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ABSTRACT	

Semi-Targeted	Exposome	Strategies	to	Measure	Biomarkers	of	Exposure	and	Disease	
Associated	with	Type	II	Diabetes	in	Asian	Indians		

By	

Sarah	I.	Daniels	

Doctor	of	Philosophy	in	Environmental	Health	Sciences	

University	of	California,	Berkeley	

Professor	Martyn	T.	Smith,	Co-Chair	

Professor	Luoping	Zhang,	Co-Chair	

	

The	prevalence	of	type	II	diabetes	(T2D)	is	escalating	worldwide,	yet	incidence	rates	differ	
dramatically	between	ethnic	groups.	Some	known	risk	factors	of	T2D	include	diet,	exercise,	and	
genetic	inheritability,	yet	these	factors	alone	cannot	fully	explain	the	differences	observed	
between	populations.	Better	approaches	are	needed	to	identify	other	non-genetic	factors,	such	
as	toxic	chemical	exposures,	that	are	related	to	T2D,	particularly	in	highly-susceptible	
populations.	The	exposome	is	a	relatively	new	concept	used	to	investigate	causes	of	disease	
due	to	endogenous	and	exogenous	exposures.	This	dissertation	aims	to	use	semi-targeted	
exposomics	to	examine	biomarkers	of	exposure	and	disease	that	are	associated	with	T2D.	
Chapter	1,	the	introduction,	discusses	the	broader	objectives	of	exposomics,	including	ideal	
comparison	populations	for	identifying	underlying	causes	of	chronic	disease.	In	the	case	of	T2D,	
Asian	Indians	are	a	population	of	great	interest,	with	a	3-4-fold	higher	risk	of	T2D	than	
European	white	counterparts.	Chapter	2	examines	blood	concentrations	of	environmental	
pollutants	in	small	volumes	of	plasma	in	Asian	Indian	immigrants	and	a	low-risk	comparison	
group,	European	whites.	This	study	is	the	first	to	investigate	associations	between	persistent	
organic	pollutants	and	T2D	in	Asian	Indians.	Chapter	3	describes	a	method	to	measure	sources	
of	variability	in	a	potential	biomarker	of	T2D,	microRNA	(miRNA).	This	study	demonstrates	the	
importance	of	empirically	measuring	technical	and	biological	sources	of	variability	and	using	
simulations	to	inform	power	calculations	for	new	biomarkers	of	interest.	Chapter	4	takes	
lessons	learned	from	Chapter	3	and	applies	them	to	a	case-control	study	on	plasma	miRNA	in	
Asian	Indians.	In	the	concluding	Chapter	5,	the	current	state	of	research	on	T2D	as	it	relates	to	
blood	biomarkers	of	environmental	exposures	and	disease	are	described	for	Asian	Indians	and	
other	highly	susceptible	groups.	
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I	dedicate	this	dissertation	to	the	next	generation	of	environmental	health	scientists.	This	body	
of	work	emphasizes	the	importance	of	scrutinizing	the	methods	around	“biomarker	discovery”	
research.	May	the	lessons	learned	here	help	guide	the	design,	execution,	and	analysis	of	your	
future	epidemiological	studies.	
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ABSTRACT	
Under	the	exposome	paradigm	all	non-genetic	factors	contributing	to	disease	are	

considered	to	be	‘environmental’	including	chemicals,	drugs,	infectious	agents	and	psycho-
social	stress.	We	can	consider	these	collectively	as	environmental	stressors.	Exposomics	is	the	
comprehensive	analysis	of	exposure	to	all	environmental	stressors	and	should	yield	a	more	
thorough	understanding	of	chronic	disease	development.	We	can	operationalize	exposomics	by	
studying	all	the	small	molecules	in	the	body	and	their	influence	on	biological	pathways	that	lead	
to	impaired	health.		Here,	we	describe	methods	by	which	this	may	be	achieved	and	discuss	the	
application	of	exposomics	to	cumulative	risk	assessment	in	vulnerable	populations.	Since	the	
goal	of	cumulative	risk	assessment	is	to	analyze,	characterize,	and	quantify	the	combined	risks	
to	health	from	exposures	to	multiple	agents	or	stressors,	it	seems	that	exposomics	is	perfectly	
poised	to	advance	this	important	area	of	environmental	health	science.		We	should	therefore	
support	development	of	tools	for	exposomic	analysis	and	begin	to	engage	impacted	
communities	in	participatory	exposome	research.	A	first	step	may	be	to	apply	exposomics	to	
vulnerable	populations	already	studied	by	more	conventional	cumulative	risk	approaches.	We	
further	propose	that	recent	migrants,	low	socioeconomic	groups	with	high	environmental	
chemical	exposures,	and	pregnant	women	should	be	high	priority	populations	for	study	by	
exposomics.	Moreover,	exposomics	allows	us	to	study	interactions	between	chronic	stress	and	
environmental	chemicals	that	disrupt	stress	response	pathways	(i.e.	‘stressogens’).	Exploring	
the	impact	of	early	life	exposures	and	maternal	stress	may	be	an	interesting	and	accessible	
topic	for	investigation	by	exposomics	using	biobanked	samples.	
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The	Exposome	and	the	New	Field	of	Exposomics	
Several	definitions	of	the	exposome	now	exist.	Wild	originally	defined	the	“exposome”	

as	representing	all	environmental	exposures	(including	those	from	diet,	lifestyle,	and	
endogenous	sources)	from	conception	onwards,	as	a	quantity	of	critical	interest	to	disease	
etiology	[Wild,	2005].	His	goal	in	doing	so	was	to	articulate	the	need	for	new	tools	to	assess	
environmental	exposures	from	all	sources	for	studies	of	adverse	gene-environment	interactions	
as	causative	factors	in	chronic	disease.		

As	toxicologists	we	recognize	that	adverse	effects	on	the	body’s	tissues	and	organs	are	
related	to	the	concentration	of	chemical	agents	circulating	in	the	biofluids	that	bathe	the	
tissues,	notably	the	blood	plasma	and	lymph.	This	internal	dose	of	the	chemical	or	drug	is	
directly	related	to	the	toxicity	and	biological	effects	at	given	concentrations.	Thus,	when	
Rappaport	and	Smith	considered	how	Wild’s	original	exposome	concept	could	be	measured,	
they	concluded	that	this	could	best	be	achieved	by	monitoring	the	internal	chemical	
environment	of	the	human	body	during	critical	windows	of	exposure	(i.e.,	measuring	
“snapshots”)	[Rappaport	and	Smith,	2010].		They	also	recognized	that	all	chemical	and	non-
chemical	stressors	mediate	effects	on	the	body	via	signaling	of	small	molecules	that	alter	
cellular	activity	and	physiological	processes.	For	example,	during	emotional	stress	our	adrenal	
glands	release	adrenaline	(also	known	as	epinephrine)	and	other	hormones	into	the	
bloodstream	that	increase	breathing,	heart	rate,	and	blood	pressure.	Thus,	if	one	wants	to	
consider	all	non-genetic	factors	that	influence	health,	it	is	reasonable	to	consider	the	
“environment”	as	the	body’s	internal	chemical	environment	and	“exposures”	as	the	amounts	of	
biologically	active	chemicals	(small	molecules)	in	this	internal	environment	that	stem	from	both	
exogenous	and	endogenous	sources.	

The	new	field	of	exposomics	should	therefore	attempt	to	measure	as	many	small	
molecules	as	possible	in	human	bodily	fluids.	A	million	molecule	exposome	is	a	potential	goal	
that	is	not	too	unrealistic.	Further,	it	should	attempt	to	link	the	presence	of	these	small	
molecules	with	functional	changes	in	biology	leading	to	chronic	illnesses.	The	internal	
measurements	made	in	exposomics	could	be	of	individual	chemicals,	groups	of	chemicals	or	the	
totality	of	chemicals	acting	on	a	particular	receptor	or	biological	pathway	in	a	functional	assay.	
Hence,	exposomics	can	be	operationalized	by	studying	all	the	small	molecules	in	the	body	and	
their	influence	on	biological	pathways	that	lead	to	impaired	health.		This	concept	of	exposomics	
fits	with	the	revised	definition	of	the	exposome	proposed	by	Miller	and	Jones	that	explicitly	
incorporates	the	body's	response	to	environmental	influences	[Miller	and	Jones,	2014].	They	
argue	that	the	exposome	and	biology	are	interactive	and	that	changes	in	biology	due	to	the	
environment	may	change	one’s	vulnerability	to	subsequent	exposures.	Further,	Miller	and	
Jones	argue	that	by	studying	the	effects	of	exposures	we	may	gain	insight	into	past	chemical	
exposures	as	they	may	leave	a	molecular	fingerprint.		Thus,	through	linking	exposures	to	
specific	biological	responses,	exposomics	could	serve	as	an	approach	to	gain	insight	into	the	
mechanistic	connections	between	a	culmination	of	exposures	and	risk	of	adverse	health	
outcomes	that	occur	over	a	lifetime.	
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Environmental	Stressors,	Exposure	Assessment	and	the	Exposome	
Another,	entirely	different	approach	to	examine	the	relationships	between	

environmental	exposures	and	disease	is	to	measure	exposures	to	various	environmental	
stressors	through	wearable	and	regional	sensors	and	survey	instruments.	These	are	being	used,	
for	example,	to	measure	exposure	to	air	pollution	and	drinking	water	contaminants;	to	better	
assess	the	diet	through	smartphone	capture	of	dietary	habits;	and,	to	evaluate	exercise	through	
pedometers	and	other	devices.	This	is	how	measurement	of	the	exposome	was	conceptualized	
in	a	NAS	committee	report	on	exposure	science	and	was	expanded	to	the	term	eco-exposome	
so	as	to	include	wildlife	as	well	as	humans	[Committee	on	Human	and	Environmental	Exposure	
Science	in	the	21st	Century	and	Board	on	Environmental	Studies	and	Toxicology,	2012].	Sensors	
and	21st	century	exposure	science	tools	are,	of	course,	useful	for	improving	exposure	
assessment	in	targeted	epidemiology	studies	of	specific	risk	factors	such	as	physical	exercise,	
diet,	and	air	pollution	and	for	avoiding	known	risks	through	smartphone	applications	and	other	
mechanisms.	These	exposure	science	tools	are	limited,	however,	in	their	ability	to	identify	novel	
environmental	causes	of	disease,	but	in	combination	with	internal	exposomics	tools	they	could	
be	a	powerful	approach	to	assessing	an	individual	or	community’s	exposome.		
	
Towards	Measurement	of	a	Community’s	Exposome	at	the	Individual	and	Group	Levels	

Measuring	environmental	pollutants	has	become	a	subset	of	an	even	broader	initiative	
termed	the	“Public	Health	Exposome”,	coined	by	Juarez,	which	captures	an	assessment	of	risk	
at	the	community	level,	including	the	influences	of	the	natural,	built,	social,	and	policy	
environment	[Juarez	et	al.,	2014].	The	natural	environment	includes	chemicals	in	air,	water,	
soil,	and	food.	The	built	environment	includes	quality	of	the	workplace,	educational	centers,	
places	of	worship,	and	playgrounds	as	well	as	access	to	commercial	businesses	and	public	
transportation.	The	social	environment	includes	rates	of	discrimination,	poverty,	crime,	
unemployment	in	the	surrounding	area	and	moderating	factors	such	as	social	networks,	capital	
and	integration.	Lastly,	the	policy	environment	represents	local	rules	and	regulations	that	
influence	the	quality	of	public	health	services	and	exposures.		

This	public	health	exposome	approach	incorporates	exposures	at	the	ecological-level	to	
determine	the	impact	on	the	overall	health	of	a	population	within	a	particular	region.		One	of	
the	first	studies	on	the	public	health	exposome,	included	over	600	variables	for	counties	
throughout	the	U.S.	to	better	understand	determinants	of	preterm	birth	[Kershenbaum	et	al.,	
2014].	Interestingly,	a	unique	clustering	method	distinguished	between	“resilient	counties”	
with	low	preterm	birth	rates	nestled	within	high-risk	regions.		Hence,	identification	of	resilient	
versus	susceptible	sub-groups	may	be	key	in	deciding	optimal	target	populations	for	
comparison	or	intervention	studies	in	exposomics.			

The	public	health	exposome	can	uncover	plausible	sources	of	social	determinants	of	
health	that	contribute	to	the	internal	exposome.	In	Table	1,	we	expand	upon	this	framework	
proposed	by	Juarez	et	al.	by	providing	examples	of	biological	mechanisms	disrupted	through	
various	community	level	exposures.	Exposomics	would	allow	detection	of	these	biological	
responses	and,	furthermore,	assessment	of	the	overall	health	impacts	(Table	1).	This	may	be	a	
particularly	novel	approach	for	assessing	cumulative	risk	in	the	community	setting.	
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Using	Exposomics	to	Assess	Cumulative	Exposures	and	Cumulative	Risk		
From	this	discussion,	one	can	see	that	the	health	of	a	given	community,	and	the	

individuals	within	it,	is	dependent	on	a	variety	of	environmental	and	social	factors.	The	EPA	
defines	cumulative	risk	assessment	as,	“Combined	risks	from	aggregate	exposures	to	multiple	
agents	or	stressors,	where	agents	or	stressors	may	include	chemical	and	nonchemical	stressors”	
[US	EPA,	2003].		This	is	essentially	the	exposome	paradigm	where	all	non-genetic	
environmental	stressors	are	considered.	Therefore,	cumulative	risk	assessment,	where	the	
impact	of	all	stressors	on	a	population	is	assessed,	could	be	operationalized	by	exposomics	
(Figure	1).	

There	has	been	little	effort	so	far	to	examine	the	totality	of	both	chemical	and	non-
chemical	stressors	on	a	population.	Initial	observations	of	low-income,	race,	and	other	
socioeconomic	factors	exacerbating	the	effects	of	individual	chemical	exposures	have	been	
reported	[Shankardass	et	al.,	2009;	Vishnevetsky	et	al.,	2015;	Zota	et	al.,	2013].	New	agnostic	
methods	can	be	applied	to	identify	candidate	chemicals	that	exacerbate	disease	risk	via	
interaction	with	effects	of	the	social	environment.	Exposomics	could	be	used	for	the	discovery	
of	environmental	chemicals	that	interfere	with	stress	response	pathways	that	are	chronically	
activated	by	adverse	social	environments.		

Bruce	McEwen	was	the	first	to	propose	that	prolonged	activation	of	these	stress	
response	pathways	causes	“wear	and	tear”	on	regulatory	mechanisms,	adjusting	the	
homeostatic	set	point	of	various	physiological	systems	[McEwen,	1998].	This	cumulative	burden	
on	the	body	is	referred	to	as	the	allostatic	load	and	is	quantified	using	a	cumulative	index	of	
physiologic	deregulation	of	the	cardiovascular,	inflammatory,	and	endocrine	systems	(Fig.	2).	
While	there	is	evidence	that	increased	allostatic	load	and	stressful	life-experiences	enhance	
vulnerability	to	the	adverse	health	and	behavioral	effects	of	chemicals	[Shankardass	et	al.,	
2009;	Vishnevetsky	et	al.,	2015;	Zota	et	al.,	2013],	it	is	unclear	how	these	“natural”	and	“social”	
environments	work	in	concert	to	cause	disease.		

An	exposomics	approach	would	quantify	endogenous	primary	mediators	found	in	the	
blood,	such	as	cortisol	and	adrenaline,	to	obtain	a	measurement	of	“allostatic	load”.		Cortisol,	
secreted	by	the	adrenal	gland	in	response	to	stress,	activates	the	glucocorticoid	receptor	(GR)	
and	has	systemic	effects	on	the	endocrine,	metabolic,	cardiovascular,	immune,	reproductive,	
and	central	nervous	systems	[Sapolsky	et	al.,	2000].		Environmental	chemicals	that	mimic	
cortisol	can	disrupt	stress	response	pathways	through	altered	GR	signaling	[Odermatt	et	al.,	
2006;	Odermatt	and	Gumy,	2008].	We	define	these	environmental	chemicals	that	alter	stress	
response	pathways	as	“stressogens.”		

Within	the	context	of	exposomics,	it	is	essential	to	obtain	a	measure	of	the	totality	of	
stressogen	burden	within	subject	samples.	Recently,	by	using	a	functional	bioassay	that	
measures	glucocorticoid	receptor	activity,	we	have	identified	a	number	of	stressogens,	
including	the	morning-after	pill	RU486,	that	perturb	the	stress	response	by	exerting	either	
agonistic	or	antagonistic	effects	on	GR	(Figure	2).	We	are	now	applying	this	assay	to	identify	
additional	environmental	chemicals	that	may	act	as	stressogens	and	to	measure	the	totality	of	
chemicals	acting	on	GR	in	an	individuals	blood	plasma.	Exposomic	classification	of	stressogens	
and	detection	of	endogenous	stress	response	mediators	moves	us	one	step	closer	to	
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developing	more	holistic	models	of	attributable	risk	factors	of	disease,	particularly	among	
vulnerable	populations	with	substantial	mixing	of	multiple	sources	of	environmental	stress.	
	
Targeted	and	Untargeted	Methods	to	Measure	Snapshots	of	the	Exposome	

To	measure	snapshots	of	the	exposome,	we	must	be	able	to	quantify	exposure	to	and	
the	impacts	of	all	non-genetic	factors	including	chemicals,	drugs,	dietary	components	and	
supplements,	psycho-social	stress,	infection,	and	ionizing	radiation	during	critical	stages	in	the	
life	course.	This	is	clearly	a	major	challenge	but	seemingly	not	an	impossible	one.	By	focusing	on	
classes	of	chemicals	with	probable	effects	such	as	electrophiles	and	chemicals	that	target	
specific	receptors	we	may	be	able	to	assess	the	impacts	of	many	of	the	chemicals	in	commerce	
(Table	2).	Further,	modern	mass	spectrometry	now	allows	us	to	measure	pharmaceuticals,	
vitamins	and	other	dietary	components	with	relative	ease	and	is	being	expanded	to	untargeted	
methods	which	measure	thousands	of	molecular	ions	(Table	2).	Psycho-social	stress	could	be	
measured	by	various	markers	including	telomere	length,	cortisol	and	amylase	levels	and	activity	
through	stress	response	pathways	such	as	GR	(Table	2).	It	is	also	important	to	measure	current	
and	prior	exposures	to	infectious	agents,	as	they	can	play	an	important	role	in	chronic	disease	
development.		

There	is	some	debate	over	the	best	strategies	to	use	for	exposomics	research,	given	the	
limitations	of	both	targeted	and	untargeted	methods.		While	untargeted	methods	provide	
promise	in	examining	thousands	of	molecules	simultaneously,	some	sensitivity	is	sacrificed	in	
measurement	of	low	abundance	compounds.	It	has	been	previously	observed	in	the	literature	
that	the	majority	of	pollutants	are	at	100-1000	times	lower	concentration	than	drugs	and	
dietary	components	[Rappaport	et	al.,	2014].	While	this	begets	the	need	for	targeted	methods	
with	improved	sensitivity,	it	is	important	to	incorporate	both	in	exposomics	research.	

The	advantage	of	untargeted	methods	is	the	potential	for	discovery	of	novel	analytes	
while	measuring	hundreds	to	thousands	of	compounds	simultaneously.	This	technique	has	
been	demonstrated	successfully	in	previous	cases	[Wang	et	al.,	2011a,	2011b],	however,	given	
the	statistical	limitations	of	these	methods,	the	likelihood	of	obtaining	reproducible	findings	still	
remains	small.	To	improve	upon	characterization	of	“biologically	active”	molecules	in	the	blood	
by	metabolomics,	the	method	could	be	paired	with	other	assays	to	quantify	the	net	potential	
effect	of	endogenous	and	exogenous	compounds	in	human	serum.	These	preliminary	screening	
methods	may	allow	discrimination	between	analytes	of	interest	and	background	noise	that	are	
measured	using	untargeted	approaches	(i.e.,	metabolomics).	An	example	of	such	methods	is	
use	of	receptor-binding	reporter	assays	in	responses	to	chemicals	in	human	blood	samples.	
Currently	we	are	using	sensitive	CALUX	receptor-based	reporter	bioassays,	which	measure	the	
overall	net	effect	of	both	endogenous	and	exogenous	molecules	acting	on	a	particular	receptor	
simultaneously.	(e.g.,	This	includes	the	GR	receptor	activity	from	stressogens,	as	described	
earlier.)	This	high-throughput	and	inexpensive	method	of	detecting	total	endocrine	activity	of	
serum	against	a	particular	receptor	can	be	scaled-up,	as	previously	done	for	purposes	of	
chemical	screening	within	ToxCast	and	Tox21.		

Several	methods	are	being	explored	to	isolate	the	candidate	active	
agonistic/antagonistic	compounds	from	serum.	For	example,	the	serum	can	be	fractionated	by	
HPLC,	and	then	the	fractions	can	be	applied	separately	to	the	receptor	assays	to	measure	
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activity	of	endogenous	hormones	versus	exogenous	chemicals	[Bonefeld-Jorgensen	et	al.,	
2011].	Another	method	is	to	use	receptor	affinity	extraction	liquid	chromatography	to	first	
isolate	the	chemicals	that	bind	to	the	column	and	then	elute	the	bound	chemicals	for	further	
profiling	by	LC-MS/MS	[Hock,	2012].	This	has	been	improved	upon	by	immobilizing	the	receptor	
ligand	binding	domain,	which	has	more	stable	binding	affinity	than	the	entire	receptor	and	still	
maintains	high	sensitivity	to	xenobiotics.	While	this	method	was	originally	demonstrated	with	
ERα	[Pillon	et	al.,	2005],	it	can	be	expanded	to	other	binding	domains	as	well	[US	EPA].		Lastly,	
active	molecules	could	be	identified	by	running	the	serum	in	tandem	on	both	the	bioassay	and	
an	HPLC-MS/MS	instrument,	and	modeling	differences	in	average	peak	sizes	between	
comparison	populations	in	association	with	reporter	signals.	These	agnostic	methods	provide	
an	exposomic	approach	to	detect	novel	endogenous	and	exogenous	exposures	that	influence	
cellular	function.		

Targeted	methods	of	past	and	current	exposures	are	also	useful	for	examining	chemical	
compounds	that	are	known	to	be	pervasive	and/or	bioaccumulative	in	the	environment.	With	
improved	resolution	of	instrumentation,	smaller	volumes	are	needed	than	before	to	assess	
levels	of	these	chemicals	in	bodily	fluids.	For	example,	Agilent	Technologies	has	recently	
developed	a	method	using	a	quadrupole	GC-MS/MS	system	using	only	200uL	of	plasma/serum		
to	measure	more	than	60	POPs	including	PCBs,	PBDEs,	OCPs,	PAHs,	furans,	and	dioxins	
[Macherone	et	al.,	2015].	This	has	potential	for	scale-up	to	measure	even	more	compounds.	
Plasma	is	extracted	using	chemical	denaturation,	liquid-liquid	extraction,	solid-phase	cleanup	
and	reconstituted	with	isooctane.	This	targeted	GC	MS/MS	method	exemplifies	improvements	
in	measuring	differential	POPs	exposure	profiles	over	those	previously	used	by	the	CDC	
(NHANES)	and	others	by	reducing	volumes	of	precious	blood	samples	by	at	least	10-fold.	The	
limits	of	detection	are	0.005–0.02	ng/mL	for	PCB;	0.05–0.15	ng/mL	for	OCP;	0.0075–0.075	
ng/mL	for	PBDE.		Targeted	methods	like	these	should	be	restricted	to	chemicals	such	as	POPs	
with	known	persistence	in	the	environment	and	association	with	harmful	effects.	Interestingly,	
given	the	long	half-life	of	these	pollutants,	previous	exposure	and	migration	patterns	can	be	
chronicled,	particularly	among	populations	that	have	migrated	from	highly	exposed	to	lower	
exposed	areas	during	their	life.	
	
Including	Measurement	of	Exposure	to	Infectious	Agents	in	Exposomics	Research	

New	advancements	in	detecting	past	and	current	exposure	to	infectious	agents	allows	
for	expansion	of	this	branch	of	exposomics.		Recently,	a	screening	procedure,	called	VirScan,	
has	demonstrated	extreme	sensitivity	and	specificity	for	detecting	antibodies	against	previous	
infections	in	just	1uL	of	serum	[Xu	et	al.,	2015].	The	VirScan	target	library	is	based	on	the	viral	
proteome	sequence	database	within	UniPro	[Consortium,	2014]	and	includes	206	known	viral	
species	and	over	1000	different	strains.	Several	strategies	have	been	used	to	discover	novel	
non-human	sequences	in	the	human	transcriptome	including	digital	transcriptome	
subtraction[Feng	et	al.,	2008].	To	detect	such	integrated	viral	sequences,	algorithmic	methods	
such	as	VirusSeq	scan	either	RNA	Seq	or	whole	genome	data	for	viruses	that	map	to	a	viral	
database	[Chen	et	al.,	2013].	More	recently,	“sequence-based	ultrarapid	pathogen	
identification,”	SURPI,	was	developed	to	assess	both	known	and	novel	bacterial,	viral,	fungal,	
and	parasitic	sequences	in	human	tissue	samples	[Naccache	et	al.,	2014].	Published	NGS	data	
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can	also	be	scavenged	for	novel	discovery	of	new	emerging	infectious	agents.	This	was	
exemplified	using	metagenomics	data	from	fecal	samples	of	twins	and	their	mothers	from	a	
public	database	and	then	extrapolating	to	verify	findings	of	a	new	bacteriophage	in	over	900	
samples	[Dutilh	et	al.,	2014].	These	new	techniques	to	study	current	and	previous	infections	in	
population	studies	are	imperative	to	understanding	their	relationship	with	other	exposures	and	
disease	onset	within	the	exposome.	

Exposomics	research	relies	on	understanding	the	interactions	of	both	past	and	present	
exposures	to	chemical	and	non-chemical	agents,	but	there	are	few	studies	that	have	examined	
links	between	environmental	exposures	and	susceptibility	to	new	or	recurrent	infection.	
Previous	work	has	focused	on	early-life	exposure	to	individual	environmental	pollutants	and	
increased	incidence	of	viral	infections.	Associations	have	been	found	between	early-life	
exposure	to	persistent	organic	pollutants	such	as	PAHs,	dioxins,	and	PCBs	and	increased	risk	of	
flu-like	symptoms,	and	respiratory	and	ear	infections	[Winans	et	al.,	2011].	There	is	also	
evidence	of	altered	immune	function	with	early-life	exposures	to	heavy	metals	such	as	arsenic	
[Rager	et	al.,	2014]	and	increased	mortality	from	infection	due	to	arsenic	exposure	[Smith	et	al.,	
2010].	Exposomics	has	the	capacity	to	expand	upon	these	findings	by	examining	how	
interactions	between	numerous	chemical	and	non-chemical	stressors	increase	risk	of	disease	by	
infectious	agents.		
	
In	Which	Populations	Should	We	Do	Exposomics?	
	 If	exposomics	is	to	perform	an	agnostic	search	of	many	different	environmental	
exposures,	populations	with	the	highest	“totality	of	exposures”	are	of	primary	interest.		
Attention	should	focus	on	vulnerable	environmentally-exposed	populations,	as	the	risks	of	
chronic	illnesses	are	higher	than	in	the	general	population.		Examples	of	these	“at	risk”	groups	
in	the	U.S.	are	undisputedly	minority	populations	living	in	urban	or	agricultural	settings.	This	is	
exemplified	by	the	CalEnviroScreen	2.0	[Faust	et	al.,	2014],	which	maps	scores	by	county	based	
on	the	pollution	burden	and	population	characteristics	of	the	region.	Counties	with	the	highest	
(most	severe)	scores	are	invariably	concentrated	in	low-income	regions	of	densely	populated	
city	centers	or	the	agricultural	Valleys	of	California.	Thus,	these	populations	could	be	sampled	
and	compared	to	adjacent	populations	with	lower	CalEnviroScreen	scores.		

Another	population	that	may	be	well-suited	to	exposomic	analysis	is	pregnant	women	
and	their	newborn	infants.	Bio-banked	samples	of	mid-pregnancy	maternal	blood,	cord	blood	
and	Guthrie	card	blood	spots	could	be	used	for	exposomic	analyses	in	relation	to	fetal	growth,	
pre-term	delivery,	birth	defects	and	other	early	life	outcomes.	Methods	for	the	rapid	analysis	of	
these	biobanked	samples	should	be	developed	and	applied	in	well-controlled	epidemiological	
studies.	

Immigrant	populations	are	another	exemplary	group	for	exposomics	research.	These	
populations	were	exposed	to	different	environmental	and	non-chemical	stressors	in	early-life	
and	may	have	made	changes	in	behavior	due	to	acculturation	as	compared	to	the	native	
populations	in	their	new	and	former	residences.	This	leads	to	profound	differences	in	disease	
incidence	rates	that	could	be	driven	by	both	environmental	and	genetic	factors.	Given	the	
unique	conditions	of	immigrant	populations,	several	strategies	in	study	design	could	be	
employed	to	help	parse	apart	environmental	from	genetic	factors.	For	instance,	some	
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populations	continually	immigrate	to	the	same	region	for	generations,	making	it	possible	to	
measure	the	exposomics	profiles	associated	with	the	number	of	years	since	emigration	as	
compared	to	first-generation,	non-immigrant,	and	non-emigrating	populations,	all	with	similar	
genetic	background.	Trans-generational	effects	on	the	immigrant	population	can	be	explored	as	
well.	Furthermore,	differences	in	exposomic	profiles	between	countries	or	regions	of	
emigration	could	also	be	used	to	map	genetic	and	non-genetic	contributions	to	disease	onset.		

Using	the	exposomics	approach	to	conduct	cumulative	risk	assessments	would	be	an	
excellent	opportunity	to	examine	differences	in	disease	onset	in	immigrant	populations.	For	
example,	this	approach	may	help	to	resolve	enigmas	such	as	the	“Hispanic	Paradox,”	which	is	
described	as	similar	rates	of	health	outcomes	(including	infant	mortality,	life-expectancy,	and	
mortality	from	CVD	and	major	types	of	cancer)	among	immigrant	Hispanic	populations	
compared	to	whites,	despite	lower	socioeconomic	status	[Markides	and	Coreil,	1986].	This	
effect	dissipates	with	acculturation	[Burgos	et	al.,	2005].	Taking	an	exposome	approach	would	
incorporate	previous	observations	of	differences	in	early-life	nutrients,	chemical	exposures,	
stressogens,	and	non-chemical	stressors	into	a	single	study,	providing	a	more	comprehensive	
assessment	of	exposure.		

Another	exemplary	population	for	exposomics	is	the	“South	Asian	Phenotype”	of	
diabetes.	This	group	is	deserving	of	further	investigation	as	South	Asians	are	at	4-fold	higher	
risk	of	type	2	diabetes	(T2D)	as	compared	to	Caucasian	populations	and	begin	to	obtain	insulin	
resistance	at	a	relatively	lower	BMI	and	younger	age	of	onset	than	Caucasians	(reviewed	in	
[Bakker	et	al.,	2013]).	While	there	has	been	individual	studies	to	examine	effects	of	low-birth	
weight,	diet,	chemical	exposure,	the	in	utero	environment	,	and	even	mitochondrial	activity	in	
relation	to	T2D	(reviewed	in	[Bakker	et	al.,	2013]),	an	exposomics	approach	would	take	all	these	
factors	into	account	to	explain	this	unique	phenotype	in	these	immigrant	populations.		

We	are	currently	pursuing	exposomic	studies	in	both	Hispanic	and	Indian	populations.		
Specifically,	our	two	study	populations	of	interest	are	1)	a	case-control	subset	of	foreign-born	
and	native	Mexican	American	females	from	the	San	Francisco	Bay	Area	Breast	Cancer	Study,	
comprised	of	5,000	Hispanics,	African-Americans,	and	non-Hispanic	whites	2)	a	cross-sectional	
study	of	Asian	Indian	immigrants	and	native	European	whites	residing	in	Greater	London	and	
nested	within	a	continuing	cohort,	called	the	London	Life	Sciences	Prospective	Population	
(LOLIPOP)	Study.	While	distinct	outcomes	(breast	cancer	versus	type	II	diabetes)	and	
populations	are	considered	in	these	two	studies,	the	exposomics	methodology	is	similar	for	
both.	Improved	understanding	of	the	role	of	endogenous	and	exogenous	compounds	on	
endocrine	response	is	imperative	for	both	breast	cancer	and	diabetes.		We	will	examine	
hormone	receptor	activation	of	all	small	molecules	in	the	serum	using	luciferase	reporter	
bioassays.	Then	we	will	profile	subjects	with	extremes	of	activity	by	untargeted	high-resolution	
mass	spectrometry	(HRMS)	of	small	molecules	in	the	serum	to	determine	which	chromatogram	
peaks	may	be	responsible	for	the	widely-differing	levels	of	receptor	activity	and	are	associated	
with	disease	onset.		

For	both	of	these	studies,	significant	inheritable	findings	have	already	led	to	exciting	
progress	in	the	respective	disease	fields.	For	the	Latina	population	study,	a	protective	SNP	
variant	was	identified	5’	of	the	estrogen	receptor	1	gene	in	those	of	Indigenous	American	
descent	[Fejerman	et	al.,	2014].		For	the	LOLIPOP	cohort,	six	unique	genetic	variant	loci	in	six	
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separate	genes	reported	specifically	for	Asian	Indians—	three	genes	which	were	directly	linked	
to	insulin	sensitivity	and	pancreatic	beta-cell	function	[Kooner	et	al.,	2011].	Given	these	strong	
inheritable	components	of	disease	within	these	susceptible	sample	populations,	Genome	x	
Exposome	interactions	will	be	of	great	interest	once	we	obtain	exposomics	data.			

	
Use	of	Strategies	for	Genomics	Analysis	to	Inform	Exposomics	Analysis	

Overall,	as	genomics	is	the	oldest	and	most	advanced	omics	field,	similar	strategies	
employed	for	GWAS	studies	could	be	applied	to	exposomics.	For	example,	the	ease	of	genome	
sequencing	today	has	facilitated	the	study	of	pleitrophy,	defined	as	a	single	locus	being	
responsible	for	multiple	phenotypic	traits.	This	is	an	important	concept	in	studying	inheritability	
of	complex	diseases	(e.g.,	mental	disorders,	metabolic	syndrome,	and	cancers)(reviewed	in	
[Yang	et	al.,	2015]).		Moreover,	pleitrophy	in	genomics	can	lend	to	novel	findings	of	differences	
in	environmental	exposures.	In	a	recent	study	using	VARIMED	(VARiants	Informing	MEDicine),	a	
manually	curated	database	of	disease-SNP	associations,	an	association	was	found	between	
gene	variants	in	three	genes,	gastric	cancer	and	serum	magnesium	levels	[Li	et	al.,	2014].	In	a	
follow-up	assessment	of	medical	records,	the	magnesium	levels	were	altered	1-year	prior	to	
gastric	diagnosis.	We	must	consider	how	individual	chemicals	can	have	multiple	targets	in	the	
body	simultaneously	and	can	increase	risk	of	multiple	phenotypic	outcomes.	Improved	
databases,	such	as	ToxCast,	that	provide	evidence	of	the	relationships	between	chemical	
exposures	and	phenotypic	traits	will	help	guide	the	direction	of	appropriate	chemical	analysis	in	
exposomics	research.	

As	most	chronic	illnesses	are	multi-factorial,	it	is	expected	that	multiple	exposures	may	
be	involved	with	disease	onset.	The	idea	that	particular	exposures	can	be	“inherited”	together	
is	an	important	concept	that	is	likely	to	be	specific	per	population.	In	the	analysis	phase	it	is	
important	to	consider	the	similarities	of	particular	chemicals	in	structure	and	mechanisms	of	
actions	against	a	given	biological	target,	thus	simplifying	the	combined	effects	of	many	
exposures.	Patel	et	al	demonstrated	correlations	between	particular	exposures	and	the	
importance	of	recognizing	these	clusters	[Chirag	J	Patel	and	Arjun	K	Manrai,	2014].	The	paper	
draws	an	analogy	to	linkage	disequilibrium	of	the	genetic	code,	and	how	we	must	not	think	of	
every	SNP	as	unique.	This	comparison	could	be	expanded	upon	in	consideration	of	other	traits	
at	the	community	level,	including	social	determinants	of	health	as	those	described	by	Juarez	et	
al.	[Juarez	et	al.,	2014]	
	
Conclusions	and	Recommendations	

Under	the	exposome	paradigm	all	non-genetic	factors	contributing	to	disease	are	
considered	to	be	‘environmental’	including	industrial	chemicals,	drugs,	infectious	agents	and	
psycho-social	stress.	It	is	perhaps	best	to	consider	these	as	environmental	stressors.	
Exposomics	is	the	comprehensive	analysis	of	exposure	to	all	environmental	stressors	and	
should	yield	a	more	thorough	understanding	of	chronic	disease	development.	Since	exposomics	
can	be	performed	at	the	individual	as	well	as	the	population	level	it	could	have	a	broad	impact	
on	personalized	preventative	medicine,	policy	changes,	and	our	understanding	of	disease	
mechanisms	(Figure	3).	 	
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Exposomics	can	also	be	used	in	the	context	of	cumulative	risk	assessment.	Since	the	
goal	of	cumulative	risk	assessment	is	to	analyze,	characterize,	and	quantify	the	combined	risks	
to	health	or	the	environment	from	exposures	to	multiple	agents	or	stressors,	it	seems	that	
exposomics	is	perfectly	poised	to	advance	this	important	area	of	environmental	health	science.	
We	should	therefore	develop	and	apply	exposomics	to	issue	of	cumulative	risk	and	support	
development	of	tools	for	exposomic	analysis.		We	should	also	begin	to	engage	impacted	
communities	and	develop	the	public	health	exposome	concept	of	Juarez	and	others.	A	first	step	
may	be	to	apply	exposomics	to	vulnerable	populations	already	studied	by	more	conventional	
cumulative	risk	approaches.	Moreover,	inferences	made	from	these	exposomics	studies	within	
the	context	of	cumulative	risk	assessment	may	be	translated	to	policymakers	for	promoting	
change	in	environmental	exposure	regulations.	

Exposomics	allows	us	to	study	interactions	between	chronic	stress	and	environmental	
chemicals	and	to	discover	environmental	chemicals	that	may	disrupt	stress	response	pathways.	
We	have	named	such	chemicals	‘stressogens’	as	they	have	the	ability	to	influence	how	our	
bodies	respond	to	stress.	For	example,	exploring	the	role	of	environmental	exposures	and	
chronic	stress	in	pre-term	delivery	may	be	an	interesting	topic	for	investigation	by	an	
exposomic	approach.	We	further	conclude	that	susceptible	groups	(migrants,	low	
socioeconomic	groups	with	high	environmental	exposures,	pregnant	women)	should	be	the	
study	populations	of	interest	for	exposomics.	Physicians	who	work	with	these	populations	
nationwide	and	worldwide	can	use	exposomics	to	work	towards	earlier	identification	of	high-
risk	individuals	and	communities	and	ultimately	disease	prevention.		

Finally,	we	highlight	the	importance	of	not	"reinventing	the	wheel"	when	it	comes	to	
analysis	of	large	amounts	of	data	that	will	clearly	be	generated	by	exposomics	studies.	
Collaboration	with	bioinformaticists	and	biostatisticians	skilled	in	analyzing	genomics	data	and	
other	patterns	will	be	essential.	This	is	an	exciting	time	for	scientific	collaboration	across	
disciplines,	and	using	exposomics	research	may	be	transformative	in	our	understanding	of	the	
causes	of	adverse	health	outcomes	in	human	populations.	
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Tables	and	Figures	

Figure	1.	Cumulative	Risk	Framework	including	the	Exposome		

(based	on	Morello-Frosch	&	Shenassa,	EHP	114,	1150,	2006)	
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Figure	2.	Bioassay	modeling	disrupted	glucocorticoid	receptor	(GR)	signaling.	Cortisol	is	a	GR	
agonist.	RU486	is	a	chemical	antagonist	that	inhibits	cortisol	activation	of	GR.	The	box	
represents	the	endogenous	cortisol	range	of	193-690nM.	Environmental	stressogens	may	act	as	
an	agonist	like	cortisol	or	as	antagonists	like	RU486	
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Figure	3.	How	Exposomics	Could	Contribute	to	Disease	Prevention	
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Table	1.	Exposomics	in	the	context	of	the	“Public	Health	Exposome”	[Juarez	et	al.,	2014]	
Environment	
Type	 Examples	 Biological	Response	 Health	Impact	

Natural	
• Quality	of	air,	water,	soil,	

food	
• Chemical	contamination	

• Inflammation,	reactive	
oxygen	species,	
protein/DNA	adducts,	

• Methylation	and	gene	
expression	changes	

Chronic	diseases	
including	cancer	and	
diabetes	

Built	

• Quality	of	workplace	and	
housing	

• Presence	of	educational	
centers,	places	of	worship,	
playgrounds	

• Access	to	fresh	produce,	
commercial	businesses,	
public	transportation,	
greenery	

• Proximity	to	roadways	

• Increased	responsiveness	
to	cortisol	and	
“stressogen”	on	the	
glucocorticoid	receptor	

• Changes	in	sex	hormone	
levels	and	receptor	
responses	

Stress	and	chronic	
health	issues	induced	
by	poor	living	quality,	
and	lack	of	resources	
and	social	interaction	

Social	

• Rates	of	discrimination,	
poverty,	crime,	violence,	
unemployment,	
gentrification,	de	facto	
segregation	

• Access	to	capital,	loans,	
social	services,	law	
enforcement,	education,	
and	health	care	

• Increased	adrenaline,	
resting	heart	rate,	and	
blood	pressure	
(vasoconstriction)	

• Altered	brain	function,	
structure	and	plasticity		

• Increased	pro-
inflammatory	cytokine	
secretion		

Psychological	effects	
due	to	unsafe	settings	
and	turbulent	
activities	near	the	
home	coupled	with	a	
lack	of	economic	and	
community	support	

Policy	

• impacts	of	state	and	
federal	regulations	and	
laws		

• restrictive	city	ordinances	
• local	rules	
• voting	rights		
• housing	laws	
• evident	corruption		
• voice	within	town	council		

• Changes	in	
concentrations	of	
neurotransmitters	(i.e.	
dopamine,	serotonin,	
GABA)	

Emotional	insecurity	
and	feelings	of	
hopelessness	due	to	
inequality,	
disenfranchisement	
and	lack	of	political	
representation		
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Table	2.	Current	techniques	for	exposomics	
• Metabolomics:	~30,000	small	molecules	in	untargeted	analysis;	Targeted	analysis	of	

100-500	compounds.	
• Targeted	mass	spectrometry:	Can	measure	low	levels	of	environmental	pollutants	
• Adductomics:	Measures	electrophiles	binding	to	blood	proteins	
• Hormone	receptor	activation	in	cell	based	assays:	Measure	endocrine	disruptors		
• AhR	cell	based	assay:	Measures	totality	of	persistent	organic	pollutants	(POPs)	and	

short-term	transient	activators	
• Mass	spectrometry	and	speciation	of	metals	:	~20	easily	measured	
• Antibody	arrays	and	subtractive	sequencing:	Measures	current	and	past	exposure	to	

infectious	agents	
• Assays	of	telomere	length,	telomerase	activity,	CD28	cells,	cortisol,	amylase:	Measures	

stress		
• Oxidative	stress	markers:	isoprostanes	etc.	(Panel)	
• Markers	of	inflammation:	cytokines,	C-reactive	protein	(Panel)	
• Early	biomarkers	of	response/resilience:	transcriptome,	methylome,	cellular	immune	

response,	etc.	
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ABSTRACT	
Context:	Rates	of	type	II	diabetes	(T2D)	have	increased	dramatically	throughout	the	world	in	the	
past	30	years,	yet	there	is	a	disproportionately	higher	prevalence	of	T2D	in	Asian	Indians.	
Unique	heritable	traits,	dietary	choices,	and	behavioral	changes	in	this	population	only	partially	
contribute	to	their	increased	risk	of	T2D.	Environmental	exposures	have	not	been	studied	in	
Asian	Indians	as	a	plausible	explanation	despite	growing	evidence	of	an	association	between	
chemical	exposures,	particularly	organochlorine	pesticides	(OCPs),	and	T2D.	
Hypothesis:	Levels	of	OCPs	detected	in	blood	are	higher	in	Asian	Indian	immigrants	than	
European	whites	residing	in	Greater	London,	UK,	and	these	increased	OCP	concentrations	
contribute	to	elevated	T2D	risk.	
Design:	A	nested	case-control	study	of	Asian	Indians	and	European	whites	enrolled	in	the	
London	Life	Sciences	Population	(LOLIPOP)	Study	cohort.		
Setting	and	Participants:	Tamils	mostly	from	Sri	Lanka,	Telugus	originally	from	Southern	India,	
and	European	whites	from	England,	were	recruited	for	blood	collection	at	Ealing	Hospital	in	
2012.	Biometric,	clinical,	and	survey	data	was	also	collected.	
Main	Outcome	Measure:	Subjects	with	fasting-blood	glucose	≥126	mg/dL	(≥7	mmol/L)	were	
considered	diabetic.		
Results:	Tamils	had	approximately	3-9-fold	higher	levels	of	OCPs	and	Telugus	had	9-30-fold	
higher	levels	as	compared	to	European	whites.	Odds	of	exposure	to	higher	levels	of	p,p’-
Dichlorodiphenyldichloroethylene	(p,p’-DDE)	was	significantly	greater	in	Asian	Indians	with	T2D	
than	controls,	OR=	7.00	(2.22,	22.06	95%	CI).	Similarly,	odds	of	higher	β-hexachlorhexane	(β-
HCH)	levels	were	significantly	greater	in	the	Tamils	with	T2D	than	controls,	OR=	9.35	(2.43,	
35.97	95%CI).	
Conclusions:	Asian	Indians	have	a	significantly	higher	body	burden	of	OCPs	than	European	
whites	and	high	p,p’-DDE	and	β-HCH	concentrations	are	associated	with	T2D	in	this	population.	
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Introduction	
	

There	are	almost	70	million	adults	living	with	diabetes	in	India	(9-10%	prevalence),	and	
approximately	90%	of	these	cases	are	type	II	diabetes	(T2D)	[1].	Rates	of	T2D	are	rising	in	Asian	
Indian	diaspora	populations	too,	including	those	in	the	UK	[2–4].	As	compared	to	European	
white	populations,	Asian	Indians	have	2-3-fold	higher	rates	of	T2D	[2–4].	Diabetes	develops	in	
Asian	Indians	at	relatively	lower	body	weight,	blood	lipid	level,	and	age	compared	to	other	
racial	groups,	yet	known	risk	factors	cannot	fully	explain	these	differences	in	risk.	While	there	is	
a	proposed	familial	inheritance	of	glucose	dysregulation	and	insulin	resistance	in	Asian	Indians	
[5],	little	T2D	risk	has	been	attributed	to	genetic	polymorphisms	in	Indians	native	to	India	and	
within	the	diaspora	population	in	the	UK	[6,7].	Furthermore,	no	major	differences	have	been	
found	in	SNPs	associated	with	T2D	in	Asian	Indians	versus	Europeans	[8].	Other	non-genetic	
factors,	such	as	effects	of	rapid	urbanization,	malnutrition	in	utero,	and	psychosocial	stress,	
have	been	considered	as	partially	responsible	for	the	accelerated	incidence	of	T2D	in	Indians	
[9].	Environmental	exposures,	such	as	a	number	of	persistent	organic	pollutants	(POPs),	have	
been	associated	with	T2D	[10],	but	have	not	been	explored	as	risk	factors	of	T2D	in	Asian	
Indians	and	may	shed	light	on	the	high	uncharacterized	susceptibility	of	this	population.	

The	current	case-control	study	examines	differences	in	exposure	to	persistent	organic	
pollutants	(POPs)	within	diabetic	and	healthy	Asian	Indian	immigrants	as	compared	to	
European	whites.	The	London	Life	Sciences	Prospective	Population	Study	(abbreviated	as	
“LOLIPOP”),	a	cohort	that	includes	Asian	Indian	immigrants	and	European	whites	residing	in	
West	London,	is	used	as	our	study	population.	Several	genetic	and	epigenetic	studies	of	T2D	
susceptibility	have	been	performed	previously	on	the	LOLIPOP	cohort	[6,11,12],	however,	
environmental	exposures	associated	with	T2D	have	not	yet	been	examined	in	this	population.		
Given	the	unusually	high	risk	to	insulin	resistance	in	Asian	Indian	immigrants	in	the	UK	and	the	
potentially	high	level	of	exposure	to	POPs	while	living	in	India,	investigating	the	relationship	
between	POPs	blood	levels	and	T2D	is	warranted.	

We	describe	a	novel	method	and	strategy	to	assess	exposure	to	specific	POPs	of	interest	
within	Asian	Indian	immigrants	that	may	be	related	to	T2D.	As	numerous	POPs	have	been	
associated	with	insulin	resistance	and	T2D	in	other	populations	[10],	it	is	difficult	to	determine	a	
priori	which	compounds	are	of	greatest	importance	to	measure	with	respect	to	T2D	risk	in	a	
given	sub-group.	Therefore,	we	first	analyzed	66	POPs,	representative	of	six	different	chemical	
classes,	using	small	volumes	of	human	plasma	samples,	to	broaden	our	search	for	
environmental	exposures	associated	with	T2D	in	Asian	Indians.	This	semi-targeted	method	can	
help	to	define	a	population’s	“exposure	fingerprint”	for	tens	to	hundreds	of	analytes	and	help	
choose	the	best	candidates	for	further	analysis.	In	our	larger	follow-up	study,	we	made	
comparisons	of	candidate	POPs	between	Asian	Indian	immigrants	and	European	whites	with-	
and	without-	clinically	diagnosed	T2D.	We	observed	higher	exposure	to	organochlorine	
pesticides	(OCPs)	in	Asian	Indian	immigrants	compared	to	European	whites	and	found	strong	
associations	between	T2D	and	OCP	concentrations	in	Asian	Indians.		
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Materials	and	Methods	
Human	Subjects	
	The	LOLIPOP	study	was	established	in	2002	and	is	a	prospective	cohort	comprised	of	>24,000	
Asian	Indians	and	European	whites	living	in	West	London.	Details	of	the	study	are	outlined	
previously	[13].	Adult	(>21	years)	volunteers,	of	mostly	Telugu	or	Sri	Lankan	Tamil	descent,	
were	newly	recruited	for	the	LOLIPOP	study	in	2012,	per	request	by	Corriell’s	1000	Genome	
Project	[http://www.1000genomes.org/].	Tamils	immigrated	an	average	of	20	years	ago,	while	
Telugus	immigrated	an	average	of	12	years	ago.	For	purposes	of	comparison,	we	also	obtained	
blood	samples	from	European	white	volunteers	of	the	LOLIPOP	study	(n=	6	cases	and	n=	72	
controls).	Diabetic	cases	were	defined	as	subjects	with	fasting-blood	glucose	>7	mmol/L	at	the	
time	of	blood	collection.	In	our	initial	pilot	study,	66	POPs	were	screened	in	plasma	samples	
from	24	Asian	Indian	T2D	cases	and	25	healthy	controls,	frequency	matched	on	age,	sex,	
proportion	of	Telugus,	smoking	status,	and	WHR	(Table	S1).	Differences	observed	between	
cases	and	controls	and	between	ethnic	groups	were	followed-up	in	a	larger	study	that	included;	
the	pilot	samples	(N=49),	more	Tamil	and	Telugu	controls	(N=71),	European	white	controls	
(N=72),	and	European	white	cases	(N=6).	There	were	a	limited	number	of	T2D	cases	in	this	
study	due	to	the	cross-sectional	nature	of	our	original	sampling	method.	Therefore,	the	number	
of	healthy	controls	was	increased	to	maximize	the	statistical	power	to	detect	differences	
between	the	diseased	and	healthy	sub-populations.	The	healthy	controls	in	the	follow-up	study	
were	frequency-matched	for	age	and	sex,	both	between	the	European	whites	and	Asian	Indians	
as	well	as	between	the	Telugus	and	Tamils	in	order	to	make	comparisons	in	POPs	
concentrations	between	these	different	groups.		
	
Mass	Spectrometry	for	Persistent	Organic	Pollutants	

A	targeted	method	was	developed	for	the	quantitative	analysis	of	66	POPs	(analytes)	in	
200	µL	of	plasma.	Traditional	methods	for	POPs	measurements	require	larger	volumes	(5-10	
mL)	of	plasma	[14].	However	using	a	sensitive	quadrupole	GC-MS/MS	system	we	reduced	these	
volume	requirements	and	still	obtained	comparable	detection	limits.	In	the	pilot,	66	POPs	(15	
polycyclic	aromatic	hydrocarbons,	12	dioxin-like	polychlorinated	biphenyls,	11	polybrominated	
diphenylethers,	18	organochlorine	pesticides,	5	dioxins	and	5	furans)	were	measured	in	plasma	
samples	from	49	subjects.	For	the	follow-up	study,	a	subset	of	DDT	compounds,	HCH	
compounds,	and	PCBs	were	measured.	This	reduced	list	included:	α-hexachlorohexane	(α-HCH),	
β-HCH,	γ-HCH,	o,p’-	Dichlorodiphenyldichloroethane	(DDD),	o,p’-	
Dichlorodiphenyldichloroethylene	(DDE),	o,p’-	dichlorodiphenyltrichloroethane	(DDT),	p,p’-
DDD,	p,p’-DDE,	p,p’-DDT,	polychlorinated	biphenyl-105	(PCB-105),	PCB-114,	PCB-118,	PCB-123,	
PCB-156,	PCB-157,	PCB-167	and,	PCB-189	(AccuStandard,	Inc.,	New	Haven,	CT).	Plasma	was	
extracted	in	four	batches	of	50	samples	each,	using	chemical	denaturation,	liquid-liquid	
extraction,	solid-phase	cleanup	and	reconstitution	with	hexanes.	To	account	for	sample	
variability,	a	pooled	reference	sample	was	extracted	in	each	batch,	alongside	the	other	subject	
samples,	and	measured	at	regular	time	points	throughout	the	analyses.	An	Agilent	(Santa	Clara,	
CA)	7890B	GC	coupled	to	an	Agilent	7000C	GC-triple	quadrupole	mass	spectrometer	operated	
in	electron	impact	(EI)	multiple	reaction	monitoring	(MRM)	mode,	was	used	for	the	analyses.	
System	performance	and	precision	were	monitored	with	calibrators	at	7	concentration	levels	



	
	

25	
	

for	each	analyte.	Further	details	regarding	sample	preparation,	extraction,	and	measurement	
by	MS/MS	for	the	pilot	and	follow-up	are	described	in	Supplementary	Methods.	

Quantitative	analysis	was	performed	using	Agilent	MassHunter	software	and	calibration	
curves	were	constructed	using	the	relative	analyte	response	(calculated	area	of	analyte	/	
calculated	area	of	internal	standard).	These	normalized	peak-areas	were	converted	to	
concentration	(ng/mL)	using	the	known	concentrations	of	the	standard	curve	calibrators	from	
each	extraction	batch.	Concentrations	(ng/mL)	were	converted	to	lipid-adjusted	values	by	
calculating	total	lipids	using	the	available	clinical	lipid	profile	measurements	and	the	following	
formula:	Total	lipids	=	(2.27	×	total	cholesterol)	+	triglyceride	+	0.623	[15].	The		MDL/	√2		value	
was	substituted	when	the	analyte	concentration	was	<MDL,	[16].		

	
Statistical	Analysis	

To	assess	the	association	of	individual	POPs	with	T2D,	exposure	status	was	divided	into	two	
groups	based	on	the	50th-percentile	of	each	POP	concentration	for	the	Asian	Indian	subjects	
(N=120)	and	white	subjects	(N=78).	Logistic	regression	models	were	performed	to	obtain	
unadjusted	and	adjusted	odds	ratios	of	T2D	given	exposure	above	the	50th	percentile	for	each	
POP.	At	times	this	was	not	possible	because	all	cases	of	T2D	fell	above	the	50th	percentile.	For	
analyte	concentrations	in	ng/mL	units,	triglycerides	and	cholesterol	were	included	as	covariates	
in	the	regression	model.	(Other	adjustments	considered	in	multivariable	models	include	the	
variables	for	age,	WHR,	SBP,	sex,	smoking	status,	and	alcohol	use.	Given	the	small	sample	size	
of	cases,	these	were	not	reported.)	P-values	for	the	2x2	contingency	tables	of	exposed	versus	
diseased	were	obtained	using	Fisher’s	exact	t-test.	When	appropriate,	this	same	analysis	was	
completed	for	Telugu	(N=47)	and	Tamil	(N=73)	subsets.		

Within	the	whole	sample	population,	POPs	levels	were	correlated	with	each	other.	
Spearman	correlation	coefficients	were	calculated	for	each	pair	of	POPs	using	the	entire	N=198.	
All	statistical	analyses	were	performed	using	R	software.	
	
Results	

We	used	a	targeted	approach	to	screen	66	POPs	from	five	chemical	classes	in	a	pilot	study	
of	Asian	Indian	immigrants	(N=49).	A	total	of	27	of	the	66	POPs	were	detected	in	the	plasma	of	
at	least	10	subjects	in	the	pilot,	with	limits	of	detection	as	low	as	0.1	ng/mL	(Supplementary	
Table	S2).	We	initially	observed	higher	p,p’-DDE	levels	in	T2D	cases	versus	controls	and	higher	
β-HCH	levels	in	Telugus	versus	Tamils.		PCB	concentrations	were	relatively	constant	across	
comparison	groups,	and	were	therefore	designated	as	the	negative	control	analyte	(not	
associated	with	case	versus	control	status).	A	follow-up	study	in	a	larger	sample	size	was	
conducted	on	three	chemical	classes	(DDTs,	HCHs	and	PCBs).		

A	total	of	198	Asian	Indian	immigrant	and	European	whites	were	selected	for	follow-up	
from	375	of	the	blood	samples	collected	in	this	cross-sectional	study.	This	included	repeated	
measures	from	the	original	pilot,	additional	Asian	Indian	control	subjects	(both	Tamils	and	
Telugus),	and	European	white	subjects	as	a	comparison	group.	The	baseline	characteristics	for	
these	groups	are	described	in	Table	1,	subdivided	into	T2D	cases	and	controls.	Of	note,	79%	of	
the	Asian	Indians	and	65%	of	the	whites	had	“abdominal	obesity”,	defined	by	ethnicity-specific	
cut-offs	of	waist	circumference	[17].	Age,	WHR,	triglycerides,	cholesterol,	LDLs	and	systolic	
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blood	pressure	(SBP)	were	higher	in	the	Indian	T2D	cases	versus	the	healthy	controls	(with	
similar	trends	seen	for	the	European	whites).	These	differences	in	physical	characteristics	were	
considered	as	covariates	in	downstream	analyses.	(The	final	adjusted	models	did	not	include	
SBP	as	this	variable	was	not	a	significant	covariate	and	did	not	greatly	change	the	OR	for	
individual	POPs	exposures.)		

The	POPs	with	the	highest	detected	concentrations	from	each	chemical	class	are	
reported	here.	The	LODs,	LOQs,	and	CVs	(based	on	a	pooled	reference	sample)	for	p,p’-DDT,	
p,p’-DDE,	β-HCH,	and	PCB-118	were	calculated,	as	well	as	the	median	and	ranges	of	
concentrations	for	each	analyte	within	the	entire	sample	population	(in	ng/mL)	(Table	S3).	
Differences	in	POP	concentrations	were	observed	between	healthy	Asian	Indian	immigrants	
versus	European	whites	(Supplementary	Figure	S1).	The	median	concentrations	of	p,p’-DDE	and	
p,p’-DDT	in	control	subjects	were	over	8-fold	higher	in	healthy	Asian	Indians	(median;	535.87	
and	17.65	ng/g-lipid	for	p,p’-DDE	and	p,p’-DDT,	respectively)	than	in	healthy	whites	(median;	
61.26	and	2.08	ng/g-lipid	for	p,p’-DDE	and	p,p’-DDT,	respectively)	while	PCB-118	concentrations	
were	similar	in	the	two	groups	(median;	4.51	for	Asian	Indians	and	3.94	ng/g-lipid	for	whites).	
β-HCH	concentrations	in	healthy	controls	were	3-fold	higher	in	Tamil	control	subjects	(36.73	
ng/g-lipid)	and	30-fold	higher	in	Telugus	(365.32	ng/g-lipid)	than	in	white	control	subjects	
(12.86	ng/g-lipid).	Similar	fold-change	differences	were	also	found	in	ng/mL	units..		

Differences	in	POPs	concentrations	were	also	observed	within	the	Asian	Indian	sub-
populations.	β-HCH	was	higher	in	Telugus	than	Tamils	in	the	pilot	study,	and	was	confirmed	
follow-up	study,	with	approximately	10-fold	higher	levels	of	β-HCH	observed	in	Telugu	than	
Tamils	(365.32	and	36.73	ng/g-lipid,	respectively).	The	p,p’-DDT,	p,p’-DDE,	and	PCB-118	
concentrations	were	more	similar	between	Tamils	and	Telugus	(Supplementary	Figure	S1	and	
Supplementary	Table	S4a	and	S4b).	DDT	concentrations	were	2-fold	higher	in	Telugus	than	
Tamils	(median;	27.01	and	13.00	ng/g-lipid,	respectively),	and	the	PCB-118	concentrations	were	
2-fold	higher	in	Tamils	than	Telugus	(6.06	and	3.23	ng/g-lipid,	respectively).	

The	associations	between	the	exposure	to	individual	POPs	and	T2D	status	are	also	
reported.	Within	each	group	strata	(i.e.,	Asian	Indians	or	whites),	exposure	to	each	POP	analyte	
was	dichotomized	(above	versus	below	median	value),	and	logistic	regression	was	performed	to	
estimate	the	crude	or	adjusted	ORs	for	exposure	to	POPs	in	T2D	subjects	versus	controls	(Table	
2a	and	2b).	In	Asian	Indians,	we	observed	an	increased	odds	of	p,p’-DDE	serum	concentrations	
above	the	50th	percentile	in	T2D	subjects,	OR=	7.00	(2.22,	22.06	95%	CI).	In	whites,	all	T2D	cases	
had	p,p’-DDE	concentrations	above	the	50th	percentile	in	ng/mL	units	(Supplementary	Figure	
S2).	As	for	PCB-118,	the	OR	of	high	exposure	in	Asian	Indian	T2D	cases	versus	controls	was	only	
significant	in	the	unadjusted	model	OR	=	2.99	(1.13,	7.88).	

We	assessed	associations	between	each	POP	analyte	and	T2D	after	stratifying	the	Asian	
Indians	into	Tamil	and	Telugu	ethnic	groups.	An	increased	odds,	OR=	9.35	(2.43,	35.97	95%	CI),	
of	β-HCH	concentrations	above	the	50th	percentile	was	observed	in	Tamils	with	T2D	compared	
to	healthy	subjects	(Table	3a)	and	similar	a	OR	was	observed	when	using	ng/mL	units	(Table	
3b).	Five	of	the	Tamils	were	from	mainland	India	(and	had	relatively	higher	concentrations	of	β-
HCH	compared	to	other	Tamils).	Upon	removal	of	these	Tamils	and	repeating	the	analysis,	the	
odds	of	relatively	high	exposure	to	β-HCH	in	Tamils	with	T2D	increased	dramatically	compared	
to	controls,	ORadj=	22.94	(3.0,	175.33).	Odds	ratios	could	not	be	determined	for	the	Telugu	
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population	because	all	T2D	cases	were	in	the	high-exposure	group	(this	was	also	true	for	whites	
in	the	lipid-unadjusted	ng/mL	units)	(Supplementary	Figure	S2).	When	modeling	the	
relationship	between	p,p’-DDT,	p,p’-DDE	or	PCB-118	and	T2D	in	Tamils	or	Telugus	alone,	no	
significant	OR	was	found	after	adjusting	for	covariates	in	the	model	(Supplementary	Table	S4a	
and	S4b).			

Some	of	the	POPs	in	this	study	were	highly	correlated	with	each	other.	Levels	of	p,p’-
DDT	and	p,p’-DDE	were	highly	correlated	(r=0.77,	p<0.001);	the	β-HCH	levels	were	correlated	
with	the	DDT	compounds	(r=0.83,	p<0.001	for	DDT,	r=0.72,	p<0.001	DDE);	and	yet	PCB-118	was	
poorly	correlated	with	the	OCPs	(Supplementary	Figure	S3).			

	
Discussion	

Methods	were	implemented	to	screen	66	POPs	and	characterize	the	“exposure	fingerprint”	
of	Asian	Indian	immigrants	in	a	pilot	study.	The	distributions	of	POPs	levels	in	T2D	cases	versus	
controls	and	among	Asian	Indian	immigrant	ethnic	groups	could	not	be	predicted	a	priori	
because	studies	had	not	previously	been	conducted	on	this	population.	Based	on	the	pilot	
results,	we	were	able	to	power	our	follow-up	study	to	examine	differences	in	POPs	of	interest	
between	cases	versus	controls	and	among	Tamils,	Telugus	and	whites	in	a	larger	sample	
population.		

In	the	follow-up	study,	we	observed	Asian	Indian	immigrants	in	London	had	much	higher	
concentrations	of	OCPs	than	their	European	white	counterparts.	DDT	and	DDE	concentrations	
were	over	8-fold	higher	in	Asian	Indians	than	European	whites	living	in	West	London.	
Additionally,	β-HCH	concentrations	were	3-fold	higher	in	Tamils	and	up	to	30-fold	higher	in	
Telugus	compared	to	European	whites.	Concentrations	observed	in	blood	samples	of	Asian	
Indians	immigrants	collected	from	this	study	are	lower	than	previously	reported	in	India	[18],	
yet	still	higher	in	comparison	to	European	white	populations	in	the	UK	[19].	This	is	the	first	
study	to	show	differences	in	exposure	levels	are	sustained	even	10-20	years	after	immigration	
to	a	new,	relatively	low-exposure	environment.		
	 Asian	Indians	have	been	exposed	to	OCPs	for	longer	periods	and	at	higher	
concentrations	than	other	populations	in	Western	Europe,	where	these	legacy	compounds	
were	largely	phased	out	in	the	1970s	and	80s.	Unregulated	DDT	spraying	occurred	throughout	
India	for	agricultural	purposes	and	control	of	mosquito-borne	diseases	[18,20]	until	India	
ratified	the	Stockholm	Convention	in	2006.	Still,	India	has	the	highest	use	of	DDT	in	the	world	
[21].	Even	though	the	predicted	half-life	of	DDE	in	human	blood	is	approx.	6-7	years,	while	the	
half-life	of	the	parent	compound,	DDT,	is	2	years	[22],	both	compounds	were	above	the	LOD	for	
almost	all	of	the	subject	samples	tested	in	this	study.	Until	2012	another	pesticide,	Lindane	
(gamma-HCH),	was	heavily	applied	as	a	pesticide	alternative	to	DDT	to	control	for	locusts	in	
India	[18,20].	Lindane	is	fairly	short-lived	in	the	environment	[20],	but	the	β-isomer	(β-HCH),	an	
impurity	formed	during	production	of	Lindane,	has	a	half-life	of	7	years	in	humans	[23].	Lindane	
was	only	detected	in	75%	of	our	subject	samples	and	the	signal	was	32-fold	lower	than	β-HCH	
in	the	MS/MS	data.	Moreover,	the	β-HCH	levels	varied	greatly,	depending	on	country	of	origin	
(i.e.,	Sri	Lanka	versus	India).	

Within	Asian	Indian	ethnic	groups	Telugus	had	2-fold	higher	levels	of	p,p’-DDT	and	a	8-10-
fold	higher	levels	of	β-HCH	than	Tamils.	This	higher	concentration	of	p,p’-DDT	in	Telugus	may	
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be	due	to	their	more	recent	exposure,	as	this	sub-group	immigrated	to	the	UK	10	years	after	
Tamils	(on	average).	The	higher	concentration	of	β-HCH	in	Telugus	is	likely	due	to	the	more	
prevalent	use	of	Lindane	in	India	compared	to	Sri	Lanka.	Blood	POP	levels	are	known	to	vary	
considerably	among	individuals	living	in	different	regions	of	India	[18],	however	no	studies	have	
made	comparisons	between	Indian	(Telugu)	and	Sri	Lankan	(Tamil)	immigrants.	

Significant	associations	between	T2D	and	p,p’-DDE	and	β-HCH	exposures	were	found	in	
Asian	Indians.	The	measures	of	effect	in	this	case-control	study,	OR=	7.00	(2.22,	22.06	95%	CI)	
for	p,p’-DDE	in	Asian	Indians	and	OR=	9.35	(2.43,	35.97	95%	CI)	for	β-HCH	in	Tamils,	are	even	
higher	than	some	previously	reported	in	different	populations	from	around	the	world	[10].	
Smaller	associations	between	T2D	and	p,p’-DDE	have	been	observed	in	cross-sectional	studies	
in	Swedes	[24,25],	American	Indians	[26],	Americans	[27–31],	Koreans	[32],	Spanish	[33]	and	
Slovakians	[34]	as	well	as	in	longitudinal	studies	in	Americans	and	Swedes	[35,36].	A	link	
between	β-HCH	and	pre-existing	T2D	has	also	been	reported	in	cross-sectional	studies	
conducted	on	Mexican-Americans	[29],	the	entire	1999-2004	NHANES	sample	population	[28],	
Slovakians	[34],	Koreans	[32],	Spanish	[33],	Saudi	Arabians	[37],	and	Norwegians	[38].	Insulin	
resistance	has	been	associated	with	OCP	exposure	in	humans	as	well	[39].	Given	the	high	levels	
of	OCPs	found	in	Indian	immigrants,	future	prospective	studies	confirming	the	relationship	
between	T2D	and	OCPs	in	this	population	may	help	explain	Asian	Indians’	greater	susceptibility	
to	T2D.		

Animal	and	tissue-culture	models	provide	additional	evidence	of	mechanisms	for	
glucose	dysregulation	and	reduced	insulin	sensitivity	from	OCP	exposure.	Associations	between	
DDT	exposure	and	blood	glucose	levels	were	initially	found	in	rats	[40]	and	mice	[41]	over	forty	
years	ago.	More	recent	studies	in	mice	have	shown	acute	exposure	to	DDE	increases	fasting-
blood	glucose	levels	and	body	weight	for	7-21	days	post-treatment	[42].	Another	study	in	
female	mice	exposed	to	DDT	on	a	high-fat	diet	showed	increased	fat	mass	and	insulin	
resistance,	as	well	as	reduced	thermogenesis	[43].	Further,	pancreatic	beta-cells	chronically-
exposed	to	p,p’-DDT	or	p,p’-DDE	in	vitro	decreased	expression	of	proteins	involved	with	a	
hyperglycemia	stress	response	[44].	Additionally,	glucose	dysregulation	has	been	observed	
under	acute	treatment	of	Lindane	in	animal	and	cell	models,	yet	the	opposite	effects	were	seen	
in	vitro	vs.	in	vivo	[45].	Individual	OCPs	have	been	shown	to	affect	glucose	metabolism	in	
experimental	models,	yet	the	combined	effect	of	mixtures	on	metabolic	changes	needs	further	
elucidation.	OCPs	were	highly	correlated	in	this	sample	population	as	expected	from	other	
studies	[34].		

This	is	the	first	large	study	comparing	POP	levels	of	Asian	Indians	to	European	whites	
residing	in	a	Western	city,	representing	both	current	and	prior	exposure.	This	study	also	uses	a	
novel	method	of	measuring	representative	POPs	in	relatively	small	volumes	of	plasma.	We	
report	significant	associations	of	T2D	with	OCPs	using	both	lipid-adjusted	(ng/g-lipid)	and	
unadjusted	(ng/mL)	units.	Even	with	small	sample	sizes	of	T2D	cases,	relatively	higher	
concentrations	of	p,p’-DDE	and	β-HCH	in	diabetics	versus	healthy	control	subjects	were	
observed	in	each	subpopulation.	This	effect	was	not	seen	with	PCB-118	after	adjustment	for	
covariates	(data	not	shown),	which	had	similar	concentrations	across	all	Asian	Indians	and	
whites,	and	was	used	as	a	negative	control	analyte.	Our	finding	exemplifies	the	importance	of	
using	a	semi-targeted	exposomic	approach	to	first	screen	for	plausible	chemical	exposures	
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associated	with	T2D	in	environmentally-exposed	populations,	and	then	follow-up	on	these	
findings	with	a	larger	sample	size.	

Yet	there	were	still	several	limitations	to	this	study.	Firstly,	the	small	number	of	cases	did	
not	allow	for	rigorous	statistical	analysis	in	the	Telugu	and	white	sub-groups.	However,	the	
observed	trends	suggest	that	diabetics	have	higher	levels	of	OCPs	in	T2D	cases	versus	controls.	
High	correlation	was	observed	with	several	OCPs,	and	so	these	compounds	may	not	contribute	
independently	to	T2D	risk.	While	there	is	both	human	and	experimental	evidence	that	only	
single	classes	of	POPs,	including	PCBs,	organochlorine	pesticides,	and	PBDEs,	are	associated	
with	T2D	[10],	in	situ	models	suggest	that	all	POPs	could	also	act	through	similar	mechanisms	
[46].	Moreover,	the	risk	of	T2D	may	be	more	dependent	on	the	timing	and	dose	of	cumulative	
POPs	levels	(particularly	OCPs)	as	opposed	to	current	measurements	of	single	analytes	or	
chemical	classes.	In	the	future,	cohort	studies	on	banked	blood	samples	from	the	LOLIPOP	and	
other	studies,	such	as	the	Mediators of Atherosclerosis in South Asians Living in America 
(MASALA) cohort of Indian migrants to the US, could	be	used	to	demonstrate	exposure-disease	
temporality.		

Despite	these	limitations,	this	study	adds	to	the	growing	literature	of	positive	
epidemiological	associations	between	OCPs	and	T2D.	There	have	been	few	biomonitoring	
studies	of	OCPs	in	Asian	Indian	immigrants	to	date,	and	to	our	knowledge,	no	studies	examining	
the	relationship	between	their	high	rates	of	T2D	and	OCP	exposure.	Future	prospective	studies	
on	OCPs	in	Indians	should	focus	on	native	and	immigrant	Asian	Indians,	who	historically	had	
high	and	low	exposures	to	multiple	pesticides.	Asian	Indians	comprise	a	substantial	proportion	
of	the	world	population,	thus,	confirmation	of	the	associations	we	found	between	OCPs	and	
T2D	could	have	public	health	implications	on	a	global	scale.	
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Tables	
	
Table	1.	Sample	Population	Characteristics	

	
Whites*	

	
Asian	Indians	

	
Controls	
N=	72	 	

Cases	
N=6	

		
	

Controls	
N=96	 	

Cases	
N=24	 	

	 	 	 	
p-value	

	 	 	 	
p-value	

Males	(%)	 36		(50)	
	

6	(100)	 0.03		
	

53	(55.2)	
	

17	(70.8)	 0.25	
Smoke	(%)	 12		(16.7)	

	
0	 0.58	

	
4	(4.17)	

	
3	(12.5)	 0.14	

Drink	(%)	 43		(59.7)	
	

3	(50)	 0.69	
	

25	(26.0)	
	

5	(20.8)	 0.79	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Mean	 SD	
	

Mean	 SD	 p-value		
	

Mean	 SD	
	

Mean	 SD	 p-value	
Age	(years)	 48.49	 6.65	

	
62.15	 9.64	 <0.01	

	
48.32	 8.38	

	
56.10	 9.57	 <0.01	

SBP	(mmHg)	 122.00	 15.10	
	

138.30	 7.92	 0.03	
	

123.90	 13.50	
	

131.75	 15.15	 0.02	
DBP	(mmHg)	 76.70	 10.62	

	
84.60	 8.73	 0.07	

	
78.56	 9.13	

	
81.17	 7.79	 0.15	

BMI	(kg/m2)	 26.43	 4.55	
	

29.25	 5.29	 0.13	
	

26.52	 3.37	
	

26.14	 3.53	 0.63	
WHR		 0.89	 0.08	

	
1.02	 0.05	 <0.01	

	
0.93	 0.07	

	
0.97	 0.07	 0.01	

HDL	(mmol/L)	 1.54	 0.46	
	

1.24	 0.34	 0.10	
	

1.32	 0.32	
	

1.23	 0.36	 0.28	
LDL	(mmol/L)	 3.02	 0.84	

	
2.59	 0.63	 0.19	

	
3.36	 0.84	

	
2.16	 1.08	 <0.01	

Glucose	(mmol/L)	 4.97	 0.34	
	

7.68	 0.51	 <0.01	
	

4.83	 0.33	
	

9.02	 1.63	 <0.01	
HbA1c	(%)	 5.41	 0.30	

	
7.62	 0.99	 <0.01	

	
5.62	 0.40	

	
8.20	 1.29	 <0.01	

Chol	(mg/dl)	 195.30	 34.20	
	

188.50	 26.20	 0.69	
	

204.22	 35.35	
	

165.82	 50.94	 <0.01	
Trig	(mg/dl)	 99.40	 59.90	

	
199.10	 91.40	 <0.01	

	
120.31	 56.42	

	
167.78	 83.12	 0.01	

Years	lived	in	the	UK*	
	 	 	 	 	 	

16.33	 11.28	
	

23.955	 23.96	 12.06	
Body	fat	(%)	 30.88	 8.70	

	
32.43	 9.76	 0.68	

	
32.34	 7.75	

	
29.61	 7.89	 0.14	

*All	white	control	subjects	were	born	in	the	UK.	Three	white	T2D	cases	were	born	outside	of	the	UK.		
(One	subject	immigrated	as	an	infant,	and	two	subjects	immigrated	when	they	were	adults.)	
P-value	differences	for	whites	were	determined	by	a	permutation	exact	test.	
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Table	2a.	Exposure	characteristics	for	diabetics	versus	controls	within	ethnicity	groups	(ng/g-lipid)	

   
Controls Cases 

  Compound	
(ng/g-lipid) Population 

Exposure	
Status N	 

Median 
(Range) N 

Median 
(Range) Odds	Ratios	(95%	CI)* p-value 

p,p'-DDE 

White 
<65.12 38 39.97 

(17.65,63.37) 0 N/A 
(Inf) 0.03 

>65.12 33 93.93 
(65.12,353.30) 6 149.91 

(116.92,421.03) 

Asian	Indians 
>710.87 56 318.00 

(26.82,	705.10) 4 208.34 
(141.38,552.80) 

7.00	(2.22,	22.06) <0.001 
<710.87 40 1282.48 

(736.62,	25143.80) 20 1698.55 
(716.627,6212.58) 

p,p'-DDT 

White 
<2.14 38 1.48 

(0.64,2.14) 1 1.73 
5.59	(0.62,	50.25) 0.20 

>2.14 34 3.33 
(2.15,	70.97) 5 4.55 

(3.06,	5.92) 

Asian	Indians 
<17.61 47 11.12 

(3.91,17.57) 13 10.03 
(6.24,	16.05) 

0.8	(0.33,	1.99) 0.82 
>17.61 49 30.91 

(17.65,	316.50 11 28.91 
(17.66,	194.90) 

PCB-118 

White 
<4.56 36 3.17 

(0.89,4.52) 2 4.37 
(4.30,	4.45) 

5.61	(0.62,	50.48) 0.67 
>4.56 34 6.45 

(4.60,13.38) 4 7.36 
(5.92,22.93) 

Asian	Indians 
<4.36 53 2.66 

(0.81,4.33) 7 2.76 
(2.03,	4.22) 

2.99	(1.13,	7.88) 0.04 
>4.36 43 7.33 

(4.40,	34.21) 17 6.32 
(4.52,27.34) 

*Adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	use	did	not	change	the	effect	size	or	significance	levels	except	for		
PCB-118	for	Asian	Indians,	ORadj=2.56	(0.80,	8.16).	(The	adjusted	ORs	are	likely	inaccurate	estimates	because	of	the	small		
number	of	cases	and	are	not	reported	in	the	table.)	
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Table	2b.	Exposure	characteristics	for	diabetics	versus	controls	within	ethnicity	groups	(ng/mL)	

	 	 	
Controls	 Cases	

	 	Compound	
(ng/mL)	 Population	

Exposure	
Status	 N	

Median	
(Range)	 N	

Median	
(Range)	

Odds	Ratios	
(95%	CI)*	

p-value	

p,p'-DDE	

White	
<0.38	 38	

0.24	
(0.08,0.37)	 0	 N/A	

(Inf)	 0.03	
>0.38	 33	

0.59	
(0.38,2.18)	 6	

1.07	
(0.71,3.04)	

Asian	Indians	
<3.82	 54	

1.86	
(0.16,3.76)	 6	

2.49	
(1.18,3.79)	

5.01	(1.40,	17.99)	 0.01	
>3.82	 42	 7.54	

(3.84,145.85)	
18	 12.11	

(3.92,52.99)	

p,p'-DDT	

White	
<0.01	 39	 0.01	

(0.004,0.1)	
0	 N/A	

(Inf)	 0.03	
>0.01	 33	 0.02	

(0.01,0.32)	
6	 0.03	

(0.01,0.04)	

Asian	Indians	
<0.11	 47	 0.07	

(0.02,0.11)	
13	 0.06	

(0.03,	0.10)	
0.94	(0.29,	3.08)	 0.82	

>0.11	 49	 0.19	
(0.11,2.17)	 11	 0.24	

(0.11,	1.34)	

PCB-118	

White	
<0.03	 37	 0.02	

(0.006,0.02)	 1	 0.02	
5.87	(0.45,	76,63)	 0.20	

>0.0	
3	 33	

0.04	
(0.03,0.10)	 5	

0.05	
(0.03,0.17)	

Asian	Indians	
<0.03	 49	

0.02	
(0.006,0.02)	 11	

0.02	
(0.01,0.02)	

1.60	(0.52,	4.97)	 0.82	
>0.03	 47	

0.05	
(0.03,0.24)	 13	

0.05	
(0.03,0.12)	

*Only	adjusted	for	triglycerides	and	cholesterol	levels.		Further	adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	use	did	
not	widely	change	the	effect	size	nor	significance	levels.	(The	adjusted	ORs	are	likely	inaccurate	estimates	because	of	the	small	
number	of	cases	and	are	not	reported	in	the	table.)	
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Table	3a.	Exposure	characteristics	for	β-HCH	diabetics	versus	controls	within	ethnicity	groups	(ng/g-lipid)	

	 	 	
Controls	 Cases	

	 	Compound		
(ng/g-lipid)	 Population	

Exposure	
Status	 N	

Median	
(Range)	 N	

Median	
(Range)	

Odds	Ratios	
(95%	CI)	 p-value	

β-HCH	

White	
<12.98	 37	 8.82	

(3.18,12.97)	
1	 12.76	

5.61	(0.62,	50.48)	 0.20	
>12.98	 33	 17.6	

(13.00,36.44)	
5	 33.63	

(18.91,60.01)	

Tamil	

<50.58	 33	 27.12	
(4.63,48.98)	

3	 49.30	
(35.61,49.89)	

9.35	(2.43,	35.97)	 <0.001	
>50.58	 20	 84.61	

(50.58,541.70)	
17	 95.35	

(52.03,499.20)	

Telugu	
<369.30	 23	

272.81	
(96.86,365.42)	 0	 N/A	

(Inf)	 0.11	
>369.30	 20	 461.41	

(369.34,714.45)	
4	 535.66	

(374.28,627.60)	
	*Further	adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	use	did	not	widely	change	the	effect	size	nor		
significance	levels	except	for	Tamils,	ORadj=7.01	(1.44,	34.0).	(The	adjusted	ORs	are	likely	inaccurate	estimates		
because	of	the	small	number	of	cases	in	this	study	and	are	not	reported	in	the	table.)	
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Table	3b.	Exposure	characteristics	for	β-HCH	diabetics	versus	controls	within	ethnicity	groups	(ng/mL)	

	 	 	
Controls	 Cases	

	 	Compound	
(ng/mL)	 Population	

Exposure	
Status	 N	

Median	
(Range)	 N	

Median	
(Range)	

Odds	Ratios	
(95%	CI)*	 p-value	

β-HCH	

White	
<0.08	 38	

0.05	
(0.02,0.07)	 0	 N/A	

(Inf)	 0.03	
>0.08	 32	

0.12	
(0.08,0.26)	 6	

0.18	
(0.09,0.43)	

Tamil	

<0.31	 31	 0.16	
(0.03,0.30)	

5	 0.26	
(0.17,0.31)	

8.46	(1.65,	43.48)	 0.02	
>0.31	 22	 0.51	

(0.31,3.04)	
15	 0.50	

(0.32,2.11)	

Telugu	
<2.56	 23	

1.78	
(0.56,2.50)	 0	 N/A	

(Inf)	 0.11	
>2.56	 20	 3.13	

(2.56,4.50)	 4	 3.83	
(3.15,4.10)	

  *Only	adjusted	for	triglycerides	and	cholesterol	levels.		Further	adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	changed	
the	effect	size	value	and	the	significance	level	for	Tamils,	OR

adj
=5.72	(0.72,	45.70).	(The	adjusted	ORs	are	likely	inaccurate	estimates	

because	of	the	small	number	of	cases	and	are	not	reported	in	the	table.)	
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Supplementary	Materials	
	
Table	S1.	Study	design	for	pilot	study	of	Asian	Indian	T2D	cases	and	controls	

	
	 	

  Controls 
(n=25) 

Cases 
(n=24) p-value 

Glucose 4.88 9.38   
SexM(%) 0.56 0.72 0.38 

Age 51.82 55.67 0.31 
Telugu(%) 0.25 0.11 0.72 

Smoker (%) 0.04 0.12 0.6 
Drinker (%) 0.24 0.2 0.99 

BMI 26.4 26.57 0.87 
WHR 0.95 0.97 0.38 

Hypertension (%) 0.28 0.48 0.24 
HDL 1.32 1.22 0.33 
TG 1.6 1.86 0.28 
LDL 3.24 2.16 0.0004 
Chol 5.29 4.35 0.005 

Cases	were	defined	as	fas,ng	blood	glucose	≥7.0	mmol/L.	Cases	were	
frequency	matched	based	on	age,	sex,	WHR,	ethnicity,	and	smoking	
status.		

Table	S1.	Design	of	Study	for	Pilot	Study	of	Asian	Indian	T2D	Cases	vs.	Controls	
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Table	S2.	Frequency	of	POPs	detected	in	pilot	study	(N=49)	

	
	
	 	

Table	S2.	Frequency	of	POPs	detected	in	pilot	study	(N=49)		
PCBs	 Freq	 PAHs	 Freq	 Organocholorine	 Freq	
PCB-118	 48	 Acenaphthene	 49	 Endosulfane	II	 49	
PCB-123	 48	 Anthracene	 49	 p,p'-DDE	 49	
PCB-126	 47	 Fluoranthene	 49	 p,p'-DDT	 48	
PCB-156	 43	 Fluorene	 49	 p,p'-DDD	 46	
PCB-169	 42	 Naphthalene	 49	 Aldrin	 44	
PCB-114	 33	 Phenanthrene	 49	 Methoxychlor	 11	
PCB-167	 24	 Pyrene	 49	 beta-HCH	 48	
PCB-105	 17	 Benzo(g,h,i)perylene	 19	 delta-HCH	 0	
PCB-157	 0	 Indeno(1,2,3-cd)pyrene	 10	 alpha-HCH	 0	
PCB-77	 0	 Benzo(a)pyrene	 6	 gamma-HCH	 0	
PCB-81	 0	 Benz(a)anthracene	and	Chrysene	 4	 Heptachlor	 0	
PCB-189	 0	 Acenaphthylene	 2	 Endosulfane	I	 0	

Benzo(b)fluoranthene	 2	 Endosulfane	sulphate	 0	
BDE	 Freq	 Dibenz(a,b)anthracene	 2	 Endrin.Aldehyde	 0	
BDE-99	 49	 Benzo(k)fluoranthene	 0	 Heptachlor	Epoxide		 0	
BDE-47	 49	 Dieldrin	 0	
BDE-100	 40	 Endrin	 0	
BDE-153	 4	
BDE-154	 1	 Furans	 Freq	 Dioxin	 Freq	
BDE-66	 1	 Octachlorodibenzofuran	 1	 Octachloro.Dibenzodioxin	 2	
BDE-49	 1	 1234678-Heptachlorodibenzofuran	 0	 1234678.Heptachloro.Dibenzodioxin	 0	
BDE-28	and	BDE-33	 1	 2,3,7,8-Tetrachlorodibenzofuran	 0	 123478.Hexachloro.Dibenzodioxin	 0	
BDE-15	 0	 1,2,3,7,8-Pentachlorodibenzofuran	 0	 12378.Pentachloro.Dibenzodioxin	 0	
BDE-75	 0	 1,2,3,4,7,8-hexachlorodibenzofuran	 0	 2378.Tetrachloro.Dibenzodioxin	 0	
BDE-155	 0	
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Table	S3.	Detection	limits	and	precision	of	small-volume	method	to	detect	POPs	

	
	 	

Table	S3.	Detec-on	limits	and	precision	of	small-volume	method	to	detect	POPs.		
Based	on	Pooled	Ref	Sample		

	Compound	
Name	

MDL	
(fg	on	
column)	

LOD	
(ng/mL)	

LOQ	
(ng/mL)	

Samples	
<LOD	

Samples	
<LOQ	

Mean	
Interbatch	CV	

(%)	

Mean	
Intrabatch	CV	

(%)	

Total	Number	
Detected	(of	

N=198)	

Median,	ng/mL	
(Range,	ng/mL)	

Alpha-HCH		 8.427	 0.004	 0.042	 140	

Beta-HCH		 9.452	 0.005	 0.047	 0	 16	 6.2%	 11.2%	 196	 0.2175	
(0.01662,	4.5020)	

Gamma-HCH		 9.892	 0.005	 0.049	 153	
o,p-DDE		 1.394	 0.001	 0.007	 88	

p,p-DDE		 9.032	 0.005	 0.045	 0	 0	 11.0%	 12.7%	 197	 1.6810	
(0.0776,	145.80)	

o,p-DDD		 7.603	 0.004	 0.038	 191	
PCB123		 9.075	 0.005	 0.045	 16	

PCB118	 18.665	 0.009	 0.093	 12	 188	 13.6%	 14.2%	 196	 0.02617	
(0.00636,	0.2359)	

p,p-DDD		 56.595	 0.028	 0.283	 		 		 		 		 198	
o,p-DDT		 1.492	 0.001	 0.007	 		 		 		 		 198	
PCB114	 18.060	 0.009	 0.090	 121	
PCB105	 12.449	 0.006	 0.062	 174	

p,p-DDT		 12.788	 0.006	 0.064	 9	 107	 7.6%	 1.8%	 198	 0.0577	
(0.0042,	2.1710)	

PCB167	 8.317	 0.004	 0.042	 162	
PCB156	 11.703	 0.006	 0.059	 182	
PCB157	 16.486	 0.008	 0.082	 86	
PCB189	 16.473	 0.008	 0.082	 		 		 		 		 72	
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Table	S4a.	Exposure	characteristics	for	diabetics	versus	controls	within	ethnicity	groups	(ng/g-lipid)	

	 	 	
											Controls	 										Cases	

	Compound	
(ng/g-lipid)	 Population	 Exposure	Status	 N	

Median	
(Range)	 N	

Median	
(Range)	

Odds	Ratios	
(95%	CI)*	 p-value	

p,p'-DDE	

Tamil	
<776.90	 31	 332.4	

(26.82,	763.3)	
5	 208.5	

(141.38,	716.6)	
4.23	(1.34,	13.35)	 0.02	

>776.90	 22	 1430.0	
(776.90,25143.8)	

15	 1587.0	
(810.60,4786.0)	

Telugu	
<600.90	 23	 301.83	

(72.09,541.58)	
0	 N/A	

Inf	 0.11	
>600.90	 20	 864.34	

(600.95,5676.31)	
4	 2151.00	

(1553.72,	6212.58)	

p,p'-DDT	

Tamil	
<13.82	 27	 8.64	

(4.14,	13.00)	 9	 8.92	
(6.24,13.11)	

1.27	(0.45,	3.56)	 0.80	
>13.82	 26	

18.68	
(13.88,190.36)	 11	

23.27	
(13.82,79.84)	

Telugu	
<28.24	 22	

18.32	
(3.91,27.01)	 1	 24.33	

3.14	(0.30,	32.65)	 0.61	
>28.24	 21	

44.68	
(28.24,316.45)	 3	

131.41	
(64.67,194.89)	

PCB-118	

Tamil	
<5.97	 25	

2.73	
(0.94,	5.66)	 11	

4.80	
(2.03,	5.78)	

0.73	(0.26,	2.05)	 0.61	
>5.97	 28	 8.04	

(5.97,34.00)	
9	 9.81	

(6.32,	27.34)	

Telugu	
<3.20	 20	 2.07	

(0.81,	3.15)	
3	 2.49	

(2.35,	3.20)	
0.29	(0.03,	3.01)	 0.35	

>3.20	 23	 3.89	
(3.20,	34.21)	

1	 3.87	

*Adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	use	did	not	change	the	effect	size	or	significance	levels	except	for	p,p'-
DDE	in	Tamils,	ORadj=3.41	(0.91,	12.80).	(Adjusted	ORs	are	likely	inaccurate	estimates	because	of	the	small	number	of	cases	and	are	
not	reported	in	the	table.)	
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Table	S4b.	Exposure	characteristics	for	diabetics	versus	controls	within	ethnicity	groups	(ng/mL)*	

	 	 	
Controls	 Cases	

	Compound	
(ng/mL)	 Population	 Exposure	Status	 N	

Median	
(Range)	 N	

Median	
(Range)	

Odds	Ratios	
(95%	CI)*	 p-value	

p,p'-DDE	

Tamil	
<4.62	 29	 1.90	

(0.17,3.06)	
7	 2.86	

(1.18,3.92)	
2.53		(0.63,	10.09)	 0.20	

>4.62	 24	 8.10	
(4.62,145.85)	

13	 10.20	
(4.70,27.78)	

Telugu	
<3.69	 23	 1.65	

(0.45,3.59)	
0	 N/A	

Inf	 0.11	
>3.69	 20	 6.21	

(3.69,43.92)	
4	 15.42	

(10.03,	52.99)	

p,p'-DDT	

Tamil	
<0.08	 25	 0.05	

(0.02,0.08)	 11	 0.06	
(0.03,0.07)	

1.07	(0.28,	4.11)	 0.61	
>0.08	 28	

0.12	
(0.08,1.10)	 9	

0.13	
(0.08,0.46)	

Telugu	
<0.19	 23	

0.12	
(0.02,0.19)	 0	 N/A	

Inf	 0.11	
>0.19	 20	

0.30	
(0.19,2.17)	 4	

0.61	
(0.24,	1.34)	

PCB-118	

Tamil	
<0.04	 25	

0.019	
(0.006,0.038)	 11	

0.021	
(0.013,0.038)	

1.95	(0.47,	8.16)	 0.61	
>0.04	 28	 0.050	

(0.039,	0.236)	
9	 0.060	

(0.047,	0.116)	

Telugu	
<0.02	 21	 0.015	

(0.006,	0.020)	
2	 0.018	

(0.017,	0.019)	
15.42	(0.26,	920.59)	 0.99	

>0.02	 22	 0.026	
(0.020,0.225)	

2	 (0.026)	
(0.020,0.031)	

*Only	adjusted	for	triglycerides	and	cholesterol	levels.	Adjustment	for	age,	WHR,	sex,	smoking	status	and	alcohol	use	did	not	widely	
change	the	effect	size	nor	significance	level.	(Adjusted	ORs	are	likely	inaccurate	estimates	because	of	the	small	number	of	cases	and	
are	not	reported	in	the	table.)	
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Figure	S1.	Distribution	of	POPs	concentrations
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Figure	S2.	Exposure	concentrations	vs.	glucose	concentrations	in	cases	versus	controls	for	each	ethnicity	(dotted	line	indicates	
median	concentration	value)

	
	
	
	

Figure	S2.	Exposure	Concentra5ons	vs.	Glucose	Concentra5ons	in	Cases	and	Controls	for	each	ethnicity	
(do>ed	line	indicated	median	concentra5on	value)	
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Figure	S3.	Correlation	of	POPs	Concentrations
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Supplementary	Methods	
	
Mass	Spectrometry	for	Persistent	Organic	Pollutants	continued:	
We	designed	each	experimental	run	on	the	mass	spectrometer	to	include	1)	standard	

curve	calibration	for	each	analyte,	2)	quality	controls	to	monitor	any	analyte	drift	during	the	
run,	and	3)	internal	standards	spiked	into	each	sample	to	normalize	analyte	peak	area.	
Calibrators	were	prepared	by	adding	working	standard	mixtures	containing	all	analytes	to	
charcoal	stripped	fetal	bovine	serum	(ThermoFischer	Scientific	Waltham,	MA).	The	
concentration	of	the	calibrators	ranged	from	0.01	ng/mL	-	10	ng/mL	for	p,p’-DDD;	p,p’-DDE;	
p,p’-DDT	and	0.001	ng/mL	-	1.0	ng/mL	for	all	other	analytes.	For	p,p’-DDD;	p,p’-DDE;	p,p’-DDT,	
quality	controls	(QC’s)	were	prepared	in	charcoal	stripped	fetal	bovine	serum	at	1.0	ng/mL	and	
10.0	ng/mL.		All	other	QC's	were	prepared	at	0.1	ng/mL	and	1.0	ng/mL	in	charcoal	stripped	fetal	
bovine	serum.	(For	the	pilot	study,	only	3	calibrators	and	2	QCs	used	for	the	pilot	study	were	
only	prepared	in	isooctane	as	serial	dilutions	from	a	compound	mixture.)		The	isotopically	
labeled	internal	standards	were	added	to	each	calibrator,	QC,	pooled	reference	sample	and	
unknown	plasma	sample.	The	internal	standards	consisted	of	13C12-p,p’-DDT,	13C6-β-HCH	
(Cambridge	Isotopes	Tewksbury,	MA)	and	fluorinated	internal	standards	representative	of	
penta-chlorinated	(5'-F-PCB-105),	hexa-chlorinated	(5'-F-PCB-156)	and	hepta-chlorinated	(5'-F-
PCB-190)	PCB	homologues	(Chiron	AS	Trondheim,	Norway).		

Plasma	was	extracted	in	four	batches	of	50	samples	each,	using	chemical	denaturation,	
liquid-liquid	extraction,	solid-phase	cleanup	and	reconstituted	with	hexanes.	The	procedure	
was	as	follows:		

• Aliquot	200	µL	plasma	
• Add	1mL	10M	urea	 	 	 	 	
• Add	1mL	10%	Propanol/Water,	1mL	MeOH,	6mL	petroleum	ether	
• Centrifuge,	transfer	the	organic	layer	 	
• Filter	through	0.25g	sodium	sulfate	layered	on	top	of	1g	florisil	
• Elute	with	methyl-t-butyl	ether	/	petroleum	ether	
• Evaporate	to	dryness		
• Reconstitute	with	50	µL	hexanes	prior	to	injection	

	
An	Agilent	(Santa	Clara,	CA)	7890B	GC	coupled	to	an	Agilent	7000C	GC-triple	quadrupole	

mass	spectrometer	operated	in	electron	impact	(EI)	multiple	reaction	monitoring	(MRM)	mode,	
was	used	for	the	analyses.	A	DB-5MS	(15	m	x	250	μm	x	0.25	μm)	column	(Agilent	J&W	122-
5512,	Santa	Clara,	CA)	was	used	with	helium	(He)	carrier	gas	at	a	constant	flow	of	1.2	
ml/minute.	(For	the	pilot	study,	an	Agilent	7890B/7010	GC-MS/MS	instrument	and	a	30	m	HP-
5MS	column	were	used.)	Two	microliter	injections	were	made	in	pulsed	split-less	mode	at	290	
°C.	The	oven	program	ranged	from	60	°C	to	310	°C.	The	transfer	line	temperature	and	EI	source	
were	set	at	290	°C	and	the	quadrupole	temperatures	were	180	°C.	Nitrogen	collision	gas	was	
set	at	1.5	mL/min	and	Helium	gas	at	2.25	mL/min	was	used	to	quench	metastable	helium	and	
reduce	neutral	noise.	Internal	standards	were	used	to	account	for	signal	attenuation	for	each	
class	of	compounds.	For	each	compound,	one	quantifying	MRM	and	one	qualifying	MRM	was	
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defined.	All	calibrators,	QC’s,	pooled	reference	samples	and	plasma	samples	were	injected	in	
duplicate	batches,	however,	only	the	first	injection	was	used	for	downstream	analysis.		

	 Minimum	detection	limits	(MDL)	were	determined	by	equation	1.	Limits	of	
detection	(LOD)	were	defined	as	the	MDL	converted	to	ng/mL	and	limits	of	quantitation	(LOQ)	
were	defined	as	10xLOD.	

	
Equation	1.	𝑀𝐷𝐿(!!!,   !!% !"#$%&'#!') = 𝑡! %𝑅𝑆𝐷 𝑚𝑎𝑠𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 !

!""
		

	
Where	the	percent	relative	standard	deviations	(%RSD)	=	[(standard	deviation	/	

mean)100]	and	tα	is	the	statistical	confidence	factor	given	in	the	in	the	one-sided	Student	t-
distribution	table	for	n-1	degrees	of	freedom	at	the	0.99	confidence	level.	In	these	
determinations	n=7,	was	used	for	2,4'-DDE,	Alpha-HCH	b-HCH,	2,4'-DDD	PCB-123	PCB118,	PCB-
114,	PCB-157	and	n=8	for	all	others.	A	five-times	MDL	(5xMDL)	acceptance	criterion	was	
applied	to	each	MDL	determination	and	given	in	equation	2.	Table	S1	illustrates	calculated	
MDLs,	LODs	and	LOQs	(10	x	LOD).	

	
Equation	2.	MDL	<	mass	of	analyte	injected	on	column	<	5	x	MDL.		
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chapter	is	printed	here	with	acknowledgement	to	all	co-authors	and	AACR.
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ABSTRACT	
Background:	Blood	microRNAs	(miRs)	offer	a	new	promising	area	of	disease	research,	but	
variability	in	miR	measurements	may	limit	detection	of	true-positive	findings.	Here,	we	
measured	sources	of	miR	variability	and	determine	whether	repeated	measures	can	improve	
power	to	detect	fold-change	differences	between	comparison	groups.	
Methods:	Blood	from	healthy	volunteers	(N=12)	was	collected	at	three	time	points.	The	miRs	
were	extracted	by	a	method	predetermined	to	give	the	highest	miR-yield.	Nine	different	miRs	
were	quantified	using	different	qPCR	assays	and	analyzed	using	mixed	models	to	identify	
sources	of	variability.	A	larger	number	of	miRs	from	a	publicly-available	blood	miR	microarray	
dataset	with	repeated	measures	was	used	for	bootstrapping	to	investigate	effects	of	repeated-
measures	on	power	to	detect	fold-changes	in	miR	expression	for	a	theoretical	case-control	
study.	
Results:	Technical	variability	in	qPCR	replicates	was	identified	as	a	significant	source	of	
variability	(p<0.05)	for	all	nine	miRs	tested.	Variability	was	larger	in	the	TaqMan	qPCR	assays	
(SD	=	0.15-0.61)	versus	the	qScript	qPCR	assays	(SD	=	0.08-0.14).	Inter-	and	intra-	individual	and	
extraction	variability	also	contributed	significantly	for	two	miRs.	The	bootstrapping	procedure	
demonstrated	that	repeated	measures	(20-50%	of	N)	increased	detection	of	a	2-fold	change	for	
~10-45%	more	miRs.	
Conclusion:	Statistical	power	to	detect	small-fold	changes	in	blood	miRs	can	be	improved	by	
using	repeated	measures	and	choosing	appropriate	methods	to	minimize	variability	in	miR	
quantification.	
Impact:	This	study	demonstrates	the	importance	of	including	repeated	measures	in	
experimental	designs	for	blood-miR	research.		
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Introduction		
The	use	of	microRNAs	(miRs)	as	blood-based	biomarkers	is	a	new	field	of	research	for	

diagnostic	and	preventative	medicine.	A	limitation	of	this	field	is	the	lack	of	statistical	power	to	
detect	true	differences	between	comparison	groups,	which	can	contribute	to	difficulties	in	
validating	results.	Accounting	for	sources	of	variability	in	the	experimental	design	may	increase	
power	in	blood-biomarker	studies.	Previously,	we	demonstrated	that	by	controlling	for	
technical	variability	in	preparation	of	blood	RNA	for	microarray	analysis,	we	were	able	to	
improve	power	to	detect	small,	yet	significant,	fold-changes	in	blood	transcriptomic	data	(1).	
Here,	we	assess	sources	of	inter-	and	intra-individual	and	technical	variability	for	miRs	found	in	
blood	samples	and	predict	how	repeated	measures	can	improve	power	to	detect	differences	in	
miR	expression.	

MicroRNAs	have	been	widely	studied	as	biomarkers	for	a	number	of	diseases.	These	
small	non-coding	transcripts	regulate	translation	of	RNA	by	binding	to	the	3’	untranslated	
region	of	target	RNA.	Overall,	miRs	regulate	30-60%	of	RNA	translation	to	protein,	usually	by	
down-regulation	of	the	transcript	(2,3).	Disease	status,	chemical	exposures,	and	life-style	
factors	have	been	linked	to	differences	in	expression	of	miRs	between	individuals		(discussed	in	
4–6).		However,	as	most	reported	miR	expression	fold-changes	are	small	(~1.5-2-fold),	it	is	
difficult	to	replicate	findings	and	discover	true	associations.	Therefore,	it	is	critical	to	control	for	
important	sources	of	variability	in	the	experimental	design.		

Variability	in	RNA	transcription	within	subjects	over	time	has	seldom	been	discussed	in	
the	literature,	particularly	for	microRNAs	(miRs).	Several	transcriptomic	studies	have	shown	
limited	fluctuation	in	blood	RNAs	when	measured	from	healthy	individuals	over	weeks	to	
months	(7–11).	The	proportion	of	transcripts	with	high	intra-individual	variability	was	
attributed	to	a	small	number	of	immunological	genes	(i.e.,	immunoglobulin)	(9)	or	could	not	be	
differentiated	from	technical	variability	due	to	poor	experimental	design	(10,11).	This	evidence	
from	transcriptomics	suggests	that	there	may	be	similarly	small	intra-individual	variability	for	
miR	transcription,	however,	this	has	not	been	previously	measured.		

Other	overlooked	sources	of	variability	include	methods	for	miR	quantification	and	
extraction.	For	example,	competing	platforms	for	miR	microarray	and	qPCR	analysis	have	
shown	differences	in	sensitivity(12–14),	which	suggests	that	some	variance	in	miR	
measurements	may	be	due	to	technical	variability.	For	processing	of	fresh	blood	samples,	miRs	
studied	in	specific	blood-partitions	(i.e.,	plasma,	red	blood	cells,	platelets	and	leukocytes)	have	
attributed	certain	miR	expression	in	plasma	and	serum	to	contamination	of	red	blood	cells	and	
platelets	(15–18).	Extraction	of	miRs	can	also	introduce	variability	as	systematic	differences	can	
depend	on	the	particular	method	or	manufacturer	(14,19–23).	Most	of	these	previous	studies	
focused	on	samples	obtained	from	cell	lines	and	did	not	thoroughly	compare	miR	yield	
obtained	from	primary	cells.		

Here,	we	hypothesize	that	there	are	important	sources	of	inter-,	intra-	and	technical	
variability	in	miRs	extracted	from	primary	human	peripheral	blood	mononuclear	cells	(PBMCs).	
We	calculated	the	contributions	of	these	sources	of	variability	using	experimental	data	
obtained	by	qPCR	and	compared	them	to	estimates	obtained	from	a	previously	published	
study.	As	PBMCs	are	a	popular	and	non-invasive	sample-type	and	can	be	affected	in	early	
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stages	of	disease,	it	is	important	to	improve	methods	of	pre-analytical	processing	of	PBMC	
biomarkers	for	future	disease-related	research.	
	
Materials	and	Methods:	
Comparison	of	RNA	extraction	kits	

Four	kits	were	compared	to	each	other	for	miR	yield:	miRNeasy	kit	(Qiagen,	Valencia,	
CA),	mirVana	kit	(Ambion	/	Life	Technologies,	Grand	Island,	NY),	ZR-duet	(Zymo	Research	
Corporation,	Irvine,	CA),	and	Trizol	(Life	Technologies,	Grand	Island,	NY),	with	the	addition	of	25	
nmoles-250	nmoles	of	c.	elegans	oligos	spike-ins	(cel-39	and	cel-54)	to	each	sample	during	the	
cell	lysis	step.	A	total	of	nine	miRNAs	(seven	endogenous	miRNAs	and	two	exogenous	spike-ins)	
were	compared	using	these	4	extraction	kits,	with	samples	from	4	individuals	and	two	technical	
qPCR	replicates	for	each	individual	(included	in	the	residual	variability).	In	this	fractional	
factorial	design,	the	variance	components	are	shown	below	for	each	of	the	tested	miRNA:	

𝜎!! =  variability between individuals
𝜎!! =  variability between extraction kits

𝜎!! =  residual variability
	

(The	AllPrep	kit,	comprised	of	on-column	extraction	of	both	DNA	and	RNA,	was	also	compared	
to	the	miRNeasy	kit.	Details	are	included	in	the	Supplementary	Methods.)	
	 Blood	sample	collection	from	volunteers:	In	order	to	calculate	sources	of	inter-	and	
intra-individual	and	technical	variability,	we	measured	miR	expression	in	PBMCs	of	healthy	
volunteers	over	an	8-month	time	period.	A	sample	size	of	N=12	healthy	subjects	were	included	
in	the	study	(exclusion	criteria	for	volunteer	subjects	were	chronic	illness	or	pregnancy	at	the	
time	of	blood	draws).	Samples	were	obtained	at	three	time	points,	roughly	2-4	months	apart.	
On	the	day	of	collection,	blood	samples	were	processed	to	isolate	PBMCs.	Data	collection	for	
this	study	was	approved	by	the	Internal	Review	Board	within	University	of	California	Berkeley’s	
Human	Research	Protection	Program.	Informed	consent	was	obtained	from	all	participants.	

PBMCs	were	isolated	from	fresh	whole	blood	collected	in	EDTA	tubes	using	the	standard	
Ficoll	gradient	protocol	(24).	Upon	isolation	of	the	PBMCs,	they	were	immediately	washed	in	
PBS,	pelleted,	and	resuspended	in	aliquots	of	RNAProtect	Cell	reagent	(Qiagen,	Valencia,	CA)	
and	frozen	at	-80°C	until	further	use.	At	a	later	time,	PBMC	samples	were	thawed	and	RNA	was	
extracted	by	the	miRNeasy	kit	(Qiagen)	as	described	in	the	Supplementary	Methods.		
	 	
Real-time	PCR	quantification	

	Probe-based	miRNA	TaqMan	Assays	(LifeTechnologies,	Grand	Island,	NY),	or	SYBR	
Green-based	qScript	-	PerfeCTa	microRNA	Assays	(Quanta	BioSciences,	Gaithersburg,	MD)	were	
used	to	quantify	miR	targets	of	interest.	Reaction	volumes	were	proportionately	scaled-down	
from	the	initial	protocols	(see	Supplementary	Methods).	Six	miRs	(miR-30d,	let-7d,	miR-185,	
miR-130a,	miR-451,	miR-342-3p)	were	chosen	based	on	overlap	between	miRs	expressed	in	the	
miR	microarray	dataset	(used	for	some	of	the	simulation	studies)	(25)	and	miRs	differentially	
expressed	in	PBMCs	of	Type	II	diabetics	(26).	One	miR	(cel-39)	was	used	as	an	exogenous	
control	for	elution	variability.	Two	small	RNAs	(SNU6	and	RNU48)	and	miR-16,	frequently	used	
for	normalization	of	miR	expression,	were	included	as	well.		
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Statistical	analysis	of	qPCR	results:		

To	assess	the	contributions	of	different	sources	of	variability	in	miRNA	expression	of	the	
volunteer	blood	samples,	we	used	the	following	mixed-effects	model	:	

𝑌!"#$%& =  𝛽! + 𝛽! +  𝛽!! + 𝛽!! + 𝛽!! + 𝛽!! + 𝛽!!"# + 𝜀!"#$%&		(1)	

The	random	effects	in	model	(1)	are	each	normally	distributed,	with	zero	means	and	
variances	given	by	the	respective	variance	components	listed	below:	

Random	Effect	 Variance	Component	 Description	
𝛽!! 	 𝜎!!	 variability between individuals (biological)	
𝛽!! 	 𝜎!!	 variability over time (biological)	
𝛽!!	 𝜎!!	 inter− batch variability	(technical)	
𝛽!! 	 𝜎!!	 intra− batch variability	(technical)	
𝛽!!"#	 𝜎!"#!	 variability in qPCR reaction	(technical)	
𝜀!"#$!"	 𝜎!!	 residual variability	

	
Yijklm	represents	the	Cq	value	(on	the	natural	scale)	for	the	ith	individual	at	the	jth	time	point	in	
the	kth	extraction	batch,	the	lth	within-batch	replicate,	and	the	mth	technical	replicate.	The	
intercept,	β0,	is	defined	as	the	baseline	Cq	value	averaged	across	all	individuals,	at	all	time	
points,	for	all	extraction	batches	on	all	plates.	The	fixed	effect	coefficient,	β1,	represents	a	
change	in	miR	Cq	value	per	unit	change	in	RNA	concentration	for	each	sample,	which	we	used	
as	precaution	against	any	effects	that	were	not	accounted	for	by	using	the	same	input	(μg)	of	
RNA	for	each	RT-PCR	reaction.	The	random	effects	are	defined	as	the	change	in	expression	(Cq	
value)	from	baseline	levels	for	each	index.	β0i		is	the	unit	change	from	the	baseline	average	for	
the	ith	(i=	1…13)	individual.	β0j		is	the	unit	change	from	the	baseline	average	at	the	jth	(j=	1,	2,	3)	
time	point.	Β0k	is	the	unit	change	in	the	kth	(k=1,	2)	extraction	batch.	β0l	is	the	unit	change	from	
baseline	for	the	lth	(l=	1,	2)	within-extraction	replicate.	β0ijm	is	the	unit	change	from	baseline	for	
the	mth	(m	=1,	2,	3)	technical	replicate	for	the	ith	individual	and	the	jth	timepoint.	(This	is	the	only	
nested	random	effect	measure.)	Lastly	the	term,	eijklmn,	is	defined	as	the	‘residual	variability,’	
which	includes	differences	from	plate-to-plate	and	other	unaccounted	for	sources	of	variability.		
Nested	F-test	were	run	for	each	small	RNA	model	to	determine	which	random	effects	terms	
were	significant	(p<0.05).		
	 	
Estimating	minimum	detectable	fold-changes	based	on	qPCR	data	

	We	observed	several	measurable	sources	of	variability	for	two	miRs	from	the	qPCR	
experiment,	miR-185	and	miR-451.	These	two	miRs	were	used	to	determine	if	repeated	
measures	would	improve	detection	of	fold-changes	in	a	theoretical	study.		The	constraints	for	
the	theoretical	study	were	a	sample	size	of	N=	75	vs.	75	subjects	in	two	comparison	groups	
(e.g.,	disease	vs.	healthy	controls)	under	two	experimental	designs	conditions.	Study	1	had	no	
repeated	measures	and	Study	2	had	four	repeated	measures	for	50%	of	the	subjects	for	each	of	
the	four	modeled	sources	of	variability	based	on	our	empirical	qPCR	data—	seasonal,	between-
batch,	within-batch	and	qPCR	replicate.	The	estimates	of	the	parameters	of	interest,	which	is	
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the	minimum	detectable	fold-change	in	the	mean	level	of	the	miRNAs,	are	computed	using	the	
variance	values	attributed	to	the	four	different	sources	of	variability	from	the	empirical	study	
data	of	N=12	subjects.		

Therefore,	in	order	to	obtain	estimates	of	variability	for	the	parameters	of	interest	
associated	with	repeating	the	empirical	study,	a	clustered	bootstrap	procedure	(using	100	
bootstrap	samples)	was	used.	This	procedure	provides	both	a	point	estimate	and	confidence	
intervals	for	these	fold-change	estimates.	Each	nonparametric	bootstrap	sample	consists	of	
data	associated	with	12	subjects	drawn	with	replacement	from	the	N=12	subjects	of	the	
empirical	study.	The	data	associated	with	a	bootstrap	sample	was	used	to	estimate	the	
variances	attributed	to	the	four	sources	of	variability	using	linear	mixed	models	(27).	The	
distribution	of	the	minimum	detectable	fold-changes	over	the	100	bootstrap	samples	was	used	
to	estimate	the	confidence	intervals	of	this	parameter	of	interest.	(As	the	sample	size	used	for	
the	bootstrap	bootstrap	sample	is	relatively	smaller	than	the	sample	size	for	the	theoretical	
study,	the	inferences	made	from	the	simulation	must	be	interpreted	with	caution.)	

A	simulation	procedure	was	used	to	estimate	the	parameters	of	interest	for	Study	1	and	
Study	2	given	the	variance	estimates	from	a	bootstrap	sample,	bs.	For	each	miR	within	a	given	
study	design,	data	for	100	studies	were	simulated	(assuming	a	normal	distribution	for	each	
random	effect)	using	the	bs	variances	estimates.	The	standard	deviation	of	the	mean	
expression	across	these	100	studies	provides	an	estimate	of	the	standard	error	(SEi,bs)	of	the	
mean	level	of	the	miR	in	a	bs	sample	for	a	given	study	design.	This	standard	error	was	then	used	
to	estimate	the	minimum	detectable	fold-change,	FCi,bs,	with	80%	power	(corresponding	to	a	
5%	family-wise	error	rate)	by	the	following	equation:	

FCi,bs = √2(Zα + Zβ)SEi,bs		(2 )*	

Where			 Zα=	1.64		(desired	level	of	statistical	significance)	

						 	 											Zβ	=	0.84		(desired	power)	

Estimating	minimum	detectable	fold-changes	based	on	previously	published	data	
	To	expand	upon	our	findings	of	variability	for	individually-tested	miRs	by	qPCR,	we	

examined	a	publicly-available	microarray	dataset	by	Honda	et	al	(25)	that	measured	hundreds	
of	blood	miRs	simultaneously	at	several	time-points	for	each	subject.	The	study	looked	at	the	
effects	of	chronic	academic	stress	on	miR	levels	in	whole	blood	of	medical	students	by	
obtaining	measurements	two	months	before,	two	days	before,	and	one	month	after	an	exam	
for	medical	practitioners.	The	GSE49677	series	from	the	Gene	Expression	Omnibus	(28)	Agilent-
021827	Human	miR	Microarray	(V3)	was	used	in	this	study.	The	low-expressed	miRs	with	mean	

																																																								

*	This	equation	is	derived	from:		 	
	
*	An	exception:	miR-375	did	not	initially	pass	the	Shapiro-Wilk	test.	Analyses	were	repeated	
after	removal	of	three	outliers	and	resulting	effect	size	and	p-value	were	similar	to	the	reported	
values	here.	

n =
2σ 2 (Zβ +Zα )2

(fold change difference)2
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intensity	levels	<20	were	filtered	out	in	the	study	(25)	leaving	143	miRs.	The	levels	of	these	
miRs	across	the	four	subjects	and	three	time	points	are	normalized	using	Cyclic	Loess	(29).		
	 Variability	estimates	from	the	academic-stress	data	were	used	to	determine	whether	
repeated	measures	would	increase	detection	of	differentially	expressed	blood	miRs	between	
two	comparison	groups	(e.g.,	disease	versus	healthy	controls).	We	calculated	estimates	of	inter-
individual	variability	from	this	study	and	assumed	that	the	residual	(unexplained)	variability	in	
blood	miR	levels	was	due	to	other	sources.	For	ease	of	exposition,	we	assumed	the	residual	to	
be	time-point	(e.g.,	seasonal)	variability,	although	it	is	probably	composed	of	multiple	sources.	
	 Based	on	the	expression	data	of	blood	miRNA	measured	in	the	academic	stress	study	
(25)	with	four	subjects	and	three	repeated	measures,	we	determined	if	repeated	measures	
would	improve	detection	of	fold-changes	in	a	theoretical	study.		For	our	theoretical	replicate	
design	simulation	study,	our	sample	size	was	75	vs.	75	subjects	in	each	of	two	comparison	
groups	(e.g.,	disease	vs.	controls).	A	total	of	2000	markers	were	evaluated	for	purposes	of	
multiple	testing	under	realistic	omic-level	conditions.	We	assumed	that	the	sample	collection	
for	the	subjects	in	the	two	groups	occurred	at	two	different	time	points.	Therefore,	seasonal-
effects	on	miR	levels	were	not	blocked	in	these	experimental	designs.	We	varied	the	proportion	
of	subjects	with	repeated	measures	and	the	number	of	repeated	measures	per	subject	for	each	
of	the	seven	proposed	designs	shown	in	Table	1.	We	used	a	non-parametric	clustered	bootstrap	
method,	similar	to	the	one	described	for	the	simulation	of	qPCR	data,	in	order	to	predict	
minimum	detectable	fold-changes	in	the	mean	levels	for	the	143	miRNAs	under	the	seven	
theoretical	experimental	design	conditions.	(Again,	as	the	sample	size	used	for	the	bootstrap	
sample	is	relatively	smaller	than	the	sample	size	for	the	theoretical	study,	the	inferences	made	
from	the	simulation	must	be	interpreted	with	caution.)	We	provided	confidence	intervals	for	
our	parameters	of	interest	based	on	estimates	of	inter-individual	and	residual	variability	
(assumed	to	be	partially	attributed	to	biological	variability)	in	the	study	on	academic	stress.		
	
Results	and	Discussion	
Comparing	methods	of	miRNA	extraction	
	 We	evaluated	miR	extraction	procedures	to	find	the	most	efficient	and	accurate	method	
for	our	downstream	applications.	We	presumed	that	lower	Cq	values	for	a	given	extraction	
method	would	be	a	proxy	for	both	greater	overall	yield	of	all	miRs	and	lower	technical	
variability	(i.e.	between	and	within	a	given	batch	of	extractions).	We	compared	four	methods;	
miRNeasy,	miRVana,	Trizol,	and	Zymo-Duet	(which	extracts	both	RNA	and	DNA).	The	miRNeasy	
kit	had	the	lowest	Cq	value	for	all	small	RNAs	tested	(see	Supplementary	Results	and	
Supplementary	Figure	S1A)	which	is	supported	by	similar	previous	findings	(14).	The	miRNeasy	
kit	also	slightly	out-performed	the	AllPrep	kit	(Qiagen)	(Supplementary	Figure	S1B)	and	was	
thus	chosen	as	the	extraction	method	for	the	downstream	measurements	of	miR	variability	in	
the	volunteer	blood	samples.	
	
Measuring	sources	of	variability	in	miR	from	qPCR	data	
	 We	measured	several	sources	of	variability	for	nine	chosen	miRs	from	12	volunteer	
subject	PBMC	samples	obtained	at	three	time	points	over	the	course	of	several	months.	We	
included	extraction	replicates	to	account	for	both	between-	and	within-extraction	batch	
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variability.	Our	results	were	analyzed	using	mixed-effects	models	(shown	in	Equation	1).	The	
variance	attributed	to	each	source	of	variability	for	a	given	miR	is	shown	in	the	stacked	bar	
graph	(Figure	1A	and	1B),	and	the	significance	of	each	term	in	the	model	is	reported	in	Table	2.		
	 	A	nested	F-test	for	each	of	the	random	effects	in	each	miR	model	was	used	to	identify	
the	significant	random	effect	terms	(p<0.05).	For	all	endogenous	and	exogenous	small	RNAs	
tested,	a	significant	proportion	of	variability	was	due	to	replicate	qPCR	reactions	for	a	given	
sample.	For	miR-16	and	miR-451,	inter-individual	variability	was	also	significant.	Furthermore,	
for	the	qScript	SYBR	Green	assays,	miR-451	showed	a	significant	“time	point”	effect	while	miR-
16	showed	a	significant	batch-replicate	effect.	This	is	the	first	evidence	to	suggest	time-point	
and	extraction	variability	in	miR	expression.	Other	transcriptomics	studies	have	also	found	
differences	in	RNA	expression	over	the	course	of	1-day	to	several	weeks	(7,8)	while	longer	time-
points	were	inconclusive	due	to	confounding	of	technical	variability	(10,11).	
	 The	residual	variability	present	for	all	miRs	may	be	due	to	several	sources.	Covariate	
information	was	not	included	in	this	model,	such	as	age,	race,	gender	and	BMI,	which	may	
contribute	to	the	residual	variability.	Technical	variability	in	sample	processing	may	also	be	
another	contributing	factor.	For	example,	Ficoll	separation	of	PBMCs	is	not	100%	efficient,	so	
miRs	such	as	miR-16	and	miR-451,	both	known	to	be	highly-expressed	in	red	blood	cells	(15)),	
could	contribute	to	variability	of	these	miR	expression	levels.	SNU6	and	the	exogenous	miR,	cel-
39,	demonstrated	the	highest	proportions	of	residual	variability	(Figure	1B).	As	expected,	
biological	and	technical	variability	contributed	minimally	to	total	variability	and	overall	
variability	for	the	spike-in	cel-39,	and	it	had	the	lowest	total	variability	of	all	miRs	tested.	For	
SNU6,	the	source	of	residual	variability	remains	unknown,	but	perhaps	this	small	RNA	is	not	
ideal	to	use	for	normalization	of	target	miRs	in	future	studies	if	sources	of	variability	are	not	
representative	of	other	miRs.		
	 The	remaining	miRs	did	not	show	significant	contributions	of	variability	from	the	other	
measured	sources.	This	may	be	because	1)	the	sample	size	was	too	small	too	assign	statistical	
significance	or	2)	the	scaled-down	volumes	for	the	TaqMan	assay	were	not	sufficient	to	
measure	these	effects.	Comparing	miR-16	measurements	in	both	assays,	the	variance	term	for	
the	qPCR	replicates	in	the	model	was	much	smaller	for	the	SYBR	Green	assay	than	the	TaqMan	
assay	(0.119	vs.	0.499)	and	are	plotted	for	each	individual	in	Supplementary	Figure	S2A	and	B.	
Additionally,	three	significant	random-effects	terms	were	found	with	the	SYBR	Green	assay	for	
miR-16,	while	only	two	were	significant	using	the	TaqMan	kit,	providing	further	evidence	that	
perhaps	other	sources	of	variability	could	be	unveiled	if	qPCR	replicate	variance	was	reduced.	A	
less	rigorous	comparison	of	the	two	assays	has	been	made	in	a	previous	study,	however,	the	
opposite	results	were	found	(13).	Our	results	on	the	performance	of	miR	SYBR	Green-based	
qPCR	are	supported	by	a	very	recent	study	that	examined	miR	expression	analysis	of	qScript	
and	several	other	platforms	in	much	greater	detail	(30).	As	many	studies	use	TaqMan-based	
assays,	our	results	could	help	explain	the	lack	of	reproducibility	reported	between	studies	
examining	miRs	in	the	same	tissue	for	the	same	disease	in	similar	populations.	
	
Estimating	effects	of	repeated	measures	from	qPCR	data	
	 We	used	the	estimates	of	inter-individual,	intra-individual,	and	technical	variability	for	
two	of	the	miRs	(miR-185	and	miR-451)	for	further	analysis	in	a	theoretical	study	of	N=	75	vs.	75	
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subjects.	We	calculated	the	minimum	detectable	fold-change	with	80%	power	in	a	study	with	
no	repeated	measures	(Study	1)	versus	four	repeated	measures	for	each	of	the	following;	
between-batch,	within-batch,	time	point	and	qPCR	replicates	for	50%	of	the	subjects	in	each	
group	(Study	2).	The	minimum	fold-change	estimate	for	miR-451	decreased	with	repeated	
measures	from	3.77	(95%	CI	[1.75,	5.16])	to	2.38	(95%	CI	[0.97,	3.36])	and	the	minimum	fold-
change	estimate	for	miR-185	decreased	from	4.18	(95%	CI	[2.67,	6.46])	to	2.4	(95%	CI	[1.71,	
3.74])	(Table	3).	For	miR-185,	a	marginally	significant	(90%	CI)	decrease	in	fold-change	was	
observed	with	repeated	measures	from	Study	1	to	Study	2.	Our	estimate	of	detectable	
differences	in	fold-change	for	miR-185	is	similar	to	previous	findings	that	showed	a	1.82-fold	
difference	between	disease	conditions	measured	in	PBMC	samples	(26).		
	
Estimating	variability	in	miR	from	previously	published	data	
	 We	expanded	our	investigation	of	repeated	measures	to	examine	more	miRs	
simultaneously,	as	is	currently	done	in	omics-level	studies.	We	used	a	previously	published	miR	
microarray	dataset	on	four	medical	students	over	three	time	points	to	estimate	the	variability	
in	143	miRs	(25).	The	inter-individual	variability	of	each	miR	from	our	empirical	study	(miR-342,	
miR-451,	miR-16,	miR-185,	miR-30d,	let-7d,	miR-130a)	was	compared	to	results	obtained	from	
Honda	et	al.	There	was	no	significant	correlation	between	the	two	estimates	(data	not	shown).	
This	lack	of	correlation	may	be	explained	by	differences	in	expression	variability	in	each	of	the	
sample	types	(PBMCs	versus	whole	blood),	as	high	expression	for	some	of	these	miRs	has	been	
reported	in	red	blood	cells	(15),	or	by	the	small	sample	sizes	used	to	estimate	variability	for	the	
qPCR	data	and	the	Honda	et	al.	dataset.	
	
Estimating	effects	of	repeated	measures	using	simulated	miR	microarray	data	
	 From	the	Honda	et	al.	dataset,	we	simulated	data	for	a	theoretical	study	to	demonstrate	
benefits	of	including	repeated	measures.	We	ran	the	analyses	with	20%,	50%	and	100%	of	the	
subjects	randomly	chosen	for	repeat	sampling,	and	tested	a	total	of	seven	different	
experimental	designs	summarized	in	Table	1.	The	cumulative	distribution	over	the	143	miRs	for	
the	minimum	detectable	fold-change	across	the	100	bootstrap	samples	is	plotted	for	each	of	
the	seven	replicate	designs	(Figure	2A-C).	Without	repeated	measures,	a	≥2-fold	change	could	
be	detected	in	~24%	of	miRs.	Inclusion	of	repeated	measures	for	20%	of	the	samples	improved	
the	detection	rate	to	34%	and	59%	for	Designs	1A	and	1B,	respectively	(Figure	2A).	When	
repeated	measures	were	included	for	50%	of	the	samples,	the	detection	rate	for	a	≥2-fold	
change	improved	further	to	46%	and	69%	for	Designs	2A	and	2B,	respectively	(Figure	2B).	Only	
a	minimal	increase	in	detection	rate	was	gained	beyond	this	when	performing	repeated	
measures	on	100%	of	the	samples	in	Designs	3A	and	3B	(Figure	2C).		

The	estimates	of	95%	confidence	intervals	(based	on	bootstrapping)	for	these	
cumulative	distribution	curves	overlapped	under	each	design	scenario	(Supplementary	Figure	
S3A-C),	providing	inconclusive	evidence	of	statistically	significant	improvements	of	one	design	
over	another.	To	investigate	this	further,	we	compared	each	of	the	three	designs	to	each	other	
within	the	50%	repeated-measure	parameter	(Design	0	vs.	2A	vs.	2B)	and	looked	at	a	range	of	
confidence	intervals	(i.e.,	p-values)	for	the	minimum	detectable	fold-change	of	miRs	in	one	
study	versus	another.	The	proportion	of	miRs	with	detectable	fold-change	differences	in	one	
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design	versus	another	at	a	given	p-value	is	plotted	for	each	pair	of	designs	(Figure	3).	From	this	
analysis,	Design	2B	(with	four	repeated	measures)	shows	lower	detectable	fold-changes	for	
~20%	of	the	miRs	(at	p<0.10)	than	Design	0	(with	no	repeated	measures).	Similar	comparisons	
for	Design	1B	vs.	Design	0	showed	very	few	miRs	with	lower	detectable	fold-changes,	whereas	
Design	0	vs.	Design	3B	showed	lower	detectable	fold-changes	in	~40%	of	miRs	(at	p<0.10)	(see	
Supplementary	Results	and	Supplementary	Figure	S4A	and	B,	respectively).	
	 While	inferences	can	be	made	from	the	simulations	of	this	miR	microarray	dataset,	
there	are	still	several	limitations	of	this	study.	First,	we	assumed	that	the	remaining	variability	
after	accounting	for	inter-individual	differences	is	due	to	intra-individual	variability	over	time,	
however,	technical	variability	from	time-point-to-time-point	are	included	too.	Our	estimates	of	
intra-individual	variability	may	be	higher	than	expected	due	to	the	lack	of	technical	variability	
measurements.	Also,	changes	in	study	participants’	stress	levels	during	the	collection	time	
points	(25)	might	also	lead	to	over-estimates	of	intra-individual	variability.	Note	that	in	order	to	
mimic	realistic	omic-level	conditions,	the	theoretical	experimental	design	for	this	study	was	
limited	to	N=	75	vs.	75	subjects,	and	we	used	2000	measured	endpoint	markers	(including	the	
143	miRs)	for	purposes	of	multiple-hypothesis	testing.	Altering	these	parameters	by	including	a	
larger	(or	smaller)	number	of	subjects	and/or	a	greater	(or	reduced)	proportion	of	repeated	
measures	would	shift	all	three	curves	to	the	left	(or	right)	(see	Figure	2).	Thus,	we	consider	the	
improvements	of	incorporating	repeated	measures	observed	herein	to	underestimate	those	
expected	for	detecting	smaller	fold-changes	in	molecular	epidemiological	studies	with	larger	
sample	sizes.	

In	summary,	miRs	have	great	potential	as	reliable	blood	biomarkers	of	early	effects	of	
the	disease	state.	In	measuring	miRNA	expression,	we	concluded	that	variability	due	to	the	
qPCR	reaction	replicates	generally	outweighs	other	measured	sources	of	variability.	In	the	
future,	it	would	be	advantageous	to	either	troubleshoot	qPCR	reaction	conditions	to	reduce	this	
variance	(e.g.,	increase	reaction	volumes,	modify	reaction	temperatures,	etc.)	or	increase	the	
number	of	replicates	per	sample	to	account	for	this	source	of	variability.	Previous	publications	
on	small-fold	changes	in	blood-miR	analyzed	by	qPCR	should	be	viewed	with	skepticism	in	light	
of	this	finding.	Additionally,	methods	of	extraction	and	miR	quantification	must	be	rigorously	
tested	to	maximize	yield	and	interpretable	results,	as	performance	can	vary	by	kit	and	assay.	
For	unavoidable	sources	of	variability,	block	experimental	designs	or	repeated	measures	should	
be	implemented.	Identifying	sources	of	variability	in	future	omics-level	experimental	designs	
and	estimating	power	a	priori	using	these	described	methods	can	save	precious	resources,	
funding,	and	time	for	molecular	epidemiological	studies.	
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Tables	and	Figures	

Table	1.	Summary	table	of	experimental	designs	used	for	simulations	of	miR	microarray	data	

Design	 N1	 N2	
Number	of	subjects	with	repeated	

measures	(%)	
Number	of	repeated	

measures			
0	 75	 75	 0	(0)	 0	
1A	 75	 75	 30	(20)	 1	
1B	 75	 75	 30	(20)	 4	
2A	 75	 75	 75	(50)	 1	
2B	 75	 75	 75	(50)	 4	
3A	 75	 75	 150	(100)	 1	
3B	 75	 75	 150	(100)	 4	
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Table 2. Variance terms and p-values for sources of variability 
The variability for each random effect term in the model is reported, as well as p-values based on ANOVA tests for each 
term of each modeled miR. 
 
 

  

  qPCR Replicate inter-individual Seasonal between batches within batch residual 
Total 
Var 

random 
effect Var p-value Var, p-value Var, p-value Var p-value Var p-value Var   

miR-130a 0.83 <0.001 0.15 0.387 0.00 1.00 0.00 1.00 0.00 1.00 0.09 1.07 
miR-30d 0.54 <0.001 0.05 0.560 0.00 1.00 0.00 1.00 0.00 1.00 0.10 0.69 
miR-185 0.82 <0.001 0.22 0.153 0.03 0.91 0.00 1.00 0.15 1.00 0.10 1.32 
let-7d 0.44 <0.001 0.23 0.103 0.00 1.00 0.04 0.77 0.27 0.65 0.04 1.02 
miR-16 
(TaqMan) 0.50 <0.001 0.24 <0.05 0.05 0.71 0.04 0.89 0.00 1.00 0.11 0.94 

c.eleg-39 0.14 <0.001 0.00 1.000 0.00 1.00 0.01 0.82 0.00 1.00 0.08 0.23 
RNU48 0.39 <0.001 0.10 0.264 0.00 1.00 0.00 0.21 0.00 1.00 0.09 0.58 
SNU6 0.38 <0.001 0.00 1.000 0.00 1.00 0.00 1.00 0.00 1.00 0.46 0.84 
miR-16 
(qScript) 0.12 <0.001 0.13 <0.001 0.00 1.00 0.00 1.00 0.35 <0.05 0.01 0.61 

miR-451 0.31 <0.001 0.39 <0.001 0.40 <0.05 0.03 0.69 0.48 0.07 0.03 1.64 
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Table 3. Estimations of minimum detectable fold-changes for 2 study designs 
The estimates of variability obtained from the empirical qPCR study of miR-451 and miR-185 were used to determine the 
minimum detectable fold-change with 80% statistical power for a theoretical study (N=75 vs 75) of two miRs. The mean 
fold-change, standard error (SE) and 95% CI and 90% CI are reported given no replicates (Study 1) versus a study given 
five extraction batches, five within-batch replicates, five time point replicates, and five qPCR replicates for 50% of the 
subjects (Study 2).	

		
miR-451	 miR-185	

Study	1	 Study	2	 Study	1	 Study	2	

mean	 3.77	 2.38	 4.18	 2.4	
SE	 0.95	 0.53	 1.2	 0.67	

95%	CI	 (1.75,	5.16)	 (0.97,	3.36)	 (2.67,	6.46)	 (1.71,	3.74)	

90%	CI	 (1.88,	5.11)	 (1.07,	3.20)	 (3.69,	6.37)	 (2.11,	3.68)	
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Figure 1. qPCR measurements of sources of blood miRNA variability 
A. Proportions of inter-individual, intra-individual, and technical variability were estimated for N=12 subjects using a 
mixed-effects model of qPCR data from seven target miRs (miR-16, miR-342-3p, miR-30d, miR-185, let7d, miR-130a, 
miR-451), two endogenous control small RNAs (RNU48 and snRNA U6) and one exogenous spike-in (cel-39). Technical 
variability includes variability within- and between-extraction batches as well as plate-to-plate variability. B. Interclass 
correlation (ICC) for each source of variability was calculated as the proportion of total variance for each miR.  
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Figure 2. Cumulative distributions of minimum detectable fold-changes in miRs using repeated measures 
Smallest fold-changes detected for the 143 miRNAs are plotted under seven experimental design conditions, which vary in proportion of repeated 
measures, A) 20%, B) 50%, C) 100%, and number of repeated measures per subject (n1=0, n1=1 or n1=4). Fold-changes are reported with 80% 
power for 100 bootstrap simulations using previously published data (25). The vertical line in each figure compares distributions at a 2-fold change
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Figure 3. Comparison of 50% repeated measure designs for detection of significant fold-changes in miRs 
Designs 0, 2A and 2B were compared to each other to calculate the proportion of the 143 miRNAs for which two designs’ 
confidence intervals do not overlap at a given p-value. (Designs differ by number of repeated measures for each subject.)  
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Supplementary	Materials	
	
Figure	S1.	Comparison	of	miRNA	Extraction	kits	by	qPCR	
A)	Four	protocols,	miRNeasy,	miRVana	(MirV),	Trizol	(Tri)	and	Zymogen,	were	compared	to	determine	the	method	with	the	best	
miRNA	extraction	yield	from	PBMCs	stored	in	RNAProtect.	The	miRNA	yield	for	the	miRNeasy	kit	is	used	as	the	baseline	comparison.	
We	measured	five	target	miRNAs	(miR-16,	miR-142-3p,	miR-9,	let-7a*,	miR-370),	two	‘housekeeping’	small	RNAs	(RNU48	and	snRNA	
U6),	and	two	synthetic	miRNA	spike-ins	(cel-39	and	cel-54).	Extraction	methods	were	performed	1-2	times	per	set	of	samples.	The	
Zymogen	kit	(Zymo)	was	not	tested	for	miR-9	and	let-7a*.		B)	The	miRNA	obtained	from	the	PBMC	samples	using	the	AllPrep	Kit	was	
compared	to	miRNA	from	the	miRNeasy	kit	also	using	qPCR	analysis.	The	miRNA	yield	for	the	miRNeasy	kit	is	used	as	the	baseline	for	
comparison.	Experiments	were	performed	three	times	on	three	aliquots	of	two	PBMC	samples.	We	measured	two	control	small	
RNAs	(RNU48	and	snRNA	U6),	one	high	expressed	miR	(miR-16),	and	two	spike-in	oligos	(cel-39	and	cel-54).		
A)	 	 	 	 	 	 	 	 	 B)	
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Figure	S2.	Comparison	of	miR	qPCR	assays	for	miR-16:	TaqMan	vs.	SYBR	Green	
The	Cq	values	for	the	miR-16	are	plotted	for	each	of	the	12	individuals	at	three	time	points	for	A)	the	TaqMan	assay	and	B)	the	
qScript	(SYBR	Green)	assay.	The	qPCR	reactions	were	completed	in	triplicate	for	each	of	the	samples	tested.	Individuals	with	
extractions	at	a	fourth	time	point	represent	extraction	replicates.		
	
									A)		miR-16	TaqMan	 	 	 	 	 	 										B)		miR-16	Syber	Green	
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Figure	S3.	Confidence	intervals	for	minimum	detectable	fold-changes	in	miRs	
The	95%	confidence	intervals	for	minimum	detectable	mean	fold-changes	in	miRs	from	the	bootstrap	simulation	of	miR	microarray	
data	are	plotted.	These	designs	vary	in	proportion	of	repeated	measures	A)	20%,	B)	50%,	C)	100%,	and	number	of	repeated	
measures	per	subject	(n1=0,	n1=1	or	n1=4).		
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Figure	S4.	Comparison	of	repeated	measure	designs	for	detection	of	significant	fold-changes	in	miRs			
A)	Designs	0	vs.	1A	vs.	1B	for	20%	repeated	measures	and	B)	Design	0	vs.	3A	vs.	3B	for	100%	repeated	measures	were	compared	to	
each	other	to	calculate	the	proportion	of	the	143	miRNAs	for	which	two	designs’	confidence	intervals	do	not	overlap	at	given		
p-values.		
	
A)	 	 	 	 	 	 	 	 	 						B)	
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Supplementary	Methods	
	
miRNA	Extraction	Procedures	

	Several	miRs	were	measured	by	real-time	PCR	to	determine	which	kit	gave	the	highest	
quality	and	quantity	of	miR	yield	following	protocols	for	each	given	kit.	This	experiment	was	
completed	with	four	human	PBMC	samples	preserved	in	RNAprotect.	Samples	were	thawed,	
distributed	into	4	equal	aliquots	and	spun	at	5000	x	g.	The	RNA	preserving-reagent	was	
aspirated	off	and	RNA	was	extracted	from	the	pellet	using	one	of	the	four	kits.	For	the	
volunteer	study	of	intra-,	inter-	and	technical	variability,	36	experimental	samples	were	
extracted	in	two	batches	on	two	separate	days.	Two	extra	PBMC	‘reference’	samples	were	
included	in	the	extraction	of	both	batches	to	account	for	between-batch	variability	and	
extracted	in	duplicate	on	each	day	to	account	for	within-extraction	batch	variability.	The	
concentration	of	the	RNA	eluate	for	all	samples	was	measured	by	Nanodrop	analysis	(Nanodrop	
/	Thermo	Scientific,	Wilmington,	DE)	and	confirmed	by	Quant-iT	RiboGreen	RNA	Assay	
(LifeTechnologies,	Grand	Island,	NY).	

The	miRNeasy	kit	was	compared	to	a	slightly	modified	version	of	the	AllPrep	DNA/RNA	
kit,	to	determine	miR	yield-lost	during	the	collection	of	both	DNA	and	RNA	with	on-column	kits.	
Between	25-250nmoles	of	c.eleg-39	and	25nmoles	of	c.eleg-54	were	added	to	each	sample	
upon	addition	of	the	cell	lysis	reagent.	The	AllPrep	kit	protocol	was	slightly	altered	for	elution	of	
both	small	and	total	RNA.	(Upon	obtaining	eluate	from	the	DNA	spin	column,	1.5	volumes	of	
96%-100%	ethanol	was	added	before	transfer	to	the	RNeasy	Mini	spin	column,	500µL	of	RPE	
was	used	to	wash	the	spin	column	twice,	and	then	an	additional	500µL	of	96%-100%	ethanol	
was	added	to	the	spin	column	before	the	2	minutes	spin	at	full	speed.)			
	
miRNA	Quantification	by	qPCR	

TaqMan	Assays	were	completed	using	proportionally	smaller	volumes	(5uL	reactions	
volumes)	for	both	the	RT	and	PCR	step	as	described	previously	(1).	Total	RNA	input	for	each	
reaction	ranged	from	2-10µg.	miR	assays	were	tested	for	efficiency	of	>70%	in	the	qPCR	step	
using	cDNA	dilutions	before	using	the	assays	for	this	study.	To	evaluate	very	low-expressed	
miRs,	miR-370	and	let-7a*,	were	used	in	spite	of	efficiency	<70%.			Two	of	the	six	TaqMan	
Assays	showed	high	levels	of	background	signal	with	a	“no	reverse	transcriptase”	control	in	the	
reverse-transcription	step.	Thus,	a	competing	miR	quantification	assay,	qScript-PerfeCTa	
microRNA	Assays	(Quanta	Biosciences),	was	used	to	measure	miR-451	and	miR-342-3p.	(5	µL	
reactions	for	the	poly	A	tail	synthesis	reaction,	10	µL	for	the	RT	reactions,	and	15µL	volume	for	
the	PCR	reactions).	For	all	qPCR	experiments,	three	technical	replicates	were	used	for	each	
sample	on	a	96-well	plate,	and	two	separate	reference	samples	were	run	on	each	plate	to	
calibrate	for	plate-to-plate	differences.	Upon	obtaining	qPCR	results,	Ct	value	thresholds	for	
each	plate	were	determined	by	setting	the	25th-75th	quartile	distributions	of	the	signal	from	
each	plate	equivalent	to	each	other	before	continuing	with	the	downstream	analysis.	
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Statistical	Analysis	of	qPCR	results	for	extraction	kit	comparison	
	A	linear	mixed	model	was	used	to	compare	the	differences	between	the	4	miRNA	

extraction	kits,	or	the	two	Qiagen	miRNA	extraction	kit	methods.		
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Here	 m
ijkY represents	the	kth	(k=1,2)	replicate	Cq	value	for	the	mth	(m=1,2,…9)	miR	in	

the	ith	(i=1,2,3,4)	individual	using	the	jth	(j=0,	1,…,	 1extractionN − )	extraction	kit.	 0
mβ represents	

the	mean	Cq	value	for	the	mth	miR	using	the	miRNeasy	kit.	 m
jβ represents	the	change	in	the	

mean	Cq	value	for	the	mth	miR	using	the	jth	extraction	method	versus	the	miRNeasy	kit.	 0
m
iβ 	

represents	the	random	effect	terms	that	capture	the	change	in	the	mean	Cq	level	of	the	mth	
miR	of	the	ith	individual	compared	to	the	mean	Cq	value	of	this	miR	across	all	individuals.	

m
ijkε represents	the	residual	for	this	model.	
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ABSTRACT	
Circulating	blood	miRNAs	hold	potential	as	new	biomarkers	of	type	II	diabetes	(T2D),	as	

specific	miRNAs	in	the	blood	milieu	may	be	secreted	from	tissues	directly	affected	by	T2D.	
However,	in	the	cancer	field,	it	has	been	shown	that	some	of	the	proposed	tumor-related	
circulating	miRNAs	were	actually	originating	from	the	patients’	peripheral	blood	cells.	In	order	
to	determine	whether	peripheral	blood	cells	confounded	the	association	between	miRNA	
expression	and	T2D,	we	attempted	to	validate	20	candidate	blood	miRNAs	previously	reported	
as	differentially	expressed	in	T2D	cases	versus	healthy	controls.	After	adjusting	for	technical	
sources	of	variability,	we	initially	observed	higher	expression	of	17/20	miRNAs	in	cases	versus	
control	subjects.	However,	lymphocyte	counts	were	also	significantly	higher	in	the	diseased	
subjects	and	positively	associated	with	most	miRNA	expression	levels.	After	adjusting	for	
lymphocyte	counts	in	the	regression	models,	only	three	miRNAs	remained	differentially	
expressed	and	were	not	associated	with	lymphocyte	counts.	While	a	majority	of	the	T2D	
circulating	miRNAs	previously	reported	may	be	due	to	immunological	changes	related	to	the	
disease	process,	at	least	3	miRNAs,	miR-24,	miR-423,	and	miR-375,	are	potentially	useful	
biomarkers	and	deserve	further	evaluation	as	signaling	molecules	in	the	development	of	T2D.	
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Introduction	
Circulating	blood	microRNAs	(miRNAs)	are	of	recent	interest	in	the	field	of	type	II	

diabetes	(T2D).	MiRNAs	are	small	(19-23	nucleotides)	non-coding	RNAs,	that	bind	to	the	3’-
untranslated	region	of	mRNAs	and	target	mRNAs	for	degradation	or	inhibition	of	translation,	
thus	regulating	30-60%	of	mRNA	transcription1,2.	In	human	subject	samples,	miRNA	are	
extremely	stable	in	comparison	to	mRNA	and	protein3–5,	and	can	be	measured	using	various	
techniques.	Altered	expression	of	miRNA	profiles	in	whole	blood,	white-blood	cell	subtypes,	
serum,	and	plasma	have	been	linked	to	type	II	diabetes	(T2D)	onset,	progression	and	other	
metabolic	disease	state(s)	6–13.	Circulating	miRNAs	in	the	extracellular	blood	mileu	are	of	
particular	interest	as	they	may	act	as	signaling	molecules	for	cell-to-cell	communication	
between	T2D	target	tissues	such	as	the	liver,	pancreas,	and	adipose.		

Studies	in	separate	study	populations	have	reported	similar	findings	of	specific	
circulating	blood	miRNA	related	to	T2D	(summarized	in	Table	1).	For	example,	three	separate	
studies	demonstrated	that	miR-29a,	associated	with	hyperlipidemia,	is	more	highly	expressed	in	
blood	samples	of	diabetics	versus	control	subjects.	Yet,	the	directionality	of	the	association	can	
also	differ	between	studies.	One	large	study	(N>800)	found	miR-126	significantly	down-
regulated	5-years	prior	to	T2D	and	negatively	associated	with	fasting-glucose	status	6;	One	large	
study	(N>800)	found	miR-126	significantly	down-regulated	5-years	prior	to	T2D	and	negatively	
associated	with	fasting-glucose	status	6.	miR-126	was	observed	to	be	down-regulated	in	two	
additional	human	studies6,7,	and	up-regulated	in	a	third14.	Expression	of	miR-320a,	involved	
with	insulin	signaling	pathways	was	shown	to	be	increased	in	two	studies7,9	and	decreased	in	a	
third	study6.	Differences	in	sampling	media	(plasma	vs.	serum	vs.	whole	blood),	normalization	
methods	(to	account	for	technical	variability),	and	baseline	expression	levels	among	different	
populations	12,15	may	also	contribute	to	the	lack	of	consistency	between	these	studies.		

Changes	in	blood	miRNA	profiles	related	to	chronic	disease	outcomes	may	also	be	due	
to	the	underlying	source	of	the	circulating	miRNA.	In	the	field	of	cancer,	circulating	miRNA	that	
were	deemed	as	potential	biomarkers	from	the	tumor	tissue	of	interest	were	later	found	to	be	
derived	from	the	cancer	patients’	peripheral	blood	cells16.	Moreover,	explicit	warnings	have	
been	made	in	the	cancer	field,	to	take	heed	in	making	generalizations	about	the	origin	of	
circulating	miRNAs.	Other	contributing	factors,	such	as	hemolysis	during	the	blood	collection	
process	17–19,	may	also	inadvertently	bias	the	circulating	miRNA	profiles.	Therefore,	it	is	crucial	
to	take	these	considerations	into	account	when	analyzing	measurements	of	circulating	blood	
miRNAs	studies.	

Here,	we	use	a	T2D	case-control	study	on	Asian	Indians	to	exemplify	how	to	control	for	
biological	and	technical	variability	when	assessing	circulating	blood	miRNAs.	Asian	Indians	have	
2-3-fold	greater	risk	of	type	II	diabetes	(T2D)	than	whites	20–22,	thus	determining	biomarkers	
before	disease	manifestation	could	curb	T2D	progression	in	this	high-risk	population.	We	
attempt	to	validate	some	of	the	circulating	blood	miRNAs	associated	with	T2D	that	were	
previously	reported	in	the	literature.	We	consider	peripheral	blood	cell	counts	as	important	
sources	of	confounding	and	provide	analytical	methods	for	comparing	relative	expression	levels	
that	account	for	variability	during	RNA	extraction,	improving	upon	the	delta-delta-Ct	
convention.	
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Methods	
	
Ethical	Statement	
A.	Population	and	Biospecimen	collection	
The	London	Life	Sciences	Prospective	Population	Study	(abbreviated	as	“LOLIPOP”)	was	
established	in	2002	and	is	a	prospective	cohort	comprised	of	South	Asian	Indians	and	European	
whites	living	in	West	London.	Subjects	that	enter	into	the	cohort	are	followed-up	annually,	
which	includes	a	detailed	health	assessment	and	collection	of	blood	and	urine	samples	from	
subjects	at	each	visit.		Adult	(>21	years)	volunteers,	specifically	of	Telugu	or	Sri	Lankan	Tamil	
descent,	were	newly	recruited	for	the	LOLIPOP	study	in	2012.	As	is	protocol	for	the	LOLIPOP	
study,	all	participants	were	subject	to	a	full	health	physical	that	included	physiological,	clinical	
and	blood	measurements.	Survey	data	and	demographic	information,	including	family	history,	
current	occupation,	time	of	residence	in	England,	and	smoking,	drinking	and	exercise	habits,	
was	collected	by	a	registered	nurse.	T2D	cases	were	defined	as	fasting-blood	glucose	
≥7mmol/L;	a	more	stringent	cut-off	for	abnormal	blood-glucose	levels	was	defined	as	HbA1c	
>5.6%.		
	
B.		miRNA	extraction	
RNA	was	extracted	from	200uLs	of	plasma	from	48	subject	samples.	Plasma	samples	were	
thawed	on	ice	and	spun	at	5000xg	for	5	minutes	at	4°C	prior	to	obtaining	200uL	volumes	for	
extraction	using	the	miRNeasy	kit	(Qiagen),	a	chloroform-phenol	and	filter-based	extraction	
procedure.	The	following	modifications	were	made	for	plasma	RNA	extraction;	1)	Two	spike-in	
miRs	(cel-39	and	cel-54)	were	used	as	exogenous	controls	for	technical	variability	in	extraction	
methods	2)	larger	volumes	of	Qiazol	lysis	reagent	(1:5,	plasma:Qiazol),	3)	proportionately	more	
chloroform	was	added	to	obtain	phase	separation,	and	4)	proportionately	more	ethanol	added	
to	the	aqueous	phase	before	loading	onto	the	filter.	To	account	for	batch	effects,	two	reference	
plasma	samples	were	extracted	side-by-side	with	each	batch	of	subject	samples.	The	RNA	
quantity	eluted	in	PCR-grade	water	was	quantified	by	Nanodrop	Spectrometer.	
	
C.	miRNA	measurement	(qPCR)	
The	specific	candidate	miRNAs	were	chosen	based	on	previous	results	summarized	in	Table	1,	
along	with	negative	control	miRNAs	that	were	not	expected	to	differ	between	cases	and	
controls.	The	qScript-PerfeCTa	microRNA	Assays	(Quanta	Biosciences)	was	used	to	measure	all	
candidate	miRNAs	with	the	company’s	protocol	(10	µL	reactions	for	the	poly	A	tail	synthesis	
reaction,	20	µL	for	the	RT	reactions,	and	50µL	volume	for	the	PCR	reactions).	Most	qScript	
assays	were	tested	with	dilution	series	of	RNA	extracted	from	plasma	to	ensure	>80%	efficiency	
for	reactions	of	this	sample	type.	For	each	qPCR	experiment	for	each	target	miRNA,	all	samples	
were	loaded	onto	a	96-well	plates	and	measured	by	BioRad	CFX96	RT-qPCR	instrument.	Plasma	
samples	were	tested	for	hemolysis	contamination	as	done	previously	12,	and	the	difference	in	
Cq	values	between	miR-451	and	miR-23a	was	below	the	cut-off	for	hemolysis	(<7-8)	in	the	
chosen	samples	17.		
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D.	Analytical	Methods	
Raw	Cq	threshold	values	obtained	from	RT-PCR	were	used	for	analysis	of	all	assays	with	a	cycle	
number	(Cq	value)	<35	for	all	subject	samples.	No	stable	miRNA	could	be	determined	for	
purposes	of	normalization,	as	occurred	before	in	a	previous	study	in	a	similar	population	13.	In	
addition,	normalization	methods	that	only	use	synthetic	spike-in	miRNAs	have	been	found	to	be	
unrepresentative	of	differences	also	seen	in	extraction	variability	of	endogenous	miRNA	
(reviewed	in	23).	Therefore,	in	order	to	effectively	examine	associations	between	miRNA	
expression	and	case-control	status,	linear	regression	was	used	to	model	the	relationship	
between	diabetes	status	(predictor	variables)	and	miRNA	expression	(dependent	variable),	as	
the	miRNA	expression	signal	was	normally	distributed	(Shapiro-Wilk	test	p>0.05)*.	Regression	
models	were	adjusted	for	technical	variability	(to	account	for	extraction	effects	measured	by	
batch	and	spike	in	c.elegans	miRNA	levels)	and	some	sources	of	biological	variability	(the	
subject’s	age	and	lymphocyte	count).		The	more	rigorous	false	discovery	rate	(FDR)	was	applied	
to	correct	for	multiple-hypothesis	testing	(20	miRNAs)	in	these	experiments	(q<0.05).	Data	
analysis	was	conducted	in	R	statistical	software.	
	
Results	
	 In	this	study	we	measured	20	circulating	miRNAs	from	31	cases	versus	17	healthy	
controls,	with	cases	determined	by	HbA1c>5.6%.	The	HbA1c	cut-off	was	ultimately	used	for	the	
main	analysis,	because	some	subjects	had	high	HbA1c	values	but	low	fasting-glucose	levels.	
Without	definitive	diagnosis	from	a	physician,	we	presumed	that	HbA1c	is	a	long-term	marker	
of	diabetes	that	may	capture	a	greater	proportion	of	total	diabetic	and	pre-diabetic	cases.	The	
biometric	and	demographic	characteristics	were	fairly	similar	between	the	two	comparison	
groups	except	for	LDL	concentrations,	lymphocyte	counts,	and	basophil	counts	(Table	2).	Similar	
comparisons	were	observed	when	using	fasting	blood	glucose	concentration	cut-off	(≥7	
mmol/L),	except	differences	were	also	observed	in	age	between	cases	versus	controls	(Table	
S1)	(and	was	included	as	a	covariate	in	the	analyses).		
	
Correlation	of	miRNAs	with	each	other	and	with	differential	white	blood	cell	counts	
	 Paired	correlations	of	Cq	values	(adjusted	for	technical	variability)	were	calculated	for	all	
miRNA	targets	to	determine	similarities	in	expression	patterns	across	plasma	miRNAs.	The	
color-coded	matrix	(Figure	1)	shows	the	high-degree	(r	>0.8)	of	correlation	between	most	of	the	
diabetes-related	miRNA	markers.	Differential	white	blood	cell	counts	were	also	included	in	the	
correlation	matrix	to	determine	if	any	miRNAs	correlated	with	these	counts.	Many	of	the	
miRNAs	showed	a	direct	linear	relationship	with	lymphocyte	counts,	including	miR-29a,	miR-
423,	miR-23a,	miR-146a,	miR-425,	miR-130b,	miR-191,	miR-16,	miR-27a,	miR-320a,	let-7d,	miR-
374,	miR-155,	miR-223,	miR-24.	Several	miRNAs	that	are	not	specific	to	white	blood	cells,	
including	miR-451	(red	blood	cells),	miR-122	(liver),	and	miR-375	(pancreas),	did	not	correlate	
well	with	either	the	clustered	miRNAs	nor	the	differential	white	blood	cell	counts.		

																																																								
*	An	exception:	miR-375	did	not	initially	pass	the	Shapiro-Wilk	test.	Analyses	were	repeated	
after	removal	of	three	outliers	and	resulting	effect	size	and	p-value	were	similar	to	the	reported	
values	here.	
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Regression	models	of	miRNA	expression	in	cases	versus	controls	
Linear	regression	models	were	used	to	identify	miRNAs	that	were	differentially	

expressed	between	cases	and	controls.	All	results	here	are	interpreted	with	caution,	as	the	total	
sample	size,	N,	was	relatively	small.	In	the	first	set	of	models,	they	were	only	adjusted	for	
technical	variability	and	age	of	the	subjects.	The	fold-change	differences	in	these	models	
showed	a	significant	increase	in	a	majority	of	the	miRNAs	(Table	3).	Then,	an	additional	
covariate	for	lymphocyte	count	was	added	to	the	model,	as	these	particular	white	blood	cell	
subsets	were	associated	with	both	the	miRNA	expression	levels	and	the	T2D	disease	state	in	
our	subjects.	In	this	lymphocyte-	adjusted	model,	there	was	only	seven	miRNAs	that	remained	
significant.	Of	these,	only	miR-375,	miR-423	and	miR-24	had	no	significant	association	with	
lymphocyte	count	(p>0.05).	While	miR-375	had	the	greatest	measure	of	effect	(>2-fold),	none	
of	the	miRNAs	withstood	correction	for	multiple	hypothesis	testing	(FDR<0.05).		The	relative	
expression	values	adjusting	for	technical	and	biological	variability	are	plotted	for	cases	versus	
controls	for	miR-375,	miR-423,	and	miR-24	(Figure	2).	Similar	patterns	in	effect	measures	are	
seen	when	using	the	fasting-glucose	cut-off	of	≥7mmol/L	for	cases	versus	controls	(comparing	
N=24	vs.	N=24),	however	miR-375	and	miR-122	are	the	only	significant	miRNAs	after	
adjustment	for	lymphocyte	count	and	only	miR-375	withstood	correction	for	multiple	
hypothesis	testing	(FDR<0.05).	(Table	S2	and	corresponding	Supplemental	Figure	S1).		
	
Discussion	

While	studies	on	circulating	miRNAs	have	increased	in	popularity	in	recent	years,	little	
attention	has	been	given	to	the	true	source	of	these	extracellular	miRNA	expression	levels.	
Several	reports	have	suggested	that	proposed	disease-related	blood	miRNAs	may	simply	be	
acting	as	proxys	for	a	third	unmeasured	variable	in	the	blood,	including	blood	cells16,	
platelets24,	and	lipids25.	In	the	field	of	cancer,	white	blood	cell	counts	were	correlated	with	
circulating	miRNAs	that	were	considered	to	be	candidate	cancer	biomarkers	in	cancer	
patients16.	Peripheral	immune	cell	counts	increase	not	only	in	cancer	cases,	but	in	other	chronic	
illnesses,	such	as	T2D,	as	well.	Positive	associations	have	routinely	been	found	between	white	
blood	cell	counts	and	diabetes	status,	even	prior	to	T2D	onset	(in	prospective	studies)26.	We	
were	able	to	confirm	that,	while	a	majority	of	target	circulating	miRNAs	were	differentially	
expressed	between	cases	and	controls,	many	of	these	miRNAs	are	highly	correlated	with	
lymphocyte	counts.	This	influenced	the	measure	of	association	between	circulating	miRNA	
expression	and	T2D	status,	as	many	of	the	target	miRNAs	in	this	study	were	no	longer	
significant	after	adjusting	for	lymphocyte	counts.	As	circulating	miRNA	will	continue	to	be	
considered	viable	blood	biomarkers,	differential	white	blood	cell	counts	must	be	accounted	for	
in	the	experimental	design	for	studies	of	chronic	illnesses.		
In	this	case-control	study	of	Asian	Indians,	we	confirmed	differential	expression	of	various	
circulating	plasma	miRNAs	that	were	previously	reported	in	other	T2D-related	population	
studies.	In	Asian	Indians	specifically,	increased	expression	of	miR-128,	miR-374a,	miR-130b	was	
found	in	subjects	with	diabetes	13	and	decreased	expression	of	miR-423,	miR-122,	miR-15a,	
miR-197,	miR-320a,	miR-486	was	found	in	subjects	progressing	to	pre-diabetes	27.	We	observe	
that,	after	adjusting	for	technical	variability,	17/20	of	the	miRNAs	in	our	study	(including	miR-
320a,	miR-128,	miR-423)	were	initially	found	to	be	associated	with	T2D	status.	However,	14/20	
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of	these	T2D-associated	miRNAs	were	likely	confounded	by	the	correlation	with	white	blood	
cell	counts,	namely	lymphocytes.	This	also	helps	to	explain	why	many	of	the	20	miRNAs	tested	
were	so	highly	correlated	with	each	other	(r>0.8).	While	some	of	these	miRNAs	may	still	be	
involved	in	disease	etiology,	currently	they	appear	to	be	representative	of	changes	in	
lymphocyte	counts	and,	as	such,	are	relatively	non-specific	and	insensitive	biomarkers.	

Three	miRNAs,	miR-375,	miR-423,	and	miR-24	were	not	associated	with	lymphocyte	
counts	but	were	associated	with	glycemic	impairment.	Interestingly,	miR-375	also	had	the	
largest	measure	of	effect,	a	2-fold	difference	in	expression	between	cases	and	controls.	
Pancreatic	beta-islet	cells	highly	express	miR-375,	and	knock-out	mouse	models	have	shown	
severe	hyperglycemia	and	reduced	pancreatic	cell	proliferation	in	the	absence	of	miR-375	28.	
Conversely,	increased	miR-375	expression	is	demonstrative	of	beta-islet	cell	death	in	a	mouse	
model	29.	T2D	cases	in	human	epidemiological	studies	have	shown	increased	miR-375	
expression	levels	in	Chinese	populations	8,30.	Previous	studies	on	Asian	Indians	have	not	
identified	miR-375	as	a	differentially	expressed	circulating	miRNA,	citing	expression	levels	
below	the	detection	limit	in	one	study	27.	This	miR	was	low	expressed	in	our	study	as	well,	and	
may	imply	the	source	of	secretion	is	pancreatic	tissue	specific	and	not	due	to	changes	in	
lymphocyte	counts.		Circulating	miR-423,	previously-reported	as	a	cardiac-specific	miRNA	in	
several	distinct	populations	31–34,	was	more	highly	expressed	in	T2D	cases	of	our	sample	
population,	however,	previous	studies	on	Asian	Indians	with	glycemic	impairment	reported	
decreases	miR-423	levels	13,27.	Similarly,	miR-24	is	also	expressed	by	heart	cells	
(cardiomyocytes)	yet	is	involved	with	angiogenesis	and	inhibition	of	apoptosis	35–37.	miR-24	was	
previously	shown	to	be	differentially	expressed	in	two	other	human	studies	on	T2D	as	well	6,12.	
These	three	miRNA	are	more	robust	biomarkers	of	T2D	status,	and	more	functional	studies	are	
warranted	to	determine	their	role	in	T2D	onset	and	progression.	
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Tables	and	Figures	
Table	1.	Review	of	literature	on	circulating	miRNA	expression	level	differences	between	T2D	cases	and	controls	

miR Study Year Fold Change (±SD)  Compartment Adj OR (95%CI) Significant 
130a Karolina et al 2012 -1.37 ±0.01 blood  Yes 

 Karolina et al 2011 1.94 blood  Yes 
130b Karolina et al 2011 2.00 blood  Yes 

 Prabu et al 2015 1.25 plasma  Yes 

197 Karolina et al 2012  -1.35±0.14 blood  Yes 

  Wang et al 2014  plasma 1.11(.66-1.86) No 

  Zampetaki et al 2010 -1.87 plasma 0.65 (0.50-0.80) Yes 

150 Karolina et al 2012 1.57 ±0.02 blood 
 

Yes 

 

Karolina et al 2011 2.85±0.09 blood  Yes 
(internal validation) 

 
Wang et al 2014  plasma 1.41(.82-2.45) No 

 
Zampetaki et al 2010 -1.43 plasma 0.18 (0.12-0.30) Yes for Odds Ratio 

192 Karolina et al 2012 1.86±0.13 blood 
 

Yes 

 

Karolina et al 2011 2.34±0.08 blood  
Yes 

(internal validation) 
320a  Karolina et al 2012 2.33±0.19 blood 

 
Yes 

  Karolina et al 2011 3.61±0.16 blood  
Yes 

(internal validation) 
 Wang et al 2014  plasma 1.53 (0.87-2.70) No 

  Zampetaki et al 2010 -1.33 plasma 0.22 (0.10-0.44) Yes 

320b Wang et al  2016 ~3.0 plasma  Yes 

21 Wang et al 2014  plasma 1.61 (0.93-2.80) No 

 
Zampetaki et al 2010 -3.33 plasma 0.76 (0.65-0.86) Yes 

24 Wang et al 2014 1.18 plasma 2.39 (1.26-4.54) Yes  

  Zampetaki 2010 -2.5 plasma 0.58 (0.43-0.78) Yes 

15a Wang et al 2014 1.26 plasma 2.39  (1.00-5.70) Yes for Swedes 

 
Zampetaki et al 2010 -6.66 plasma 0.53 (0.41-0.66) Yes 

 
Zhang et al 2013 ~-4.0 plasma  No 

15b Pescador et al 2013 ~2.0 serum  No 
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miR Study Year Fold Change (±SD)  Compartment Adj OR (95%CI) Significant 
126 Karolina et al 2011 1.51 blood  Yes 

  Wang et al 2014  plasma 1.40 (0.79-2.48) No 

  Zampetaki et al 2010 -1.67 plasma 0.39(0.22-0.51) Yes 

  Zhang et al 2013 ~-6.0 plasma  Yes 

191 Wang et al 2014  plasma 0.99 (.57-1.72) No 

 
Zampetaki 2010 -2.0 plasma 0.58(0.42-0.77) Yes 

223 Wang et al 2014  plasma 1.19(0.66-2.14) No 

 
Zampetaki et al 2010 -2.85 plasma 0.42 (0.3-0.6) Yes for Odds Ratio 

 
Zhang et al 2013 ~-1.25 plasma  No 

486 Wang et al 2014  plasma 1.29 (.75-2.23) No 

 
Zampetaki 2010 -1.43 plasma 0.2 (.16-.32) Yes for Odds Ratio 

28 Wang et al 2014  plasma 1.19 (0.70-2.02) No 

 Zampetaki 2010 1.25 plasma 1.25 (1.01-1.60) Yes for Odds Ratio 

 
Zhang et al 2013 N/A plasma  No 

146a Karolina et al 2011 -3.38±0.13 blood  
Yes 

(internal validation) 
  Kong et al 2011 ~4.0 serum 

 
Yes 

  Zampetaki et al 2010 
 

plasma   No 

30d Karolina et al 2011 -1.38±0.10 blood  Yes 
(internal validation) 

 
Kong et al 2011 ~4.0 serum  No 

144 Karolina et al 2011 3.07±0.13 blood  Yes 
(internal validation) 

 
Wang et al 2014 1.58 plasma 2.43(1.07-5.55) Yes for Swedes only 
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miR Study Year Fold Change (±SD)  Compartment Adj OR (95%CI) Significant 

29a Karolina et al 2011 2.09±0.14 blood  Yes 
(internal validation) 

  Kong et al 2011 ~8.0 serum  No 

  Zhao (GDM)  3.90 serum   

29b Karolina et al 2011 2.38 blood  Yes  

  Wang et al 2014 0.86 plasma 1.93(1.11-3.36) Yes 

  Zampetaki et al 2010 1.54 plasma 0.95 (0.85-1.05) No 

  Zhang et al 2013 N/A plasma   No 

375 Karolina et al 2011 2.00 blood  Yes 

  Kong et al 2011 ~8.00 serum 
 

Yes 

27a Karolina et al 2012 2.53 ±0.17 blood 
 

Yes 

 Karolina et al 2011 2.46 blood  Yes 

23a Karolina et al 2012 -1.17 ±0.07 blood 
 

Yes 

 Karolina et al 2011 1.86 blood  Yes 
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Table	2.	Subject	Characteristics	for	Asian	Indian	cases	of	T2D	or	pre-diabetes	(defined	by	HbA1c>5.6%)	and	Controls	

 Controls  
N=17 

Cases 
N=31 

 
 
N 

N=31 

p- value 

HbA1c (SD) 5.34 (0.23) 7.67(1.50) <0.001 
Glucose (SD) 4.67 (0.18) 8.03 (1.63) <0.001 
Sex Male (%) 11 (64%) 22 (71%) 0.70 

Age (SD) 49.57(8.13) 54.16 (9.76) 0.10 
Current Smokers (%) 2 (12%) 4 (13%) 0.99 

BMI (SD) 27.14 (3.56) 27.22 (3.66) 0.94 
WHR (SD) 0.94 (0.06) 0.96 (0.07) 0.29 
SBP (SD) 126.49 (15.29) 129.92 (15.72) 0.48 
DBP (SD) 79.26 (12.12) 80.39 (7.90) 0.75 
HDL (SD) 1.29 (0.28) 1.23 (0.36) 0.49 
TG (SD) 1.58(0.70) 1.82 (0.94) 0.25 

Chol (SD) 5.14 (1.05) 4.55 (1.32) 0.09 
LDL (SD) 3.13 (0.86) 2.49(1.07) 0.03 
WBC (SD) 6.51 (2.15) 7.20 (2.12) 0.29 

Lymphocyte cnt (SD) 1.80 (0.50) 2.30 (0.69) 0.007 
Monocyte cnt (SD) 0.43 (0.18) 0.51 (0.17) 0.16 
Neutrophil cnt (SD) 4.00 (1.59) 4.14(1.68) 0.781 
Basophil cnt (SD) 0.019 (0.01) 0.032 (0.02) <0.001 
Eosinophil cnt (SD) 0.25 (0.24) 0.23(0.15) 0.72 
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Table	3.	Fold-Change	Differences	in	miR	Target	expression	levels	for	cases	of	T2D	or	pre-diabetes	(defined	by	HbA1c>5.6%)	versus	
controls,	adjusted	for	fold-change	differences	in	miR	target	expression	levels	associated	with	1-unit	increase	in	lymphocyte	
counts	
	 Unadjusted	 Adjusted	for	Lymphocyte	

Target	
Fold-change	
(T2D	Case)	 p-value	

q-value	
(FDR)	

Fold	Change	
(T2D	Case)	 p-value	

q-value	
(FDR)	

Lymphocyte	
count		

10^6	cell/uL	 p-value	
miR-375	 1.89	 0.010	 0.013	 2.06	 0.008	 0.06	 0.872	 0.42	
miR-423	 1.72	 0.000	 0.002	 1.51	 0.006	 0.06	 1.212	 0.05	
miR-223	 1.61	 0.001	 0.003	 1.4	 0.016	 0.0862	 1.238	 0.02	
miR-23a	 1.57	 0.000	 0.002	 1.38	 0.008	 0.06	 1.219	 0.01	
miR-128	 1.55	 0.002	 0.005	 1.37	 0.030	 0.0936	 1.201	 0.04	
miR-24	 1.55	 0.001	 0.005	 1.39	 0.022	 0.0936	 1.176	 0.08	
miR-425	 1.54	 0.000	 0.002	 1.34	 0.009	 0.06	 1.241	 <0.01	
miR-130b	 1.52	 0.006	 0.012	 1.33	 0.074	 0.1533	 1.224	 0.05	
miR-27a	 1.48	 0.003	 0.007	 1.32	 0.045	 0.1378	 1.198	 0.04	
miR-320a	 1.48	 0.006	 0.012	 1.3	 0.079	 0.1533	 1.228	 0.03	
miR-29a	 1.46	 0.009	 0.013	 1.28	 0.106	 0.1721	 1.23	 0.04	
miR-191	 1.46	 0.003	 0.007	 1.29	 0.047	 0.1378	 1.207	 0.02	
miR-146a	 1.45	 0.008	 0.013	 1.26	 0.106	 0.1721	 1.23	 0.03	
miR-122	 1.44	 0.157	 0.166	 1.66	 0.074	 0.1533	 0.801	 0.23	
miR-155-5p	 1.43	 0.010	 0.013	 1.23	 0.136	 0.1911	 1.255	 0.02	
miR-374	 1.42	 0.008	 0.013	 1.26	 0.093	 0.1685	 1.197	 0.04	
miR-let7d	 1.4	 0.016	 0.019	 1.23	 0.145	 0.1911	 1.205	 0.05	
miR-16	 1.31	 0.010	 0.013	 1.21	 0.081	 0.1533	 1.122	 0.11	
miR-29b	 1.27	 0.103	 0.114	 1.24	 0.181	 0.1911	 1.033	 0.76	
miR-451	 1.17	 0.432	 0.432	 1.14	 0.556	 0.6342	 1.041	 0.79	
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Figure	1.	Spearman’s	Correlation	for	miRNA	expression	levels	and	cell	count	
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Figure	2.	Relative	expression	differences	in	cases	(defined	by	HbA1c>6.5%)	versus	controls	for	miRNAs	that	are	not	influenced	by	
lymphocyte	counts.	
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Figure	2.	Rela+ve	expression	differences	in	cases	(defined	by	HbA1c>6.5%)			
vs.	controls	for	miRNAs	that	are	not	influenced	by	lymphocyte	counts	
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Supplementary Materials 
 
Table	S1.	Subject	Characteristics	for	Asian	Indian	T2D	Cases	(defined	by	Glucose>=	7mmol/L)	and	Controls	
	

 

 
 
  

 

Controls 
N=24 

Cases 
N=24 p-value 

Glucose 4.67 (0.18) 9.02 (1.63) <0.01 
HbA1c 5.5 (0.33) 8.2 (1.29) <0.01 
Sex 16 (0.67) 17 (0.71) 0.99 
Age 49.49 (8.13) 55.58 (9.76) 0.02 
Current Smokers (%) 3 (12.5) 3 (12.5) 0.99 
BMI 28.15 (3.56) 26.23 (3.66) 0.07 
WHR 0.94 (0.06) 0.97 (0.07) 0.18 
SBP 125.72 (15.29) 131.7 (15.72) 0.19 
DBP 78.7 (12.12) 81.28 (7.9) 0.39 
HDL 1.27 (0.28) 1.23 (0.36) 0.66 
Trig 1.58 (0.7) 1.9 (0.94) 0.20 
Chol 5.23 (1.05) 4.3 (1.32) 0.01 
LDL 3.24 (0.86) 2.16 (1.08) 0.00 
WBC 6.63 (2.13) 7.29 (2.13) 0.29 
Lymphocyte 1.94 (0.58) 2.3 (0.71) 0.06 
Monocytes 0.46 (0.16) 0.5 (0.19) 0.47 
Neutrophils 3.98 (1.65) 4.21 (1.65) 0.63 
Basophils 0.02 (0.01) 0.03 (0.02) 0.01 
Eosinophils 0.23 (0.21) 0.24 (0.16) 0.75 



	
	

	

94
	

 
Table S2. Fold-Change Differences in miR Target expression levels for T2D cases (defined by glucose>=7mmol/L) 
versus controls, un/adjusted for fold-change differences in miR target expression levels associated with 1-unit 
increase in lymphocyte counts 

	 Unadjusted	 Adjusted	for	lymphocytes	

Target	
Fold-change	
(T2D	Case)	 p-value	

q-value	
(FDR)	

Fold	Change	
(T2D	Case)	 p-value	

q-value	
(FDR)	

Lymphocyte	
count		

10^6	cell/uL	 p-value	
miR-375	 2.31	 <0.001	 0.004	 2.42	 <0.001	 0.004	 0.9	 0.48	
miR-122	 1.64	 0.041	 0.158	 1.77	 0.024	 0.236	 0.827	 0.26	
miR-423	 1.42	 0.016	 0.110	 1.28	 0.081	 0.405	 1.298	 0.01	
miR-425	 1.35	 0.010	 0.096	 1.21	 0.064	 0.405	 1.298	 0.00	
miR-128	 1.31	 0.047	 0.158	 1.18	 0.192	 0.728	 1.266	 0.01	
miR-23a	 1.28	 0.044	 0.158	 1.15	 0.218	 0.728	 1.297	 0.00	
miR-320a	 1.26	 0.103	 0.247	 1.13	 0.358	 0.868	 1.289	 0.01	
miR-155-5p	 1.26	 0.090	 0.247	 1.13	 0.344	 0.868	 1.3	 0.00	
miR-223	 1.25	 0.111	 0.247	 1.11	 0.428	 0.868	 1.333	 0.00	
miR-29a	 1.23	 0.145	 0.290	 1.11	 0.456	 0.868	 1.29	 0.01	
miR-24	 1.21	 0.162	 0.294	 1.10	 0.477	 0.868	 1.266	 0.01	
miR-27a	 1.19	 0.189	 0.315	 1.07	 0.570	 0.942	 1.275	 0.01	
miR-146a	 1.16	 0.284	 0.379	 1.04	 0.773	 0.942	 1.303	 0.00	
miR-130b	 1.16	 0.329	 0.412	 1.03	 0.818	 0.942	 1.316	 0.01	
miR-191	 1.16	 0.224	 0.345	 1.05	 0.685	 0.942	 1.283	 0.00	
miR-16	 1.12	 0.261	 0.372	 1.05	 0.628	 0.942	 1.173	 0.02	
miR-let7d	 1.12	 0.411	 0.483	 1.01	 0.935	 0.942	 1.275	 0.01	
miR-374	 1.1	 0.481	 0.534	 0.99	 0.932	 0.942	 1.279	 0.01	
miR-451	 1.09	 0.652	 0.686	 1.06	 0.767	 0.942	 1.068	 0.64	
miR-29b	 1.05	 0.733	 0.733	 1.01	 0.942	 0.942	 1.095	 0.37	
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Figure	S1.	Relative	expression	differences	T2D	cases	(defined	by	fasting	blood	glucose>=7mmol/L)	versus	controls	for	miRs	that	
are	not	influenced	by	lymphocyte	counts
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Figure	S1.	Rela1ve	expression	differences	in	T2D	cases	(defined	by	fas1ng	
blood	glucose>=7mmol/L)	vs.	controls	for	miRs	that	are	not	influenced	by	

lymphocyte	counts	
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Chapter	5:			Summary	and	Conclusion	
	

The	purpose	of	this	dissertation	is	to	identify	viable	blood	biomarkers	of	exposure	and	
disease	related	to	type	II	diabetes	(T2D)	using	improved	methods	and	experimental	design.	
Specific	populations	are	at	differential	risk	of	the	T2D,	which	provides	an	opportunity	to	make	
comparisons	between	groups.	Incidence	of	T2D	is	particularly	high	in	India,	and	prevalence	is	
rising	in	diaspora	Asian	Indian	populations	in	other	nations,	including	the	US	and	UK	(1–3).	By	
gaining	greater	understanding	of	this	specific	population’s	blood	profile,	we	can	generate	new	
hypotheses	to	help	explain	the	mechanisms	of	disease.	A	semi-targeted	exposomics	approach	is	
used	here	to	measure	candidate	blood	biomarkers	of	exposure	and	disease	in	Asian	Indians	
that	have	been	previously	reported	to	be	associated	with	T2D	in	other	populations.		

This	dissertation	takes	advantage	of	new	methods	used	to	examine	biomarkers	in	
relatively	small	volumes	of	blood.	A	recent	development	within	Agilent	Technologies	requires	
only	200	μL	of	plasma	to	measure	the	blood	concentrations	of	66	environmental	pollutants	(as	
compared	to	previous	methods	which	required	milliliters	of	blood).	For	biomarkers	such	as	
miRNA,	only	200	μL	of	plasma	are	needed	to	extract	the	RNA,	and	a	small	fraction	of	the	eluted	
RNA	is	used	for	qPCR	plasma	expression.	Pilot	experiments	for	both	the	pollutant	and	miRNA	
measurements	helped	determine	the	extent	of	biological	and	technical	variability	a	priori	
before	expanding	these	studies	to	test	precious	samples.		

Several	valuable	findings	were	obtained	from	these	studies.	After	screening	for	many	
environmental	pollutants	in	just	49	Asian	Indians,	the	pilot	study	showed	that	DDE	levels	
tended	to	be	higher	in	diabetics	compared	to	controls.	In	Chapter	2,	this	study	was	expanded	to	
a	larger	sample	population	of	N=200	individuals.	Asian	Indians	showed	3-30x	higher	
concentrations	of	organochlorine	pesticides	compared	to	European	whites,	including	DDT,	DDE,	
and	β-HCH.	For	Asian	Indians,	there	was	>5-fold	higher	odds	of	(relatively)	high	exposure	to	
DDE	and	β-HCH	for	subjects	with	T2D	compared	to	healthy	individuals.	While	these	pesticides	
have	previously	been	associated	with	T2D	in	populations	from	the	US,	Sweden,	and	elsewhere	
(4),	this	is	the	first	study	to	demonstrate	this	in	an	Asian	Indian	population,	even	years	after	
emigration	from	the	main	source	of	exposure.	These	observations	add	to	the	growing	body	of	
literature	that	early-life	pesticide	exposure	can	increase	the	risk	of	T2D	onset	later	in	life.	

Interestingly,	the	metabolic	phenotype	of	Asian	Indians	makes	them	more	susceptible	to	
T2D.	T2D	is	more	prevalent	in	Asian	Indians	regardless	of	traditional	metrics	of	obesity	and	have		
increased	insulin	resistance	and	dyslipidemia	at	lower	BMIs	than	whites	and	other	ethnic	
groups	(5,7).	This	may	be	due	in	part	to	the	fact	that	Asian	Indians	also	have	disproportionately	
more	visceral	fat	around	their	midsection	and	internal	organs	than	other	ethnic	groups	(5,7).	
Asian	Indians	have	a	greater	prevalence	of	insulin	resistance	at	baseline,	and	higher	levels	of	
adiponectin	and	C-reactive	proteins	(5)—all	risk	factors	for	T2D.	These	unique	traits	may	be	due	
to	greater	body	fat	and	differences	in	fat	deposition	in	Asian	Indians	compared	to	whites,	even	
in	early-life	(6,7).	The	differences	in	mechanisms	of	glucose	use	and	fat	storage	in	Asian	Indians	
versus	whites	are	only	recently	being	explored	(8),	and	greater	effort	is	needed	to	determine	
the	underlying	causes	leading	to	T2D.	As	many	POPs	are	lipophilic	compounds	predicted	to	be	
at	100-1000x	higher	concentrations	in	adipose	tissue	than	in	the	blood	(9),	this	may	elicit	an	
exacerbated	effect	on	key	endocrine	organs,	such	as	the	pancreas	and	liver,	for	this	population	



	
	

	
	

97	

(as	described	in	animal	models	(10)).	Thus,	POPs	exposures	may	lead	to	prolonged	downstream	
effects	on	the	endocrine	system	that	augment	the	risk	of	T2D	in	Asians	Indians.		

Gaining	understanding	of	environmental	factors	that	are	causally	related	to	T2D	
requires	well-designed	longitudinal	studies,	which	is	essential	to	the	next	stage	of	pursuing	
exposomics.	As	progression	to	T2D	can	occur	5-10	years	prior	to	clinical	manifestation	of	the	
disease,	future	studies	will	need	years	of	follow-up	and	meticulous	measurement	of	blood	
exposure	levels.	As	seen	in	this	study,	environmental	pollutants	in	blood	samples	can	correlate	
with	each	other	and	with	T2D	status,	including	DDT,	DDE	and	β-HCH.		Therefore	it	is	important	
to	determine	whether	these	exposures	(namely	DDE	and	β-HCH)	interact	synergistically	or	
independently	to	affect	metabolic	activity.	While	this	study	shows	that	DDE	levels	are	higher	in	
T2D	cases	versus	controls,	other	studies	have	shown	the	parent	compound,	DDT,	levels	to	be	
higher	(4).	Furthermore,	animal	and	tissue	culture	models	provide	evidence	that	DDT	maybe	
the	causal	agent	of	disease.	It	is	plausible	that	DDT	is,	in	fact,	the	more	active	compound	and	
the	mechanism	of	action	that	causes	glucose	dysregulation,	occurring	prior	to	degradation	of	
the	metabolite,	DDE.	Similarly,	β-HCH,	found	in	technical	grade	HCH	and	as	a	by-product	in	
Lindane,	may	simply	be	a	proxy	for	exposure	to	Lindane	(ϒ-HCH),	which	has	a	much	shorter	
half-life	but	perhaps	more	detrimental	effects	on	glucose	regulation	in	vivo	that	occur	
immediately	upon	onset.		

An	exposome	approach	within	cohort	studies	will	shed	more	light	on	which	
environmental	pollutants	contribute	to	T2D	onset	later	in	life.	It	is	imperative	that	these	T2D	
cohort	studies	include	samples	from	early-life,	as	windows	of	greatest	susceptibility	are	likely	to	
occur	before	birth,	in	the	first	years	of	life,	and	during	puberty.	Multiple	collection	time-points	
will	allow	further	investigation	of	the	relationship	between	these	analytes	and	their	rates	of	
metabolism	over	time	with	respect	to	disease	onset.	Ultimately,	an	individual’s	cumulative	
measure	of	exposures	can	be	constructed	along	with	risk	of	their	disease	outcomes.	This	
process	will	be	facilitated	by	the	new	high-throughput	MS/MS	platform	described	in	this	study	
that	can	measure	tens	to	hundreds	of	persistent	and	non-persistent	organic	pollutants.	Given	
technological	advancements	in	recent	years,	screening	of	environmental	exposures	via	
exposomics	will	become	high-throughput	for	more	efficient	and	effective	analysis	of	subject	
samples	from	cohort	studies		

The	field	of	miRNAs	as	blood	biomarkers	is	still	in	its	infancy	as	well,	thus,	optimization	
of	current	methods	is	crucial	before	measuring	differences	in	expression	levels	between	
comparison	groups.	For	miRNA	in	particular,	very	small	(<2-fold	change)	differences	are	
generally	observed	in	human	population	studies,	therefore,	fine-tuning	the	method	and	
accounting	for	variability	is	essential	to	capture	these	small	fluctuations	in	expression	levels.	
Chapter	3	describes	how	targeted	miRNA	methods	were	used	to	measure	the	biological	and	
technical	sources	of	variability.	A	substantial	amount	of	technical	variability	was	initially	
observed	when	using	a	probe-based	method	of	qPCR	measurement.	This	technical	variability	
was	reduced	when	changing	to	a	SYBR	green-based	qPCR	method	of	detection.	In	addition,	
simulations	were	used,	based	on	empirical	data,	to	show	that	statistical	power	to	detect	small	
(2-fold)	changes	is	increased	by	including	technical	and	biological	replicates	in	a	hypothetical	
study.	While	greatly	overlooked,	identifying	sources	of	variability	for	new	biomarkers	of	interest	
is	imperative	in	order	to	maximize	our	ability	to	discern	differences	between	comparison	
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groups.	
The	objective	in	Chapter	4	was	to	verify	20	miRNAs	that	were	previously	reported	as	

differentially	expressed	in	separate	T2D	sample	populations.	A	case-control	study	on	Asian	
Indians	was	designed	and	executed	based	on	the	methods	optimized	in	Chapter	3.		Most	
miRNAs	were	directly	correlated	with	lymphocyte	count,	which	was	higher	in	cases	versus	
controls.	Only	3	miRNAs,	miR-375,	miR-24,	and	miR-423,	were	associated	with	T2D	and	not	
confounded	by	lymphocyte	counts.	

This	finding	should	be	strongly	considered	with	respect	to	the	field	of	circulating	plasma	
miRNA	and	blood	biomarkers,	in	general.	Other	miRNA	studies	on	T2D	have	shown	a	universal	
increase	or	decrease	in	circulating	miRNA	expression	levels	with	respect	to	disease	status,	and	
these	findings	may	also	be	highly	influenced	by	the	circulating	white	blood	cell	counts	and	
should	be	evaluated	with	skepticism.	In	light	of	this	finding,	others	published	in	the	field	
showing	associations	between	blood	cell	count	and	circulating	miRNA	expression	levels	(11).	In	
Chapter	4	as	well	a	direct	relationship	was	found	between	lymphocyte	(white	blood	cell)	count	
and	miRNA	expression	for	a	majority	of	miRNAs	tested.	New	conventions	are	needed	to	adjust	
for	white	blood	cell	counts	in	future	human	and	animal	studies.	Moreover,	novel	free-floating	
nucleotide,	amino	acid,	or	lipid	material	in	the	blood	milieu	should	be	assessed	for	correlation	
with	major	blood	contents	before	assuming	that	these	markers	are	likely	secreted	directly	from	
tissues	of	interest	related	to	the	disease.	

Pathogenesis	of	T2D	is	still	poorly	understood	as	well,	and	new	biomarkers,	such	as	
miRNA,	discovered	through	prospective	studies	are	imperative	for	early	detection,	diagnosis,	
and	treatment.	While	several	other	studies	have	identified	these	miRNAs	as	biomarkers	of	T2D	
status,	cohort	studies	can	determine	if	these	are	also	predictive	markers	of	the	disease.	There	is	
potential	for	circulating	miRNAs	to	be	used	as	an	early-marker	of	T2D,	as	has	previously	been	
shown	for	miRNA-126	in	a	large	cohort	(12).	Within	the	context	of	the	exposome,	these	miRNA	
targets	of	interest	can	also	be	correlated	to	individuals’	blood	exposure	levels	as	well,	as	
miRNAs	have	previously	been	associated	with	both	environmental	exposures	and	disease	
status,	acting	as	an	intermediate	marker	(13).		

Identifying	preventable	risk	factors	for	T2D	and	related	metabolic	outcomes	that	may	be	
specific	to	exposures	in	India	is	crucial	for	the	health	and	welfare	of	the	Asian	Indian	diaspora.	
Semi-targeted	exposomics	approaches,	exemplified	here,	show	promise	in	identifying	
biomarkers	of	T2D.	Cross-sectional	studies	such	as	this	are	an	efficient	and	economical	first	step	
to	determine	baseline	differences	between	populations	and	generate	new	hypothesis	for	
further	examination	in	longitudinal	studies.	
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