifically,
Iyer and Seetharaman employ a binary probit framework to model a gasoline station’s
decision to be single-product or multi-product as a function of market and station char-
acteristics, and then model the prices chosen by the gasoline station for its product(s)
by estimating linear regressions with Heckman’s self-selectivity correction conditional
on the station’s decision to offer a single- or multi-product. They show that incorrect
inferences about the incentive to price discriminate and about the differences in the
prices charged between single-product and multi-product stations would result if the
endogeneity in the choice of the station-type were ignored in the estimation. Their em-
pirical analysis also shows that a larger income spread in the market implies a greater
likelihood of the gasoline station being multi-product. However, Iyer and Seetharaman
(2003) did not account for interactions between the gas stations in their empirical anal-
ysis. Studies show that pricing decisions of retail gasoline stations may depend on the
degree of competitive intensity in the “market” (e.g., Slade, 1992). In the empirical
literature on competitive gasoline markets, there have been various ways of defining a
“market” (see, e.g., Slade, 1986; Pinkse, Slade and Brett, 2002; Iyer and Seetharaman,
2008). For example, Iyer and Seetharaman (2008) defines mutually exclusive census
tracts as local markets, and treat each market as the unit of observation in their em-
pirical analysis. In previous research, markets have been defined based on stations that
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fall within a circle of half a mile or one mile radius.
One common feature of the previous definitions of competitive markets is that they

are subjective heuristics. It would be ideal if one can control for the interactions between
different stations without requiring a priori knowledge of the structure of the compet-
itive market. Recent work including Manresa (2014) and Bonaldi, Hortacsu, Kastl
(2014) develop econometric models to recover the underlying networks in different ap-
plications. Both papers hinge on the availability of panel data for each observation in
the cross section. In particular, Manresa considers settings where outcomes depend on
an agent’s own characteristics and on the characteristics of other agents in the data.
She applies a Lasso type estimator to identify individuals generating spillovers and their
strength using panel data on outcomes and characteristics. Bonaldi, et. al proposes a
new measure of systemic risk based on estimating spillovers between funding costs of
individual banks with a Lasso type procedure, which is applied to the panel of each
individual bank to recover the financial network. However, for the empirical applica-
tion considered in this section, panel data of each gas station is not available and as
a consequence, the econometric model by either Manresa or Bonaldi is not suitable.
Instead, we use geographic information and spatial data to create a set of measures
that are high-dimensional to control for the interactions between the gas stations and
employ one of our proposed estimators to identify the competitive market structure.
The following subsection describes the data followed by the empirical model.

Data and the empirical model
This chapter uses the data set from Iyer and Seetharaman (2003). It was collected
during July 1998 from a cross-section of 249 gasoline stations in the Greater Saint Louis
metropolitan area. Among the 249 stations, 65 are multi-product stations and 172 are
single-product self-service stations. In addition, there were 12 single-product full-service
stations. In the United States, the low incidence of full-service single product stations is
typical and in certain regions full service is required by law. As in Iyer and Seetharaman
(2003), we exclude them from the empirical analysis. The survey data include the prices
of three grades - 87, 89 and 93 octane levels - of gasoline, along with station-specific
characteristics, i.e., number of gasoline pumps, special advertising for cigarettes and
soda, presence of convenience store, pay-at-pump facility, car wash, service station,
and the number of stations with prices that are visible to a given station. This data
set also contains demographic information including income, population density, age
distribution, home value, and education levels. This information comes from 1990 U.S.
census data, which contain demographic information at the level of each census tract.
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The data also records addresses of each station, from which “Bing Maps REST
Services” is used to obtain geographic information including longitude and latitude,
travel distance in driving mode between any pair of stations, etc. This information can
be used to create variables for partially controlling for the interactions between stations.
In particular, given any station, we can count the number of stations and/or stations
under one of the three national brands (namely, Amoco, Shell and Mobil), that fall
within 1km, 1km and 2km, and so on, from this station. Each of the numbers is then
divided by the area (in km2) of the corresponding layer. The number of stations with
prices that are visible to a given station is another useful measure of interaction between
stations and this information is available in the data. Using the number of competitors
as a measure of interaction between firms has been seen in previous literature (e.g.,
Bresnahan and Reiss 1991; Iyer and Seetharaman, 2008). The novelty introduced by
this section lies in the data-driven nature of the approach: rather than assuming a
priori knowledge of the structure of the competitive network, it relies on the data to
determine the geographic pattern of interaction between stations. If panel data on
prices and time-varying instrumental variables for prices are available, we can include
prices of other stations in the main equation. Some variants of the 3-step estimators in
this chapter combined with the high-dimensional IV estimator in Gautier and Tsybakov
(2011) or the high-dimensional 2SLS estimator in Zhu (2013) may be considered as an
alternative to identify the sets of competitive markets engaged in pricing. However, in
the retail gasoline market, it may be difficult to obtain valid time-varying instrumental
variables for prices.

As in Iyer and Seetharaman (2003), we use a binary probit model for the selection
of service types where y1i = 1 in (3.1) indicates that station i offers multi-service and
y1i = 0 indicates that station i offers single-self-service. The same set of explanatory
variables included in the binary probit model of Iyer and Seetharaman is used here:
average income (AVG), income spread (SPREAD), brand (BRAND), pay-at-pump fa-
cility (PAP), presence of convenience store (CONV ), car wash (WASH ), and service
station (SERV ). My empirical model differs from Iyer and Seetharaman mainly in terms
of the specifications of the linear pricing model (the main equation): First, while Iyer
and Seetharaman assume the selection bias takes on the functional form of the Inverse
Mills Ratio, we assume the selection bias function to obey the more general nonpara-
metric single index restriction in (3.1); second, we add a set of measures that are
high-dimensional to partially control for the competition effects from other stations. In
particular, the following explanatory variables are included in the pricing model: AVG,
BRAND, special advertising for cigarettes and soda (ADSCC ), the number of stations
with visible prices (VISP), the total number of stations and the number of stations
under one of the three national brands within 1km (TOT_1 and BRND_1 ), 1km and
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2km (TOT_2 and BRND_2 ), · · · , 34km and 35km (TOT_35 and BRND_35 ) from
a given station. In summary, for the pricing equation, we have n = 172, p = 74 for
stations that serve single-self-service grade-87 gasoline, n = 168, p = 74 for stations
that serve single-self-service grade-93 gasoline, n = 65, p = 74 for stations that serve
multi-service grade-87 gasoline, and n = 65, p = 74 for stations that serve multi-service
grade-93 gasoline. While Iyer and Seetharaman include only average income and brand
in their pricing model, they suggest that special advertising for cigarettes and soda
might be correlated with the retail gasoline prices and hence we include this informa-
tion in our pricing model. The last group of variables are measures added to partially
control for the competition effects from other stations. Iyer and Seetharaman found
the indicators of the presence of pay-at-pump facilities and service stations statisti-
cally significant and therefore, the exclusion restriction required by the selection model
considered in this application is likely to be satisfied given the setup. Moreover, they
justify the exclusion restriction by arguing that a station’s decision on the configura-
tion of its station characteristics such as pay-at-pump, convenience store, car-wash, and
service station involves costly investments that the station owner has made along with
the station-type decision when setting up the retail facility. In contrast, the pricing
decisions may vary on a daily basis.

The following summarizes the estimation procedure and empirical findings. We
briefly discuss the results pertaining to the effects of the service-type decisions and
focus mainly on the empirical findings from the pricing regression because the main
difference between Iyer and Seetharaman and the empirical analysis in this section lies
in the latter.

Estimation and empirical findings
A standard maximum likelihood procedure for estimating low-dimensional binary pro-
bit models is used to obtain estimates of the selection equation of service-type decisions.
The estimation is performed for grade-87 stations and grade-93 stations, respectively,
and the results are reported in Table 6.1.

Table 6.1: Results of the binary probit model
Intercept AVG SPREAD BRAND PAP CONV WASH SERV

87
−1.525∗∗∗ 0.008∗ −2.591∗∗ 0.962∗∗ −0.851∗∗ −0.341 −0.012 2.341∗∗∗

(0.453) (0.005) (1.227) (0.411) (0.414) (0.321) (0.346) (0.292)

93
−1.522∗∗∗ 0.008∗ −2.583∗∗ 0.958∗∗ −0.848∗∗ −0.338 −0.004 2.335∗∗∗

(0.452) (0.005) (1.229) (0.410) (0.413) (0.321) (0.347) (0.292)
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Because individual-level income is not available for this data set, it is not possible
to compute the sample standard deviation in income for each tract. Instead, we use
two measures to approximate income spread: one is the absolute difference between
the percentages of median-level income group and the low-level income group for each
tract; the other is the absolute difference between the percentages of median-level in-
come group and the high-level income group for each tract. A smaller value in the
first (second) absolute difference indicates a more evenly distributed population in the
low-income (respectively, high-income) group and the median income group. It turns
out that the second measure is not statistically significant and hence we drop this mea-
sure from the probit model. As a consequence, the negative sign of the estimate for
SPREAD suggests that more heterogeneous income levels below the 50th−percentile in
the market implies a greater likelihood of the station being multi-product.

For the linear pricing regression model conditional on the service type, the non-
pivotal estimator β̂HSEL based on (3.6) is used to select the variables with non-zero
coefficients and then β̃ :=

(
v̂T
Ĵ
v̂Ĵ
)−1 (

v̂T
Ĵ
v̂0
)
is computed with Ĵ := J(β̂HSEL) (this is

the Post-Lasso procedure discussed in Section 3.4.1.3). For the second-stage estima-
tion, program (3.20) is solved where the Lipschitz constant L is determined by the
cross-validation procedure described in Section 3.4.1.2 and the choice of L = 1 turns
out to be robust. For the third-stage estimation, given the setup of our empirical
model, the first-stage related estimation error is likely to be dominated by the third-
stage related error in the choice of λn,3 from Corollary 3.4.4 and hence we choose λn,3
based on the third-stage related error. Program (3.6) is first solved with the choice of
λn,3(t) = 2.001·σ̂vσ̂tη

√
log p
ns

for t = 0 (initialization), where σ̂v := maxj=1,...,p
√

1
n

∑n
i=1 v̂

2
ij,

σ̂0
η = 1, and ns denotes the number of observations used for the pricing regression. Let
β̂tHSEL denote the resulting estimate based on λn,3(t) and σ̂t+1

η denote the updated
sample standard deviation of the fitted residuals η̂ti := v̂i0 − v̂iβ̂tHSEL for i = 1, ..., ns.
Program (3.6) is then solved with the updated λn,3(t+1) = 2.001 · σ̂vσ̂t+1

η

√
log p
ns

. Repeat
this process until a pre-specified tolerance level on

∣∣∣σ̂t+1
η − σ̂tη

∣∣∣ is reached. The result
shows that the choice of σ̂tη ≈ 0.04 is robust. After experimenting with a range of values
around the final choice of λn,3 determined according to the described procedure, the
set of variables selected by β̂HSEL for the range of λn,3 and the post Lasso estimates β̃
based on these selected variables are reported in Table 6.2 for the following groups:

SSL: single-self-service grade-87 gasoline;
SSH: single-self-service grade-93 gasoline;
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MSL: multi-self-service grade-87 gasoline;
MSH: multi-self-service grade-93 gasoline.

The variables with blanks in Table 6.2 correspond to those that are not selected by
β̂HSEL in a particular group. The numerical values within parentheses are bootstrapped
standard errors for β̃. Estimates with three asterisks, two asterisks, and a single aster-
isk are statistically significant at level α = 0.01, α = 0.05, and α = 0.1, respectively.
Note that our second-stage estimation and third-stage estimation use the demeaned
explanatory variables and demeaned prices, so the intercept term is excluded from the
pricing regression model.

Table 6.2: Results of pricing regression
AVG BRAND TOT_2 TOT_4

SSL
0.030∗∗∗ −0.052∗∗∗

(0.005) (0.016)

SSH
0.049∗∗∗ −0.030∗∗ −0.030∗

(0.007) (0.015) (0.021)

MSL
2× 10−4∗∗ −0.070∗∗∗

(1× 10−4) (0.029)

MSH
−0.096∗∗∗

(0.032)

Regarding the results of the pricing regression in Table 6.2, the estimate of BRAND has
a positive sign in SSL and SSH. Moreover, AVG (average income) has a positive effect
on the pricing decisions in MSL. In Iyer and Seetharaman (2003) which estimated the
low-dimensional linear regression counterpart by pooling observations of the single-self-
service and multi-self-service each with Heckman’s selectivity correction (for grade-87
and grade-93, respectively), BRAND and AVG are the only two variables included
in their pricing model and found to be statistically significant. Based on our empiri-
cal results which remove selection bias and partially control for potential interactions
between the stations simultaneously, we see that TOT_4 is selected by β̂HSEL in all
groups and statistically significant at level 0.01 in SSL, MSL, and MSH and at level 0.1
in SSH. TOT_2 is selected by β̂HSEL in SSH and statistically significant at level 0.05.
The negative sign of the estimate for TOT_4 in all groups (TOT_2 in SSH) suggests
that the total number of stations within 3km-4km (respectively, 1km-2km) of a given
station has a negative effect on its price. On the other hand, the variable VISP (the
number of stations with visible prices) is not selected by β̂HSEL, which is less intuitive.
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However, it is possible that in the presence of several clusters of gas stations, there is less
competition from adjacent clusters relative to ones that are somewhat further apart.
For example, Iyer and Seetharaman (2008) analyzed a similar but richer data set on
prices and station characteristics gathered across stations in the Saint Louis metropoli-
tan area and found that closely located retailers who face sufficient heterogeneity in
preferences across consumers in a local market may differentiate on product design and
pricing strategies (also see, e.g., Png and Reitman, 1994); in contrast, retailers that are
farther apart from each other may adopt similar product design and pricing strategies if
the market is relatively homogeneous (also see, e.g., Slade 1992). Another explanation
for the finding where more competition comes from somewhat intermediate retailers
instead of closest ones is that consumers of retail gasoline may travel from their sub-
urban homes located in a neighborhood of one cluster to their work places or central
shopping areas located in another cluster that may be somewhat further away; the
further located clusters of stations may be linked by routes that are more convenient
for commuting (these routes may be more direct or less congested, etc.). This explana-
tion may suggest that retailers consider commuting behavior of their customers when
setting the retail price. Investigating this factor requires more substantial empirical
analysis and a data set that includes more detailed information on the demographics
and business environment, which will be pursued in future research. Nevertheless, the
main finding on TOT_2 and TOT_4 suggests that in modeling the pricing decisions
of retail gas stations, not only it is useful to account for the self selectivity of service-
type but also to take into considerations of potential interactions between stations; in
particular, competition effects from retailers that are not in the same local market (e.g.,
the same census tract or neighborhood within a circle of half a mile or one mile radius,
etc.) should not be overlooked.

3.7 Conclusion
This chapter provides estimation tools together with their theoretical guarantees for
the semiparametric sample selection model in high-dimensional settings under a weak
nonparametric restriction on the form of the selection correction. In particular, the
number of regressors in the main equation, p, and the number of regressors in the se-
lection equation, d, can grow with and exceed the sample size n. The main theoretical
results of this paper are finite-sample bounds from which sufficient scaling conditions on
the sample size for estimation consistency and variable-selection consistency (i.e., the
multi-stage high-dimensional estimation procedure correctly selects the non-zero coeffi-
cients in the main equation with high probability) are established. Statistical efficiency
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of the proposed estimators is studied via lower bounds on minimax risks. Inference
procedures for the coefficients of the main equation, one based on a pivotal Dantzig
selector to construct non-asymptotic confidence sets and one based on a post-selection
strategy (when perfect or near-perfect selection of the high-dimensional coefficients is
achieved), are discussed.

Small-sample performance of one of the proposed procedures is evaluated by Monte-
Carlo simulations and illustrated with an empirical application to the retail gasoline
market in the Greater Saint Louis area. The preliminary simulation results show
that the “bias” from not performing the selection correction is exacerbated in high-
dimensional settings. For the empirical application, this paper models a firm’s choice
of either a single-product or multi-product service as a function of market and station
characteristics and then models the station’s pricing decision, conditional on the choice
of the station type. Using geographic information and spatial data, a set of variables
that are high-dimensional is introduced to control for interactions between the gas sta-
tions. The empirical finding suggests that competition effects from retailers that are
not in the same local market should not be overlooked.

3.8 Main proofs for results in Chapter 3

3.8.1 Lemmas A.1-A.2
Lemma A.1: Let Γ̂ = 1

n
v̂T v̂ and

e =
[
Ê
(
x|wθ̂

)
− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− E (x|wθ∗)

]
β∗

−
[
Ê
(
y2|wθ̂

)
− E

(
y2|wθ̂

)
+ E

(
y2|wθ̂

)
− E (y2|wθ∗)

]
+ η.

Suppose the assumptions in Theorems 3.4.1 or 3.4.2 hold. If λn,3 in program (3.6)
satisfies

λn,3 ≥ 2| 1
n
v̂T e|∞ > 0,

and
Rq2τ

−q2

(
log p
n

+ T1 + T2 + T3

)
= O(κL),

then there is a constant c > 0 such that under Assumption 3.2.2 (q2 ∈ [0, 1] and when
q2 = 0, Rq2 := k2),

|β̂HSEL − β∗|2 ≤
c

κ
1− q2

2
L

R
1
2
q2

(
λn,3 ∨ |

2
n
v̂T e|∞

)1− q2
2
.
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Proof. First, write

v0 = v̂0 + Ê
(
y2|wθ̂

)
− E

(
y2|wθ̂

)
+ E

(
y2|wθ̂

)
− E (y2|wθ∗)

= vβ∗ + η =
[
v̂ + Ê

(
x|wθ̂

)
− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− E (x|wθ∗)

]
β∗ + η,

thus we have

v̂0 = v̂β∗ +
[
Ê
(
x|wθ̂

)
− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− E (x|wθ∗)

]
β∗

−
[
Ê
(
y2|wθ̂

)
− E

(
y2|wθ̂

)
+ E

(
y2|wθ̂

)
− E (y2|wθ∗)

]
+ η

:= v̂β∗ + e

where

e =
[
Ê
(
x|wθ̂

)
− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− E (x|wθ∗)

]
β∗

−
[
Ê
(
y2|wθ̂

)
− E

(
y2|wθ̂

)
+ E

(
y2|wθ̂

)
− E (y2|wθ∗)

]
+ η.

Define the thresholded subset

Sτ :=
{
j ∈ {1, 2, ..., p} :

∣∣∣β∗j ∣∣∣ > τ
}

where τ = λn,3
κL

is the threshold parameter. Define ∆̂ = β̂HSEL−β∗ and the Lagrangian
L(β; λn,3) = 1

2n |û− v̂β|
2
2 + λn,3|β|1. Since β̂HSEL is optimal, we have

L(β̂HSEL; λn,3) ≤ L(β∗; λn,3) = 1
2n |e|

2
2 + λn,3|β∗|1,

Some algebraic manipulation of the basic inequality above yields

0 ≤ 1
2n |v̂∆̂|22 ≤

1
n
eT v̂∆̂ + λn,3

{
|β∗Sτ |1 + |β∗Scτ |1 − |(β

∗
Sτ + ∆̂Sτ , β

∗
Scτ

+ ∆̂Scτ )|1
}

≤ |∆̂|1|
1
n
v̂T e|∞ + λn,3

{
|∆̂Sτ |1 − |∆̂Scτ |1 + 2|β∗Scτ |1

}
≤ λn,3

2

{
3|∆̂Sτ |1 − |∆̂Scτ |1 + 4|β∗Scτ |1

}
, (3.30)

where the last inequality holds as long as λn,3 ≥ 2| 1
n
v̂T e|∞ > 0. Consequently,

|∆̂|1 ≤ 4|∆̂Sτ |1 + 4|β∗Scτ |1 ≤ 4
√∣∣∣Sτ ∣∣∣|∆̂|2 + 4|β∗Scτ |1.
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We now upper bound the cardinality of Sτ in terms of the threshold τ and lq−ball
radius of Rq2 . Note that we have

Rq2 ≥
p∑
j=1

∣∣∣β∗j ∣∣∣q2 ≥
∑
j∈Sτ

∣∣∣β∗j ∣∣∣q2 ≥ τ q2
∣∣∣Sτ ∣∣∣

and therefore
∣∣∣Sτ ∣∣∣ ≤ τ−q2Rq2 . To upper bound the approximation error |β∗Scτ |1, we use

the fact that β∗ ∈ Bpq2(Rq2) and have

|β∗Scτ |1 =
∑
j∈Scτ

∣∣∣β∗j ∣∣∣ =
∑
j∈Scτ

∣∣∣β∗j ∣∣∣q2
∣∣∣β∗j ∣∣∣1−q2 ≤ Rq2τ

1−q2 .

Putting the pieces together yields

|∆̂|1 ≤ 4
√
τ−q2Rq2|∆̂|2 + 4Rq2τ

1−q2 . (3.31)

Let us first prove the case of q2 ∈ (0, 1]. Note that we also have

1
2n |v̂∆̂|22 ≤ |∆̂|1|

1
n
v̂T e|∞ + λn,3

{
|∆̂S(τ )|1 − |∆̂S(τ )c |1 + |β∗S(τ )c|1

}
≤

(
8
√
τ−q2Rq2|∆̂|2 + 4Rq2τ

1−q2
)
λn,3

≤ c1

√
τ−q2Rq2|∆̂|2λn,3 + c2δ

≤ max
{
c1R

1
2
q2κ

q2
2
L (λn,3)1− q2

2 |∆̂|2, c2δ
}

where the third and fourth inequalities follow from our choices of τ = λn,3
κL

and δ �
Rq2λn,3τ

1−q2 . Now we proceed by cases. If

max
{
c1R

1
2
q2κ

q2
2
L (λn,3)1− q2

2 |∆̂|2, c2δ
}

= c1R
1
2
q2κ

q2
2
L (λn,3)1− q2

2 |∆̂|2,

so that under the condition

Rq2τ
−q2

(
log p
n

+ T1 + T2 + T3

)
= O(κL),

and provided c > 0 is sufficiently large, we have

|∆̂|2 ≥ cκ
−1+ q2

2
L R

1
2
q2 (λn,3)1− q2

2 ≥ δ∗ (3.32)
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where
δ∗ = O

(
max

{
T

3
2−q2

1 , T
3
2−q2

2 , T
3
2−q2

3 , T 2−q2
4

}
Rq2

)
.

Consequently, (3.30) and (3.32) together imply that

∆̂ ∈ K(δ, Sτ ) := C(Sτ ; q2, 3) ∩ {∆ ∈ Rp : |∆|2 ≥ δ∗} (3.33)

where C(Sτ ; 3) :=
{

∆ ∈ Rp : |∆Scτ |1 ≤ 3|∆Sτ |1 + 4|β∗Scτ |1
}
. By Lemma A.2 and Lemma

A.3 (or Lemma A.5), the random matrix Γ̂ = v̂T v̂ satisfies the RE condition (2.1) over

C(Sτ ; 3) ∩ {∆ ∈ Rp : |∆|2 ≥ δ∗} ,

therefore, we have

κL|∆̂|22 ≤
1

2n |v̂∆̂|22 ≤ c1R
1
2
q2κ

q2
2
L (λn,3)1− q2

2 |∆̂|2

so the claim follows. On the other hand, if

max
{
c1R

1
2
q2κ

q2
2
L (λn,3)1− q2

2 |∆̂|2, c2δ
}

= δ,

then
|∆̂|2 ≤ cκ

−1+ q2
2

L R
1
2
q2 (λn,3)1− q2

2

so again the claim follows.
To prove the case of q2 = 0, simply choose δ = 0 and Sτ = J(β∗) and the claim

follows trivially from the above argument.�

Remark. Inequality (3.31) implies that |∆̂|1 - Rq2 (λn,3)1−q2 .

Lemma A.2: Define the thresholded subset

Sτ :=
{
j ∈ {1, 2, ..., p} :

∣∣∣β∗j ∣∣∣ > τ
}
.

Under the assumptions in Theorem 3.4.1 (or Theorem 3.4.2) and the choice τ = λn,3
κL

, if

Rq2τ
−q2

(
log p
n

+ T1 + T2 + T3

)
= O(κL),

the RE condition (2.1) of v̂T v̂
n

holds over the set

C(Sτ ; q2, 3) ∩ {∆ ∈ Rp : |∆|2 ≥ δ∗}
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where
δ∗ = O

(
max

{
T

3
2−q2

1 , T
3
2−q2

2 , T
3
2−q2

3 , T 2−q2
4

}
Rq2

)
.

Proof. The argument is similar to what is used in the proof of Lemma 2 from Negahban,
et. al (2010). For any ∆ ∈ C(Sτ ; q2, 3), we have

|∆|1 ≤ 4|∆Sτ |1 + 4|β∗Scτ |1 ≤ 4
√∣∣∣Sτ ∣∣∣|∆|2 + 4Rq2τ

1−q2 ≤ 4
√
Rq2τ

− q2
2 |∆|2 + 4Rq2τ

1−q2 ,

where we have used the bound in (3.31) from the proof of Lemma A.1. Therefore,
for any vector ∆ ∈ C(Sτ ; q2, 3) and the choice τ = λn,3

κL
, substituting the upper bound

4
√
Rq2τ

− q2
2 |∆|2+4Rq2τ

1−q2 on |∆|1 into condition (3.34) from Lemma A.3 and condition
(3.38) from Lemma A.5 respectively yields∣∣∣∣∣∆T v̂

T v̂

n
∆
∣∣∣∣∣ ≥ |∆|22

{
cκL − b0Rq2τ

−q2

(
log p
n

+ T1 + T2 + T3

)}

−b1R
2
q2τ

2−2q2

(
log p
n

+ T1 + T2 + T3

)
,

for some positive constants b0 and b1. With the choice of

δ∗ = O
(

max
{
T

3
2−q2

1 , T
3
2−q2

2 , T
3
2−q2

3 , T 2−q2
4

}
Rq2

)
,

if
Rq2τ

−q2

(
log p
n

+ T1 + T2 + T3

)
= O(κL),

we have ∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣ ≥ c

′
κL

{
|∆|22 −

|∆|22
2

}
= c

′′
κL|∆|22

for any ∆ such that |∆|2 ≥ δ∗. �

3.8.2 Theorem 3.4.1
Lemma A.1 implies that the l2-consistency of β̂HSEL requires verifications of two con-
ditions: (i) Γ̂ = v̂T v̂ satisfies the RE condition (2.1) with γ = 3, and (ii) the term
| 1
n
v̂T e|∞ - φ(k1, k2, d, p, n) with high probability. This is done via Lemmas A.3 and

A.4. For the proofs for Lemmas A.3 and A.4, let the local complexity measure Gn (rj; Fj)
be defined over the set

Ω(rj; Fj) =
{
f : f ∈ F̄j |fθ∗|n ≤ rj

}
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where |fθ∗|n :=
√

1
n

∑n
i=1 [f(wTi θ∗)]

2 and j = 0, ..., p. Recall the notations E
(
xij|wTi θ

)
:=

mj(wTi θ), Ê
(
xij|wTi θ

)
:= m̂j(wTi θ), E

(
y2i|wTi θ

)
:= m0(wTi θ), Ê

(
y2i|wTi θ

)
:= m̂0(wTi θ).

To avoid clustering, write
{
m̂j(wTi θ)

}n
i=1

:= m̂j(θ),
{
m̃j(wTi θ)

}n
i=1

:= m̃j(θ), and{
mj(wTi θ)

}n
i=1

:= mj(θ); these definitions are somewhat abuse of notation but keep
in mind that the individual component m̂j(·) of m̂j(θ), m̃j(·) of m̃j(θ), and mj(·) of
mj(θ) are functions from R to R. Also recall T ′j := T ∗j ∨ Tj,

T ∗j := sup
f∈F∗j

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
,

Tj := sup
f∈Fj

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
,

and the following definitions for Theorem 3.4.1:

T1 = max
j∈{0,...,p}

(
T
′

j ∨
√
T
′
j

)
T2 = max

j∈{0,...,p}
t2nj

T3 = max
j∈{0,...,p}

inf
m̃j∈Fj

(∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ |m̃j(θ∗)−mj(θ∗)|n
)

T4 = σvση

√
log p
n

.

To facilitate the presentation, the proofs for Lemmas A.3 and A.4 work through the
case tnj = rnj. Inspecting these proofs suggests that with minor notation changes, the
case where tnj ≥ rnj can be analyzed with almost the same argument because for any
star-shaped function class F̄j :=

{
f = f

′ − f ′′ : f ′ , f ′′ ∈ Fj
}
, the function t 7→ Gn(t;Fj)

t

is non-decreasing on (0, ∞).

Lemma A.3 (RE condition): Define ∆̂ = β̂HSEL − β∗. Let rnj > 0 be the small-
est positive quantity satisfying the critical inequality

Gn (rnj; Fj) ≤
r2
nj

σvj
.

Under Assumptions 3.2.1, 3.2.3, 3.4.1-3.4.3, we have∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣ ≥ κ1|∆|22 − κ2

log p
n
|∆|21 − c (T1 + T2 + T3) |∆|21 (3.34)
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with probability at least 1 − c′∑p
j=1 exp

(
−nC∗j r2

nj

)
, κ1 = κL

2 , κ2 = c0κL max
{
σ4
v

κ2
L
, 1
}
,

σv = maxj σvj .

Proof. We have ∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣+

∣∣∣∣∣∆T

(
vTv − v̂T v̂

n

)
∆
∣∣∣∣∣ ≥

∣∣∣∣∣∆T v
Tv

n
∆
∣∣∣∣∣ ,

which implies∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣ ≥

∣∣∣∣∣∆T v
Tv

n
∆
∣∣∣∣∣−

∣∣∣∣∣∆T

(
vTv − v̂T v̂

n

)
∆
∣∣∣∣∣

≥
∣∣∣∣∣∆T v

Tv

n
∆
∣∣∣∣∣−

∣∣∣∣∣vTv − v̂T v̂n

∣∣∣∣∣
∞
|∆|21

≥
∣∣∣∣∣∆T v

Tv

n
∆
∣∣∣∣∣−

(∣∣∣∣∣vT (v̂ − v)
n

∣∣∣∣∣
∞

+
∣∣∣∣∣(v̂ − v)T v̂

n

∣∣∣∣∣
∞

)
|∆|21

≥
∣∣∣∣∣∆T v

Tv

n
∆
∣∣∣∣∣−

∣∣∣∣∣vT (v̂ − v)
n

∣∣∣∣∣
∞
|∆|21

−
∣∣∣∣∣(v̂ − v)Tv

n

∣∣∣∣∣
∞
|∆|21 −

∣∣∣∣∣(v̂ − v)T (v̂ − v)
n

∣∣∣∣∣
∞
|∆|21 .

To bound the term
∣∣∣vT (v̂−v)

n

∣∣∣
∞
, let us first fix (j, j ′) and bound the (j, j ′) element of

the matrix vT (v̂−v)
n

. Notice that∣∣∣∣ 1nvTj (v̂j′ − vj′ )
∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

vij(v̂ij′ − vij′ )
∣∣∣∣∣

=
∣∣∣∣∣ 1n

n∑
i=1

vij
(
m̂j′ (wTi θ̂)−mj′ (wTi θ̂) +mj′ (wTi θ̂)−mj′ (wTi θ∗)

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

vij
[
m̂j′ (wTi θ̂)−mj′ (wTi θ̂)

]∣∣∣∣∣+
√√√√ 1
n

n∑
i=1

v2
ij

√
T ∗
j′
,

where T ∗
j′

:= supf∈F∗
j
′

1
n

∑n
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
.

For the term
√

1
n

∑n
i=1 v

2
ij, by Lemma B.1, we have

P
[

max
j=1,...,p

{
1
n

n∑
i=1

v2
ij

}
≥ σ2

vj
+ t

]
≤ 2 exp(−cmin( nt

2

4σ4
vj

,
nt

2σ2
vj

) + log p).
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Hence, setting t = σ2
v := maxj σ2

vj
and under the condition n & log p, we have

P
[
max
j′

{
1
n

n∑
i=1

v2
ij

}
≥ 2σ2

v

]
≤ 2 exp(−c′n).

Let ∆̂ij′ (θ) := m̂j′ (wTi θ) −mj′ (wTi θ), ∆̄ij′ (θ) := m̂j′ (wTi θ) − m̃j′ (wTi θ), and ∆̃ij′ (θ) :=
m̃j′ (wTi θ)−mj′ (wTi θ). Note that m̂j′ ∈ F∗j′ and we choose m̂j′ , m̃j′ ∈ Fj′ . For the term∣∣∣∣∣ 1n

n∑
i=1

vij
[
m̂j′ (wTi θ̂)−mj′ (wTi θ̂)

]∣∣∣∣∣ ,
we have∣∣∣∣∣ 1n

n∑
i=1

vij∆̂ij′ (θ̂)
∣∣∣∣∣ ≤

∣∣∣∣∣ 1n
n∑
i=1

vij∆̂ij′ (θ∗)
∣∣∣∣∣+

√√√√ 1
n

n∑
i=1

v2
ij

√√√√ 1
n

n∑
i=1

[
∆̂ij′ (θ̂)− ∆̂ij′ (θ∗)

]2

≤
∣∣∣∣∣ 1n

n∑
i=1

vij∆̄ij′ (θ∗)
∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

vij∆̃ij′ (θ∗)
∣∣∣∣∣+ 2

√√√√ 1
n

n∑
i=1

v2
ij

√
T ∗
j′

+ Tj′

≤
∣∣∣∣∣ 1n

n∑
i=1

vij∆̄ij′ (θ∗)
∣∣∣∣∣+

√√√√ 1
n

n∑
i=1

v2
ij

∣∣∣m̃j′ (θ∗)−mj′ (θ∗)
∣∣∣
n

+
√√√√ 1
n

n∑
i=1

v2
ij

√
8T ′

j′
.

To upper bound the term 1
n

∑n
i=1 vij∆̄ij′ (θ∗), we argue similarly as in Lemma A.11.

First, note that by Lemma A.11 and the triangle inequality, we have∣∣∣∆̄j′ (θ∗)
∣∣∣
n
≤

∣∣∣m̂j′ (θ̂)−mj′ (θ̂)
∣∣∣
n

+
∣∣∣m̃j′ (θ̂)−mj′ (θ̂)

∣∣∣
n

+ 2
√
Tj′

≤ c
′
{√

T
′

j′
+
(
σ2
vT
′

j′

) 1
4 +

∣∣∣m̃j′ (θ̂)−mj′ (θ̂)
∣∣∣
n

+ rnj′
}

:= r̄nj′ .

Setting u = r̃nj′ in Ω(u; Fj) from Lemma B.3 and following the argument in the proof
for Lemma B.3, we obtain

max
j′

1
n

n∑
i=1

vij∆̄ij′ (θ∗) ≤ 2 max
j′

r̄2
nj′

with probability at least 1− c∑p
j=1 exp

(
−nC∗j r̄2

nj

)
. Hence, we obtain

max
j, j′

∣∣∣∣∣ 1n
n∑
i=1

vij
[
m̂j′ (wTi θ̂)−mj′ (wTi θ̂)

]∣∣∣∣∣
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≤ cmax
j′

{
r̄2
nj′ + σv

∣∣∣m̃j′ (θ∗)−mj′ (θ∗)
∣∣∣
n

+
√
σ2
vT
′

j′

}
.

Consequently, we have∣∣∣∣∣vT (v̂ − v)
n

∣∣∣∣∣
∞
≤ cmax

j

{
r̄2
nj + σv

∣∣∣m̃j′ (θ∗)−mj′ (θ∗)
∣∣∣
n

+
√
σ2
vT
′
j

}
.

To bound the term
∣∣∣ (v̂−v)T (v̂−v)

n

∣∣∣
∞
, note that we have
∣∣∣∣∣(v̂ − v)T (v̂ − v)

n

∣∣∣∣∣
∞

≤ 2 max
j, j
′

√√√√ 1
n

n∑
i=1

[
m̂j(wTi θ̂)−mj(wTi θ̂)

]2
·

√√√√ 1
n

n∑
i=1

[
m̂j′ (wTi θ̂)−mj′ (wTi θ̂)

]2

+2 max
j, j′

√√√√ 1
n

n∑
i=1

[
mj(wTi θ̂)−mj(wTi θ∗)

]2
·

√√√√ 1
n

n∑
i=1

[
mj′ (wTi θ̂)−mj′ (wTi θ∗)

]2
≤ cmax

j

[
T
′

j +
√
σ2
vT
′
j +

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ r2
nj

]

with probability at least 1− c′∑p
j=1 exp

(
−nC∗j r2

nj

)
.

Putting everything together and applying Lemma B.2, we have∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣ ≥ κ1|∆|22 − κ2

log p
n
|∆|21−

b(σv) max
j

{
r2
nj + inf

m̃j∈Fj

(∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ |m̃j(θ∗)−mj(θ∗)|n
)

+
√
T
′
j ∨ T

′2
j

}
|∆|21

where κ1 = κL
2 , κ2 = c0κL max

{
σ4
v

κ2
L
, 1
}
, σv = maxj σvj , and a known function b(σv)

depending only on σv.�

Lemma A.4 (Upper bound on
∣∣∣ 1
n
v̂T e

∣∣∣
∞
): Let rnj > 0 be the smallest positive quantity

satisfying the critical inequality

Gn (rnj; Fj) ≤
r2
nj

σvj
.
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Under Assumptions 3.2.1 and 3.4.1-3.4.3, we have∣∣∣∣∣ v̂T en
∣∣∣∣∣
∞
≤ |β∗|1 b(σv, ση) (T1 + T2 + T3) + T4,

with probability at least 1− c1 exp (−c2 log p)− c3
∑p
j=0 exp

(
−nC∗j r2

nj

)
.

Proof. Recall that

e =
[
Ê
(
x|wθ̂

)
− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− E (x|wθ∗)

]
β∗

−
[
Ê
(
y2|wθ̂

)
− E

(
y2|wθ̂

)
+ E

(
y2|wθ̂

)
− E (y2|wθ∗)

]
+ η.

and

v̂ = x− Ê
(
x|wθ̂

)
= x− E (x|wθ∗) + E (x|wθ∗)− E

(
x|wθ̂

)
+ E

(
x|wθ̂

)
− Ê

(
x|wθ̂

)
.

Recall v = x− E (x|wθ∗). Let us introduce the following notations

mj(wTi θ̂)−mj(wTi θ∗) := T
′′

ij,

m̂j(wTi θ)−mj(wTi θ) := ∆̂j(wTi θ),

and

T1 = max
j, j′=1,...,p

∣∣∣∣∣ 1n
n∑
i=1

[
vij − T

′′

ij − ∆̂j(wTi θ̂)
] [
T
′′

ij′ + ∆̂j′ (wTi θ̂)
]∣∣∣∣∣ |β∗|1 (3.35)

T2 = max
j=1,...,p

∣∣∣∣∣ 1n
n∑
i=1

[
vij − T

′′

ij − ∆̂j(wTi θ̂)
] [
T
′′

i0 + ∆̂0(wTi θ̂)
]∣∣∣∣∣ (3.36)

T3 = max
j=1,...,p

∣∣∣∣∣ 1n
n∑
i=1

[
vij − T

′′

ij − ∆̂j(wTi θ̂)
]
ηi

∣∣∣∣∣ . (3.37)

Expanding the products in (3.35)-(3.37), applying the Cauchy-Schwarz inequality on
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some of the terms in the expansion, we obtain the following inequalities

1
n

n∑
i=1

vijT
′′

ij′ ≤

√√√√ 1
n

n∑
i=1

v2
ij

√√√√ 1
n

n∑
i=1

T
′′2
ij′

1
n

n∑
i=1

vij∆̂ij′ (θ̂) ≤
∣∣∣∣∣ 1n

n∑
i=1

vij∆̂j′ (wTi θ∗)
∣∣∣∣∣

+
√√√√ 1
n

n∑
i=1

v2
ij

√√√√ 1
n

n∑
i=1

[
∆̂j′ (wTi θ̂)− ∆̂j′ (wTi θ∗)

]2
1
n

n∑
i=1

T
′′

ijT
′′

ij′ ≤

√√√√ 1
n

n∑
i=1

T
′′2
ij

√√√√ 1
n

n∑
i=1

T
′′2
ij′

1
n

n∑
i=1

T
′′

ij∆̂ij′ (θ̂) ≤
√√√√ 1
n

n∑
i=1

T
′′2
ij

√√√√ 1
n

n∑
i=1

∆̂2
j′

(wTi θ̂)

1
n

n∑
i=1

∆̂ij(θ̂)∆̂ij′ (θ̂) ≤
√√√√ 1
n

n∑
i=1

∆̂2
j(wTi θ̂)

√√√√ 1
n

n∑
i=1

∆̂2
j′

(wTi θ̂)

1
n

n∑
i=1

T
′′

ijηi ≤

√√√√ 1
n

n∑
i=1

η2
i

√√√√ 1
n

n∑
i=1

T
′′2
ij′

1
n

n∑
i=1

∆̂ij(θ̂)ηi ≤
∣∣∣∣∣ 1n

n∑
i=1

ηi∆̂j′ (wTi θ∗)
∣∣∣∣∣

+
√√√√ 1
n

n∑
i=1

η2
i

√√√√ 1
n

n∑
i=1

[
∆̂j′ (wTi θ̂)− ∆̂j′ (wTi θ∗)

]2
.

To upper bound
∣∣∣ v̂T e
n

∣∣∣
∞
, we need to control the RHS inequalities listed above as well as

the additional term maxj
{∣∣∣ 1

n

∑n
i=1 vijηi

∣∣∣}.
Under Assumptions 3.4.2 and 3.4.3, and the condition n & log p, applying Lemma

B.1 yields

P
[
max
j

{
1
n

n∑
i=1

v2
ij

}
≥ 2σ2

v

]
≤ 2 exp(−c′n),

P
[

1
n

n∑
i=1

η2
i ≥ 2σ2

η

]
≤ 2 exp(−c′′n),

P

max
j

{∣∣∣∣∣ 1n
n∑
i=1

vijηi

∣∣∣∣∣
}
≥ c0σvση

√
log p
n

 ≤ 2 exp(−c′′′ log p).
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An upper bound on the term
√

1
n

∑n
i=1 ∆̂2

j(wTi θ̂) is derived in Lemma A.11, which yields

max
j


√√√√ 1
n

n∑
i=1

∆̂2
j(wTi θ̂)

 ≤ cmax
j

{√
T
′
j +

(
σ2
vT
′

j

) 1
4 +

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣
n

+ rnj

}
,

with probability at least 1 − c
′∑p

j=0 exp
(
−nC∗j r2

nj

)
. An upper bound on the term√

1
n

∑n
i=1 T

′′2
ij is simply maxj

√
T
′
j by recalling the definition of T ′j .

To upper bound the term
∣∣∣ 1
n

∑n
i=1 vij∆̂j′ (wTi θ∗)

∣∣∣, recall from the proof for Lemma
A.3, we have

max
j, j′

∣∣∣∣∣ 1n
n∑
i=1

vij∆̂j′ (wTi θ∗)
∣∣∣∣∣ ≤ cmax

j′

{
r̄2
nj′ + σv

∣∣∣m̃j′ (θ∗)−mj′ (θ∗)
∣∣∣
n

+
√
σ2
vT
′

j′

}

with probability at least 1− c′∑p
j=1 exp

(
−nC∗j r̄2

nj

)
. Applying the same argument from

above to control the term
∣∣∣ 1
n

∑n
i=1 ηi∆̂ij′ (θ∗)

∣∣∣ yields
max
j′

∣∣∣∣∣ 1n
n∑
i=1

ηi∆̂j′ (wTi θ∗)
∣∣∣∣∣ ≤ c

′ max
j′

{
r̄2
nj + ση

∣∣∣m̃j′ (θ∗)−mj′ (θ∗)
∣∣∣
n

+
√
σ2
ηT
′
j

}

with probability at least 1− c′′∑p
j=1 exp

(
−nC∗j r̄2

nj

)
.

Putting all the pieces together, we have∣∣∣∣∣ v̂T en
∣∣∣∣∣
∞
≤ |β∗|1 b(σv, ση) (T1 + T2 + T3) + T4

with probability at least 1− c1 exp (−c2 log p)− c3
∑p
j=1 exp

(
−nC∗j r2

nj

)
. �

Now, by applying Lemma A.1, setting λn,3 ≥ |β∗|1 b(σv, ση) (T1 + T2 + T3) + T4 and
combining with Lemma A.3, we obtain

|β̂HSEL − β∗|2 ≤
c
′′
R

1
2
q2

κ
1− q2

2
L

[|β∗|1 b(σv, ση) (T1 + T2 + T3) + T4]1−
q2
2 , q2 ∈ [0, 1]

with probability at least 1− c1 exp (−c2 log p)− c3
∑p
j=1 exp

(
−nC∗j r2

nj

)
.
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3.8.3 Theorem 3.4.2
As in the proofs for Theorem 3.4.1, the proofs for Lemmas A.5 and A.6 work through
the case tnj = rnj. The case where tnj ≥ rnj can be analyzed with almost the same ar-
gument because for any star-shaped function class F̄j :=

{
f = f

′ − f ′′ : f ′ , f ′′ ∈ Fj
}
,

the function t 7→ Gn(t;Fj)
t

is non-decreasing on (0, ∞). For the proofs for Lemmas A.5
and A.6, let the local complexity measure Gn (rj; Fj) be defined over the set

Ω(rj; Fj) =
{
f : f ∈ F̄j |fθ∗|n ≤ rj, |f |Fj ≤ 1

}
where |fθ∗|n :=

√
1
n

∑n
i=1 [f(wTi θ∗)]

2 and j = 0, ..., p. Recall the following definitions for
Theorem 3.4.2:

T1 = max
j∈{0,...,p}

(
T
′

j ∨
√
T
′
j

)
T2 = max

j∈{0,...,p}
R̄2
j t

2
nj

T3 = max
j∈{0,...,p}

inf
m̃j∈Fj ,|m̃j |Fj≤R̄j

(∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ |m̃j(θ∗)−mj(θ∗)|n
)

T4 = σvση

√
log p
n

.

Lemma A.5 (RE condition): Let rnj > 0 be the smallest positive quantity satisfying
the critical inequality

Gn (rnj; Fj) ≤
R̄jr

2
nj

σvj
,

where R̄j > 0 is a user-defined radius. Under Assumptions 3.2.1, 3.2.3, 3.4.1-3.4.3, if
we choose the second-stage regularization parameter λnj,2 = (2 + ς)r2

nj for j = 1, ..., p
where ς is a small positive constant, then∣∣∣∣∣∆T v̂

T v̂

n
∆
∣∣∣∣∣ ≥ κ1|∆|22 − κ2

log p
n
|∆|21 − c (T1 + T2 + T3) |∆|21 (3.38)

with probability at least 1− c′∑p
j=1 exp

(
−nC∗j R̄2

jr
2
nj

)
Proof. The proof is almost identical to that of Lemma A.3 except that in upper
bounding the term 1

n

∑n
i=1

[
m̂j(wTi θ̂)−mj(wTi θ̂)

]
2, we apply Lemma A.12 with the
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second-stage regularization parameter λnj,2 = (2 + ς)r2
nj where ς is a small positive

constant for j = 1, ..., p, and obtain

1
n

n∑
i=1

[
m̂j(wTi θ̂)−mj(wTi θ̂)

]2
≤ c0

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ c1R̄
2
jr

2
nj + c2T

′

j + c3

√
σ2
vT
′
j

with probability at least 1 − c exp
(
−nC∗j R̄2

jr
2
nj

)
. The second-stage regularization pa-

rameter λnj,2 is chosen such that λnj,2 ≥ 2r2
nj for j = 1, ..., p. Using similar argument

as in the proof for Lemma A.3 yields∣∣∣∣∣vT (v̂ − v)
n

∣∣∣∣∣
∞
≤

cmax
j

( inf
m̃j∈Fj , |m̃j |Fj≤R̄j

(∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ |m̃j(θ∗)−mj(θ∗)|n
)

+R̄2
jr

2
nj + T

′

j +
√(

σ2
vT
′
j

)
)

with probability at least 1− c1 exp (−c2 log p)− c3
∑p
j=1 exp

(
−nC∗j R̄2

jr
2
nj

)
.

For the term
∣∣∣ (v̂−v)T (v̂−v)

n

∣∣∣
∞
, we have

∣∣∣∣∣(v̂ − v)T (v̂ − v)
n

∣∣∣∣∣
∞
≤ c

′ max
j

[∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ R̄2
jr

2
nj + T

′

j +
√
σ2
vT
′
j

]

with probability at least 1− c∑p
j=1 exp

(
−nC∗j R̄2

jr
2
nj

)
.

Putting everything together and applying Lemma B.2, we have∣∣∣∣∣∆T v̂
T v̂

n
∆
∣∣∣∣∣ ≥ κ1|∆|22 − κ2

log p
n
|∆|21−

b(σv) max
j

{
R̄2
jr

2
nj + inf

m̃j∈Fj

(∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ |m̃j(θ∗)−mj(θ∗)|n
)

+
√
T
′
j ∨ T

′2
j

}
|∆|21

where κ1 = κL
2 , κ2 = c0κL max

{
σ4
v

κ2
L
, 1
}
, and σv = maxj σvj , and a known function b(σv)

depending only on σv. �
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Lemma A.6 (Upper bound on
∣∣∣ 1
n
v̂T e

∣∣∣
∞
): Let rnj > 0 be the smallest positive quantity

satisfying the critical inequality

Gn (rnj; Fj) ≤
R̄jr

2
nj

σvj
,

and R̄j > 0 is a user-defined radius. Under Assumptions 3.2.1 and 3.4.1-3.4.3 and if we
choose the second-stage regularization parameter λnj,2 = (2 + ς)r2

nj where ς is a small
positive constant for j = 1, ..., p, we have∣∣∣∣∣ v̂T en

∣∣∣∣∣
∞
≤ |β∗|1 b(σv, ση) (T1 + T2 + T3) + T4,

with probability at least 1− c1 exp (−c2 log p)− c3
∑p
j=1 exp

(
−nC∗j R̄2

jr
2
nj

)
.

Proof. The proof is almost identical to that of Lemma A.4 except that in upper
bounding the term

√
1
n

∑n
i=1

[
m̂j(wTi θ̂)−mj(wTi θ̂)

]
2, we apply Lemma A.12 just as

what we have done in the proof for Lemma A.5. �
Consequently, by applying Lemma A.1, setting λn,3 ≥ |β∗|1 b(σv, ση) (T1 + T2 + T3)+

T4, and combining with Lemma A.5, we obtain

|β̂HSEL − β∗|2 ≤
c
′′
R

1
2
q2

κ
1− q2

2
L

[|β∗|1 b(σv, ση) (T1 + T2 + T3) + T4]1−
q2
2 , q2 ∈ (0, 1]

with probability at least 1− c′1 exp
(
−c′2 log p

)
− c′3

∑p
j=1 exp

(
−nC∗j R̄2

jr
2
nj

)
.

3.8.4 Corollary 3.4.3
Proof. This follows from the previous proofs for the RE condition and Lemma A.1. �

3.8.5 Proposition 3.4.1 and Corollaries 3.4.4-3.4.6
Proof of Proposition 3.4.1. Note that under the assumption mj(·) ∈ Fj for j =
0, ..., p, we have inf

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

= 0. When Fj is L−Lipschitz, under the Lipschitz
regression (22),

T
′

j = 1
n

n∑
i=1

L2
[
wTi θ̂ − wTi θ∗

]2
:= L2B

′
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for every j = 0, ..., p. Now let us compute the critical radius rnj that satisfies

Gn (rnj; Fj) ≤
r2
nj

σvj
,

where Fj is the space of L−Lipschitz functions. The metric entropy of this class (in
the sup-norm) scales as logN∞(t; F̄j) � 1

t
by Lemma B.11. Consequently, applying

Lemma B.9 yields

1√
n

ˆ rnj

0

√
logNn(t; Bn(rnj; Hj)dt ≤

1√
n

ˆ rnj

0

√
logN∞(t; sym(Hj)dt

≤ c√
n

ˆ rnj

0

(
|θ∗|1
t

) 1
2

dt

= c√
n

√
|θ∗|1rnj.

Thus, it suffices to choose rnj > 0 such that
√
rnj√
n
�

r2
nj

σvj

=⇒ r2
nj �

( |θ∗|1σ2
vj

n

) 2
3

.

�

Proof of Corollaries 3.4.4-3.4.6. In proving the two corollaries, we follow the proof
for Theorem 3.4.1. We prove the case where β∗ and θ∗ are exactly sparse and the
approximate sparse case of β∗ and θ∗ follows the same argument. We have

max
j=0,...,p

T
′

j ≤
1
n

n∑
i=1

L2
[
wTi θ̂ − wTi θ∗

]2
= L2B

′

Now, depending on the assumptions on wi, we have

B
′ = 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ c

κwUσ
2
wαu

(κwL)2
k1 log d
n

(Corollary 3.4.4)

B
′ = 1

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
≤ c

′ |θ∗|1
αl

√
k1 log d
n

(Corollary 3.4.5)
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with probability at least 1−O
(

1
d

)
. Putting the pieces together and applying Theorem

3.4.1, choosing t2nj ≥ r2
nj in T2 such that |β∗|1 T2 is at most

O

√ log p
n
∨

|β∗|1
√
k1 log d
n

 .
and λn,3 in Corollaries 3.4.4 and 3.4.5, if

√
n log p
|β∗|21

∨
√
nk1 log d % log p, and

κ2
k2 log p
n

+ ck2σv

(k1σ
2
v

n

) 2
3
+ k2B

′ + k2

√
σ2
vB

′ = O(κ1),

then, with probability at least 1−O
(

1
d∧p

)
, the error satisfies the bound

|β̂HSEL − β∗|2 ≤
c1
√
k2

κL

σvση
√

log p
n

 ∨
L

√√√√κwUσ
2
wαu

(κwL)2 b (σv, ση) |β∗|1

√
k1 log d
n


(Corollary 3.4.4)

and

|β̂HSEL − β∗|2 ≤
c2
√
k2

κL

σvση
√

log p
n

 ∨
L

√
|θ∗|1
αl

b
′ (σv, ση) |β∗|1

(
k1 log d
n

) 1
4


(Corollary 3.4.5).

�

3.8.6 Proposition 3.4.2
Proof. First, by Corollary 5 in Negahban, et. al (2010) for the logit model and Lemma
A.7 for the probit model, we have, for λn,1 � cσw

√
αu
√

log d
n

,

∣∣∣θ̂ − θ∗∣∣∣2
2
≤ c1

σ2
wαu

(κwL)2
k1 log d
n

with probability at least 1−O
(

1
d

)
. Let ∆ = θ̂ − θ∗. Under Assumption 3.4.6, Lemma

B.2 implies
|w∆| 22
n

≤ 3κwU
2 |∆| 22 + α

′ log d
n
|∆| 21.
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Combining the inequality above with Lemma 1 in Negahban, et. al which shows that
|∆|1 ≤ 4

√
k1 |∆|2 yields the desired result. �

Lemma A.7: Suppose the number of regressors d(= dn) can grow with and exceed the
sample size n and the number of non-zero components in θ∗ is at most k1(= k1n) and
k1 can increase to infinity with n but slowly compared to n. Let Assumptions 3.2.1 and
3.4.6 (the lower bound part) hold. If θ̂ solves program (13) with λn,1 ≥ cσw

√
αu
√

log d
n

and n % k1 log d, then,
∣∣∣θ̂ − θ∗∣∣∣

2
≤ c

√
k1

κwL

√αuσ2
w

√
log d
n
∨ λn,1


with probability at least 1−O

(
1
d

)
.

Proof. Recall

Ln(θ) =
{
− 1
n

n∑
i=1

y1iφ1(wTi θ) + 1
n

n∑
i=1

φ2(wTi θ) + λn,1 |θ|1

}
,

where

φ1(wTi θ) = log Φ(wTi θ)
1− Φ(wTi θ)

,

φ2(wTi θ) = − log
[
1− Φ(wTi θ)

]
= − log 1

1 + exp (φ1(wTi θ))
for the probit model. Define the following quantity

δLn(θ∗, ∆) := Ln(θ∗ + ∆)− Ln(θ∗)− 〈∇Ln(θ∗), ∆〉 .

To prove Lemma A.7, by Theorem 1 in Negahban, et. al (2010), it suffices to show that
Step 1: δLn(θ∗, ∆̂) satisfies the RSC condition (2.4) where ∆̂ = θ̂ − θ∗; and Step 2:
with high probability, we have

|∇Ln(θ∗)|∞ ≤
√
αuσ2

w

log d
n

.

Step 1: We need to show that δLn(θ∗, ∆̂) satisfies the RSC condition where ∆̂ = θ̂−θ∗.
Define ρi, θ = −y1iφ1(wTi θ)+φ2(wTi θ), Q̂1(θ) = Enρi, θ, and Q1(θ) = Eρi, θ. By the mean
value theorem, we have

Ln(θ∗, ∆̂) = Q̂1(θ̂)− Q̂1(θ∗) = 1
n

n∑
i=1

ρ
′′

i, θ̄

[
wTi (θ̂ − θ∗)

]2
,
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where ρ′′
i, θ̄

denotes the second derivative of ρi, θ̄ and θ̄ is some intermediate value.
Proposition 1 in Loh and Wainwright (2013) implies that there exists a constant

α > 0, depending on the probit model and (σw, Σw), such that for all vectors θ2 ∈
B2(3) ∩ B1(R)

Q̂1(θ2)− Q̂1(θ1) ≥


α
2 |∆|

2
2 −

c2σ2
w

2α
log p
n
|∆|21 for all |∆|2 ≤ 3,

3α
2 |∆|2 − 3cσw

√
log p
n
|∆|1 for all |∆|2 ≥ 3,

with probability at least 1− c1 exp(−c2n) and ∆ = θ2− θ1. Combining this result with
Lemma 1 in Negahban, et. al (2010) which shows that

∣∣∣∆̂∣∣∣
1
≤ 4
√
k1

∣∣∣∆̂∣∣∣
2
yields the RSC

of δLn(θ∗, ∆̂).

Step 2: In the following, we show that |∇Ln(θ∗)|∞ ≤
√
αuσ2

w
log d
n

with high proba-
bility. For a fixed index j = 1, ..., d, we begin by establishing an upper bound on

1
n

n∑
i=1

Vij := 1
n

n∑
i=1

[
wijy1iφ

′

1(wTi θ∗)− wijφ
′

2(wTi θ∗)
]

where φ′1(u) = ∂φ1
∂u

and φ
′
2(u) = ∂φ2

∂φ1

∂φ1
∂u

. Let us condition on {wi}ni=1, so that y1i is
drawn from the exponential family with parameter φ1(wTi θ) = log( Φ(wTi θ)

1−Φ(wTi θ)
) for the

probit model. For any t ∈ R, compute the cumulant function

logE [exp(tVij) |wi]
= log

{
E
[
exp

(
twijy1iφ

′

1(wTi θ∗)
)
|wi

]
exp

(
−twijφ

′

2(wTi θ∗)
)}

= φ2
(
φ
′

1(wTi θ∗)twij + φ1(wTi θ∗)
)
− φ2(φ1(wTi θ∗))− φ

′

2(wTi θ∗))(twij)

= t2

2 w
2
ij

[
φ
′′

2

(
φ1(wTi θ∗) + υiφ

′

1(wTi θ∗)twij
)]

for some υi ∈ [0, 1]. Since this upper bound holds for each i = 1, ..., n, we obtain

1
n

n∑
i=1

logE [exp(tVij) |wi] ≤
t2

2

{
1
n

n∑
i=1

w2
ij

[
φ
′′

2

(
φ1(wTi θ∗) + υiφ

′

1(wTi θ∗)twij
)]}

≤ t2αu
2

{
1
n

n∑
i=1

w2
ij

}

where the inequality follows since φ′′2(u) ≤ αu for some αu > 0 and all u ∈ R. Note
that for each j = 1, ..., d, the variables

{
w2
ij − E

[
w2
ij

]}n
i=1

are i.i.d. zero-mean and sub-
Gaussian with parameter at most σw. Consequently, we have E

[
w2
ij

]
≤ σ2

w. Since the
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squared variables are sub-exponential, by Lemma B.1, we have the tail bound

P
[

1
n

n∑
i=1

w2
ij ≥ 2σ2

w

]
≤ 2 exp (−c1n) .

Define the event Ξ =
{

maxj=1,...,d
1
n

∑n
i=1w

2
ij ≤ 2σ2

w

}
. An application of union bound

yields
P [Ξc] ≤ 2 exp (−c1n+ log d) ≤ 2 exp(−c1n)

under the condition n % log d. Conditioning on the event Ξ, we obtain

1
n

n∑
i=1

logE [exp(tVij) |wi] ≤ t2αuσ
2
w, for each j = 1, ..., d.

An application of the Chernoff bound and the union bound yields

P
[

max
j=1,...,d

∣∣∣∣∣ 1n
n∑
i=1

Vij

∣∣∣∣∣ ≥ ε |Ξ
]
≤ 2 exp

(
−c1n

ε2

αuσ2
w

+ log d
)
.

Setting ε =
√
αuσ2

w
log d
n

and combining with the bound on P [Ξc] yields

P

 max
j=1,...,d

∣∣∣∣∣ 1n
n∑
i=1

Vij

∣∣∣∣∣ ≥
√
αuσ2

w

log d
n

 ≤ P [Ξc] + P
[

max
j=1,...,d

∣∣∣∣∣ 1n
n∑
i=1

Vij

∣∣∣∣∣ ≥ ε |Ξ
]

≤ c2 exp
(
−c3n

ε2

αuσ2
w

+ log d
)

≤ c4 exp (−c5 log d) ,

where the last inequality follows since p > n is the regime of our interest.
Now put the pieces together, we obtain

|∇Ln(θ∗)|∞ ≤
√
αuσ2

w

log d
n

with probability at least 1− c′ exp
(
−c′′ log d

)
.

Combining Step 1 and Step 2 and applying Theorem 1 in Negahban, et. al (2010)
yields the desired result. �

Remark. Theorem 1 in Negahban, et. al (2010) can be applied to obtain the up-
per bound in Proposition 3.4.2 for the case of approximate sparsity q1 ∈ (0, 1].
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3.8.7 Proposition 3.4.3
Proof. Recall from the proof for Proposition 3.4.2:

Q̂1(θ̂)− Q̂1(θ∗) = 1
n

n∑
i=1

ρ
′′

i, θ̄

[
wTi (θ̂ − θ∗)

]2
,

where ρ′′
i, θ̄

denotes the second derivative of ρi, θ̄ and θ̄ is some intermediate value. As-
sumption 3.4.4 implies ρ′′

i, θ̄
≥ αl > 0, so we further have

1
n

n∑
i=1

[
wTi (θ̂ − θ∗)

]2
≤ 1
αl

[
Q̂1(θ̂)− Q̂1(θ∗)

]
. (3.39)

Hence, it remains to upper bound Q̂1(θ̂)− Q̂1(θ∗). Write

Q̂1(θ̂)− Q̂1(θ∗) = Q̂1(θ̂)−Q1(θ̂)−
[
Q̂1(θ∗)−Q1(θ∗)

]
+
[
Q1(θ̂)−Q1(θ∗)

]
:= Λθ̂ − Λθ∗ + Eθ̂, (3.40)

where we define Q̂1(θ̂) − Q1(θ̂) −
[
Q̂1(θ∗)−Q1(θ∗)

]
:= Λθ̂ − Λθ∗ and the excess risk

Q1(θ̂)−Q1(θ∗) := Eθ̂. Furthermore, by the definition of θ̂, we have Q̂1(θ̂) + λn,1
∣∣∣θ̂∣∣∣

1
≥

Q̂1(θ∗) + λn,1 |θ∗|1, which yields the following basic inequality

Eθ̂ + λn,1
∣∣∣θ̂∣∣∣

1
≤ − [Λθ̂ − Λθ∗ ] + λn,1 |θ∗|1 + Eθ∗

Under our model setup, Eθ∗ = 0. This implies

Eθ̂ ≤ |Λθ̂ − Λθ∗|+ λn,1
∣∣∣θ̂ − θ∗∣∣∣

1
,

by the triangle inequality. To control for Λθ̂ − Λθ∗ and Eθ̂, we follow Lemma 6.7 in
Bühlmann and Van de Geer (2011) (alternatively, see Theorems 2.1 or 2.2 in Van de
Geer, 2008) to obtain the desired upper bound on Q̂1(θ̂)− Q̂1(θ∗) in (3.40).�

3.8.8 Theorem 3.4.7
The proof for Theorem 3.4.7 hinges on an intermediate result that shows the “mutual
incoherence” assumption on E[vT1 v1] (the population version of 1

n
vTv) guarantees that,

with high probability, analogous conditions hold for the estimated quantity 1
n
v̂T v̂. This

result is established in Lemma A.13. The main proof for Theorem 3.4.7 is based on
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a construction called Primal-Dual Witness (PDW) method developed by Wainwright
(2009). This method constructs a pair (β̂, µ̂). When this procedure succeeds, the
constructed pair is primal-dual optimal, and acts as a witness for the fact that the
Lasso has a unique optimal solution with the correct signed support. The procedure is
described in the following.

(i) Set β̂J(β∗)c = 0.

(ii) Obtain (β̂J(β∗), µ̂J(β∗)) by solving the oracle subproblem

β̂J(β∗) ∈ arg min
βJ(β∗)∈Rk2

{ 1
2n |v̂0 − v̂J(β∗)βJ(β∗)|22 + λn,3|βJ(β∗)|1},

and choose µ̂J(β∗) ∈ ∂|β̂J(β∗)|1, where ∂|β̂J(β∗)|1 denotes the set of subgradients at
β̂J(β∗) for the function | · |1 : Rk2 → R.

(iii) Solve for µ̂J(β∗)c via the zero-subgradient equation

1
n
v̂T (v̂0 − v̂β̂) + λn,3µ̂ = 0,

and check whether or not the strict dual feasibility condition |µ̂J(β∗)c|∞ < 1 holds.

The proof includes four parts. Lemma A.8 guarantees the uniqueness of the optimal
solution of the two-stage Lasso procedure, β̂HSEL, and shows that β̂HSEL = (β̂J(β∗), 0)
where β̂J(β∗) is the solution obtained in step 2 of the PDW construction. Based on this
uniqueness claim, one can then talk unambiguously about the support of the two-stage
Lasso estimate. Lemma A.9 proves part (a) of Theorem 3.4.7 by verifying the strict dual
feasibility condition in step 3 of PDW and ensures that β̂HSEL, J(β∗) is uniformly close
to β∗J(β∗) in the l∞−norm. Part (b) of Theorem 3.4.7 is a consequence of this uniform
norm bound in Lemma A.9: as long as the minimum value of |β∗j | over j ∈ J(β∗) is
not too small, then the multi-stage estimator does not falsely exclude elements that are
in the support of β∗ with high probability. To simplify the notations in the following
analysis, let J(β∗) = K, J(β∗)c := Kc, ΣKcK := E

[
vT1,Kcv1,K

]
, Σ̂KcK := 1

n
vTKcvK ,

and Σ̌KcK := 1
n
v̂TKc v̂K . Similarly, let ΣKK := E

[
vT1,Kv1,K

]
, Σ̂KK := 1

n
vTKvK , and

Σ̌KK := 1
n
v̂TK v̂K .

Lemma A.8: If the PDW construction succeeds and if λmin
(
E
[
vT1,J(β∗)v1,J(β∗)

])
≥

Cmin > 0, then the vector (β̂K , 0) ∈ Rp is the unique optimal solution of the Lasso.
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Proof. The proof for Lemma A.8 adopts the proof for Lemma 1 from Chapter 6.4.2
of Wainwright (2015). If the PDW construction succeeds, then β̂ = (β̂K , 0) is an op-
timal solution with associated subgradient vector µ̂ ∈ Rp satisfying |µ̂Kc |∞ < 1, and〈
µ̂, β̂

〉
= |β̂|1. Suppose β̃ is another optimal solution. Letting F (β) = 1

2n |v̂0 − v̂β|22,
then F (β̂) +λn,3

〈
µ̂, β̂

〉
= F (β̃) +λn,3|β̃|1, and hence F (β̂)−λn,3

〈
µ̂, β̃ − β̂

〉
= F (β̃) +

λn,3
(
|β̃|1 −

〈
µ̂, β̃

〉)
. However, by the zero-subgradient10 conditions for optimality,

we have λn,3µ̂ = −∇F (β̂), which implies that F (β̂) +
〈
∇F (β̂), β̃ − β̂

〉
− F (β̃) =

λn,3
(
|β̃|1 −

〈
µ̂, β̃

〉)
. By convexity of F , the left-hand side is non-positive, which

implies that |β̃|1 ≤
〈
µ̂, β̃

〉
. But since we also have

〈
µ̂, β̃

〉
≤ |µ̂|∞|β̃|1, we must

have |β̃|1 =
〈
µ̂, β̃

〉
. Since |µ̂Kc |∞ < 1, this equality can only occur if β̃j = 0

for all j ∈ Kc. Thus, all optimal solutions are supported only on K, and hence
can be obtained by solving the oracle subproblem in the PDW procedure. Given
λmin

(
E
[
vT1,J(β∗)v1,J(β∗)

])
≥ Cmin > 0, this subproblem is strictly convex, and hence

it has a unique minimizer. �

Lemma A.9: Suppose the assumptions in Theorem 3.4.7 hold. With the choice of
the regularization parameter

λn,3 ≥ c
8(2− φ

4 )
φ

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n


and under the condition n % (k3

2 log p) ∨ (k2
2k1 log d),

√
n log p
|β∗|21

∨
√
nk1 log d % log p, and√

k1 log d
n

= o(1), we have |µ̂Kc|∞ ≤ 1− φ
8 with probability at least 1− c1 exp(−c2 log(p∧

d)). Furthermore,

|β̂K − β∗K |∞ ≤
c
√
k2

λmin(ΣKK)

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n

 ,
with probability at least 1− c1 exp(−c2 log(p ∧ d)).

Proof. By construction, the sub-vectors β̂K , µ̂K , and µ̂Kc satisfy the zero-subgradient
10Given a convex function g : Rp 7→ R, µ ∈ Rp is a subgradient at β, denoted by µ ∈ ∂g(β), if

g(β + 4) ≥ g(β) + 〈µ, 4〉 for all 4 ∈ Rp. When g(β) = |β|1, notice that µ ∈ ∂|β|1 if and only if
µj = sign(βj) for all j = 1, ..., p, where sign(0) is allowed to be any number in [−1, 1].
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condition in the PDW construction. Recall the definition of e from Lemma A.1. With
the fact that β̂Kc = β∗Kc = 0, we have

1
n
v̂TK v̂K

(
β̂K − β∗K

)
+ 1
n
v̂TKe+ λn,3µ̂K = 0,

1
n
v̂TKc v̂K

(
β̂K − β∗K

)
+ 1
n
v̂TKce+ λn,3µ̂Kc = 0.

From the equations above, by solving for the vector µ̂Kc ∈ Rp−k2 , we obtain

µ̂Kc = − 1
nλn,3

v̂TKc v̂K
(
β̂K − β∗K

)
− v̂TKc

e

nλn,3
,

β̂K − β∗K = −
( 1
n
v̂TK v̂K

)−1 v̂TKe

n
− λn,3

(
v̂TK v̂K
n

)−1

µ̂K ,

which yields

µ̂Kc =
(
Σ̌KcKΣ̌−1

KK

)
µ̂K +

(
v̂TKc

e

nλn,3

)
−
(
Σ̌KcKΣ̌−1

KK

)
v̂TK

e

nλn,3
.

By the triangle inequality, we have

|µ̂Kc |∞ ≤
∥∥∥Σ̌KcKΣ̌−1

KK

∥∥∥
∞

+
∣∣∣∣∣v̂TKc

e

nλn,3

∣∣∣∣∣
∞

+
∥∥∥Σ̌KcKΣ̌−1

KK

∥∥∥
∞

∣∣∣∣∣v̂TK e

nλn,3

∣∣∣∣∣
∞
,

where the fact that |µ̂K |∞ ≤ 1 is used in the inequality above. By Lemma A.13, we
have

∥∥∥Σ̌KcKΣ̌−1
KK

∥∥∥
∞
≤ 1− φ

4 with probability at least 1− c exp(− log(p ∧ d)). Hence,

|µ̂Kc |∞ ≤ 1− φ

4 +
∣∣∣∣∣v̂TKc

e

nλn,3

∣∣∣∣∣
∞

+
∥∥∥Σ̌KcKΣ̌−1

KK

∥∥∥
∞

∣∣∣∣∣v̂TK e

nλn,3

∣∣∣∣∣
∞

≤ 1− φ

4 +
(

2− φ

4

) ∣∣∣∣∣v̂T e

nλn,3

∣∣∣∣∣
∞
.

Therefore, it suffices to show that
(
2− φ

4

) ∣∣∣v̂T e
nλn,3

∣∣∣
∞
≤ φ

8 with high probability. This
result is established in Lemma A.16. Thus, we have |µ̂Kc |∞ ≤ 1 − φ

8 with high proba-
bility.

It remains to establish a bound on the l∞−norm of the error β̂K − β∗K . By the
triangle inequality, we have

|β̂K − β∗K |∞ ≤

∣∣∣∣∣∣
(
v̂TK v̂K
n

)−1
v̂TKe

n

∣∣∣∣∣∣
∞

+ λn,3

∥∥∥∥∥∥
(
v̂TK v̂K
n

)−1
∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
(
v̂TK v̂K
n

)−1
∥∥∥∥∥∥
∞

∣∣∣∣∣ v̂TKen
∣∣∣∣∣
∞

+ λn,3

∥∥∥∥∥∥
(
v̂TK v̂K
n

)−1
∥∥∥∥∥∥
∞

,
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Using bound (3.63) from Lemma A.15, we have∥∥∥∥∥∥
(
v̂TK v̂K
n

)−1
∥∥∥∥∥∥
∞

≤ 2
√
k2

λmin(Σ̂KK)
≤ 4

√
k2

λmin(ΣKK) .

From the proof for Corollary 3.4.4, we have,

| 1
n
v̂T e|∞ -

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n

 ,
with probability at least 1 − c1 exp(−c2 log(p ∧ d)). Putting everything together, with
the choice of λn,3, we obtain

|β̂K − β∗K |∞ ≤
c
√
k2

λmin(ΣKK)

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n

 ,
with probability at least 1− c1 exp(−c2 log(p ∧ d))), as claimed. �

3.8.9 Theorem 3.4.8
Proof. Let ∆ := D−1(β̂ − β∗) and Ψn := 1

n
Dv̂T v̂D and we have

|Ψn∆| =
∣∣∣∣ 1nDv̂T (v̂0 − v̂β̂)− 1

n
Dv̂T (v̂0 − v̂β∗)

∣∣∣∣ .
Consequently,

|Ψn∆|∞ ≤
∣∣∣∣ 1nDv̂T (v̂0 − v̂β̂)

∣∣∣∣
∞

+
∣∣∣∣ 1nDv̂T (v̂0 − v̂β∗)

∣∣∣∣
∞

≤ σ̂ξ +
∣∣∣∣ 1nDv̂T e

∣∣∣∣
∞
,

recalling e := v̂0 − v̂β∗ defined in Lemma A.1. As in the nonpivotal case, to upper
bound

∣∣∣D v̂T e
n

∣∣∣
∞
, we control the terms except maxj

{
1
n

∑n
i=1 vijηi

}
in (3.35)-(3.37) with

the argument from the proofs for Lemma A.4 and Corollary 3.4.4. To control for the
term maxj

{
1
n

∑n
i=1 vijηi

}
, we use an argument similar to Gautier and Tsybakov (2011).

Let Q(β) := 1
n
|v0 − vβ|22 and define the event

E =
{∣∣∣∣ 1nDvTη

∣∣∣∣
∞
≤
√
Q(β∗)ξ

}
.
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Since Q(β∗) = 1
n

∑n
i=1 η

2, we have

P(Ec) ≤
p∑
j=1

P

 1
n

∣∣∣∣∣∣
∑n
i=1 vijηi

vj∗
√

1
n

∑n
i=1 η

2
i

∣∣∣∣∣∣ ≥ ξ


≤

p∑
j=1

P

∣∣∣∣∣∣
∑n
i=1 vijηi√∑n
i=1 (vijηi)2

∣∣∣∣∣∣ ≥ √nξ
 .

By Lemma B.16, for all j = 1, ... , p,

P

∣∣∣∣∣∣
∑n
i=1 vijηi√∑n
i=1 (vijηi)2

∣∣∣∣∣∣ ≥ √nξ
 ≤ 2

(
1− Φ

(√
nξ
))

+ 2a0
(1 +

√
nξ)1+δ′

pa2b2+δ′
n, δ′

.

Thus, the event E holds with probability at least 1− α where

α = 2L
(
1− Φ

(√
nξ
))

+ 2a0
(1 +

√
nξ)1+δ′

pa2−1b2+δ′
n, δ′

.

Now, let Q̂(β) := 1
n
|v̂0 − v̂β|22. The following shows that, conditioning on the event E

and by appropriately choosing ξ, we have∣∣∣∣ 1nDv̂T (v̂0 − v̂β∗)
∣∣∣∣
∞
≤ Q̂(β∗)ξ,

namely,
(
β∗, Q̂(β∗)

)
∈ A. First, notice that we have∣∣∣∣ 1nDv̂T (v̂0 − v̂β∗)

∣∣∣∣
∞
≤

∣∣∣∣ 1nDvT (v0 − vβ∗)
∣∣∣∣
∞

+
∣∣∣∣ 1nDv̂T (v̂0 − v̂β∗)−

1
n
DvT (v0 − vβ∗)

∣∣∣∣
∞

≤
∣∣∣∣ 1nDvT (v0 − vβ∗)

∣∣∣∣
∞

+ 2
∣∣∣∣ 1nDvT (v̂0 − v0)

∣∣∣∣
∞

+
∣∣∣∣ 1nD(v̂ − v)T (v̂0 − v0)

∣∣∣∣
∞

+2
∣∣∣∣ 1nDvT (v̂ − v)β∗

∣∣∣∣
∞

+
∣∣∣∣ 1nD(v̂ − v)T (v̂ − v)β∗

∣∣∣∣
∞

≤
√
Q(β∗)ξ + Lb(σv)

√
B′

minj=1,...,p vj∗
|β∗|1

≤
√
Q̂(β∗)ξ +

∣∣∣∣√Q̂(β∗)−
√
Q(β∗)

∣∣∣∣ ξ + Lb(σv)
√
B′

minj={1,...,p} vj∗
|β∗|1
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where the third inequality follows from argument similar to the proofs of the upper
bounds for Lemma A.3 and Corollary 3.4.4, and b(σv) is a positive constant only de-
pending on σv. We now control for the term

∣∣∣∣√Q̂(β∗)−
√
Q(β∗)

∣∣∣∣. Note that

∣∣∣Q̂(β∗)−Q(β∗)
∣∣∣ ≤ ∣∣∣∣∣ 1n

n∑
i=1

(
v̂2
i0 − v2

i0

)∣∣∣∣∣+
∣∣∣∣∣ 2n

n∑
i=1

(v̂i0v̂i − vi0vi) β∗
∣∣∣∣∣

+
∣∣∣∣∣ 1n

n∑
i=1

β∗T
(
v̂Ti v̂i − vTi vi

)
β∗
∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

(
v̂2
i0 − v2

i0

)∣∣∣∣∣+ max
j=1,...,p

∣∣∣∣∣ 2n
n∑
i=1

(v̂i0v̂ij − vi0vij)
∣∣∣∣∣ |β∗|1

+ max
j, j′=1,...,p

∣∣∣∣∣ 2n
n∑
i=1

(
v̂Tij v̂ij′ − vTijvij′

)∣∣∣∣∣ |β∗|21 .
Following from argument similar to the proofs of the upper bounds for Lemma A.3 and
Corollary 3.4.4, we can upper bound the terms∣∣∣ 1

n

∑n
i=1 (v̂2

i0 − v2
i0)
∣∣∣ ,

maxj=1,...,p

∣∣∣ 2
n

∑n
i=1 (v̂i0v̂ij − vi0vij)

∣∣∣ ,
maxj, j′=1,...,p

∣∣∣ 2
n

∑n
i=1

(
v̂Tij v̂ij′ − vTijvij′

)∣∣∣ ,
which yields

∣∣∣Q̂(β∗)−Q(β∗)
∣∣∣ = O

( 1
n

) 2
3
|β∗|1 +

(
log d
n

) 1
2

|β∗|1

 .
Now, notice that if |a1 − a2| ≤ a3 , then

∣∣∣√a1 −
√
a2

∣∣∣ ≤ √a3, we have

∣∣∣∣√Q̂(β∗)−
√
Q(β∗)

∣∣∣∣ = O

( 1
n

) 1
3
|β∗|

1
2
1 +

(
log d
n

) 1
4

|β∗|
1
2
1

 ,
and therefore, ∣∣∣∣√Q̂(β∗)−

√
Q(β∗)

∣∣∣∣ ξ ≤ c
√
Q̂(β∗)ξ,

for c > 1. Consequently, if we choose

ξ ≥ amax

c
√

log p
n

,
Lb(σv)

√
B′

minj=1,...,p vj∗

(
Q̂(β∗)

)− 1
2 |β∗|1
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we have ∣∣∣∣ 1nDv̂T (v̂0 − v̂β∗)
∣∣∣∣
∞
<
√
Q̂(β∗)ξ

with probability at least 1 − O
(

1
p∧d

)
− α. On the other hand, (β̂, σ̂) minimizes the

criterion |D−1β|1 + Cσ on the same set A. Thus, we have∣∣∣D−1β̂
∣∣∣
1

+ Cσ̂ ≤
∣∣∣D−1β∗

∣∣∣
1

+ C
√
Q̂(β∗),

which implies∣∣∣∆J(β∗)c
∣∣∣
1

=
∑

j∈J(β∗)c

∣∣∣vj∗β̂j∣∣∣
≤

∑
j∈J(β∗)

(∣∣∣vj∗β∗j ∣∣∣− ∣∣∣vj∗β̂j∣∣∣)+ C
(√

Q̂(β∗)−
√
Q̂(β̂)

)

≤
∣∣∣∆J(β∗)

∣∣∣
1

+ C
(√

Q̂(β∗)−
√
Q̂(β̂)

)

≤
∣∣∣∆J(β∗)

∣∣∣
1

+ C

∣∣∣∣∣∣
(

1
n

∑n
i=1 v̂ijei

)
D∆√

1
n

∑n
i=1 e

2
i

∣∣∣∣∣∣
≤

∣∣∣∆J(β∗)

∣∣∣
1

+ C

∣∣∣∣∣∣
(

1
n

∑n
i=1 v̂ijei

)
D√

1
n

∑n
i=1 e

2
i

∣∣∣∣∣∣
∞

|∆|1

≤
∣∣∣∆J(β∗)

∣∣∣
1

+ C |∆|1 ,

where the third inequality follows from the convexity of β 7→
√
Q̂(β) and the last

inequality follows from the concavity of
√
· and the Cauchy-Schwarz inequality. Con-

sequently, we have the following cone condition:∣∣∣∆J(β∗)c
∣∣∣
1
≤ 1 + C

1− C
∣∣∣∆J(β∗)

∣∣∣
1
.

We now finish upper bounding |Ψn∆|∞. Recall that

|Ψn∆|∞ ≤ σ̂ξ +
∣∣∣∣ 1nDv̂T e

∣∣∣∣
∞

≤ σ̂ξ +
√
Q(β∗)ξ + Lb(σv)

√
B′

minj=1,...,p vj∗
|β∗|1

≤ ξ
(

2σ̂ +
√
Q(β∗)−

√
Q(β̂)

)
+ ξ

(√
Q(β̂)−

√
Q̂(β̂)

)

+ Lb(σv)
√
B′

minj=1,...,p vj∗
|β∗|1 .
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We first upper bound the term
√
Q(β∗)−

√
Q(β̂). Arguing as in the proof for the cone

condition, we have

√
Q(β∗)−

√
Q(β̂) ≤

∣∣∣∣∣∣
(

1
n

∑n
i=1 vijηi

)
D∆√

1
n

∑n
i=1 η

2
i

∣∣∣∣∣∣
≤ max

j∈1,...,p

∣∣∣∣∣∣
(

1
n

∑n
i=1 vijηi

)
√

1
n

∑n
i=1 v

2
ijη

2
i

∣∣∣∣∣∣ |∆|1
≤ ξ |∆|1 .

To upper bound the term
√
Q(β̂)−

√
Q̂(β̂), we argue as in the proof for upper bounding∣∣∣∣√Q̂(β∗)−

√
Q(β∗)

∣∣∣∣ from the above and obtain

√
Q̂(β̂)−

√
Q(β̂) = O

( 1
n

) 1
3 ∣∣∣β̂∣∣∣ 1

2

1
+
(

log d
n

) 1
4 ∣∣∣β̂∣∣∣ 1

2

1

 ,
and therefore,

ξ
(√

Q̂(β̂)−
√
Q(β̂)

)
< ξσ̂.

Combining the pieces together, we obtain

|Ψn∆|∞ ≤ 2ξσ̂ + ξ2 |∆|1 + Lb(σv)
√
B′

minj=1,...,p vj∗
|β∗|1

≤ ξ

2σ̂ + ξ
|Ψn∆|∞
κ∗J(β∗)

+ Lb(σv)
√
B′

minj=1,...,p vj∗
|β∗|1

where the second inequality uses the definition of the sensitivity κ∗J(β∗). The above
yields

|Ψn∆|∞ ≤
[
Lb(σv)

√
B′

minj=1,...,p vj∗
|β∗|1 + 2ξσ̂

] 1− ξ2

κ∗J(β∗)

−1

.

Now, we can apply the cone condition to obtain

∣∣∣D−1(β̂ − β∗)
∣∣∣
2
≤ 1
κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗
|β∗|1 + 2ξσ̂

] 1− ξ2

κ∗J(β∗)

−1

.
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Some further algebraic manipulation shows

∣∣∣D−1(β̂ − β∗)
∣∣∣
2
≤ 1

κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗

∣∣∣β̂∣∣∣
1

+ 2ξσ̂
] 1− ξ2

κ∗J(β∗)

−1

+ 1
κ∗J(β∗)

[
Lb(σv)

√
B′

(minj=1,...,p vj∗)2

√
k2

∣∣∣D−1
(
β̂ − β∗

)∣∣∣
2

] 1− ξ2

κ∗J(β∗)

−1

which implies

∣∣∣D−1(β̂ − β∗)
∣∣∣
2
≤ 1

κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗

∣∣∣β̂∣∣∣
1

+ 2ξσ̂
] 1− ξ2

κ∗J(β∗)

−1

·

1− 1
κ∗J(β∗)

[
Lb(σv)

√
k2B

′

(minj=1,...,p vj∗)2

] 1− ξ2

κ∗J(β∗)

−1

−1

.

Simple calculations yield, for all j = 1, ..., p,

∣∣∣β̂j − β∗j ∣∣∣ ≤ 1
vj∗κ∗J(β∗)

[
Lb(σv)

√
B′

minj=1,...,p vj∗

∣∣∣β̂∣∣∣
1

+ 2ξσ̂
] 1− ξ2

κ∗J(β∗)

−1

·

1− 1
κ∗J(β∗)

[
Lb(σv)

√
k2B

′

(minj=1,...,p vj∗)2

] 1− ξ2

κ∗J(β∗)

−1

−1

.

To establish the upper bound on σ̂, note that the optimality of (β̂, σ̂) implies

Cσ̂ ≤
∣∣∣∆J(β∗)

∣∣∣
1

+ C
√
Q̂(β∗)

≤ |Ψn∆|∞
κ∗J(β∗),J(β∗)

+ C
√
Q̂(β∗).

�

3.8.10 Theorems 3.4.9 and 3.4.10
Proof. The estimator of g(wTi θ∗) in Theorems 3.4.9 and 3.4.10 takes on the following
form

Ê
(
y2i |wTi θ̂

)
− Ê

(
xi |wTi θ̂

)T
β̂ := ĝ(wTi θ̂),
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where β̂ = β̂HSEL. We now derive an upper bound for

∣∣∣ĝ(θ̂)− g(θ∗)
∣∣∣
2

:=
√√√√ 1
n

n∑
i=1

[
ĝ(wTi θ̂)− g(wTi θ∗)

]2
Note that we can write

ĝ(wTi θ̂)− g(wTi θ∗)

=
[
Ê
(
y2i |wTi θ̂

)
− E

(
y2i |wTi θ∗

)]
−
[
Ê
(
xi |wTi θ̂

)T
β̂ − E

(
xi |wTi θ∗

)T
β∗
]

=
[
Ê
(
y2i |wTi θ̂

)
− E

(
y2i |wTi θ∗

)]
−
[
Ê
(
xi |wTi θ̂

)
− E

(
xi |wTi θ̂

)]T
β̂

−
[
E
(
xi |wTi θ̂

)
− E

(
xi |wTi θ∗

)]T
β̂ − E

(
xi |wTi θ∗

)T
(β̂ − β∗).

By an elementary inequality and Hölder’s inequality, we have[
ĝ(wTi θ̂)− g(wTi θ∗)

]2
≤ 4

[
Ê
(
y2i |wTi θ̂

)
− E

(
y2i |wTi θ∗

)]2
+4

[[
Ê
(
xi |wTi θ̂

)
− E

(
xi |wTi θ̂

)]T
β̂
]2

+4
[[
E
(
xi |wTi θ̂

)
− E

(
xi |wTi θ∗

)]T
β̂
]2

+ 4
[
E
(
xi |wTi θ∗

)T
(β̂ − β∗)

]2

≤ 8
[
Ê
(
y2i |wTi θ̂

)
− E

(
y2i |wTi θ̂

)]2
+ 8

[
E
(
y2i |wTi θ̂

)
− E

(
y2i |wTi θ∗

)]2
+8 maxj

[
Ê
(
xij |wTi θ̂

)
− E

(
xij |wTi θ̂

)]2
|β∗|21

+8 maxj
[
Ê
(
xij |wTi θ̂

)
− E

(
xij |wTi θ̂

)]2 ∣∣∣β̂ − β∗∣∣∣2
1

+8 maxj
[
E
(
xij |wTi θ̂

)
− E

(
xij |wTi θ∗

)]2
|β∗|21

+8 maxj
[
E
(
xij |wTi θ̂

)
− E

(
xij |wTi θ∗

)]2 ∣∣∣β̂ − β∗∣∣∣2
1

+4 maxj
(
E
(
xij |wTi θ∗

))2 ∣∣∣β̂ − β∗∣∣∣2
1
.

Applying previous results yields the desired result. By a standard integration over the
tail probability (in the exponential form), the bound above with high probability can
be converted to a bound in expectation as stated in Theorem 3.4.8.�
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3.8.11 Theorems 3.4.11 and 3.4.12
Proof. We prove the case where β∗ and θ∗ are exactly sparse and the approximate
sparse case of β∗ and θ∗ follows the same argument (see the remark at the end of
this section). The estimator of g(wTi θ∗) in Theorem 3.4.11 is obtained by solving the
following program

g̃ ∈ arg min
f∈F

1
n

n∑
i=1

(
y2i − xTi β̂ − f(wTi θ̂)

)2

where β̂ = β̂HSEL. We derive an upper bound for

∣∣∣g̃(θ̂)− g(θ∗)
∣∣∣
2

:=
√√√√ 1
n

n∑
i=1

[
g̃(wTi θ̂)− g(wTi θ∗)

]2
.

Since g̃ is optimal and g is feasible, we have the basic inequality

1
n

n∑
i=1

(
y2i − xTi β̂ − g̃(wTi θ̂)

)2
≤ 1
n

n∑
i=1

(
y2i − xTi β̂ − g(wTi θ̂)

)2
.

Some algebra leads to the equivalent expression

1
2
∣∣∣g̃(θ̂)− g(θ̂)

∣∣∣2
n
≤ 1

n

n∑
i=1

[
xTi (β∗ − β̂)

] [
g̃(wTi θ̂)− g(wTi θ̂)

]
+ 1
n

n∑
i=1

[
g(wTi θ∗)− g(wTi θ̂)

] [
g̃(wTi θ̂)− g(wTi θ̂)

]
+ 1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g(wTi θ∗)

]
+ 1
n

n∑
i=1

ηi
[
g̃(wTi θ̂)− g̃(wTi θ∗)

]
− 1
n

n∑
i=1

ηi
[
g(wTi θ̂)− g(wTi θ∗)

]
.

Now, by the Fenchel-Young inequality, we have

1
n

∑n
i=1

[[
xTi (β∗ − β̂)

] [
g̃(wTi θ̂)− g(wTi θ̂)

]
+
[
g(wTi θ∗)− g(wTi θ̂)

] [
g̃(wTi θ̂)− g(wTi θ̂)

]]
≤ 2

n

∑n
i=1

[
xTi (β∗ − β̂)

]2
+ 1

8n
∑n
i=1

[
g̃(wTi θ̂)− g(wTi θ̂)

]2
+ 2
n

∑n
i=1

[
g(wTi θ∗)− g(wTi θ̂)

]2
+ 1

8n
∑n
i=1

[
g̃(wTi θ̂)− g(wTi θ̂)

]2
.
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Consequently, we have

1
4
∣∣∣g̃(θ̂)− g(θ̂)

∣∣∣2
n
≤ 2

n

n∑
i=1

[
xTi (β∗ − β̂)

]2
+ 2
n

n∑
i=1

[
g(wTi θ∗)− g(wTi θ̂)

]2
+ 1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g(wTi θ∗)

]
+ 1
n

n∑
i=1

ηi
[
g̃(wTi θ̂)− g̃(wTi θ∗)

]
− 1
n

n∑
i=1

ηi
[
g(wTi θ̂)− g(wTi θ∗)

]
.

First, recall the upper bound on
∣∣∣β̂ − β∗∣∣∣2

2
from Corollary 3.4.4. Let ∆ = β̂ − β∗.

Applying the inequality in Lemma B.2 yields

|x∆| 22
n
≤ 3κxU

2 |∆| 22 + α
′ log d
n
|∆| 21,

and combining with the fact that |∆|1 ≤ 4
√
k2 |∆|2 shown previously yields an upper

bound on the term 1
n

∑n
i=1

[
xTi (β∗ − β̂)

]2
.

Now, by the L̄−Lipschitz condition on g(·), we have

1
n

n∑
i=1

[
g(wTi θ∗)− g(wTi θ̂)

]2
≤ L̄2

n

n∑
i=1

[
wTi θ̂ − wTi θ∗

]2
which is upper bounded by Proposition 3.4.2.

For the term 1
n

∑n
i=1 ηi

[
g̃(wTi θ∗)− g(wTi θ∗)

]
, we follow the argument as in the proof

for Corollary 3.4.4. Using the fact that E [ηi|wi] = 0, we obtain

1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g(wTi θ∗)

]
≤ c

(
k1σ

2
η

n

) 2
3

.

It remains to upper bound the terms

1
n

n∑
i=1

ηi
[
g̃(wTi θ̂)− g̃(wTi θ∗)

]
,

1
n

n∑
i=1

ηi
[
g(wTi θ̂)− g(wTi θ∗)

]
.
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By the L̄−Lipschitz assumption on g(·) and g̃(·), we have

1
n

n∑
i=1

ηi
[
g(wTi θ∗)− g(wTi θ̂)

]
≤ L̄

n

n∑
i=1

ηi
[
wTi θ̂ − wTi θ∗

]
,

1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g̃(wTi θ̂)

]
≤ L̄

n

n∑
i=1

ηi
[
wTi θ̂ − wTi θ∗

]
.

We provide upper bounds on the RHS terms in the inequalities above. For r1, r2 > 0,
define the set

S(r1, r2) :=
{
δ ∈ Rd | |δ|1 ≤ r1, |δ|2 ≤ r2

}
,

and the random variables Un = Un(r1, r2) given by

Un := sup
δ∈S(r1, r2)

1
n

∣∣∣ηTwδ∣∣∣ .
For a given t ∈ (0, 1) to be chosen, let us upper bound the minimal cardinality of a
set that covers S(r1, r2) up to r2t−accuracy in l2−norm. By Lemma B.10, we can find
such a covering set

{
δ1, ... , δN

}
⊂ S(r1, r2) with cardinality N = N(r1, r2, t) that is

upper bounded as

logN(r1, r2, t) ≤ c0r
2
1

(1
t

)2
log d.

Consequently, for each δ ∈ S(r1, r2), we may find some δi such that |δ − δi|2 ≤ r2t. By
the triangle inequality, we then have

1
n

∣∣∣ηTwδ∣∣∣ ≤ 1
n

∣∣∣ηTwδi∣∣∣+ 1
n

∣∣∣ηTw(δ − δi)
∣∣∣

≤ 1
n

∣∣∣ηTwδi∣∣∣+ |η|2√
n

|w(δ − δi)|2√
n

.

Given the assumptions on w, we have |w(δ−δi)|2√
n

≤
√
κwU |δ − δi|2 ≤

√
κwUr2t. Moreover,

by Lemma B.1, we have |η|2√
n
≤ 2ση with probability 1− c1 exp(−c2n). Putting together

the pieces, we obtain
1
n

∣∣∣ηTwδ∣∣∣ ≤ 1
n

∣∣∣ηTwδi∣∣∣+ 2
√
κwUσηr2t

with probability 1− c1 exp(−c2n). Taking the supremum over δ on both sides yields

Un ≤ max
i=1,...,N

1
n

∣∣∣ηTwδi∣∣∣+ 2
√
κwUσηr2t.
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It remains to bound the finite maximum over the covering set. Note that conditioning
on {wi}ni=1, each variate 1

n

∣∣∣ηTwδi∣∣∣ is zero-mean (by the fact that E [ηi|wi] = 0) sub-
Gaussian with parameter σ2

ηκ
w
Ur

2
2

n
. Under the assumptions on δi and w, by the property

of sub-Gaussian variables (Lemma B.17), we conclude that

Un ≤ σηr2
√
κwU


√

3 logN(r1, r2, t)
n

+ 2t

 .
Now, by Proposition 3.4.2, we can set r1 = c

′
k1

√
log d
n

and r2 = c
′′
√

k1 log d
n

. By choosing
t �

√
k1 log d
n

so that
√

3 logN(r1, r2, t)
n

= 2t, we obtain

Un ≤ cση
√
κwU
k1 log d
n

.

Consequently, we conclude that,

1
n

n∑
i=1

ηi
[
g(wTi θ∗)− g(wTi θ̂)

]
≤ cση

√
κwU
k1 log d
n

,

1
n

n∑
i=1

ηi
[
g̃(wTi θ∗)− g̃(wTi θ̂)

]
≤ cση

√
κwU
k1 log d
n

.

Putting the pieces together, we have,∣∣∣g̃(θ̂)− g(θ∗)
∣∣∣
n
≤

∣∣∣g̃(θ̂)− g(θ̂)
∣∣∣
n

+
∣∣∣g(θ̂)− g(θ∗)

∣∣∣
n

≤ c
′
b
′ max


√
k2 log p
n

, |β∗|1

√
k1k2 log d

n
,

(
k1

n

) 1
3
 .

where b′ is some constant depending only on the model-specific structure and inde-
pendent of n, d, p, k1, and k2. By a standard integration over the tail probability,
the bound above with high probability can be converted to a bound in expectation as
stated in Theorem 3.4.11.�

Remark. To prove for the general sparsity case on β∗ and θ∗(q1, q2 ∈ [0, 1]), we

replace r1 = c
′
k1

√
log d
n

and r2 = c
′′
√

k1 log d
n

with r1 = c
′
Rq2

(√
log d
n

)1−q2

and r2 =

c
′′
R

1
2
q2

(√
log d
n

)1− q2
2
.
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3.8.12 Theorem 3.4.13
Define H = Bpq2(Rq2) × F ◦ Bdq1(Rq1) where q1, q2 ∈ [0, 1]. Let x̃ := (x, −→fθ ) ∈ Rn×(p+1)

where −→fθ :=
(
f(wT1 θ), ... , f(wTn θ)

)T
with θ ∈ Bdq1(Rq1) and f(·) ∈ F . The lower bounds

derived in the following involve the set defined by intersecting the kernel of x̃ with
Bpq2(Rq2), which we denote Nq2(x̃) := Ker(x̃) ∩ Bpq2(Rq2) where

Ker(x̃) :=
{
β : x̃

(
β
1

)
= 0

}
,

and define the Bpq2(Rq2)−kernel diameter in the l2−norm

diam (Nq2(x̃)) := max
β∈Nq2 (x̃)

|β|2 .

The following lemma controls for the term diam (Nq2(x̃)).

Lemma A.10: If Assumptions 3.4.9-3.4.10 hold for any q2 ∈ [0, 1], then the Bpq2(Rq2)-
kernel diameter in l2−norm is upper bounded as

diam (Nq2(x̃)) ≤ fl(Rq2 , q2, n, p)
κl

.

Proof. This proof is similar to the proof for Lemma 1 in Raskutti, et. al (2011). Under
Assumption 3.4.10, we are guaranteed that there is no measurable function f(wTi θ) such
that xTi λ = f(wTi θ) when y1i = 1 for λ ∈ Bpq2(Rq2). On the other hand, if

diam (Nq2(x̃)) > fl(Rq2 , q2, n, p)
κl

,

then there must exist some β ∈ Bpq2(Rq2) with xβ = 0 and |β|2 >
fl(Rq2 , q2, n, p)

κl
. We then

have
0 = 1√

n
|xβ|2 < κl |β|2 − fl(Rq2 , q2, n, p),

which contradicts the lower bound condition on 1√
n
|xβ|2 in Assumption 3.4.9. �

Proof. Let M = M2(δn; H) be the cardinality of a maximal packing of H in the
L2(P)−metric with elements

{
h1, ... , hM

}
. Also let the random vector H ∈ Rp+1 be

uniformly distributed over the packing set
{
h1, ... , hM

}
. From a standard argument in
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terms of the error for a multi-way hypothesis testing problem, we obtain the following
lower bound on the minimax L2(P)−risk:

min
ĥ

max
h∈H

E
∣∣∣ĥ− h∣∣∣2

2
≥ 1

4δ
2
n min

h̃
P
[
h̃ 6= H

]
(3.41)

where the estimator h̃ takes values in the packing set. Fano’s inequality implies the
lower bound

P
[
h̃ 6= H

]
≥ 1− I(H; y2) + log 2

logM2(δn; H)
where I(H; y2) is the mutual information between H and y2 ∈ Rn.

Let us first upper bound the mutual information via the procedure of Yang and
Barron (1999): by covering P(H) := {Ph : h ∈ H} under the square-root Kullback-
Leibler (KL) divergence, the mutual information is upper bounded as

I(H; y2) ≤ logN(εn; P(H)) + c2n

σ2
η

(κ1u ∨ κ2u)ε2
n

where N(εn; P(H)) is the covering number of P(H) under the KL divergence. This
upper bound combined with the Fano lower bound implies

P
[
h̃ 6= H

]
≥ 1−

logN(εn; P(H)) + c2n
σ2
η

(κ1u ∨ κ2u)ε2
n + log 2

logM2(δn; H) . (3.42)

An upper bound on logN(εn; P(H)) can be obtained using the following argument.
For the Gaussian models considered here, the KL divergence

D(Ph ‖ Ph′ ) = 1
2σ2

η

∣∣∣x(β − β ′) + fθ − f
′

θ′

∣∣∣2
2

≤ 1
σ2
η

∣∣∣x(β − β ′)
∣∣∣2
2

+ n

σ2
η

∣∣∣fθ − f ′θ′ ∣∣∣2n
≤ 1

σ2
η

∣∣∣x(β − β ′)
∣∣∣2
2

+ 2n
σ2
η

∣∣∣fθ − f ′θ∣∣∣2n + 2n
σ2
η

∣∣∣f ′θ − f ′θ′ ∣∣∣2n
≤ nκ2u

σ2
η

∣∣∣β − β ′ ∣∣∣2
2

+ 2n
σ2
η

∣∣∣fθ − f ′θ∣∣∣2∞ + 2nL̄2κ1u

σ2
η

∣∣∣θ − θ′ ∣∣∣2
2

where the last inequality uses the L̄−Lipschitz assumption on f ′ ∈ F and the upper-RE
condition on w and x as well as the fact that |f − g|n ≤ |f − g|∞.
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Now, applying the upper bound on the covering number of Bd0(k1) in the l2−metric
provided by Lemma B.14, we conclude that there exists a set

{
θ1, ... , θN1

}
such that for

all θ ∈ Bd0(k1), there exists some index i with|θ − θi|22 ≤ ε2
n and logN2

(
εn; Bd0(k1)

)
≤

k1 log d+ k1 log
√
k1
εn

; similarly, there also exists a set
{
β1, ... , βN2

}
such that for all β ∈

Bp0(k2), there exists some index j with |β − βj|22 ≤ ε2
n and logN2 (εn; Bp0(k2)) ≤ k2 log p+

k2 log
√
k2
εn

. Applying the upper bound on the covering number of the L̄−Lipschitz
function class F in the sup-norm provided by Lemma B.11, we conclude that there
exists a set

{
f 1
θ , ... , f

N3
θ

}
such that for all f ∈ F and θ ∈

{
θ1, ... , θN1

}
, there exists

some index l with supwiθ
∣∣∣f(wTi θ)− f l(wTi θ)

∣∣∣ ≤ εn and logN∞ (εn; Fθ) ≤ 2k1
εn

for all
θ ∈

{
θ1, ... , θN1

}
. It is not hard to see that a covering set of P(H) under the KL

divergence can be formed by{
θ1, ... , θN1

}
×
{
β1, ... , βN2

}
×
{
f 1
θ , ... , f

N3
θ : θ ∈

{
θ1, ... , θN1

}}
and

logN(εn; P(H)) ≤ log
[(
N2

(
εn; Bd0(k1)

))2
·N2 (εn; Bp0(k2)) ·N∞ (εn; F)

]
≤ c

′
{
k1 log d+ k1 log

√
k1

εn
+ k2 log p+ k2 log

√
k2

εn
+ k1

εn

}
.(3.43)

It remains to lower bound logM2(δn; H); we do so by constructing a minimal covering
set of H = Bp0(k2)×F ◦ Bd0(k1) in the L2(P)−metric namely, logN2(δn; H). Note that∣∣∣h− h′∣∣∣2

L2(P)
=

∣∣∣β − β ′ ∣∣∣2
2

+ E
[
f(wiθ)− f

′(wiθ
′)
]2

≤
∣∣∣β − β ′ ∣∣∣2

2
+ 2E

[
f(wiθ)− f

′(wiθ)
]2

+ 2E
[
f
′(wiθ)− f

′(wiθ
′)
]2

≤
∣∣∣β − β ′ ∣∣∣2

2
+ 2E

[
f(wiθ)− f

′(wiθ)
]2

+ 2κ1uL̄
2
∣∣∣θ − θ′ ∣∣∣2

2

where the last inequality uses the L̄−Lipschitz assumption on f
′ ∈ F and the pop-

ulation upper-RE condition on w. Using the similar argument from above, we con-
clude from the first inequality of Lemma B.12 and Lemma B.15 that there exists a set{
θ1, ... , θN1

}
such that for all θ ∈ Bd0(k1), there exists some index i with|θ − θi|22 ≤ δ2

n

and logN2
(
δn; Bd0(k1)

)
≥ logM2

(
2δn; Bd0(k1)

)
≥ k1

2 log d−k1
k1/2 ; similarly, there also ex-

ists a set
{
β1, ... , βN2

}
such that for all β ∈ Bp0(k2), there exists some index j with

|β − βj|22 ≤ δ2
n and logN2 (δn; Bp0(k2)) ≥ logM2 (2δn; Bp0(k2)) ≥ k2

2 log d−k2
k2/2 . Further-

more, by Lemma B.11 and the first inequality of Lemma B.12, we conclude that there
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exists a set
{
f 1
θ , ... , f

N3
θ

}
such that for all f ∈ F and θ ∈

{
θ1, ... , θN1

}
, there exists some

index l with E
[
f(wTi θ)− f l(wTi θ)

]2
≤ δ2

n and logN2 (δn; Fθ) ≥ logM2 (2δn; Fθ) ≥ k1
δn

for all θ ∈
{
θ1, ... , θN1

}
. It is not hard to see that a covering set of H under the

L2(P)−metric can be formed by{
θ1, ... , θN1

}
×
{
β1, ... , βN2

}
×
{
f 1
θ , ... , f

N3
θ : θ ∈

{
θ1, ... , θN1

}}
and

logN2(δn; H) ≥ log
[(
M2

(
2δn; Bd0(k1)

))2
·M2 (2δn; Bp0(k2)) ·M2 (2δn; F)

]
≥ c

′′
{
k1

2 log d− k1

k1/2
+ k2

2 log d− k2

k2/2
+ k1

δn

}
.

Now applying the second inequality of Lemma B.12 yields

logM(δn; H) ≥ logN(δn; H)

≥ c
′′
{
k1

2 log d− k1

k1/2
+ k2

2 log d− k2

k2/2
+ k1

δn

}
. (3.44)

Substituting (3.43) and (3.44) into (3.42) yields

P
[
h̃ 6= H

]
≥

1−
c
′
{
k1 log d+ k1 log

√
k1
εn

+ k2 log p+ k2 log
√
k2
εn

+ k1
εn

}
+ c2n

σ2
η

(κ1u ∨ κ2u)ε2
n + log 2

c′′
{
k1
2 log d−k1

k1/2 + k2
2 log d−k2

k2/2 + k1
δn

} .

Under the condition ε ≥ 1
d
, setting

c2n

σ2
η

(κ1u ∨ κ2u)ε2
n = c

′
{
k1 log d+ k1 log

√
k1

εn
+ k2 log p+ k2 log

√
k2

εn
+ k1

εn

}
,

and 4c
2n

σ2
η

(κ1u ∨ κ2u)ε2
n = c

′′
{
k1

2 log d− k1

k1/2
+ k2

2 log d− k2

k2/2
+ k1

δn

}

yields the following

P
[
h̃ 6= H

]
≥ 1

4 ,

and δ2
n � ε2

n � max

k1 log d
n

,
k2 log p
n

,

(
k1

n

) 2
3
 .
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It can be easily verified that under the scaling of εn, we are guaranteed to have εn ≥ 1
d
.

Consequently, substituting the pieces above into (3.41) yields

min
ĥ

max
h∈H

E
∣∣∣ĥ− h∣∣∣2

2
% max

k1 log d
n

,
k2 log p
n

,

(
k1

n

) 2
3
 .

�

3.8.13 Theorem 3.4.14
Proof. The proof for Theorem 3.4.14 is almost identical to the proof for Theorem
3.4.13 except that instead of Lemma B.15, we apply Lemma B.10 to lower bound the
packing number of Bdq1(Rq1) and Bpq2(Rq2) in the l2−metric where q1, q2 ∈ (0, 1]. These
steps give us

P
[
h̃ 6= H

]
≥ 1−

uq1

[
R

2
2−q1
q1

(
1
εn

) 2q1
2−q1 log d

]
+ uq2

[
R

2
2−q2
q2

(
1
εn

) 2q2
2−q2 log p

]
+ c

′ R
εn

+ c2n
σ2
η

(κ1u ∨ κ2u)ε2
n + log 2

lq1

[
R

2
2−q1
q1

(
1
δn

) 2q1
2−q1 log d

]
+ lq2

[
R

2
2−q2
q2

(
1
δn

) 2q2
2−q2 log p

]
+ c′′ R

δn

.

Setting

c2n

σ2
η

(κ1u ∨ κ2u)ε2
n = uq1

R 2
2−q1
q1

( 1
εn

) 2q1
2−q1 log d


+uq2

R 2
2−q2
q2

( 1
εn

) 2q2
2−q2 log p

+ c
′ R

εn
,

and 4c
2n

σ2
η

(κ1u ∨ κ2u)ε2
n =

lq1R
2

2−q1
q1

( 1
δn

) 2q1
2−q1 log d


+
lq2R

2
2−q2
q2

( 1
δn

) 2q2
2−q2 log p

+ c
′′ R

δn

yields the following

P
[
h̃ 6= H

]
≥ 1

4 ,

and δ2
n � ε2

n � max

Rq1

(
log d
n

) 2−q1
2

, Rq2

(
log p
n

) 2−q1
2

,
(
R

n

) 2
3

 .
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Consequently, substituting the pieces above into (3.41) yields

min
ĥ

max
h∈H

E
∣∣∣ĥ− h∣∣∣2

2
% max

Rq1

(
log d
n

) 2−q1
2

, Rq2

(
log p
n

) 2−q1
2

,
(
R

n

) 2
3

 .
�

3.8.14 Upper bounds on the second-stage estimators
The following lemma upper bounds the term

1
n

n∑
i=1

[
m̂j(wTi θ̂)−mj(wTi θ̂)

]2
(for j = 0, ..., p). Recall yi = zi0 and xij = zij for j = 1, ..., p. From Section 3.3 we have

zij = E
(
zij|wTi θ∗

)
+ vij := mj(wTi θ∗) + vij for j = 0, ..., p

which can be rewritten as

zij = mj(wTi θ̂) + vij −
(
mj(wTi θ̂)−mj(wTi θ∗)

)
.

To avoid notation clustering, write
{
m̂j(wTi θ)

}n
i=1

:= m̂j(θ). Recall the set

F̄j :=
{
f = f

′ − f ′′ : f ′ , f ′′ ∈ Fj
}
,

and
Ω(rj; Fj) =

{
f : f ∈ F̄j, |fθ∗ |n ≤ rj

}
,

where |fθ∗|n :=
√

1
n

∑n
i=1 [f(wTi θ∗)]

2, and the conditional local complexity

Gn(rj; Fj) := Evj

[
sup

f∈Ω(rj ;Fj)

∣∣∣∣∣ 1n
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ |wTi θ∗

]
, (3.45)

where variables {vij}ni=1 for j = 0, ..., p are i.i.d. variates that satisfy Assumption 3.4.2.
In terms of this complexity measure (3.45), we have the following result.
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Lemma A.11: Let rnj > 0 be the smallest positive quantity satisfying the critical
inequality

Gn (rnj; Fj) ≤
r2
nj

σvj
. (3.46)

Then there are universal positive constants (c1, c2) such that for any t ≥ rnj and
m̃j ∈ Fj, the non-parametric least squares estimate m̂j via program (11) satisfies∣∣∣m̂j(θ̂)−mj(θ̂)

∣∣∣2
n
≤ 7

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ 128trnj + 4
√

32σ2
vj
T
′
j + 16T ′j

with probability at least 1− c1 exp
(
−nC∗j trnj

)
.

Remark. The constants in the error bound is not optimal and can be improved.

Proof. Since m̂j is optimal and m̃j is feasible for the program (11), we have

1
2

n∑
i=1

(
zij − m̂j(wTi θ̂)

)2
≤ 1

2

n∑
i=1

(
zij − m̃j(wTi θ̂)

)2
.

Define ∆̂ij(θ) = (m̂j −mj) ◦ (wTi θ),
{

∆̂ij(θ)
}n
i=1

= ∆̂j(θ), ∆̄ij(θ) = (m̂j − m̃j) ◦ (wTi θ),{
∆̄ij(θ)

}n
i=1

= ∆̄j(θ), ∆̃ij(θ) = (m̃xj −mxj) ◦ (wTi θ), and
{

∆̃ij(θ)
}n
i=1

= ∆̃j(θ). Per-
forming some algebra yields the basic inequality

∣∣∣∆̂j(θ̂)
∣∣∣2
n
≤
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 2
∣∣∣∣∣ 1n

n∑
i=1

(
vij + T

′′

ij

)
∆̄ij(θ̂)

∣∣∣∣∣
Furthermore, we have

1
n

∣∣∣∣∣
n∑
i=1

T
′′

ij∆̄ij(θ̂)
∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
n∑
i=1

T
′′

ij∆̂ij(θ̂)
∣∣∣∣∣+ 1

n

∣∣∣∣∣
n∑
i=1

T
′′

ij∆̃ij(θ̂)
∣∣∣∣∣

≤ 2
n

∣∣∣∣∣
n∑
i=1

T
′′2
ij

∣∣∣∣∣+ 1
4n

∣∣∣∣∣
n∑
i=1

∆̂2
ij(θ̂)

∣∣∣∣∣+ 1
4n

∣∣∣∣∣
n∑
i=1

∆̃2
ij(θ̂)

∣∣∣∣∣ ,
where the first inequality follows from the triangle inequality and the second inequality
follows from the Fenchel-Young inequality. Consequently, we have

1
2
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 3

2
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 2
∣∣∣∣∣ 1n

n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣+ 4T ′j , (3.47)
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recalling the definition of T ′j .
We need to upper bound the stochastic process 1

n

∣∣∣∑n
i=1 vij∆̄ij(θ̂)

∣∣∣. Now, note that
by the elementary inequalities, we have

1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
n∑
i=1

vij
[
∆̄ij(θ̂)− ∆̄ij(θ∗)

]∣∣∣∣∣+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√√√√ 1
n

n∑
i=1

[
∆̄ij(θ̂)− ∆̄ij(θ∗)

]2
+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√√√√4 sup
f∈Fj

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j + 1

n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

For the term
√

1
n

∑n
i=1 v

2
ij′
, by Lemma B.1, we have

P
[

1
n

n∑
i=1

v2
ij′ ≥ 2σ2

v
j
′

]
≤ 2 exp(−cn).

For the term 1
n

∣∣∣∑n
i=1 vij∆̄ij(θ∗)

∣∣∣, notice that the error function ∆̄j belongs to the set
F̄j. If

∣∣∣∆̄j(θ∗)
∣∣∣
n
≥ u = √trnj, an upper bound on the term 1

n

∣∣∣∑n
i=1 vij∆̄ij(θ∗)

∣∣∣ can be
obtained by Lemma B.3:

1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣ ≤ sup

f(θ∗)∈Ω(|∆̄|
n

;Fj)

∣∣∣∣∣ 1n
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣

≤ 2
∣∣∣∆̄j(θ∗)

∣∣∣
n

√
trnj,

with probability at least 1 − exp
(
−nC∗j trnj

)
, where rnj > 0 is the smallest positive

quantity satisfying the critical inequality

Gn (rnj; Fj) ≤
r2
nj

σvj
.

Applying the triangle inequality and the Fenchel-Young inequality twice yields∣∣∣∆̄j(θ∗)
∣∣∣
n

√
trnj ≤ 8trnj + 1

16

(∣∣∣∆̂j(θ∗)
∣∣∣2
n

+
∣∣∣∆̃j(θ∗)

∣∣∣2
n

)
.
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Putting the pieces together, we obtain

1
4
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 7

4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 32trnj +
√

32σ2
vj
T
′
j + 4T ′j

where
T
′

j = sup
f∈Fj

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
.

If
∣∣∣∆̄j(θ∗)

∣∣∣
n
<
√
trnj, then the claim follows trivially by triangle inequality and the

Fenchel-Young inequality.�

Lemma A.12: For a user-defined radius R̄j > 0, let rnj > 0 be the smallest posi-
tive quantity satisfying the critical inequality

Gn (rnj; Fj) ≤
R̄jr

2
nj

σvj
, (3.48)

where Ω(rj; Fj) =
{
f : f ∈ F̄j |fθ∗ |n ≤ rj, |f |Fj ≤ 1

}
for j = 0, ..., p. Suppose that we

solve program (12) with λnj,2 ≥ 2r2
nj. Let m̃j ∈ Fj with |m̃j|Fj ≤ R̄j. Then there are

universal positive constants (c0, c1, c2, c3) such that the non-parametric least squares
estimate m̂j via (12) satisfies∣∣∣m̂j(θ̂)−mj(θ̂)

∣∣∣2
n
≤ c0

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n

+ c1R̄
2
j

{
r2
nj + λnj,2

}
+ c2T

′

j + c3

√
σ2
vT
′
j

with probability at least 1− c exp
(
−nC∗j R̄2

jr
2
nj

)
.

Proof. Introduce the shorthand σ̃vj = σvj
R̄j

and we work with an equivalent model with

noise variance
(σvj
R̄j

)2
and the rescaled approximation error

∣∣∣m̃j(θ̂)−mj(θ̂)
∣∣∣2
n
. Note that

the final error then should be multiplied by R̄2
j . Now, since m̂j is optimal and m̃j is

feasible for program (12), we have

1
2

n∑
i=1

(
zij − m̂j(wTi θ̂)

)2
+ λnj,2 |m̂j|2Fj ≤

1
2

n∑
i=1

(
zij − m̃j(wTi θ̂)

)2
+ λnj,2 |m̃j|2Fj .
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Recall the definitions

∆̂ij(θ) := (m̂j −mj) ◦ (wTi θ),
∆̃ij(θ) := (m̃j −mj) ◦ (wTi θ),
∆̄ij(θ) := (m̂j − m̃j) ◦ (wTi θ),{

∆̂ij(θ)
}n
i=1

:= ∆̂j(θ),{
∆̃ij(θ)

}n
i=1

:= ∆̃j(θ),{
∆̄ij(θ)

}n
i=1

:= ∆̄j(θ).

Performing some algebra yields the modified basic inequality

1
2
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 1

2
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 1
n

∣∣∣∣∣
n∑
i=1

(vij + Tij) ∆̄ij(θ̂)
∣∣∣∣∣+ λnj,2

{
|m̃j|2Fj − |m̂j|2Fj

}
≤ 1

2
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣+ 1

n

∣∣∣∣∣
n∑
i=1

Tij∆̄ij(θ̂)
∣∣∣∣∣

+λnj,2
{
|m̃j|2Fj − |m̂j|2Fj

}
. (3.49)

Furthermore, we have

1
n

∣∣∣∣∣
n∑
i=1

Tij∆̄ij(θ̂)
∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
n∑
i=1

Tij∆̂ij(θ̂)
∣∣∣∣∣+ 1

n

∣∣∣∣∣
n∑
i=1

Tij∆̃ij(θ̂)
∣∣∣∣∣

≤ 2
n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 1
4n

∣∣∣∣∣
n∑
i=1

∆̂2
ij(θ̂)

∣∣∣∣∣+ 1
4n

∣∣∣∣∣
n∑
i=1

∆̃2
ij(θ̂)

∣∣∣∣∣ ,
where the first inequality uses the triangle inequality and the second uses the Fenchel-
Young inequality. Substituting the inequality into (3.49), we obtain

1
4
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 3

4
∣∣∣∆̃j(θ̂)

∣∣∣2
n
+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣+ 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+λnj,2 {|m̃j|2Fj − |m̂j|2Fj
}
. (3.50)

The remainder of the proof can be divided into two cases.
Case (i): |m̂j|Fj ≤ 2. In this case, (3.50) implies that

1
4
∣∣∣∆̂j

∣∣∣2
n
≤ 3

4
∣∣∣∆̃j

∣∣∣2
n

+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣+ 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 9λnj,2,
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using the fact that |m̃j|Fj ≤ 1. Since |m̂j|Fj ≤ 2, we have
∣∣∣∆̄j

∣∣∣
Fj
≤ 3 and hence

|m̃j|2Fj − |m̂j|2Fj =
(
|m̃j|Fj + |m̂j|Fj

) (
|m̃j|Fj − |m̂j|Fj

)
≤ 9

by the triangle inequality.
We need to upper bound the stochastic process 1

n

∣∣∣∑n
i=1 vij∆̄ij(θ̂)

∣∣∣.
1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
n∑
i=1

vij
[
∆̄ij(θ̂)− ∆̄ij(θ∗)

]∣∣∣∣∣+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√√√√ 1
n

n∑
i=1

[
∆̄ij(θ̂)− ∆̄ij(θ∗)

]2
+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√√√√4 sup
f∈Fj

1
n

n∑
i=1

[
f(wTi θ̂)− f(wTi θ∗)

]2
+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣

≤

√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j + 1

n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣ .

Now, applying Lemma B.4 yields

1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣ ≤ 6rnj

∣∣∣∆̄j(θ∗)
∣∣∣
n

+ 1
32
∣∣∣∆̄j(θ∗)

∣∣∣2
n

(3.51)

with probability at least 1− c exp
(
−nC∗j R̄2

jr
2
nj

)
. Consequently,

1
4
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 3

4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 6rnj
∣∣∣∆̄j(θ̂)

∣∣∣
n

+ 1
32
∣∣∣∆̄j(θ̂)

∣∣∣2
n

+ 2
n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 9λnj,2

≤ 3
4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 216r2
nj + 1

12
∣∣∣∆̂j(θ̂)

∣∣∣2
n

+ 1
12
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 1
16
∣∣∣∆̂j(θ̂)

∣∣∣2
n

+ 1
16
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 2
n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 9λnj,2,

where the second inequality follows by the triangle inequality, and the Fenchel-Young
inequality. This inequality above implies

5
48
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 43

48
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 216r2
nj + 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 9λnj,2.
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Case (ii): |m̂j|Fj > 2 > 1 ≥ |m̃j|Fj . In this case, we have

|m̃j|2Fj − |m̂j|2Fj =
(
|m̃j|Fj + |m̂j|Fj

) (
|m̃j|Fj − |m̂j|Fj

)
≤ |m̃j|Fj − |m̂j|Fj ,

since |m̃j|Fj − |m̂j|Fj < 0. Writing m̂j = m̃j + ∆̄j and applying the triangle inequality
|m̂j|Fj ≥

∣∣∣∆̄j

∣∣∣
Fj
− |m̃j|Fj yields

λnj,2
{
|m̃j|2Fj − |m̂j|2Fj

}
≤ λnj,2

{
2 |m̃j|Fj −

∣∣∣∆̄j

∣∣∣
Fj

}
≤ 2λnj,2 − λnj,2

∣∣∣∆̄j

∣∣∣
Fj
.

Substituting this upper bound into (3.50) yields

1
4
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 3

4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ̂)
∣∣∣∣∣+ 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 2λnj,2 − λnj,2
∣∣∣∆̄j

∣∣∣
Fj

≤ 3
4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 1
n

∣∣∣∣∣
n∑
i=1

vij∆̄ij(θ∗)
∣∣∣∣∣+

√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j (3.52)

+ 2
n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 2λnj,2 − λnj,2
∣∣∣∆̄j

∣∣∣
Fj

Lemma B.5 upper bounds the stochastic component 1
n

∣∣∣∑n
i=1 vij∆̄ij(θ∗)

∣∣∣ in inequality
(3.52): There are universal positive constants (c1, c2) such that for all |∆j|Fj ≥ 1,

1
n

∣∣∣∣∣
n∑
i=1

vij∆ij(θ∗)
∣∣∣∣∣ ≤ 2rnj |∆j(θ∗)|n + 2r2

nj |∆j|Fj + 1
16 |∆j(θ∗)|2n (3.53)

with probability at least 1 − c exp
(
−nC∗j R̄2

jr
2
nj

)
. We now complete the proof using

inequality (3.53). Since |m̂j|Fj > 2 > 1 ≥ |m̃j|Fj , the triangle inequality implies that
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∣∣∣∆̄j

∣∣∣
Fj
≥ |m̂j|Fj − |m̃j|Fj > 1, so that inequality (3.53) can be applied. Consequently,

1
4
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 3

4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 2rnj
∣∣∣∆̄j(θ̂)

∣∣∣
n

+
(
2r2

nj − λnj,2
) ∣∣∣∆̄j

∣∣∣
Fj

+ 1
16
∣∣∣∆̄j(θ̂)

∣∣∣2
n

+
√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j + 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 2λnj,2

≤ 3
4
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 32r2
nj + 1

16
∣∣∣∆̂j(θ̂)

∣∣∣2
n

+ 1
16
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+1
8
∣∣∣∆̂j(θ̂)

∣∣∣2
n

+ 1
8
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+
√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j + 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 2λnj,2,

where the second inequality follows by the choice of λnj,2, the triangle inequality, and
the Fenchel-Young inequality. This inequality above implies

1
16
∣∣∣∆̂j(θ̂)

∣∣∣2
n
≤ 15

16
∣∣∣∆̃j(θ̂)

∣∣∣2
n

+ 32r2
nj +

√√√√ 1
n

n∑
i=1

v2
ij

√
4T ′j + 2

n

∣∣∣∣∣
n∑
i=1

T 2
ij

∣∣∣∣∣+ 2λnj,2.

�

3.8.15 Lemmas for Theorem 3.4.7
Lemma A.13: If the assumptions in Corollary 3.4.4 and Assumption 3.4.7 hold, then
under the conditions n % (k3

2 log p) ∨ (k2
2k1 log d),

√
n log p
|β∗|21

∨
√
nk1 log d % log p, and√

k1 log d
n

= o(1), the sample matrix 1
n
v̂T v̂ satisfies an analogous version of the “mutual

incoherence” assumption with high probability, i.e.,

P
[∥∥∥∥∥ 1
n
v̂TKc v̂K

( 1
n
v̂TK v̂K

)−1∥∥∥∥∥
∞
≥ 1− φ

4

]
≤ O

(
1

p ∧ d

)
.

Proof. We use the following decomposition similar to the method used in Ravikumar,
et. al. (2010)

Σ̌KcKΣ̌−1
KK − ΣKcKΣ−1

KK = R1 +R2 +R3 +R4 +R5 +R6,
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where

R1 = ΣKcK [Σ̂−1
KK − Σ−1

KK ],
R2 = [Σ̂KcK − ΣKcK ]Σ−1

KK ,

R3 = [Σ̂KcK − ΣKcK ][Σ̂−1
KK − Σ−1

KK ],
R4 = Σ̂KcK [Σ̌−1

KK − Σ̂−1
KK ],

R5 = [Σ̌KcK − Σ̂KcK ]Σ̂−1
KK ,

R6 = [Σ̌KcK − Σ̂KcK ][Σ̌−1
KK − Σ̂−1

KK ].

By Assumption 3.4.7, we have ∥∥∥ΣKcKΣ−1
KK

∥∥∥
∞
≤ 1− φ.

It suffices to show that ||Ri||∞ ≤ φ
6 for i = 1, ..., 3 and ||Ri||∞ ≤ φ

12 for i = 4, ..., 6.
For the first term R1, we have

R1 = −ΣKcKΣ−1
KK [Σ̂KK − ΣKK ]Σ̂−1

KK ,

Using the sub-multiplicative property ||AB||∞ ≤ ||A||∞||B||∞ and the elementary in-
equality ||A||∞ ≤

√
m||A||2 for any symmetric matrix A ∈ Rm×m, we can bound R1 as

follows:

||R1||∞ ≤
∥∥∥ΣKcKΣ−1

KK

∥∥∥
∞

∥∥∥Σ̂KK − ΣKK

∥∥∥
∞

∥∥∥Σ̂−1
KK

∥∥∥
∞

≤ (1− φ)
∥∥∥Σ̂KK − ΣKK

∥∥∥
∞

√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2
,

where the last inequality follows from Assumption 3.4.7. Using bound (3.60) from the
proof for Lemma A.14, we have ∥∥∥Σ̂−1

KK

∥∥∥
2
≤ 2
λmin(ΣKK)

with probability at least 1 − c1 exp(−c2n). Next, applying bound (3.55) from Lemma
A.14 with ε = φλmin(ΣKK)

12(1−φ)
√
k2
, we have

P
[∥∥∥Σ̂KK − ΣKK

∥∥∥
∞
≥ φλmin(ΣKK)

12(1− φ)
√
k2

]
≤ 2 exp(−b n

k3
2

+ 2 log k2).

Then, we are guaranteed that

P[||R1||∞ ≥
φ

6 ] ≤ 2 exp(−b n
k3

2
+ 2 log k2).
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For the second term R2, we first write

||R2||∞ ≤
√
k2

∥∥∥Σ−1
KK

∥∥∥
2

∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

≤
√
k2

λmin(ΣKK)
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
.

An application of bound (3.54) from Lemma A.14 with ε = φ
6
λmin(ΣKK)√

k2
to bound the

term
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

yields

P[||R2||∞ ≥
φ

6 ] ≤ 2 exp(−b n
k3

2
+ log(p− k2) + log k2).

For the third term R3, by applying bounds (3.54) from Lemma A.14 with ε = φλmin(ΣKK)
6

to bound the term
∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞

and (3.56) from Lemma A.14 to bound the term∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
∞
, we have

P[||R3||∞ ≥
φ

6 ] ≤ 2 exp(−b n
k2

2
+ log(p− k2) + log k2).

Putting everything together, we conclude that

P[||Σ̂KcKΣ̂−1
KK ||∞ ≥ 1− φ

2 ] ≤ c exp(−b n
k3

2
+ 2 log p).

For the fourth term R4, we have, with probability at least 1−c exp(−bnmin{ 1
k3

2
, 1
k

3/2
2
}+

2 log p),

||R4||∞ ≤
∥∥∥Σ̂KcKΣ̂−1

KK

∥∥∥
∞

∥∥∥Σ̌KK − Σ̂KK

∥∥∥
∞

∥∥∥Σ̌−1
KK

∥∥∥
∞

≤ (1− φ

2 )
∥∥∥Σ̌KK − Σ̂KK

∥∥∥
∞

√
k2

∥∥∥Σ̌−1
KK

∥∥∥
2
,

where the last inequality follows from the bound on ||Σ̂KcKΣ̂−1
KK ||∞ established previ-

ously. Using bounds (3.63) from the proof for Lemma A.15, we have∥∥∥Σ̌−1
KK

∥∥∥
2
≤ 4
λmin(ΣKK)

with probability at least 1 − c1 exp(−c2 log(p ∨ d)). Next, applying Lemma A.15 with
ε = φλmin(ΣKK)

48(1−φ2 )
√
k2

to bound the term
∥∥∥Σ̌KK − Σ̂KK

∥∥∥
∞

yields,

P[||R4||∞ ≥
φ

12] ≤ ck2
2 · exp

−c1n

k
3
2
2

+ c2 exp(−c3 log d)
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For the fifth term R5, using bound (3.60) from the proof for Lemma A.14, we have

||R5||∞ ≤
√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2

∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞

≤ 2
√
k2

λmin(ΣKK)
∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞
.

Applying Lemma A.15 with ε = φλmin(ΣKK)
24
√
k2

to bound the term
∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞

yields

P[||R5||∞ ≥
φ

12] ≤ c(p− k2)k2 · exp
−c1n

k
3
2
2

+ c2 exp(−c3 log d)

For the sixth term R6, by applying Lemma A.15 to bound the terms
∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞

and
∥∥∥Σ̌−1

KK − Σ̂−1
KK

∥∥∥
∞

respectively, with ε = φ
12
λmin(ΣKK)

8 , we are guaranteed that

P[||R6||∞ ≥
φ

12] ≤ c(p− k2)k2 · exp
(
−c1n

k2

)
+ c2 exp(−c3 log d)

Under the conditions n % (k3
2 log p) ∨ (k2

2k1 log d),
√

n log p
|β∗|21

∨
√
nk1 log d % log p, and√

k1 log d
n

= o(1), putting the bounds on R1 −R6 together, we conclude that

P[||Σ̌KcKΣ̌−1
KK ||∞ ≥ 1− φ

4 ] ≤ O

(
1

p ∧ d

)
.

�

Lemma A.14: Suppose Assumptions 3.2.1 and 3.4.2 hold. For any ε > 0 and constant
c, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
≥ ε

}
≤ (p− k2)k2 · 2 exp(−cnmin{ ε2

4k2
2σ

4
v

,
ε

2k2σ2
v

}), (3.54)

P
{∥∥∥Σ̂KK − ΣKK

∥∥∥
∞
≥ ε

}
≤ k2

2 · 2 exp(−cnmin{ ε2

4k2
2σ

4
v

,
ε

2k2σ2
v

}). (3.55)

Furthermore, under the scaling n % k2 log p, for constants b1 and b2, we have
∥∥∥Σ̂−1

KK − Σ−1
KK

∥∥∥
∞
≤ 1
λmin(ΣKK) , (3.56)
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with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)

4k2σ4
v

, λmin(ΣKK)
2
√
k2σ2

v
}).

Proof. Denote the element (j ′ , j) of the matrix difference Σ̂KcK − ΣKcK by ωj′j.
By the definition of the l∞matrix norm, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
∞
≥ ε

}
= P

max
j′∈Kc

∑
j∈K
|ωj′j| ≥ ε


≤ (p− k2)P

∑
j∈K
|ωj′j| ≥ ε


≤ (p− k2)P

{
∃j ∈ K | |ωj′j| ≥

ε

k2

}
≤ (p− k2)k2P

{
|ωj′j| ≥

ε

k2

}
≤ (p− k2)k2 · 2 exp(−cnmin{ ε2

k2
2σ

4
v

,
ε

k2σ2
v

}),

where the last inequality follows the deviation bound for sub-exponential random vari-
ables, i.e., Lemma B.1. Bound (3.55) can be obtained in a similar way except that the
pre-factor (p− k2) is replaced by k2. To prove the last bound (3.56), write∥∥∥Σ̂−1

KK − Σ−1
KK

∥∥∥
∞

=
∥∥∥Σ−1

KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
∞

=
√
k2

∥∥∥Σ−1
KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
2

=
√
k2

∥∥∥Σ−1
KK

∥∥∥
2

∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2

≤
√
k2

λmin(ΣKK)
∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2
. (3.57)

To bound the term
∥∥∥ΣKK − Σ̂KK

∥∥∥
2
in (3.57), applying Lemma B.1 with vTv = Σ̂KK

and t = λmin(ΣKK)
2
√
k2

yields

∥∥∥Σ̂KK − ΣKK

∥∥∥
2
≤ λmin(ΣKK)

2
√
k2

,

with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)

4k2σ4
v

, λmin(ΣKK)
2
√
k2σ2

v
}).
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To bound the term
∥∥∥Σ̂−1

KK

∥∥∥
2
in (3.57), note that we can write

λmin(ΣKK) = min
||h′ ||2=1

h
′TΣKKh

′

= min
||h′ ||2=1

[
h
′T Σ̂KKh

′ + h
′T (ΣKK − Σ̂KK)h′

]
≤ hT Σ̂KKh+ hT (ΣKK − Σ̂KK)h (3.58)

where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̂KK . Applying Lemma B.1 yields
∣∣∣hT (ΣKK − Σ̂KK

)
h
∣∣∣ ≤ λmin(ΣKK)

2

with probability at least 1− c1 exp(−c2n). Therefore,

λmin(ΣKK) ≤ λmin(Σ̂KK) + λmin(ΣKK)
2

=⇒ λmin(Σ̂KK) ≥ λmin(ΣKK)
2 , (3.59)

and consequently, ∥∥∥Σ̂−1
KK

∥∥∥
2
≤ 2
λmin(ΣKK) . (3.60)

Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
∞
≤

√
k2

λmin(ΣKK)
λmin(ΣKK)

2
√
k2

2
λmin(ΣKK) = 1

λmin(ΣKK) .

with probability at least 1− c1 exp(−c2nmin{λ
2
min(ΣKK)

4k2σ4
v

, λmin(ΣKK)
2
√
k2σ2

v
}). �

Lemma A.15: Suppose the assumptions in Lemma A.13 hold. For any ε > 0, under the
condition n % (k3

2 log p)∨ (k2
2k1 log d),

√
n log p
|β∗|2

∨
√
nk1 log d % log p, and

√
k1 log d
n

= o(1),
we have

P
{∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤ c(p− k2)k2 · exp

(
− nε

c1k2

)
+ c2 exp(−c3 log d)

P
{∥∥∥Σ̌KK − Σ̂KK

∥∥∥
∞
≥ ε

}
≤ c

′
k2

2 · exp
(
− nε

c1k2

)
+ c2 exp(−c3 log d)
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Furthermore, we have

∥∥∥Σ̌−1
KK − Σ̂−1

KK

∥∥∥
∞
≤ 8
λmin(ΣKK) with probability at least 1− c1 exp(−c2 log(p ∧ d)).

(3.61)
Proof. Denote the element (j ′ , j) of the matrix difference Σ̌KcK− Σ̂KcK by ωj′j. Using
the same argument as in the proof for Lemma A.14, we have

P
{∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤ (p− k2)k2P

{
|ωj′j| ≥

ε

k2

}
.

Following the derivation of the upper bounds on
∣∣∣ (x̂−x̃)T x̃

n

∣∣∣
∞

and
∣∣∣ (x̂−x̃)T (x̂−x̃)

n

∣∣∣
∞

in the
proofs for Lemma A.3 and Corollary 3.4.4 and the identity
1
n

(
Σ̌KcK − Σ̂KcK

)
= 1
n
vTKc(v̂K − vK) + 1

n
(v̂Kc − vKc)TvK + 1

n
(v̂Kc − vKc)T (v̂K − vK),

we notice that to upper bound |ωj′j|, it suffices to upper bound 3 ·
∣∣∣ 1
n
vT
j′

(v̂j − vj)
∣∣∣. From

the proofs for Lemma A.3 and Corollary 3.4.4, we have∣∣∣∣ 1nvTj′ (v̂j − vj)
∣∣∣∣ ≤ b

u2 +
√
k1 log d
n

 ,
with probability at least 1−c1 exp

(
−nC∗j u2

)
−O

(
1
d

)
. If n & k2

2k1 log d, setting u =
√

ε
bk2

for any ε > 0 yields

P
[
|ωj′j| ≥

ε

k2

]
≤ c exp

(
− nε

c1k2

)
+ c2 exp(−c3 log d).

Therefore,

P
{∥∥∥Σ̌KcK − Σ̂KcK

∥∥∥
∞
≥ ε

}
≤ c(p− k2)k2 · exp

(
− nε

c1k2

)
+ c2 exp(−c3 log d).

The second bound in Lemma A.15 can be obtained in a similar way except that the
pre-factor (p− k2) is replaced by k2.

To prove the third bound in Lemma A.15, by applying the same argument as in the
proof for Lemma A.14, we have∥∥∥Σ̌−1

KK − Σ̂−1
KK

∥∥∥
∞
≤

√
k2

λmin(Σ̂KK)

∥∥∥Σ̂KK − Σ̌KK

∥∥∥
2

∥∥∥Σ̌−1
KK

∥∥∥
2

≤ 2
√
k2

λmin(ΣKK)
∥∥∥Σ̂KK − Σ̌KK

∥∥∥
2

∥∥∥Σ̌−1
KK

∥∥∥
2
,
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where the last inequality comes from bound (3.59).
For the term

∥∥∥Σ̂KK − Σ̌KK

∥∥∥
2
, setting ε = λmin(ΣKK)√

k2
in the previous upper bound on∥∥∥Σ̂KK − Σ̌KK

∥∥∥
∞

yields ∥∥∥Σ̂KK − Σ̌KK

∥∥∥
2
≤

∥∥∥Σ̂KK − Σ̌KK

∥∥∥
∞

≤ λmin(ΣKK)√
k2

, (3.62)

with probability at least 1− ck2
2 · exp

(
− n

c1k
3/2
2

)
− c2 exp(−c3 log d).

To bound the term
∥∥∥Σ̌−1

KK

∥∥∥
2
, again we have,

λmin(Σ̂KK) ≤ hT Σ̌KKh+ hT (Σ̂KK − Σ̌KK)h
≤ hT Σ̌KKh+ k2

∣∣∣Σ̂KK − Σ̌KK

∣∣∣
∞

≤ hT Σ̌KKh+ b
′


( 1
n

) 2
3

+
√
k1 log d
n

 ,
where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̌KK . The last inequality follows
from the bounds on

∣∣∣ (v̂−v)T v
n

∣∣∣
∞

and
∣∣∣ (v̂−v)T (v̂−v)

n

∣∣∣
∞

from the proofs for Lemma A.3 and
Corollary 3.4.4. Therefore, if

√
k1 log d
n

= o(1), then we have

λmin(Σ̌KK) ≥ λmin(Σ̂KK)
2

=⇒
∥∥∥Σ̌−1

KK

∥∥∥
2
≤ 2

λmin(Σ̂KK)

≤ 4
λmin(ΣKK) , (3.63)

where the last inequality follows from bound (3.59) in the proof for Lemma A.14.
Putting everything together, we have∥∥∥Σ̂−1

KK − Σ̃−1
KK

∥∥∥
∞
≤ 2

√
k2

λmin(ΣKK)
λmin(ΣKK)√

k2

4
λmin(ΣKK) = 8

λmin(ΣKK) .

with probability at least 1−O
(

1
d∧p

)
. �
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Lemma A.16: Suppose the conditions in Corollary 3.4.4 hold. With the choice of
the tuning parameter

λn,3 ≥ c
8(2− φ

4 )
φ

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n


for some sufficiently large constant c > 0, under the conditions

n % (k2 log p) ∨
(
k2

2k1 log d
)
,√√√√n log p

|β∗|21
∨
√
nk1 log d % log p,

then, we have (
2− φ

4

) ∣∣∣∣∣v̂T e

nλn,3

∣∣∣∣∣
∞
≤ φ

8 ,

with probability at least 1− c1 exp(−c2 log(d ∧ p)).

Proof. Recall from the proofs for Lemma A.4 and Corollary 3.4.4 on | v̂T e
nλn,3
|∞, so

as long as

λn,3 ≥ c
8(2− φ

4 )
φ

σvση
√

log p
n

 ∨
L |β∗|1√Υw,θ∗b (σv, ση)

√
k1 log d
n


for some sufficiently large constant c > 0, under the conditions

n % (k2 log p) ∨
(
k2

2k1 log d
)
,√√√√n log p

|β∗|21
∨
√
nk1 log d % log p,

we have (
2− φ

4

) ∣∣∣∣∣v̂T e

nλn,3

∣∣∣∣∣
∞
≤ φ

8 ,

with probability at least 1− c1 exp(−c2 log(d ∧ p)).�
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3.9 Technical lemmas and the proofs for Section
3.8

Lemma B.1: Let X ∈ Rn×p1 be a zero-mean sub-Gaussian matrix with parameters
(ΣX , σ

2
X). For any fixed (unit) vector ∆ ∈ Rp1 , we have

P
[∣∣∣∣∣ |X∆| 22

n
− E[ |X∆| 22

n
]
∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−c0nmin

{
ε2

σ4
X

,
ε

σ2
X

})
.

Moreover, if Y ∈ Rn×p2 is a zero-mean sub-Gaussian matrix with parameters (ΣY , σ
2
Y ),

then

P
[∣∣∣∣∣Y TX

n
− cov(Yi, Xi)

∣∣∣∣∣∞ ≥ ε

]
≤ 6 exp

(
−c1nmin

{
ε2

σ2
Xσ

2
Y

,
ε

σXσY

}
+ log p1 + log p2

)

where Xi and Yi are the ith rows of X and Y , respectively.

Remark. This lemma is Lemma 14 in Loh and Wainwright (2012). �

Lemma B.2: Let X ∈ Rn×p1 be a sub-Gaussian matrix with parameters (ΣX , σ
2
X).

We have

|X∆| 22
n

≥ α

2 |∆|
2
2 − α

′ log p1

n
|∆| 21, for all ∆ ∈ Rp1

|X∆| 22
n

≤ 3ᾱ
2 |∆|

2
2 + α

′ log p1

n
|∆| 21, for all ∆ ∈ Rp1

with probability at least 1−c1 exp(−c2n), where α, ᾱ, and α′ only depend on ΣX and σX .

Remark. This lemma is Lemma 13 in Loh and Wainwright (2012). The choice of
α, ᾱ, and α′ depends on the problems.�

Lemma B.3: For all u ≥ rnj, we have

P
[
Aj(u) |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j u2

)
where

Aj(u) :=
{
∃f ∈ F̄j ∩ {|fθ∗|n ≥ u} : 1

n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ ≥ 2 |fθ∗|n u

}
,
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and
C∗j = c

γvj ∧ (B2
vj
∨B2

η)−1

σ2
vj
∨ σ2

η

(3.64)

when vj is either (i) sub-Gaussian with strongly log-concave distribution for some
γvj > 0; or, (ii) a bounded vector such that for every i = 1, ..., n, vij is supported
on the interval (a′vj , a

′′
vj

) with Bvj := a
′′
vj
−a′vj ; or, (iii) a mixture of (i) and (ii) in terms

of its probability measure.

Proof. This proof is a modification of the proofs for Corollary 8.3 in van de Geer
(2000) and Lemma 13.2 in Wainwright (2015). Suppose that there exists some f ∈ F̄j
with |fθ∗|n ≥ u such that

1
n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ ≥ 2 |fθ∗ |n u. (3.65)

Defining the function f̃θ∗ := u
|fθ∗ |n

fθ∗ , observe that
∣∣∣f̃θ∗∣∣∣

n
= u. Since f ∈ F̄j and u ≤

|fθ∗|n by construction, the star-shaped assumption implies that f̃ ∈ F̄j. Consequently,
we have shown that if there exists a function f satisfying inequality (3.65), which occurs
whenever the event Aj(u) is true, then there exists a function f̃ ∈ F̄j with

∣∣∣f̃θ∗∣∣∣
n

= u

such that
1
n

∣∣∣∣∣
n∑
i=1

vij f̃(wTi θ∗)
∣∣∣∣∣ = u

|fθ∗|n
1
n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ ≥ 2u2.

Summarizing then, we have established the inequality

P
[
Aj(u) |

{
wTi θ

∗
}n
i=1

]
≤ P

[
Anj(u) ≥ 2u2 |

{
wTi θ

∗
}n
i=1

]
,

where

Anj(u) := sup
f̃(θ∗)∈Ω(u;Fj)

1
n

∣∣∣∣∣
n∑
i=1

vij f̃(wTi θ∗)
∣∣∣∣∣

where
Ω(u; Fj) =

{
f : f ∈ F̄j, |fθ∗ |n ≤ u

}
.

By construction, E(vij|wTi θ∗) = 0 for all i = 1, ..., n. Consequently, conditioning on{
wTi θ

∗
}n
i=1

, for each fixed f̃ , the variable 1
n

∣∣∣∑n
i=1 vij f̃(wTi θ∗)

∣∣∣ is zero-mean sub-Gaussian,
so that the variable Anj(u) is the supremum of a sub-Gaussian process. If we view
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this supremum as a function of a standardized sub-Gaussian vector, then by standard
maximal inequality (e.g., Corollary 8.3 in van de Geer, 2000), we have

P
[
Anj(u) ≥ Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
+ b ∧ 2σ2

vj
|
{
wTi θ

∗
}n
i=1

]
≤ exp

(
−
nC∗j b

2

u2

)
.

Consequently, for any b = u2,

P
[
Anj(u) ≥ Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
+ u2 |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j u2

)
. (3.66)

Now let us look at special cases that yield sharp constant C∗j .

Special case (i): If vj is sub-Gaussian with strongly log-concave distribution for
some γvj > 0, then by Cauchy-Schwarz inequality, it can be verified that the associated
Lipschitz constant is at most σvju√

n
. Consequently, by Lemma B.6, for any b > 0, we

have the sub-Gaussian tail bound

P
[
Anj(u) ≥ Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
+ b |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−
nγvjb

2

2u2σ2
vj

)
.

Setting b = u2 yields

P
[
Anj(u) ≥ Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
+ u2 |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−
nγvju

2

2σ2
vj

)
.

Special case (ii): If vj is a bounded vector such that for every i = 1, ..., n, vij is
supported on the interval (a′vj , a

′′
vj

) with Bvj := a
′′
vj
−a′vj , then by Lemma B.7, following

similar argument as above, we have

P
[
Anj(u) ≥ Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
+ u2 |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
− nu2

2σ2
vj
B2
vj

)
.

Finally, by definition of Anj(u) and Gn(u; Fj), we have Evj
[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
=

σvjGn(u; Fj). By Lemma B.8, the function t 7→ Gn(t;Fj)
t

is non-decreasing, and since
u ≥ rnj by assumption, we have

σvj
Gn(u; Fj)

u
≤ σvj

Gn(rnj; Fj)
rnj

≤ rnj,
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where the last inequality uses the definition of rnj. Putting everything together, we
have shown that Evj

[
Anj(u) |

{
wTi θ

∗
}n
i=1

]
≤ urnj. Combined with the tail bound (3.66),

respectively, we obtain

P
[
Anj(u) ≥ 2u2 |

{
wTi θ

∗
}n
i=1

]
≤ P

[
Anj(u) ≥ urnj + u2 |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j u2

)
where the inequality uses the fact that u2 ≥ urnj. �

Lemma B.4: There are universal positive constants (c1, c2) such that for all ∆j ∈{
f ∈ F̄j : |f |Fj ≤ 3, |fθ∗|n ≥ u

}
,

1
n

∣∣∣∣∣
n∑
i=1

vij∆j(wTi θ∗)
∣∣∣∣∣ ≤ 6rnj |∆j(θ∗)|n + 1

32 |∆j(θ∗)|2n (3.67)

with probability at least 1 − c1 exp
(
−nC∗j r2

nj

)
and C∗j follows (3.64) under the same

special cases in Lemma B.3.

Proof. To establish bound (3.67), we first consider over the ball{
∆j ∈ F̄j : |∆j|Fj ≤ 3

}
∩
{

∆j ∈ F̄j : |∆j(θ∗)|n ≤ u
}

for some fixed radius u ≥ rnj. Later in the proof we extend the bound to one that is
uniform in |∆j(θ∗)|n via a peeling argument. Define the random variable

A
′

nj(u) := sup
∆j∈Ω′ (u;Fj)

1
n

∣∣∣∣∣
n∑
i=1

vij∆j(wTi θ∗)
∣∣∣∣∣ .

where Ω′(u; Fj) =
{

∆j ∈ F̄j : |∆j|Fj ≤ 3, |∆j(θ∗)|n ≤ u
}
. Following the same argu-

ment in Lemma B.3, we obtain

P
[
A
′

nj(u) ≥ Evj
[
A
′

nj(u) |
{
wTi θ

∗
}n
i=1

]
+ b |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−
nC∗j b

2

u2

)
. (3.68)

We first derive a bound for u = rnj. By definition of A′nj(u) and Gn (rnj; Fj) and the
critical radius rnj, we have

Evj
[
A
′

nj(rnj) |
{
wTi θ

∗
}n
i=1

]
= σ̃vjGn (rnj; Fj) ≤ 3r2

nj.
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Setting b = 3r2
nj in the tail bound (3.68) yields

P
[
A
′

nj(rnj) ≥ 6r2
nj |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j r2

nj

)
.

On the other hand, for any u > rnj, we have

Evj
[
A
′

nj(u) |
{
wTi θ

∗
}n
i=1

]
= σ̃vjGn

(
u; BFj(3)

)
= u

σ̃vjGn
(
u; BFj(3)

)
u

≤ u
σ̃vjGn

(
rnj; BFj(3)

)
rnj

≤ 3urnj,

where the first inequality follows from Lemma B.8 and the second inequality follows
from the critical radius rnj. Setting b = u2

128 in the tail bound (3.68) yields

P
[
A
′

nj(u) ≥ 3urnj + u2

128 |
{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j u2

)
. (3.69)

It remains to prove the bound (3.67) via a peeling argument. Let E denote the event
that the bound (3.67) is violated for some function ∆j with |∆j|Fj ≤ 3. For real numbers
0 ≤ a1 < a2, let E(a1, a2) denote the event that it is violated for some function such
that |∆j(θ∗)|n ∈ [a1, a2], and |∆j|Fj ≤ 3. For m = 0, 1, 2, ..., define tm = 2mrnj. We
then have the decomposition E = E(0, t0) ∪ (∪∞m=0E(tm, tm+1)) and hence by union
bound,

P [E ] ≤ P [E(0, t0)] +
∞∑
m=0

P [E(tm, tm+1)] . (3.70)

The final step is to bound each of the terms in this summation. Since t0 = rnj, we have

P [E(0, t0)] ≤ P
[
A
′

nj(rnj) ≥ 6r2
nj |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j r2

nj

)
. (3.71)

On the other hand, suppose that E(tm, tm+1) holds, meaning that there exists some
function ∆j with |∆j|Fj ≤ 3 and |∆j(θ∗)|n ≤ tm+1 such that

1
n

∣∣∣∣∣
n∑
i=1

vij∆j(wTi θ∗)
∣∣∣∣∣ > 6rnj |∆j(θ∗)|n + 1

32 |∆j(θ∗)|2n

> 6rnjtm + 1
32t

2
m

= 3rnjtm+1 + 1
128t

2
m+1,
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where the second inequality follows since |∆j(θ∗)|n ≥ tm; and the third inequality
follows since tm+1 = 2tm. This lower bound implies that

A
′

nj(tm+1) ≥ 3rnjtm+1 + 1
128t

2
m+1,

hence the bound (3.69) implies that

P [E(tm, tm+1)] ≤ exp
(
−
nt2m+1
c2σ̃vj

)
= exp

(
−
n22(m+1)r2

nj

c2σ̃vj

)
.

Combining this tail bound with our earlier bound (3.71), and substituting into the
union bound (3.70) yields

P [E ] ≤ exp
(
−
nγvjr

2
nj

c2σ̃vj

)
+
∞∑
m=0

exp
(
−
nγvj22(m+1)r2

nj

c2σ̃vj

)
≤ c1 exp

(
−
nγvjr

2
nj

c2σ̃2
vj

)
.

Lemma B.5: There are universal positive constants (c1, c2) such that for all ∆j ∈{
f ∈ F̄j : |f |Fj ≥ 1

}
,

1
n

∣∣∣∣∣
n∑
i=1

vij∆ij(θ∗)
∣∣∣∣∣ ≤ 2rnj |∆j(θ∗)|n + 2r2

nj |∆j|Fj + 1
16 |∆j(θ∗)|2n

with probability at least 1 − c1 exp
(
−nC∗j r2

nj

)
and C∗j follows (3.64) under the same

special cases in Lemma B.3.

Proof. This proof is a modification of the proofs for Corollary 8.3 in van de Geer
(2000) and Lemma 13.2 in Wainwright (2015). It suffices to show that

1
n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ ≤ 2rnj |fθ∗|n + 2r2

nj + 1
32 |fθ

∗ |2n , for all |f |Fj = 1. (3.72)

To see this, noting that for any function ∆ with |∆|Fj ≥
1
2 , we can define f = ∆(θ∗)

|∆(θ∗)|Fj
.

Substituting this definition and then multiplying both sides of inequality (3.72) by
|∆(θ∗)|Fj , we obtain

1
n

∣∣∣∣∣
n∑
i=1

vij∆ij(θ∗)
∣∣∣∣∣ ≤ 2rnj |∆j(θ∗)|n + 2r2

nj |∆j(θ∗)|Fj + 1
32
|∆j(θ∗)|2n
|∆j(θ∗)|Fj

≤ 2rnj |∆j(θ∗)|n + 2r2
nj |∆j(θ∗)|Fj + 1

16 |∆j(θ∗)|2n ,
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where the second inequality follows by the fact that |∆|Fj ≥
1
2 .

To establish the bound (3.72), we first consider it over the ball {|fθ∗ |n ≤ u} for some
fixed radius u ≥ rnj. Later in the proof we extend bound (3.72) to one that is uniform
in |fθ∗|n via a peeling argument. Define the random variable

A
′′

nj(u) := sup
f(θ)∈Ω′′ (u;Fj)

1
n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ .

where Ω′′(u; Fj) =
{
f ∈ F̄j : |f |Fj ≤ 1, |fθ∗ |n ≤ u

}
.

The next part of the proof is almost identical to that in the proof for Lemma B.4
except that we replace A′nj(u) with A

′′
nj(u) and Ω′(u; Fj) with Ω′′(u; Fj). We first

derive a bound for u = rnj. By definition of A′′nj(u) and Gn (rnj; Fj) and the critical
radius rnj, we have

Evj
[
A
′′

nj(rnj) |
{
wTi θ

∗
}n
i=1

]
= σ̃vjGn

(
rnj; BFj(1)

)
≤ r2

nj.

Setting b = r2
nj in the tail bound (3.68) with A′nj(u) replaced by A′′nj(u) and Ω′(u; Fj)

replaced by Ω′′(u; Fj) yields

P
[
A
′′

nj(rnj) ≥ 2r2
nj |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j r2

nj

)
. (3.73)

On the other hand, for any u > rnj, we have

Evj
[
A
′′

nj(u) |
{
wTi θ

∗
}n
i=1

]
= σ̃vjGn

(
u; BFj(1)

)
= u

σ̃vjGn
(
u; BFj(1)

)
u

≤ u
σ̃vjGn

(
rnj; BFj(1)

)
rnj

≤ urnj,

where the first inequality follows from Lemma B.8 and the second inequality follows
from the critical radius rnj. Setting b = u2

128 in the tail bound (3.68) with A′nj(u) replaced
by A′′nj(u) and Ω′(u; Fj) replaced by Ω′′(u; Fj) yields

P
[
A
′′

nj(u) ≥ urnj + u2

128 |
{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j u2

)
. (3.74)

It remains to prove the bound (3.72) via a peeling argument. Let E ′ denote the event
that the bound (3.72) is violated for some function f with |f |Fj = 1. For real numbers
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0 ≤ a1 < a2, let E
′(a1, a2) denote the event that it is violated for some function such

that |fθ∗|n ∈ [a1, a2], and |f |Fj = 1. For m = 0, 1, 2, ..., define tm = 2mrnj. We then
have the decomposition E ′ = E ′(0, t0)∪

(
∪∞m=0E

′(tm, tm+1)
)
and hence by union bound,

P
[
E ′
]
≤ P

[
E ′(0, t0)

]
+
∞∑
m=0

P
[
E ′(tm, tm+1)

]
. (3.75)

The final step is to bound each of the terms in this summation. Since t0 = rnj, we have

P
[
E ′(0, t0)

]
≤ P

[
A
′′

nj(rnj) ≥ 2r2
nj |

{
wTi θ

∗
}n
i=1

]
≤ exp

(
−nC∗j r2

nj

)
. (3.76)

On the other hand, suppose that E ′(tm, tm+1) holds, meaning that there exists some
function f with |f |Fj = 1 and |fθ∗|n ≤ tm+1 such that

1
n

∣∣∣∣∣
n∑
i=1

vijf(wTi θ∗)
∣∣∣∣∣ > 2rnj |fθ∗ |n + 2r2

nj + 1
32 |fθ

∗|2n

> 2rnjtm + 2r2
nj + 1

32t
2
m

= rnjtm+1 + 2r2
nj + 1

128t
2
m+1,

where the second inequality follows since |fθ∗|n ≥ tm; and the third inequality follows
since tm+1 = 2tm. This lower bound implies that

A
′′

nj(tm+1) ≥ rnjtm+1 + 1
128t

2
m+1,

hence the bound (3.74) implies that

P
[
E ′(tm, tm+1)

]
≤ exp

(
−
nt2m+1
c2σ̃vj

)
= exp

(
−
n22(m+1)r2

nj

c2σ̃vj

)
.

Combining this tail bound with our earlier bound (3.76), and substituting into the
union bound (3.75) yields

P
[
E ′
]
≤ exp

(
−
nγvjr

2
nj

2σ̃vj

)
+
∞∑
m=0

exp
(
−
nγvj22(m+1)r2

nj

c2σ̃vj

)
≤ c1 exp

(
−
nγvjr

2
nj

c2σ̃2
vj

)
.

�
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Lemma B.6: Suppose the variable X has strongly log-concave distribution with pa-
rameter γ > 0. Then for any function f : Rn → R that is L-Lipschtiz with respect to
Euclidean norm, we have

P [|f(X)− E [f(X)]| ≥ t] ≤ 2 exp
(
− γt

2

2L2

)
.

Remark: This result was initiated by Maurey (1991) and further developed by Bobkov
and Ledoux (2000).

Definition B.1 (Separate convex functions). A function f : Rn → R is separately
convex if, for each j ∈ {1, 2, ..., n}, the co-ordinate function fj : R → R defined by
varying only the jth co-ordinate, is a convex function of xj.

Lemma B.7: Let {Xi}ni=1 be independent random variables, each supported on the
interval [a, b], and let f : Rn → R be separately convex, and L−Lipschitz with respect
to the Euclidean norm. Then for all t > 0, we have

P [f(X)− E [f(X)] ≥ t] ≤ 2 exp
(
− t2

2L2(b− a)2

)
.

Remark: The proof can be found in Wainwright (2015), which is based on Ledoux
(1996).

Lemma B.8: For any star-shaped function class F , the function t 7→ Gn(t;F)
t

is non-
decreasing on the interval (0, ∞).

Proof. This is Lemma 13.1 from Wainwright (2015).

Definition B.2 (Covering and packing numbers). For a metric space consisting of
a set X and a metric ρ : X × X → R+:

(i) An t−covering of X with respect to ρ is a set
{
β1, ..., βN

}
⊂ X such that for

all β ∈ X , there exists some i ∈ {1, ..., N} with ρ(β, βi) ≤ t. The t−covering
number N(t; X , ρ) is the cardinality of the smallest t−covering.

(ii) An t
′−packing of X with respect to ρ is a set

{
β1, ..., βN

}
⊂ X such that

ρ(βi, βj) ≥ t for all i 6= j. The t′−packing number M(t′ ; X , ρ) is the cardi-
nality of the largest t′−covering.
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Lemma B.9: Let Nn(t; Bn(rn; F)) denote the t−covering number of the set

Bn(rn; F) = {f ∈ 2F : |f |n ≤ rn}

in the empirical L2(Pn) norm. Then the critical radius condition (3.46) holds for any
rn ∈ (0, σ] such that

32√
n

ˆ rn

r2
n

2σ

√
logNn(t; Bn(rn; F))dt ≤ r2

n

σ
.

Remark. This result is established by van der Vaart and Wellner (1996), van de Geer
(2000), Barlett and Mendelson (2002), Koltchinski (2006), Wainwright (2015), etc.

Lemma B.10: For q ∈ (0, 1], let

θ ∈ Bd(Rq) :=

θ′ ∈ Rd :
∣∣∣θ′ ∣∣∣q

1
=

d∑
j=1

∣∣∣θ′j∣∣∣q ≤ Rq


and N2(t; Bd(Rq)) be the t−covering number of the set Bd(Rq) in the l2−norm. Then
there is a universal constant c such that

logN2(t; Bd(Rq)) ≤ cR
2

2−q
q

(1
t

) 2q
2−q

log d for all t ∈ (0, R
1
q
q )

Conversely, assume in addition that t < 1 and t2 ≥ c
′′
(
R

2
2−q
q

log d
dκ

)1− q2
for some fixed

κ ∈ (0, 1). Then there is a constant c′ ≤ c such that

logN2(t; Bd(Rq)) ≥ c
′
R

2
2−q
q

(1
t

) 2q
2−q

log d.

Remark. These bounds are obtained by inverting known results on (dyadic) entropy
numbers (e.g., Schütt, 1984; Guedon and E. Litvak, 2000; Kühn, 2001) of lq−balls as
in the proof for Lemma 2 from Raskutii, Wainwright, and Yu (2011). �

Lemma B.11: Consider the class of smooth functions

FL :=
{
f : [0, 1]→ R : f(0) = 0,

∣∣∣f(x)− f(x′)
∣∣∣ ≤ L

∣∣∣x− x′∣∣∣ ∀x, x′ ∈ [0, 1]
}
.
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We have

logN∞(t; FL) � L

t
,

and logN2(t; FL) � L

t

where N∞(t; FL) is the t−covering number of the set FL in the sup-norm and N2(t; FL)
is the t−covering number of the set FL in the L2 (P)−norm.

Remark. The proof for logN∞(t; FL) is a well-known result due to Kolmogorov and
Tikhomirov (1961). To proof for logN2(t; FL) is an application of Varshamov-Gilbert
lemma. �

Lemma B.12: For all ε > 0, the packing and covering number of a set T with re-
spect to a metric ρ are related as follows:

M(2ε; T, ρ) ≤ N(ε; T, ρ) ≤M(ε; T, ρ).

Proof. To prove the first inequality, let
{
θ1, ..., θ2M

}
be a maximal 2ε−packing, so

that ρ(θi, θj) > 2ε for all i 6= j. Given a ε−cover, let γ be an arbitrary element. For
any distinct pair i 6= j, we have

2ε < ρ(θi, θj) ≤ ρ(θi, γ) + ρ(γ, θj),

so that it is not possible to have ρ(γ, θi) ≤ ε and ρ(γ, θj) ≤ ε simultaneously. Con-
versely, we must have at least one element in the cover for each element of the packing
set, showing that M(2ε; T, ρ) ≤ N(ε; T, ρ). Turning to the second inequality, let{
θ1, ..., θ2M

}
be a maximal ε−packing. Maximality implies that for any other θ not

already in the packing set, we must have ρ(θ, θi) ≤ ε for some θi. Thus, the given set
forms a ε−cover, showing that N(ε; T, ρ) ≤M(ε; T, ρ). �

Lemma B.13: Let k ≥ 1. There exists a subset W of {0, 1}k with |W | > e
k
8 such that

the Hamming distance,

d(τ, τ ′) :=
k∑
j=1

I
{
τi 6= τ

′

i

}
>
k

4

for all τ, τ ′ ∈ W with τ 6= τ
′ .
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Remark. This is Varshamov-Gilbert Lemma.

Lemma B.14: For a given radius r > 0, define the set

S(s, r) :=
{
δ ∈ Rd | |δ|0 ≤ 2s, |δ|2 ≤ r

}
.

There is a covering set
{
δ1, ..., δN

}
∈ S(s, r) with cardinality N = N(s, r, ε) such that

logN(s, r, ε) ≤ log
(

d
2s

)
+ 2s log

(1
ε

)
.

Remark. This result is established in Matousek (2002).

Lemma B.15: There exists a subset M̃ ⊂ M with cardinality
∣∣∣M̃∣∣∣ ≥ exp

(
s
2 log d−s

s/2

)
such that ρM(z, z′) ≥ s

2 for all z, z′ ∈ M̃.

Remark. This is Lemma 4 from Raskutii, Wainwright, and Yu (2011).

Lemma B.16: Let X1, ..., Xn be independent random variables such that, for ev-
ery i, E(Xi) = 0 and 0 < E

(
|Xi|2+δ

)
< ∞ for some 0 < δ < 1. Set Sn = ∑n

i=1Xi,
B2
n = ∑n

i=1 E(X2
i ), V 2

n = ∑n
i=1X

2
i , Ln,δ = ∑n

i=1 E
(
|Xi|2+δ

)
, bn,δ = Bn

L
1/(2+δ)
n,δ

. Then for all
0 ≤ t ≤ bn,δ and an absolute constant a0 > 0

∣∣∣∣P [SnVn ≥ t
]
− [1− Φ(t)]

∣∣∣∣ ≤ a0(1 + t)1+δ e
− t

2
2

b2+δ
n,δ

.

Remark. This is formula 2.11 from Jing, Shao, and Wang (2003) on moderate devia-
tions for self-normalized sums.

Lemma B.17: Let Xk, k ≥ 1 be i.i.d. sub-Gaussian variables with parameters at
most σ and Z := maxk=1,...,N |Xk|. For some integer N ≥ 10, we have E [Z] ≤ 3σ

√
N .

Remark. This is a well-known result on sub-Gaussian maxima (e.g., van der Vaart
and Wellner, 1996).
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