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Linear Separability and Manifestations of Abstract Category Structures 
 

Shiina Kenpei (shiina@waseda.jp) 
Department of Educational Psychology, Waseda University, Tokyo, 169-8050 JAPAN 

 
Abstract 

Experimental evidence thus far has been overwhelmingly 
against the idea that linear separability is intrinsically 
important in category learning. This paper tries to shed new 
light on this old problem and shows conditions under which 
linear separability promotes learning.  

 
After the seminal study of Medin & Schwanenflugel (1981) 
on the role of linear separability (LS) in categorization, it 
has been repeatedly reported that LS has virtually no 
positive effect on category learning especially when within- 
and between- category similarities are controlled. In this 
paper, after formally defining LS and linear discriminant 
function with research review, we introduce several 
properties of LS that have been unnoticed in the past studies. 
Then 2 experiments are reported that showed LS learning 
advantages followed by discussion. 

Definition and Research History 
Suppose there are two Categories A and B comprised of m 
instances each and instance i is represented by a p-
dimensional row vector:                       .    A binary 
dimension is often called a feature in this paper. Linear 
discriminant function (LDF) f is a linear function:  
 1 1 2 2( ) ... p ipi iif x x xω ω ω= + + + +x c , such that 

  if    en Category A else i Category B, where 
ω= (ω1, ω2,  ...., ωp) is a weight vector and c is a constant. If 
an LDF exists Categories A and B are linear separable.  

           th i ∈ ∈

The LDF approach has been a topic of intense debate 
(Ashby & Maddox, 2005.) There are many studies which 
directly compared learning rates of LS and NLS (not linear 
separable) categories. Shepard and Chang (1963) compared 
the difficulty of supervised classification learning for 6 
category structures, and found that LS categories were 
easier to learn. They suggested that  "the easy classifications 
tend to differ from the difficult ones in that their points can 
be roughly partitioned into the two subclasses simply by 
drawing a straight line through the two-dimensional space" 
(p.102).  Ashby and his colleagues (Ashby & Gott 1988; 
Ashby & Maddox 1990, 1992) found a consistent advantage 
for LS categories over NLS ones. Wattenmaker et al. (1986) 
and Wattenmaker (1995) also found some positive effects of 
LS. Specifically, strong interactions between category 
structures and activated domain theories were found and 
they were attributed to the coding of stimulus properties 
induced by theories or themes. They concluded that when 
theories are available, the compatibility between theory and 
category structure will determine the ease of learning, which 
gave an impetus to the theory-based category learning 
models (Murphy & Medin, 1985). The idea of theory-based 

category, however, tends to underestimate the effect of 
structures in the environment (Malt, 1995) because people 
do not generally use theories or themes.  
It is fair to say that experimental evidence thus far is 

overwhelmingly against the idea that LS is essential in 
category learning; Medin and Schwanenflugel (1981), 
Kemler-Nelson (1984), Nakamura (1985), Wattenmaker et 
al. (1986), and Wattenmaker (1995) reported that LS had 
virtually no positive effect per se on category learning when 
within- and between- category similarities are controlled. 
Smith, Murray, and Minda (1997), who encourage prototype 
model, also failed to provide evidence. But they raised 
several key questions about how experimental stimuli are 
generated. In particular, their demonstration of poor 
differentiation of NLS categories in the universe of category 
structures is quite insightful. More recently Blair and Home 
(2001) have found an LS advantage, but their experimental 
setting is different from that of the present study.  
 

Some Hidden Properties of Linear Separability  
In the research of categorization, there are several con-

ceptual and procedural problems that might have disturbed 
the detection of LS effects. 
Reconstruction of Feature Space Consider the binary, 
abstract category structure shown in Table 1a. Category 
structures of this type are used in numerous studies, and an 
experimenter will assign somewhat arbitrary concrete values 
(on a nominal, ordinal, interval, or ratio scale) to the 0’s and 
1’s to generate stimulus manifestations (Table 1b). A key 
assumption in such studies is that participants will and can 
reconstruct the experimenter-defined abstract structure from 
the experienced category instances, whereas in ignorance of 
the experimenter’s feature value assignment people should 
assign new abstract binary values to the manifested values 
in the reconstruction process and thus the reconstructed 
abstract structure may look like Table 1c. Moreover, in 
order to control possible interactions between category 
structure and feature manifestation, the concrete feature 
values are ordinarily assigned randomly between subjects. 
As such, a participant might reconstruct a category structure 
that is a double transform of the original abstract structure.  
Interpretation of Features Since we cannot numerically 
add a circle and whiteness, the construction of an LDF 
requires inter-dimensional additivity (including subtractive-
ty) of the abstract values. If the binary features in Table 1c 
are interpreted as nominal or logical variables, their addition 
is unnatural and logical operations should be used instead. If 
the values are interpreted as numerical, however, arithmetic 
operations can be used and LDFs can be computed. Further-
more, since we are reluctant to compare, say, body weight 
with annual income, dimensional homogeneity will promote 
LDF construction together with additivity. 

x 1 2( , , ...., )i i i ipx x x=

( )f 0i ≥x
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Ease of Weight Computation   In Table 1a we can easily 
find an LDF with weights ω1=ω2=ω3=1, ω4=0 : 
    If   dim1+ dim2 + dim3 2 then Category A else B,     (1) ≥
while in Table 1c it is not easy to find an LDF: 
   If    dim1 - dim2 - dim3 ≥ 0  then Category A else B.      (2)  
It seems unlikely that the computational cost is the same for 
all LDFs: f(x)=3.7dim1-.9dim2+.2dim3+.4 should be harder 
to compute than g(x) =dim1+dim2+dim3+0. In an extreme 
situation where one dimension, say Dim2, is sufficient to 
construct an LDF with null weights to irrelevant dimensions, 
we have:  If  dim2 >c then Category A else B, which is often 
called a rule and Dim2 is ordinarily called a defining 
dimension. If an LDF happens to be: If dim1 - dim2 >0 then 
Category A else B, this LDF is identical to a relational 
property “larger than”: dim1> dim2. This example shows 
that LS can capture relational properties, contrary to the 
assertion of previous studies (e.g., Medin & Schwanenflugel 
(1981)). “Larger than” relational property reduces to a pair 
of defining features in binary cases. In sum, any category 
structure that is partitioned by either a rule or a type of 
simple relational property should be LS (but not vice versa), 
and this fact supports the idea that LS should play some role 
in categorization.  
Within- and Between- Category Variation LS and NLS 
categories are different in coherence and separation 
measured by within- and between- category distances or 
similarities (e.g., Smith et al, 1997; Blair & Homa, 2001).   
Define Total- , Within-, and Between- category squared 
distances as 

Total 2 2

Distances
Squared ( )ij ik jk

i A B j A B i A B j A B k
TSD d x x

∈ ∪ ∈ ∪ ∈ ∪ ∈ ∪

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑  −

Within 2 2

Distances
Squared ,ij ij

i A j A i B j B
WSD d d

∈ ∈ ∈ ∈

⎛ ⎞ = +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  Between 2

Distances
Squared ij

i A j B
BSD d

∈ ∈

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑ ∑  

then it is easy to find a relation: TSD=WSD+2BSD.         (3) 
WSD measures category coherence, and BSD category 
separation. Equation (3) shows that with TSD fixed, WSD 
and BSD are negatively correlated, as are category 
coherence and separation. An alternative way of defining 
category coherence and separation is through the total-
within-, and between- category variances as in ANOVA:  
Define TV, WV, and BV as follows:     

2( ik k
i A B k

TV x x
∈ ∪

= − )∑ ∑            

Table 1  An Abstract Category Structure (Medin and Schwanenflugel(1981) Experiment 1, LS structure)
and a flow of typical categorization experiment

(a) Experimenter Defined Structure (b) An Experimental Manifestation (c) Reconstructed Structure
 Dim 1 Dim 2 Dim 3 Dim 4  Dim 1 Dim 2 Dim 3 Dim 4
Category 1 0 1 1 Category 1 1 0 1
     A 1 0 1 0      A 1 1 0 0

1 1 0 1 1 0 1 1
0 1 1 0 0 0 0 0

Category 1 0 0 1 Category 1 1 1 1
    B 0 0 1 0     B 0 1 0 0

0 1 0 0 0 0 1 0
0 0 0 1 0 1 1 1

A1 A2 A3 A4

B2B1 B3 B4

Random Assignment of Concrete Values
Dim 1     Dim 2     Dim 3     Dim 4
1=white  1=square 1=big       1=right
0=black  0=circle   0=small   0=left

Reconstruction of Abstract structure

2 2( ) (ik Ak ik Bk
i Bi A k k

W V x x x x
∈∈

= − + − )∑ ∑ ∑ ∑  

2 2( ) (Ak k Bk k
i A i Bk k

)BV x x x
∈ ∈

= − + − x∑ ∑ ∑ ∑  

where  
/ 2k ik

i A B
x x m

∈ ∪
= ∑  , /Ak ik

i A
x x m

∈
= ∑  , /Bk ik

i B
x x m

∈
= ∑ . 

TV is psychologically interpretable as the diversity of the 
overall configuration of instances, WV as the within- 
category variation, and BV as a measure of separation or 
contrast between two categories.  We have an interesting 
relation similar to (3), namely, 
   TV=WV+BV                                                                  (4)            
which again shows a negative correlation between 
coherence and separation. With additional work relations:  

4 , 2 , 2TSD mTV WSD mWV BSD mWV mBV= = = +  
can be derived and we find that :  
TSD=WSD+2BSD=4mTV=4mBV+4mWV. 
As an index of category separation, Correlation Ratio: 

2 / (2 ) /BV TV BSD WSD TSDη = = −                       (5) 
is used in the sequel, which has the merit of permitting both 
binary and continuous dimensions. This index ranges over 
[0, 1], with larger values indicating a better separation of 
categories. For binary dimensions Structural Ratio (additive 
version) is often used and we have the relation between the 
two indexes: 

2

2

2 2 (1
2 (12

ij ij

ij

i A j A i B j B

i A j B

within s ssimilarity mp TVSR
mp TVbetween ssimilarity

)
)

η
η

∈ ∈ ∈ ∈

∈ ∈

+
− −

= = =
− +

∑ ∑ ∑ ∑∑

∑ ∑∑

 

Although it is not impossible to set up LS and NLS 
structures with  equated η2 , in many cases LS categories 
have smaller WV and thus larger BV, while NLS categories 
have larger WV and smaller BV. It seems, therefore, that 
NLS categories are less easily discriminated and will have 
slower learning rates. A similar argument holds for the 
relationship among TSD, WSD, and BSD as well. 
Given the properties pointed out in this section, the 

question of whether LS per se is advantageous to learning 
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under some conditions still deserves investigation. The 
present study tries to reexamine the effects of LS by 
arranging conditions in which several of the following 
requirements are satisfied. R1) Reconstruction of the feature 
space is a transparent process for subjects and the 
reconstructed abstract structures are not too diverse. R2) 
Interpretation of reconstructed features is unambiguous. In 
particular, the features are interpreted as continuous and 
additive (homogeneous) with constant dimensional polarity. 
R3) LDF weights are simple, and promote relational 
properties (e.g., “larger than”) or rules. The three 
requirements are all designed to promote the LS advantages. 
Finally, R4) within- and between- category variations are 
controlled in terms of  η2

 , respecting the tradition in this 
field. 

Experiment 1a  
Using the LS structure in Table 1a and NLS one in Table 2a, 
a set of bar charts was generated as shown in Table 2b (only 
the NLS set of bar charts are shown.)  Relating bar lengths 
to dimension values satisfies R1, R2, and R3, and the 
category structure complies with R4.  
    In the original study of Medin and Schwanenflugel 
(1981), binary qualitative features were used and the LS and 
NLS structures were equalized in terms of η2=.143. In the 
present experiment 0 referred to a short bar and 1 referred to 
a long bar and no random assignment of concrete values 
were performed, that is, the subjects experienced the same 
set of manifested stimuli. Evidently, if subjects construct an 
LDF similar to (1) the categories can be learned perfectly.  
The goal of Experiment 1a is to contrast the effect of mani-
festation of dimensions with the original experiment in 
which LS category was no easier to learn. Since the possibi-
lity remains that subjects interpret the bar length as a dis-
crete feature, noisy conditions were arranged where bar 
length was fluctuated with small random numbers ranging 
from -9 to 9 to discourage the subjects from interpreting the 
dimensions as binary. Noisy conditions will also discourage 
memorization strategies. There were 4 conditions 
combining Factors A and B (Factor A: LS vs. NLS, Factor 
B: no-noise vs. noisy). The subjects were 112 students of 
Waseda University.  
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Figure 1   Learning Curves of Experiment 1a 
 
Procedure To each condition 28 subjects were randomly 
assigned. Twenty-five randomized runs were used to make a 
total of 200 stimulus presentations. The experiment was run 
individually and was subject-paced. After a subject sat in 
front of a CRT screen, the instruction was appeared on the 
screen. Then a stimulus was presented one at a time and 
his/her task was to classify the stimulus into either Category 
A or Category B by pushing two response keys. An 
immediate feedback was given and then the next stimulus 
was presented. Proceeding in this way, a total of 200 
presentations were made. The labeling of categories and 
response keys were randomly assigned across subjects.    
Results and Discussion The learning curves for the four 
conditions are shown in Figure 1. There was an interaction 
between category structure and noise. In no-noise conditions 
the categories were easier to master than in noisy conditions 
but the LS categories were easier to learn only in the noisy 
condition.  Logistic regression analysis revealed that the LS 
effect was significant (χ2(1) =20.38, p<.01), the effect of 
noise was significant (χ2(1) =727.49, p<.01), and the 
interaction between them were significant (χ2(1) =10.90, 
P<.01). Post hoc test by Tukey method revealed that there 
was no significant difference between the LS no-noise and 
NLS no-noise conditions across blocks.  
The values of η2 for the four conditions were virtually the 

same and thus the LS gain in the noisy condition is not 
attributable to the category variability: The 
results showed evidence that there are 
situations in which LS without favorable 
properties (large η2, relational properties, and 
rules) can promote category learning. One 
common property of previous studies such as 
Medin and Schwanenflugel (1981) that found 
no positive LS effect is that the dimensions 
were binary. Consistent with these studies, 
the binary valued dimensions in the no-noise 
condition did not produce an LS advantage, 
whereas in the noisy conditions where the 
random perturbation suggested to the subjects 
that the dimensions were continuous, the LS 
structure was easier to master.  

Table 2  An Abstract Category Structure
Medin and Schwanenflugel(1981) Experiment 1, NLS structure
(a) Experimenter Defined Structure (b) Noisy Experimental Manifestation
 Dim 1 Dim 2 Dim 3 Dim 4   

Category 1 0 0 0
     A 0 1 1 1

1 1 1 0
1 0 1 1

Category 0 1 1 0
    B 1 0 0 1

0 0 0 0
0 0 0 1

1 -> long bar (145 dots)
0 -> short bar (100 dots)
The base is 20 dots
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Why, then, do binary dimensions impair learning of LS 
categories?  As mentioned previously, the concept of LS in 
general (and LDFs in particular) is meaningful in a 
continuous space, because summation and multiplication are 
valid only when the values are on an interval or on a ratio 
scale. It follows that, for a summation strategy to be feasible, 
the feature values should be interpreted as continuous even 
if they can only take discrete values.  In ordinary situations, 
however, binary features are interpreted as nominal values, 
preventing multiplication and summation and rendering the 
concept of LS irrelevant.  
Experiment 1b  

It seems that previous studies assume that there are no 
differences in the ease of setting up LDFs. In prototype 
models, in particular, subjects should always set up LDFs. 
Although Experiment 1a produced some evidence that LS 
promotes learning, the LDFs to be derived have only 
positive, unit weights (see equation (1)) and thus are easy to 
compute. In Experiment 1b a variation of the original 
abstract structure was used to introduce negative weights, 
making the LDF computation more difficult. Even if 
subjects are able to use LDFs in some situations, they might 
fail to utilize negative weights and the LS effect may vanish. 
Category Structure The two conditions compared were LS 
(Table 1c) and NLS (Table 3) structures with noise. The LS 
structure was arranged by reversing the abstract values of 
dim2 and dim3 in Table 1a. The LDF thus takes the form of 
equation (2). The NLS structure was arranged by first 
reversing the values of dim2 and dim3 in Table 2a and 
changing the order of dimensions to dim3, dim4, dim1, 
dim2. Note further that 7 out of 8 stimuli in both structures 
are common, which may control memorization effects.  
Subjects and Procedure The subjects were 32 students of 
Waseda University and they were randomly assigned to the 
two equal-sized conditions. None of these subjects 
participated in Experiment 1a. The general procedure was 
identical to that of Experiment 1a.  
Results and Discussion Learning curves are depicted in 
Figure 2.  Evidently, no difference was found between the 
LS and NLS conditions (χ2(1)=.3572, P>.5). The results 
indicate that an LDF with negative weights did not promote 
category learning, and suggest that the ease of LDF 
computation would affect LS category learning. 
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Figure 2   Learning Curves of Experiment 1b 

 
Figure 3 Stimulus Arrangement in Experiment 2 
 

Experiment 2 
In Experiment 2, using bar charts with three bars as stimuli, 
we highlight the effects of one dimensional rules and 
“longer than” relational properties (RP) that are sufficient 
conditions for LS. Specifically, we contrast the LS+RULE 
and LS+RP category structures to two NLS structures, one 
with the matched-η2 and the other with a small η2.  
Category Structure The numerical values of the experi-
mental stimuli with three bars x, y, and z are summarized in 
Table 4. The position of each stimulus in the stimulus space 
is represented in Figures 3a and 3b, where each axis corres-
ponds to one of the bar lengths and the center (centroid) of 
each cube corresponds to the coordinates in Table 4. Two 
factors were considered. Factor A, concerned with structural 
differences, includes four conditions: LS with a relational 
property (LS+RP), LS with a defining dimension (LS + 
RULE), NLS with a small η2 (NLS-small-η2 ), and NLS 
with a large η2 that matches the η2 of LS + RP and LS + 
RULE conditions (NLS-matched-η2). Factor B comprised 
the no-noise and noisy conditions as in Experiment 1. The 
no-noise condition is explained first.  

Table 3   NLS Abstract Category Structures
in Experiment 1b
LS structure is shown in Table 1c

NLS
 Dim 1 Dim 2 Dim 3 Dim 4
Category 1 0 1 1
     A 0 1 0 0

0 0 1 0
0 1 1 1

Category 0 0 0 0
    B 1 1 1 1

1 0 0 1
1 1 0 1

No-noise Conditions In this condition, bar charts corres-
ponding to the centroids of the cubes in Figures 3a and 3b 
are presented to subjects. Category structures are defined by 
how each cube is associated with a category label (Table 4.) 
In the LS+RP condition (LS with a relational property ), 
cubes A, B, C, and D in Figure 3a were combined to make 
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Category 1, and E, F, G, and H to make Category 0: The 
category structure has a “longer than” relational property :  
  if z > y then Category 1 else 0.  In the LS+RULE 
condition cubes A, B, G, and H in Figure 3a were combined 
to make Category 1 and C, D, E, and F Category 0, where 
Dimension x is the defining dimension (Table 4.) In the 
NLS-small-η2 condition, A, B, E and F were combined to 
make Category 1 and the others were combined to make 
Category 0. Finally, in the NLS-matched-η2 condition, A, B, 
G and H of Figure 3b were combined to make Category 1 
and the others were combined to make Category 0. The 
LS+RP, LS+RULE, and NLS-matched-η2 conditions have 
the same η2 value, while the NLS-small-η2 condition have a 
much smaller value of η2 but have the same set of instances 
as those of the LS+RP and LS+RULE conditions. 
Noisy Conditions While in no-noise conditions only the 
centroids of the cubes were used, in noisy conditions 
random samples from inside the cubes were presented to the 
subjects as perturbation of controids. The side length of the 
cube was 60 dots. This procedure is equivalent to adding a 
uniform noise term whose boundary is the cube surface to 
the cube centroid.   
Procedure The subjects were 128 undergraduate and 
graduate students of Waseda University. No subject 
participated in Experiment 1. The subjects were randomly 
assigned to one of the eight equal-sized experimental 
conditions. The general procedure was identical to that of 
Experiment 1 and 25 randomized runs were used to make a 
total of 200 stimulus presentations.  
Results The learning curves for 8 conditions are shown in 
Figures 4 and 5. Overall they show that the LS categories 
were easier to learn than NLS ones even when η2 values 
were equated. 
The Analysis of No-noise Condition Logistic regression 
analysis revealed that the variable of category type (LS+RP, 
LS+RULE, NLS-small-η2, and NLS-matched-η2) produced 
different learning rates (χ2 (3)=452.42, P<.001). Multiple 
comparison between the four category types revealed that 
all the differences were significant. Because the differences 
between the NLS-matched-η2 and LS+RULE conditions 
(q(4, ∞)=5.25, p<.01) and between the NLS-matched-η2 and 
LS+RP conditions (q(4, ∞)=21.08, p<.01) were significant, 
we obtained evidence that LS categories with a “longer 
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Figure 4   Results of Experiment 2 no-noise conditions 
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Figure 5   Results of Experiment 2 noisy conditions 
than” relational property and those with a defining 
dimension are easier to learn even when η2 values are 
equated.  Furthermore the results were consistent with the 
idea that η2 affects performance: the two LS categories were 
easier to learn than the NLS-small-η2 category (LS+RP and 
NLS-small-η2, q(4, ∞)=29.20, P<.01 ; LS+RULE and NLS-
small-η2, q(4,∞)=15.59, P<.01). Interestingly, the difference 
between the LS+RP and LS+RULE conditions was also 
significant (q(4,∞)=16.95, P<.01) indicating that the “longer 
than” property was more advantageous to category learning 
than the defining dimension in the present experiment. The 
difference between the LS+RULE and NLS-matched-η2 

was, however, not too compelling. In 
particular, there was no difference between 
them in the third, fourth and fifth blocks 
(q(20, ∞)=1.63, P>.05 ; q(20, ∞)=1.38, 
P>.05 ; q(20, ∞)=0, P>.05, respectively) 

TABLE 4 Numerical Values of Cube Controids 
and Category Structures

Category Structure of Figure 3a Category Structure of Figure 3b
Dimensional Values of  Category Structure Dimensional Values of Category Structure

Cube  Cube Centroid   Cube  Cube Centroid  

  x   y   z LS+RP LS+RULE NLS-small-η2   x   y   z NLS-matched-η2

A 120 65 76 1 1 1 A 95 120 103 1
B 101 54 112 1 1 1 B 105 80 97 1
C 86 69 133 1 0 0 C 86 69 133 0
D 75 110 139 1 0 0 D 75 110 139 0
E 80 135 124 0 0 1 E 80 135 124 0
F 99 146 88 0 0 1 F 99 146 88 0
G 114 131 67 0 1 0 G 120 65 76 1
H 125 90 61 0 1 0 H 140 75 39 1

Notes   Relational property : if z>y then category 1 else 0 exists in LS+RP
  x is a defining deminsion in LS+RULE

 

The Analysis of Noisy Conditions The 
learning curves and statistical results were 
very similar overall to those of the no-noise 
conditions. Logistic regression analysis 
revealed that the effect of category 
structure on learning rates was significant 
(χ2 (3)=317.38, P<.001) and multiple 
comparison revealed that the differences 
between the four conditions were all 
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reliable : Again the differences between the NLS-matched-
η2 and LS+RULE conditions (q(4,∞)=5.15, P<.01) and 
between the NLS-matched-η2 and LS+RP conditions 
(q(4,∞)=13.10, P<.01) were both significant. The LS 
categories with a “longer than” property and with a defining 
dimension were easier to learn than the NLS-small-η2 
category (LS+RP and NLS-small-η2, q(4, ∞)=29.05, P<.01 ; 
LS+RULE and NLS-small-η2, q(4, ∞)=16.60, P<.01 ).  
Finally, the difference between the LS+RP and LS+RULE 
conditions was again significant ( q(4, ∞)=8.09, P<.01). 
Joint analysis of noisy and no-noise conditions. Logistic 
regression analysis showed that the effect of category type 
(χ2(3)=627.66, p<.001) and the effect of noise 
( χ2(1)=158.39,  p<.001) were both significant. 
Summary and Discussion Essentially, the results showed 
that the differences between LS+RP and LS+RULE, 
LS+RULE and NLS-matched-η2, and NLS-matched-η2 and 
NLS-small-η2 were all reliable and clearly the LS+RP 
condition was the easiest to learn. Therefore we can state the 
following: (1) We obtained evidence that “longer than” 
relational properties and defining dimensions, which can be 
derived from LS but never from NLS, both promote 
category learning. This will be so even when contrast NLS 
category structures have almost the same η2.  (2) At the 
same time, the results suggested that relational properties 
could be more effective than defining dimensions. (3) The 
difference between the LS+RULE and NLS-matched-η2 
conditions without noise would not be too compelling.  
These results clearly indicate that some types of LS 

category are easier to learn when the four requirements 
described at the end of introduction are satisfied. A next 
question is whether this is also the case in the absence of 
such beneficial properties. The results of Experiment 1b and 
numerous existent studies strongly suggest that the LS 
advantage will vanish. 

In this experiment the “longer than” relational property 
was more effective than the defining dimension, which  may 
show that people are more sensitive to emerging relational 
properties than they are to parent dimensions at least under 
some conditions. The apparent fact that bar charts are used 
to compare values supports the idea that the bar chart 
stimuli would have promoted dimensional comparisons and 
helped subjects to find relational properties. Another 
interpretation is, because the separation of values on 
Dimension x in the LS+RULE condition was small (there 
was only 2 dot difference); the defining dimension did not 
have perfect validity especially in the noisy condition in 
which random noise on the original dimensional values 
made the difference quite imperceptible.  

 
General Discussion 

This paper does not claim that LS should be beneficial in 
all situations and thus contributes little to the revival of pro-
totype theory. This paper does deny the assertion, however, 
that LS has nothing to do with categorization. It is highly 
plausible that high structural coherence, relational properties, 

and rules will promote LS category learning. One reason 
why previous studies failed to demonstrate positive effects 
of LS is that they used qualitative and/or heterogeneous di-
mensions; under such situations, LS categories would not be 
able to enjoy the benefits of relational properties and rules. 

 The generality of the present results should be examined 
further, paying close attention to the scale type of 
dimensions, because the use of homogeneous dimensions 
would have promoted the evaluation of relative lengths of 
the bars. As in the numerous previous studies, if we had 
used heterogeneous and qualitative dimensions instead, the 
results would have been greatly different. Because there is 
no logical reason that stimulus dimensions should be 
homogeneous, it is safe to say for the present that LS is 
advantageous to category learning only when dimensions 
are homogeneous and/or directly comparable inducing 
relational properties and rules.  Conversely, because there is 
no necessity that stimulus should be comprised of binary 
features and in view of the plain fact that many dimensions 
of natural categories are continuous, further studies 
contrasting binary and continuous dimensions will be 
needed.  
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