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Abstract

Decomposing Matrices, Tensors, and Images

by

Elina Mihaylova Robeva

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

In this thesis we apply techniques from algebraic geometry to problems arising from
optimization and statistics. In particular, we consider data that takes the form of a matrix,
a tensor or an image, and we study how to decompose it so as to find additional and seemingly
hidden information about its origin and formation. We show that the practical uses of such
decompositions are complemented by appealing algebraic and geometric structure.

In Chapter 2 of this thesis we focus on matrix shaped data. The singular value decompo-
sition, which lies at the core of modern algorithms and can be found efficiently, is not always
enough to capture the structure of the data. Often times the matrix at hand as well as
the elements of its decomposition are required to have a certain positivity structure, and we
need to design algorithms and theory to exploit this structure. Statistical mixture models,
for instance, are based on finding a nonnegative decomposition of a nonnegative matrix. We
study the algebraic and geometric properties of such decompositions in Section 2.1. Another
type of decomposition of a nonnegative matrix, which is useful in convex optimization as well
as quantum information theory, is positive semidefinite decomposition. Here we require the
elements of the decomposition to be positive semidefinite matrices of a given size. We explore
this notion in Section 2.2. One of the most appealing properties of a nonnegative matrix is
that we can think of it in terms of a pair of nested polyhedra. We rely on this geometric
interpretation when studying nonnegative and positive semidefinite decompositions.

In Chapters 3 and 4 we turn our attention to data in the shape of a tensor. It is even
more crucial in this case than in the matrix case to find a decomposition, not only because
it provides hidden information about the data, but also because it allows us to store the
tensor more concisely. However, one of the biggest obstacles in the field is that finding a
decomposition of a general tensor is NP-hard. Inspired by the spectral theorem and the
singular value decomposition for matrices, we study tensors whose decomposition consists of
elements with an orthogonality structure. We call such tensors orthogonally decomposable,
or odeco. One of their best properties is that, like matrices, odeco tensors can be decomposed
efficiently. In Chapter 3 we study the spectral properties of such tensors. We give a formula
for their eigenvectors and singular vector tuples. We note that computing these for a general
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tensor is hard both algebraically and computationally. In Chapter 4 we study the variety of
orthogonally decomposable tensors, and we give polynomial equations that cut it out. We
do this by showing that a tensor is orthogonally decomposable if and only if a given algebra
that arises from it is associative, yet another appealing property of odeco tensors. Despite
all of these appealing properties, odeco tensors constitute a very low-dimensional variety.
This is why in Section 4.2 we conclude our study of tensors by generalizing the notion of
orthogonally decomposable tensors to that of frame decomposable tensors, which now cover
the space of all tensors.

In Chapter 5 we study super-resolution imaging. The aim here is, given a low-resolution
blurred image, to increase the resolution and remove the blur. This is achieved by decompos-
ing the image into a sum of simpler images, one for each point source of light. We encode the
locations of the point sources of light and their intensities in a discrete measure, and propose
a convex optimization problem in the space of measures to find this unknown measure. We
show that in the absence of noise and in the case of a one-dimensional image, the global
optimum of this optimization problem recovers the true locations.



i

Contents

Contents i

List of Figures ii

List of Tables v

1 Introduction 1
1.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Super-Resolution Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Matrices and Positivity 17
2.1 Nonnegative Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Positive Semidefinite Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Orthogonally Decomposable Tensors 74
3.1 Symmetric Odeco Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Singular Vectors of Orthogonally Decomposable Tensors . . . . . . . . . . . 94
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Varieties of Tensors 108
4.1 The Variety of Orthogonally Decomposable Tensors . . . . . . . . . . . . . . 108
4.2 Frame Decomposable Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Superresolution without Separation 146
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 174



ii

List of Figures

1.1 The two cones (one in red and one in dashed blue) emerging from the rows of A
and the columns of B, and the hyperplane that cuts them. This is how we obtain
P and Q from the matrix M = AB. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The figure on the left depicts the two nested polytopes P and Q that arise from
a matrix M of nonnegative rank greater than 3 since one cannot fit a triangle in
between them. The figure on the right depicts nested polytopes P and Q arising
from a matrix M of nonnegative rank 3. . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The left figure depicts the polytopes coming from a matrix M which has psd rank
greater than 2 since one cannot fit an ellipse between P and Q. The right figure
shows the polytopes arising from a matrix M which has psd rank 2. . . . . . . . 7

1.4 We observe the image x(s) at the dotted locations. . . . . . . . . . . . . . . . . 15
1.5 A graph of the unknown measure µ∗ which encodes t1, . . . , tM and c1, . . . , cM . . . 15

2.1 Graphical model on two observed variables and one hidden variable . . . . . . . 17
2.2 In a two-dimensional family of 4×4-matrices, the matrices of rank 3 form a quartic

curve. The mixture model, shown in red, has two connected components. Its
topological boundary consists of four points (on the left). The algebraic boundary
includes many more points (on the right). Currently, there is no known way to
obtain the four points on the topological boundary (in the left picture) without
first considering all points on the algebraic boundary (in the right picture). . . . 24

2.3 In the diagrams (a) and (b), the conditions of Theorem 2.1.9 are satisfied for the
chosen i, j, i′, j′. In the diagrams (c) and (d), the conditions of Theorem 2.1.9 fail
for the chosen i, j, i′, j′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 The matrix P (a, b) defines a nested pair of rectangles. . . . . . . . . . . . . . . 32
2.5 Critical configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Geometric configurations of matrices in P3×3

3,2 . . . . . . . . . . . . . . . . . . . . 60
2.7 3× 3 circulant matrices in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.8 3× 3 circulant matrices in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9 3-dimensional spectrahedral shadows . . . . . . . . . . . . . . . . . . . . . . . . 63
2.10 The spectrahedra C (in yellow) and C ′ (in blue) as in Lemma 2.2.26 . . . . . . . 65
2.11 A family of 4× 4 circulant matrices of psd rank at most 3 . . . . . . . . . . . . 66



iii

3.1 This figure shows the structure of the eigenvectors inside CP2 of an odeco tensor
T ∈ S3 (R3) such that T = λ1v

⊗3
1 + λ2v

⊗3
2 + λ3v

⊗3
3 with λ1, λ2, λ3 6= 0. . . . . . . 81

3.2 A table of what can be found computationally about the ideal I generated by the
equations in (3.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 The Type II singular vectors: five copies of P1 meeting at two triple intersections 97
3.4 The Type II singular vectors tuples of a 2 × 3 × 3 odeco tensor, drawn as a

polyhedral complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5 The 12 copies of P1 with six triple intersection points, for 3 × 3 × 4 tensors and

2× 2× 2× 3 tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6 The 30 copies of P1 with 20 triple intersection points, for 2× 2× 2× 2× 2 tensors106
3.7 The 36 copies of P1 with 24 triple intersection points, for 4× 4× 4 tensors . . . 107

4.1 U · (V +W ) = W + V, and similarly with U, V,W permuted. . . . . . . . . . . . 115

5.1 An illustrative example of (5.1.1) with the Gaussian point spread function ψ(s, t) =
e−(s−t)2 . The ti are denoted by red dots, and the true intensities ci are illustrated
by vertical, dashed black lines. The super position resulting in the signal x is
plotted in blue. The samples S would be observed at the tick marks on the
horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 The point a is a nodal zero of f , and the point b is a non-nodal zero of f . . . . . 157
5.3 The relationship between the functions w(t), Q̃ε(t) and Q̃(t). The function Q̃ε(t)

touches w(t) only at ti±ε, and these are nodal zeros of Q̃ε(t)−w(t). The function
Q̃(t) touches w(t) only at ti and these are non-nodal zeros of Q̃(t)− w(t). . . . 157

5.4 The points {τ1, τ2, τ3, τ4} are nodal zeros of Q̃ε(t)−w(t), and the points {ζ1, ζ2, ζ3}
are non-nodal zeros. The function u(t) has the appropriate sign so that Q̃ε(t)−
w(t)+δu(t) retains nodal zeros at τi, and obtains two zeros in the vicinity of each
ζi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Reweighing matters for source localization. The two plots above compare the
quality of solutions to the weighted problem (with w(t) =

∫
ψ(s, t)dP (s)) and

the unweighted problem (with w(t) = 1). When point sources are away from
the boundary (left plot), the performance is nearly identical. But when the
point sources are near the boundary (right plot), the weighted method performs
significantly better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6 Sensitivity to point-source separation. (a) The F-score at tolerance radius r = 0.1
as a function of normalized separation d

σ
. (b) The black trace shows an image

for d
σ

= 1
2
. The green stars show the locations (x-coordinate) and weights (y-

coordinate) of the true point sources. The red dots show the recovered locations
and weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.7 Sensitivity to noise. (a) The F-score at tolerance radius r = 0.1 as a function of
normalized separation d

σ
. (b) The black trace is the 50 pixel image we observe.

The green stars show the locations (x-coordinate) and weights (y-coordinate) of
the true point sources. The red dots show the recovered locations and weights. . 170



iv

5.8 High density single molecule imaging. The green stars show the locations of a
simulated collection point sources, and the greyscale background shows the noisy,
pixelated point spread image. The red dots show the support of the measure-
valued solution of (5.3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



v

List of Tables

2.1 Percentage of data matrices whose maximum likelihood estimate P̂ lies in the
boundary ∂M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Minimal primes of the EM fixed ideal F for 4×4-matrices of rank 3 . . . . . . . 38
2.3 Ranks of matrices in the psd factorization of a psd rank three matrix that can

potentially give boundary components . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Dimension and degree of the funtf variety in some small cases . . . . . . . . . . 124
4.2 A census of small fradeco varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3 Numerical computation of the Hilbert functions of fradeco varieties . . . . . . . 145



vi

Acknowledgments

First, I would like to thank my advisor, Bernd, for his endless support, motivation, under-
standing, and inspiration. His undivided attention, constant encouragement, and personal
example have been instrumental in my academic development. Over the entire course of my
PhD Bernd’s guidance and attention kept me extremely motivated, productive, and excited
about my work. His support and advice went beyond research, and I am grateful for his
complete understanding during difficult times for me. I admire Bernd’s ability to match
people who are good at working together, and to suggest to them interesting problems to
work on. He has built a really great community and I am grateful to be part of it. I truly
believe that Bernd is the best possible advisor, and I feel extremely privileged to have have
been able to work with him.

Further, I would like to thank Ben for giving me the opportunity to be part of his group.
He was always very enthusiastic during our work on super-resolution imaging together with
Geoff, and it was a pleasure being part of it. Our math meetings were always very exciting
and motivating. Ben gave me lots of guidance and advice, and I am very grateful for being
part of his community.

I would also like to thank Jan for the really interesting and beautiful collaboration to-
gether with Ada and Emil. It was a pleasure visiting Eindhoven and talking about math. I
am also grateful for numerous helpful discussions with Jan, related to many of the questions
that came up in my research. I would also like to thank Kristian for all the interesting and
inspiring discussions that we had during my visit in Norway, and during many conferences.
I would also like to thank Caroline for inviting me to conferences, and for many interesting
discussions about math and academia.

I would like to thank Kaie for two wonderful collaborations. I am grateful for how well we
were able to work together and for how nicely our mathematical languages match. I would
like to thank Bernd for introducing us to each other, and for helping create a great research
team that lead to great friendship. Similarly, I would also like to thank Anna for being a
wonderful collaborator and friend.

I would like to thank the Berkeley Graduate division for the UC Berkeley Graduate
Fellowship which supported me during my first two years. I would also like to thank the
Max Plank Institute for Mathematics in Bonn, Germany, and the National Institute of
Mathematical Sciences (NIMS) in Daejeon, Korea, both of which supported me while I was
visiting.

I would also like to thank my family for the immense support they have provided during
my PhD. I am so grateful for all the love and care that I have received from my mom. They
have played an instrumental role in my well-being and work. She has always been able to
sense exactly what I need and to implement it as quickly as possible. I would like to thank
Geoff for his endless love and support. During the last three years, Geoff’s appearance in my
life made me happier and more excited than I had ever been, and had a tremendous positive
impact on my research. Our project together was a pleasure, and I am very grateful that
we are not only a great team in life, but also in research. I would like to thank my dad for



vii

always being such a loving, down-to-earth, logical, and positive person to talk to. He has
always been able to give me great advice in all areas of life. I am so grateful to have become
part of Londa, Robert, Geoff, and Jon’s family. They have always been as nice as one could
be to me, and have served as the best possible example both academically and in life.

I would like to thank all my friends and colleagues for always being there for me, and for
being able to share happiness, celebrations, adventures, as well as hard times.

Finally, I would like to thank Bernd once again for going over my thesis multiple times
and helping me improve it tremendously.



1

Chapter 1

Introduction

When we observe a signal, it is often useful to decompose it into simpler meaningful parts.
This allows us to discover additional seemingly hidden information about its origin.

In the famous Netflix Prize problem [152], we observe a partially filled matrix with each
row corresponding to a user, each column corresponding to a movie, and each entry indicating
the rating a given user assigns to a given movie. Up to a small error this matrix can be
written as the sum of a few rank-one matrices. It turns out that these correspond to the
different traits users have, such as whether they like romance, what age they are, or whether
they like animated movies. Finding these rank-one matrices is what allows Netflix to predict
users’ future ratings based on the ratings they have provided in the past.

In astronomy, we often observe a very low-resolution blurred picture of distant galaxies.
In order to increase the resolution and recover the exact locations of the stars, we express the
picture as the sum of several simpler pictures, one for each star. The field of super-resolution
imaging provides tools to find such a decomposition.

In both of the above examples, the task at hand is achieved by decomposing the given
signal into a sum of simpler parts. Developing theory and algorithms for finding such de-
compositions is a major topic in statistics and computer science. The goal of this chapter is
to introduce to several different types of matrix, tensor, and image decompositions, which
are further studied in this thesis.

1.1 Matrices

Matrix decompositions lie at the core of modern algorithms in scientific computing. Given
a real m × n matrix M , its rank is the smallest number r such that there exist matrices
A ∈ Rm×r and B ∈ Rr×n satisfying

M = AB.

Equivalently, the rank ofM is the smallest number r for which there exist vectors a1, . . . , am ∈
Rr (corresponding to the rows of A above) and b1, . . . , bn ∈ Rr (corresponding to the columns
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of B above) such that

Mij = 〈ai, bj〉, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In practice, the observed matrices often have nonnegative entries (for example, contin-
gency tables or probability distributions). Moreover, the desired decomposition often imposes
additional structure on the vectors a1, . . . , am, b1, . . . , bn. For instance, they may be required
to lie in a cone, such as the nonnegative orthant (nonnegative rank) or the cone of positive
semidefinite matrices (positive semidefinite rank). These two different versions of matrix
decomposition are studied in Chapter 2.

One of the most important and useful decompositions of a matrix is the singular value
decomposition. Given M ∈ Rm×n we decompose it as

M =
r∑
i=1

σiuiv
T
i ,

where u1, . . . , ur ∈ Rm are orthonormal, v1, . . . , vr ∈ Rn are orthonormal, and σ1, . . . , σr
are nonnegative real numbers. The singular value decomposition can be computed very
efficiently, which is why it is the most commonly used decomposition. In Chapters 3 and
4 we study a generalization of this decomposition to tensors, which has many appealing
properties.

1.1.1 Nonnegative matrices and nested polytopes

An important feature of nonnegative matrices is that they can be represented by pairs of
nested polyhedra. Here, a polyhedron is a finite intersection of closed halfspaces.

Definition 1.1.1. Let P ⊆ Q ⊆ Rd−1 be two nested polyhedra such that P is bounded, i.e.
it is a polytope. Assume that P has vertex description

P = conv(v1, . . . , vm)

for some v1, . . . , vm ∈ Rd−1 and Q has facet description

Q = {x ∈ Rd−1|〈x,wj〉 ≤ zj,∀j = 1, . . . , n}

for some w1, . . . , wn ∈ Rd−1 and z1, . . . , zn ∈ R. The slack matrix of the pair P,Q, denoted
by SP,Q, is the m× n nonnegative matrix whose i, j-th entry is

[SP,Q]i,j = zj − 〈vi, wj〉.

We remark here that the condition that P ⊆ Q is equivalent to the condition 〈vi, wj〉 ≤ zj,
for every i and j. Therefore, the matrix SP,Q is nonnegative. We also remark that for
given P and Q, one can define their slack matrix in many different ways, however all
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properties of interest in this thesis such as rank, nonnegative rank, and positive semidef-
inite rank are preserved regardless of which way we define SP,Q. Moreover, the vectors
(−v1, 1), . . . , (−vp, 1), (w1, z1), . . . , (wq, zq) ∈ Rd give a rank-d factorization of SP,Q, and
therefore SP,Q has rank at most d. In fact, it is easy to see that if P and Q are full-
dimensional polyhedra in Rd−1, then SP,Q has rank exactly d.

Conversely, given a nonnegative matrix M ∈ Rm×n
≥0 , we now explain how to construct

polytopes P and Q such that M = SP,Q. Firstly, if M does not have a zero row, one can
rescale its rows so that M1 = 1. This rescaling will not change the properties of M that we
study. In particular, it doesn’t change its rank, nonnegative rank, or positive semidefinite
rank.

Lemma 1.1.2 (Lemma 4.1 in [65]). Let M ∈ Rm×n
≥0 be a nonnegative matrix and assume

that M1 = 1. Let d = rank(M). Then there exist polytopes P ⊆ Q ⊆ Rd−1 such that M is
the slack matrix of the pair P,Q.

We give a brief outline of the proof of this lemma. First, we show that we can find a
factorization M = AB such that A ∈ Rp×d, B ∈ Rd×q, and in addition A1 = 1 and B1 = 1.
To do that, first choose d linearly independent rows of M and define B to equal the d × q
submatrix of M with these rows. Since M has rank d, then, one can uniquely find the matrix
A so that M = AB. Now, since the rows of B are a subset of the rows of M and M1 = 1,
then, B1 = 1. Therefore, 1 = M1 = AB1 = A1.

Next, we construct the following cones P̃ ⊆ Q̃ ⊆ Rd. We define P̃ to be the convex cone
spanned by the rows of A and Q̃ to be the convex cone with facets defined by functionals
arising from the columns of B. The bounded polytopes P and Q are then obtained by
intersecting the cones P̃ and Q̃ with the hyperplane xd = 1−∑d−1

i=1 xi. See Figure 1.1.
By deriving the explicit definition of P and Q from this construction, we can see that M

is the slack matrix of P,Q and that they are both bounded.

1.1.2 Cones and cone rank

A (convex) cone in Rn is a subset C ⊆ Rn such that αx+ βy ∈ C for any x, y ∈ C and any
positive scalars α and β. Our two main examples of cones will be the nonnegative orthant
Rr
≥0 inside Rr, and the cone of k× k symmetric positive semidefinite matrices Sk+ inside the

space Sk of k × k symmetric matrices with real entries.
Let C ⊆ Rn be a convex cone, and assume that Rn is equipped with an inner product

〈·, ·〉. The dual cone to C is the set

C∗ = {w ∈ Rn|〈v, w〉 ≥ 0 for all v ∈ C}.

It is also a convex cone. If C is equal to its dual cone, then C is self-dual. It is easy to see
that the nonnegative orthant Rr

≥0 is self-dual, where Rr is equipped with the Euclidean dot
product. We claim that the cone of positive semidefinite matrices Sk+ is also self-dual. Here
Sk is equipped with the trace inner product given by 〈A,B〉 = trace(AB) for A,B ∈ Sk.
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P

Q

Figure 1.1: The two cones (one in red and one in dashed blue) emerging from the rows of A
and the columns of B, and the hyperplane that cuts them. This is how we obtain P and Q
from the matrix M = AB.

To prove this claim, let A ∈ Sk be such that trace(AB) ≥ 0 for all B ∈ Sk+. Let B be the
rank-one matrix B = vvT where v ∈ Rk is any vector. Then,

0 ≤ trace(AB) = trace(AvvT ) = vTAv.

Thus, for every v ∈ Rk, vTAv ≥ 0, i.e. A ∈ Sk+. Therefore, (Sk+)∗ ⊆ Sk+. Now, let A be any
matrix in Sk+ and let B ∈ Sk+. Then, using the spectral theorem and the fact that positive
semidefinite matrices have nonnegative eigenvalues, we can write A = UUT and B = V V T .
Thus, trace(AB) = trace(UUTV V T ) = trace(((UTV )TUTV )) ≥ 0 since this is a positive
semidefinite matrix.

1.1.2.1 Nonnegative rank

Given a nonnegative matrix M ∈ Rm×n
≥0 , its nonnegative rank, denoted by rank+(M), is the

smallest positive integer r such that there exist vectors a1, . . . , am, b1, . . . , bn ∈ Rr
≥0 with

Mij = 〈ai, bj〉, ∀i, j.

Such a decomposition is useful when the application at hand requires that vectors a1, . . . , am,
b1, . . . , bn are nonnegative.
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Example 1.1.3 (Mixture models). In statistics, the joint distribution of two seemingly
dependent random variables X and Y is sometimes explained by a third hidden random
variable Z such that X and Y are independent given Z. For example, consider the random
variables

X =


0 person is bald

1 person has short hair

2 person has long hair

Y =


0 person does not watch football

1 watches 0 to 2 hours of football per week

2 watches > 2 hours of football per week.

Now suppose that after asking 1200 people how much football they watch and what length
their hair is, we obtain the following contingency table

M =

 70 65 65
180 210 210
170 115 115

 ,
where the rows correspond to the three values X takes and the columns correspond to the
three values Y takes. The matrix M has rank 2, so X and Y are dependent. However, if we
are to record the answers for men and women separately, we would obtain

M =

 70 65 65
180 210 210
170 115 115

 =

 50 25 25
100 50 50
150 75 75


︸ ︷︷ ︸

women

+

20 40 40
80 160 160
20 40 40


︸ ︷︷ ︸

men

.

Since the two summands are rank-one matrices, we see that X and Y are independent given
gender. Define the variable Z to equal 1 if the person is female and 2 if the person is male.
Then the empirical joint probability distribution of X and Y is the 3× 3 matrix

P (X, Y ) = P (Z = 1)P (X, Y |Z = 1) + P (Z = 2)P (X, Y |Z = 2) =

=
1

2

1
6
1
3
1
2

 [1
2
, 1

4
, 1

4

]
+

1

2

1
6
2
3
1
6

 [1
5
, 2

5
, 2

5

]
=

1
6

1
6

1
3

2
3

1
2

1
6

[1
2

0
0 1

2

] [
1
2

1
4

1
4

1
5

2
5

2
5

]
,

which has nonnegative rank 2. Finding the nonnegative decomposition of this matrix would
allows us to learn the hidden parameters of the distribution. In this case we would learn that
the amount of hair and the amount of football watched are independent given the gender of
a person.

Observe that the rank and nonnegative rank of a matrix M ∈ Rm×n
≥0 satisfy the following

inequalities
rank(M) ≤ rank+(M) ≤ min{m,n}.
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We denote byMm×n
d,r (for shortMd,r) the set of nonnegative m×n matrices of rank at most d

and nonnegative rank at most r. We often callMd,r the r-th mixture model. It is a subset of
the variety Vd of m×n matrices of rank at most d, defined by the vanishing of their (d+ 1)-
minors. In fact, whenever d ≤ r ≤ min{m,n}, Md,r is a full-dimensional semialgebraic
subset of Vd. In addition to the equations defining Vd coming from the (d + 1)-minors,
Md,r is cut out by some polynomial inequalities. In our work [105], described in Chapter
2, we study the set Md,r for small values of d and r and attempt to find its semialgebraic
description. We rely heavily on the following geometric interpretation of nonnegative rank.

Lemma 1.1.4 (Lemma 2.2 in [116]). Let M ∈ Rm×n
≥0 have rank d and let P ⊆ Q ⊂ Rd−1

be obtained as described in Lemma 1.1.2. Then, M has a size r nonnegative factorization if
and only if there exists a polytope ∆ with r vertices such that P ⊆ ∆ ⊆ Q.

P

Q

P

Q

Nonnegative rank greater than 3. Nonnegative rank equal to 3.

�

Figure 1.2: The figure on the left depicts the two nested polytopes P and Q that arise from
a matrix M of nonnegative rank greater than 3 since one cannot fit a triangle in between
them. The figure on the right depicts nested polytopes P and Q arising from a matrix M of
nonnegative rank 3.

Suppose M has rank 3. Then, the polytopes P and Q lie in R2 and M has nonnegative
rank 3 if and only if we can nest a triangle in between P and Q, as in Figure 1.2. In our
work [105], presented in Section 2.1, we exploit this geometric interpretation of nonnegative
rank. It is quite interesting to consider the matrices on the boundary ofM3,3, considered as
a subset of Vd. They correspond to pairs of nested polygons P ⊆ Q ⊆ R2 in between which
we can fit a triangle ∆, which cannot be moved in a rigid way while still remaining between
P and Q. We give a complete geometric and algebraic characterization of all such matrices.

1.1.2.2 Positive semidefinite rank

Given a nonnegative matrix M ∈ Rm×n
≥0 , its positive semidefinite rank (or psd rank) is the

smallest positive integer r such that there exist matrices A1, . . . , Am, B1, . . . , Bn ∈ Sr+ such
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that
Mij = 〈Ai, Bj〉, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 1.1.5. Consider the following 3× 3 matrix

M =

0 1 1
1 0 1
1 1 0

 .
It satisfies rank(M) = rank+(M) = 3. However, its psd rank is equal to 2 since it admits
the following size-two psd factorization

A1 =

[
1 0
0 0

]
A2 =

[
0 0
0 1

]
A3 =

[
1 −1
−1 1

]
B1 =

[
0 0
0 1

]
B2 =

[
1 0
0 0

]
B3 =

[
1 1
1 1

]
.

Similarly to nonnegative rank, one can describe positive semidefinite rank via nested
polytopes.

Theorem 1.1.6 (Proposition 3.6 in [79]). Let M ∈ Rm×n
≥0 be a matrix of rank d and let

P ⊆ Q ⊆ Rd−1 be obtained as in Lemma 1.1.2. Then, rankpsd(M) is the smallest integer
r for which there exists an affine subspace L of Sr and a linear map π such that P ⊆
π(L ∩ Sr+) ⊆ Q.

P

Q

P

Q

Positive semidefinite rank greater than 2. Positive semidefinite rank equal to 2.

Figure 1.3: The left figure depicts the polytopes coming from a matrix M which has psd
rank greater than 2 since one cannot fit an ellipse between P and Q. The right figure shows
the polytopes arising from a matrix M which has psd rank 2.
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Consider a matrix M ∈ Rm×n
≥0 of rank 3. It gives rise to two nested polygons P ⊆ Q ⊂ R2.

According to Proposition 4.1 in [79], the matrix M has psd rank 2 if and only if we can fit
an ellipse between the two polygons P and Q, see Figure 1.3.

Section 2.2 is based on joint work with Kaie Kubjas and Richard Robinson titled Positive
semidefinite rank and nested spectrahedra [104]. We study the geometry of the space Pd,r
of matrices of rank at most d and psd rank at most r. We give a complete semialgebraic
description of its boundary when d = 3 and r = 2 and we give partial results towards a
description for general rank d and psd rank r = d− 1.

1.2 Tensors

A natural generalization of matrices, tensors have direct applications in modern data analysis.
Studying the spectral properties and decompositions of tensors is of utmost importance to
being able to handle information that comes in more than two dimensions.

A tensor T of order d and format n1 × n2 × · · · × nd is an n1 × n2 × · · · × nd table
with entries in a field K, which will be R or C in this thesis. The vector space of tensors
of this format is denoted by Kn1 ⊗ Kn2 ⊗ · · · ⊗ Knd . Given such a tensor T , its entries are
denoted by Ti1,...,id , where 1 ≤ ij ≤ nj for all j. A tensor T ∈ Kn ⊗ · · · ⊗Kn is symmetric if
Ti1,...,id = Tiσ(1),...,iσ(d) for any permutation σ of {1, 2, . . . , d}.

1.2.1 Tensor decompositions

Similar to matrix decomposition, tensor decomposition has numerous applications in statis-
tics, neuroscience, signal processing, computer vision, data analysis, and others [101].

A symmetric tensor is an n×n× · · ·×n (d times) tensor T such that Ti1...id = Tiσ(1)...iσ(d)
for any permutation σ on {1, . . . , d}. The space of such tensors is denoted by Sd(Kn). Given
a symmetric tensor T ∈ Sd(Kn), a symmetric decomposition is an expression of the form

T =
r∑
i=1

λiv
⊗d
i ,

where vi ∈ Cn. The smallest r for which such a decomposition exists is the symmetric rank
(or Waring rank) of T . The tensors of the form v⊗di are rank-one symmetric tensors.

For an ordinary tensor T ∈ Kn1 ⊗ · · · ⊗Knd a decomposition is an expression of the form

T =
r∑
i=1

σiv
(1)
i ⊗ · · · ⊗ v(d)

i ,

where v
(j)
1 , . . . , v

(j)
d ∈ Knj . The smallest r for which such a decomposition exists is the rank

of T , and the tensors of the form v
(1)
i ⊗ · · · ⊗ v(d)

i are rank-one tensors.
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Example 1.2.1. Suppose X1, X2, and X3 are discrete random variables such that Xi takes
values in {1, 2, . . . , ni}. Their joint probability distribution is the tensor P ∈ Rn1⊗Rn2 ⊗ Rn3

such that Pi1,i2,i3 = P(x1 = i1, X2 = i2, X3 = i3). Now suppose that X1, X2, X3 are indepen-
dent given a random variable Z taking values in {1, . . . , r}. Then, given that Z = k, the
joint distribution of X1, X2, X3 is a rank one tensor

P(X1, X2, X3|Z = k) = P(X1|Z = k)⊗ P(X2|Z = k)⊗ P(X3|Z = k),

and, therefore the total joint distribution of X1, X2, X3 is a rank r tensor

P =
r∑

k=1

P(Z = k) · P(X1, X2, X3|Z = k) =

=
r∑

k=1

P(Z = k) · P(X1|Z = k)⊗ P(X2|Z = k)⊗ P(X3|Z = k).

Therefore, if we observe P , finding its decomposition allows us to discover the hidden pa-
rameters of the distribution of X1, X2, and X3.

In both the symmetric and the ordinary case, if the elements of the decomposition of T
are allowed to have complex entries, there exists a positive integer, called the generic rank,
such that the set of tensors of this rank is Zariski dense in the set of all tensors of a given
format. According to the Alexander-Hirschowitz Theorem [27], when d ≥ 3, the generic rank

of a symmetric tensor T ∈ Sd(Cn) equals

⌈
(n+d−1

d )
n

⌉
except in a finite number of cases in

which it is one more than this number [2]. For n× n matrices the generic rank is equal to n
and all such matrices have rank at most n. However, for d ≥ 3 there always exist tensors of
rank higher than the generic rank.

Finding the decomposition of a given tensor T is one of the most important problems
in the field. However, it has been shown that in general, it is an NP-hard problem [92].
Algorithms for it have been proposed by many authors, for example [26, 120]. In this thesis,
we focus our attention on a special type of tensors, called orthogonally decomposable tensors
whose decomposition can be found efficiently.

1.2.2 Orthogonal Tensor Decomposition

The Spectral Theorem states that for any n × n real symmetric matrix M there exists an
orthonormal basis of eigenvectors v1, . . . , vn ∈ Rn with eigenvalues λ1, . . . , λn ∈ R such that

M =

 | · · · |v1 · · · vn
| · · · |


λ1

. . .

vn


− vT1 −

...
− vTn −

 =
n∑
i=1

λiviv
T
i =

n∑
i=1

λiv
⊗2
i .
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We generalize this decomposition to tensors of order d ≥ 3. A tensor T ∈ Sd(Rn) is
symmetric orthogonally decomposable (or symmetric odeco) if it has a decomposition

T =
n∑
i=1

λiv
⊗d
i ,

where v1, . . . , vn ∈ Rn form an orthonormal basis. Their appealing structure allows odeco
tensors to be decomposed efficiently, for example via the tensor power method [8]. Since
there can be at most n orthonormal vectors in Rn, the rank of an odeco tensor is at most n,
which is significantly smaller than the rank of a generic tensor T ∈ Sd(Rn). What is more,
the set of odeco tensors is a strict subset of the set of tensors of rank at most n. However,
we can use a procedure, called whitening, which allows us to transform a tensor of rank n
into an odeco tensor, find the decomposition of the odeco tensor, and then transform back
to obtain a decomposition of the original tensor [8].

Orthogonally decomposable tensors can also be defined in the non-symmetric case. Recall
first that singular value decomposition allows us to write any matrix M ∈ Rm ⊗ Rn as

M =
r∑
i=1

σiv
(1)
i (v

(2)
i )T =

r∑
i=1

σiv
(1)
i ⊗ v(2)

i ,

where v
(1)
1 , . . . , v

(1)
r ∈ Rm are orthonormal and v

(2)
1 , . . . , v

(2)
r ∈ Rn are orthonormal.

A tensor T ∈ Rn1 ⊗ · · · ⊗ Rnd is orthogonally decomposable (or odeco) if it has a decom-
position

T =
n∑
i=1

σiv
(1)
i ⊗ · · · ⊗ x(d)

i ,

where v
(j)
1 , . . . , v

(j)
n ∈ Rnj are orthonormal for all j ∈ {1, . . . , d}, n ≤ max{n1, . . . , nd}, and

σ1, . . . , σn ∈ R. Like in the symmetric case, odeco tensors can be decomposed efficiently via
an iterative tensor power method [8].

In joint work with Ada Boralevi, Jan Draisma and Emil Horobeţ titled Orthogonal and
unitary tensor decomposition from an algebraic perspective, and presented in Section 4.1, we
find equations defining the variety of orthogonally decomposable tensors. It turns out that
odeco tensors correspond very beautifully to associative algebras.

Consider a tensor T ∈ S3(Rn). Let V = Rn be equipped with the usual inner product.
We give V the structure of an algebra arising from the tensor T as follows. For two elements
u, v ∈ V , we define their product to be

u ? v = T (u, v, ·) ∈ V.

Theorem 1.2.2. The tensor T ∈ S3(Rn) is orthogonally decomposable if and only if the
algebra V with product ? arising from T is associative.



CHAPTER 1. INTRODUCTION 11

This correspondence gives us more insight into the theory of orthogonally decomposable
tensors and allows us to find the equations that define the (real) variety of such tensors.
Section 4.1 is dedicated to this work. We generalize this theorem to higher order tensors as
well as to tensors which are not necessarily symmetric. We conclude this subsection with an
example that illustrates Theorem 1.2.2.

Example 1.2.3. Let n = 2 and fix a basis {a, b} of R2. A 2 × 2 × 2 symmetric tensor T
with entries Tijk defines the algebra structure

a ? a = T000a+ T100b, a ? b = T100a+ T110b,

b ? a = T100a+ T110b, b ? b = T110a+ T111b.

In general this algebra is not associative:

b ? (a ? a) = (T000T100 + T100T110)a+ (T000T110 + T100T111)b,

(b ? a) ? a = (T000T100 + T110T100)a+ (T 2
100 + T 2

110)b.

It turns out that

b ? (a ? a) = (b ? a) ? a ⇐⇒ T000T110 + T100T111 = T 2
100 + T 2

110 ⇐⇒ T is odeco.

1.2.3 Decomposing Tensors into Frames

As we mentioned above, even though odeco tensors have appealing properties, including
the fact that they can be decomposed efficiently, they constitute a very low-dimensional
part of the set of all tensors. In joint work with Luke Oeding and Bernd Sturmfels titled
Decomposing tensors into frames, and presented in Section 4.2, we generalize the notion of
orthogonally decomposable tensors while still imposing extra structure on the decomposition.
Instead of an orthonormal basis, we use the more general notion of a finite unit norm tight
frame (or funtf) [29]. A set of vectors v1, . . . , vr ∈ Rn forms a funtf if | · · · |v1 · · · vr

| · · · |


− vT1 −

...
− vTr −

 = Idn, and ||vi||2 = 1, i = 1, . . . , r,

where Idn is the n×n identity matrix. A symmetric tensor T ∈ Sd(Cn) is frame decomposable
(or fradeco) if it has a decomposition of the form

T =
r∑
i=1

λiv
⊗d
i ,

where v1, . . . , vr ∈ Rn form a funtf. Section 4.2 is dedicated to fradeco tensors. We study
the variety of such tensors as well as methods for finding their decompositions.
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1.2.4 Spectral theory

Analogous to the definition for symmetric matrices, given a symmetric tensor T ∈ Sd(Kn),
a vector x ∈ Cn is an eigenvector of T with eigenvalue λ ∈ C if

T · xd−1 = λx.

Here T · xd−1 is a vector in Cn which equals the contraction of T with x along d − 1 of its
dimensions. More precisely, its i-th coordinate is

(T · xd−1)i :=
∑

i1,...,id−1

Ti1,...,id−1,ixi1 · · ·xid−1
.

Two eigenvector-eigenvalue pairs (x, λ) and (x′, λ′) are equivalent if (x, λ) = (tx′, td−2λ′) for
some scalar t ∈ C∗.

The eigenvectors of T can also be described as the set of (nonzero) fixed points of the
tensor power iteration

x 7→ T · xd−1

||T · xd−1|| ,

where 0/||0|| = 0. Alternatively, they can also be characterized via a variational ap-
proach [112]. They are the critical points of the optimization problem

maximize T · xd
such that ||x|| = 1,

where T · xd ∈ C is the contraction of T with x along all d of its dimensions. In symbols,
T · xd =

∑
i1,...,id

Ti1,...,idxi1 · · ·xid . If x ∈ Cn is a maximizer of this optimization problem,

then the tensor x⊗d is the best rank-one approximation to T .
Recall that a general symmetric n × n matrix has exactly n eigenvectors. It was shown

in [37] that a general symmetric tensor T ∈ Sd(Cn) has finitely many eigenvectors and their
number is exactly

(d− 1)n − 1

d− 2
.

Now consider a tensor T ∈ Kn1 ⊗ · · · ⊗ Knd which is not necessarily symmetric and
n1, . . . , nd are not necessarily equal. As with rectangular matrices, we can no longer define
eigenvectors. The right notion is now that of singular vector tuples. We define (x(1), . . . , x(d)) ∈
Cn1 × · · · × Cnd to be a singular vector tuple of T if the vectors x(1), . . . , x(d) are nonzero,
and for every 1 ≤ j ≤ d,

T (x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)) is parallel to x(j).

In other words, for every j, contracting T along its k-th dimension with x(k) for every k 6= j
should yield a vector parallel to x(k). The work [69] shows that a generic tensor has finitely
many singular vector tuples and provides a recipe for obtaining their number.
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As with eigenvectors, the singular vector tuples of a tensor T are the fixed points of the
tensor power iteration

(x(1), . . . , x(d)) 7→
(

T (·, x(2) . . . , x(d))

||T (·, x(2) . . . , x(d))|| , . . . ,
T (x(1) . . . , x(d−1), ·)
||T (x(1) . . . , x(d−1), ·)||

)
.

The set of singular vector tuples is also equal to the set of critical points of the optimization
problem

maximize T (x(1), . . . , x(d))

such that ||x(1)|| = · · · = ||x(d)|| = 1,

where T (x(1), . . . , x(d)) is the contraction of T along all of its dimensions with x(1), . . . , x(d).
If the tuple (x(1), . . . , x(d)) is a global maximizer of this optimization problem, then the tensor
x(1) ⊗ · · · ⊗ x(d) is the best rank-one approximation of T [112].

1.2.5 Spectral theory of orthogonally decomposable tensors

Finding the eigenvectors or singular vector tuples of a tensor is in general very hard. However,
this is not the case for odeco tensors.

In the paper titled Orthogonal decomposition of symmetric tensors I give an explicit
description of the eigenvectors of symmetric odeco tensors. Their number equals the number
of eigenvectors of a generic tensor of the same format, and they can be expressed as specific
linear combinations of the vectors in the decomposition of the given odeco tensor. Section
3.1 is dedicated to this work.

Example 1.2.4. Let T ∈ Sd(Rn) be a symmetric odeco tensor with decomposition T =∑n
i=1 λ1v

⊗d
i where v1, . . . , vn are orthonormal. Then,

T · vd−1
k =

n∑
i=1

λi〈vi, vk〉vi = λkvk.

So, each of the vectors v1, . . . , vn is an eigenvector of T . If d ≥ 3, T has many more
eigenvectors, explicitly described in Theorem 3.1.8.

In joint work with Anna Seigal titled Singular vector tuples of orthogonally decomposable
tensors we give a formula for the singular vector tuples of an ordinary odeco tensor. In this
case, the variety of singular vector tuples is not zero-dimensional, contrary to the generic
case. We give several examples of this phenomenon and illustrate how the singular vector
tuples of a generic tensor degenerate to those of an odeco tensor. Section 3.2 is dedicated to
this work.
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1.3 Super-Resolution Imaging

Super-resolution imaging, the study of enhancing low-resolution blurred images, has direct
applications in numerous fields, including fluorescence microscopy and astronomy. It is one
of the first ingredients for studying the macro and micro worlds, namely, it helps us observe
them as accurately as possible. Given a low-resolution blurred image of several point-sources,
super-resolution aims to find the true locations of the point sources and the intensities of
light at each of them.

Mathematically, the unknowns are the locations of the point sources, t1, . . . , tM ∈ Rd,
and the intensities at each of them, c1, . . . , cM ∈ R. It is very convenient to encode these
unknown parameters in a discrete measure

µ∗ :=
M∑
j=1

cjδtj ,

where δtj is the Dirac delta function centered at tj. The super-resolution imaging problem
is to recover µ∗ from observations

xi =

∫
fi(t)dµ

∗(t), i = 1, . . . , N,

where the functions f1, . . . , fN : Rd → R are known.
In this thesis we discuss the following two special cases of this setup.

• The functions f1, . . . , fN are translates of a given function ψ : Rd → R, i.e. fi(t) =
ψ(si − t) for some s1, . . . , sN ∈ Rd.

• The functions f1, . . . , fN are various monomials in the entries of t = (t(1), . . . , t(d)) ∈ Rd,

i.e. they have the form fi(t) =
(
t(1)
)ki1 · · · (t(d)

)kid .
The former case is further developed in Subsection 1.3.1 and then in Chapter 5. The latter

case is only discussed here in the introduction in Subsection 1.3.2 to serve as a connection
with the tensor decomposition problem.

1.3.1 Super-resolution without Separation

We begin by considering the former case. The observations here have the form

xi =

∫
ψ(si − t)d(µ∗(t)) =

M∑
j=1

ciψ(si − tj).

In other words, we observe the value of the function

x(s) =
M∑
j=1

ciψ(s− tj), (1.3.1)



CHAPTER 1. INTRODUCTION 15

at s = s1, . . . , sN . Imagine that the unknown locations of the stars in a distant galaxy are
t1, . . . , tM and the intensity of light at each of them are c1, . . . , cM . Then, the observed signal
x(s) has introduced a blur, give by the pointspread function ψ, centered at t1, . . . , tM .

In fact, for each imaging device (microscope, telescope, camera, even the human eye)
there exists a point spread function ψ : Rn → R which blurs each pointsource of light. This
phenomenon is due to the diffraction of light and the optics in the imaging device. The
locations s1, . . . , sN at which we observe the signal x(s) correspond to the locations of the
pixels of an image.

In Figures 1.4 and 1.5 we show an example of a signal in R1 with 4 unknown pointsources
and the Gaussian pointspread function ψ(t) = e−t

2
.

What we know

• The pointspread function ψ

• Finitely many signal observations:

{x(si)|i = 1, . . . , N}

Figure 1.4: We observe the image x(s) at the
dotted locations.

What we want to find

• The locations of the point sources:
t1, . . . , tM

• The intensities: c1, . . . , cM .

Figure 1.5: A graph of the unknown measure
µ∗ which encodes t1, . . . , tM and c1, . . . , cM .

We now propose how to recover the measure µ∗ from the observations x(s1), . . . , x(sM).
Let w(t) = 1

N

∑N
i=1 ψ(si − t). Consider the optimization problem

minimize
µ≥0

∫
w(t)µ(dt)

subject to x(si) =

∫
ψ(si − t)dµ(t), i = 1, . . . , N. (1.3.2)

We show that one can recover µ∗ (and hence t1, . . . , tM , c1, . . . , cM) by solving this problem.
In joint work with Geoffrey Schiebinger and Benjamin Recht titled Superresolution without
separation we prove that the optimization problem (5.1.3) recovers the correct source loca-
tions, in the case of a one-dimensional signal and under some determinantal conditions on
the point spread function ψ [137].

Much of the mathematical analysis of super-resolution has relied heavily on the assump-
tion that the sources of light are separated by a minimum amount. Our results do not require
a separation condition. Instead, we give determinantal conditions on the pointspread func-
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tion ψ and we show that the Gaussian pointspread function ψ(t) = e−t
2

satisfies these
conditions. Section 5 is dedicated to this work.

1.3.2 Super-resolution Imaging as Tensor Decomposition

We conclude the introduction by showing the tight connection between super-resolution
imaging and tensor decompositions. We assume that the unknown pointsources t1, . . . , tM ∈
Cd and intensities c1, . . . , cM ∈ C are encoded in the measure

µ∗ =
M∑
i=1

ciδti .

We observe the moments

xi = x(ki) =

∫ (
t(1)
)ki1 · · · (t(d)

)kid
dµ(x), ki ∈ Zd, ‖ki‖∞ ≤ n,

for some natural number n. There are N = (n+ 1)d possible observations since ki ∈ Zd and
‖ki‖∞ ≤ n. Suppose that we make all of these observations, and we wish to recover µ∗.

The multivariate version of Prony’s method [107] accomplishes this task by considering the
kernel of the Toeplitz matrix

(x(ki)− x(kj))1≤i,j≤N ∈ CN×N .

This kernel provides a set of polynomial equations in the variables t(1), . . . , t(d) and the
solutions are exactly the unknown pointsource locations t1, . . . , tM . Once we have recovered
them, finding the point source intensities c1, . . . , cM can be done via solving a system of
linear equations.

Now, consider the tensor T ∈ (S2n(C2))
⊗d

with the following decomposition

T =
M∑
j=1

cj

d⊗
i=1

(
1

t
(i)
j

)⊗2n

.

An element of the space (S2n(C2))
⊗d

has entries indexed by ((k1, 2n−k1), . . . , (kd, 2n−kd)),
meaning that in the i-th component S2n(C2) there are k1 ones and 2n−k1 twos. If we expand
the above expression for T , we see that the entry of T at position ((k1, 2n−k1), . . . , (kd, 2n−
kd)) equals

T((k1,2n−k1),...,(kd,2n−kd)) =

(
2n

n+ k1

)
· · ·
(

2n

n+ kd

)
x(2n− k),

where n = (n, . . . , n) ∈ Zd. This means that observing x(ki) for ki ∈ Zd and ‖ki‖∞ ≤ n
is equivalent to observing the tensor T , and finding the unknowns t1, . . . , tM , c1, . . . , cM is
equivalent to finding a decomposition of T in (S2n(C2))

⊗d
. It would be interesting to study

such decompositions in view of the work [107].
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Chapter 2

Matrices and Positivity

In this chapter we turn our attention to matrix shaped data. In Section 2.1 we study
nonnegative decompositions, and in Section 2.2 we study positive semidefinite matrix de-
compositions.

2.1 Nonnegative Rank

Mixtures of r independent distributions for two discrete random variables can be represented
by matrices of nonnegative rank r. Likelihood inference for the model of such joint distribu-
tions leads to problems in real algebraic geometry that are addressed here for the first time.
We characterize the set of fixed points of the Expectation Maximization algorithm, and we
study the boundary of the space of matrices with nonnegative rank at most 3. Both of
these sets correspond to algebraic varieties with many irreducible components. This section
represents joint work with Kaie Kubjas and Bernd Sturmfels titled Fixed Points of the EM
Algorithm and Nonnegative Rank Boundaries [105].

2.1.1 Introduction

The rth mixture model M of two discrete random variables X and Y expresses the condi-
tional independence statement X⊥⊥Y |Z, where Z is a hidden (or latent) random variable
with r states. Assuming that X and Y have m and n states respectively, their joint distri-
bution is written as an m× n-matrix of nonnegative rank ≤ r whose entries sum to 1. This
mixture model is also known as the naive Bayes model. Its graphical representation is shown
in Figure 2.1.

X Z Y

m nr

Figure 2.1: Graphical model on two observed variables and one hidden variable
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A collection of i.i.d. samples from a joint distribution is recorded in a nonnegative matrix

U =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...
um1 um2 · · · umn

 .
Here, uij is the number of observations in the sample with X = i and Y = j. The sample
size is u++ =

∑
i,j uij. It is standard practice to fit the model to the data U using the

Expectation Maximization (EM) algorithm. Here, fitting means computing the maximum
likelihood estimate (MLE). However, it has been pointed out in the literature that EM has
several issues (see the next paragraph for details) and one has to be careful when using it.
Our goal is to better understand this algorithm by studying its mathematical properties in
some detail.

One of the main issues of Expectation Maximization is that it does not provide a cer-
tificate for having found the global optimum. The geometry of the algorithm has been a
topic for debate among statisticians since the seminal paper of Dempster, Laird and Rubin
[49]. Murray [118] responded with a warning for practitioners to be aware of the existence of
multiple stationary points. Beale [17] also brought this up, and Fienberg [67] referred to the
possibility that the MLE lies on the boundary of the parameter space. A recent discussion
of this issue was presented by Zwiernik and Smith [164, §3] in their analysis of inferential
problems arising from the semialgebraic geometry of a latent class model. The fact that our
model fails to be identifiable was highlighted by Fienberg et al. in [68, §4.2.3]. This poses
additional difficulties, and it forces us to distinguish between the boundary of the parameter
space and the boundary of the model. The image of the former contains the latter.

The EM algorithm aims to maximize the log-likelihood function of the model M. In
doing so, it approximates the data matrix U with a product of nonnegative matrices A · B
where A has r columns and B has r rows. In Subsection 4.2.2 we review the EM algorithm
in our context. Here, it is essentially equivalent to the widely used method of Lee and Seung
[111] for nonnegative matrix factorization. The nonnegative rank of matrices has been studied
from a broad range of perspectives, including computational geometry [1, 43], topology [116],
contingency tables [21, 68], complexity theory [115, 156], and convex optimization [64]. We
here present the approach from algebraic statistics [54, 122].

Maximum likelihood estimation for the modelM is a non-convex optimization problem.
Any algorithm that promises to compute the MLE P̂ will face the following fundamental
dichotomy. The optimal matrix P̂ either lies in the relative interior of M or it lies in the
model boundary ∂M.

If P̂ lies in the relative interior of M then the situation is nice. In this case, P̂ is a
critical point for the likelihood function on the manifold of rank r matrices. There are
methods by Hauenstein et al. [85] for finding the MLE with certificate. The ML degree,
which they compute, bounds the number of critical points, and hence all candidates for the
global maximizer P̂ . However, things are more difficult when P̂ lies in the boundary ∂M.
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rank \ size 4× 4 5× 5 6× 6 7× 7 8× 8
3 4.4% 23% 49% 62% 85%
4 7% 37% 71% 95%
5 10% 55% 96%
6 20% 75%
7 24%

Table 2.1: Percentage of data matrices whose maximum likelihood estimate P̂ lies in the
boundary ∂M

In that case, P̂ is generally not a critical point for the likelihood function in the manifold of
rank r matrices, and none of the results on ML degrees in [54, 68, 82, 85, 93] are applicable.

The present section is the first to address the question of how P̂ varies when it occurs in the
boundary ∂M. Table 2.1 underscores the significance of our approach. As the matrix size
grows, the boundary case is much more likely to happen for randomly chosen input U . The
details for choosing U and the simulation study that generated Table 2.1 will be described
in Example 2.1.6.

We now summarize the contents of this section. Subsection 2.1.2 furnishes an introduction
to the geometry of the mixture modelM from Figure 2.1. We define the topological boundary
of M and the algebraic boundary of M, and we explain how these two notions of boundary
differ. Concrete numerical examples for 4×4-matrices of rank 3 demonstrate how P̂ behaves
as the data U vary.

In Subsection 2.1.3 we review the EM algorithm for the model M, and we identify its
fixed points in the parameter space. The main result is the characterization of the set of
fixed points in Theorem 2.1.7.

In Subsection 2.1.4 we identifyM with the set of matrices of nonnegative rank at most 3.
Theorem 2.1.9 gives a quantifier-free formula for this semialgebraic set. The importance of
finding such a formula was already stressed in the articles [4, 5]. The resulting membership
test for M is very fast and can be applied to matrices that contain parameters. The proof
of Theorem 2.1.9 is based on the familiar characterization of nonnegative rank in terms of
nested polytopes [1, 43, 156], and, in particular, on work of Mond et al. [116] on the structure
of critical configurations in the plane (shown in Figure 2.5).

In Subsection 2.1.5 we return to Expectation Maximization, and we study the system of
equations that characterize the EM fixed points. Proposition 2.1.15 characterizes its solutions
in the interior ofM. Even in the smallest interesting case, m = n = 4 and r = 3, the variety
of all EM fixed points has a huge number of irreducible components, to be determined and
interpreted in Theorem 2.1.19.

The most interesting among these are the 288 components that delineate the topological
boundary ∂M inside the simplex ∆15. These are discussed in Examples 2.1.21 and 2.1.24.
Explicit matrices that lie on these components are featured in (2.1.24) and in Examples
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2.1.1, 2.1.2 and 2.1.4. In Proposition 2.1.25 we resolve a problem left open in [85, 93]
concerning the ML degree arising from ∂M. The main result in Subsection 2.1.6 is Theorem
2.1.23 which characterizes the algebraic boundary of m× n-matrices of nonnegative rank 3.
The commutative algebra of the irreducible components in that boundary is the content of
Theorem 2.1.26. Corollary 2.1.28 furnishes a quantifier-free semialgebraic formula for ∂M.

The proofs of all lemmas, propositions and corollaries appear in Appendix 2.1.7.1. A
review of basic concepts in algebraic geometry is given in Appendix 2.1.7.2. This will help
the reader understand the technicalities of our main results. Supplementary materials and
software are posted at the website

http://math.berkeley.edu/~bernd/EM/boundaries.html

Our readers will find code in R, Macaulay2, and Magma for various sampling experiments,
prime decompositions, semialgebraic formulas, and likelihood equations discussed in this
section.

The methods presented here are not limited to the matrix model M, but are applicable
to a wide range of statistical models for discrete data, especially those used in computational
biology [122]. Such models include phylogenetic models [3, 4] and Hidden Markov models
[47]. The most immediate generalization is to the rth mixture model of several random
variables. It consists of all distributions corresponding to tensors of nonnegative rank at
most r. In other words, we replace m × n-matrices by tensors of arbitrary format. The
geometry of the case r = 2 was studied in depth by Allman et al. [5]. For each of these
models, there is a natural EM algorithm, with an enormous number of stationary points.
The model itself is a complicated semialgebraic set, and the MLE typically occurs on the
boundary of that set. For binary tree models this was shown in [164, §3].

This section introduces tools needed to gain a complete understanding of these EM fixed
points and model boundaries. We here study them for the graphical model in Figure 2.1.
Already in this very simple case, we discovered patterns that are surprisingly rich. Thus,
the present work serves as a blueprint for future research in real algebraic geometry that
underlies statistical inference.

2.1.2 Model Geometry

We begin with a geometric introduction of the likelihood inference problem to be studied.
Let ∆mn−1 denote the probability simplex of nonnegative m × n-matrices P = [pij] with
p++ = 1. Our model M is the subset of ∆mn−1 consisting of all matrices of the form

P = A · Λ ·B, (2.1.1)

where A is a nonnegative m×r-matrix whose columns sum to 1, Λ is a nonnegative r×r di-
agonal matrix whose entries sum to 1, and B is a nonnegative r×n-matrix whose rows sum
to 1. The triple of parameters (A,Λ, B) represents conditional probabilities for the graphical
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model in Figure 2.1. In particular, the kth column of A is the conditional probability distri-
bution of X given that Z = k, the kth row of B is the conditional probability distribution
given that Z = k, and the diagonal of Λ is the probability distribution of Z. The parameter
space in which A,Λ, B lie is the convex polytope Θ = (∆m−1)r×∆r−1×(∆n−1)r. Our model
M is the image of the trilinear map

φ : Θ → ∆mn−1 , (A,Λ, B) 7→ P. (2.1.2)

We seek to learn the model parameters (A,Λ, B) by maximizing the likelihood function(
u++

u

)
·
m∏
i=1

n∏
j=1

p
uij
ij (2.1.3)

over M. This is equivalent to maximizing the log-likelihood function

`U =
m∑
i=1

n∑
j=1

uij · log
( r∑
k=1

aikλkbkj
)

(2.1.4)

overM. One issue that comes up immediately is that the model parameters are not identi-
fiable:

dim(Θ) = r(m+ n)− r − 1 but dim(M) = r(m+ n)− r2 − 1. (2.1.5)

The first expression is the sum of the dimensions of the simplices in the product that defines
the parameter space Θ. The second one counts the degrees of freedom in a rank r matrix
of format m× n. The typical fiber, i.e. the preimage of a point in the image of (2.1.2), is a
semialgebraic set of dimension r2 − r. This is the space of explanations whose topology was
studied by Mond et al. in [116]. Likelihood inference cannot distinguish among points in
each fiber, so it is preferable to regard MLE not as an unconstrained optimization problem in
Θ but as a constrained optimization problem inM. The aim of this section is to determine
its constraints.

Let V denote the set of real m × n-matrices P of rank ≤ r satisfying p++ = 1. This
set is a variety because it is given by the vanishing of a set of polynomials, namely, the
(r+ 1)× (r+ 1) minors of the matrix P plus the linear constraint p++ = 1. A point P ∈M
is an interior point of M if there is an open ball U ⊂ ∆mn−1 that contains P and satisfies
U ∩ V = U ∩M. We call P ∈ M a boundary point of M if it is not an interior point. The
set of all such points is denoted by ∂M and called the topological boundary of M. In other
words, ∂M is the boundary of M inside V . The variety V is the Zariski closure of the set
M; see Appendix 2.1.7.2. In other words, the set of polynomials that vanish onM is exactly
the same as the set of polynomials that vanish on V . Our model M is a full-dimensional
subset of the variety V and is given by a set of polynomial inequalities inside V .

Fix U , r, and P ∈M as above. A matrix P is a non-singular point on V if and only if the
rank of P is exactly r. In this case, its tangent space TP (V) has dimension r(m+n)− r2−1,
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which, as expected, equals dim(M). We call P a critical point of the log-likelihood function
`U if P ∈ M, P is a nonsingular point for V , i.e. rank(P ) = r, and the gradient of `U is
orthogonal to the tangent space TP (V). Thus, the critical points are the nonnegative real
solutions of the various likelihood equations derived in [54, 85, 122, 163] to address the MLE
problem for M. In other words, the critical points are the solutions obtained by using the
Lagrange multipliers method for maximizing the likelihood function over the set V . In the
language of algebraic statistics, the critical points are those points inM that are accounted
for by the ML degree of the variety V .

Table 2.1 shows that the global maximum P̂ of `U is often a non-critical point. This
means that the MLE lies on the topological boundary ∂M. The ML degree of the variety
V is irrelevant for assessing the algebraic complexity of such P̂ . Instead, we need the ML
degree of the boundary, as given in Proposition 2.1.25, as well as the ML degrees for the
lower-dimensional boundary strata.

The following example illustrates the concepts we have introduced so far and what they
mean.

Example 2.1.1. Fix m = n = 4 and r = 3. For any integers a ≥ b ≥ 0, consider the data
matrix

Ua,b =

a a b b
a b a b
b a b a
b b a a

 . (2.1.6)

Note that rank(Ua,b) ≤ 3. For a = 1 and b = 0, this is the standard example [43] of a
nonnegative matrix whose nonnegative rank exceeds its rank. Thus, 1

8
U1,0 is a probability

distribution in V\M. Within the 2-parameter family (2.1.6), the topological boundary ∂M
is given by the linear equation b = (

√
2 − 1)a. This follows from the computations in [21,

§5] and [116, §5]. We conclude that

1
8(a+b)

Ua,b lies in V\M if and only if b < (
√

2− 1)a. (2.1.7)

For integers a > b ≥ 0 satisfying (2.1.7), the likelihood function (2.1.3) for Ua,b has
precisely eight global maxima on our model M. These are the following matrices, each
divided by 8(a+ b): 

a a b b
v w t u
w v u t
s s r r

,

v t w u
a b a b
s r s r
w u v t

,

t v u w
r s r s
b a b a
u w t v

,

r r s s
t u v w
u t w v
b b a a

,

a v w s
a w v s
b t u r
b u t r

,

v a s w
t b r u
w a s v
u b r t

,

t r b u
v s a w
u r b t
w s a v

,

r t u b
r u t b
s v w a
s w v a

.
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This claim can be verified by exact symbolic computation, or by validated numerics as in
the proof of [85, Theorem 4.4]. Here t is the unique simple real root of the cubic equation

(6a3 + 16a2b+ 14ab2 + 4b3)t3 − (20a4 + 44a3b+ 8ab3 + 32a2b2)t2

+ (22a5 + 43a4b+ 30a3b2 + 7a2b3)t − (8a6 + 16a5b+ 10a4b2 + 2a3b3) = 0.

To fill in the other entries of these nonnegative rank 3 matrices, we use the rational formulas

s =
(a+ b)t− a2

a
, u =

tb

a
, w = − t(3a

2 + 5ab+ 2b2)t− 4a3 − 5a2b− 2ab2

2a3 + a2b
,

r =
2a2 + ab− (a+ b)t

a
, v =

(3a2+5ab+2b2)t2 − (6a3+8a2b+3ab2)t+ 6a3b+2a2b2+4a4

2a3 + a2b
.

These formulas represent an exact algebraic solution to the MLE problem in this case. They
describe the multivalued map (a, b) 7→ P̂a,b from the data to the eight maximum likelihood
estimates. This allows us to understand exactly how these solutions behave as the matrix
entries a and b vary.

The key point is that the eight global maxima lie in the model boundary ∂M. They are
not critical points of `U on the rank 3 variety V. They will not be found by the methods in
[85, 122, 163]. Instead, we used results about the algebraic boundary in Subsection 2.1.5 to
derive the eight solutions.

We note that this example can be seen as an extension of [85, Theorem 4.4], which offers
a similar parametric analysis for the data set of the “100 Swiss Francs Problem” studied in
[68, 163]. ♦

We now introduce the concept of algebraic boundary. Recall that the topological bound-
ary ∂M of the modelM is a semialgebraic subset inside the probability simplex ∆mn−1. Its
dimension is

dim(∂M) = dim(M)− 1 = rm+ rn− r2 − 2.

Any quantifier-free semialgebraic description of ∂M will be a complicated Boolean com-
bination of polynomial equations and polynomial inequalities. This can be seen for r = 3 in
Corollary 2.1.28.

To simplify the situation, it is advantageous to relax the inequalities and keep only
the equations. This replaces the topological boundary of M by a much simpler object,
namely the algebraic boundary of M. To be precise, we define the algebraic boundary to
be the Zariski closure ∂M of the topological boundary ∂M. Thus ∂M is a subvariety of
codimension 1 inside the variety V ⊂ Pmn−1. Theorem 2.1.23 will show us that ∂M can have
many irreducible components.

The following two-dimensional family of matrices illustrates the results to be achieved in
this section. These enable us to discriminate between the topological boundary ∂M and the
algebraic boundary ∂M, and to understand how these boundaries sit inside the variety V .
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Figure 2.2: In a two-dimensional family of 4 × 4-matrices, the matrices of rank 3 form
a quartic curve. The mixture model, shown in red, has two connected components. Its
topological boundary consists of four points (on the left). The algebraic boundary includes
many more points (on the right). Currently, there is no known way to obtain the four points
on the topological boundary (in the left picture) without first considering all points on the
algebraic boundary (in the right picture).

Example 2.1.2. Consider the following 2-parameter family of 4× 4-matrices:

P (x, y) =


51 9 64 9
27 63 8 8
3 34 40 31
30 25 80 35

 + x ·


1 1 3 0
1 0 1 0
0 1 0 1
0 0 1 1

 + y ·


5 4 1 1
5 1 5 1
1 5 1 5
1 1 5 5

 .
This was chosen so that P (0, 0) lies in a unique component of the topological boundary ∂M.
The equation det(P (x, y)) = 0 defines a plane curve C of degree 4. This is the thin black
curve shown in Figure 2.2. In our family, this quartic curve C represents the Zariski closure
V of the model M.

The algebraic boundary ∂M is the variety described in Example 2.1.24. The quartic
curve C meets ∂M in 1618 real points (x, y). Of these 1618 points, precisely 188 satisfy
the constraint P (x, y) ≥ 0. These 188 points are the landmarks for our analysis. They are
shown in blue on the right in Figure 2.2. In addition, we mark the unique point where the
curve C intersects the boundary polygon defined by P (x, y) ≥ 0. This is the leftmost point,
defined by {det(P (x, y)) = x+ 5y + 8 = 0}. It equals

(−3.161429,−0.967714). (2.1.8)

We examined the 187 arcs on C between consecutive points of ∂M as well as the two arcs at
the ends. For each arc we checked whether it lies in M. This was done by a combination of
the EM algorithm in Subsection 2.1.3 and Theorem 2.1.9. Precisely 96 of the 189 arcs were
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found to lie in M. These form two connected components on the curve C, namely 19 arcs
between (2.1.8) and (0,0), and

76 arcs between (11.905773, 8.642630) and (21.001324, 35.202110). (2.1.9)

These four points represent the topological boundary ∂M. We conclude that, in the 2-
dimensional family P (x, y), the model M is the union of the two red arcs shown on the
left in Figure 2.2.

Our theory of EM fixed points distinguishes between the (relatively open) red arcs and
their blue boundary points. For the MLE problem, the red points are critical while the blue
points are not critical. By Table 2.1, the MLE is more likely to be blue than red, for larger
values of m and n. ♦

This example demonstrates that the algebraic methods of Subsections 2.1.4, 2.1.5 and
2.1.6 are indispensable when one desires a reliable analysis of model geometries, such as that
illustrated in Figure 2.2. To apply a method for finding the critical points of a function, e.g.
Lagrange multipliers, the domain of the function needs to be given by equality constraints
only. But using only these constraints, one cannot detect the maxima lying on the topolog-
ical boundary. For finding the critical points of the likelihood function on the topological
boundary by using the same methods, one needs to relax the inequality constraints and
consider only the equations defining the topological boundary. Therefore, one needs to find
the critical points on the algebraic boundary ∂M of the model.

2.1.3 Fixed Points of Expectation Maximization

The EM algorithm is an iterative method for finding local maxima of the likelihood function
(2.1.3). It can be viewed as a discrete dynamical system on the polytope Θ = (∆m−1)r ×
∆r−1 × (∆n−1)r. We here present the version in [122, §1.3].

Algorithm 1 Function EM(U, r)

Select random a1, a2, . . . , ar ∈ ∆m−1, random λ ∈ ∆r−1, and random b1, b2, . . . , br ∈ ∆n−1.
Run the following steps until the entries of the m×n-matrix P converge.
E-step: Estimate the m×r×n-table that represents this expected hidden data:

Set vikj :=
aikλkbkj∑r
l=1 ailλlblj

uij for i = 1, . . . ,m, k = 1, . . . , r and j = 1, . . . , n.

M-step: Maximize the likelihood function of the model for the hidden data:
Set λk :=

∑m
i=1

∑n
j=1 vikj/u++ for k = 1, . . . , r.

Set aik := (
∑n

j=1 vikj)/(u++λk) for k = 1, . . . , r and i = 1, . . . ,m.
Set bkj := (

∑m
i=1 vikj)/(u++λk) for k = 1, . . . , r and j = 1, . . . , n.

Update the estimate of the joint distribution for our mixture model :
Set pij :=

∑r
k=1 aikλkbkj for i = 1, . . . ,m and j = 1, . . . , n.

Return P .
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The alternating sequence of E-steps and M-steps defines trajectories in the parameter
polytope Θ. The log-likelihood function (2.1.4) is non-decreasing along each trajectory
(cf. [122, Theorem 1.15]). In fact, the value can stay the same only at a fixed point of the
EM algorithm. See Dempster et al. [49] for the general version of EM and its increasing
behavior and convergence.

Definition 2.1.3. An EM fixed point for a given table U is any point (A,Λ, B) in the
polytope Θ = (∆m−1)r × ∆r−1 × (∆n−1)r to which the EM algorithm can converge if it is
applied to (U, r).

Every global maximum P̂ of `U is among the EM fixed points. One hopes that P̂ has a
large basin of attraction, and that the initial parameter choice (A,Λ, B) gives a trajectory

that converges to P̂ . However, this need not be the case, since the EM dynamics on Θ has
many fixed points other than P̂ . Our aim is to understand all of these.

Example 2.1.4. The following data matrix is obtained by setting a = 1, b = 0 in Example
2.1.1:

U =

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 .
Among the EM fixed points for this choice of U with r = 3 we find the probability distributions

P1 =
1

24

3 3 0 0
2 0 4 0
0 2 0 4
1 1 2 2

 , P2 =
1

16

2 2 0 0
2 0 2 0
0 1 1 2
0 1 1 2

 , and P3 =
1

48

4 8 0 0
3 0 4 5
5 4 0 3
0 0 8 4

 ,
and their orbits under the symmetry group of U . For instance, the orbit of P1 is obtained
by setting s = 1

3
, r = 2

3
, v = 2

3
, t = 4

3
, w = u = 0 in the eight matrices in Example 2.1.1.

Over 98% of our runs with random starting points in Θ converged to one of these eight global
maximizers of `U . Matrices in the orbits of P2 resp. P3 were approached only rarely (less
than 2%) by the EM algorithm. ♦.

Lemma 2.1.5. The following are equivalent for a point (A,Λ, B) in the parameter poly-
tope Θ:

(1) The point (A,Λ, B) is an EM fixed point.

(2) If we start EM with (A,Λ, B) instead of a random point, then EM converges to (A,Λ, B).

(3) The point (A,Λ, B) remains fixed after one completion of the E-step and the M-step.
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It is often believed (and actually stated in [122, Theorem 1.5]) that every EM fixed
point is a critical point of the log-likelihood function `U . This statement is not true for the
definition of “critical” given in Subsection 2.1.2. In fact, for many instances U , the global
maximum P̂ is not critical.

To underscore this important point and its statistical relevance, we tested the EM algo-
rithm on random data matrices U for a range of models with m = n. The following example
explains Table 2.1.

Example 2.1.6. In our first simulation, we generated random matrices U from the uniform
distribution on ∆mn−1 by using R and then scaling to get integer entries. For each matrix U ,
we ran the EM algorithm 2000 times to ensure convergence with high probability to the global
maximum P̂ onM. Each run had 2000 steps. We then checked whether P̂ is a critical point
of `U using the rank criterion in [85, (2.3)]. Our results are reported in Table 2.1. The main

finding is that, with high probability as the matrix size increases, the MLE P̂ lands on the
topological boundary ∂M, and it fails to be critical.

In a second simulation, we started with matrices A ∈ Nm×r and B ∈ Nr×n whose entries
were sampled uniformly from {0, 1, . . . , 100}. We then fixed P ∈M to be the m×n probability
matrix given by AB divided by the sum of its entries. We finally took Tmn samples from the
distribution P and recorded the results in an m×n data matrix U . Thereafter, we applied EM
to U . We observed the following. If T ≥ 20 then the fraction of times the MLE lies in ∂M
is very close to 0. When T ≤ 10 though, this fraction was higher than the results reported
in Table 1. For T = 10 and m = n = 4, r = 3, this fraction was 13%, for m = n = 5, r = 3,
it was 23%, and for m = n = 5, r = 4, it was 17%. Therefore, based on these experiments,
in order to have the MLE be a critical point in M, one should have at least 20 times more
samples than entries of the matrix. ♦

This brings our attention to the problem of identifying the fixed points of EM. If we
could compute all EM fixed points, then this would reveal the global maximizer of `U . Since
a point is EM fixed if and only if it stays fixed after an E-step and an M-step, we can write
rational function equations for the EM fixed points in Θ:

λk =
1

u++

m∑
i=1

n∑
j=1

aikλkbkj∑r
l=1 ailλlblj

uij for all k,

aik =
1

λku++

n∑
j=1

aikλkbkj∑r
l=1 ailλlblj

uij for all i, k,

bkj =
1

λku++

m∑
i=1

aikλkbkj∑r
l=1 ailλlblj

uij for all k, j.

Our goal is to understand the solutions to these equations for a fixed positive matrix U . We
seek to find the variety they define in the polytope Θ and the image of that variety in M.
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In the EM algorithm we usually start with parameters aik, λk, bkj that are strictly positive.
The aik or bkl may become zero in the limit, but the parameters λk always remain positive
when the uij are positive since the entries of each column of A and each row of B sum to 1.
This justifies that we cancel out the factors λk in our equations. After this, the first equation
is implied by the other two. Therefore, the set of all EM fixed points is a variety, and it is
characterized by

aik =
1

u++

n∑
j=1

aikbkj∑r
l=1 ailλlblj

uij for all i, k,

bkj =
1

u++

m∑
i=1

aikbkj∑r
l=1 ailλlblj

uij for all k, j.

Suppose that a denominator
∑

l ailλlblj is zero at a point in Θ. Then aikbkj = 0 for all k, and

the expression
aikbkj∑r
l=1 ailλlblj

would be considered 0. Using the identity pij =
∑r

l=1 ailλlblj, we

can rewrite our two fixed point equations in the form

aik
( n∑
j=1

(
u++ −

uij
pij

)
bkj
)

= 0 for all k, i and bkj
( m∑
i=1

(
u++ −

uij
pij

)
aik
)

= 0 for all k, j.

(2.1.10)
Let R denote the m×n matrix with entries rij = u++− uij

pij
. The matrix R is the gradient of

the log-likelihood function `U(P ), as seen in [85, (3.1)]. With this, our fixed point equations
are

aik
( n∑
j=1

rijbkj
)

= 0 for all k, i and bkj
( m∑
i=1

rijaik
)

= 0 for all k, j. (2.1.11)

We summarize our discussion in the following theorem, with (2.1.11) rewritten in matrix
form.

Theorem 2.1.7. The variety of EM fixed points in the polytope Θ is defined by the equations

A ? (R ·BT ) = 0 B ? (AT ·R) = 0, (2.1.12)

where R is the gradient matrix of the log-likelihood function and ? denotes the Hadamard
product. The subset of EM fixed points that are critical points is defined by R · BT = 0 and
AT ·R = 0.

Proof. Since (2.1.12) is equivalent to (2.1.11), the first sentence is proved by the derivation
above. For the second sentence we consider the normal space of the variety V at a rank r
matrix P = AΛB. This is the orthogonal complement of the tangent space TP (V). The
normal space can be expressed as the kernel of the linear map Q 7→ (Q ·BT , AT ·Q). Hence
R = gradP (`U) is perpendicular to TP (V) if and only if R·BT = 0 and AT ·R = 0. Therefore,
the polynomial equations (2.1.12) define the Zariski closure of the set of parameters for which
P is critical.
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The variety defined by (2.1.12) is reducible. In Subsection 2.1.5 we shall present a detailed
study of its irreducible components, along with a discussion of their statistical interpretation.
As a preview, we here decompose the variety of EM fixed points in the simplest possible case.

Example 2.1.8. Let m = n = 2, r = 1, and consider the ideal generated by the cubics in
(2.1.12):

F =
〈
a11(r11b11+r12b12), a21(r21b11+r22b12), b11(a11r11+a21r21), b12(a11r12+a21r22)

〉
.

The software Macaulay2 [81] computes a primary decomposition into 12 components:

F = 〈 r11r22 − r12r21, a11r11 + a21r21, a11r12 + a21r22, b11r11 + b12r12, b11r21 + b12r22 〉
∩ 〈a11, r21, r22〉 ∩ 〈a21, r11, r12〉 ∩ 〈r12, r22, b11〉 ∩ 〈r11, r21, b12 〉
∩ 〈a11, r22, b11〉 ∩ 〈a11, r21, b12〉 ∩ 〈a21, r12, b11〉 ∩ 〈a21, r11, b12〉
∩ 〈a11, a21〉 ∩ 〈b11, b12〉 ∩

(
〈a11, a21〉2 + 〈b11, b12〉2 + F

)
.

(2.1.13)

The last primary ideal is embedded. Thus F is not a radical ideal. Its radical requires an
extra generator of degree 5. The first 11 ideals in (2.1.13) are the minimal primes of F .
These give the irreducible components of the variety V (F). The first ideal represents the
critical points in M. ♦

2.1.4 Matrices of Nonnegative Rank Three

While the EM algorithm operates in the polytope Θ of model parameters (A,Λ, B), the mix-
ture modelM lives in the simplex ∆mn−1 ⊂ Rm×n of all joint distributions. The parametriza-
tion φ is not identifiable. The topology of its fibers was studied by Mond et al. [116], with
focus on the first non-trivial case, when the rank r is three. We build on their work to derive
a semialgebraic characterization of M. This subsection is self-contained. It can be read
independently from our earlier discussion of the EM algorithm. It is aimed at all readers
interested in nonnegative matrix factorization, regardless of its statistical relevance.

We now fix r = 3. Let A be a real m × 3-matrix with rows a1, . . . , am, and B a real
3× n-matrix with columns b1, . . . , bn. The vectors bj ∈ R3 represent points in the projective
plane P2. We view the ai as elements in the dual space (R3)∗. These represent lines in P2.
Geometric algebra (a.k.a. Grassmann-Cayley algebra [159]) furnishes two bilinear operations,

∨ : R3 × R3 → (R3)∗ and ∧ : (R3)∗ × (R3)∗ → R3.

These correspond to the classical cross product in 3-space. Geometrically, ai ∧ aj is the
intersection point of the lines ai and aj in P2, and bi ∨ bj is the line spanned by the points
bi and bj in P2. The pairing (R3)∗ × R3 → R can be denoted by either ∨ or ∧. With
these conventions, the operations ∨ and ∧ are alternating, associative and distributive. For
instance, the minor

ai ∧ aj ∧ ak = det(ai, aj, ak) (2.1.14)
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vanishes if and only if the lines ai, aj and ak are concurrent. Likewise, the polynomial

(ai ∧ aj) ∨ bi′ ∨ bk′ = ai1aj2b1i′b2k′ − ai1aj2b1k′b2i′ + ai1aj3b1i′b3k′ − ai1aj3b1k′b3i′

−ai2aj1b1i′b2k′ + ai2aj1b1k′b2i′ + ai2aj3b2i′b3k′ − ai2aj3b2k′b3i′

−ai3aj1b1i′b3k′ + ai3aj1b1k′b3i′ − ai3aj2b2i′b3k′ + ai3aj2b2k′b3i′

(2.1.15)

expresses the condition that the lines ai and aj intersect in a point on the line given by
bi′ and bk′ . Of special interest is the following formula involving four rows of A and three
columns of B: (

((ai ∧ aj) ∨ bi′) ∧ ak
)
∨
(
((ai ∧ aj) ∨ bj′) ∧ al

)
∨ bk′ . (2.1.16)

Its expansion is a bihomogeneous polynomial of degree (6, 3) with 330 terms in (A,B).

(a) (b)

(c) (d)

Figure 2.3: In the diagrams (a) and (b), the conditions of Theorem 2.1.9 are satisfied for the
chosen i, j, i′, j′. In the diagrams (c) and (d), the conditions of Theorem 2.1.9 fail for the
chosen i, j, i′, j′.
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A matrix P ∈ Rm×n has nonnegative rank ≤ 3 if it admits a factorization P = AB with
A and B nonnegative. The set of such matrices P with p++ = 1 is precisely the mixture
model M discussed in the earlier subsections. Comparing with (2.1.1), we here subsume
the diagonal matrix Λ into either A or B. In what follows, we consider the set N of pairs
(A,B) whose product AB has nonnegative rank ≤ 3. Thus N is a semialgebraic subset of
Rm×3 ⊕ R3×n. We shall prove:

Theorem 2.1.9. A pair (A,B) is in N if and only if AB ≥ 0 and the following condi-
tion holds: Either rank(AB) < 3, or rank(AB) = 3 and there exist indices i, j ∈ [m],
i′, j′ ∈ [n] such that

sign(2.1.14) is the same or zero for all k ∈ [m]\{i, j}
and sign(2.1.15) is the same or zero for all k′ ∈ [n]\{i′}
and sign((2.1.15)[i′→j′]) is the same or zero for all k′ ∈ [n]\{j′}
and (2.1.16) · (2.1.16)[k↔ l] ≥ 0 for all {k, l} ⊆ [m]\{i, j} and k′ ∈ [n]\{i′, j′},
or there exist i, j ∈ [n], i′, j′ ∈ [m] such that these conditions hold after swapping A with BT .

Here, [m] = {1, 2, . . . ,m}, and the notation [i′→ j′] means that the index i′ is replaced
by the index j′ in the preceding expression, and [k↔ l] means that k and l are switched.

Theorem 2.1.9 is our main result in Subsection 2.1.4. It gives a finite disjunction of
conjunctions of polynomial inequalities in A and B, and thus a quantifier-free first order
formula for N . This represents our mixture model as follows: to test whether P lies in M,
check whether rank(P ) ≤ 3; if yes, compute any rank 3 factorization P = AB and check
whether (A,B) lies in N . Code for performing these computations in Macaulay2 is posted
on our website.

Theorem 2.1.9 is an algebraic translation of a geometric algorithm. For an illustration
see Figure 2.3. In the rest of the subsection, we will study the geometric description of
nonnegative rank that leads to the algorithm. Let P be a nonnegative m×n matrix of rank
r. We write span(P ) and cone(P ) for the linear space and the cone spanned by the columns
of P , and we define

A = span(P ) ∩∆m−1 and B = cone(P ) ∩∆m−1. (2.1.17)

The matrix P has a size r nonnegative factorization if and only if there exists a polytope
∆ with r vertices such that B ⊆ ∆ ⊆ A; see Lemma 1.1.4. Without loss of generality, we
will assume in the rest of this subsection that the vertices of ∆ lie on the boundary of A.
We write Mr for the set of m× n-matrices of nonnegative rank ≤ r. Here is an illustration
that is simpler than Example 2.1.2:

Example 2.1.10. In [64, §2.7.2], the following family of matrices of rank ≤ 3 is considered:

P (a, b) =


1− a 1 + a 1 + a 1− a
1− b 1− b 1 + b 1 + b
1 + a 1− a 1− a 1 + a
1 + b 1 + b 1− b 1− b

 . (2.1.18)
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Here, B is a rectangle and A = {x ∈ ∆3 : x1− x2 + x3− x4 = 0} is a square, see Figure 2.4.
Using Theorem 2.1.9, we can check that P (a, b) lies in M3 if and only if ab+ a+ b ≤ 1. ♦

Figure 2.4: The matrix P (a, b) defines a nested pair of rectangles.

Lemma 2.1.11. A matrix P ∈ Rm×n
≥0 of rank r lies in the interior ofMr if and only if there

exists an (r− 1)-simplex ∆ ⊆ A such that B is contained in the interior of ∆. It lies on the
boundary of Mr if and only if every (r− 1)-simplex ∆ with B ⊆ ∆ ⊆ A contains a vertex of
B on its boundary.

(a) (b)

Figure 2.5: Critical configurations

For r = 3, Mond et al. [116] prove the following result. Suppose B ⊆ ∆ ⊆ A and every
edge of ∆ contains a vertex of B. Then, tB ⊆ ∆′ ⊆ A for some triangle ∆′ and some t > 1,
unless

(a) an edge of ∆ contains an edge of B, or

(b) a vertex of ∆ coincides with a vertex of A.

Here the dilate tB is taken with respect to a point in the interior of B. By Lemma 2.1.11, this
means that P lies in the interior of Mm×n

3 unless one of (a) and (b) holds. The conditions
(a) and (b) are shown in Figure 2.5. For the proof of this result we refer to [116, Lemma 3.10
and Lemma 4.3].
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Corollary 2.1.12. A matrix P ∈M3 lies on the boundary of M3 if and only if

• P has a zero entry, or

• rank(P ) = 3 and if ∆ is any triangle with B ⊆ ∆ ⊆ A then every edge of ∆ contains
a vertex of B, and (a) or (b) holds.

Corollary 2.1.13. A matrix P ∈ Rm×n
≥0 has nonnegative rank ≤ 3 if and only if

• rank(P ) < 3, or

• rank(P ) = 3 and there exists a triangle ∆ with B ⊆ ∆ ⊆ A such that a vertex of ∆
coincides with a vertex of A, or

• rank(P ) = 3 and there exists a triangle ∆ with B ⊆ ∆ ⊆ A such that an edge of ∆
contains an edge of B.

Corollary 2.1.13 provides a geometric algorithm similar to that of Aggarwal et al. [1] for
checking whether a matrix has nonnegative rank 3. For the algorithm, we need to consider
one condition for every vertex of A and one condition for every edge of B. We now explain
these conditions.

Let v be a vertex of A. Let b1, b2 be the vertices of B such that l1 = vb1 and l2 = vb2

support B. Let ∆ be the convex hull of v and the other two intersection points of the lines
l1, l2 with the boundary of A. If B ⊆ ∆, then P has nonnegative rank 3.

Let l be the line spanned by an edge of B. Let v1, v2 be the intersection points of l with
∂A. Let b1, b2 be the vertices of B such that l1 = v1b1 and l2 = v2b2 support B. Let v3 be
the intersection point of l1 and l2. If conv(v1, v2, v3) ⊆ A, then P has nonnegative rank 3.

Proof of Theorem 2.1.9. Let rank(P ) = 3 and consider any factorization P = AB where
a1, . . . , am ∈ (R3)∗ are the row vectors of A and b1, . . . , bn ∈ R3 are the column vectors of
B. The map x 7→ Ax identifies R3 with the common column space of A and P . Under this
identification, and by passing from 3-dimensional cones to polygons in R2, we can assume
that the edges of A are given by a1, . . . , am and the vertices of B are given by b1, . . . , bn.

To test whether P belongs to M3, we use the geometric conditions in Corollary 2.1.13.
These still involve a quantifier over ∆. Our aim is to translate them into the given quantifier-
free formula, referring only to the vertices bi of B and the edges aj of A. First we check with
the sign condition on (2.1.14) that the intersection point ai ∧ aj defines a vertex of A. Next
we verify that the lines (ai ∧ aj) ∨ bi′ and (ai ∧ aj) ∨ bj′ are supporting B, i.e. all vertices of
B lie on the same side of the lines (ai ∧ aj) ∨ bi′ and (ai ∧ aj) ∨ bj′ . For this we use the sign
conditions on (2.1.15) and (2.1.15)[i′→j′].

Finally we need to check whether all vertices of B belong to the convex hull of ai ∧ aj
and the other two intersection points of the lines (ai ∧ aj) ∨ bi′ and (ai ∧ aj) ∨ bj′ with the
boundary of A. Fix {k, l} ⊆ [m]\{i, j}. If either the line (ai ∧ aj) ∨ bi′ intersects ak or
the line (ai ∧ aj) ∨ bj′ intersects al outside A, then the polygon B lies completely on one
side of the line (((ai ∧ aj) ∨ bi′) ∧ ak) ∨ (((ai ∧ aj) ∨ bj′) ∧ al). Similarly, if either the line
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(ai ∧ aj)∨ bi′ intersects al or the line (ai ∧ aj)∨ bj′ intersects ak outside A, then the polygon
B lies completely on one side of the line (((ai ∧ aj)∨ bi′)∧ al)∨ (((ai ∧ aj)∨ bj′)∧ ak). Then
the condition (2.1.16) · (2.1.16)[k↔ l] ≥ 0 is automatically satisfied for all k′ ∈ [n]\{i′, j′}.
If the intersection points ((ai ∧ aj) ∨ bi′) ∧ ak and ((ai ∧ aj) ∨ bj′) ∧ al are on the boundary
of A, then the polygon B is on one side of (((ai ∧ aj) ∨ bi′) ∧ al) ∨ (((ai ∧ aj) ∨ bj′) ∧ ak).
In this case, we use the conditions (2.1.16) · (2.1.16)[k↔ l] ≥ 0 to check whether B is also
on one side of the line (((ai ∧ aj) ∨ bi′) ∧ ak) ∨ (((ai ∧ aj) ∨ bj′) ∧ al). For an illustration see
Figure 2.3.

We wish to reiterate that the semialgebraic formula for our model in Theorem 2.1.9 is
quantifier-free. It is a finite Boolean combination of polynomial inequalities with rational
coefficients.

Corollary 2.1.14. If a rational m×n matrix P has nonnegative rank ≤ 3 then there exists
a nonnegative rank ≤ 3 factorization P = AB where all entries of A and B are rational
numbers.

This answers a question of Cohen and Rothblum in [43] for matrices of nonnegative
rank 3. It is not known whether this result holds in general. In Subsection 2.1.6 we apply
Theorem 2.1.9 to derive the topological boundary and the algebraic boundary of M. Also,
using what follows in Subsection 2.1.5, we shall see how these boundaries are detected by
the EM algorithm.

2.1.5 Decomposing the variety of EM fixed points

After this in-depth study of the geometry of our model, we now return to the fixed points of
Expectation Maximization on M. We fix the polynomial ring Q[A,R,B] in mr + mn + rn
indeterminates aik, rij, and bkj. Let F denote the ideal generated by the entries of the
matrices A ? (R ·BT ) and B ? (AT ·R) in (2.1.12). Also, let C denote the ideal generated by
the entries of R ·BT and AT ·R. Thus F is generated by mr + rn cubics, C is generated by
mr + rn quadrics, and we have the inclusion F ⊂ C. By Theorem 2.1.7, the variety V (C)
consists of those parameters A,R,B that correspond to critical points for the log-likelihood
function `U , while the variety V (F) encompasses all the fixed points of the EM algorithm.
We are interested in the irreducible components of the varieties V (F) and V (C). These
are the zero sets of the minimal primes of F and C, respectively. More precisely, if F has
minimal primes F1,F2, . . . ,FN , then V (Fi) are the irreducible components of V (F), and
V (F) =

⋃
i V (Fi).

Recall that the matrix R represents the gradient of the log-likelihood function `U , i.e.

rij = u++ −
uij
pij

= u++ −
uij∑

k aikλkbkj
. (2.1.19)

The set of EM-fixed points corresponding to a data matrix U ∈ Nm×n is defined by the ideal
F ′ ⊂ Q[A,B,Λ] that is obtained from F by substituting (2.1.19), clearing denominators,
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and saturating. Note that V (F ′) =
⋃
i V (F ′i). So, studying the minimal primes Fi will help

us study the fixed points of EM. A big advantage of considering F rather than F ′ is that
F is much simpler. Also, it does not depend on the data U . This allows a lot of the work
in exact MLE using algebraic methods (as in Example 2.1.1) to be done in a preprocessing
stage.

There are two important points we wish to make in this subsection:
1. the minimal primes of F have interesting statistical interpretations, and
2. the non-trivial boundaries of the mixture model M can be detected from this.

We shall explain these points by working out two cases that are larger than Example 2.1.8.
Example 2.1.8 showed that F is not radical but has embedded components. Here, we

focus on the minimal primes Fi of F , as these correspond to geometric components of V (F).
If Fi is also a minimal prime of C then Fi is a critical prime of F . Not every minimal prime of
C is a minimal prime of F . For instance, for m = n = 2, r = 1, the ideal C is the intersection
of the first prime in Example 2.1.8 and 〈a11, a21, b11, b12〉. The latter is not minimal over F .
We now generalize this example:

Proposition 2.1.15. The ideal C has precisely r + 1 minimal primes, indexed by k =
1, . . . , r+1:
C+

〈
k-minors of A

〉
+
〈
(m−k+2)-minors of R

〉
+
〈
(n−m+k)-minors of B

〉
if m ≤ n,

C +
〈
(m−n+k)-minors of A

〉
+
〈
(n−k+2)-minors of R

〉
+
〈
k-minors of B

〉
if m ≥ n.

Moreover, the ideal C is radical and, hence, it equals the intersection of its minimal primes.

We refer to Example 2.1.29 for an illustration of Proposition 2.1.15. The proof we give in
Appendix 2.1.7.1 relies on methods from representation theory. The duality relation (2.1.26)
plays an important role.

We now proceed to our case studies of the minimal primes of the EM fixed ideal F .

Example 2.1.16. Let m = n = 3 and r = 2. The ideal F has 37 minimal primes, in six
classes. The first three are the minimal primes of the critical ideal C, as seen in Proposition
2.1.15:

I1 = 〈r23r32 − r22r33, r13r32 − r12r33, r23r31 − r21r33, r22r31 − r21r32, r13r31 − r11r33,
r12r31 − r11r32, r13r22 − r12r23, r13r21 − r11r23, r12r21 − r11r22,

b21r31 + b22r32 + b23r33, b11r31 + b12r32 + b13r33, b21r21 + b22r22 + b23r23,
b11r21 + b12r22 + b13r23, a12r13 + a22r23 + a32r33, a11r13 + a21r23 + a31r33,
a12r12 + a22r22 + a32r32, a11r12 + a21r22 + a31r32, b21r11 + b22r12 + b23r13,
b11r11 + b12r12 + b13r13, a12r11 + a22r21 + a32r31, a11r11 + a21r21 + a31r31〉,

I2 = 〈 r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32 + r12r21r33 − r11r22r33,
b21r31 + b22r32 + b23r33, b11r31 + b12r32 + b13r33, b21r21 + b22r22 + b23r23,
b11r21 + b12r22 + b13r23, a12r13 + a22r23 + a32r33, a11r13 + a21r23 + a31r33,
a12r12 + a22r22 + a32r32, a11r12 + a21r22 + a31r32, b21r11 + b22r12 + b23r13,
b11r11 + b12r12 + b13r13, a12r11 + a22r21 + a32r31, a11r11 + a21r21 + a31r31,

b13b22−b12b23, b13b21−b11b23, b12b21−b11b22, a31a22−a21a32, a31a12−a11a32, a21a12−a11a22〉,
I3 = 〈a11, a21, a31, a12, a22, a32, b11, b12, b13, b21, b22, b23〉.
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In addition to these three, F has 12 non-critical components like

J1 = 〈 a11, a21, r31, r32, r33, r13r22 − r12r23, r13r21 − r11r23, r12r21 − r11r22,
b21r21+b22r22+b23r23, b21r11+b22r12+b23r13, a12r13+a22r23, a12r12+a22r22, a12r11+a22r21〉,

four non-critical components like

J2 = 〈a11, a21, a31, r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32 + r12r21r33 − r11r22r33,
b21r21 + b22r22 + b23r23, b21r11 + b22r12 + b23r13, b21r31 + b22r32 + b23r33,
a12r13 + a22r23 + a32r33, a12r12 + a22r22 + a32r32, a12r11 + a22r21 + a32r31〉,

and 18 non-critical components like

J3 = 〈a11, a21, b11, b12, r33, r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32,
b21r31 + b22r32, b21r21 + b22r22 + b23r23, b21r11 + b22r12 + b23r13,
a12r13 + a22r23, a12r12 + a22r22 + a32r32, a12r11 + a22r21 + a32r31〉.

Each of the 34 primes J1, J2, J3 specifies a face of the polytope Θ, as it contains two, three
or four of the parameters aik, bkj, and expresses rank constraints on the matrix R = [rij]. ♦
Remark 2.1.17. Assuming the sample size u++ to be known, we can recover the data matrix
U from the gradient R using the formula U = R ? P + u++P . In coordinates, this says

uij = (rij + u++) · pij for i ∈ [m], j ∈ [n].

This formula is obtained by rewriting (2.1.19). Hence, rij = 0 holds if and only if pij =
uij/u++. This can be rephrased as follows. If a minimal prime of F contains the unknown
rij, then the corresponding fixed points of the EM algorithm maintain the cell entry uij from
the data.

With this, we can now understand the meaning of the various components in Exam-
ple 2.1.16. The prime I1 parametrizes critical points P of rank 2. This represents the
behavior of the EM algorithm when run with random starting parameters in the interior of
Θ. For special data U , the MLE will be a rank 1 matrix, and such cases are captured by the
critical component I2. The components I3 and J2 can be disregarded because each of them
contains a column of A. This would force the entries of that column to sum to 0, which is
impossible in Θ.

The components J1 and J3 describe interesting scenarios that are realized by starting the
EM algorithm with parameters on the boundary of the polytope Θ. On the components J1,
the EM algorithm produces an estimate that maintains one of the rows or columns from the
data U , and it replaces the remaining table of format 2 × 3 or 3 × 2 by its MLE of rank
1. This process amounts to fitting a context specific independence (CSI) model to the data.
Following Georgi and Schliep [74], CSI means that independence holds only for some values
of the involved variables. Namely, J1 expresses the constraint that X is independent of Y
given that Y is either 1 or 2. Finally, on the components J3, we have rank(A) = rank(B) = 2
and rij = 0 for one cell entry (i, j).
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Definition 2.1.18. Let F =
〈
A ? (R · BT ), B ? (AT · R)

〉
be the ideal of EM fixed points.

A minimal prime of F is called relevant if it contains none of the mn polynomials pij =∑r
k=1 aikbkj.

In Example 2.1.8 only the first minimal prime is relevant. In Example 2.1.16 all minimal
primes besides I3 are relevant. Restricting to the relevant minimal primes is justified because
the EM algorithm never outputs a matrix containing zeros for positive starting data. Note
also that the pij appear in the denominators in the expressions (2.1.10) that were used in
our derivation of F .

Our main result in this subsection is the computation in Theorem 2.1.19. We provide a
census of EM fixed points for 4×4-matrices of rank r = 3. This is the smallest case where
rank can differ from nonnegative rank, and the boundary hypersurfaces (2.1.16) appear.

Theorem 2.1.19. Let m = n = 4 and r = 3. The radical of the EM fixed point ideal F has
49000 relevant primes. These come in 108 symmetry classes, listed in Table 2.2.

Proof. We used an approach that mirrors the primary decomposition of binomial ideals [60].
Recall that the EM fixed point ideal equals

F =
〈
A ? (R ·BT ), B ? (AT ·R)

〉
=
〈
aik(

n∑
l=1

rilbkl) , bkj(
m∑
l=1

rljalk) : k ∈ [r], i ∈ [m], j ∈ [n]
〉
.

Any prime ideal containing F contains either aik or
∑n

l=1 rilbkl for any k ∈ [r], i ∈ [m], and
either bkj or

∑m
l=1 rljalk for any k ∈ [r], j ∈ [n]. We enumerated all primes containing F

according to the set S of unknowns aik, bkj they contain. There are 224 subsets and the
symmetry group acts on this power set by replacing A with BT , permuting the rows of A,
the columns of B, and the columns of A and the rows of B simultaneously. We picked one
representative S from each orbit that is relevant, meaning that we excluded those orbits for
which some pij =

∑r
k=1 aikbkj lies in the ideal 〈S〉. For each relevant representative S, we

computed the cellular component FS =
(
(F + 〈S〉) : (

∏
Sc)∞

)
, where Sc = {a11, . . . , b34}\S.

Note that F∅ = C is the critical ideal. We next minimalized our cellular decomposition by
removing all representatives S such that FT ⊂ FS for some representative T in another orbit.
This led to a list of 76 orbits, comprising 42706 ideals FS in total. For the representative
FS, we computed the set Ass(FS) of associated primes P . By construction, the sets Ass(FS)
partition the set of relevant primes of F . The block sizes |Ass(FS)| range from 1 to 7. Up to
symmetry, each prime is uniquely determined by its attributes in Table 2.2. These are its set
S, its degree and codimension, and the ranks rA = rank(A), rB = rank(B), rR = rank(R),
rP = rank(P ) at a generic point. Our list starts with the four primes from coming from
S = ∅. See Example 2.1.29. In each case, the primality of the ideal was verified using a linear
elimination sequence as in [73, Proposition 23 (b)]. Proofs in Macaulay2 code are posted on
our website.
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Below is the complete list of all 108 classes of prime ideals in Theorem 2.1.19. Three
components are marked with stars. After the table, we discuss these components in Examples
2.1.20, 2.1.21 and 2.1.22.

Table 2.2: Minimal primes of the EM fixed ideal F for 4×4-matrices of rank 3

set S |S| a’s b’s deg codim rA rB rR rP |orbit|
∅ 0 0 0 1 24 0 0 4 0 1

0 0 0 1630 19 1 1 3 1 1
0 0 0 3491 16 2 2 2 2 1
0 0 0 245 15 3 3 1 3 1

{a11} 1 1 0 245 16 3 3 1 3 24
1 1 0 3491 17 2 2 2 2 24

{a11, a21} 2 2 0 20 17 3 3 1 3 36
2 2 0 245 17 3 3 1 3 36
2 2 0 1460 17 2 3 2 2 36

{a11, a21, a31} 3 3 0 53 17 3 3 1 3 24
3 3 0 188 17 2 3 2 2 24

∗{a11, a21, b11, b12}∗ 4 2 2 245 19 3 3 1 3 108
4 2 2 20 19 3 3 1 3 108 x 2
4 2 2 1460 19 2 3 2 2 108 x 2
4 2 2 2370 20 2 2 3 2 108
4 2 2 240 19 3 3 2 3 108

{a11, a21, b21, b22} 4 2 2 825 18 3 3 2 3 216
{a11, a21, a31, a41} 4 4 0 689 16 2 3 2 2 6

4 4 0 474 17 1 2 3 1 6
{a11, a21, a12, a22} 4 4 0 592 17 2 3 2 2 36

4 4 0 9 17 3 3 1 3 36
{a11, a21, a32, a42} 4 4 0 20 19 3 3 1 3 36 x 2

4 4 0 245 19 3 3 1 3 36
4 4 0 400 18 2 3 2 2 36

{a11, a21, a31, b11, b12} 5 3 2 474 20 2 2 3 2 144
5 3 2 188 19 2 3 2 2 144
5 3 2 448 19 3 3 2 3 144
5 3 2 53 19 3 3 1 3 144

{a11, a21, a31, b21, b22} 5 3 2 125 18 3 3 2 3 288
{a11, a21, a32, a42, b31} 5 4 1 723 19 3 3 2 3 144
{a11, a21, a31, b11, b12, b13} 6 3 3 689 19 3 3 2 3 48

6 3 3 474 20 2 2 3 2 48
{a11, a21, a31, b21, b22, b23} 6 3 3 21 18 3 3 2 3 96
{a11, a21, a32, b11, b12, b33} 6 3 3 2785 20 3 3 3 3 864
∗{a11, a22, a33, b11, b22, b33}∗ 6 3 3 9016 21 3 3 4 3 576

6 3 3 245 21 3 3 1 3 576
{a11, a21, a31, a41, b21, b22} 6 4 2 265 17 2 3 2 2 72
{a11, a21, a12, a22, b11, b12} 6 4 2 592 19 2 3 2 2 432

6 4 2 9 19 3 3 1 3 432
6 4 2 104 19 3 3 2 3 432

{a11, a21, a32, a42, b11, b12} 6 4 2 825 20 3 3 2 3 432
6 4 2 100 20 3 3 2 3 432
6 4 2 400 20 2 3 2 2 432

{a11, a21, a32, a42, b31, b32} 6 4 2 301 19 3 3 2 3 216
{a11, a21, a31, a41, a12, a22} 6 6 0 265 17 2 3 2 2 72
{a11, a21, a31, a12, a22, a32} 6 6 0 35 16 2 3 2 2 24
{a11, a21, a12, a22, a33, a43} 6 6 0 180 18 2 3 2 2 36

6 6 0 9 19 3 3 1 3 36
{a11, a21, a31, a41, b21, b22, b23} 7 4 3 35 17 2 3 2 2 48
{a11, a21, a31, a42, b11, b12, b33} 7 4 3 557 20 3 3 3 3 576
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set S |S| a’s b’s deg codim rA rB rR rP |orbit|
{a11, a21, a12, a22, b11, b12, b13} 7 4 3 191 19 3 3 2 3 288
{a11, a21, a32, a42, b11, b12, b13} 7 4 3 140 20 3 3 2 3 288

7 4 3 125 20 3 3 2 3 288
{a11, a21, a32, a42, b11, b12, b33} 7 4 3 835 20 3 3 3 3 864
{a11, a21, a32, a42, b31, b32, b33} 7 4 3 49 19 3 3 2 3 144
∗{a11, a21, a32, a43, b11, b22, b33}∗ 7 4 3 3087 21 3 3 4 3 1728
{a11, a21, a31, a12, a22, b21, b22} 7 5 2 31 19 3 3 2 3 864
{a11, a21, a31, a12, a42, b11, b12} 7 5 2 225 20 3 3 2 3 864
{a11, a21, a12, a32, a43, b11, b22} 7 5 2 1193 21 3 3 3 3 1728
{a11, a21, a31, a41, b21, b22, b23, b24} 8 4 4 85 15 2 2 3 1 6
{a11, a21, a31, a41, b21, b22, b33, b34} 8 4 4 81 18 2 3 2 2 36
{a11, a21, a31, a42, b11, b12, b13, b34} 8 4 4 557 20 3 3 3 3 96
{a11, a21, a31, a42, b11, b12, b33, b34} 8 4 4 167 20 3 3 3 3 288
{a11, a21, a12, a22, b11, b12, b21, b22} 8 4 4 850 20 2 2 3 2 108

8 4 4 45 19 3 3 2 3 108
{a11, a21, a12, a22, b11, b12, b23, b24} 8 4 4 9 21 3 3 1 3 216

8 4 4 1024 21 3 2 3 2 216
8 4 4 104 21 3 3 2 3 216 x 2
8 4 4 592 21 2 3 2 2 216

{a11, a21, a12, a32, b11, b12, b21, b23} 8 4 4 2121 21 3 3 3 3 1728
{a11, a21, a12, a32, b11, b12, b23, b24} 8 4 4 2125 21 3 3 3 3 864
{a11, a21, a32, a42, b11, b12, b23, b24} 8 4 4 2125 21 3 3 3 3 108
{a11, a21, a32, a42, b11, b12, b33, b34} 8 4 4 265 20 3 3 3 3 216
{a11, a21, a32, a43, b11, b12, b23, b34} 8 4 4 2205 21 3 3 4 3 432
{a11, a21, a32, a43, b11, b22, b23, b34} 8 4 4 1029 21 3 3 4 3 864
{a11, a21, a31, a12, a22, b21, b22, b23} 8 5 3 35 19 3 3 2 3 576
{a11, a21, a31, a12, a42, b11, b12, b13} 8 5 3 265 20 3 3 2 3 576
{a11, a21, a12, a32, a43, b11, b12, b23} 8 5 3 1185 21 3 3 3 3 3456
{a11, a21, a31, a41, a12, a22, b21, b22} 8 6 2 425 18 2 3 3 2 432
{a11, a21, a12, a22, a33, a43, b11, b12} 8 6 2 180 20 2 3 2 2 432

8 6 2 45 20 3 3 2 3 432
{a11, a21, a31, a41, a12, a22, a32, a42} 8 8 0 85 15 1 3 3 1 6
{a11, a21, a31, a41, a12, a22, a33, a43} 8 8 0 81 18 2 3 2 2 36
{a11, a21, a31, a12, a22, b11, b12, b23, b24} 9 5 4 296 21 3 3 3 3 864

9 5 4 31 21 3 3 2 3 864
{a11, a21, a31, a12, a42, b11, b12, b21, b23} 9 5 4 425 21 3 3 3 3 3456
{a11, a21, a31, a12, a42, b11, b12, b23, b24} 9 5 4 425 21 3 3 3 3 864
{a11, a21, a12, a22, a33, b11, b12, b23, b24} 9 5 4 839 21 3 3 3 3 432
{a11, a21, a12, a32, a43, b11, b12, b13, b24} 9 5 4 237 21 3 3 3 3 1152
{a11, a21, a12, a32, a43, b11, b12, b23, b24} 9 5 4 875 21 3 3 3 3 864
{a11, a21, a31, a41, a12, a22, b21, b22, b23} 9 6 3 85 18 2 3 3 2 288
{a11, a21, a31, a12, a22, a43, b11, b12, b23} 9 6 3 163 21 3 3 3 3 1728
{a11, a21, a12, a22, a33, a43, b11, b12, b13} 9 6 3 63 20 3 3 2 3 288
{a11, a21, a31, a41, a12, a22, a32, b21, b22} 9 7 2 85 18 2 3 3 2 288
{a11, a21, a31, a12, a22, b11, b12, b13, b21, b24} 10 5 5 425 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, b11, b12, b21, b22, b23} 10 5 5 85 20 3 3 3 3 864
{a11, a21, a31, a12, a42, b11, b12, b13, b21, b24} 10 5 5 425 21 3 3 3 3 864
{a11, a21, a31, a12, a42, b11, b12, b21, b23, b24} 10 5 5 85 21 3 3 3 3 864
{a11, a21, a31, a12, a22, a32, b11, b12, b21, b22} 10 6 4 85 19 2 3 3 2 144
{a11, a21, a31, a12, a22, a42, b11, b12, b21, b23} 10 6 4 85 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, a42, b11, b12, b23, b24} 10 6 4 85 21 3 3 3 3 432
{a11, a21, a31, a12, a22, a43, b11, b12, b13, b24} 10 6 4 237 21 3 3 3 3 576
{a11, a21, a31, a12, a22, a43, b11, b12, b23, b24} 10 6 4 175 21 3 3 3 3 864
{a11, a21, a12, a22, a33, a43, b11, b12, b23, b24} 10 6 4 225 21 3 3 3 3 216
{a11, a21, a31, a41, a12, a22, a32, b21, b22, b23} 10 7 3 85 18 2 3 3 2 192
{a11, a21, a31, a12, a22, a42, b11, b12, b13, b21, b24} 11 6 5 85 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, a32, b11, b12, b13, b21, b22, b23} 12 6 6 85 20 2 2 3 2 48
{a11, a21, a31, a12, a22, a42, b11, b12, b13, b21, b22, b24} 12 6 6 85 21 3 3 3 3 432
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We illustrate our census of relevant primes for three sets S that are especially interesting.

Example 2.1.20. Let S = {a11, a21, b11, b12}. The cellular component FS is the ideal gener-
ated by S, det(R34

34), det(R), and the entries of the matrices B23RT, B1(RT)34, R
TA23, (R

T)34A1.
In specifying submatrices, upper indices refer to rows and lower indices refer to columns. The
ideal FS is radical with 7 associated primes, to be discussed in order of their appearance in
Table 2.2. For instance, the prime (1) below has degree 245. The phrase “Generated by” is
meant modulo FS:

(1) Generated by entries of BRT , ATR, and 2×2-minors of R. This gives 60 quadrics.

(2) Generated by entries of ATR,R34, and 2×2-minors of R,A12
23. This gives 19 quadrics.

(2’) Mirror image of (2) under swapping A and BT .

(3) Generated by entries of ATR, 2×2-minors of A12
23, R

34, and 3×3-minors of A, R123, R124.
This gives 29 quadrics and 10 cubics.

(3’) Mirror image of (3) under swapping A and BT .

(4) Generated by 2×2-minors of A23 and B23. This gives 33 quadrics and one quartic.

(5) Generated by entries of R34
34, 2×2-minors of R12

34, R
34
12, A

12
23, B

23
12 , and 3×3-minors of R.

This gives 20 quadrics and 4 cubics.

These primes have the following meaning for the EM algorithm.

(1) The fixed points P = φ(A,R,B) given by this prime ideal are those critical points for
the likelihood function `U for which the parameters a11, a21, b11, b21 happen to be 0.

(2) The fixed points P = φ(A,R,B) given by this prime ideal have the last two rows of
P fixed and equal to the last two rows of the data matrix U (divided by the sample
size u++). Therefore, the points coming from this ideal are the maximum likelihood
estimates with these eight entries fixed and which factor so that a11, a21, b11, b21 are 0.

(3) Since the 3 × 3 minors of A lie in this ideal, we have rank(P ) ≤ 2. Therefore, these
fixed points give an MLE of rank 2. This component is the restriction to V (FS) of the
generic behavior on the singular locus of V.

(4) On this component, the duality relation in (2.1.26) fails since rank(P ) = 2 but rank(R)
= 3.

(5) The fixed points P = φ(A,R,B) given by this ideal have the four entries in the last 2
rows and last 2 columns of P fixed and equal to the corresponding entries in U (divided
by u++). Therefore, the points coming from this ideal are maximum likelihood estimates
with those four entries fixed, and parameters a11, a21, b11, b21 being 0. ♦
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Example 2.1.21. Let S = {a11, a21, a32, a43, b11, b22, b33}. The ideal FS has codimension 21,
degree 3087, and is generated modulo 〈S〉 by 20 quadrics and two cubics. To show that FS is
prime, we use the elimination method of [73, Proposition 23 (b)], with the variable x1 taken
successively to be r44, r43, r34, a13, r21, r12, r14, r33, b21, a31, r41, a21, a32. The last elimination
ideal is generated by an irreducible polynomial of degree 9, thus proving primality of FS.

If we add the relation P = AB to FS and thereafter eliminate {A,B,R}, then we obtain
a prime ideal in Q[P ]. That prime ideal has height one over the determinantal ideal 〈det(P )〉.
Any such prime gives a candidate for a component in the boundary of our model M. By
matching the set S with the combinatorial analysis in subsection 2.1.4, we see that Figure 2.5
(b) corresponds to V (S). Hence, by Corollary 2.1.12, this component does in fact contribute
to the boundary ∂M. This is a special case of Theorem 2.1.23 below; see equation (2.1.21)
in Example 2.1.24.

This component is the most important one for EM. It represents the typical behavior when
the output of the EM algorithm is not critical. In particular, the duality relation (2.1.26)
fails in the most dramatic form because rank(R) = 4. As seen in Table 2.1, this failure is
still rare (4.4%) for m = n = 4. For larger matrix sizes, however, the non-critical behavior
occurs with overwhelming probability. ♦

Example 2.1.22. Let S = {a11, a22, a33, b11, b22, b33}. The computation for the ideal FS was
the hardest among all cellular components. It was found to be radical, with two associated
primes of codimension 21. The first prime has the largest degree, namely 9016, among all
entries in Table 2.2. In contrast to Example 2.1.21, the set S cannot contribute to ∂M.
Indeed, for both primes, the elimination ideal in Q[P ] is 〈det(P )〉. The degree 9016 ideal
is the only prime in Table 2.2 that has rank(R) = 4 but does not map to the boundary of
the model M. Starting the EM algorithm with zero parameters in S generally leads to the
correct MLE. ♦

2.1.6 Algebraic Boundaries

In Subsection 2.1.4 we studied the real algebraic geometry of the mixture modelM for rank
three. In this subsection we also fix r = 3 and focus on the algebraic boundary of our model.
Our main result in this subsection is the characterization of its irreducible components.

Theorem 2.1.23. The algebraic boundary ∂M is a pure-dimensional reducible variety in
Pmn−1. All irreducible components have dimension 3m+ 3n− 11 and their number equals

mn +
m(m−1)(m−2)(m+ n− 6)n(n−1)(n−2)

4
.

Besides the mn components {pij = 0} that come from ∂∆mn−1 there are:

(a) 36
(
m
3

)(
n
4

)
components parametrized by P = AB, where A has three zeros in distinct

rows and columns, and B has four zeros in three rows and distinct columns.
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(b) 36
(
m
4

)(
n
3

)
components parametrized by P = AB, where A has four zeros in three

columns and distinct rows, and B has three zeros in distinct rows and columns.

This result takes the following specific form in the first non-trivial case:

Example 2.1.24. For m = n = 4, the algebraic boundary of our modelM has 16 irreducible
components {pij = 0}, 144 irreducible components corresponding to factorizations like

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 =


0 a12 a13

a21 0 a23

a31 a32 0
a41 a42 a43

 ·
 0 0 b13 b14

b21 b22 0 b24

b31 b32 b33 0

 , (2.1.20)

and 144 irreducible components that are transpose to those in (2.1.20), i.e.
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 =


0 a12 a13

0 a22 a23

a31 0 a33

a41 a42 0

 ·
 0 b12 b13 b14

b21 0 b23 b24

b31 b32 0 b34

 . (2.1.21)

The prime ideal of each component is generated by the determinant and four polynomials of
degree six. These are the maximal minors of a 4 × 5-matrix. For the component (2.1.21),
this can be chosen as

p11 p12 p13 p14 0
p21 p22 p23 p24 0
p31 p32 p33 p34 p33(p11p22 − p12p21)
p41 p42 p43 p44 p41(p12p23−p13p22) + p43(p11p22−p12p21)

 . (2.1.22)

This matrix representation was suggested to us by Aldo Conca and Matteo Varbaro. ♦
We begin by resolving a problem that was stated in [85, §5] and [93, Example 2.13]:

Proposition 2.1.25. The ML degree of each variety (2.1.20) in the algebraic boundary ∂M
is 633.

Proposition 2.1.25 is a first step towards deriving an exact representation of the MLE
function U 7→ P̂ for our model M = . As highlighted in Table 2.1, the MLE P̂
typically lies on the boundary ∂M. We now know that this boundary has 304 = 16+144+144
strata X1, X2, . . . , X304. If P̂ lies on exactly one of the strata (2.1.20) or (2.1.21), then we

can expect the coordinates of P̂ to be algebraic numbers of degree 633 over the rationals Q.
This is the content of Proposition 2.1.25. By [85, Theorem 1.1] the degree of P̂ over Q is

only 191 if P̂ happens to lie in the interior of M.
In order to complete the exact analysis of MLE for the 4 × 4-model, we also need to

determine which intersections Xi1 ∩ · · · ∩ Xis are non-empty on ∂M. For each such non-
empty stratum, we would then need to compute its ML degree. This is a challenge left for
a future project.



CHAPTER 2. MATRICES AND POSITIVITY 43

Proof of Theorem 2.1.23. By Corollary 2.1.12, an m × n matrix P of rank 3 without zero
entries lies on ∂Mm×n

3 if and only if all triangles ∆ with B ⊆ ∆ ⊆ A contain an edge of B
on one of its edges and a vertex of B on all other edges, or one of its vertices coincides with
a vertex of A and all other edges contain a vertex of B. We will write down these conditions
algebraically.

The columns of A correspond to the vertices of ∆, and the columns of B correspond to
the convex combinations of the vertices of ∆ that give the columns of P = AB. If a vertex
of ∆ and a vertex of A coincide, then the corresponding column of A has two 0’s. Otherwise
the corresponding column of A has one 0. If a vertex of B lies on an edge of ∆, then one
entry of B is zero.

We can freely permute the columns of the left m × 3 matrix A of a factorization – this
corresponds to permuting the rows of the corresponding right 3 × n matrix B. Thus we
can assume that the first column contains two 0’s and/or the rest of the 0’s appear in the
increasing order.

In the first case, there are
(
m
3

)
possibilities for choosing the three rows of A containing 0’s,

there are 3 choices for the row of B with two 0’s,
(
n
2

)
possibilities for choosing the positions

for the two 0’s, and (n − 2)(n − 3) possibilities for choosing the positions of the 0’s in the
other two rows of B. In the second case, there are

(
m
2

)
possibilities for choosing the 0’s in

the first column of A and
(
m−2

2

)
choices for the positions of the 0’s in other columns. There

are
(
n
3

)
choices for the columns of B containing 0’s and 3! choices for the positions of the 0’s

in these columns.

The prime ideal in (2.1.22) can be found and verified by direct computation, e.g. by
using the software Macaulay2 [81]. For general values of m and n, the prime ideal of an
irreducible boundary component is generated by quartics and sextics that generalize those in
Example 2.1.24. The following theorem was stated as a conjecture in the original December
2013 version of this section. That conjecture was proved in April 2014 by Eggermont,
Horobeţ and Kubjas [59].

Theorem 2.1.26 (Eggermont, Horobeţ and Kubjas). Let m ≥ 4, n ≥ 3 and consider the
irreducible component of ∂M in Theorem 2.1.23 (b). The prime ideal of this component is
minimally generated by

(
m
4

)(
n
4

)
quartics, namely the 4×4-minors of P , and by

(
n
3

)
sextics that

are indexed by subsets {i, j, k} of {1, 2, . . . , n}. These form a Gröbner basis with respect to the
graded reverse lexicographic order. The sextic indexed by {i, j, k} is homogeneous of degree
e1+e2+e3+ei+ej+ek in the column grading by Zn and homogeneous of degree 2e1+2e2+e3+e4

in the row grading by Zm.

The row and column gradings of the polynomial ring Q[P ] are given by deg(pij) = ei and
deg(pij) = ej where ei and ej are unit vectors in Zm and Zn respectively.
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Example 2.1.27. If m = 5 and n = 6 then our component is given by the parametrization
p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

 =


0 a12 a13

0 a22 a23

a31 0 a33

a41 a42 0
a51 a52 a53

 ·
 0 b12 b13 b14 b15 b16

b21 0 b23 b24 b25 b26

b31 b32 0 b34 b35 b36

 .
This parametrized variety has codimension 7 and degree 735 in P29. Its prime ideal is gen-
erated by 75 quartics and 20 sextics of the desired row and column degrees. ♦

The base case for Theorem 2.1.26 is the case of 4×3-matrices, even though ∂M =M∩∆11

is trivial in this case. The corresponding ideal is principal, and it is generated by the
determinant of the 4× 4-matrix that is obtained by deleting the fourth column of (2.1.22).

The sextics in Theorem 2.1.26 can be constructed as follows. Start with the polynomial(
((a1 ∧ a2) ∨ b1) ∧ a3

)
∨
(
((a1 ∧ a2) ∨ b2) ∧ a4

)
∨ b3

that is given in (2.1.16). Now multiply this with the 3× 3-minor bi∨ bj ∨ bk of B. The result
has bidegree (6, 6) in the parameters (A,B) and can be written as a sextic in P = AB. By
construction, it vanishes on our component of ∂M, and it has the asserted degrees in the
row and column gradings on Q[P ]. This is the generator of the prime ideal referred to in
Theorem 2.1.26.

Theorem 2.1.23 characterizes the probability distributions in the algebraic boundary of
our model, but not those in the topological boundary, since the following inclusion is strict:

∂M ⊂ ∂M∩∆mn−1 (2.1.23)

In fact, the left hand side is much smaller than the right hand side.
To quantify the discrepancy between the two semialgebraic sets in (2.1.23), we conducted

the following experiment in the smallest interesting case m = n = 4. We sampled from
the component (2.1.20) of ∂M∩ ∆15 by generating random rational numbers for the nine
parameters aij and the eight parameters bij. This was done using the built-in Macaulay2

function random(QQ). The resulting matrix in ∂M∩ ∆15 was obtained by dividing by the
sum of the entries. For each matrix we tested whether it lies in ∂M. This was done using
the criterion in Corollary 2.1.28. The answer was affirmative only in 257 cases out of 5000
samples. This suggests that ∂M occupies only a tiny part of the set ∂M∩ ∆15. One of
those rare points in the topological boundary is the matrix

6 13 3 1
4 16 6 2
12 4 8 12
5 9 10 9

 =


0 1 3
1 0 4
4 4 0
4 1 2

 ·
0 0 2 2

3 1 0 1
1 4 1 0

 . (2.1.24)



CHAPTER 2. MATRICES AND POSITIVITY 45

To construct this particular example, the parameters aij and bij were selected uniformly at
random among the integers between 1 and 4. Only 1 out of 1000 samples gave a matrix
lying in ∂M. In fact, this matrix lies on precisely one of the 304 strata in the topological
boundary ∂M.

We close with a quantifier-free semialgebraic formula for the topological boundary.

Corollary 2.1.28. An m× n-matrix P lies on the topological boundary ∂M if and only if

• the conditions of Theorem 2.1.9 are satisfied, and

• P contains a zero, or rank(P ) = 3 and for each i, j, i′, j′ for which the conditions of
Theorem 2.1.9 are satisfied there exist k, l such that (2.1.16) · (2.1.16)[k↔ l] = 0 .

This corollary will be derived (in Appendix 2.1.7.1) from our results in Subsection 2.1.4.

2.1.7 Appendix to Section 2.1

2.1.7.1 Proofs

This appendix furnishes the proofs for all lemmas, propositions and corollaries in this section.

Proof of Lemma 2.1.5. (3) ⇒ (2): If (A,Λ, B) remains fixed after one completion of the
E-step and the M-step, then it will remain fixed after any number of rounds of the E-step
and the M-step.
(2)⇒ (3): By the proof of [122, Theorem 1.15], the log-likelihood function `U grows strictly
after the completion of an E-step and an M-step unless the parameters (A,Λ, B) stay fixed,
in which case `U also stays fixed. Thus, the only way to start with (A,Λ, B) and to end with
it is for (A,Λ, B) to stay fixed after every completion of an E-step and an M-step.
(2) ⇒ (1): If (A,Λ, B) is the limit point of EM when we start with it, then it is in the set
of all limit points. This argument is reversible, and so we also get (1)⇒ (2), (3).

Proof of Lemma 2.1.11. The if-direction of the first sentence follows from the following two
observations:

1. The function that takes P ∈ Rm×n
≥0 to the vertices of B is continuous on all m × n

nonnegative matrices without zero columns, since the vertices of B are of the form P j/P+j,
where P+j denotes the j-th column sum of P .

2. The function that takes P ∈ Rm×n
≥0 to the vertices of A is continuous on all m × n

nonnegative matrices of rank r, since the vertices of A are solutions to a system of linear
equations in the entries of P .

For the only-if-direction of the first sentence assume that P lies in the interior of Mr.
Each P ′ of rank r in a small neighborhood of P has nonnegative rank r. We can choose P ′

in this neighborhood such that the columns of P ′ are in span(P ) and cone(P ′) = t · cone(P )
for some t > 1. Since P ′ has nonnegative rank r, there exists an (r− 1)-simplex ∆ such that
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B′ ⊆ ∆′ ⊆ A. Hence B is contained in the interior of ∆′. Finally, the second sentence is the
contrapositive of the first sentence.

Proof of Corollary 2.1.12. The if-direction follows from the second sentence of Lemma 2.1.11.
For the only-if-direction, assume that P ∈ ∂M3 and it contains no zeros. We first consider
the case rank(P ) = 3. By Lemma 2.1.11, every triangle ∆ with B ⊆ ∆ ⊆ A contains a
vertex of B on its boundary. Moreover, by the discussion above, every edge of ∆ contains a
vertex of B, and (a) or (b) must hold. It remains to be seen that rank(P ) ≤ 2 is impossible
on the strictly positive part of the boundary of M3. Indeed, for every rank 3 matrix P ′ in
a neighborhood of P , the polygons A′,B′ have the property that B′ is very close to a line
segment strictly contained in the interior of A′. Hence, tB′ ⊆ ∆ ⊆ A′ for some triangle ∆.
Thus P ′ 6∈ ∂M3, and therefore P 6∈ ∂M3.

Proof of Corollary 2.1.13. The if-direction is immediate. For the only-if direction, consider
any P ∈M3. If P ∈ ∂M3, then the only-if-direction follows from Corollary 2.1.12. If P lies
in the interior of M3, then let t be maximal such that tB ⊆ ∆′ ⊆ A for some triangle ∆′.
Then either a vertex of ∆′ coincides with a vertex of A or an edge of ∆′ contains an edge of
tB. In the first case, we take ∆ = ∆′. In the second case, we take ∆ = 1

t
∆′. In the first case,

a vertex of ∆ coincides with a vertex of A, and in the second case, an edge of ∆ contains an
edge of B.

Proof of Corollary 2.1.14. If P has a nonnegative factorization of size 3, then it has one that
corresponds to a geometric condition in Corollary 2.1.13. The left matrix in the factorization
can be taken to be equal to the vertices of the nested triangle, which can be expressed as
rational functions in the entries of P . Finally, the right matrix is obtained from solving
a system of linear equations with rational coefficients, hence its entries are again rational
functions in the entries of P .

Proof of Proposition 2.1.15. Consider the sequence of linear maps

Rr BT−→ Rn R−→ Rm AT−→ Rr. (2.1.25)

The ideal C says that the two compositions are zero. It defines a variety of complexes [114,
Example 17.8]. The irreducible components of that variety correspond to irreducible rank
arrays [114, §17.1] that fit inside the format (2.1.25) and are maximal with this property.
By [114, Theorem 17.23], the quiver loci for these rank arrays are irreducible and their
prime ideals are the ones we listed. These can also be described by lacing diagrams [114,
Prop. 17.9].

The proof that C is radical was suggested to us by Allen Knutson. Consider the Zelevinski
map [114, §17.2] that sends the triple (AT , R,BT ) to the (r+m+n+r)× (r+m+n+r) matrix

0 0 BT 1
0 R 1 0
AT 1 0 0
1 0 0 0

 .
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Next apply the map that takes this matrix to the big cell (the open Borel orbit) in the flag
variety GL(2r +m+ n)/parabolic(r,m, n, r) corresponding to the given block structure.

Our scheme is identified with the intersection of two Borel invariant Schubert varieties.
The first Schubert variety encodes the fact that there are 0’s in the North West block, and
the (r+n+m) × (r+m) North West rectangle has rank ≤ m. The second Schubert variety
corresponds to the (r+n)×(r+m+n) NorthWest rectangle having rank≤ n. The intersection
of Schubert varieties is reduced by [28, §2.3.3, p.74]. Hence the original scheme is reduced,
and we conclude that C is the radical ideal defining the variety of complexes (2.1.25).

The following relations hold for P = AB and R on the variety of critical points V (C):
P T ·R = 0 and R · P T = 0. (2.1.26)

These bilinear equations characterize the conormal variety associated to a pair of determi-
nantal varieties. Suppose P is fixed and has rank r. Then P is a nonsingular point in V ,
and (2.1.26) is the system of linear equations that characterizes normal vectors R to V at P .

Example 2.1.29. Let m = n = 4 and r = 3. Then C has four minimal primes, correspond-
ing to the four columns in the table below. These are the ranks for generic points on that
prime:

rank(A) = 0 rank(A) = 1 rank(A) = 2 rank(A) = 3
rank(R) = 4 rank(R) = 3 rank(R) = 2 rank(R) = 1
rank(B) = 0 rank(B) = 1 rank(B) = 2 rank(B) = 3

The lacing diagrams that describe these four irreducible components are as follows:

For instance, the second minimal prime is C +
〈
2×2-minors of A and B

〉
+
〈
det(R)

〉
.

Note that the ranks of P = AB and R are complementary on each irreducible component.
They add up to 4. The last component gives the behavior of EM for random data: the MLE
P has rank 3, it is a nonsingular point on the determinantal hypersurface V, and the normal
space at P is spanned by the rank 1 matrix R. This is the duality (2.1.26). The third
component expresses the behavior on the singular locus of V. Here the typical rank of both
P and R is 2. ♦
Proof of Proposition 2.1.25. Let f, g1, g2, g3, g4 denote the 4×4 minors of the matrix (2.1.22),
where deg(f)=4 and deg(gi) = 6. Fix i ∈ {1, 2, 3, 4}, select u11, . . . , u44 ∈ N randomly, and
set

L =


u11 u12 · · · u44

p11 p12 · · · p44

p11 ∂f/∂p11 p12 ∂f/∂p12 · · · p44 ∂f/∂p44

p11 ∂gi/∂p11 p12 ∂gi/∂p12 · · · p44 ∂gi/∂p44

 . (2.1.27)
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This is a 4×16 matrix. Let λ1 and λ2 be new unknowns and consider the row vector[
1 −u+ λ1 λ2

]
· L. (2.1.28)

Inside the polynomial ring Q[pij, λk] with 20 unknowns, let I denote the ideal generated by
{f, g1, g2, g3, g4}, the 16 entries of (2.1.28), and the linear polynomial p11 +p12 + · · ·+p44−1.
Thus I is the ideal of Lagrange likelihood equations introduced in [82, Definition 2]. Gross
and Rodriguez [82, Proposition 3] showed that I is a 0-dimensional radical ideal, and its
number of roots is the ML degree of the variety V (f, g1, g2, g3, g4). We computed a Gröbner
bases for I using the computer algebra software Magma [158]. This computation reveals that
V (I) consists of 633 points over C.

Proof of Corollary 2.1.28. A matrix P has nonnegative rank 3 if and only if the conditions of
Theorem 2.1.9 are satisfied. Assume rank(P ) = 3. By Corollary 2.1.12, a matrix P ∈M lies
on the boundary ofM if and only if it contains a zero or for any triangle ∆ with B ⊆ ∆ ⊆ A
every edge of ∆ contains a vertex of B and (a) or (b) holds. By proof of Theorem 2.1.9, the
latter implies that for each i, j, i′, j′ for which the conditions of Theorem 2.1.9 are satisfied
there exist k, l such that (2.1.16) · (2.1.16)[k↔ l] = 0. On the other hand, if P lies in the
interior of Mm×n

3 , then by the proof of Corollary 2.1.13, the following holds: there exists a
triangle ∆ with a vertex coinciding with a vertex of A or with an edge containing an edge
of B, and such that the inequality (2.1.16) · (2.1.16)[k ↔ l] > 0 holds for all k, l in the
corresponding semialgebraic condition.

2.1.7.2 Basic Concepts in Algebraic Geometry

This appendix gives a synopsis of basic concepts from algebraic geometry that are used in
this section. It furnishes the language to speak about solutions to polynomial equations in
many variables.

2.1.7.3 Ideals and Varieties

Let R = K[x1, . . . , xn] be the ring of polynomials in n variables with coefficients in a subfield
K of the real numbers R, usually the rational numbers K = Q. The concept of an ideal I
in the ring R is similar to the concept of a normal subgroup in a group.

Definition 2.1.30. A subset I ⊆ R is an ideal in R if I is an subgroup of R under addition,
and for every f ∈ I and every g ∈ R we have fg ∈ I. Equivalently, an ideal I is closed
under taking linear combinations with coefficients in the ring R.

Let T be any set of polynomials in R. Their set of zeros is called the variety of T . It is
denoted

V (T ) =
{
P ∈ Cn : f(P ) = 0 for all f ∈ T

}
.

Here we allow zeros with complex coordinates. This greatly simplifies the study of V (T )
because C is algebraically closed, i.e. every non-constant polynomial has a zero.
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The ideal generated by T , denoted by 〈T 〉, is the smallest ideal in R containing T . Note
that

V (T ) = V (〈T 〉).
In computational algebra, it is often desirable to replace the given set T by a Gröbner basis
of 〈T 〉. This allows us to test ideal membership and to determine geometric properties of
the variety V (T ).

Definition 2.1.31. A subset X ⊆ Cn is a variety if X = V (T ) for some subset T ⊆ R.

Hilbert’s Basis Theorem ensures that here T can always be chosen to be a finite set of
polynomials. The concept of variety allows us to define a new topology on Cn. It is coarser
than the usual topology.

Definition 2.1.32. We define the Zariski topology on Cn by taking closed sets to be the
varieties and open sets to be the complements of varieties. This topology depends on the
choice of K.

If K = Q then X =
{

+
√

2,−
√

2
}

is a variety (for n = 1) but Y =
{

+
√

2
}

is not a

variety. Indeed, X = Y is the Zariski closure of Y , i.e. it is the smallest variety containing
Y , because the minimal polynomial of

√
2 over Q is x2 − 2. Likewise, the set of 1618 points

in Example 2.1.2 is a variety in C2. It is the Zariski closure over Q of the four points on the
topological boundary on the left in Figure 2.2. The following proposition justifies the fact
that the Zariski topology is a topology.

Proposition 2.1.33. Varieties satisfy the following properties:

1. The empty set ∅ = V (R) and the whole space Cn = V (〈0〉) are varieties.

2. The union of two varieties is a variety:

V (I) ∪ V (J) = V (I · J) = V (I ∩ J).

3. The intersection of any family of varieties is a variety:⋂
i∈I

V (Ii) = V (〈Ii : i ∈ I〉).

Given any subset X ⊆ Cn (not necessarily a variety), we define the ideal of X by

I(X) = {f ∈ R : f(P ) = 0 for all P ∈ X}.

Thus, I(X) consists of all polynomials in R that vanish on X. The Zariski closure X of X
equals

X = V (I(X)).
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2.1.7.4 Irreducible Decomposition

A variety X ⊆ Cn is irreducible if we cannot write X = X1 ∪ X2, where X1, X2 ( X are
strictly smaller varieties. An ideal I ⊆ R is prime if fg ∈ I implies f ∈ I or g ∈ I. For
instance, I({±

√
2}) = 〈x2 − 2〉 is a prime ideal in Q[x].

Proposition 2.1.34. The variety X is irreducible if and only if I(X) is a prime ideal.

An ideal is radical if it is an intersection of prime ideals. The assignment X 7→ I(X) is
a bijection between varieties in Cn and radical ideals in R. Indeed, every variety X satisfies
V (I(X)) = X.

Proposition 2.1.35. Every variety X can be written uniquely as X = X1 ∪X2 ∪ · · · ∪Xm,
where X1, X2, . . . , Xm are irreducible and none of these m components contains any other.
Moreover,

I(X) = I(X1) ∩ I(X2) ∩ · · · ∩ I(Xm)

is the unique decomposition of the radical ideal I(X) as an intersection of prime ideals.

For an explicit example, with m = 11, we consider the ideal (2.1.13) with the last
intersectant removed. In that example, the EM fixed variety X is decomposed into 11
irreducible components.

All ideals I in R can be written as intersections of primary ideals. Primary ideals are
more general than prime ideals, but they still define irreducible varieties. A minimal prime
of an ideal I is a prime ideal J such that V (J) is an irreducible component of V (I). See
[147, Chapter 5] for the basics on primary decomposition.

Definition 2.1.36. Let I ⊆ R be an ideal and f ∈ R a polynomial. The saturation of I
with respect to f is the ideal

(I : f∞) = 〈g ∈ R : gfk ∈ I for some k > 0〉.

Saturating an ideal I by a polynomial f geometrically means that we obtain a new ideal
J = (I : f∞) whose variety V (J) contains all components of the variety V (I) except for
the ones on which f vanishes. For the more on these concepts from algebraic geometry we
recommend the text [46].

2.1.7.5 Semialgebraic Sets

The discussion above also applies if we consider the varieties V (T ) as subsets of Rn instead of
Cn. This brings us to the world of real algebraic geometry. The field R of real numbers is not
algebraically closed, it comes with a natural order, and it is fundamental for applications.
These features explain why real algebraic geometry is a subject in its own right. In addition
to the polynomial equations we discussed so far, we can now also introduce inequalities:
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Definition 2.1.37. A basic semialgebraic set X ⊆ Rn is a subset of the form

X =
{
P ∈ Rn : f(P ) = 0 for all f ∈ T and g(P ) ≥ 0 for all g ∈ S

}
,

where S and T are finite subsets of R. A semialgebraic set is a subset X ⊆ Rn that is obtained
by a finite sequence of unions, intersections, and complements of basic semialgebraic sets.

In other words, semialgebraic sets are described by finite Boolean combinations of polyno-
mial equalities and polynomial inequalities. For basic semialgebraic sets, only conjunctions
are allowed. For example, the following two simple subsets of the plane are both semialge-
braic:

X =
{

(x, y) ∈ R2 : x ≥ 0 and y ≥ 0
}

and Y =
{

(x, y) ∈ R2 : x ≥ 0 or y ≥ 0
}
.

The set X is basic semialgebraic, but Y is not. All convex polyhedra are semialgebraic.
A fundamental theorem due to Tarski states that the image of a semialgebraic set under a
polynomial map is semialgebraic. Applying this to the map (2.1.2), we see that the modelM
is semialgebraic. The boundary of any semialgebraic set is again semialgebraic. The formulas
in Theorem 2.1.9 and Corollary 2.1.28 make this explicit. For more on semialgebraic sets
and real algebraic geometry see [13].
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John Rhodes, Caroline Uhler, and Piotr Zwiernik provided comments on various drafts of
the paper. We thank Christopher Miller for pointing out an inaccuracy in Example 2.1.2.



CHAPTER 2. MATRICES AND POSITIVITY 52

2.2 Positive Semidefinite Rank

The set of matrices of given positive semidefinite rank is semialgebraic. In this section we
study the geometry of this set, and in small cases we describe its boundary. Furthermore, for
general values of the positive semidefinite rank, we give a conjecture for the description of
this boundary. Our proof techniques are geometric in nature. As in the previous section, we
think of nonnegative matrices as slack matrices of pairs of nested polyhedra, and we interpret
positive semidefinite rank via the existence of nested spectrahedral shadows between these
polyhedra. This section is based on joint work with Kaie Kubjas and Richard Robinson
titled Positive Semidefinite Rank and Nested Spectrahedra [104].

2.2.1 Introduction

Standard matrix factorization is used in a wide range of applications in statistics, optimiza-
tion, machine learning, and others. Given a p× q real matrix M ∈ Rp×q of rank r, the goal
is to find vectors a1, ..., ap, b1, ..., bq ∈ Rr such that the i, j-th entry of M is Mij = 〈ai, bj〉.

Often times, however, the matrix at hand as well as the elements in the factorization are
imposed certain positivity structure [64, 76, 77]. In statistical mixture models, for instance,
we need to find a nonnegative factorization of a matrix M with nonnegative entries [43,
75, 105, 156]. In other words, the vectors ai and bj need to be nonnegative. Another
type of factorization of a matrix with nonnegative entries, which has applications in convex
optimization and quantum information theory, is positive semidefinite factorization. The
vectors ai and bj are now replaced by k×k symmetric positive semidefinite matrices Ai, Bj ∈
Sk+. Here the space of symmetric k× k matrices is denoted by Sk, the cone of k× k positive
semidefinite matrices by Sk+, and the inner product on Sk is given by

〈A,B〉 = trace(AB).

Definition 2.2.1. Given a matrix M ∈ Rp×q
≥0 with nonnegative entries, a positive semidef-

inite (psd) factorization of size k is a collection of matrices A1, ..., Ap, B1, ..., Bq ∈ Sk+ such
that Mij = 〈Ai, Bj〉. The positive semidefinite rank (or psd rank) of the matrix M is the
smallest number k for which such a factorization exists. It is denoted by rankpsd(M).

We remark that, given two psd matrices A,B ∈ Sk+, it is always the case that 〈A,B〉 ≥ 0,
which is why the entries of the matrix M need to be nonnegative.

The geometric aspects as well as many of the properties of positive semidefinite rank
have been studied in a number of recent articles [65, 76, 77, 78, 79, 80].

In this section we study the space Pp×qr,k of p × q nonnegative real matrices of rank at
most r and psd rank at most k. If p and q are understood from the context, we write Pr,k
for short. By Tarski-Seidenberg’s Theorem [13, Theorem 2.76] this set is semialgebraic, i.e.
it is defined by finitely many polynomial equations and inequalities, or is a finite union of
such sets. It lies inside the variety of p× q matrices of rank at most r, denoted by Vp×qr (for
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short Vr). In this section, we study the geometry of Pr,k. In particular, we investigate the
boundary of Pr,k as a subset of Vr.

Definition 2.2.2. The topological boundary of Pr,k, denoted by ∂Pr,k, is its boundary as a
subset of Vr. In other words, it consists of all matrices M ∈ Vr such that for every ε > 0, the
ball with radius ε and center M , denoted by Bε(M), satisfies the condition that Bε(M) ∩ Vr
intersects both Pr,k and its complement Vr \ Pr,k. The algebraic boundary of Pr,k, denoted
by ∂Pr,k is the Zariski closure of ∂Pr,k over R.

In this section we focus on studying ∂Pp×qk+1,k. In other words, we restrict to the case when
the rank of our matrix is 1 more than the psd rank. In Subsection 2.2.3, we completely

describe ∂Pp×q3,2 , as well as ∂Pp×q3,2 . More precisely, Corollary 2.2.13 shows that a matrix M

lies on the boundary ∂Pp×q3,2 if and only if in every psd factorization Mij = 〈Ai, Bj〉, at least
three of the matrices A1, . . . , Ap have rank 1 and at least three of the matrices B1, . . . , Bq

have rank 1.
In Subsections 2.2.4 and 2.2.5 we study the general case Pp×qk+1,k, and we attempt to

extend our results from the k = 2 case. We restrict ourselves to the simplest situation where
p = q = k+1. Conjecture 2.2.16 is an analogue to Corollary 2.2.13. It states that a matrix M
lies on the boundary ∂P(k+1)×(k+1)

k+1,k if and only if for every psd factorization Mij = 〈Ai, Bj〉, all
of the matrices A1, . . . , Ak+1 have rank 1 and all of the matrices B1, . . . , Bk+1 have rank 1. In
Subsection 2.2.5 we give theoretical and computational evidence supporting this conjecture.
The code for our computations is available at

https://github.com/kaiekubjas/psd-rank .

Our results are based on the geometric interpretation of psd rank explained in Subsec-
tion 1.1. We review this interpretation once again in Subsection 2.2.2. Given a nonnegative
matrix M of rank n + 1, we can associate to it two nested polytopes P ⊆ Q ⊂ Rn. Theo-
rem 2.2.4, proven in [79], shows that M has psd rank at most k if and only if we can fit a
projection of a slice of the cone of k× k positive semidefinite matrices Sk+ between P and Q.
When we restrict to the case when the rank of M is 3, this seemingly sophisticated result
states that M has psd rank 2 if and only if we can nest an ellipse between the two nested
polygons P and Q associated to M. In Theorem 2.2.12 we show that M lies on the boundary
∂Pp×q3,2 if and only if every ellipse that nests between the two polygons P and Q has to touch
at least three of the vertices of P and at least three of the edges of Q. In Conjecture 2.2.18
we give an analogue to Theorem 2.2.12 for the general case ∂P(k+1)×(k+1)

k+1,k .

2.2.2 Preliminaries

Many of the basic properties of positive semidefinite rank have been studied in [65]. We give
a brief overview of the results used in the present section.
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2.2.2.1 Bounds

The positive semidefinite rank of a matrix is bounded below by the inequality

rank(M) ≤
(

rankpsd(M) + 1

2

)
.

This holds because we can vectorize the symmetric matrices in a given psd factorization and
consider the trace inner product as a dot product. On the other hand, the psd rank is upper
bounded by the nonnegative rank

rankpsd(M) ≤ rank+(M)

since we can obtain a psd factorization from a nonnegative factorization by using diagonal
matrices. The psd rank of M can be any integer satisfying these inequalities.

2.2.2.2 Geometric description

We now describe the geometric interpretation of psd rank. Let P ⊆ Rn be a polytope and
Q ⊆ Rn be a polyhedron such that P ⊆ Q. Assume that P is the convex hull of p points:
P = conv{v1, ..., vp} and Q has the following inequality representation: Q = {x ∈ Rn|hTj x ≤
zj, j = 1, ..., q}, where v1, ..., , vp, h1, ..., hq ∈ Rn and z1, . . . , zq ∈ R. Then, the generalized
slack matrix of the pair P,Q, denoted SP,Q is the p×q matrix whose i, j-th entry is zj−hTj vi.

Remark 2.2.3. The generalized slack matrix depends on the representations of P and Q
as the convex hull of finitely many points and as the intersection of finitely many halfspaces
whereas the slack matrix depends only on P and Q. We will abuse the notation and write
SP,Q for the generalized slack matrix as by the next result the rankpsd(SP,Q) is independent
of the representations of P and Q.

Theorem 2.2.4 (Proposition 3.6 in [79]). Let P ⊂ Rn be a polytope and Q ⊆ Rn a polyhedron
such that P ⊆ Q. Then, rankpsd(SP,Q) is the smallest integer k for which there exists an
affine subspace L of Sk and a linear map π such that P ⊆ π(L ∩ Sk+) ⊆ Q.

A spectrahedron of size k is a slice of the cone of k × k positive semidefinite matrices
Sk+. A spectrahedral shadow of size k is a projection of a spectrahedron of size k. Therefore,
Theorem 2.2.4 states that the matrix SP,Q has psd rank at most k if and only if we can fit
a spectrahedral shadow of size k between P and Q.

Remark 2.2.5. Given M the polytopes P and Q are not unique, but the statement of The-
orem 2.2.4 still holds regardless of which pair P,Q, such that M = SP,Q, is chosen.

Conversely, given a matrix M , after rescaling the rows of M (which doesn’t change its
psd rank), we can find polytopes P and Q such that M is their generalized slack matrix.
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Lemma 2.2.6 (Lemma 4.1 in [65]). Let M ∈ Rp×q
≥0 be a nonnegative matrix and assume that

M1 = 1. Let rank(M) = n+ 1. Then, there exist polytopes P,Q ⊆ Rn (where P and Q are
bounded) such that P ⊆ Q and M is the generalized slack matrix of the pair P,Q.

We define the interior of Pp×qd,k to be the set of matrices M ∈ Pp×qd,k for which there exists

ε > 0 such that Vp×qd ∩ Bε(M) ⊂ Pp×qd,k , where Bε(M) is the ball of radius ε centered M . We
make the following observation.

Lemma 2.2.7. Let M ∈ Rp×q
>0 be a matrix with positive entries. The following are equivalent

1. M lies in the interior of Pr,k;

2. When we rescale the rows of M so as to obtain a matrix N that satisfies N1 = 1, the
matrix N lies in the interior of Pr,k ∩{P : P1 = 1} (in other words, there exists ε > 0
such that Bε(N) ∩ Vr ∩ {P : P1 = 1} ⊆ Pr,k ∩ {P : P1 = 1}).

Lemma 2.2.7, whose proof can be found in Subsection 2.2.6.1, implies that if we want to
study the boundary of Pr,k as a subset of Vr, we can restrict ourselves to the boundary of
the space Pr,k ∩ {P : P1 = 1} as a subset of Vr ∩ {P : P1 = 1}, and Lemma 2.2.6 gives us
a recipe for thinking of the elements of this space geometrically.

2.2.2.3 Comparison with nonnegative rank

Three different versions of nonnegative matrix factorization appear in the literature: In [156]
Vavasis considered the exact nonnegative factorization which asks whether a nonnegative
matrix M has nonnegative factorization of size equal to the rank of M . The geometric
version of this question asks whether we can nest a simplex between the polytopes P and Q.

In [75] Gillis and Glineur defined restricted nonnegative rank as the minimum value r
such that there exist A ∈ Rp×r

+ and B ∈ Rr×q
+ with M = AB and rank(A) = rank(M). The

geometric interpretation of the restricted nonnegative rank asks for the minimal r such that
there exist r points whose convex hull can be nested between P and Q.

The geometric version of the nonnegative rank factorization asks for the minimal r such
that there exist r points whose convex hull can be nested between an (r − 1)-dimensional
polytope inside a q-simplex. These polytopes are not P and Q as defined in this section.
See [43, Theorem 3.1] for details.

In the positive semidefinite rank case there is no distinction between the psd rank and
the restricted psd rank, because taking an intersection with a subspace does not change the
size of a spectrahedral shadow while intersecting a polytope with a subspace can change
the number of vertices. Conjecture 2.2.25 also suggests that there is no distinction between
the spectrahedron and the spectrahedral shadow case. This is not the case with simplices
and polytopes in the nonnegative rank case, or equivalently the exact nonnegative matrix
factorization and restricted nonnegative factorization.
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2.2.3 Matrices of rank 3 and psd rank 2

In this subsection we study the set P3,2 of matrices of rank at most 3 and psd rank at most
2. Rather than providing a semialgebraic description of P3,2, we completely characterize its
topological and algebraic boundaries ∂P3,2 and ∂P3,2.

Consider a matrix M ∈ Rp×q
≥0 of rank 3. We get two nested polygons P ⊆ Q ⊂ R2.

Theorem 2.2.4 now has the following simpler form.

Corollary 2.2.8 (Proposition 4.1 in [79]). Let M be a nonnegative matrix of rank three
such that M1 = 1. Let P ⊆ Q ⊆ R2 be two nested polygons for which M = SP,Q. Then
rankpsd(M) = 2 if and only if we can fit an ellipse between P and Q.

Using this geometric interpretation of psd rank 2, we give a condition on when a matrix
M lies in the interior of P3,2.

Lemma 2.2.9. A matrix M ∈ Rp×q
≥0 of rank 3 lies in the interior of P3,2 if and only if there

exist polygons P ⊂ Q ⊆ R2 and an ellipse E such that M is the generalized slack matrix of
P and Q, P ⊂ E ⊂ Q, and the boundary of E does not contain any of the vertices of P .

The proof of this lemma can be found in Subsection 2.2.6.2. We can now show how P3,2

relates to the variety V3.

Proposition 2.2.10. The Zariski closure of Pp×q3,2 over the real numbers is the rank-3 variety

Vp×q3 .

Proof. Suppose there exists a ball B ⊆ Rp×q such that B ∩ V3 ⊆ P3,2. This implies that the
dimension of Pp×q3,2 is equal to that of Vp×q3 , and since Pp×q3,2 ⊂ Vp×q3 and Vp×q3 is irreducible,
the Zariski closure of P3,2 over the real numbers equals V3.

We show how to find such a ball B. It suffices to find a matrix M in the interior of
Pp×q3,2 . By Lemma 2.2.9, it would suffice to find nested polygons P ⊆ Q ⊆ R2 such that P
has p vertices, Q has q sides and there exists an ellipse nested between them that does not
touch the vertices of P . Such a configuration certainly exists, for example, we can consider
a regular p-gon P centered at the origin with length 1 from the origin to any of its vertices,
and a regular q-gon Q centered at the origin with length 5 from the origin to any of its sides.
Then, we can fit a circle of radius 2 and center the origin between P and Q so that it doesn’t
touch the vertices of P .

Remark 2.2.11. The set of p × q matrices of psd rank at most k is connected as it is the
image under the parametrization map of the connected set (Sk+)p × (Sk+)q.

The following theorem is the main result of this section.

Theorem 2.2.12. We describe the topological and algebraic boundaries of Pp×q3,2 .
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a. A matrix M ∈ Pp×q3,2 lies on the topological boundary ∂Pp×q3,2 if and only if Mij = 0 for
some i, j, or each ellipse that fits between the two polygons P and Q contains at least
3 vertices of the inner polygon P and is tangent to at least 3 edges of the outer polygon
Q.

b. A matrix M ∈ Pp×q3,2 = V3 lies on the algebraic boundary ∂Pp×q3,2 if and only if Mij = 0
for some i, j or there exists an ellipse that contains at least three vertices of P and is
tangent to at least three edges of Q.

c. The algebraic boundary of Pp×q3,2 is the union of
(
p
3

)(
q
3

)
+ pq irreducible components.

Besides the pq components Mij = 0, there are
(
p
3

)(
q
3

)
components each of which is

defined by the 4 × 4 minors of M and one additional polynomial equation with 1035
terms homogeneous of degree 24 in the entries of M and homogeneous of degree 8 in
each row and each column of a 3×3 submatrix of M .

Proof.
(a) Only if: We will show the contrapositive of the statement: If all entries of M are positive
and there is an ellipse between P and Q whose boundary contains at most two vertices of P
or is tangent to at most two edges of Q, then M lies in the interior of Mp×q

3,2 .
First, if there is an ellipse E between P and Q whose boundary touches neither of the

polytopes, then M is in the interior of Pp×q3,2 by Lemma 2.2.9. If at most two edges of Q
are tangent to the boundary of the ellipse E, then P ⊂ E ⊂ Q can be transformed by a
projective transformation such that the two tangent facets are x = 0 and y = 0 and that
the points of tangency are (0, 1) and (1, 0). Now, the equation of the ellipse E has the form
ax2 + bxy + cy2 + dx + ey + f = 0. We know that the only point that lies on the ellipse E
with x = 0 is the point (0, 1) since E touches the line x = 0 at (0, 1). If we plug in x = 0,
we get

cy2 + ey + f = 0.

Since c > 0, we must have cy2 + ey + f = (y − 1)2. Therefore, c = 1, e = −2, f = 1.
Similarly, since E touches the line y = 0 at (1, 0), when we plug in y = 0, we get that
ax2 + dx+ f = (x− 1)2, so, a = 1, d = −2, f = 1. Thus, the ellipse E has the form

{(x, y) : x2 + bxy + y2 − 2x− 2y + 1 = 0},

for some b. The values of b for which this is an ellipse are −2 < b < 2. Moreover, if we
choose a slightly smaller value of b in this family, we would obtain a slightly larger ellipse
E ′ that contains E and touches E only at the points (1, 0) and (0, 1). Thus, we would have
P ⊆ E ⊂ E ′ ⊆ Q and the ellipse E ′ does not touch P . Thus, by Lemma 2.2.9, M lies in the
interior of Pp×q3,2 . The case when E goes through at most two vertices of P follows by duality.

If: By Lemma 2.2.9, if M ∈ P3,2 lies in the interior, then there is an ellipse between P
and Q that does not touch P . Thus, if every ellipse nested between P and Q contains at
least three of the vertices of P and touches at least three of the facets of Q, then M lies on
the boundary ∂P3,2
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(b), (c) If M ∈ Rp×q, then one can define polytopes P and Q as in the nonnegative case.
The difference is that P ⊆ Q does not hold anymore. Hence given three points a, b, c in
P2 and three lines d, e, f in P2, each given by three homogeneous coordinates, we seek the
condition that there exists an conic X such that a, b, c lie on X and d, e, f are tangent to X.

Let X =

x11 x12 x13

x12 x22 x23

x13 x23 x33

 be the matrix of a conic. Then the corresponding ellipse goes

through the points a, b, c if and only if

aTXa = bTXb = cTXc = 0. (2.2.1)

Similarly, the lines d, e, f are tangent to the ellipse if and only

dTY d = eTY e = fTY f = 0, (2.2.2)

where XY = I3. We seek to eliminate the variables X and Y from (2.2.1) and (2.2.2).
Let [a, b, c] denote the matrix whose columns are a, b, c. First we assume that [a, b, c] is

the 3× 3-identity matrix. Then we proceed in two steps:
1) The equations (2.2.1) imply that x11, x22, x33 are zero. We make the corresponding

replacements in equations (2.2.2).
2) We use [147, formula (4.5) on page 48] for the resultant of three ternary quadrics to

get a single polynomial in the entries of d, e, f .
Now we use invariant theory to obtain the desired polynomial in the general case. Let g ∈

GL3(R). The ellipseX goes through the points a, b, c and touches the lines d, e, f if and only if
the ellipse g−TXg−1 goes through the points ga, gb, gc and touches the lines g−Td, g−T e, g−Tf .
Thus our desired polynomial belongs to the ring of invariants R[V 3⊕V ∗3]GL3(R) where V = R3

and the action of GL3(R) on V 3 ⊕ V ∗3 is given by

g · (a, b, c, d, e, f) := (ga, gb, gc, g−Td, g−T e, g−Tf).

The First Fundamental Theorem states that R[V 3 ⊕ V ∗3]GL3(R) is generated by the bilinear
functions (i|j) on V 3 ⊕ V ∗3 defined by

(i|j) : (a, b, c, d, e, f) 7→ ([a, b, c]T [d, e, f ])ij.

For the FFT see for example [102, Chapter 2.1]. In the special case when [a, b, c] is the 3× 3
identity matrix, (i|j) maps to the (i, j)-th entry of [d, e, f ]. Hence to obtain the desired
polynomial in the general case, we replace in the resultant obtained in the special case the
entries of the matrix [d, e, f ] by the entries of the matrix [a, b, c]T [d, e, f ].

Maple code for doing the steps in the previous paragraphs can be found at our website.
This program outputs one polynomial of degree 24 with 1035 terms. More precisely, this
polynomial is homogeneous of degree 8 in each of the rows and the columns of the matrix− a −
− b −
− c −

 | | |d e f
| | |

. By construction, if this homogeneous polynomial vanishes and the
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convex hull of a, b, c lies inside the triangle with edges d, e, f and a, b, c, d, e, f are real, then
there exists an ellipse nested between the polytopes touching d, e, f and containing a, b, c.
Therefore, the Zariski closure of the condition that the only possible ellipses that can fit
between the two polygons touch at least 3 edges of the outer polygon and at least 3 vertices
of the inner polygon is exactly that there exists an ellipse that touches at least 3 edges of Q
and at least 3 vertices of P . This proves (b).

To prove (c), let M ∈ Vp×q3 be such that M = AB and a, b, c are three of the rows of A
and d, e, f are three of the columns of B. Then, the above-computed polynomial contains
variables only from the entries of a 3 × 3 submatrix of M corresponding to these rows and
columns. For each three rows of and three columns of M we have one such polynomial, so
the algebraic boundary is given by the union over each 3 rows and 3 columns of M of the
variety defined by the 4× 4 minors of M . The corresponding polynomial has degree 24 and
1035 terms.

Here is an algebraic version of Theorem 2.2.12.

Corollary 2.2.13. A matrix M ∈ Rp×q
≥0 lies on the boundary ∂P3,2 if and only if for every

size 2 psd factorization Mij = 〈Ai, Bj〉, at least three of the matrices A1, . . . , Ap ∈ Sk+ have
rank one and at least three of the matrices B1, . . . , Bq ∈ Sk+ have rank one.

We now investigate the topological boundary more thoroughly.

Proposition 2.2.14. Suppose M ∈Mp×q
3,2 is strictly positive. Then M lies on the topological

boundary if and only if there exists a unique ellipse that nests between P and Q.

Proof. A matrix in the relative interior of Mp×q
3,2 will have multiple ellipses nested between

P and Q: By the only if direction of the proof of Theorem 2.2.12 part (a), there exists an
ellipse that is contained in Q and strictly contains P . We can just take slight scalings of this
ellipse to get multiple ellipses. This proves the “if” direction.

For the “only if” direction, suppose M lies on the topological boundary and E0 and E1

are two ellipses nested between P and Q. Let E1/2 be the ellipse determined by averaging
the quadratics defining E0 and E1, i.e.

E1/2 = {x | q0(x) + q1(x) ≥ 0} where Ei = {x | qi(x) ≥ 0} .

It is straightforward to see that E1/2 is nested between P and Q. Furthermore, if v is a vertex
of P , then E1/2 passes through v if and only if both E0 and E1 pass through v. Similarly,
if f is a facet of Q, then E1/2 is incident to f if and only if E0 and E1 are tangent to f
at the same point. By Theorem 2.2.12, the ellipse E1/2 must pass through three vertices of
P and three facets of Q. Hence, there must exist six distinct points that both E0 and E1

pass through. No three of the six points are collinear, since ellipses E0 and E1 pass through
them. Since five distinct points in general position determine a unique conic, we must have
that E0 = E1.
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Example 2.2.15. In the previous result, we examined the geometric configurations on the
boundary of the semialgebraic set coming from strictly positive matrices. The simplest idea
for such a matrix is to take two equilateral triangles and expand the inner one until we are
on a boundary configuration as in Figure 2.6a.

(a) Boundary configuration (b) Interior configuration which also lies
on the algebraic boundary ∂P3,2

Figure 2.6: Geometric configurations of matrices in P3×3
3,2

This configuration has the slack matrix4 1 1
1 4 1
1 1 4

 .
The 1035 term boundary polynomial from Theorem 2.2.12 vanishes on this matrix, as we
expect.

This matrix lies in the set of 3× 3 circulant matrices which have the forma b c
c a b
b c a

 .
It was shown in [65, Example 2.7] that these matrices have psd rank at most 2 precisely when
a2 + b2 + c2− 2(ab+ ac+ bc) ≤ 0. As expected, whenever this polynomial vanishes, the 1035
term boundary polynomial vanishes as well. Figure 2.6b shows an instance of the parameters
a, b, c such that the matrix is on the algebraic boundary but not on the topological boundary
– the polynomial vanishes, but the matrix lies in the interior of P3,2.

We were interested in finding out if the boundary polynomial could be used in an inequality
to classify circulant matrices of psd rank at most 2. The family of circulant matrices which
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have c = 1 and whose psd rank is at most 2 is depicted in Figure 2.7a. The boundary
polynomial, shown in Figure 2.7b, takes both positive and negative values on the interior of
the space. Figures 2.8a and 2.8b show the semialgebraic set and the boundary polynomial in
the 3-dimensional space.

(a) Circulant matrices of psd rank at most 2 (b) The boundary polynomial

Figure 2.7: 3× 3 circulant matrices in R2

(a) Circulant matrices of psd rank at most 2 (b) The boundary polynomial

Figure 2.8: 3× 3 circulant matrices in R3

The phenomenon that the algebraic boundary of a semialgebraic set is relatively simple,
e.g. consists of coordinate hyperplanes and one additional polynomial, but a semialgebraic
description involves other polynomials also happens in the case of matrices of nonnegative
rank at most three studied in Subsection 2.1.4 and partial matrices that can be completed to
a rank one matrix in the standard simplex [106, Section 3].
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2.2.4 Matrices of higher psd rank

In this subsection we focus on the space of (k+1)× (k+1) nonnegative matrices of psd rank

at most k, and we study what it means for a matrix to lie on its boundary ∂P(k+1)×(k+1)
k+1,k . In

analogy with Corollary 2.2.13, we conjecture that a matrix lies on the boundary ∂P(k+1)×(k+1)
k+1,k

if and only if in every psd factorization, the matrices A1, . . . , Ak+1 and B1, . . . , Bk+1 all have
to have rank 1.

Conjecture 2.2.16. A matrix M ∈ P(k+1)×(k+1)
k+1,k lies on the boundary ∂P(k+1)×(k+1)

k+1,k if and

only if for every psd factorization Mij = 〈Ai, Bj〉 with Ai, Bj ∈ Sk+,

rank(A1) = · · · = rank(Ak+1) = rank(B1) = · · · = rank(Bk+1) = 1.

Note that, according to Theorem 2.2.4, a matrix M ∈ R(k+1)×(k+1) has psd rank at most k
if and only if we can nest a spectrahedral shadow of size k between the polytopes P ⊆ Q ⊆ Rk

for which M = SP,Q.
Recall that a spectrahedral shadow of size k is a linear projection of a spectrahedron of

size k, which in turn is a slice of the cone of positive semidefinite matrices Sk+. Suppose we
are given a spectrahedral shadow C of size k, and suppose that C is a linear projection of
the spectrahedron C̃ = L∩ Sk+. A vector v ∈ C lies in the rank s locus of C if there exists a

k × k psd matrix in C̃ of rank s that projects onto v.
Let P = conv(v1, . . . , vp) with the origin in its interior, and let Q = {x : 〈hi, x〉 ≤

1, i = 1, . . . , q}. Denote the matrix with rows v1, . . . , vp by V . Assume that P ⊆ Q. Let
rankpsd(SP,Q) = k and let A1, . . . , Ap, B1, . . . , Bq ∈ Sk+ give a size k psd factorization of SP,Q.
We define two spectrahedral shadows of size k that are nested between P and Q. We follow
[76, Section 4.1]:

CA =
{
x ∈ Rn : ∃y ∈ Sk+ s.t. 1− 〈hj, x〉 = 〈Bj, y〉 for j = 1, . . . , q

}
,

CB =
{
V z : 1T z = 1, Aiz ∈ Sk+ for i = 1, . . . , p

}
.

By [76, Proposition 4], we have that

P ⊆ CB ⊆ CA ⊆ Q.

Lemma 2.2.17. If rank(Ai) = 1, then vi lies in the rank one locus of CA, and if rank(Bj) =
1, then, CB touches the facet of Q defined by 〈hj, x〉 ≤ 1 at a point u ∈ Q from its rank
(k − 1) locus.

We prove this lemma in Subsection 2.2.6.3. It leads us to the following the geometric
version of Conjecture 2.2.16.

Conjecture 2.2.18. A matrix SP,Q lies on the boundary ∂P(k+1)×(k+1)
k+1,k if and only if all

vertices of P lie on the rank one locus of the spectrahedral shadow CA, and every facet of Q
touches the spectrahedral shadow CB at points lying on its rank k − 1 locus.
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Since CB ⊆ CA, the boundaries of CA and CB intersect at the vertices of P and at the
tangency points with Q. This motivates us to state the following stronger conjecture:

Conjecture 2.2.19. A matrix SP,Q is on the boundary ∂P(k+1)×(k+1)
k+1,k if and only if for all

spectrahedral shadows C of k × k matrices such that P ⊆ C ⊆ Q, k + 1 of the vertices of
P lie on the rank one locus of C and k + 1 of the facets of Q touch C at points on its rank
k − 1 locus.

The psd rank 3 and rank 4 setting corresponds to the geometric configuration where a
3-dimensional spectrahedral shadow size 3 is nested between 3-dimensional polytopes. A
detailed study of generic spectrahedral shadows can be found in [140].

Example 2.2.20. We now give an example of a geometric configuration as in Conjec-
ture 2.2.19. It is depicted in Figure 2.9a. We stipulate that the vertices of the interior
polytope coincide with the nodes of the spectrahedron and the facets of the outer polytope
touch the boundary of this spectrahedron at rank 2 loci. In the dual picture, the vertices of
the inner polytope lie on the rank 1 locus depicted in Figure 2.9b and the facets of the outer
polytope contain the rank 2 locus of this spectrahedral shadow.

(a) Spectrahedron (b) Rank 1 locus of a spectrahedral shadow

Figure 2.9: 3-dimensional spectrahedral shadows

We end this section with a restatement of the conjecture using Hadamard square roots.

Definition 2.2.21. Given a nonnegative matrix M , let
√
M denote a Hadamard square root

of M obtained by replacing each entry in M by one of its two possible square roots. The
square root rank of a nonnegative matrix M, denoted as rank√(M), is the minimum rank of
a Hadamard square root of M .

Lemma 2.2.22 ([78], Lemma 2.4). The smallest k for which a nonnegative real matrix M
admits a Sk+-factorization in which all factors are matrices on rank one is k = rank√(M).
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Hence Conjecture 2.2.16 is equivalent to the statement that a matrix M ∈ P (k+1)×(k+1)
k+1,k

lies on the boundary ∂P(k+1)×(k+1)
k+1,k if and only if its square root rank is at most k. We

conclude this section with a conjecture which would lead to a semialgebraic description of
P(k+1)×(k+1)
k+1,k .

Conjecture 2.2.23. Every matrix M ∈ P(k+1)×(k+1)
k+1,k has a psd factorization with at least

2k + 1 of the matrices in the factorization being rank 1.

2.2.5 Evidence towards Conjecture 2.2.16

In this section, we present partial evidence towards proving Conjecture 2.2.16. Section 2.2.5.1
is theoretical in nature, while Section 2.2.5.2 is computational.

2.2.5.1 Nested spectrahedra

We know from Theorem 2.2.4 that a matrix M such that M1 = 1 has psd rank k if and
only if we can fit a spectrahedral shadow of size k in between the two polytopes P and Q
corresponding to M . In the following lemma, we show that a (k + 1) × (k + 1) matrix M
has psd rank k if and only if we can fit a spectrahedron of size k in between P and Q. We
show that if there is a spectrahedral shadow C nested between P and Q, then we can find
a spectrahedron C ′ of the same size such that P ⊆ C ′ ⊆ C ⊆ Q.

Lemma 2.2.24. Let M ∈ R(k+1)×(k+1)
≥0 be a full-rank matrix such that M1 = 1. Then, M

has psd rank at most k if and only if we can nest a spectrahedron of size k between the two
polytopes P and Q corresponding to M .

The proof of this lemma can be found in Subsection 2.2.6.4. We believe that its statement
also holds for matrices of any size.

Conjecture 2.2.25. Let M ∈ Rp×
≥0 have rank k + 1 and assume that M1 = 1. Then, M

has psd rank at most k if and only if we can nest a spectrahedron of size k between the two
polytopes P and Q corresponding to M .

We now show that given a spectrahedron C of size k such that P ⊆ C ⊆ Q, where P is
a simplex and k of the vertices of P are also vertices of C, one can find a new spectrahedron
C ′ such that P ⊆ C ′ ⊆ C ⊆ Q such that all k + 1 of the vertices of P are also vertices of C ′

(in other words, they correspond to rank 1 matrices in C ′).

Lemma 2.2.26. Let P ⊆ Rk be the simplex P = conv(e1, . . . , ek, 0). Let C be a slice of Sk+
such that P ⊆ C and the vertices e1, . . . , ek lie in the rank one locus of C. Then, we can
find another spectrahedral shadow C ′ of size k such that P ⊆ C ′ ⊆ C with all k + 1 vertices
of P corresponding to rank 1 matrices in C ′.
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Figure 2.10: The spectrahedra C (in yellow) and C ′ (in blue) as in Lemma 2.2.26
.

The proof of this lemma can be found in Subsection 2.2.6.5. Consider the slack matrix
SP,Q of the polytopes defined in Lemma 2.2.26. The statement of the Lemma implies that

SP,Q does not lie on the boundary ∂P(k+1)×(k+1)
k+1,k , because once we find the new spectrahedron

C ′, we see that it does not touch Q. As we saw in Section 2.2.3, in order for a matrix to
lie on the boundary, the configuration P ⊆ C ⊆ Q has to be very tight, and Lemma 2.2.26
shows that having k of the vertices of P lie in the rank one locus of C is not tight enough.
Similarly, having k of the facets of Q touch Q at rank k − 1 loci won’t be enough. This is
why we believe that all k + 1 vertices of P have to be in the rank one locus of C, and all
k + 1 of the facets of Q have to touch C at its rank k − 1 locus, which is the statement of
Conjecture 2.2.18.

2.2.5.2 Computational results

In this section we provide computational evidence for Conjecture 2.2.16 when k > 2.

Example 2.2.27. We consider the 2-dimensional family of 4× 4 circulant matrices
a b 1 b
b a b 1
1 b a b
b 1 b a

 (2.2.3)

which is parametrized by a and b.
In Figure 2.11, the 4126 green dots correspond to randomly chosen matrices of the form

(2.2.3) that have psd rank at most three. The psd rank is computed using the code provided
by the authors of [153] adapted to the computation of the semidefinite rank [97, Section 5.6].
The red curves correspond to matrices of the form (2.2.3) that have a psd factorization by 3×3
rank one matrices. These curves are obtained by an elimination procedure in Macaulay2.
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Figure 2.11: A family of 4× 4 circulant matrices of psd rank at most 3

If the condition that all of the matrices A1, . . . , Ak+1, B1, . . . , Bk+1 have rank one is equiv-

alent to the matrix M being on the boundary ∂P(k+1)×(k+1)
k+1,k , then the set of matrices M in

whose psd factorization all Ai’s and Bj’s have rank one should have codimension 1 inside

P(k+1)×(k+1)
k+1,k . In other words, it should have codimension 1 inside V(k+1)×(k+1)

k+1 = R(k+1)×(k+1).
Consider the map that takes rank one matrices Ai and Bj and gets M such that Mij =
〈Ai, Bj〉. The rank of its Jacobian should be (k + 1)2 − 1 if Conjecture 2.2.16 is true. In
the following example, we test several different assignments of ranks to each of the matrices
Ai, Bj, and we check those for which the Jacobian has dimension (k + 1)2 − 1.

Example 2.2.28. We construct k×k positive semidefinite matrices A1, . . . , Ak+1, B1, . . . , Bk+1

of ranks r1, . . . , r2k+2. We construct a matrix M such that Mij = 〈Ai, Bj〉. We vectorize the
matrix M and compute its Jacobian J with respect to the entries of A1, . . . , Ak+1, B1, . . . , Bk+1.
Finally we substitute the entries of A1, . . . , Ak+1, B1, . . . , Bk+1 by random nonnegative inte-
gers and compute the rank of J . If rank(J) = (k + 1)2 − 1, then the matrices that have psd
factorization by {r1, . . . , rp}, {rp+1, . . . , r2k+2} rank matrices give a candidate for a boundary
component (assuming that the boundary components are only dependent on the ranks of the
Ai’s and the Bj’s).
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psd rank p q ranks
3 4 4 {{1,1,1,1},{1,1,1,1}}
3 4 5 {{1,1,1,1},{1,1,1,1,2/3}}
3 4 6 {{1,1,1,1},{1,1,1,1,2/3,2/3}},{{1,1,1,2},{1,1,1,1,1,1}}
3 5 5 {{1,1,1,1,2/3},{1,1,1,1,2/3}}
3 5 6 {{1,1,1,1,2/3},{1,1,1,1,2/3,2/3}},{{1,1,1,2,3},{1,1,1,1,1,1}}
3 6 6

{{1,1,1,1,2/3,2/3},{1,1,1,1,2/3,2/3}},{{1,1,1,1,1,1},{1,1,1,2,3,3}},
{{1,1,1,1,1,1},{1,1,2,2,2,2}},{{1,1,1,1,1,2},{1,1,1,2,2,2}}

Table 2.3: Ranks of matrices in the psd factorization of a psd rank three matrix that can
potentially give boundary components

The possible candidates for k = 3 are summarized in Table 2.3. For all p, q the case
where four matrices Ai and four matrices Bj have rank 1 and all other matrices have any rank
greater than 1 are represented. For k = 4 the analogous statement is not true. If M ∈ R10×10,
exactly five Ai and five Bj matrices have rank one and the rest of the matrices have rank two,
then the Jacobian has rank 94. If the rest of the matrices in the psd factorization have rank
three or four, then the Jacobian has rank 99 as expected. Hence without further constraints
on the ranks of the rest of the matrices Conjecture 2.2.16 does not hold for general r and k.

Example 2.2.29. Using the same strategy as in Example 2.2.28, we have checked that the
Jacobian has the expected rank for r = k + 1 and k < 10.

2.2.6 Proofs

2.2.6.1 Proof of Lemma 2.2.7

The fact that the first statement implies the second follows from the definition of interior
of Pr,k. For the other direction, assume that for the rescaled matrix N there exists ε > 0
such that Bε(N) ∩ Vr ∩ R ⊆ Pr,k ∩ R. Let α1, . . . , αp be the row sums of M , i.e. M1 = α.
Without loss of generality, assume that 0 < α1 ≤ α2 ≤ · · · ≤ αp. Then, consider the ball
Bεα1(M). If a matrix M ′ = M + A ∈ Bεα1(M) ∩ Vr, then, after dividing the rows of M ′

by α1, . . . , αp respectively, we obtain the matrix N + B, where B is the rescaled version
of A. Since α1 ≤ · · · ≤ αp, then ‖B‖ ≤ 1

α1
‖A‖. Thus, N + B ∈ Bε(N), so, the matrix

N +B ∈ Bε(N) ∩ Vr ∩R ⊆ Pr,k ∩R. Thus, M ′ ∈ Pr,k, so, Bεα1(M) ∩ Vr ⊆ Pr,k, i.e. M is in
the interior of Pr,k.

2.2.6.2 Proof of Lemma 2.2.9

Note that for a matrix to lie in the interior of P3,2 all of its entries need to be strictly positive.
Assume first that M lies in the interior of P3,2. Since it lies inP3,2, then there exist

polygons P,Q ⊆ R2 and an ellipse E such that P ⊆ E ⊆ Q, and M = SP,Q. If the boundary
of E does not contain any of the vertices of P , then we are done. Suppose that the boundary
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of E contains some of the vertices of P . We are going to find another ellipse E ′ such that
P ⊂ E ⊂ E ′ ⊂ Q and the boundary of E ′ doesn’t contain any of the vertices of P .

Since M is in the interior of P3,2, none of the entries of M are 0, so the boundary of
the polygon Q does not contain any of the vertices of P . Moreover, there exists ε > 0 such
that V3 ∩ Bε(M) ⊂ P3,2. Pick a point in the interior of the polygon P and consider the
polygon tP obtained by a homotety centered at the selected point with some t > 1. Then,
P ⊂ tP ⊆ Q for a small enough t > 1, and P is strictly contained in tP . Now consider the
generalized slack matrix of tP and Q and call it Mt. We can choose t close enough to 1 so
that Mt ∈ Bε(M) ⊆ P3,2. Thus, Mt has psd rank at most 2 and there exists an ellipse E ′

such that tP ⊆ E ′ ⊆ Q. Therefore, P ⊂ tP ⊆ E ′ ⊆ Q and the boundary of the ellipse E ′

does not contain the vertices of P .
Now, suppose there exists an ellipse E and polygons P and Q obtained from a factoriza-

tion M = AB as before such that P ⊂ E ⊆ Q and the ellipse E does not contain any of the
vertices of P . Therefore, it is possible to shrink the ellipse E slightly so that it also doesn’t
touch any of the sides of Q. So, now we have an ellipse E that does not touch any of the
vertices of P and does not touch any of the sides of Q. Let ε > 0. By perturbing A and B,
we can express any matrix N ∈ Bε(M) ∩ V3 as N = AεBε. But perturbing A and B results
in a perturbation of P and Q, which are defined linearly according to A and B. Therefore,
we can choose ε small enough so that any matrix N ∈ Bε(M) ∩ V3 can be expressed as
N = A′B′ where A′ and B′ are perturbations of A and B such that the corresponding P ′

and Q′ are perturbations of P and Q that still satisfy P ′ ⊆ E ⊆ Q′. Therefore, N ∈ P3,2 so
that Bε(M) ∩ V3 ⊆ P3,2.

2.2.6.3 Proof of Lemma 2.2.17

Since 1 − 〈hi, vj〉 = 〈Ai, Bj〉, the matrix Bj in the Sk+-lift of CA projects to vj ∈ CA. If
rank(Bj) = 1, then vj lies in the rank one locus of the spectrahedral shadow CA.

In the dual picture, the inner polytope P becomes the outer polytope P ◦ and the outer
polytope Q becomes the inner polytope Q◦. Then Q◦ is the convex hull of h1, . . . , hq and P ◦

is defined by 〈vj, x〉 ≤ 1 for j = 1, . . . , p.

Lemma 2.2.30. The dual of the convex body CA is the convex body
{
wTH : wT1 ≤ 1, wTA ∈ Sk+

}
.

Proof. The proof we will give here is analogous to the proof of [76, Theorem 3]. By definition

(CA)◦ =
{
z ∈ Rn : zTx ≤ 1 ∀x ∈ CA

}
.

Consider the problem

max
{
zTx : x ∈ CA

}
= max

{
zTx : 1− 〈hi, x〉 = 〈Bi, y〉 for i = 1, . . . , q, y ∈ Sk+

}
.

Strong duality holds since max
{
zTx : x ∈ CA

}
is a convex optimization problem and CA has

an interior point because it contains P . The dual program is given by

min
{
wT1 : z = wTH,wTA ∈ Sk+

}
.
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This gives
(CA)◦ =

{
wTH : wT1 ≤ 1, wTA ∈ Sk+

}
. (2.2.4)

Remark 2.2.31. We can replace the inequality wT1 ≤ 1 in (2.2.4) by the equality wT1 = 1.

Proof. The proof we will give here is analogous to the proof of [76, Remark 3]. There exists
s ≥ 0 such that wT1 + s = 1. Since the polytopes P and Q contain 0 in their interiors, also
the dual polytopes P ◦ and Q◦ contain 0 in their interiors. Hence there exist λ1, . . . , λq ≥ 0
such that

∑
λi = 1 and

∑
λihi = 0. Define w̃ = w + sλ where λ = (λi). Then

w̃T1 = wT1 + sλT1 = wT1 + s = 1,

w̃TA = wTA+ sλTA ∈ Sk+
because λ ≥ 0 and each component is in Sk+ and

w̃TH = wTH + sλTH = wTH.

Hence the dual bodies of CA and CB are

(CA)◦ =
{
zTH : zT1 = 1, zTBi ∈ Sk+ for i = 1, . . . , q

}
,

(CB)◦ =
{
x ∈ Rn : ∃y ∈ Sk+ s.t. 1− 〈x, vj〉 = 〈y, Aj〉 for j = 1, . . . , p

}
.

As before, if rank(Ai) = 1 then hi lies in the rank one locus of the spectrahedral shadow
(CB)◦. In the primal picture this means that the spectrahedral shadow CB touches the
polytope Q at a generic point (i.e. a matrix of rank k − 1) on the boundary.

2.2.6.4 Proof of Lemma 2.2.24

If we can fit a spectrahedron of size k between P and Q, then M has psd rank at most k.
Now, suppose that M has psd rank at most k. Since M is full rank, we can factor it as

M = AB, where A,B ∈ R(k+1)×(k+1) and

A =


1 0 · · · 0 1
0 1 · · · 0 1
...

. . .
...

0 0 · · · 1 1
0 0 · · · 0 1

 and B = A−1M.

Then, the inner polytope P comes from a slice of the cone over the convex hull of the
rows of A. Let the slice be given by last coordinate equal to 1. Then, P is the standard
simplex in Rk, i.e.

P = conv{e1, . . . , ek, 0}.
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Since M has psd rank k, there exists a slice of L of Sk+ and a linear map π such that
C = π(L ∩ Sk+) lies between P and Q:

P ⊆ C ⊆ Q.

If π is a 1 : 1 linear map, then the image C is just a linear transformation of a slice of Sk+,
which is considered to be a slice. So, assume that π is not 1 : 1, i.e. it has a non-trivial
kernel.

We can write

L ∩ Sk+ = {(x1, . . . , xs)|
s∑
i=1

xiAi + (1−
∑
i

xi))As+1 � 0}

for some symmetric matrices A1, . . . , As+1. Now, let u1, . . . , us be an orthonormal basis of
Rs such that ker(π) = span(uk+1, . . . , us). Let U be the orthogonal matrix with columns
u1, . . . , us. Consider new coordinates y such that x = Uy. Then, we can rewrite (after a
linear transformation)

L ∩ Sk+ = {(y1, . . . , ys)|
∑
i

yiBi + (1− (
∑
i

yi))Bs+1 � 0},

where B1, . . . , Bs+1 are linear combinations of the Ai’s. Then,

C = {(y1, . . . , yk)|∃yk+1, . . . , ys s.t.
∑
i

yiBi + (1− (
∑
i

yi))Bs+1) � 0}.

We know that P ⊆ C and P = conv(e1, . . . , ek, 0). Since ei ∈ P ⊆ C, then there exist

y
(i)
k+1, . . . , y

(i)
s ∈ R such that

Di := Bi +
s∑

j=k+1

[y
(i)
j (Bj −Bs+1)] � 0.

Since 0 ∈ P ⊆ C, then, there exist y
(0)
k+1, . . . , y

(0)
s ∈ R such that

Dk+1 := Bs+1 +
s∑

j=k+1

[y
(0)
j (Bj −Bs+1)] � 0.

Consider the spectrahedron

C ′ := {(y1, . . . , yk)|
k∑
i=1

yiDi + (1−
∑
i

yi)Dk+1 � 0}.

Note that ei ∈ C ′ for every i = 1, . . . , k since Di � 0. Moreover, 0 ∈ C ′ since Dk+1 � 0.
Thus, P ⊆ C ′.
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Moreover, if (y1, . . . , yk) ∈ C ′, then

0 �
k∑
i=1

yiDi + (1−
∑
i

yi)Dk+1 =
k∑
i=1

yi

(
Bi +

s∑
j=k+1

[y
(i)
j (Bj −Bs+1)]

)

+(1−
∑
i

yi)

(
Bs+1 +

s∑
j=k+1

[y
(0)
j (Bj −Bs+1)]

)

=
k∑
i=1

yiBi +
s∑

j=k+1

(
k∑
i=1

yiy
(i)
j − (1−

k∑
i=1

yi)y
(0)
j

)
Bj

+

(
1−

k∑
i=1

yi −
s∑

j=k+1

(
k∑
i=1

yiy
(i)
j − (1−

k∑
i=1

yi)y
(0)
j

))
Bs+1.

Therefore, (y1, . . . , yk) ∈ C and so P ⊆ C ′ ⊆ C ⊆ Q. Therefore, we can nest the spectrahe-
dron C ′ in between P and Q.

2.2.6.5 Proof of Lemma 2.2.26

This Lemma is trivial when k = 1. We proceed by induction on k.
By the conditions in the statement of the lemma, we can assume that

C = {(x1, . . . , xk)|x1a1a
T
1 + x2a2a

T
2 + · · ·+ xkaka

T
k + (1−

∑
i

xi)B � 0},

where B � 0 since 0 ∈ C and a1, . . . , ak ∈ Rk are vectors.
Suppose first that dim span{a1, . . . , ak} = ` < k. Let U be a change of coordinates that

transforms span{a1, . . . , ak} into span{e1, . . . , el}. Then, if a′i = Uai, we have that

C = {(x1, . . . , xk)|x1a
′
1(a′1)T + x2a

′
2(a′2)T + · · ·+ xka

′
k(a
′
k)
T + (1−

∑
i

xi)UBU
T � 0},

where B′ := UBUT is still positive semidefinite. If B′i,j = 0 for all i, j ≥ ` + 1, then, the
statement reduces to the case of `, which is true by induction. So, suppose that, say, (since
B′ � 0) B′`+1,`+1 > 0. Then, choose a vector d ∈ Rk such that d`+1 6= 0 and ddT � B′.
Consider the spectrahedron

C ′ := {(x1, . . . , xk)|x1a
′
1(a′1)T + x2a

′
2(a′2)T + · · ·+ xka

′
k(a
′
k)
T + (1−

∑
i

xi)dd
T � 0}.

First note that clearly e1, . . . , ek, 0 ∈ C ′. We will show that C ′ ⊆ C. Indeed, let (x1, . . . , xk) ∈
C ′. Since (a′i)`+1 = 0 for all i, d`+1 6= 0 and

x1a
′
1(a′1)T + x2a

′
2(a′2)T + · · ·+ xka

′
k(a
′
k)
T + (1−

∑
i

xi)dd
T � 0,
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we have (1−∑i xi) ≥ 0. But then

0 � x1a
′
1(a′1)T + x2a

′
2(a′2)T + · · ·+ xka

′
k(a
′
k)
T + (1−

∑
i

xi)dd
T

� x1a
′
1(a′1)T + x2a

′
2(a′2)T + · · ·+ xka

′
k(a
′
k)
T + (1−

∑
i

xi)B
′

and, therefore, C ′ ⊆ C.

Now, assume that dim span{a1, . . . , ak} = k. Then, let U be an invertible transformation
such that Uai = ei. Then,

C = {(x1, . . . , xk)|x1e1e
T
1 + x2e2e

T
2 + · · ·+ xkeke

T
k + (1−

∑
i

xi)UBU
T � 0},

where B′ := UBUT � 0. Let d ∈ Rk be such that di =
√
B′i,i and let S ∈ Rk×k be such that

Si,j =


B′i,j√
B′i,iB

′
j,j

if B′i,iB
′
j,j 6= 0,

1 if B′i,iB
′
j,j = 0 and i = j,

0 if B′i,iB
′
j,j = 0 and i 6= j.

Since B′ � 0, it is clear that S � 0 as well since it is obtained from B′ by rescaling some
rows and columns and by adding 1 on the diagonal in places that are 0 in B′. Let

C ′ = {(x1, . . . , xk)|x1e1e
T
1 + x2e2e

T
2 + · · ·+ xkeke

T
k + (1−

∑
i

xi)dd
T � 0}.

Then, clearly e1, . . . , ek, 0 ∈ C ′. We will show that C ′ ⊆ C. Let (x1, . . . , xk) ∈ C ′. Then,

x1e1e
T
1 + x2e2e

T
2 + · · ·+ xkeke

T
k + (1−

∑
i

xi)dd
T � 0. (2.2.5)

By the Schur Product Theorem, we know that the Hadamard product of two positive semidef-
inite matrices is positive semidefinite. Therefore, when we take the Hadamard product of the
matrix (2.2.5) with S, we get a positive semidefinite matrix. But that Hadamard product
equals

x1e1e
T
1 + x2e2e

T
2 + · · ·+ xkeke

T
k + (1−

∑
i

xi)B
′ � 0,

therefore, C ′ ⊆ C.
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2.3 Conclusion

In this chapter we explored two different types of matrix factorizations: nonnegative and
positive semidefinite. We studied the set Mr,k of matrices of rank at most r and nonnega-
tive rank at most k, and the set Pr,k of matrices of rank at most r and positive semidefinite
rank at most k. Both Mr,k and Pr,k are full-dimensional semialgebraic subsets of the de-
terminantal variety Vr. Moreover, both nonnegative and positive semidefinite factorizations
have beautiful geometric interpretations via nested polyhedra. Using these, we were able
to describe the boundaries of Mr,k and Pr,k for small values of r and k, and to obtain a
conjecture for general r and k.
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Chapter 3

Orthogonally Decomposable Tensors

Orthogonally decomposable tensors possess many appealing properties. In this chapter we
focus mainly on their spectral properties. In Section 3.1 we study the eigenvectors of sym-
metric orthogonally decomposable tensors, while in Section 3.2 we study the singular vector
tuples of ordinary orthogonally decomposable tensors.

3.1 Symmetric Odeco Tensors

A real symmetric tensor is orthogonally decomposable (or odeco) if it can be written as a
linear combination of symmetric powers of n vectors which form an orthonormal basis of Rn.
Motivated by the spectral theorem for real symmetric matrices, we study the properties of
odeco tensors. We give a formula for all of the eigenvectors of an odeco tensor. Moreover, we
formulate a set of polynomial equations that vanish on the odeco variety and we conjecture
that these polynomials generate its prime ideal. We prove this conjecture in some cases and
give strong evidence for its overall correctness. This section is based on my paper Orthogonal
Decomposition of Symmetric Tensors [131]. In the last Subsection we present a conjecture
which has been resolved in subsequent work [23], and is presented in Section 2.1.2.

3.1.1 Introduction

The spectral theorem states that every n × n real symmetric matrix M possesses n real
eigenvectors v1, . . . , vn which form an orthonormal basis of Rn. Moreover, one can express
M as M =

∑n
i=1 λiviv

T
i , where λ1, . . . , λn ∈ R are the corresponding eigenvalues. In this

section we investigate when such a decomposition is possible for real symmetric tensors. We
address the following two questions.

Question 1. Which real symmetric tensors T can be decomposed as T = λ1v
⊗d
1 +· · ·+λnv⊗dn ,

form some orthonormal basis v1, . . . , vn of Rn and some λ1, . . . , λn ∈ R? More precisely,
can we find equations in the entries of T that cut out the set of tensors for which such a
decomposition exists?
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Question 2. Given that a tensor T can be decomposed as T = λ1v
⊗d
1 + · · · + λnv

⊗d
n , where

v1, . . . , vn ∈ Rn are orthonormal, can we express the eigenvectors of T (to be defined) in
terms of v1, . . . , vn?

Let Sd (Rn) denote the space of n × n × · · · × n (d times) symmetric tensors, i.e. ten-
sors whose entries are real numbers Ti1...id invariant under permuting the indices: Ti1...id =
Tiσ(1)...iσ(d) for all permutations σ of the set {1, 2, . . . , d}. For example, when d = 2, the space

S2 (Rn) consists of all n × n real symmetric matrices. We study the elements T ∈ Sd (Rn)
which can be written as T = λ1v

⊗d
1 + · · ·+λnv⊗dn , where v1, . . . , vn ∈ Rn form an orthonormal

basis of Rn and λ1, . . . , λn ∈ R. We call such tensors T orthogonally decomposable or, for
short, odeco.

The notion of eigenvectors of matrices was extended to symmetric tensors by Lim [112]
and by Qi [126] independently in 2005. A vector w ∈ Cn is an eigenvector of T ∈ Sd (Cn) if
there exists λ ∈ C, the corresponding eigenvalue, such that

Twd−1 :=
[ n∑
i2,...,id=1

Ti,i2,...,idwi2 . . . wid

]
i

= λw.

Two eigenpairs (w, λ) and (w′, λ′) are equivalent if there exists t 6= 0 such that w = tw′ and
λ = td−2λ′. When d = 2, these definitions agree with the usual definitions of eigenvectors,
eigenvalues, and equivalence of eigenpairs for matrices.

The spectral theorem answers both Question 1 and Question 2 in the case d = 2: every
symmetric matrix M ∈ S2 (Rn) can be written as M =

∑n
i=1 λiviv

T
i =

∑n
i=1 λiv

⊗2
i , where

v1, . . . , vn are orthonormal. Moreover, if M is generic (in the sense that its eigenvalues are
distinct), then v1, . . . , vn are all of the eigenvectors of M up to scaling.

In Subsection 3.2.2 we give an explicit algebraic formula of all of the eigenvectors of an
odeco tensor T = λ1v

⊗d
1 + · · ·+ λnv

⊗d
n in terms of v1, . . . , vn, answering Question 2 above. It

easily follows from the definition of eigenvectors that v1, . . . , vn are eigenvectors of T . These
are not all of the eigenvectors of T , but it turns out that one can explicitly express the rest
of them in terms of v1, . . . , vn.

For general d, not all tensors T ∈ Sd (Rn) are odeco. Section 4.1 is dedicated to finding
the equations defining the variety of odeco tensors. In Subsection 3.1.3, we give partial
results towards what is done in Section 4.1. We study the set of all odeco tensors and
find equations that vanish on this set. In Conjecture 3.1.16 we claim that these define the
prime ideal of the odeco variety, which is the Zariski closure of the set of odeco tensors
inside Sd(Cn). In Theorem 3.1.20 we prove Conjecture 3.1.16 for the special case n = 2.
In Subsection 3.1.3.1 we conclude the section by giving evidence for the correctness of this
conjecture. This conjecture is later proved set-theoretically in Section 4.1.

In the remainder of this subsection we review symmetric tensor decomposition as well as
the equivalent characterization of symmetric tensors as homogeneous polynomials. We con-
clude by describing an algorithm, called the tensor power method, which finds the orthogonal
decomposition of an odeco tensor.
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3.1.1.1 Symmetric tensor decomposition

Orthogonal decomposition is a special type of symmetric tensor decomposition which has
been of much interest in the recent years; references include [26, 109, 120], and many others.
Given a tensor T ∈ Sd (Cn), the aim is to decompose it as

T =
r∑
i=1

λiv
⊗d
i ,

where v1, . . . , vr ∈ Cn are any vectors and λ1, . . . , λr ∈ C. The smallest r for which such
a decomposition exists is called the (symmetric) rank of T . Finding the symmetric decom-
position of a given tensor T is an NP hard problem [92] and algorithms for it have been
proposed by several authors, for example [26, 120].

According to the Alexander-Hirschowitz Theorem, when d ≥ 3 the rank of a generic

tensor T is

⌈
(n+d−1

d )
n

⌉
except in a finite number of cases in which it is one more than this

number [2]. However, the rank of an odeco tensor T ∈ Sd(Rn) is at most n. This means
that the set of odeco tensors is a low-dimensional subvariety in the space of all tensors. We
explore this further in Section 3.1.3.

Remark 3.1.1. Orthogonal tensor decomposition has also been studied in the non-symmetric
case [98, 99]. An odeco tensor is also orthogonally decomposable according to the definition
in the non-symmetric case. We shall return to the non-symmetric case in Section 3.2.

3.1.1.2 Symmetric tensors as homogeneous polynomials

An equivalent way to think about a symmetric matrix M ∈ S2 (Cn) is via its corresponding
quadratic form fM ∈ C[x1, . . . , xn] given by

fM (x1, . . . , xn) = xTMx =
∑
i,j

Mijxixj.

More generally, a tensor T ∈ Sd (Cn) can equivalently be represented by a homogeneous
polynomial fT ∈ C[x1, . . . , xn] of degree d given by

fT (x1, . . . , xn) = T · xd :=
n∑

i1,...,id=1

Ti1,...,idxi1xi2 . . . xid .

Given T ∈ Sd (Cn), we can describe the notions of eigenvectors, eigenvalues, and symmet-
ric decomposition in terms of the corresponding polynomial fT ∈ C[x1, . . . , xn] as follows.

A vector x ∈ Cn is an eigenvector of T with eigenvalue λ if and only if

∇fT (x) = λdx.



CHAPTER 3. ORTHOGONALLY DECOMPOSABLE TENSORS 77

The tensor T can be decomposed as T =
∑r

i=1 λiv
⊗d
i if and only if the corresponding poly-

nomial fT can be decomposed as

fT (x1, . . . , xn) =
r∑
i=1

λi (vi1x1 + · · ·+ vinxn)d .

Similarly, a real tensor T ∈ Sd (Rn) is orthogonally decomposable with T = λ1v
⊗d
1 +

· · · + λrv
⊗d
r , where λ1, . . . , λr ∈ R and v1, . . . , vr ∈ Rn are orthonormal, if and only if

fT (x1, . . . , xn) = λ1 (v1 · x)d + · · ·+ λr (vr · x)d.
This equivalent characterization of symmetric tensors as homogeneous polynomials proves

to be quite useful in the sequel.

3.1.1.3 Finding an orthogonal decomposition

Finding the symmetric decomposition of a general T ∈ Sd (Cn) is NP-hard [92]. However,
there are efficient algorithms that recover the orthogonal decomposition of an odeco tensor
T ∈ Sd (Rn) [8, 100]. One such algorithm is the tensor power method.

Let T ∈ Sd (Rn). If T is orthogonally decomposable, i.e. T =
∑k

i=1 λiv
⊗d
i and v1, . . . , vk ∈

Rn orthonormal, then

T · vd−1
j =

k∑
i=1

λi (vi · vj)d−1 vi = λjvj,

for all j = 1, 2, . . . , k. Thus, v1, . . . , vk are eigenvectors of T with corresponding eigenvalues
λ1, . . . , λk. Note that requiring T and v1, . . . , vk to be real forces λ1, . . . , λk to be real as well.

Definition 3.1.2. A unit vector u ∈ Rn is a robust eigenvector of T ∈ Sd (Rn) if there
exists ε > 0 such that for all θ ∈ {u′ ∈ Rn : ‖u− u′‖ < ε}, repeated iteration of the map

θ 7→ Tθ
d−1

‖Tθd−1‖
, (3.1.1)

starting from θ converges to u.

The following theorem shows that if T has an orthogonal decomposition T =
∑k

i=1 λiv
⊗d
i ,

then the set of robust eigenvectors of T is precisely the set {v1, v2, . . . , vk}, implying that the
orthogonal decomposition is unique up to the obvious reordering.

Theorem 3.1.3 (Theorem 4.1, [8]). Let T ∈ Sd (Rn), where d ≥ 3, have an orthogonal
decomposition T =

∑k
i=1 λiv

⊗d
i , where v1, . . . , vk ∈ Rn are orthonormal, and λ1, . . . , λk > 0.

1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (3.1.1)
has measure 0.

2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.
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Remark 3.1.4. In fact, the set of θ ∈ Rn which do not converge to some vi under repeated
iteration of (3.1.1) is a hyperplane arrangement. This is the set of those eigenvectors of the
tensor T that are not equal to one of v1, . . . , vk, and are described in detail in Theorem 3.1.8.

Theorem 3.1.3 says that to recover the orthogonal decomposition of T , one needs to
find the robust eigenvectors. The definition of robust eigenvectors suggests an algorithm
to compute them, using repeated iteration of the map (3.1.1) starting with random vectors
u ∈ Rn.

Algorithm 2 The Tensor Power Method

1: Input: an orthogonally decomposable tensor T .
2: Set i = 1.
3: Repeat until T = 0.
4: Choose random u ∈ Rm.
5: Let vi be the result of repeated iteration of (3.1.1) starting with u.
6: Compute the eigenvalue λi corresponding to vi, from the equation Tvd−1

i = λivi.
7: Set T = T − λiv⊗di .
8: i← i+ 1.
9: Output v1, . . . , vk and λ1, . . . , λk.

In certain cases, this algorithm can be used to find the symmetric decomposition of a
given tensor. For example, the authors of [8] consider a class of statistical models, such
as the exchangeable single topic model, in which one observes tensors T2 and T3, where
Td =

∑k
i=1 ωiµ

⊗d
i for d = 2, 3 and the aim is to recover the unknown parameters ω =

(ω1, . . . , ωk) ∈ Rk and µ1, . . . , µk ∈ Rn. (Note that T2 and T3 have decompositions using the
same vectors and observing both of them gives more information than observing only T3).
This is done by transforming T2 and T3 (in an invertible way) into orthogonally decomposable
tensors T̃2 and T̃3, where T̃d =

∑k
i=1 ω̃iµ̃

⊗d
i and µ̃1, . . . , µ̃k are orthonormal, d = 2, 3. Then,

they use the tensor power method to find µ̃1, . . . , µ̃k and ω̃1, . . . , ω̃k and use the inverse
transformation to recover the original µ1, . . . , µk and ω1, . . . , ωk.

Remark 3.1.5. As mentioned above, Theorem 3.1.3 also implies that an odeco tensor T has
a unique orthogonal decomposition. That is because the elements in the orthogonal decom-
position are uniquely determined as the robust eigenvectors v1, . . . , vk and the corresponding
constants λ1, . . . , λk are uniquely determined by λi = T · vdi .

Another method, described in [26], can also be used to efficiently compute the decom-
position of a symmetric tensor T of rank at most n. It involves computing generalized
eigenvectors of sub-matrices of the Hankel matrices associated to T .
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3.1.2 The Variety of Eigenvectors of a Tensor

In this subsection, we are going to study the set of all eigenvectors of a given orthogonally
decomposable tensor.

As we mentioned in the introduction, a symmetric tensor T ∈ Sd (Rn) can equivalently
be represented by a homogeneous polynomial fT ∈ R[x1, . . . , xn] of degree d. Indeed, given
T , we obtain fT by

fT (x1, . . . , xn) =
∑
i1,...,id

Ti1,...,idxi1 · · ·xid .

Then, for x ∈ Cn, Txd−1 = λx is equivalent to ∇fT (x) = dλx, i.e. ∇fT (x) and x are parallel
to each other. This is equivalent to the vanishing of the 2 × 2 minors of the n × 2 matrix[
∇fT (x)

∣∣x].
Definition 3.1.6. The variety of eigenvectors VT of a given symmetric tensor T with cor-
responding polynomial fT is the zero set of the 2× 2 minors of the matrix

[
∇fT (x)

∣∣x].
Remark 3.1.7. Consider the gradient map as a map on projective spaces:

∇fT : CPn−1 → CPn−1

[x] 7→ [∇fT (x)].

Then, the eigenvectors of fT are precisely the fixed points of ∇fT . This map is well-defined
provided the hypersurface {fT = 0} has no singular points.

The aim of this subsection is to prove the following theorem.

Theorem 3.1.8. Let T ∈ Sd (Rn) be odeco with fT (x) =
∑l

i=1 λi (vi · x)d, where v1, . . . , vl ∈
Rn are orthonormal. Assume that 1 ≤ l ≤ n and λ1, . . . , λl 6= 0 . Then, T has (d−1)l−1

d−2

eigenvectors in Cn, given explicitly in terms of v1, . . . , vl and the (d− 2)-nd roots of λ1, . . . , λl

as follows. Let V =

− v1 −
...

− vl −

 ∈ Rl×n. Then, for any 1 ≤ k ≤ l, any I = {i1, i2, . . . , ik} ⊆

[l] and any (k − 1)-tuple η1, . . . , ηk−1 of (d− 2)-nd roots of unity, there is one eigenvector w,
up to scaling, where w = V T (y1, . . . , yl)

T and

yi =


ηjλ

− 1
d−2

ij
if i = ij and j ∈ {1, . . . , k − 1}

λ
− 1
d−2

ik
if i = ik

0 if i 6∈ I.

The rest of the eigenvectors are all the elements in the nullspace of V .
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Remark 3.1.9. It is known by [37] that if a tensor T ∈ Sd (Rn) has finitely many equivalence
classes of eigenpairs (x, λ) over C, then their number, counted with multiplicity, is equal to
(d−1)n−1

d−2
. If the entries of T are sufficiently generic, then all multiplicities are equal to 1, so

there are exactly (d−1)n−1
d−2

equivalence classes of eigenpairs.
In the proof of Theorem 3.1.8 we independently show that an odeco tensor T with or-

thogonal decomposition T = λ1v
⊗d
1 + · · ·+ λnv

⊗d
n , such that λ1, . . . , λn 6= 0 has finitely many

equivalence classes of eigenvectors and their number is exactly (d−1)n−1
d−2

.

Remark 3.1.10. The explicit formulation of the eingevectors of an odeco tensor given
in Theorem 3.1.8 can be used to find the eigenvectors of any tensor T ∈ Sd(Cn). This
can be done via a homotopy continuation computation with numerical software such as
Bertini [15].

We illustrate Theorem 3.1.8 by two simple concrete examples.

Example 3.1.11. Let d = n = 3 and consider the odeco tensor T with polynomial form

fT (x, y, z) = λ1x
3 + λ2y

3 + λ3z
3.

This type of polynomial is called a Fermat polynomial. In this case v1 = (1, 0, 0) , v2 =
(0, 1, 0) , v3 = (0, 0, 1) and the matrix V = Id3. Since d− 2 = 1, taking the (d− 2)-nd root is
the identity map. Thus, the eigenvectors of T are as follows.

When k = 1, I = {1}, {2}, or {3}. The corresponding three eigenvectors are(
1

λ1

, 0, 0

)T
,

(
0,

1

λ2

, 0

)T
,

(
0, 0,

1

λ3

)T
.

When k = 2, I = {1, 2}, {1, 3}, or {2, 3}. The corresponding eigenvectors are(
1

λ1

,
1

λ2

, 0

)T
,

(
1

λ1

, 0,
1

λ3

)T
,

(
0,

1

λ2

,
1

λ3

)T
.

When k = 3, I = {1, 2, 3} and the corresponding eigenvector is(
1

λ1

,
1

λ2

,
1

λ3

)T
.

Figure 3.1 shows what these eigenvectors look like geometrically.

Example 3.1.12. Let d = 4, n = 4 and consider T ∈ S4(R4) with corresponding polynomial

fT (x1, . . . , x4) = x4
1 + 2x4

2.
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v1
v2

v3

v1
λ1

+
v2
λ2

v2
λ2

+
v3
λ3

v1
λ1

+
v3
λ3

v1
λ1

+
v2
λ2

+
v3
λ3

Figure 3.1: This figure shows the structure of the eigenvectors inside CP2 of an odeco tensor
T ∈ S3 (R3) such that T = λ1v

⊗3
1 + λ2v

⊗3
2 + λ3v

⊗3
3 with λ1, λ2, λ3 6= 0.

In the notation of Theorem 3.1.8, the number of nonzero coefficients is l = 2 < n. We have
that v1 = e1, v2 = e2 and λ1 = 1, λ2 = 2. Since d− 2 = 2, the roots ηi can be ±1. Thus, the
eigenvectors of T are as follows.

When k = 1, I = {1}, {2}. The corresponding eigenvectors are

(1, 0, 0, 0)T , (0,
1√
2
, 0, 0)T .

When k = 2, I = {1, 2}. The corresponding eigenvectors are

(1,
1√
2
, 0, 0)T , (−1,

1√
2
, 0, 0)T .

The rest of the eigenvectors are all vectors perpendicular to e1 and e2, i.e.

(0, 0, a, b)T

for any a, b ∈ C not both zero.

In the rest of this subsection we prove Theorem 3.1.8. We proceed as follows. First
we show that the theorem is valid when fT = λ1x

d
1 + · · · + λnv

d
n, where λ1, . . . , λn 6= 0.

This is done in Lemma 3.1.14. For the general case, fT = λ1 (v1 · x)d + · · · + λl (vl · x)d,
where λ1, . . . , λl 6= 0 and v1, . . . , vl are orthonormal, we observe that setting yi = vi · x the
eigenvectors of the Fermat polynomial tensor λ1y

d
1 + · · ·+λly

d
l are in a 1-to-1 correspondence

with some of the eigenvectors of T via the transformation given by the matrix V with rows
v1, . . . , vl. This is how we recover the formula in Theorem 3.1.8.
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Definition 3.1.13. Given f (x1, . . . , xn) = λ1x
d
1+· · ·+λnxdn, I = {i1, . . . , ik} ⊆ {1, 2, . . . , n},

and η = {η1, . . . , ηk−1} such that η1, . . . , ηk−1 are (d− 2)-nd roots of unity, we define the ideal

II,η = 〈λ
1
d−2

i1
xi1 − η1λ

1
d−2

ik
, . . . , λ

1
d−2

ik−1
xik−1

− ηk−1λ
1
d−2

ik
xik〉+ 〈xj|j 6∈ I〉

in the polynomial ring C[x1, . . . , xn].

Lemma 3.1.14. Theorem 3.1.8 is true in the case fT (x1, . . . , xn) = λ1x
d
1 +λ2x

d
2 +· · ·+λnxdn,

where λ1, . . . , λn 6= 0. In particular, the radical of the ideal I of 2× 2 minors of
[
∇f(x)|x

]
can be decomposed as follows.

√
I =

⋂
I⊆[n],η={η1,...,η|I|−1}

II,η, (3.1.2)

where η1, . . . , ηk−1 are (d− 2)-nd roots of unity. For every k ∈ {1, . . . , n}, there are
(
n
k

)
(d− 2)k−1

homogeneous prime ideals II,η with |I| = k. Each ideal II,η has exactly one solution in
CPn−1, representing one eigenvector, namely w = (w1 : · · · : wn) such that

wi =


ηl

1
λil

− 1
d−2 if i = il and l ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i 6∈ I.

The total number of such solutions is (d−1)n−1
d−2

.

Proof. Note that in this case, up to a factor of d in the first row, we have that

[
∇f (x)

∣∣x] =


λ1x

d−1
1 x1

λ2x
d−1
2 x2
...

...
λnx

d−1
n xn


Therefore, the ideal of 2× 2 minors is given by

I = 〈xixj
(
λix

d−2
i − λjxd−2

j

)
: i 6= j〉.

We would like to decompose the variety of this ideal. Note that for any primary ideal
P ⊇ I its associated prime

√
P would either contain xixj or λix

d−2
i − λjxd−2

j for all i 6= j.

Suppose that for a given P ⊇ I,
√
P contains exactly n − k of the variables x1, . . . , xn.

Let I = {i1, . . . , ik} ⊆ [n] and assume that
√
P contains exactly those xi for which i 6∈ I.

Thus,
√
P also contains λix

d−2
i − λjxd−2

j for i 6= j, i, j ∈ I. Moreover, we can write
√
P as√

P = 〈xi : i 6∈ I〉 +
√
P ∩ C[xi : i ∈ I]. Then, the ideal

√
P ∩ C[xi : i ∈ I] is prime, it

doesn’t contain xi for i ∈ I and contains II ⊆ C[xi : i ∈ I], where

II := 〈λixd−2
i − λjxd−2

j : i 6= j, i, j ∈ I〉 = 〈λijxd−2
ij
− λij+1

xd−2
ij+1

: j = 1, . . . , k − 1〉.
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Therefore,
√
P ∩ C[xi : i ∈ I] is a prime ideal containing (II : 〈xi : i ∈ I〉∞).

We now describe the decomposition of the ideal (II : 〈xi : i ∈ I〉∞) following Theorem 2.1
and Corollary 2.5 in [60]. Recall that I = {i1, . . . , ik} ⊆ [n]. Let Lρ := 〈(d− 2)

(
eij − eik

)
:

j = 1, . . . , k − 1〉 be a lattice with partial character ρ : Lρ → C∗ given by

ρ
(
(d− 2)

(
eij − eik

))
=
λik
λij

.

For any partial character σ : Lσ → C∗, define the ideal I+(σ) := 〈xm+−σ (m)xm− : m ∈ Lσ〉,
where m = m+ − m− and m+,m− have nonnegative entries. From this definition, we see
that

I+(ρ) = (II : 〈xi : i ∈ I〉∞).

Then, by Corollary 2.5 in [60], the decomposition of (II : 〈xi : i ∈ I〉∞) = I+ (ρ) is

(II : 〈xi : i ∈ I〉∞) =
⋂

ρ′ extends ρ to L

I+ (ρ′) ,

where L is a sublattice of Zn such that Lρ ⊆ L ⊆ Zn and |L/Lρ| is finite. In this case, we
can choose

L = 〈eij − eik : j = 1, . . . , k − 1〉.
Then, |L/Lρ| = (d− 2)k−1. Moreover, by the same theorem, the number of ρ′ extending ρ

is exactly |L/Lρ| = (d− 2)k−1. Also, note that each such ρ′ : L→ C∗ is uniquely defined by
the values

ηj

(
λik
λij

) 1
d−2

:= ρ′
(
eij − eik

)
for some (d− 2)-nd root of unity ηj. Therefore,

I+ (ρ′) =

〈
xij − ηj

(
λik
λij

) 1
d−2

xik : j = 1, 2, . . . , k − 1

〉
and each such ideal is maximal inside C[xi : i ∈ I]. Thus, the prime

√
P ∩C[xi : i ∈ I] must

contain one of the ideals I+(ρ′). Therefore,
√
P contains 〈xi : i 6∈ I〉 + I+(ρ′) for some ρ′.

But this ideal is maximal in C[x1, . . . , xn], therefore,
√
P = 〈xi : i 6∈ I〉+ I+(ρ′).

Therefore, (3.1.2) holds and the minimal associated primes of the ideal I are

II,η = 〈xi : i 6∈ I〉+

〈
xij − ηj

(
λik
λij

) 1
d−2

xik : j = 1, 2, . . . , k − 1

〉
,

where I = {i1, . . . , ik} ⊆ [n] and η1, . . . , ηk−1 are (d− 2)-nd roots of unity. Each ideal II,η is
zero-dimensional and corresponds to one eigenvector w = (w1 : · · · : wn), where

wi =


ηl

1
λil

− 1
d−2 if i = il and l ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i 6∈ I.
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Moreover, since there are
(
n
k

)
options for choosing I ⊆ [n] with |I| = k and (d− 2)k−1

options for choosing η = (η1, . . . , ηk−1), the total number of eigenvectors of f is

n∑
k=1

(
n

k

)
(d− 2)k−1 =

1

d− 2

n∑
k=1

(
n

k

)
(d− 2)k

=
1

d− 2
((d− 2 + 1)n − 1) =

(d− 1)n − 1

d− 2
,

recovering the formula expected by [37].

Now, we proceed with the proof of Theorem 3.1.8.

Proof of Theorem 3.1.8. Let T =
∑l

i=1 λiv
⊗d
i be odeco with λ1, . . . , λl 6= 0. Then,

fT (x) =
l∑

i=1

λi (vi · x)d

and
1

d
∇fT (x) =

l∑
i=1

λi (vi · x)d−1 vi.

If x ∈ Cn is an eigenvector, then

1

d
∇fT (x) =

l∑
i=1

λi (vi · x)d−1 vi = λx.

Define the vectors vl+1, . . . , vn ∈ Rn to complete the set of vectors {v1, . . . , vl} to an or-
thonormal basis of Rn. Then, they are also a basis of Cn and x =

∑n
i=1 (vi · x) vi for any

x ∈ Cn, where vi · x =
∑

j vijxj is still the usual dot product on Rn. Since the vi form a
basis of Cn and

l∑
i=1

λi (vi · x)d−1 vi = λ

n∑
i=1

(vi · x) vi,

then x is an eigenvector if and only if the vectors
(
λ1 (v1 · x)d−1 , . . . , λl (vn · x)d−1 , 0, . . . , 0

)
and (v1 · x, . . . , vn · x) are parallel. Let Ṽ =

− v1 −
...

− vn −

 ∈ Rn×n be the orthogonal matrix

whose rows are v1, . . . , vn. Let

yi = (vi · x) , i.e. y = Ṽ x.
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Then, an equivalent description of x being an eigenvector is that
(
λ1y

d−1
1 , . . . , λly

d−1
l , 0, . . . , 0

)
and y are parallel. In other words, the matrix[

λ1y
d−1
1 · · · λly

d−1
l 0 · · · 0

y1 · · · yl yl+1 · · · yn

]
has rank at most one. There are two cases.

Case 1: One of the numbers yl+1, . . . , yn is nonzero. This forces y1 = · · · = yl = 0 and
any choice of yl+1, . . . , yn gives a solution. This means that any vector x ∈ span{v1, . . . , vl}⊥
is an eigenvector of the original tensor T .

Case 2: The other case is that yl+1 = · · · = yn = 0. Then the above matrix having rank
at most one is equivalent to the smaller matrix[

λ1y
d−1
1 · · · λly

d−1
l

y1 · · · yl

]
having rank at most one. The ideal of the 2× 2 minors of this matrix is

I = 〈λiyd−1
i yj − λjyd−1

j yi : i < j ≤ l〉.

By Lemma 3.1.14, the radical of this ideal decomposes as
√
I =

⋂
I⊆[l],η

II,η

and each ideal II,η with I = {i1, . . . , ik} ⊆ [l] has the form

II,η = 〈λ
1
d−2

i1
yi1 − η1λ

1
d−2

ik
yik , . . . , λ

1
d−2

ik−1
yik−1

− ηk−1λ
1
d−2

ik
, yik〉+ 〈yi : i 6∈ I〉, (3.1.3)

where η1, . . . , ηk−1 are (d− 2)-nd roots of unity. By the Nullstellensatz, all elements in V(I)
are the same as those in V(

√
I), which are in turn the elements in

⋃V(II,η). Each ideal II,η
gives exactly one solution in PnC, representing one eigenvector (y1, . . . , yn) such that

yi =


ηs

1
λis

− 1
d−2 if i = is and s ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i ∈ [n] \ I.
(3.1.4)

Note that y = Ṽ x and Ṽ is an orthogonal matrix. Therefore,

x = Ṽ Ty.

By Lemma 3.1.14, we know that for each k there are
(
l
k

)
(d− 2)k−1 eigenvectors with k

nonzero entries, which makes for a total of

l∑
k=1

(
l

k

)
(d− 2)k−1 =

1

d− 2

(
l∑

k=1

(
n

k

)
(d− 2)k

)



CHAPTER 3. ORTHOGONALLY DECOMPOSABLE TENSORS 86

=
1

d− 2

(
l∑

k=0

(
n

k

)
(d− 2)k − 1

)
=

(d− 1)l − 1

d− 2

eigenvectors of T in this case.

3.1.3 The Odeco Variety

The odeco variety is the Zariski closure in Sd (Cn) of the set of all tensors T ∈ Sd (Rn)
which are orthogonally decomposable. If a symmetric tensor is odeco, then, in particular,
its corresponding polynomial fT is decomposable as a sum of n d-th powers of linear forms,
i.e. it lies in the n-th secant variety of the d-th Veronese variety, denoted by σn (vd (Cn)).

When d = n = 3, there is one equation defining σ3 (v3 (C3)), called the Aronhold invariant
[108], and it is given by the Pfaffian of a certain skew-symmetric matrix. The corresponding
odeco variety in S3 (C3) has codimension 4 and its prime ideal is generated by six quadrics,
defined in Example 3.1.18. For higher d and n, the equations defining σn (vd (Cn)) are much
harder to compute. However, the odeco variety is smaller than σn (vd (Cn)) and we believe
that the defining equations of its prime ideal are quadrics that are easy to write down. They
are shown in Conjecture 3.1.16, and proven to be correct in Section 4.1.

Lemma 3.1.15. The dimension of the odeco variety in Sd (Cn) is
(
n+1

2

)
.

Proof. Consider the map

φ : Rn × SOn → Sd (Rn) ⊂ Sd (Cn)

given by

(λ1, . . . , λn) , V 7→
n∑
i=1

λiv
⊗d
i ,

where vi is the ith row of the orthogonal matrix V . The image Im(φ) of this map is precisely
the set of orthogonally decomposable tensors in Sd (Rn). The odeco variety is Im (φ) ⊂
Sd (Cn). Note that by Theorem 3.1.3, φ has a finite fiber (up to permutations of the input).
Then, dim(Im(φ)) = dim (Rn × SOn) = n +

(
n
2

)
=
(
n+1

2

)
. Therefore, the dimension of the

odeco variety is dim
(

Im (φ)
)

=
(
n+1

2

)
.

We are going to conjecture what the defining equations of the odeco variety are. In
Theorem 3.1.20 we prove the result for the case n = 2. The general proof was found
subsequently in collaboration with Ada Boralevi, Jan Draisma, and Emil Horobeţ [23], and
is presented in Section 4.1.

Consider a tensor T ∈ Sd (Cn) and the corresponding homogeneous polynomial fT (x1, x2,
. . . , xn) ∈ C[x1, . . . , xn] of degree d. To define our equations, it is more convenient to work
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with the polynomial version of the tensor. As mentioned before, given T ∈ Sd (Cn), the
corresponding polynomial can be rewritten as

fT (x1, . . . , xn) =
∑
j1,...,jd

Tj1...jdxj1 . . . xjd

=
∑

i1+···+in=d

(
d

i1, . . . , in

)
T 1 . . . 1︸ ︷︷ ︸
i1 times

... n . . . n︸ ︷︷ ︸
in times

xi11 . . . x
in
n =

∑
i1+···+in=d

1

i1! . . . in!
ui1,...,inx

i1
1 . . . x

in
n ,

where
ui1,...,in = d!T 1 . . . 1︸ ︷︷ ︸

i1 times

... n . . . n︸ ︷︷ ︸
in times

.

We write the equations defining the odeco variety in terms of the variables ui1,...,in . Note
that for all such variables i1 + · · ·+ in = d.

Conjecture 3.1.16. The prime ideal of the odeco variety inside Sd (Cn) is generated by

n∑
s=1

uy+esuv+es − uw+esuz+es = 0, (3.1.5)

where y, v, w, z ∈ Zn≥0 are such that
∑

i yi =
∑

i vi =
∑

i zi =
∑

iwi = d−1 and y+v = z+w.

Written in terms of the T -variables, these equations can be expressed as

n∑
s=1

Ti1,...,id−1,sTj1,...,jd−1,s − Tk1,...,kd−1,sTl1,...,ld−1,s = 0, (3.1.6)

for all indices such that {ir, jr} = {kr, lr}, and also up to permuting the indices due to the
fact that T is symmetric.

Another way to think about (3.1.6) is as follows. Suppose we contract T along one of
its dimensions, say the d-th dimension, resulting into a tensor T ∗d T ∈ S2(Sd−1(Rn)) whose
entry indexed by i1, . . . , id−1, j1, . . . , jd−1 is

(T ∗d T )i1,...,id−1,j1,...,jd−1
=

n∑
s=1

Ti1,...,id−1,sTj1,...,jd−1,s.

Then, the equations (3.1.6) are equivalent to saying that T ∗d T also lies inside S2(d−1)(Rn).
In Section 4.1.3.1 we will see that, when d = 3, these equations are also equivalent to a
certain algebra associated to the tensor T being associative.

Example 3.1.17. When d = 2 the elements of S2 (Rn) are symmetric matrices and the set
of equations (3.1.5) is empty, which is equivalent to the fact that all symmetric matrices are
odeco.
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In essence, the ideal defined by (3.1.5) is a lifting of the toric ideal defining the Veronese
variety vd−1 (Cn) ⊂ Sd−1 (Cn) to non-toric equations on Sd (Cn).

Example 3.1.18. Let d = n = 3. We will illustrate how to obtain the equations (3.1.5) of
the odeco variety in S3 (C3) from the equations of the Veronese variety vd−1 (Cn) = v2 (C3).
Consider the Veronese embedding v2 : C3 → S2 (C3) given by x 7→ x⊗2. The image v2 (C3)
is the set of rank one 3 × 3 symmetric matrices. The space S2 (C3) has coordinates ui1i2i3,
where i1 + i2 + i3 = 2. There are six equations that define the prime ideal of the Veronese
variety v2 (C3) ⊆ S2 (C3) and they are

u200u020 − u2
110 = 0, u200u011 − u110u101 = 0,

u200u002 − u2
101 = 0, u110u002 − u101u011 = 0, (3.1.7)

u101u020 − u110u011 = 0, u020u002 − u2
011 = 0.

Each of these equations has the form uyuv−uwuz = 0, where y, v, w, z ∈ Z3
≥0,
∑

i y =
∑

i v =∑
iw =

∑
i z = 2, and y + v = w + z. Each such equation leads to one of the equations in

(3.1.5) as follows

uyuv−uwuz 7→ uy+e1uv+e1 −uw+e1uz+e1 +uy+e2uv+e2 −uw+e2uz+e2 +uy+e3uv+e3 −uw+e3uz+e3 .

Therefore, using (3.1.7), we obtain the six equations in (3.1.5)

u200u020 − u2
110 7→ u300u120 − u2

210 + u210u030 − u2
120 + u201u021 − u2

111,

u200u011 − u110u101 7→ u300u111 − u210u201 + u210u021 − u120u111 + u201u012 − u111u102,

u200u002 − u2
101 7→ u300u102 − u2

201 + u210u012 − u2
111 + u201u003 − u2

102,

u110u002 − u101u011 7→ u210u102 − u201u111 + u120u012 − u111u021 + u111u003 − u102u012,

u101u020 − u110u011 7→ u201u120 − u210u111 + u111u030 − u120u021 + u102u021 − u111u012,

u020u002 − u2
011 7→ u120u102 − u2

111 + u030u012 − u2
021 + u021u003 − u2

012.

We shall return to this example in Section 4.1.3.1.

Lemma 3.1.19. The equations (3.1.5) vanish on the odeco variety.

Proof of Lemma 3.1.19. Let T =
∑

i λiv
⊗d
i be odeco. Then, by definition of the u-variables,

at the point T we have

uy1...yn = d!
n∑
i=1

λiv
y1
i1
· · · vynin = d!

n∑
i=1

λiv
y
i .
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Thus, at the point T , the equations (3.1.5), for y, v, w, z ∈ Zn≥0 with y + v = w + z and∑
i y =

∑
i v =

∑
iw =

∑
i z = d− 1, have the form∑

(

s = 1nuy+esuv+es − uw+esuz+es =

= (d!)2

n∑
s=1

( n∑
i=1

λiv
y+es
i

)( n∑
j=1

λjv
v+es
j

)
−
( n∑
i=1

λiv
w+es
i

)( n∑
j=1

λjv
z+es
j

)
= (d!)2

n∑
s=1

( n∑
i=1

λ2
i (��

���vy+v+2es
i −�����vw+z+2es

i ) +
∑
i 6=j

λiλj(v
y+es
i vv+es

j − vw+es
i vz+esj )

)
= (d!)2

∑
i 6=j

λiλj(v
y
i v

v
j − vwi vzj )

n∑
s=1

visvjs = 0,

where the last row is 0 since vi and vj are orthogonal and
∑n

s=1 visvjs = vi · vj = 0
Therefore, (3.1.5) vanish on the odeco variety.

We are going to select a subset of the equations (3.1.5) that spans the vector space defined
by (3.1.5). More precisely, consider

fy,v,i,j =
n∑
s=1

uy+esuv+es − uy+ei−ej+esuv−ei+ej+es , (3.1.8)

for all i 6= j ∈ {1, 2, . . . , n} and all y, v ∈ Zn≥0 whose entries sum to d− 1 and yj ≥ 1, vi ≥ 1.
We now prove Conjecture 3.1.16 for the case n = 2.

Theorem 3.1.20. When n = 2, the equations (3.1.8) form a Gröbner basis with respect
to the term order ≺ (defined below as a refinement of the weight order (3.1.10)) and the
dimension of the variety they cut out is

(
n+1

2

)
= 3. The ideal defined by (3.1.8) is the prime

ideal of the odeco variety.

Proof. We are going to work over the polynomial ring

C[u] := C[ui1i2 |i1, i2 ≥ 0 and i1 + i2 = d]

= C[ud0, u(d−1)1, . . . , u0d].

Then, the equations (3.1.8) are

fy,v,1,2 = uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 + uy+e2uv+e2 − uy+e1−e2+e2uv−e1+e2+e2 ,

where y, v ∈ Z2
≥0, the sum of the entries of each of y and v is d− 1 and y2 ≥ 1, v1 ≥ 1. Let

the ideal they generate be

I := 〈fy,v,1,2|y, v ∈ Z2
≥0,
∑
i

yi =
∑
i

vi = d− 1, y2 ≥ 1, v1 ≥ 1〉. (3.1.9)
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We introduce the following weights on our variables. Let

weight
(
ui(d−i)

)
= i, (3.1.10)

for all i = 0, 1, . . . , d. Consider the weighted term order on monomials ≺ given by the above
weights, refined by the lexicographic term order such that ud0 � u(d−1)1 � · · · � u0d in case
of equal weights.

We first show that the equations (3.1.8) form a Gröbner basis with respect to ≺. Using
Macaulay2, we have shown that they form a Gröbner basis for d = 1, 2, . . . , 9. Now, consider
any d > 9. Take fy′,v′,1,2 and fy′′,v′′,1,2. By Buchberger’s second criterion, we only need to
consider the two polynomials when their initial terms have a common variable. Then, the
two polynomials fy′,v′,1,2 and fy′′,v′′,1,2 contain l ≤ 9 different variables in total. If we restrict
our generators (3.1.8) to these l variables only, the restriction of the term order is the same
as the term order in the case d = l − 1, and we have shown that in this case, the restricted
generators form a Gröbner basis. Therefore, we can reduce the S-pair of fy′,v′,1,2 and fy′′,v′′,1,2
to 0 using the generators (3.1.8). Thus, the equations (3.1.8) form a Gröbner basis.

Next, we show that the ideal I generated by (3.1.8) has dimension 3. One way to see
this is to use Lemma 3.1.21 together with the fact that I is prime, which is proven below.
Another way to see that dim I = 3 is to reason with standard monomials as follows.

Note that because of our choice of term order ≺, the initial term of every fu,v,1,2 is square-
free. The reason is that if uy+es = uv+es , then, weight(uy+e1uv+e1) = weight( uy+e1−e2+e1

uv−e1+e2−e1) > weight( uy+e2uv+e2) = weight(uy+e1−e2+e2 uv−e1+e2−e2), but uy+e1−e2+e1 ap-
pears first in ≺, so, uy+e1−e2+e1uv−e1+e2−e1 is the leading term. The reasoning is similar if
uy+e1−e2+e2 = uv−e1+e2−e1 . Therefore, in≺I (and thus I) is a radical ideal.

To show that dim I = 3, let S = {ui1(d−i1), ui2(d−i2), ui3(d−i3), ui4(d−i4)} be a set of four
variables, where i1 > i2 > i3 > i4. We will show that there is a monomial with only variables
from S which is not standard. This would mean that dim I ≤ 3. Indeed, consider

f(i1−1,d−i1+1),(i3+1,d−i3−1),1,2 = u(i1−1)(d−i1+1)u(i3+1)(d−i3+1) − ui1(d−i1)ui3(d−i3)

+u(i1−2)(d−i1+2)ui2(d−i2) − u(i1−1)(d−i1+1)u(i2−1)(d−i2+1).

Since i1 − 2 ≥ i3, the initial term is ui1(d−i1)ui3(d−i3). Therefore, dim I ≤ 3.
Now, consider the set S = {u2(d−2), u1(d−1), u0d}. Suppose there exists

fy,v,1,2 = uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 + uy+e2uv+e2 − uy+e1−e2+e2uv−e1+e2+e2 ,

such that in≺ (f) has both of its variables in S. We know that in≺ (f) = uy+e1uv+e1 or
in≺ (f) = uy+e1−e2+e1uv−e1+e2+e1 . Moreover, if y = (y1, y2) and v = (v1, v2), then, y2, v1 ≥ 1
and y1, v2 ≤ d − 2. Thus, if in≺ (f) = uy+e1uv+e1 and uy+e1 , uv+e1 ∈ S, then, v = (1, d− 2)
and y = (1, d− 2) or y = (0, d− 1). Since fy,v,1,2 is not the trivial polynomial 0, then,
y 6= (0, d− 1). Thus, y = (1, d− 2). But this is impossible since in≺ (f) is square-free for
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every generator f . If in≺ (f) = uy+e1−e2+e1uv−e1+e2+e1 and uy+e1−e2+e1 , uv−e1+e2+e1 ∈ S, then,
u(y1+2,y1−1) ∈ S. But y1 ≥ 1, so, y1 + 2 ≥ 3, therefore, u(y1+2,y2−1) 6∈ S. In any case, there
can’t be a monomial with only variables in S, which is a leading term of an element in I.
Thus, dim I = 3.

Another way to see that dim I ≥ 3 is by noting that V (I) contains the odeco variety,
which has dimension 3 in this case.

Finally, we show that the ideal generated by (3.1.8) is prime. Let J be the ideal
generated by the leading binomials of the elements in (3.1.8) with respect to the weight
order defined by (3.1.10) (without considering the refinement given by the order of the
variables). Denote by gw the leading term of a polynomial g just with respect to this
weight order. Then, (fy,v,1,2)w = uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 , and J = 〈uy+e1uv+e1 −
uy+e1−e2+e1uv−e1+e2+e1 : y, v ∈ Z2

≥0, y1 + y2 = v1 + v2 = d− 1, y2, v1 ≥ 1〉. The ideal J is the
prime ideal of the rational normal curve; in particular, it is prime. Moreover, by Proposition
1.13 in [146], in≺ (I) =in≺ (J). Therefore, in≺ (I) is an initial ideal of both I and J . In the
following paragraph, we show that J is the initial ideal of I with respect to the weight order
given by (3.1.10). Then, since J is prime, it follows that I is prime.

Suppose J is not initial, i.e. there exists g ∈ I such that gw 6∈ J . Choose g with in≺ (g) as
small as possible. Since the elements fu,v,1,2 form a Gröbner basis of I, then, there exist y, v
such that in≺ (g) is divisible by in≺ (fy,v,1,2). Then, g = αy,vfy,v,1,2 +g1, where αy,v is a mono-
mial and in≺g1 ≺ in≺g. But note that then, gw = αy,v (uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1)+
(g1)w. Since uy+e1uv+e1−uy+e1−e2+e1uv−e1+e2+e1 ∈ J and gw 6∈ J , then, (g1)w 6∈ J . But this is
a contradiction since in≺ (g1) ≺ in≺ (g) and we chose in≺ (g) to be as small as possible such
that gw 6∈ J .

Therefore, J is initial. Since it is prime, then, I is also prime. By Lemma 3.1.21, the
dimension of the odeco variety for n = 2 is 3. Moreover, it is contained in V (I). Since
V (I) is also irreducible and has dimension 3, then, I is exactly the prime ideal of the odeco
variety.

3.1.3.1 Evidence for Conjecture 3.1.16

Lemma 3.1.21. The odeco variety is an irreducible component of V (I), where I is the ideal
generated by the equations (3.1.5).

Proof. We show that the dimension of the component of V (I) containing the odeco variety
is equal to

(
n+1

2

)
. This equals the dimension of the odeco variety. Since it is irreducible, then

it is an irreducible component of V (I).
Consider the point T ∈ V (I) given by Ti...i = 1 for all i = 1, . . . , n and all other

entries of T are 0. The polynomial corresponding to T is the standard Fermat polynomial
fT (x1, . . . , xn) = xd1 + · · ·+xdn. In the u coordinates, T is represented by the point for which
u0...0d0...0 = udei = 1 for i = 1, . . . , n and all other ui1...in = 0.

We can select generators fv,w for I such that v, w ∈ Zn≥0 with
∑

i vi =
∑

iwi = d− 1 and
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fv,w =
s∑
i=1

uv+esuw+es − usort(v,w)1+esusort(v,w)2+es ,

where sort(v, w)1 and sort(v, w)2 are defined as follows. Given v and w, form the corre-
sponding sequences t (v) = 1 . . . 1︸ ︷︷ ︸

v1 times

2 . . . 2︸ ︷︷ ︸
v2 times

. . . n . . . n︸ ︷︷ ︸
vn times

and t (w) = 1 . . . 1︸ ︷︷ ︸
w1 times

2 . . . 2︸ ︷︷ ︸
w2 times

. . . n . . . n︸ ︷︷ ︸
wn times

. Let

t (v, w) = sort (t (v) ∪ t (w)) be the sequence obtained by concatenating t (v) and t (w) and
then sorting. Let t (v, w)1 be the subsequence of elements in odd positions and t (v, w)2 the
subsequence of elements in even positions. Define usort(v,w)1

and usort(v,w)2
be the correspond-

ing u variables. The fact that the polynomials fu,w generate I follows from Theorem 14.2 in
[146].

We form the Jacobian J of I at the point T . Index the rows of J by the generators fv,w
and index the columns by the variables ui1,...,in . Note that ∂f

∂udei
|T = 0 since the monomials

in fv,w containing udei contain another variable ui1,...,in 6= udej for all j = 1, . . . , n. Therefore,
the column corresponding to udei is zero.

Note that the monomials usort(v,w)1+esusort(v,w)2+es cannot contain a variable udei for any
v and w that give a nontrivial fu,v, so they don’t matter in the Jacobian analysis.

Now, the column of J corresponding to the variable u(d−1)ei+ej for i 6= j has 1 only in
the rows corresponding to f(d−1)ei,(d−1)ej and so does the variable u(d−1)ej+ei . Therefore, the
variables u(d−1)ei+ej and the polynomials f(d−1)ei,(d−1)ej form a block in J of rank

(
n
2

)
, which

equals the number of pairs i 6= j.
For any other variable ui1,...,in , such that (i1, . . . , in) 6= dei or (d− 1) ei+ej, its correspond-

ing column is nonzero only at the rows corresponding to the polynomials f(i1,...,in)−es,(d−1)es

for all s such that is > 0. Each such polynomial has no other 1’s in its row except for the
one at ui1,...,in . Therefore, each variable ui1,...,in , such that (i1, . . . , in) 6= dei or (d− 1) ei + ej,
contributes a size 1 × {#s : is > 0} nonzero block to J , so it contributes 1 to the rank.
Therefore, the rank of J is

# variables −#{udei} −#{u(d−1)ei+ej :i 6=j}+

(
n

2

)

= # variables − n− n (n− 1) +

(
n

2

)
= # variables −

(
n+ 1

2

)
.

Thus, the rank of the Jacobian at a smooth point in the irreducible component of T is at
least # variables −

(
n+1

2

)
, so the dimension of an irreducible component containing T is at

most
(
n+1

2

)
.

Since the odeco variety is irreducible, has dimension
(
n+1

2

)
, contains T , and is contained

in V (I), then it is one of the irreducible components of V (I).

Lemma 3.1.21 shows that one only needs to show that the ideal I is prime in order to
confirm Conjecture 3.1.16.
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Computations

In Figure 3.2 we show some computational checks of the conjecture.
Since the ideal I becomes quite large, as n and d grow, it soon becomes hard to check

its primality. It was easy to check the conjecture was correct in the case n = d = 3 using
Macaulay2. The case n = 3, d = 4 was checked using the numerical homotopy software
Bertini. We were unable to confirm the rest of the results using (short) computations.

n d dimension degree # min. gens. conjecture check
3 3 6 10 6 True
3 4 6 35 27 True
3 5 6 84 75
4 3 ≥ 10 20
4 4 ≥ 10 126
5 3 ≥ 15 50

Figure 3.2: A table of what can be found computationally about the ideal I generated by
the equations in (3.1.5).
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3.2 Singular Vectors of Orthogonally Decomposable

Tensors

Orthogonal decomposition of tensors is a generalization of the singular value decomposition
of matrices. In this section, we study the spectral theory of orthogonally decomposable
tensors. For such a tensor, we give a description of its singular vector tuples as a variety in
a product of projective spaces. This is joint work with Anna Seigal titled Singular vectors
of orthogonally decomposable tensors [132].

3.2.1 Introduction

The singular value decomposition of a matrix M ∈ Rn1 ⊗ Rn2 expresses it in the form

M = V (1)Σ(V (2))T =
n∑
i=1

σiv
(1)
i ⊗ v(2)

i , (3.2.1)

where V (1) ∈ Rn1 ⊗ Rn1 and V (2) ∈ Rn2 ⊗ Rn2 are orthogonal matrices. The vectors
v

(1)
1 , . . . , v

(1)
n1 and v

(2)
1 , . . . , v

(2)
n2 are the columns of the matrices V (1) and V (2) respectively.

The matrix Σ is diagonal of size n1× n2 with non-negative diagonal entries σ1, ..., σn, where
n = min{n1, n2}. The singular value decomposition of a matrix is extremely useful for study-
ing matrix-shaped data coming from applications. For example, it allows the best low-rank
approximation of a matrix to be found.

In light of the excellent properties of the singular value decomposition, and of the preva-
lence of tensor data coming from applications, it is a topic of major interest to extend the
singular value decomposition to tensors. In fact it is even more crucial to find a low rank
approximation of a tensor than it is for a matrix: the greater number of dimensions makes
tensors in their original form especially computationally intractable. In this section we in-
vestigate those tensors for which the singular value decomposition is possible. We note that
our singular value decomposition is not valid for all tensors of a given format, which makes
it more stringent than that in [110], which is based on flattenings of the tensor.

Definition 3.2.1. A tensor T ∈ Rn1 ⊗ Rn2 ⊗ · · · ⊗ Rnd is orthogonally decomposable, or
odeco, if it can be written as

T =
n∑
i=1

σiv
(1)
i ⊗ v(2)

i ⊗ · · · ⊗ v(d)
i ,

where n = min{n1, . . . , nd}, the scalars σi ∈ R, and the vectors v
(j)
1 , v

(j)
2 , . . . , v

(j)
n ∈ Rnj are

orthonormal for every fixed j ∈ {1, . . . , d}.
We remark that in the above decomposition for T it is sufficient to sum up to n =

min{n1, . . . , nd} since there are at most nj orthonormal vectors in Rnj for every j = 1, . . . , d.
Such a decomposition will in general be unique up to re-ordering the summands.
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Odeco tensors have been studied in the past due to their appealing properties [8, 6, 98,
99, 131, 160]. Finding the decomposition of a general tensor is NP-hard [92], however finding
the decomposition of an odeco tensor can be done efficiently via a few different methods [100,
160].

The variety of odeco tensors is studied in Section 4.1, and the eigenvectors of symmetric
odeco tensors of format n × · · · × n were studied in Section 3.1. Here we focus on odeco
tensors of format n1 × · · · × nd that need not be symmetric, and whose dimensions ni need
not be equal. As with matrices, when the dimensions ni are not equal, it is no longer possible
to define eigenvectors. The right notion is now that of a singular vector tuple.

Definition 3.2.2. A singular vector tuple of a tensor T ∈ Rn1 ⊗ · · · ⊗ Rnd is a d-tuple of
nonzero vectors (x(1), . . . , x(d)) ∈ Cn1 × · · · × Cnd such that

T (x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)) is parallel to x(j), for all j = 1, . . . , d. (3.2.2)

The left hand side of equation (3.2.2) is the vector obtained by contracting T by the vector
x(k) along its k-th dimension for all k 6= j.

Since this setup is invariant under scaling each vector x(j), we consider the singular vector
tuple (x(1), . . . , x(d)) to lie in the product of projective spaces Pn1−1 × · · · × Pnd−1.

The singular vector tuples of a tensor can also be characterized via a variational approach,
as in [112]. They are the critical points of the optimization problem

maximize T (x(1), . . . , x(d))

subject to ||x(1)|| = · · · = ||x(d)|| = 1,

where we note that the global maximizer gives the best rank-one approximation of the tensor.
Given a decomposition of an odeco tensor T =

∑n
i=1 σiv

(1)
i ⊗ · · · ⊗ v

(d)
i , it is straight-

forward to see that the tuples (v
(1)
i , . . . , v

(d)
i ) corresponding to the rank-one tensors in the

decomposition are singular vector tuples. For generic matrices M ∈ Rn1 ⊗Rn2 the rank-one
terms in the singular value decomposition constitute all of the singular vector pairs. In con-
trast, odeco tensors have additional singular vector tuples that do not appear as terms in
the decomposition.

Remark 3.2.3. When (x(1), . . . , x(d)) is a singular vector tuple of T , we distinguish between
the cases T (x(1), . . . , x(d)) = 0 and T (x(1), . . . , x(d)) 6= 0. This is equivalent to whether or
not the vectors in (3.2.2) are zero for all j = 1, . . . , d (by the definition of a singular vector
tuple). In the former case, the singular vector tuple is a base point of the following map of
projective space induced by T :

Pn1−1 × · · · × Pnd−1 → Pn1−1 × · · · × Pnd−1

(x(1), . . . , x(d)) 7→
(
T (·, x(2), . . . , x(d)), . . . , T (x(1), . . . , x(d−1), ·)

)
.

In the latter case the singular vector tuple is a fixed point of this map.
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Our main theorem is the following description of the singular vector tuples of an odeco
tensor:

Theorem 3.2.4. The projective variety of singular vector tuples of an odeco tensor T ∈
Rn1 ⊗ Rn2 ⊗ · · · ⊗ Rnd is a subvariety of Pn1−1 × · · · × Pnd−1 and consists of

(2d−1(d− 2) + 1)
n − 1

2d−1(d− 2)

fixed points, and an arrangement of base points. The base points comprise
(
d
2

)n−c(d−1)n+
(
c
2

)
components, each of dimension

∑d
j=1(nj − 1) − 2n, that are products of linear subspaces of

each Pnj−1. Here, n = min{n1, . . . , nd} and c = #{j : nj = n}.

In particular, for all but a few small cases, the singular vector tuples of an odeco tensor
comprise a positive-dimensional variety. In contrast, the variety of singular vector tuples of a
generic tensor is zero-dimensional [69]. It is interesting to study how the positive-dimensional
components of the singular vector variety for an odeco tensor adopt generic behavior under
a small perturbation. Note the contrast to the variety of eigenvectors of a general symmetric
odeco tensor, which is also zero-dimensional by Theorem 3.1.8.

The rest of this section is organized as follows. In Subsection 3.2.2, we use the theory of
binomial ideals [60] to describe the singular vector tuples of an odeco tensor. In Subsection
3.2.3 we conclude the proof of our theorem by describing the positive-dimensional compo-
nents of the variety of singular vector tuples. Finally, in Subsection 3.2.4, we explore the
structure of these components in more detail by studying specific examples.

3.2.2 Description of the Singular Vector Tuples

In this section we give a formula for the singular vector tuples of an odeco tensor. We start
by considering a diagonal odeco tensor.

Lemma 3.2.5. Let S ∈ Rn1 ⊗ · · · ⊗ Rnd be the tensor

S =
n∑
i=1

σie
(1)
i ⊗ · · · ⊗ e(d)

i ,

where σ1, . . . , σn 6= 0, the vector e
(j)
i is the ith basis vector in Rnj , and n = min{n1, . . . , nd}.

The singular vector tuples (x(1), . . . , x(d)) ∈ Pn1−1 × . . .× Pnd−1 of S are given as follows.

Type I: Tuples (x(1), . . . , x(d)) of the form

σ
− 1
d−2

τ(1)

(
e

(1)
τ(1), e

(2)
τ(1), . . . , e

(d)
τ(1)

)
+

m∑
i=1

ηiσ
− 1
d−2

τ(i)

(
e

(1)
τ(i), χ

(2)
i e

(2)
τ(i), . . . , χ

(d)
i e

(d)
τ(i)

)
(3.2.3)
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where 1 ≤ m ≤ n, the scalars χ
(j)
i ∈ {±1} are such that

∏d
j=2 χ

(j)
i = 1 for every

i = 1, ...,m, each scalar ηi is a (2d− 4)-th root of unity, and τ is any permutation on
{1, . . . , n}.

Type II: All tuples (x(1), . . . , x(d)) such that the n× d matrix X = (x
(j)
i )1≤i≤n,1≤j≤d has at least

two zeros in each row. Since each x(j) ∈ Pnj−1, we further require that no x(j) has all
coordinates equal to zero.

Before proving Lemma 3.2.5, we illustrate it by way of the following example:

Example 3.2.6. Consider the odeco tensor S = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ∈ R2 ⊗R3 ⊗R3.
Its Type I singular vector tuples are(

e
(1)
1 , e

(2)
1 , e

(3)
1

)
,
(
e

(1)
2 , e

(2)
2 , e

(3)
2

)
(
e

(1)
1 + e

(1)
2 , e

(2)
1 + e

(2)
2 , e

(3)
1 + e

(3)
2

)
,
(
e

(1)
1 + e

(1)
2 , e

(2)
1 − e(2)

2 , e
(3)
1 − e(3)

2

)
,(

e
(1)
1 − e(1)

2 , e
(2)
1 + e

(2)
2 , e

(3)
1 − e(3)

2

)
,
(
e

(1)
1 − e(1)

2 , e
(2)
1 − e(2)

2 , e
(3)
1 + e

(3)
2

)
,

The Type II singular vectors make five copies of P1, namely

(
�e(1)

1 +�e(1)
2 , e

(2)
3 , e

(3)
3

)
,
(
e

(1)
1 ,�e(2)

2 +�e(2)
3 , e

(3)
3

)
,
(
e

(1)
1 , e

(2)
3 ,�e(3)

2 +�e(3)
3

)
,(

e
(1)
1 ,�e(2)

1 +�e(2)
3 , e

(3)
3

)
,
(
e

(1)
2 , e

(2)
3 ,�e(3)

1 +�e(3)
3

)
,

where two �’s in a vector indicate a copy of P1 on those two coordinates. The five copies of
P1 intersect in two triple intersections, as seen in Figure 3.3.

Figure 3.3: The Type II singular vectors: five copies of P1 meeting at two triple intersections

According to [69], the generic number of singular vector tuples of a tensor of this size is
15, so the five copies of P1 degenerate from nine points. For example, consider the family of
perturbed tensors

Sε = S + εT,
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where T is the 2× 3× 3 tensor with slices T1,·,· and T2,·,· given by

T1,·,· =

 0 40 10
100 3 3
3 2 6

 , T2,·,· =

7 1 1
8 0 2
2 2 3

 .

For ε on the order of 10−6 we attain nine points: one point near each copy of P1, and two
points of multiplicity 2 near each triple intersection.

We will return this example in Section 3.2.4.

Proof of Lemma 3.2.5. By definition, (x(1), . . . , x(d)) is a singular vector tuple of S if and
only if for each j = 1, . . . , d the following matrix has rank at most one:

MS,j =
[
S(x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)) | x(j)

]
=

σ1x
(1)
1 · · · x̂(j)

1 · · ·x(d)
1 x

(j)
1

...
...

σnx
(1)
n · · · x̂(j)

n · · ·x(d)
n x

(j)
n


where x̂

(j)
i denotes the omission of x

(j)
i from the product.

We examine the structure of the singular vectors tuples of S by looking at the following
three cases.

Case 1: Consider the variables x
(1)
i , . . . , x

(d)
i , where i ∈ {1, 2, . . . , n} is fixed. Suppose

that exactly one of the variables x
(j)
i is 0, i.e. x

(k)
i 6= 0 for all k 6= j. The i-th row of the

matrix MS,j has first entry σix
(1)
i . . . x̂

(j)
i . . . x

(d)
i 6= 0 and second entry x

(j)
i = 0. Therefore,

in order for this matrix to have rank 1, we need the whole second column to be zero, i.e.
x

(j)
1 = · · · = x

(j)
n = 0. Since x(j) ∈ Pnj−1, this can only happen if nj > n and one of the last

nj − n coordinates of x(j) is nonzero. But the contraction S(x(1), . . . , x(j−1), ·, x(j+1), . . . x(d))

lies in the span of e
(j)
1 , . . . , e

(j)
n , so in order for it to be parallel to x(j) it has to be 0. In

particular, its i-th entry σix
(1)
i . . . x̂

(j)
i . . . x

(d)
i has to be 0. Contradiction! Therefore, we can’t

have exactly one of the variables x
(1)
i , . . . , x

(d)
i equal to 0.

Case 2: Suppose that for some i at least two of the entries x
(1)
i , . . . , x

(d)
i , but not all of

them, are equal to 0. This means that the entry in the i-th row and the first column of MS,k

is 0 for every k, and if x
(k)
i 6= 0 (and we assumed that one such k exists) then the entry in

the i-th row and the second column is not 0. For such a k, the whole first column of MS,k

must be 0 in order that it have rank 1. Therefore, for every i, at least two of the entries
x

(1)
i , . . . , x

(d)
i are equal to 0. Conversely, if for every i at least two of the entries x

(1)
i , . . . , x

(d)
i

are equal to 0 in such a way that x(j) ∈ Pnj−1, then, (x(1), . . . , x(d)) is a singular vector tuple
of S. This gives the singular vector tuples of Type II, also known as the base points.

Case 3: It remains to consider the situation where, for every i, either x
(1)
i = . . . = x

(d)
i = 0

or none of the variables x
(1)
i , . . . , x

(d)
i are 0. After reordering, assume that x

(1)
i = . . . = x

(d)
i =

0 for m+ 1 ≤ i ≤ n, for some m ≤ n, and x
(1)
i , . . . , x

(d)
i 6= 0 for 1 ≤ i ≤ m.
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The condition for being a singular vector tuple now yields the following system of poly-

nomial equations in the Laurent polynomial ring C
[
x

(j)
i , 1

x
(j)
i

: 1 ≤ i ≤ m, 1 ≤ j ≤ d

]
:

I =
〈
σix

(1)
i . . . x̂

(j)
i . . . x

(d)
i x

(j)
l − σlx

(1)
l . . . x̂

(j)
l . . . x

(d)
l x

(j)
i : 1 ≤ j ≤ d, 1 ≤ i, l ≤ m

〉
(3.2.4)

To solve this system of equations, we use the theory of binomial ideal decomposition devel-
oped in [60].

Consider the lattice

Lρ =

〈
d∑

k=1

(e
(k)
i − e(k)

l )− 2(e
(j)
i − e(j)

l ) : 1 ≤ j ≤ d, 1 ≤ i, l ≤ m

〉
⊆ Zd×m

where e
(a)
b is the elementary basis vector in Zd×m with a 1 in coordinate (a, b). Let ρ : Lρ → C∗

denote the partial character

ρ

(
d∑

k=1

(e
(k)
i − e(k)

l )− 2(e
(j)
i − e(j)

l )

)
=
σl
σi
∀ 1 ≤ j ≤ d, 1 ≤ i, l,≤ m (3.2.5)

Then the lattice ideal I(ρ) = 〈xv − ρ(v) : v ∈ Lρ〉 is our ideal I, where xv denotes taking the

variables x
(j)
i in the ring to the powers indicated by the lattice element v.

We have the inclusion Lρ ⊆ L = 〈e(j)
i − e(j)

l : 1 ≤ j ≤ d, 1 ≤ i, l ≤ m〉. Therefore by [60,
Theorem 2.1],

I(ρ) =
⋂

ρ′ extends ρ to L

I(ρ′).

To decompose the ideal I(ρ), we therefore seek to characterize the partial characters ρ′

of L which extend ρ. Summing (3.2.5) over 1 ≤ j ≤ d gives the formula

ρ

(
d∑
j=1

(
d∑

k=1

(e
(k)
i − e(k)

l )− 2(e
(j)
i − e(j)

l )

))
=

(
σl
σi

)d

which, after simplifying, yields ρ
(

(d− 2)
∑d

k=1(e
(k)
i − e(k)

l )
)

=
(
σl
σi

)d
. Therefore, any ρ′

extending ρ satisfies

ρ′

(
d∑

k=1

(e
(k)
i − e(k)

l )

)
= φil

(
σl
σi

) d
d−2

(3.2.6)

where φil is a (d− 2)-th root of unity. By rearranging (3.2.5), we moreover obtain

ρ′
(

2(e
(j)
i − e(j)

l )
)

= ρ′

(
d∑

k=1

(e
(k)
i − e(k)

l )

)(
σi
σl

)
. (3.2.7)
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Combining (3.2.6) and (3.2.7) yields

ρ′
(

2(e
(j)
i − e(j)

l )
)

= φil

(
σl
σi

) 2
d−2

.

Thus,

ρ′
(
e

(j)
i − e(j)

l

)
= φ

(j)
il

(
σl
σi

) 1
d−2

where φ
(j)
il are 2(d−2)-th roots of unity such that (φ

(j)
il )2 = φil for all j = 1, . . . , d. It remains

to find the relations satisfied by φ
(j)
il as i, l, j vary so that the original equation (3.2.5) is

satisfied. When we plug in to that equation, we get

d∏
k=1

(
φ

(k)
il

(
σl
σi

) 1
d−2

)
φ−1
il

(
σl
σi

)− 2
d−2

=
σl
σi
,

which is equivalent to

d∏
k=1

φ
(k)
il = φil. (3.2.8)

To satisfy these conditions, we can express everything in the following way. Let ηil = φ
(j)
il

be a (2d− 4)-th root of unity. Since η2
il = (φ

(j)
il )2 = φil, then φ

(j)
il = ηilχ

(j)
il , where χ

(j)
il = ±1.

Then, equation (3.2.8) becomes

ηdil

d∏
j=2

χ
(j)
il = φil = η2

il.

Equivalently,

ηd−2
il =

d∏
j=2

χ
(j)
il .

Note that since ηil is a (2d− 4)-th root of unity, we have ηd−2
il = ±1.

Finally, since (e
(j)
i − e(j)

l ) + (e
(j)
l − e

(j)
h ) + (e

(j)
h − e

(j)
i ) = 0, applying ρ gives

1 = χ
(j)
il ηil

(
σl
σi

) 1
d−2

χ
(j)
lh ηlh

(
σh
σl

) 1
d−2

χ
(j)
hi ηhi

(
σi
σh

) 1
d−2

.

We now have all the relations required to find the ideals I(ρ′):

I(ρ′) =

〈
x

(j)
i − χ(j)

i1 ηi1

(
σ1

σi

) 1
d−2

x
(j)
1 : 1 ≤ i ≤ m, 1 ≤ j ≤ d

〉
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where χ
(j)
i1 ∈ {±1} with

∏d
j=2 χ

(j)
i1 = 1 and ηi1 are (2d−4)-th roots of unity. Setting χ

(j)
i = χ

(j)
i1

and ηi = ηi1, and taking I to be the intersection of the I(ρ′), we obtain the required form of
our singular vector tuples:

I =
⋂
η,χ

〈
x

(j)
i − χ(j)

i ηi

(
σ1

σi

) 1
d−2

x
(j)
1 : 1 ≤ i ≤ m, 1 ≤ j ≤ d

〉
.

Here χ
(1)
i = 1 for all i. The zeros of this ideal are the singular vector tuples of Type 1, also

known as the fixed points.

Now, we proceed to the main result of this section. We describe the singular vector tuples
of a general odeco tensor.

Proposition 3.2.7. Let T =
∑n

i=1 σiv
(1)
i ⊗· · ·⊗v(d)

i ∈ Rn1⊗· · ·⊗Rnd be an odeco tensor such

that v
(j)
1 , . . . , v

(j)
n ∈ Rnj are orthonormal vectors. Let V (j) ∈ Rnj ⊗ Rnj be any orthogonal

matrix whose first n columns are v
(j)
1 , . . . , v

(j)
n . Then, the singular vector tuples of T are

given by (V (1)x(1), . . . , V (d)x(d)) where (x(1), . . . , xd)) is a singular vector tuple of the diagonal

tensor S =
∑n

i=1 σie
(1)
i ⊗ · · · ⊗ e(d)

i described in Lemma 3.2.5. In other words, the singular
vectors of T are as follows:

Type I: Tuples
(
V (1)x(1), . . . , V (d)x(d)

)
, such that (x(1), . . . , xd)) is a Type I singular vector of

the diagonal odeco tensor in Lemma 3.2.3.

Type II: Tuples
(
V (1)x(1), . . . , V (d)x(d)

)
, where the matrix X = (x

(j)
i )ij has at least two zeros in

each row such that none of the vectors x(j) ∈ Pnj−1 is identically zero.

Proof. Assume that (y(1), . . . , y(d)) is a singular vector tuple of T . Equivalently, for all
1 ≤ j ≤ d, the vector T (y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)) is parallel to y(j). Unpacking the
definition of the contraction, we obtain

T (y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)) =
n∑
i=1

σi

(∏
k 6=j

(v
(k)
i · y(k))

)
v

(j)
i (3.2.9)

The inner-product term (v
(k)
i ·y(k)) is the i-th element in the vector x(k) := (V (k))

T
y(k), where

V (k) is any orthogonal matrix with first n columns equal to v
(k)
1 , . . . , v

(k)
n . We can re-write

the right hand side of (3.2.9) in terms of the x(k), 1 ≤ k ≤ d, as

n∑
i=1

σi

(∏
k 6=j

x
(k)
i

)
v

(j)
i = V (j)

(
n∑
i=1

σi

(∏
k 6=j

x
(k)
i

)
e

(j)
i

)
.

Therefore,

T (y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)) = V (j)S(x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)),
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where S =
∑n

i=1 σie
(1)
i ⊗· · ·⊗e(d)

i . Since V (j) is orthogonal, T (y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d))
and y(j) = V (j)x(j) are parallel if and only if S(x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)) and x(j) are
parallel. Therefore, equivalently (x(1), . . . , x(d)) is a singular vector tuple of S, and the
solutions for all such (x(1), . . . , x(d)) are given in Lemma 3.2.5.

3.2.3 Proof of the Main Theorem

Proof of Theorem 3.2.4. The count for the contribution of the fixed points to the projective
variety of singular vector tuples is obtained as follows directly from Proposition 3.2.7. For
any choice of m ∈ {1, . . . , n}, a subset of {1, . . . , n} of size m, scalars ηi which are (2d− 4)-

th roots of unity (where i ∈ {2, . . . ,m}), and χ
(j)
i ∈ {±1} such that

∏d
j=2 χ

(j)
i = 1 (where

i ∈ {2, . . . ,m} and j ∈ {2, . . . , d}), we have one singular vector tuple. Therefore, the total
number of singular vector tuples of Type I is

n∑
m=1

(
n

m

)
(2d− 4)m−12(m−1)(d−2) =

n∑
m=1

(d− 2)m−12(m−1)(d−1)

=

∑n
m=1(d− 2)m2(d−1)m

2d−1(d− 2)
=

(2d−1(d− 2) + 1)n − 1

2d−1(d− 2)
.

It remains to study the contribution made by the Type II singular vector tuples which
constitute the base locus. By Proposition 3.2.7, we can restrict our attention to the tensor
S =

∑n
i=1 σiei⊗ · · · ⊗ ei, since its singular vector tuples differ from those of a general tensor

only by an orthogonal change of coordinates in each factor.
We first study the case in which all dimensions are equal, n1 = · · · = nd = n. Here, the

tuple (x(1), . . . , x(d)) is a Type II singular vector tuple if and only if the matrix X = (x
(j)
i )

has at least two zeros in every row and none of the vectors x(j) is identically zero. This
configuration is a subvariety of Pn−1 × · · · × Pn−1. Its ideal is given by

n∑
i=1

〈x(1)
i · · · x̂(j)

i · · ·x(d)
i : j = 1, . . . , d〉 =

n∑
i=1

⋂
1≤j<k≤d

〈x(j)
i , x

(k)
i 〉. (3.2.10)

We count the number of components in this subvariety by looking at the Chow ring
of Pn−1 × · · · × Pn−1, which is Z[t1, . . . , td]/(t

n
1 , . . . , t

n
d). Each tj represents the class of a

hyperplane in Pnj−1, the jth projective space in the product. The equivalence class of the

variety V
(
〈x(j)

i , x
(k)
i 〉
)

is given by tjtk. We consider the variety

V
( ⋂

1≤j<k≤d

〈x(j)
i , x

(k)
i 〉
)

=
⋃

1≤j<k≤d

V
(
〈x(j)

i , x
(k)
i 〉
)

(3.2.11)

which yields our variety of interest when we intersect over i. Its equivalence class is given
by
∑

1≤j<k≤d tjtk. From this, we see that the equivalence class in the Chow ring of the total



CHAPTER 3. ORTHOGONALLY DECOMPOSABLE TENSORS 103

configuration is given by

p(t1, . . . , td) =

( ∑
1≤j<k≤d

tjtk

)n

. (3.2.12)

Therefore, to count the number of linear spaces that constitute the Type II singular
vector tuples, we wish to count the number of monomials of the polynomial (3.2.12) as an
element of the Chow ring. Equivalently we count the terms in the expansion, as an element
of Z[t1, . . . , td], that are not divisible by tdj for any j.

A monomial in the expanded form of (3.2.12) is produced by multiplying one of the
(
d
2

)
terms in each of the n factors. This produces the first term,

(
d
2

)n
, in the expression for

the number of components in the base locus. We must now subtract those terms that are
divisible by tnj for some fixed j. These are formed by selecting the terms tjtk1 , . . . , tjtkn from
consecutive factors. There are d−1 choices for each ks, and d choices for the fixed j, yielding
at first glance d(d− 1)n terms of this format. However, we have double-counted those terms
of the form tnj t

n
k for fixed j and k, of which there are

(
d
2

)
. Combining these terms gives the

correct specialization of our desired formula to the case c = #{j : nj = n} = d:(
d

2

)n
− d(d− 1)n +

(
d

2

)
(3.2.13)

The codimension of the ideal in (3.2.10) is 2n, so our linear spaces enumerated above are of
dimension d(n− 1)− 2n.

The case of non-equal dimensions follows similarly: consider S =
∑n

i=1 σie
(1)
i ⊗ · · · ⊗ e(d)

i

of format n1 × · · · × nd where n = min{n1, . . . , nd} and c = #{j : nj = n}. To count the
number of maximal-dimensional linear spaces, we consider the same polynomial (3.2.12) in
the Chow ring Z[t1, . . . , td]/(t

n1
1 , . . . , t

nd
d ), and we now want to count the number of terms

which are not divisible by t
nj
j for any j = 1, . . . , d.

From the form of p in (3.2.12), we see that it is impossible for a term to be divisible by
t
nj
j for any nj > n. Our previous formula (3.2.13) therefore generalizes to(

d

2

)n
− c(d− 1)n +

(
c

2

)
and the dimension of each components is

∑d
j=1(nj − 1)− 2n. This concludes the proof.

3.2.4 Further Explorations of the Type II Singular Vectors

In this section we turn our attention to the Type II singular vector tuples of the odeco tensor
S =

∑n
i=1 e

(1)
i ⊗ · · · ⊗ e(d)

i , where S is of format n1 × · · · × nd and n = min{n1, . . . , nd}.
We can associate to each projective space Pnj−1 the simplex ∆nj−1 and consider our

linear spaces as polyhedral subcomplexes (prodsimplicial complexes) in the boundary of the
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product of simplices ∆n1−1 × . . . × ∆nd−1. The number of components in the variety of
Type II singular vector tuples is the number of facets in this complex.

We first return to Example 3.2.6, in which we had six Type I singular vector tuples, and
the Type II singular vector tuples made up five copies of P1. In Figure 3.4, we draw the
polyhedral complex in ∆1 × ∆2 × ∆2 corresponding to the Type II singular vector tuples.
Motivated by this example, we investigate the shape of the Type II singular vector tuples of
other small odeco tensors.

Figure 3.4: The Type II singular vectors tuples of a 2 × 3 × 3 odeco tensor, drawn as a
polyhedral complex

It is interesting to stratify odeco tensors according to the dimension of their Type II
singular vectors, using the following proposition:

Proposition 3.2.8. For each dimension k, the odeco tensors whose Type II singular vector
tuples have dimension k come from a finite list of possible sizes n1 × · · · × nd.

Proof. By Theorem 3.2.4, we seek the solutions of n1, . . . , nd with nj ≥ 2 and d ≥ 3 to the
equation

d∑
j=1

(nj − 1)− 2n = k (3.2.14)

where n = min{n1, . . . , nd}. An odeco tensor of size n1 × · · · × nd will then have Type II
singular vector tuples consisting of product of linear spaces of dimension k. Without loss of
generality, we assume that n1 ≤ . . . ≤ nd, and hence n = n1. Let the constant α be such
that n2 = n+ α. For fixed α, rearranging (3.2.14) shows that we seek to solve the equation

d∑
j=3

(nj − 1) = k + 2− α. (3.2.15)

This has finitely many solutions, since the right hand side is a fixed number, and each
summand on the left hand side has strictly positive integer size. From the form of the right
hand side, we see that there will be solutions for only finitely many values of α. In conclusion,
there are only finitely many size combinations n1 × · · · × nd which yield Type II singular
vector tuples of dimension k.
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For example, odeco tensors whose Type II singular vector tuples constitute a zero-
dimensional projective variety have possible sizes:

{2× 2× 2, 3× 3× 3, 2× 2× 2× 2}.

Theorem 3.2.4 tells us how many singular vector tuples there are of Types I and II, which
are entered in the first two columns of the table below. The number of singular vector tuples
of a generic tensor of a given format is given by [69, Theorem 1], and this is entered into
the last column of the table. We observe that odeco tensors whose Type II singular vector
tuples consist solely of points attain the generic count.

Tensor Size Type I Count Type II Count Generic Count
2× 2× 2 6 0 6
3× 3× 3 31 6 37
2× 2× 2× 2 18 6 24

Now we consider odeco tensors whose Type II singular vector tuples make a one-dimensional
projective variety. They are of one of the following formats:

{2× 3× 3, 2× 2× 4, 3× 3× 4, 4× 4× 4, 2× 2× 2× 3, 2× 2× 2× 2× 2}.

Their singular vector tuples consists of a finite collection of points (Type I) and a collection
of copies of P1 in the product of projective spaces Pn1−1 × . . .× Pnd−1 (Type II). When two
copies of P1 meet, they do so at a triple intersection point. The data for these tensor formats
is recorded in the table below. Under a small perturbation, each copy of P1 contributes one
singular vector tuple, and two arise from each triple intersection. We observe that summing
the Type I count, the number of copies of P1, and twice the number of triple intersections
yields the generic count.

Tensor Size Type I Count #P1s #Triple Intersections Generic Count
2× 3× 3 6 5 2 15
2× 2× 4 6 2 0 8
3× 3× 4 31 12 6 55
4× 4× 4 156 36 24 240
2× 2× 2× 3 18 12 6 42
2× 2× 2× 2× 2 50 30 20 120

We explored the 2 × 3 × 3 case in more detail in Example 3.2.6. In the 3 × 3 × 4 and
2 × 2 × 2 × 3 cases the simplicial complexes of the Type II singular vector tuples are the
same shape. They consist of the 12 copies of P1 meeting at six triple intersections pictured
in Figure 3.5.

In the case of 2 × 2 × 2 × 2 × 2 odeco tensors, we have 30 copies of P1 that meet at 20
triple intersection points as seen in the non-planar arrangement pictured in Figure 3.6. In
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Figure 3.5: The 12 copies of P1 with six triple intersection points, for 3× 3× 4 tensors and
2× 2× 2× 3 tensors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The 30 copies of P1 with 20 triple intersection points, for 2×2×2×2×2 tensors

the case of 4× 4× 4 odeco tensors, we have 36 copies of P1 meeting at 24 triple intersection
points as pictured in Figure 3.7.
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Figure 3.7: The 36 copies of P1 with 24 triple intersection points, for 4× 4× 4 tensors

3.3 Conclusion

In this chapter we studied orthogonally decomposable tensors. In particular, we described
the eigenvectors of symmetric odeco tensors, and the singular vector tuples of non-symmetric
odeco tensors. For a general tensor it is hard both computationally and algebraically to find
its eigenvectors or singular vector tuples. As we saw, odeco tensors have very appealing
structure, and we can express their eigenvectors and singular vector tuples in terms of the
elements in their decomposition.

In the next chapter we continue to explore the properties of odeco tensors by describing
the odeco variety.
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Chapter 4

Varieties of Tensors

4.1 The Variety of Orthogonally Decomposable

Tensors

While every matrix admits a singular value decomposition, in which the terms are pairwise
orthogonal, higher-order tensors typically do not admit such an orthogonal decomposition.
Those that do have attracted attention from theoretical computer science and scientific com-
puting. We complement this existing body of literature with an algebro-geometric analysis
of the set of orthogonally decomposable tensors.

More specifically, we prove that they form a real-algebraic variety defined by polynomials
of degree at most four. The exact degrees, and the corresponding polynomials, are different
in each of the two scenarios: ordinary or symmetric. A key feature of our approach is a
surprising connection between orthogonally decomposable tensors and semisimple associative
algebras.

This section is based on part of joint work with Ada Boralevi, Jan Draisma and Emil
Horobeţ titled Orthogonal and unitary tensor decomposition from an algebraic perspective [23].

4.1.1 Introduction and results

By the singular value decomposition, any real m × n-matrix A can be written as A =∑k
i=1 uiv

T
i , where u1, . . . , uk ∈ Rm and v1, . . . , vk ∈ Rn are sets of nonzero, pairwise orthog-

onal vectors. The singular values ||ui|| · ||vi||, including their multiplicities, are uniquely
determined by A, and if these are all distinct, then so are the terms uiv

T
i . If m = n and A

is symmetric, then the ui and vi can be chosen equal.
In this section we consider higher-order tensors in a tensor product V (1) ⊗ · · · ⊗ V (d) of

finite-dimensional vector spaces V (i) over R where the tensor product is also over R. We
assume that each V (i) is equipped with a positive-definite inner product (·|·).
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Definition 4.1.1. A tensor in V (1) ⊗ · · · ⊗ V (d) is called orthogonally decomposable (odeco)
if it can be written as

k∑
i=1

v
(1)
i ⊗ · · · ⊗ v(d)

i ,

where for each j the vectors v
(j)
1 , . . . , v

(j)
k are nonzero and pairwise orthogonal in V (j).

Note that orthogonality implies that the number k of terms is at most the minimum of
the dimensions of the V (i), so odeco tensors form a rather low-dimensional subvariety of the
space of all tensors; see Proposition 4.1.7.

Next we consider tensor powers of a single, finite-dimensional R-space V. We write Sd(V )
for the subspace of V ⊗d consisting of all symmetric tensors, i.e., those fixed by all permuta-
tions of the tensor factors.

Definition 4.1.2. A tensor in Sd(V ) is called symmetrically odeco if it can be written as

k∑
i=1

±v⊗di

where the vectors v1, . . . , vk are nonzero, pairwise orthogonal vectors in V.

The signs are only required if d is even, as they can otherwise be absorbed into the vi by
taking a d-th root of −1. Clearly, a symmetrically odeco tensor is symmetric and odeco in
the earlier sense. The converse also holds; see Proposition 4.1.16.

By quantifier elimination, it follows that the set of odeco tensors is a semi-algebraic set in
V (1)⊗ · · · ⊗ V (d), i.e., a finite union of subsets described by polynomial equations and (weak
or strict) polynomial inequalities. A simple compactness argument (see Proposition 4.1.5)
also shows that they form a closed subset in the Euclidean topology, so that only weak
inequalities are needed. However, our main result says that, in fact, only equations are
needed, and that the same holds in the symmetrically case as well.

Theorem 4.1.3 (Main Theorem). For each integer d ≥ 3, and for all finite-dimensional
inner product spaces V (1), . . . , V (d) and V over R, the odeco tensors in V (1)⊗ · · · ⊗V (d), and
the symmetrically odeco tensors in Sd(V ), form real algebraic varieties defined by polynomials
of degree 2.

Remark 4.1.4. Several remarks are in order:

1. Unlike for d = 2, for d ≥ 3 the decomposition in Definitions 4.1.1, 4.1.2 is always
unique in the sense that the terms are uniquely determined, regardless of whether
some of their norms coincide; see Proposition 4.1.6.

2. The polynomial equations defining the variety of symmetric odeco tensors are the same
as the ones we saw in Conjecture 3.1.16. We will describe the polynomials defining the
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variety of ordinary odeco tensors in detail later on. The high-level perspective in both
cases is that the equations of degree two guarantee that a particular algebra associated
to a tensor is associative.

3. The degree 2 is minimal in the sense that there are no linear equations.

4. More generally, we do not know whether the equations that we give generate the prime
ideal of all polynomial equations vanishing on our real algebraic varieties when d ≥ 3.

The remainder of this section is organized as follows. In Subsection 4.1.2 we discuss some
background and earlier literature.

In Subsection 4.1.3 we prove the Main Theorem for tensors of order three. The proofs
for symmetrically odeco three-tensors are the simplest, and those for ordinary odeco three-
tensors build upon them. Then, in Subsection 4.1.4 we derive the theorem for higher-order
ordinary and symmetric tensors. We conclude in Subsection 4.1.5 with some open questions.

4.1.2 Background

In this section we collect background results on orthogonally decomposable tensors, and
connect our results to earlier work on them.

Proposition 4.1.5. The set of (ordinary or symmetrically) odeco tensors is closed in the
Euclidean topology.

Proof. We give the argument for symmetrically odeco tensors; the same works in the other
case. Thus consider the space V = Rn with the standard inner product, let On be the
orthogonal group, and consider the map

ϕ : On × PV → PSd(V ), ((v1| . . . |vn), [λ1 : . . . : λn]) 7→
[

n∑
i=1

λiv
⊗d
i

]
.

Here P stands for projective space and where vi is the i-th column of the orthogonal matrix v.
The key point is that this map is well-defined and continuous, since the expression between
the last square brackets is never zero by linear independence of the v⊗di . Now ϕ is a continuous
map whose source is a compact topological space, hence imϕ is a closed subset of PSd(V ).
But then the pre-image of imϕ in Sd(V ) \ {0} is also closed, and so is the union of this
pre-image with {0}. This is the set of symmetrically odeco tensors in Sd(V ).

Proposition 4.1.6. For d ≥ 3, any (ordinary or symmetrically) odeco tensor has a unique
orthogonal decomposition.

In the ordinary case this was proved in [161, Theorem 3.2].



CHAPTER 4. VARIETIES OF TENSORS 111

Proof. We give the argument for ordinary odeco tensors. Consider an orthogonal decompo-
sition

T =
k∑
i=1

v
(1)
i ⊗ · · · ⊗ v(d)

i

of an odeco tensor T ∈ V (1) ⊗ · · · ⊗ V (d). Contracting T with an arbitrary tensor S ∈
V (3) ⊗ · · · ⊗ V (d) via the inner products on V (3), . . . , V (d) leads to a tensor

T ′ =
k∑
i=1

λiv
(1)
i ⊗ v(2)

i

where λi is the inner product of S with v
(3)
i ⊗ · · · ⊗ v(d)

i . Now the above is a singular value
decomposition for the two-tensor T ′, of which, for S sufficiently general, the singular values
|λi| · ||v(1)

i || · ||v(2)
i || are all distinct. Thus v

(1)
1 , . . . , v

(1)
k are, up to nonzero scalars, uniqely

determined as the singular vectors (corresponding to the nonzero singular values) of the
pairing of T with a sufficiently general S. And these vectors determine the corresponding
terms, since the i-th term equals v

(1)
i tensor the pairing of T with v

(1)
i , divided by ||v(1)

i ||2.
The arguments in the symmetric case are almost identical. We stress that, as permuting

the first two factors commutes with contracting the last d − 2 factors, the contraction of a
symmetric tensor is a symmetric matrix.

Note that the proof of this proposition yields a simple randomized algorithm for deciding
whether a tensor is odeco, and for finding a decomposition when it exists. At the heart of
this algorithm is the computation of an ordinary singular-value decomposition for a small
matrix. For much more on algorithmic issues see [16, 100, 135, 161].

The uniqueness of the orthogonal decomposition makes it easy to compute the dimensions
of the real-algebraic varieties in our Main Theorem.

Proposition 4.1.7. Let n := dimV , l := bn
d
c, and assume that the dimensions ni :=

dimV (i) are in increasing order n1 ≤ . . . ≤ nd. Then, the dimensions of the real-algebraic
varieties of symmetric odeco tensors is

n+

(
n

2

)
,

and that of ordinary odeco tensors is

n1 +
d∑
j=1

n1(2nj − n1 − 1)

2
.

Proof. In the symmetric case, a symmetrically odeco tensor encodes n pairwise perpendicular
points in PV . For the first point we have n − 1 degrees of freedom. The second point is
chosen from the projective space orthogonal to the first point, so this yields n − 2 degrees
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of freedom, etc. Summing up, we obtain
(
n
2

)
degrees of freedom over K for the points. In

addition, we have n scalars from R for the individual terms. Since each odeco tensor has a
unique decomposition, the dimension of the odeco variety is the same as the dimension of
the space of n pairwise orthogonal points and n scalars.

The computation for the ordinary case is the same, except that only n1 pairwise perpen-
dicular projective points are chosen from each V (j).

Over the last two decades, orthogonal tensor decomposition has been studied intensively
from a scientific computing perspective (see, e.g., [44, 99, 98, 42, 100]). The paper [42]
gives a characterization of orthogonally decomposable tensors in terms of their higher-order
SVD [48], which is different from the real-algebraic characterization in our Main Theorem.
One of the interesting properties of an orthogonal tensor decomposition with k terms is
that discarding the r terms with smallest norm yields the best rank-r approximation to the
tensor; see [154], where it is also proved that in general, tensors are not optimally truncatable
in this manner.

In general, tensor decomposition is NP-hard [92]. The decomposition of odeco tensors,
however, can be found efficiently. The vectors in the decomposition of an odeco tensor are
exactly the attraction points of the tensor power method and are called robust eigenvectors.
Because of their efficient decomposition, odeco tensors have been used in machine learning,
in particular for learning latent variables in statistical models [8]. More recent work in this
direction concerns overcomplete latent variable models [7].

In Conjecture 3.1.16, we presented the equations defining the variety of symmetrically
odeco tensors. Formulated for the case of ordinary tensors instead, this conjecture is as
follows. Let V (1), . . . , V (d) be real inner product spaces, and consider an odeco tensor T ∈
V (1)⊗· · ·⊗V (d) with orthogonal decomposition T =

∑k
i=1 v

(1)
i ⊗· · ·⊗v(d)

i . Now take two copies
of T , and contract these in their l-th components via the inner product V (l) × V (l) → R.
By orthogonality of the v

(l)
i , i = 1, . . . , k, after regrouping the tensor factors, the resulting

tensor is
k∑
i=1

(
||v(l)

i ||2
⊗
j 6=l

(v
(j)
i ⊗ v(j)

i )

)
∈
⊗
j 6=l

(V (j) ⊗ V (j));

we write T ∗l T for this tensor. It is clear from this expression that T ∗l T is multi-symmetric
in the sense that it lies in the subspace

⊗
j 6=l S

2(V (j)). In [131] I conjecture that this (or
rather, its analogue in the symmetric setting) characterizes odeco tensors. This is now a
theorem, which follows from the proof of our main theorem (see Remark 4.1.14).

Theorem 4.1.8. T ∈ V (1) ⊗ · · · ⊗ V (d) is odeco if and only if for all l = 1, . . . , d we have

T ∗l T ∈
⊗
j 6=l

S2(V (j)).

This concludes the discussion of background to our results. We now proceed to prove the
main theorem in the case of order-three tensors.
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4.1.3 Tensors of order three

In all our proofs below, we will encounter a finite-dimensional vector space A over R equipped
with a positive-definite inner product (·|·), as well as a bi-additive product A × A →
A, (x, y) 7→ x · y which is bilinear. The product will be commutative. Moreover, the
inner product will be compatible with the product in the sense that (x · y|z) = (z · x|y). An
ideal in (A, ·) is a R-subspace I such that I · A ⊆ I—by commutativity we then also have
A · I ⊆ I—and A is called simple if A 6= {0} and A contains no nonzero proper ideals. We
have the following well-known result.

Lemma 4.1.9. The orthogonal complement I⊥ of any ideal I in A is an ideal, as well.
Consequently, A splits as a direct sum of pairwise orthogonal simple ideals.

Proof. We have (A · I⊥|I) = (I ·A|I⊥) = {0}. The second statement follows by induction on
dimA. Therefore, A · I⊥ ⊆ I⊥, and since I⊥ is a subspace of A, it follows by definition that
I⊥ is an ideal of A.

4.1.3.1 Symmetrically odeco three-tensors

In this subsection, we fix a finite-dimensional real inner product space V and characterize
odeco tensors in S3(V ). We have S3(V ) ⊆ V ⊗3 ∼= (V ∗)⊗2⊗V, where the isomorphism comes
from the linear isomorphism V → V ∗, v 7→ (v|·). Thus a general tensor T ∈ S3(V ) gives rise
to a bilinear map V × V → V, (u, v) 7→ u · v, which has the following properties:

1. u · v = v · u for all u, v ∈ V (commutativity, which follows from the fact that T is
invariant under permuting the first two factors); and

2. (u · v|w) = (u ·w|v) (compatibility with the inner product, which follows from the fact
that T is invariant under permuting the last two factors).

Thus T gives V the structure of an R-algebra equipped with a compatible inner product.
The following lemma describes the quadratic equations from the Main Theorem.

Lemma 4.1.10. If T is symmetrically odeco, then (V, ·) is associative.

Proof. Write T =
∑k

i=1 v
⊗3
i where v1, . . . , vk are pairwise orthogonal nonzero vectors. Then

we find, for x, y, z ∈ V, that

x · (y · z) = x ·
(∑

i

(vi|y)(vi|z)vi

)
=
∑
i

(vi|x)(vi|y)(vi|z)(vi|vi) = (x · y) · z,

where we have used that (vi|vj) = 0 for i 6= j in the second equality.

Proposition 4.1.11. Conversely, if (V, ·) is associative, then T is symmetrically odeco.



CHAPTER 4. VARIETIES OF TENSORS 114

Proof. By Lemma 4.1.9, V has an orthogonal decomposition V =
⊕

i Ui where the sub-
spaces Ui are (nonzero) simple ideals of V . Correspondingly, T decomposes as an element
of
⊕

i S
3(Ui). Thus it suffices to prove that each Ui is one-dimensional. This is certainly

the case when the multiplication Ui × Ui → Ui is zero, because then any one-dimensional
subspace of Ui is an ideal in V, hence equal to Ui by simplicity. If the multiplication map is
nonzero, then pick an element x ∈ Ui such that the multiplication Mx : Ui → Ui, y 7→ x · y
is nonzero. Then kerMx is an ideal in V, because for z ∈ V we have

x · (kerMx · z) = (x · kerMx) · z = {0},

where we use associativity. By simplicity of Ui, kerMx = {0}. Now define a new bilinear
multiplication ∗ on Ui via y ∗ z := M−1

x (y · z). This multiplication is commutative, has x as
a unit element, and we claim that it is also associative. Indeed,

((x · y) ∗ z) ∗ (x · v) = M−1
x (M−1

x ((x · y) · z) · (x · v)) = y · z · v = (x · y) ∗ (z ∗ (x · v)),

where we used associativity and commutativity of · in the second equality. Since any element
is a multiple of x, this proves associativity. Moreover, (Ui, ∗) is simple; indeed, if I is ideal,
then M−1

x (Ui · I) ⊆ I and hence

Ui · (x · I) = (Ui · x) · I = Ui · I ⊆ x · I,

so that x · I is an ideal in (Ui, ·); and therefore I = {0} or I = Ui.
Now (Ui, ∗) is a simple, associative R-algebra with 1, hence isomorphic to a matrix algebra

over a division ring. As it is also commutative, it is isomorphic to either R or C. If it were
isomorphic to C, then it would contain a square root of −1, i.e., an element y with y∗y = −x,
so that y · y = −x · x. But then

0 < (x · y|x · y) = (y · y|x · x) = −(x · x|x · x) < 0,

a contradiction. We conclude that Ui is one-dimensional, as desired.

Lemma 4.1.10 and Proposition 4.1.11 imply the Main Theorem for symmetrically odeco
three-tensors, because the identity x · (y · z) = (x · y) · z expressing associativity translates
into quadratic equations for the tensor T.

Example 4.1.1. We now show how we can obtain the equations from Conjecture 3.1.16 using
the statement of Proposition 4.1.11. Let T ∈ S3(Rn) be a symmetric n× n× n tensor. The
algebra (V, ·) associated to T is associative if and only if (x·y)·z = x·(y ·z) for all x, y, z ∈ V .
We claim that it is enough to consider standard basis vectors x = ei, y = ej, z = ek. Then,

[(ei · ej) · ek]l = [Ti,j,· · ek]l =
n∑

s,t=1

Ts,t,lTi,j,sek,t =
n∑
s=1

Ts,k,lTi,j,s =
n∑
s=1

Tk,l,sTi,j,s,
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and

[ei · (ej · ek)]l = [ei · Tj,k,·]l =
n∑

t,s=1

Tt,s,lei,tTj,k,s =
n∑
s=1

Ti,s,lTj,k,s =
n∑
s=1

Ti,l,sTj,k,s.

Therefore,
n∑
s=1

Tk,l,sTi,j,s =
n∑
s=1

Ti,l,sTj,k,s,

for every i, j, k, l, which is the same condition we discovered in equation (3.1.6). Moreover,
note that the left hand side and the right hand side can be rewritten as

(T ∗3 T )k,l,i,j = (T ∗3 T )i,l,j,k.

Since T is symmetric, we get exactly the condition that T ∗3 T ∈ S4(Rn).

4.1.3.2 Ordinary odeco three-tensors

In this subsection, we consider a general tensor T in a tensor product U ⊗ V ⊗W of real,
finite-dimensional inner product spaces. Via the inner products, T gives rise to a bilinear
map U×V → W, and similarly with the three spaces permuted. Consider the external direct
sum A := U ⊕ V ⊕W of U, V,W , and equip A with the inner product (·|·) that restricts to
the given inner products on U, V,W and that makes these spaces pairwise perpendicular.

U

WV

W · V ·

U ·

Figure 4.1: U · (V +W ) = W + V, and similarly with U, V,W permuted.

Taking cue from the symmetric case, we construct a bilinear product · : A × A → A as
follows: the product in A of two elements in U, or two elements in V, or in W, is defined as
zero; · restricted to U × V is the map into W given by T ; etc.—see Figure 4.1. The tensor
in S3(A) describing the multiplication is the symmetric embedding of T from [127].

As in the symmetrically odeco case, the algebra has two fundamental properties:

1. it is commutative: x · y = y · x by definition; and

2. the inner product is compatible: (x·y|z) = (x·z|y). For instance, if x ∈ U, y ∈ V, z ∈ W,
then both sides equal the inner product of the tensor x⊗y⊗ z with T ; and if y, z ∈ W,
then both sides are zero both for x ∈ U (so that x·y, x·z ∈ V, which is perpendicular to
W ) and for x ∈ W (so that x ·y = x ·z = 0) and for x ∈ V (so that x ·y, x ·z ∈ U ⊥ W ).
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We are now interested in homogeneous ideals I ⊆ A only, i.e., ideals such that I =
(I ∩ U)⊕ (I ∩ V )⊕ (I ∩W ). We call A simple if it is nonzero and does not contain proper,
nonzero homogeneous ideals. We will call an element of A homogeneous if it belongs to one
of U, V,W. Next, we derive a polynomial identity for odeco tensors.

Lemma 4.1.12. If T is odeco, then for all homogeneous x, y, z where x and z belong to the
same space (U, V, or W ), we have (x · y) · z = x · (y · z).

We will refer to this property as partial associativity.

Proof. If x, y, z all belong to the same space, then both products are zero. Otherwise, by
symmetry, it suffices to check the case where x, z ∈ U and y ∈ V. Let T =

∑
i ui ⊗ vi ⊗ wi

be an orthogonal decomposition of T. Then we have

(x · y) · z =

(∑
i

(ui|x)(vi|y)wi

)
· z =

∑
i

(ui|x)(vi|y)(wi|wi)(z|ui) = x · (y · z),

where we have used that (wi|wj) = 0 for i 6= j in the second equality.

Proposition 4.1.13. Conversely, if (A, ·) is partially associative, then T is odeco.

Proof. By a version of Lemma 4.1.9 restricted to homogeneous ideals, A is the direct sum of
pairwise orthogonal, simple homogeneous ideals Ii. Accordingly, T lies in

⊕
i(Ii ∩U)⊗ (Ii ∩

V ) ⊗ (Ii ∩W ). Thus it suffices to prove that T is odeco under the additional assumption
that A itself is simple and that · is not identically zero.

By symmetry, we may assume that V ·(U+W ) 6= {0}. For u ∈ U , letMu : V+W → W+V
be multiplication with u. By commutativity and partial associativity, the Mu, for u ∈ U , all
commute. By compatibility of (·|·), each Mu is symmetric with respect to the inner product
on V +W , and hence orthogonally diagonalizable.

Consequently, V+W splits as a direct sum of pairwise orthogonal simultaneous eigenspaces

(V +W )λ := {v + w ∈ V +W | u · (v + w) = λ(u)(w + v) for all u ∈ U},

where λ runs over U∗. Suppose we are given v + w ∈ (V + W )λ and v′ + w′ ∈ (V + W )µ
with λ 6= µ. Then v + w and v′ + w′ are perpendicular and for each u ∈ V we have

(u|(v + w) · (v′ + w′)) = (u · (v + w)|v′ + w′) = λ(u)(v + w|v′ + w′) = 0,

hence (v + w) · (v′ + w′) = 0. We conclude that for each λ the space

(V +W )λ ⊕ [(V +W )λ · (V +W )λ]

is a homogeneous ideal in A. By simplicity and the fact that Mu 6= 0 for at least some
u, A is equal to this ideal for some nonzero λ. Pick an x ∈ U such that λ(x) = 1, so
that x · (v + w) = w + v for all v ∈ V, w ∈ W . In particular, for v, v′ ∈ V we have
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(Mxv|Mxv
′) = (M2

xv|v′) = (v|v′), so that the restrictions Mx : V → W and Mx : W → V
are mutually inverse isometries.

By the same construction, we find an element z ∈ W such that z · (u+ v) = v+ u for all
u ∈ U, v ∈ V . Let T ′ be the image of T under the linear map Mx⊗ IV ⊗Mz : U ⊗V ⊗W →
V ⊗ V ⊗ V . We claim that T ′ is symmetrically odeco. Indeed, let ∗ : V × V → V denote
the bilinear map associated to T ′. We verify the conditions from Section 4.1.3.1. First,

v ∗ v′ = (x · v) · (z · v′) = z · ((x · v) · v′) = z · ((v′ · x) · v) = (z · v) · (v′ · x) = v′ ∗ v,

where we have repeatedly used commutativity and partial associativity (e.g., in the second
equality, to the elements x · v, z belonging to the same space W ). Second, we have

(v ∗ v′|v′′) = ((x · v) · (z · v′)|v′′) = ((x · v)|v′ · (z · v′′)) = (v|(x · v′) · (z · v′′)) = (v|v′ ∗ v′′).

Hence T ′ is, indeed, and element of S3(V ). Finally, we have

(v ∗ v′) ∗ v′′ = (x · ((x · v) · (z · v′))) · (z · v′′) = x · ((z · v′′) · ((x · v) · (z · v′)))
= x · (((z · v′′) · (x · v)) · (z · v′)) = x · ((v ∗ v′′) · (z · v′)) = (v ∗ v′′) ∗ v′,

which, together with commutativity, implies associativity of ∗. Hence T ′ is (symmetrically)
odeco by Proposition 4.1.13, and hence so is its image T under the tensor product Mx ⊗
IV ⊗Mz of linear isometries.

Remark 4.1.14. The condition that (x · y) · z = x · (y · z) for, say, x, z ∈ W and y ∈ V
translates into the condition that the contraction T ∗1 T ∈ (V ⊗ V ) ⊗ (W ⊗ W ) lies in
S2(V ) ⊗ S2(W ). This can be seen by proceeding analogously to Example 4.1.1. Thus
Proposition 4.1.13 implies Theorem 4.1.8 in the case of three factors. The case of more
factors follows from the case of three factors and flattening as in Proposition 4.1.15.

4.1.4 Higher-order tensors

In this section, building on the case of order three, we prove the Main Theorem for tensors
of arbitrary order.

4.1.4.1 Ordinary tensors

Let V (1), . . . , V (d) be finite dimensional inner product spaces over R. The key observation is
the following. Let J1 ∪ · · · ∪ Je = {1, . . . , d} be a partition of {1, . . . , d}. Then the natural
flattening map

V (1) ⊗ · · · ⊗ V (d) → (
⊗
j∈J1

V (j))⊗ · · · ⊗ (
⊗
j∈Je

V (j))

sends the set of order-d odeco tensors into the set of order-e odeco tensors, where the inner
product on each factor

⊗
j∈J` V

(j) is the one induced from the inner products on the factors.
The following proposition gives a strong converse to this observation.
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Proposition 4.1.15. Let T ∈ V (1) ⊗ · · · ⊗ V (d) be a tensor, where d ≥ 4. Suppose that the
flattenings of T with respect to the three partitions

(i) {1}, . . . , {d− 3}, {d− 2}, {d− 1, d},
(ii) {1}, . . . , {d− 3}, {d− 2, d− 1}, {d}, and

(iii) {1}, . . . , {d− 3}, {d− 2, d}, {d− 1}
are all odeco. Then so is T.

The lower bound of 4 in this proposition is essential, because any flattening of a three-
tensor is a matrix and hence odeco, but as we have seen in Section 4.1.3 not every three-tensor
is odeco.

Proof. As the first two flattenings are odeco, we have orthogonal decompositions

T =
k∑
i=1

Ti ⊗ ui ⊗ Ai =
r∑
`=1

T ′` ⊗B` ⊗ w`

where A1, . . . , Ak ∈ V (d−1)⊗V (d) are pairwise orthogonal and nonzero, and so are u1, . . . , uk ∈
V (d−2), and the Ti are of the form zi1 ⊗ · · · ⊗ zi(d−3) where for each j the zij, i = 1, . . . , k
are pairwise orthogonal and nonzero. Similarly for the factors in the second expression.
Contracting T with Ti in the first d− 3 factors yields a single term on the left (here we use
that d > 3):

(Ti|Ti)ui ⊗ Ai =
r∑
`=1

(T ′`|Ti)B` ⊗ w`.

Since the let-hand side is nonzero, there exists at least one index ` such that (T ′`|Ti) is
nonzero. For such an index ` contract both sides with w`. We find that B` = ui ⊗ v` with
v` = Aiw` ∈ V (d−1). This means that B` is of rank one. Since there is at least one such index
` and since the ui are linearly independent for distinct i, and since , we find that the set of
` with (T ′`|Ti) 6= 0 is disjoint from the set defined similarly for another value of i. Hence,
r ≥ k. By swapping the roles of the two decompositions we also find the opposite equality,
so that r = k, and after relabelling we find that Bi = ui ⊗ vi for i = 1, . . . , k and certain
nonzero vectors vi = Aiwi.Hence we find

T =
k∑
i=1

T ′i ⊗ ui ⊗ vi ⊗ wi,

where we do not yet know whether the vi are pairwise perpendicular. However, applying the
same reasoning to the second and third decompositions in the lemma, we get that Bi = u′i⊗v′i,
and we obtain another decomposition

T =
k∑
i=1

T ′i ⊗ u′i ⊗ v′i ⊗ wi,
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where we know that the v′i are pairwise perpendicular, but not that the u′i are. Contract-
ing with T ′i we find that, in fact, both decompositions are equal and the vi are pairwise
perpendicular, as required.

Proof of the Main Theorem (Theorem 4.1.3) for ordinary tensors. It follows from Lemma 4.1.12
and Proposition 4.1.13, that ordinary odeco tensors of order three are characterized by
degree-two equations. By Proposition 4.1.15 and the remarks preceding it, a higher-order
tensor is odeco if and only if certain of its flattenings are odeco. Thus the equations charac-
terizing lower-order odeco tensors pull back, along linear maps, to equations characterizing
higher-order odeco tensors.

4.1.4.2 Symmetric tensors

In this section, V is a finite-dimension vector space over R.

Proposition 4.1.16. For d ≥ 3, a tensor T ∈ Sd(V ) is symmetrically odeco if and only if
it is odeco when considered as an ordinary tensor in V ⊗d.

Proof. The “only if” direction is immediate, since a symmetric orthogonal decomposition is
a fortiori an ordinary orthogonal decomposition. For the converse, consider an orthogonal
decomposition

T =
k∑
i=1

v
(1)
i ⊗ · · · ⊗ v(d)

i ,

where the v
(j)
i are nonzero vectors, pairwise perpendicular for fixed j. Since T is symmetric,

we have

T =
∑
i

v
(π(1))
i ⊗ · · · ⊗ v(π(d))

i (4.1.1)

for each π ∈ Sd. By uniqueness of the decomposition (Proposition 4.1.6), the terms in
this latter decomposition are the same, up to a permutation, as the terms in the original
decomposition. In particular, the unordered cardinality-k sets of projective points Qj :=

{[v(j)
1 ], . . . , [v

(j)
k ]} ⊆ PV are identical for all j = 1, . . . , d.

Consider the integer k × d-matrix A with entries in [k] := {1, . . . , k} determined by

aij = m if [v
(j)
i ] = [v

(1)
m ]. The matrix A has all integers 1, . . . , k in each column, and they

are in increasing order in the first column. Furthermore, A has the property that for each
d× d-permutation matrix π there exists a k × k-permutation matrix σ such that σA = Aπ.
This is because if we permute the d columns of A by π, then, we can permute its rows so
that the first column has the numbers 1, . . . , k in increasing order. This is how we obtain
the k × k permutation matrix σ.

To conclude the proof we only need to prove that, for d ≥ 3, the only such k × d matrix
is the matrix whose i-th row consists entirely of copies of i.
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To show this, for j ∈ {2, . . . , d} pick πj = (1, j) to be the transposition switching 1 and
j. Let the columns of A be id, τ2, . . . , τd thought of as permutations of [k]. By the property
imposed on A there exists a σj such that σjA = Aπj. In particular, the first column of
(Aπj)1, which is τj, has to equal to the first column of σjA, which is σj. So τj = σj for all
j ∈ {2, . . . , d}. Since d ≥ 3, one can pick an index l which is fixed by πj, so that the l-th
column of σjA = Aπj, which is τl, equals to σjτl. But then σj = id = τj., and therefore the
i-th row of A consists completely of the number i. This concludes the proof of Proposition
4.1.16.

Proof of the Main Theorem (Theorem 4.1.3) for symmetric tensors. By Proposition 4.1.16,
the equations for odeco tensors in V ⊗ · · · ⊗ V pull back to equations characterizing sym-
metrically odeco tensors in SdV via the inclusion of the latter space into the former. Thus
the Main Theorem for symmetric tensors follows from the Main Theorem (Theorem 4.1.3)
for ordinary tensors, proved in the previous subsection.

Remark 4.1.17. The proof of the Proposition 4.1.13 in Section 4.1.3 for ordinary odeco
three-tensors relies on the proof of Proposition 4.1.11 for symmetrically odeco three-tensors,
so the proof above does not render the proof of Proposition 4.1.13 superfluous.

4.1.5 Concluding remarks

We have established quadratic real-algebraic characterizations of orthogonally decomposable
tensors in the symmetric and ordinary case. While this is quite a satisfactory result, we still
don’t know if the equations that we have found generate the ideals of the real-algebraic
varieties at hand? We are somewhat optimistic, because of evidence in [130] for the case of
symmetrically odeco 2× 2× · · · × 2-tensors.
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4.2 Frame Decomposable Tensors

A symmetric tensor of small rank decomposes into a configuration of only few vectors.
We study the variety of tensors for which this configuration is a unit norm tight frame.
This section is based on parts of joint work with Luke Oeding and Bernd Sturmfels titled
Decomposing tensors into frames [121].

4.2.1 Introduction

A fundamental problem in computational algebraic geometry, with a wide range of applica-
tions, is the low rank decomposition of symmetric tensors; see e.g. [8, 26, 45, 120, 131]. If
T = (ti1i2···id) is a symmetric tensor in Symd(Cn), then such a decomposition takes the form

T =
r∑
j=1

λjv
⊗d
j . (4.2.1)

Here λj ∈ C and vj = (v1j, v2j, . . . , vnj) ∈ Cn for j = 1, 2, . . . , r. The smallest r for which a
representation (4.2.1) exists is the rank of T . In particular, each v⊗dj is a tensor of rank 1.

An equivalent way to represent a symmetric tensor T is as the homogeneous polynomial

T =
n∑

i1,...,id=1

ti1i2···id · xi1xi2 · · ·xid . (4.2.2)

If d = 2, then (4.2.2) is the identification of symmetric matrices with quadratic forms.
Written as a polynomial, the right hand side of (4.2.1) is a linear combination of powers of
linear forms:

T =
r∑
j=1

λj(v1jx1 + v2jx2 + · · ·+ vnjxn)d. (4.2.3)

The decomposition in (4.2.1) and (4.2.3) is called Waring decomposition. When d = 2, it
corresponds to orthogonal diagonalization of symmetric matrices. We could subsume the
constants λi into the vectors vi but we prefer to leave (4.2.1) and (4.2.3) as is, for reasons
to be seen shortly. The (projective) variety of all such symmetric tensors is the r-th secant
variety of the Veronese variety. The vast literature on the geometry and equations of this
variety (cf. [108]) forms the mathematical foundation for low rank decomposition algorithms
for symmetric tensors.

In many situations one places further restrictions on the summands in (4.2.1) and (4.2.3),
such as being real and nonnegative. Applications to machine learning in [8] concern the case
when r = n and the vectors v1, . . . , vn form an orthonormal basis of Rn. Sections 3.1 and 4.1
characterize the odeco variety of all tensors that admit such an orthogonal decomposition.

The present section takes this one step further by connecting tensors to frame theory [30,
29, 38, 57, 145]. We examine the scenario when the vj form a finite unit norm tight frame
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(or funtf) of Rn, an object of recent interest at the interface of applied functional analysis
and algebraic geometry. Consider a configuration V = (v1, . . . , vr) ∈ (Rn)r of r labeled
vectors in Rn. We also regard this as an n× r-matrix V = (vij). We call V a funtf if

V · V T =
r

n
· Idn and

n∑
j=1

v2
ij = 1 for i = 1, 2, . . . , r. (4.2.4)

This is an inhomogeneous system of n2 + r quadratic equations in nr unknowns. The funtf
variety, denoted Fr,n as in [29], is the subvariety of complex affine space Cn×r defined by
(4.2.4). For the state of the art we refer to the article [29] by Cahill, Mixon and Strawn,
and the references therein. A detailed review, with some new perspectives, will be given in
Subsection 4.2.2.

We homogenize the funtf variety by attaching a scalar λi to each vector vi. The result

maps into the projective space P( Symd(Cn)) = P(n−1+d
d )−1 of symmetric tensors, via the

formulas (4.2.1) and (4.2.3). Our aim is to study the closure of the image of that map.
This is denoted Tr,n,d. We call it the variety of frame decomposable tensors, or the fradeco
variety. Here r, n, d are positive integers with r ≥ n. For r = n, Tn,n,d is the odeco variety
from Sections 3.1 and 4.1.

Example 4.2.1. Let n = 3, d = 4, and consider the symmetric 3×3×3×3-tensor

T = 59(x4
1 + x4

2 + x4
3) − 16(x3

1x2 + x1x
3
2 + x3

1x3 + x3
2x3 + x1x

3
3 + x2x

3
3)

+ 66(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3) + 96(x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3).

(4.2.5)

This ternary quartic lies in T4,3,4, i.e. this tensor has fradeco rank r = 4. To see this,
note that

T = 1
12

(−5x1 + x2 + x3)4 + 1
12

(x1 − 5x2 + x3)4

+ 1
12

(x1 + x2 − 5x3)4 + 1
12

(3x1 + 3x2 + 3x3)4.
(4.2.6)

The corresponding four vectors, appropriately scaled, form a finite unit norm tight frame:

V =
1

3
√

3

−5 1 1 3
1 −5 1 3
1 1 −5 3

 ∈ F4,3. (4.2.7)

The fradeco variety T4,3,4 is a projective variety of dimension 6 and degree 74 in P14. It is
parametrized by applying rotation matrices ρ ∈ SO3 to all ternary quartics of the form

T = λ1(−5x1+x2+x3)4+λ2(x1−5x2+x3)4+λ3(x1+x2−5x3)4+λ4(3x1+3x2+3x3)4. (4.2.8)

Our objective is to find the output (4.2.6) from the input (4.2.5). In this particular case,
the decomposition can be found easily using Sylvester’s classical Catalecticant Algorithm, as
explained in [120, Section 2.2]. In general, this will be more difficult to do. ♦
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The fradeco rank of a symmetric tensor T ∈ Symd(Rn) is defined as the smallest r such
that T ∈ Tr,n,d. This property does not imply that T also has a frame decomposition (4.2.1)
of length r + 1. Indeed, we often have Tr,n,d 6⊂ Tr+1,n,d. For instance, the odeco quartic
x4

1 + x4
2 + x4

3 lies in T3,3,4\T4,3,4, by the constraint in Example 4.2.23. See also Example
4.2.17.

This section is organized as follows. In Subsection 4.2.2 we give an introduction to the
algebraic geometry of the funtf variety Fr,n. This lays the foundation for the subsequent study
of fradeco tensors. Subsection 4.2.3 is concerned with the case of symmetric 2×2× · · ·×2-
tensors T . These correspond to binary forms (n = 2). We characterize frame decomposable
tensors in terms of rank conditions on matrices. In Subsection 4.2.4 we investigate the general
case n ≥ 3, and we present what we know about the fradeco varieties Tr,n,d. Subsection 4.2.5
is devoted to numerical algorithms for studying Tr,n,d and for decomposing its elements into
frames.

4.2.2 Finite unit norm tight frames

In this subsection we discuss various representations of the funtf variety Fr,n. This may serve
as an invitation to the emerging interaction between algebraic geometry and frame theory.

Each variety studied in this section is defined over the real field R and is the Zariski closure
of its set of real points. This Zariski closure lives in affine or projective space over C. For
instance, SOn is the group of n×n rotation matrices ρ, and such matrices have entries in R.
However, when referring to SOn as an algebraic variety we mean the irreducible subvariety
of Cn×n defined by the polynomial equations ρ · ρT = Idn and det(ρ) = 1. Likewise, a funtf
V is a real n × r matrix, but the funtf variety Fr,n lives in Cn×r. It consists of all complex
solutions to the quadratic equations (4.2.4). In the frame theory literature [29, 30, 57, 145]
there is also a complex Hermitian version of Fr,n, but it will not be considered in this section.

It is important to distinguish Fr,n from the variety of Parseval frames, here denoted Pr,n.
The latter is much easier than the former. The variety Pr,n is defined by the matrix equation

V · V T = Idn.

The real points on Pr,n are smooth and Zariski dense, and they form the Stiefel manifold of
all orthogonal projections Rr → Rn. Hence Pr,n is irreducible of dimension nr −

(
n+1

2

)
.

One feature that distinguishes Pr,n from Fr,n is the existence of a canonical map Pr,n+1 →
Pr,n. Indeed, by Naimark’s Theorem [39], every Parseval frame is the orthogonal projection
of an orthonormal basis of Rr, so we can add a row to V ∈ Pr,n and get a matrix in Pr,n+1.
There is no analogous statement for the variety Fr,n. We begin with the following result.

Theorem 4.2.2. The dimension of the funtf variety Fr,n is

dim(Fr,n) = (n− 1) · (r − n

2
− 1) provided r > n ≥ 2. (4.2.9)

It is irreducible when r ≥ n+ 2 > 4.
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r n dimFr,n degFr,n # components & degrees
3 2 1 8 · 2 8 components, each degree 2
4 2 2 12 · 4 12 components, each degree 4
5 2 3 112 irreducible
6 2 4 240 irreducible
7 2 5 496 irreducible
4 3 3 16 · 8 16 components, each degree 8
5 3 5 1024 irreducible
6 3 7 2048 irreducible
7 3 9 4096 irreducible
5 4 6 32 · 40 32 components, each degree 40
6 4 9 20800 irreducible
7 4 12 65536 irreducible

Table 4.1: Dimension and degree of the funtf variety in some small cases

Proof. Cahill, Mixon and Strawn [29, Theorem 1.4] proved that Fr,n is irreducible when
r ≥ n+ 2 > 4. The dimension formula comes from two articles: one by Dykema and Strawn
[57, Theorem 4.3(ii)] regarding the case when r and n are relatively prime, and one by Strawn
[145, Corollary 3.5] which studies the local geometry for all r, n. In these articles it is shown
that the real points in Fr,n have a dense open subset that forms a manifold of dimension
(n − 1) · (r − n

2
− 1). The arguments in [29] show that the real points are Zariski dense in

the complex variety Fr,n. Hence (4.2.9) is the correct formula for the dimension of Fr,n.

Next to the dimension, the most important invariant of an algebraic variety is its degree.
By this we mean the degree of its projective closure [46, §8.4]. This can be computed using
symbolic software for Gröbner bases, or using numerical algebraic geometry software. The
dimension and degree of Fr,n for small r, n in Table 4.1 were computed using Bertini [15].

The case r = n + 1 is special. Here, the funtf variety decomposes into 2n+1 irreducible
components, each of which is affinely isomorphic to the

(
n
2

)
-dimensional variety SOn. This

will be explained in Corollary 4.2.11. The next example discusses one other exceptional case.

Example 4.2.3 (r = 4, n = 2). Following (4.2.4), the defining ideal of the funtf variety F4,2

equals

〈 v2
11 + v2

12 + v2
13 + v2

14 − 2, v11v21 + v12v22 + v13v23 + v14v24〉 + 〈 v2
1j + v2

2j − 1 : j = 1, 2, 3, 4 〉.

Note that this contains v2
21 + v2

22 + v2
23 + v2

24 − 2. Using Gröbner basis software, such as
Macaulay2 [81], one checks that this ideal equals the intersection of the six given quadrics,
it is radical, and its degree is 48. Primary decomposition reveals that this ideal is the inter-
section of 12 prime ideals, each of degree 4. One of these associated primes is

〈 v11 − v22, v12 + v21, v13 − v24, v23 + v14, v
2
23 + v2

24 − 1, v2
21 + v2

22 − 1〉.
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The irreducible variety of this particular prime ideal consists of the 2× 4-matrices

V =
(
R1 | R2

)
,

where R1 and R2 are rotation matrices of format 2×2. The other 11 components are obtained
by replacing Ri with −Ri and permuting columns. The image of V under the map to binary
forms is a linear combination of two odeco forms, one given by R1 and the other by R2. ♦

The real points of Fr,n live in (Sn−1)r where Sn−1 = {u ∈ Rn :
∑n

i=1 u
2
i = 1} denotes the

unit sphere. However, the vectors on these spheres will get scaled by the multipliers λ
1/d
i

in (4.2.3) when we pass to the fradeco variety Tr,n,d. To achieve better geometric properties
and computational speed, we map each real sphere Sn−1 to complex projective (n−1)-space
Pn−1.

The projective funtf variety Gr,n is the image of Fr,n in (Pn−1)r. To describe its equations,
we use an n × r-matrix V = (vij) of unknowns as before, but now the i-th column of V
represents coordinates on the i-th factor of (Pn−1)r. We introduce the r× r diagonal matrix

D = diag

( n∑
i=1

v2
i1 ,

n∑
i=1

v2
i2 , . . . ,

n∑
i=1

v2
ir

)
. (4.2.10)

The variety Gr,n is defined by the following matrix equation:

V ·D−1 · V T =
r

n
· Idn. (4.2.11)

Each entry on the left hand side is a homogeneous rational function of degree 0. In fact,
these functions are multihomogeneous: they define rational functions on (Pn−1)r.

The challenge is to clear denominators in (4.2.11), so as to obtain a system of polynomial
equations that defines Gr,n as a subvariety of (Pn−1)r. Next we solve this problem for n = 2.

For planar frames, equation (4.2.11) translates into the vanishing of the two rational
functions

P =
r∑
j=1

2v2
1j

v2
1j + v2

2j

− r and Q =
r∑
j=1

2v1jv2j

v2
1j + v2

2j

. (4.2.12)

Consider the numerator of the rational function

P − iQ =
r∑
j=1

v2
1j − 2iv1jv2j − v2

2j

v2
1j + v2

2j

=
r∑
j=1

v1j − v2ji

v1j + v2ji
, where i =

√
−1.

Let P̃ and Q̃ denote the real part and the imaginary part of that numerator. These are two
multilinear polynomials of degree r with integer coefficients in v11, v12, . . . , v2r. They define
a complete intersection, and, by construction, this is precisely our funtf variety in (P1)r:

Lemma 4.2.4. The projective funtf variety Gr,2 is a complete intersection of codimension 2

in (P1)r, namely, it is the zero set of the two multilinear forms P̃ and Q̃.
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Here are explicit formulas for the multilinear forms that define Gr,2 when r ≤ 5:

Example 4.2.5. If r = 3, then P̃ = 3v11v12v13 + v11v22v23 + v21v12v23 + v21v22v13 and Q̃ =
v11v12v23+v11v22v13+v21v12v13+3v21v22v23. If r=4, then P̃ = 4(v11v12v13v14−v21v22v23v24) and

Q̃ = 2v11v12v13v24 + 2v11v12v23v14 + 2v11v22v13v14 + 2v11v22v23v24+
2v21v12v13v14 + 2v21v12v23v24 + 2v21v22v13v24 + 2v21v22v23v14.

If r = 5, then

P̃ = 5v11v12v13v14v15 − v11v12v13v24v25 − v11v12v23v14v25 − v11v12v23v24v15

−v11v22v13v14v25 − v11v22v13v24v15 − v11v22v23v14v15 − 3v11v22v23v24v25

−v21v12v13v14v25 − v21v12v13v24v15 − v21v12v23v14v15 − 3v21v12v23v24v25

−v21v22v13v14v15 − 3v21v22v13v24v25 − 3v21v22v23v14v25 − 3v21v22v23v24v15,

and Q̃ is obtained from P̃ by switching the two rows of V . ♦
Such formulas are useful for parametrizing frames. We write the equations for Gr,2 as(

P̃

Q̃

)
=

(
m11 m12

m21 m22

)
·
(
v1r

v2r

)
=

(
0
0

)
.

The matrix entries mij are multilinear forms in (v11 : v21), (v12 : v22), . . . , (v1,r−1 : v2,r−1).
Using the quadratic formula, we solve the following equation for one of its unknowns:

m11m22 = m12m21. (4.2.13)

This defines a hypersurface in (P1)r−1, from which we can now easily sample points. The
point in the remaining rth factor P1 is then recovered by setting v1r = m12, v2r = −m11.

For n ≥ 3, we do not know the generators of the multihomogeneous prime ideal of Gr,n.
Here are two instances where Macaulay2 [81] succeeded in computing these ideals:

Example 4.2.6. The variety G4,3 is a threefold in (P2)4. Its ideal is generated by 34 quartics.
Among them are the equations that define the six coordinate projections into (P2)2, like

8(v2
11v

2
12 + v2

21v
2
22 + v2

31v
2
32) + 18(v11v21v12v22 + v11v31v12v32 + v21v31v22v32)

−v2
11v

2
22 − v2

11v
2
32 − v2

21v
2
12 − v2

21v
2
32 − v2

31v
2
12 − v2

31v
2
22.

Example 4.2.7. Let r = 5 and n = 3. By saturating the denominators in (4.2.11), we found
that the ideal of G5,3 is generated by a 120-dimensional SO3-invariant space of sextics. The
following polynomial (with 60 terms of Z5-degree (2, 2, 2, 0, 0)) is a highest weight vector:

50v211v
2
12v

2
13 + 5v211v

2
12v

2
23 + 5v211v

2
12v

2
33 + 45v211v12v22v13v23 + 45v211v12v32v13v33 + 5v211v

2
22v

2
13 + 5v211v

2
22v

2
23 − 4v211v

2
22v

2
33

+18v211v22v32v23v33 + 5v211v
2
32v

2
13 − 4v211v

2
32v

2
23 + 5v211v

2
32v

2
33 + 45v11v21v

2
12v13v23 + 45v11v21v12v22v

2
13 + 18v11v21v

2
32v13v23

+45v11v21v12v22v
2
23 + 18v11v21v12v22v

2
33 + 27v11v21v12v32v23v33 + 45v11v21v

2
22v13v23 + 27v11v21v22v32v13v33

+45v11v31v
2
12v13v33 + 27v11v31v12v22v23v33 + 45v11v31v12v32v

2
13 + 18v11v31v12v32v

2
23 + 45v11v31v12v32v

2
33 − 4v221v

2
12v

2
33

+18v11v31v
2
22v13v33 + 27v11v31v22v32v13v23 + 45v11v31v

2
32v13v33 + 5v221v

2
12v

2
13 + 5v221v

2
12v

2
23 + 45v221v12v22v13v23

+18v221v12v32v13v33 + 5v221v
2
22v

2
13 + 50v221v

2
22v

2
23 + 5v221v

2
22v

2
33 + 45v221v22v32v23v33 − 4v221v

2
32v

2
13 + 5v221v

2
32v

2
23 + 5v221v

2
32v

2
33

+18v21v31v
2
12v23v33 + 27v21v31v12v22v13v33 + 27v21v31v12v32v13v23 + 45v21v31v

2
22v23v33 + 18v21v31v22v32v

2
13

+45v21v31v22v32v
2
23 + 45v21v31v22v32v

2
33 + 45v21v31v

2
32v23v33 + 5v231v

2
12v

2
13 − 4v231v

2
12v

2
23 + 5v231v

2
12v

2
33 + 18v231v12v22v13v23

+45v231v12v32v13v33 − 4v231v
2
22v

2
13 + 5v231v

2
22v

2
23 + 5v231v

2
22v

2
33 + 45v231v22v32v23v33 + 5v231v

2
32v

2
13 + 5v231v

2
32v

2
23 + 50v231v

2
32v

2
33.
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The ideal of G5,3 ⊂ (P2)5 has 10 generators like this, each spanning a one-dimensional graded
component. It has 30 components of degrees like (2, 2, 1, 1, 0), each generated by a polynomial
with 78 terms. Finally, it has five 16-dimensional components of degrees like (2, 1, 1, 1, 1). ♦

In order to sample points from the funtf variety Fr,n, we can also use the following
parametrization found in [30, 145]. We write V = (U ′,W ), where U ′ is an n× n-matrix and
W is an (r−n)×n-matrix. For the columns of W we take arbitrary points on the unit sphere
Sn−1. In practice, it is convenient to fix a rational parametrization of Sn−1, so as to ensure
that W has rational entries wij. For instance, for n = 3 we use the following formulas:

w1j =
2λjµj

λ2
j + µ2

j + ν2
j

, w2j =
2λjνj

λ2
j + µ2

j + ν2
j

, w3j =
λ2
j − µ2

j − ν2
j

λ2
j + µ2

j + ν2
j

, where λj , µj , νj ∈ Z. (4.2.14)

After these choices have been made, we fix the following n× n-matrix with entries in Q:

S =
r

n
· Idn − W ·W T . (4.2.15)

It now remains to study all n× n-matrices U = (uij) that satisfy

U ·D−1 · UT = S, where D = diag
( n∑
i=1

u2
i1 , . . . ,

n∑
i=1

u2
in

)
.

For any such U we get a funtf V = (U ′,W ) ∈ Fr,n by setting U ′ = U ·D−1/2. For random
choices in (4.2.14), the matrix S is invertible, and the previous equation is equivalent to

D = UT · S−1 · U. (4.2.16)

This identity of symmetric matrices defines
(
n+1

2

)
equations in the entries uij of U . The

equation in position (i, j) is bilinear in (u1i, u2i, . . . , uni) and (u1j, u2j, . . . , unj). We solve the
system (4.2.16) iteratively for the columns of U . We begin with the (1,1) entry of (4.2.16).
There are n−1 degrees of freedom to fill in the first column of U , then n−2 degrees of freedom
to fill in the second column, etc. This involves repeatedly solving quadratic equations in one
variable, so each solution lives in a tower of quadratic extensions over Q. In summary:

Proposition 4.2.8. Let the columns of the (r − n) × n matrix W be arbitrary points on
the unit sphere Sn−1 coming from a rational parametrization such as in (4.2.14). Then, the
equations (4.2.15) and (4.2.16) represent a parametrization of Fr,n.

The rotation group SOn acts by left multiplication on the funtf variety Fr,n. There is a
natural way to construct the quotient Fr,n/SOn as an algebraic variety, namely by mapping
it into the Grassmannian Gr(n, r) of n-dimensional subspaces of Cr. This is described by
Cahill and Strawn in [30, Section 3.1], and we briefly develop some basic algebraic properties.

We here define Gr(n, r) to be the image of the Plücker map Cn×r → C(rn) that takes
an n × r-matrix V to its vector p = p(V ) of n × n-minors. The coordinates pI of p are



CHAPTER 4. VARIETIES OF TENSORS 128

indexed by the set
(

[r]
n

)
of n-element subsets of [r] = {1, 2, . . . , r}. With this definition,

Gr(n, r) is the affine subvariety of C(rn) defined by the quadratic Plücker relations, such as
p12p34− p13p24 + p14p23 = 0 for n = 2, r = 4. The dimension of Gr(n, r) is (r−n)n+ 1. Note
that if V V T = (r/n) · Idn, then the Cauchy-Binet formula (cf. [30, Prop. 6]) implies∑

I∈([r]
n )

p2
I =

( r
n

)n
. (4.2.17)

The real points in Gr(n, r), up to scaling, correspond to n-dimensional subspaces of Rr.

Proposition 4.2.9. The image of Fr,n under the Plücker map is an affine variety of dimen-

sion (r−n)n− r + 2 in the Grassmannian Gr(n, r) ⊂ C(rn). It is defined by the equations∑
I:i∈I

p2
I =

( r
n

)n−1

for i = 1, 2, . . . , r. (4.2.18)

The real points in this image correspond to SOn-orbits of n-dimensional frames in Fr,n.

Note that adding up the r relations in (4.2.18) and dividing by n gives precisely (4.2.17).

Proof. Both Fr,n and the constraints (4.2.18) are invariant under SOn. Suppose that V ∈
Cn×r satisfies V V T = (r/n) · Idn. We may assume (modulo SOn) that the i-th column of V
is (α, 0, . . . , 0)T for some α ∈ C. Let Ṽ be the matrix obtained from V by deleting the first
row and i-th column. Then Ṽ · Ṽ T = (r/n) · Idn−1. Any pI with i ∈ I equals α times the
maximal minor of Ṽ indexed by I\{i}. Applying (4.2.17) to Ṽ , this gives∑

I:i∈I

p2
I = α2 ·

( r
n

)n−1

.

Hence (4.2.18) holds if and only if α = ±1, and this holds for all i if and only if V lies in Fr,n.
The dimension formula follows from Theorem 4.2.2 because SOn acts faithfully on Fr,n.

Example 4.2.10. Let n = 2. If r = 5, then our construction realizes F5,2/SO2 as an
irreducible surface of degree 80 in C10. Its prime ideal is generated by the ten quadratic
polynomials

p14p23 − p13p24 + p12p34, p15p23 − p13p25 + p12p35, p15p24 − p14p25 + p12p45, p15p34 − p14p35

+p13p45, p25p34 − p24p35 + p23p45, p
2
12 + p2

13 + p2
14 + p2

15 − 5/2, p2
12 + p2

23 + p2
24 + p2

25 − 5/2,
p2

13 + p2
23 + p2

34 + p2
35 − 5/2, p2

14 + p2
24 + p2

34 + p2
45 − 5/2, p2

15 + p2
25 + p2

35 + p2
45 − 5/2.

If r = 4, then F4,2/SO2 is a reducible curve of degree 24 in C6. Its defining equations are

p14p23−p13p24+p12p34 = 0, p2
12+p2

13+p2
14 = p2

12+p2
23+p2

24 = p2
13+p2

23+p2
34 = p2

14+p2
24+p2

34 = 2.

As in Example 4.2.3, this curve breaks into 12 components. One of these 12 irreducible
curves is

{
p ∈ C6 : p12 = p34 = 1, p13 = p24, p14 = −p23, p

2
23 + p2

24 = 1
}

. ♦
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The analogous decomposition is found easily for the case r = n + 1. Here, there are no
Plücker relations, so Gr(n, n+ 1) ' Sn. For convenience of notation, we set qi = p[n+1]\{i} in
(4.2.18). The quotient space Fn+1,n/SOn is the subvariety of Cn+1 defined by the equations

q2
1 + q2

2 + · · ·+ q2
n + q2

n+1 = (n+ 1)n−1/nn + q2
i for i = 1, 2, . . . , n+ 1.

These are equivalent to the following equations, which imply Corollary 4.2.11:

q2
1 = q2

2 = q2
3 = · · · = q2

n+1 = (n+ 1)n−1/nn+1.

Corollary 4.2.11. The quotient space Fn+1,n/SOn is a variety consisting of 2n+1 isolated
points in Rn+1 = Gr(n, n+1), namely those points with coordinates ±(n+1)(n−1)/2/n(n+1)/2.

Any of the 2n+1 components of Fn+1,n can be used to parametrize our variety Tn+1,n,d.

Example 4.2.12. Let n = 3. The point p =
√

3(4
9
, 4

9
, 4

9
, 4

9
) in Gr(3, 4) corresponds to the

SO3-orbit of the frame V in Example 4.2.1. The variety G4,3 can be parametrized as follows:

V = (vij) =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

3 1 1 −5
3 1 −5 1
3 −5 1 1



ν1 0 0 0
0 ν2 0 0
0 0 ν3 0
0 0 0 ν4

.
The 3 × 3-matrix on the left is the familiar parametrization of SO3 via unit quaternions.
This gives the parametrization of the fradeco variety T4,3,d seen in (4.2.8). ♦

The embedding of Fr,n/SOn into Gr(r, n) via (4.2.18) connects frame theory with matroid
theory. The matroid of V is given by the set of Plücker coordinates pI that are zero. If all
Plücker coordinates are nonzero, then the matroid is uniform. It is a natural to ask which
matroids are realizable over R when the additional constraints (4.2.18) are imposed.

The discussion in [30, Section 3.2] relates frame theory to the study of orbitopes [136].
Cahill and Strawn set up an optimization problem for computing Parseval frames that are
most uniform. Their formulation in [30, p. 24] is a linear program over the Grassmann
orbitope, which is the convex hull of Gr(n, r) intersected with (4.2.17). The same optimization
problem makes sense with Gr(n, r) replaced by Fr,n/SOn, or, algebraically, with (4.2.17)
replaced by (4.2.18). If n = 2, then the former problem is a semidefinite program. This is
the content of [136, Theorem 7.3]. For n ≥ 3, the situation is more complicated, but the
considerable body of results coming from calibrated manifolds, such as [136, Theorem 7.5],
should still be helpful.

4.2.3 Binary forms

We now commence our study of the fradeco variety Tr,n,d. In this subsection we focus on
the case n = 2 of binary forms that are decomposable into small frames. The case r = 2
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is the odeco surface known from [131, §3]. Proposition 3.6 in [131] gives an explicit list of
quadrics that forms a Gröbner basis for the prime ideal of T2,2,d, and these are here expressed
as the 2× 2-minors of a certain 3× (d− 3)-matrix M4. What follows is our main result in
subsection 4.2.3. We are using coordinates (t0 : · · · : td) for the space Pd = P(Symd(C2)) of
binary forms. In the notation of (4.2.2), the coordinate ti would be t111···1222···2 with i indices
1 and d− i indices 2.

Theorem 4.2.13. Fix r ∈ {3, 4, . . . , 9} and d ≥ 2r − 2. There exists a matrix Mr such
that:

(a) Its maximal minors form a Gröbner basis for the prime ideal of Tr,2,d.
(b) It has r− 1 rows and d− r+ 1 columns, and the entries are linear forms in t0, . . . , td.

(c) Each column involves r of the unknowns ti, and they are identical up to index shifts.

These matrices can be chosen as follows:

M3 =

(
t0 − 3t2 t1 − 3t3 t2 − 3t4 t3 − 3t5 · · · td−3 − 3td−1

3t1 − t3 3t2 − t4 3t3 − t5 3t4 − t6 · · · 3td−2 − td

)
(4.2.19)

M4 =

 t0 + t4 t1 + t5 t2 + t6 t3 + t7 · · · td−4 + td
t1 − t3 t2 − t4 t3 − t5 t4 − t6 · · · td−3 − td−1

t2 t3 t4 t5 · · · td−2

 (4.2.20)

M5 =


t0 + 5t2 t1 + 5t3 t2 + 5t4 t3 + 5t5 · · · td−5 + 5td−3

t1 − 3t3 t2 − 3t4 t3 − 3t5 t4 − 3t6 · · · td−4 − 3td−2

3t2 − t4 3t3 − t5 3t4 − t6 3t5 − t7 · · · 3td−3 − td−1

5t3 + t5 5t4 + t6 5t5 + t7 5t6 + t8 · · · 5td−2 + td

 (4.2.21)

M6 =


t0 + 3t2 t1 + 3t3 t2 + 3t4 t3 + 3t5 · · · td−6 + 3td−4

t1 + t5 t2 + t6 t3 + t7 t4 + t8 · · · td−5 + td−1

t2 − t4 t3 − t5 t4 − t6 t5 − t7 · · · td−4 − td−2

t3 t4 t5 t6 · · · td−3

3t4 + t6 3t5 + t7 3t6 + t8 3t7 + t9 · · · 3td−2 + td

 (4.2.22)

The first column of M7 is (3t0 + 7t2, t1 + 5t3, t2 − 3t4, 3t3 − t5, 5t4 + t6, 7t5 + 3t7)T , the first
column of M8 is (t0 + 2t2, t1 + 3t3, t4, t3− t5, t2 + t6, 3t5 + t7, 2t6 + t8)T , and the first column
of M9 is (5t0 + 9t2, 3t1 + 7t3, t2 + 5t4, t3 − 3t5, 3t4 − t6, 5t5 + t7, 7t6 + 3t8, 9t7 + 5t9)T .

We conjecture that the same result holds for all r, and we explain what we currently
know after the proof. Let us begin with a lemma concerning the dimension of our variety.

Lemma 4.2.14. The fradeco variety Tr,2,d is irreducible and has dimension min(2r − 3, d).
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Proof. For d ≥ 5, the funtf variety Fr,2 ⊂ (S1)r is irreducible, by Theorem 4.2.2, and hence
so is its closure Gr,2 in (P1)r. While the two special varieties F3,2 and F4,2 are reducible, the
analyzes in Example 4.2.3 and Corollary 4.2.11 show that G3,2 and G4,2 are irreducible.

Regarding Gr,2 as an affine variety in C2×r, we obtain Tr,2,d as its image under the map

ti = vi11v
d−i
21 + vi12v

d−i
22 + vi13v

d−i
23 + · · ·+ vi1rv

d−i
2r for i = 0, 1, . . . , d. (4.2.23)

This proves that Tr,2,d is irreducible. To see that it has the expected dimension, consider the r-
th secant variety of the rational normal curve in Pd, which is the image of the map C2×r 99K Pd
given by (4.2.23). It is known that this secant variety has the expected dimension, namely
min(2r−1, d), and the fiber dimension of the map (4.2.23) does not jump unless some 2×2-
minor of V = (vij) is zero. Since codim(Gr,2) = 2, by Lemma 4.2.4, the claim follows.

Proof of Theorem 4.2.13. We first show that the maximal minors of our matricesMr vanish
on the fradeco variety Tr,2,d for r = 3, 4, . . . , 9. After substituting the parametrization (4.2.23)
for t0, t1, . . . , td, we can decompose these matrices as follows:

Mr = Mr ·


vd−r11 vd−r−1

11 v21 vd−r−2
11 v2

21 · · · vd−r21

vd−r12 vd−r−1
12 v22 vd−r−2

12 v2
22 · · · vd−r22

...
...

...
. . .

...
vd−r1r vd−r−1

1r v2r vd−r−2
1r v2

2r · · · vd−r2r

 ,

where

M3 =

(
(v2

22 − 3v2
11)v21 (v2

22 − 3v2
12)v22 (v2

23 − 3v2
13)v23

(3v2
21 − v2

11)v11 (3v2
22 − v2

12)v12 (3v2
23 − v2

13)v13

)
,

M4 =

 v4
21 + v4

11 v4
22 + v4

12 v4
23 + v4

13 v4
24 + v4

14

v11v
3
21 − v3

11v21 v12v
3
22 − v3

12v22 v13v
3
23 − v3

13v23 v14v
3
24 − v3

14v24

v2
11v

2
21 v2

12v
2
22 v2

13v
2
23 v2

14v
2
24

 ,

M5 =

 v5
21 + 5v5

11 v5
22 + 5v5

12 v5
23 + 5v5

13 v5
24 + 5v5

14 v5
25 + 5v5

15

v11v
4
21 − 3v3

11v
2
21 v12v

4
22 − 3v3

12v
2
22 v13v

4
23 − 3v3

13v
2
23 v14v

4
24 − 3v3

14v
2
24 v15v

4
25 − 3v3

15v
2
25

3v2
11v

3
21 − v4

11v21 3v2
12v

3
22 − v4

12v22 3v2
13v

3
23 − v4

13v23 3v2
14v

3
24 − v4

14v24 3v2
15v

3
25 − v4

15v25

5v3
11v

2
21 + v5

11 5v3
12v

2
22 + v5

12 5v3
13v

2
23 + v5

13 5v3
14v

2
24 + v5

14 5v3
15v

2
25 + v5

15

,
and similarly for M6,M7,M8 and M9. We claim that the matrices Mr have rank < r − 1
whenever V ∈ Fr,2. Equivalently, the (r−1)× (r−1) minors of Mr lie in the ideal of Gr,2. It
suffices to consider the leftmost such minor since all minors are equivalent under permuting
the columns of V . For each r ≤ 9, we check that the determinant of that minor factors as

(m11m22 −m12m21) ·
∏

1≤i<j≤r−1

(v1iv2j − v2iv1j), (4.2.24)

where the left factor is the polynomial of degree 2r − 2 given in (4.2.13). That polynomial
vanishes on Gr,2. This implies rank(Mr) ≤ r−2 on Gr,2, and hence rank(Mr) ≤ r−2 on Tr,2,d.
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Fix the lexicographic term order on C[t0, t1, . . . , td]. We can check that, for each r ∈
{3, 4, ..., 9}, the leading monomial of the leftmost maximal minor ofMr equals t0t2t4 · · · tr−2.
Hence all

(
d−r+1
r−1

)
maximal minors of Mr are squarefree, and they generate the ideal

Ir,d =
〈
ti1ti2ti3 · · · tir−1 : 2 ≤ i1+2 ≤ i2, i2+2 ≤ i3, i3+2 ≤ i4, . . . , ir−2+2 ≤ ir−1 ≤ d−2

〉
.

This squarefree monomial ideal is pure of codimension d− 2r + 3 and it has degree
(
d−r+1
r−2

)
.

This follows from [118, Theorem 1.6]. Indeed, in Murai’s theory, our ideal Ir,d is obtained
from the power of the maximal ideal by applying the stable operator given by a = (2, 4, 6, . . .).

Combinatorial analysis reveals that the ideal Ir,d is the intersection of the prime ideals〈
tj0 , tj1 , tj2 , tj3 , . . . , tjd−2r+2

〉
,

where j0, j2, j4, . . . are even, j1, j3, j5, . . . are odd, and 0 ≤ j0<j1<j2< · · ·<jd−2r+2 ≤ d. Note
that number of such sequences is

(
d−r+1
d−2r+3

)
=
(
d−r+1
r−2

)
. Hence the codimension and degree of

Ir,d are as expected for the ideal of maximal minors of an (r−1)×(d−r+1)-matrix with linear
entries [84, Ex. 19.10]. The monomial ideal Ir,d is Cohen-Macaulay because its corresponding
simplicial complex is shellable (cf. [142, §III.2]). Indeed, if we list the associated primes in a
dictionary order for all sequences j0j1j2 · · · jd−2r+2 as above, then this gives a shelling order.

Using Buchberger’s S-pair criterion, we check that the maximal minors of Mr form a
Gröbner basis. We only need to consider pairs of minors whose leading terms share variables.
Up to symmetry, there are only few such pairs, so this is an easy check for each fixed r ≤ 9.

Since Ir,d is radical of codimension d − 2r + 3, we conclude that the ideal of maximal
minors of Mr is radical and has the same codimension. However, that ideal of minors is
contained in the prime ideal of Tr,2,d, which has codimension d− 2r + 3 by Lemma 4.2.14.

Therefore, we now know that Tr,2,d is one of the irreducible components of the variety of
maximal minors of Mr. To conclude the proof we need to show that the latter variety is
irreducible, so they are equal. To see this, we fix r and we proceed by induction on d. For
d = 2r − 2, when Mr is a square matrix, this can be checked directly. To pass from d to
d+ 1, we factor the matrix as Mr times the rank r Hankel matrix associated with a funtf V .
Increasing the value of d to d+ 1 multiplies the i-th row of the Hankel matrix by vi1 and it
adds one more column. This gives us the value for the new variable td+1. Now, since that
variable occurs linearly in the maximal minors, its value is unique. This implies that the
unique rank r − 2 extension from the old to the new Mr must come from the funtf V .

We established Theorem 4.2.13 assuming that r ≤ 9, but we believe that it holds for
all r:
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Conjecture 4.2.15. For all r ≥ 3 there exists a matrix Mr which satisfies the properties
(a),(b) and (c) in Theorem 4.2.13. When r is odd, the matrix Mr may be chosen as



r−4 0 r
r−6 0 r − 2

. . .

−1 0 3
3 0 −1

5 0 1

. . .

r 0 r−4





t0 t1 · · · td−r
t1 t2 · · · td−r+1

...
...

. . .
...

tr−2 tr−1 · · · td−2

tr−1 tr · · · td−1

tr tr+1 · · · td


.

We do not know yet what the general formula for Mr should be when r is even. The
following systematic construction led to the matrices Mr and Mr in all cases known to us.
Let P̃ and Q̃ be the multilinear forms in Lemma 4.2.4 that define Gr,2. Let Fj denote the

polynomial of degree 2r − 2 obtained by eliminating v1j and v2j from P̃ and Q̃. Let Gj

denote the product of all
(
r−1

2

)
minors v1kv2l − v1lv2k of V where j 6∈ {k, l}. Each product

FjGj is a polynomial of degree r(r − 1). Note that Fr is m11m22 −m12m21 in (4.2.13), and
FrGr is (4.2.24). Now, the ideal 〈F1G1, F2G2, . . . , FrGr〉 is Cohen-Macaulay of codimension
2. By the Hilbert-Burch Theorem, the FjGj are the maximal minors of an (r−1)×r-matrix
Mr, which can be extracted from the minimal free resolution of 〈F1G1, . . . , FrGr〉. This is
precisely our matrix. In order to extend Theorem 4.2.13, and to find the desired Mr for
even r, we need that all entries of the Hilbert-Burch matrix Mr have the same degree r.

Remark 4.2.16. The singular locus of Tr,2,d is defined by the (r−2)× (r−2)-minors of Mr.
It would be interesting to study this subvariety of Pd and how it relates to singularities of
Fr,2. For instance, for r = 4, this singular locus is precisely the odeco variety T2,2,d, and,
using Theorem 3.1.20, we can see that its prime ideal is generated by the 2 × 2-minors of
M4.

In Subsection 4.2.5 we shall see how the matricesMr can be used to find a frame decom-
position of a given symmetric 2×2× · · ·×2-tensor T . We close with an example that shows
how this task differs from the easier problem of constructing a rank r Waring decomposition
of T .

Example 4.2.17. Let r = 4, d = 8, and consider the sum of two odeco tensors

T = x8 + y8 + (x− y)8 + (x+ y)8 = 3x8 + 56x6y2 + 140x4y4 + 56x2y6 + 3y8.

The coordinates of this tensor are t0 = t8 = 3, t2 = t4 = t6 = 2, and t1 = t3 = t5 = t7 = 0.
Here, the 3× 5-matrix M4 has rank 2. This verifies that T lies in T4,2,8, in accordance with
Example 4.2.3. However, the 4× 4-matrix M5 is invertible. This means that T does not lie
in T5,2,8. In other words, there is no funtf among the rank 5 Waring decompositions of T . ♦
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4.2.4 Ternary Forms and Beyond

We now move on to higher dimensions n ≥ 3. Our object of study is the fradeco variety

Tr,n,d ⊂ P(Symd(Cn)).

A very first question is: What is the dimension of Tr,n,d ? In Lemma 4.2.14, we saw that
dim(Tr,2,d) = 2r − 3. The following proposition generalizes that formula to arbitrary n:

Proposition 4.2.18. For all r > n and d ≥ 3, the dimension of Tr,n,d is bounded above by

min

{
(n− 1)(r − n) +

(n− 1)(n− 2)

2
+ r − 1 ,

(
n+ d− 1

d

)
− 1

}
. (4.2.25)

Proof. The right number is the dimension of the ambient space, so this is an upper bound.
The left number is the dimension of Fr,n × Pr−1, by the formula in Theorem 4.2.2. The
formula (4.2.3) expresses our variety as the (closure of the) image of a polynomial map

Fr,n × Pr−1 −→ Tr,n,d. (4.2.26)

The dimension of the image of this map is bounded above by the dimension of the domain.

Remark 4.2.19. When Tr,n,d is not the ambient space, (4.2.25) is the same as dimPr,n.

We conjecture that the true dimension always agrees with the expected dimension:

Conjecture 4.2.20. The dimension of the variety Tr,n,d is equal to (4.2.25) for all r > n
and d ≥ 3.

This conjecture is subtler than it may seem. Let σrνdPn−1 denote the Zariski closure
of the set of tensors of rank ≤ r in P(Symd(Cn)). Geometrically, this is the r-th secant
variety of the d-th Veronese embedding of Pn−1. It is known that σrνdPn−1 has the expected
dimension in almost all cases. The Alexander-Hirschowitz Theorem (cf. [27, 108]) states
that, assuming d ≥ 3, the dimension of σrνdPn−1 is lower than expected in precisely four
cases:

(r, n, d) ∈
{

(5, 3, 4), (7, 5, 3), (9, 4, 4), (14, 5, 4)
}
. (4.2.27)

One might think that in these cases also the fradeco subvariety Tr,n,d has lower than expected
dimension. However, the results summarized in Theorem 4.2.21 suggest that this is not the
case.

Theorem 4.2.21. Consider the fradeco varieties Tr,n,d in the cases when n ≥ 3 and 1 ≤
dim(Tr,n,d) ·codim(Tr,n,d) ≤ 100. Table 4.2 gives their degrees and some defining polynomials.
The last column shows the minimal generators of lowest possible degrees in the ideal of Tr,n,d.
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variety dim codim degree known equations
T4,3,3 6 3 17 3 cubics, 6 quartics
T4,3,4 6 8 74 6 quadrics, 37 cubics
T4,3,5 6 14 191 27 quadrics, 104 cubics
T5,3,4 9 5 210 1 cubic, 6 quartics
T5,3,5 9 11 1479 20 cubics, 213 quartics
T6,3,4 12 2 99 none in degree ≤ 5
T6,3,5 12 8 4269 one quartic
T7,3,5 15 5 ≥ 38541 none in degree ≤ 4
T8,3,5 18 2 690 none in degree ≤ 5
T10,3,6 24 3 ≥ 16252 none in degree ≤ 7
T5,4,3 10 9 830 none in degree ≤ 4
T6,4,3 14 5 1860 none in degree ≤ 3
T7,4,3 18 1 194 one in degree 194

Table 4.2: A census of small fradeco varieties

Computational Proof. The dimensions are consistent with Conjecture 4.2.20. They were
verified by computing tangent spaces at a generic point using Bertini and Matlab. The
degrees were computed with the monodromy loop method described in Subsubsection 4.2.5.6.
The numerical Hilbert function method in Subsubsection 4.2.5.7 was used to determine how
many polynomials of a given degree vanish on Tr,n,d. This was followed up with computations
in exact arithmetic in Maple and Macaulay2. These confirmed the earlier numerical results,
and they enabled us to find the explicit polynomials in Q[T ] that are listed in Examples
4.2.22, 4.2.23 and 4.2.24. In the cases where we report no equations occurring below a
certain degree, this is a combination of Corollary 4.2.28 and the numerical Hilbert function
computation.

We shall now discuss some of the cases appearing in Theorem 4.2.21 in more detail.

Example 4.2.22. The 6-dimensional variety T4,3,3 ⊂ P9 has the parametrization

t300 = v3
11 + v3

12 + v3
13 + v3

14,
t030 = v3

21 + v3
22 + v3

23 + v3
24,

t003 = v3
31 + v3

32 + v3
33 + v3

34,
t012 = v21v

2
31 + v22v

2
32 + v23v

2
33 + v24v

2
34,

t021 = v2
21v31 + v2

22v32 + v2
23v33 + v2

24v34,
t102 = v11v

2
31 + v12v

2
32 + v13v

2
33 + v14v

2
34,

t120 = v11v
2
21 + v12v

2
22 + v13v

2
23 + v14v

2
24,

t201 = v2
11v31 + v2

12v32 + v2
13v33 + v2

14v34,
t210 = v2

11v21 + v2
12v22 + v2

13v23 + v2
14v24,

t111 = v11v21v31 + v12v22v32 + v13v23v33 + v14v24v34.

(4.2.28)
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Here the matrix V = (vij) is given by the parametrization of G4,3 seen in (4.2.8) of Example
4.2.1.

Using exact linear algebra in Maple, we find that the ideal of T4,3,3 contains no quadrics,
but it contains three linearly independent cubics and 36 quartics. One of the cubics is

C123 + 2C145 + 2C345 − C126 − C236 − 4C456, (4.2.29)

where Cijk denotes the determinant of the 3× 3 submatrix with columns i, j, k in

C =

t300 t210 t120 t201 t111 t102

t210 t120 t030 t111 t021 t012

t201 t111 t021 t102 t012 t003

 .

The other two cubics are obtained from this one by permuting the indices. The resulting
three cubics define a complete intersection in P9. However, that complete intersection strictly
contains T4,3,3 because the three cubics have only 30 multiples in degree 4, whereas we know
that 36 quartics vanish on T4,3,3. Using Macaulay2, we identified six minimal ideal generators
in degree 4, and we found that the nine known generators generate a Cohen-Macaulay ideal of
codimension 3 and degree 17. Using Bertini, we independently verified that fradeco variety
T4,3,3 has degree 17. This implies that we have found the correct prime ideal. ♦
Example 4.2.23. The variety T4,3,4 is also 6-dimensional, and it lives in the P14 of ternary
quartics. The parametrization is as in (4.2.28) but with quartic monomials instead of cubic.
Among the ideal generators for T4,3,4 are six quadrics and 37 cubics. One of the quadrics is

8(t2013−t004t022) + 8(t2031−t022t040) + 8(t2211−t202t220) + 18(t2112−t103t121) + 18(t2121−t112t130)
+(t004t040+19t2022−20t013t031) + (t004t220+t022t202−2t013t211) + (t040t202+t022t220−2t031t211).

A Bertini computation suggests that the known generators suffice to cut out T4,3,4. We
also note that the 27 quadrics for T4,3,5 come from the 6 quadrics for T4,3,4. For instance,
replacing each variable tijk by ti,j,k+1 yields the quadric 8t2014 +8t2032 + · · ·+19t2023 for T4,3,5. ♦
Example 4.2.24. The fradeco variety T5,3,4 is especially interesting because (5, 3, 4) appears
on the Alexander-Hirschowitz list (4.2.27). The unique cubic that vanishes on T5,3,4 is

46t022t202t220 + 73t112t121t211 − 4t004t040t400 + 19[t013t130t301]2 − 50[t004t
2
112]3 − 22[t004t

2
220]3

−18[t022t
2
211]3 + 50[t004t022t202]3 + 26[t004t130t310]3 + 100[t013t103t112]3 − 53[t013t121t310]3

+5[t004t022t400]6 − 50[t2013t202]6 − 5[t2013t220]6 + 45[t004t031t211]6 − 40[t022t
2
202]6 + 5[t004t022t220]6

+40[t022t
2
112]6 − 5[t004t

2
130]6 − 45[t004t

2
121]6 − 10[t004t112t130]6−45[t013t022t211]6+35[t013t031t202]6

+10[t013t103t130]6 + 10[t013t112t121]6 − 80[t013t112t301]6 + 80[t013t202t211]6 + 8[t013t211t220]6.

This polynomial has 128 terms: each bracket denotes an orbit of monomials under the S3-
action, and the subscript is the orbit size. In addition, six fairly large quartics vanish on
T5,3,4. The seven known generators cut out a reducible variety of dimension 9 in P14. The
fradeco variety T5,3,4 is the unique top-dimensional component. But, using Bertini, we found
two extraneous components of dimension 7. Their degrees are 120 and 352 respectively. ♦
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We close this subsection by examining the geometric interplay between fradeco varieties
and secant varieties. We write σrνdPn−1 for the r-th secant variety of the d-th Veronese
embedding of Pn−1. This lives in P(Symd(Cn)) and comprises rank r symmetric tensors
(4.2.3). The same ambient space contains the fradeco variety Tr,n,d and all its secant varieties
σsTr,n,d.

Theorem 4.2.25. For any r > n ≥ d ≥ 2, we have

σr−nνdPn−1 ⊂ Tr,n,d ⊂ σrνdPn−1, (4.2.30)

and hence Tr−n,n,d ⊂ Tr,n,d whenever r ≥ 2n. Also, if r = r1r2 with r1 ≥ 2 and r2 ≥ n, then

σr1Tr2,n,d ⊆ Tr,n,d. (4.2.31)

Proof. We fix d. The right inclusion in (4.2.30) is immediate from the definition. For the
left inclusion we use the parametrization of Fr,n given in (4.2.15) and (4.2.16). The point
is that the (r − n) × n-matrix W can be chosen freely. Equivalently, the projection of
Gr,n ⊂ (Pn−1)r to any coordinate subspace (Pn−1)r−n is dominant. This means that the first
r − n summands in (4.2.1) are arbitrary powers of linear forms, and this establishes the left
inclusion in (4.2.30).

To show the inclusion (4.2.31), we consider arbitrary frames V1, V2, . . . , Vr1 ∈ Fr2,n. Then
the n× r-matrix V = (V1, V2, . . . , Vr1) is a frame in Fr,n. Each Vi together with a choice of
λi ∈ Rr2 determines a point on Tr2,n,d. Thus we have r1 points in Tr2,n,d, and any point on the
Pr1−1 spanned by these lies in Tr,n,d, where it is represented by V with λ = (λ1, . . . , λr1) ∈
Rr.

Example 4.2.26. Let n = 2 and write H = (ti+j) for a Hankel matrix of unknowns with
r + 1 rows and sufficiently many columns. The secant variety σrνdP1 is defined by the ideal
Ir+1(H) of (r+1)× (r+1)-minors of H. The ideal-theoretic version of (4.2.30) states that

Ir−1(H) ⊃ Ir−1(Mr) ⊃ Ir+1(H).

It is instructive to check this. The left inclusion follows from the Cauchy-Binet Theorem
applied to Mr = A ·H where A is the (r−1)× (r+1) integer matrix underlying Mr.

To see more precisely how the matrix A is defined, consider the formula in Conjecture
4.2.15. Rewriting it, we obtain the following matrix product where the matrix on the left is
A: 

r−4 0 r
r−6 0 r − 2

. . .

−1 0 3
3 0 −1

5 0 1

. . .

r 0 r−4





t0 t1 · · · td−r
t1 t2 · · · td−r+1

...
...

. . .
...

tr−2 tr−1 · · · td−2

tr−1 tr · · · td−1

tr tr+1 · · · td
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Remark 4.2.27. (a) Since concatenations of frames in Rn are always frames, (4.2.31)
generalizes from secant varieties to joins. Namely, if r = r1 + r2, then Tr1,n,d ?Tr2,n,d ⊂
Tr,n,d.

(b) The inclusion in (4.2.31) is always strict, with one notable exception: σ2T2,2,d = T4,2,d.

Theorem 4.2.25 implies that the Veronese variety νdPn−1 is contained in the fradeco
variety Tr,n,d with r > n. This is illustrated in Example 4.2.23 where we wrote the quadric
that vanishes on T4,3,4 as a linear combination of the binomials that define ν4P2 ⊂ P14. The
formula (4.2.29) shows that this cubic vanishes on σ2ν3P2. Similarly, we can verify that
the cubic in Example 4.2.24 vanishes on σ2ν4P2 by writing it as a linear combination of the
3× 3-minors Cijk,lmm of the 6× 6-catalecticant C matrix in (4.2.34). One such expression is

50C012,012 − 30C012,123 + 50C012,034 − 30C012,125 + 50C012,045 + 63C012,345 − 10C013,024 + 10C013,234

+5C013,015 + 35C013,135 + 34C013,245 + 5C023,023 − 80C023,134 + 5C023,025 − 26C023,235 − 19C023,145

−30C123,123 + 29C123,125 − 10C123,345 − 10C014,025 + 19C014,235 − 53C014,145 − 30C024,245 + 5C034,034

+26C034,045 + 5C034,345 + 50C134,134 + 50C134,235 + 30C134,145 + 30C234,245 + 5C015,015 + 26C015,135

+50C015,245 − 5C025,235 − 10C025,145 − 10C125,345 − 4C035,035 + 5C135,135 + 50C135,245 + 5C235,235

+5C045,045 + 5C045,345 + 50C245,245.

Theorem 4.2.25 gives lower bounds on the degrees of the equations defining fradeco
varieties:

Corollary 4.2.28. All non-zero polynomials in the ideal of Tr,n,d must have degree at least
r − n+ 1.

Proof. The ideal of the Veronese variety νdPn−1 contains no linear forms. It is generated by
2 × 2 minors of catalecticants. A general result on secant varieties [139, Thm. 1.2] implies
that the ideal of σr−nνdPn−1 is zero in degree ≤ r − n. The inclusion σr−nνdPn−1 ⊂ Tr,n,d
yields the claim.

In Table 4.2 we see that T4,3,4, T4,3,5, T5,3,4, T5,3,5 and T6,3,5 have their first minimal
generators in the lowest possible degrees. However this is not always the case, as shown
dramatically by T7,4,3.

4.2.5 Numerical Recipes

Methods from Numerical Algebraic Geometry (NAG) are useful for studying the decom-
position of tensors into frames. Many of the results on fradeco varieties Tr,n,d reported in
subsections 4.2.3 and 4.2.4 were discovered using NAG. In this subsection we discuss the rel-
evant methodologies. Our experiments involve a mixture of using Bertini [15], Macaulay2
[81], Maple, and Matlab.

All algebraic varieties have an implicit representation, as the solution set to a system
of polynomial equations. Some special varieties admit a parametric representation, as the
(closure of the) image of a map whose coordinates are rational functions. Having to pass back
and forth between these two representations is a ubiquitous task in computational algebra.
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The fradeco variety studied in this section is given by a mixture of implicit and parametric.
Our point of departure is the implicit representation (4.2.4) of the funtf variety Fr,n, or its
homogenization Gr,n. Built on top of that is the parametrization (4.2.1) of rank r tensors:

Cn×r × Cr Symd(Cn)
∪ ∪

Fr,n × Cr Σd−→ T̂r,n,d

(V, λ) 7−→ λ1v
⊗d
1 + λ2v

⊗d
2 + · · ·+ λrv

⊗d
r

(4.2.32)

Here, T̂r,n,d denotes the affine cone over the projective variety Tr,n,d. The input to our decom-
position problem is an arbitrary symmetric n×n× · · ·×n-tensor T and a positive integer r.
The task is to decide whether T lies in T̂r,n,d, and, if yes, to compute a preimage (V, λ) under
the map Σd in (4.2.32). Any preimage must satisfy the non-trivial constraint V ∈ Fr,n.

4.2.5.1 Decomposing fradeco tensors

We discuss three approaches to finding frame decompositions of symmetric tensors.

4.2.5.2 Tensor power method

Our original motivation for this project came from the case r = n of odeco tensors (see

Section 3.1). If T ∈ T̂n,n,d, then the tensor power method of [8] reliably reconstructs the
decomposition (4.2.1) where {v1, . . . , vn} is an orthonormal basis of Rn. The algorithm
is to iterate the rational map ∇T : Pn−1 99K Pn−1 given by the gradient vector ∇T =
(∂T/∂x1, . . . , ∂T/∂xn). This map is regular when the hypersurface {T = 0} is smooth. The
fixed points of ∇T are the eigenvectors of the tensor T . Their number was given in [37].
The punchline is this: if the multipliers λ1, . . . , λn in (4.2.1) are positive, then v1, . . . , vn are
precisely the robust eigenvectors, i.e. the attracting fixed points of the gradient map ∇T .

This raises the question whether the tensor power method also works for fradeco tensors.
The answer is “no” in general, but it is “yes” in some special cases.

Example 4.2.29. Let n = 2, r = 4, d = 5 and consider the fradeco quintic

T = αx5 + y5 + (x+ y)5 + (x− y)5 ∈ T4,2,5,

where α > 6 is a parameter. The eigenvectors of T are the zeros in P1 of the binary quintic

y
∂T

∂x
− x∂T

∂y
= 5y ·

(
(αx− 6)x4 +

(
2xy − 1

4
y2
)2

+
31

16
y4

)
.

The point (1 : 0) is an eigenvector, but there are no other real eigenvectors, as the expression
is a sum of squares. Hence the frame decomposition of T cannot be recovered from its
eigenvectors. ♦
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Example 4.2.30. For any reals λ1, λ2, λ3, λ4 > 0 and any integer d ≥ 5, we consider the
tensor

T = λ1(−5x1+x2+x3)d+λ2(x1−5x2+x3)d+λ3(x1+x2−5x3)d+λ4(3x1+3x2+3x3)d. (4.2.33)

This tensor has precisely four robust eigenvectors, namely the columns of the matrix V in
(4.2.7). Hence the frame decomposition of T can be recovered by the tensor power method.
♦

The following conjecture generalizes this example.

Conjecture 4.2.31. Let r = n + 1 < d and T ∈ Tn+1,n,d with λ1, . . . , λn+1 > 0 in (4.2.1).
Then v1, . . . , vn+1 are the robust eigenvectors of T , so they are found by the tensor power
method.

Example 4.2.29 shows that Conjecture 4.2.31 is false for r ≥ n+2, and it suggests that the
Tensor Power Method will not work in general. We next discuss two alternative approaches.

4.2.5.3 Catalecticant method for frames

The matrices in Theorem 4.2.13 furnish a practical algorithm for the frame decomposition
problem when n = 2. This is a variant of Sylvester’s Catalecticant Algorithm, and it works
as follows.

Our input is a binary form T ∈ T̂r,2,n. We seek to recover the tight frame into which T
decomposes. Since we do not know the fradeco rank r in advance, we start withM3,M4,M5,
etc. and plug in the coordinates ti of T . The fradeco rank is the first index r withMr rank
deficient.

If the matrix Mr is rank deficient, then its rank is at most r − 2. Let us assume that
the rank equals exactly r − 2. Otherwise T is a singular point (cf. Remark 4.2.16). Then,
up to scaling, we find the unique row vector w ∈ Rr−1 in the left kernel ofMr. By Theorem
4.2.13 we know thatMr is the product of the matrix Mr and an (r− 1)× (d− r− 1) matrix
with entries vd−r−j+1

i1 vj−1
i2 , where V = (vij) ∈ Gr,2 is the desired frame. Moreover, the matrix

Mr has rank r − 2, so the vector w also lies in the left kernel of Mr, i.e. w ·Mr = 0. Thus,

0 = w ·Mr =
(
f(v11, v21), f(v12, v22), . . . , f(v1r, v2r)

)
,

where f(x, y) is a binary form of degree r. The r roots of f(x, y) in P1 are the columns of
the desired V = (vij) ∈ Gr,2. Using these vij, the given binary form has the decomposition

T (x, y) =
r∑
j=1

λj(v1jx+ v2jy)d,

where the multipliers λ1, . . . , λr are recovered by solving a linear system of equations.
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Example 4.2.32. Let r = 5 and d = 8. We illustrate this method for the binary octic

T = (−237−896α)x8 + 8(65+241α)x7y − 28(16+68α)x6y2 + 56(5+31α)x5y3 + 70(2−56α)x4y4

+56(−7 + 193α)x3y5 + 28(32− 716α)x2y6 + 8(−115 + 2671α)xy7 + (435− 9968α)y8,

where α =
√

3− 2. The parenthesized expressions are the coordinates t0, . . . , t8. We find

M5 =


−13548α + 595 3636α− 150 −996α + 42 348α + 18

2092α− 94 −548α + 26 100α− 22 148α + 50
−2092α + 94 548α− 26 −100α + 22 −148α− 50

996α− 30 −348α− 6 396α + 90 −1236α− 317

 .

This matrix has rank 3 and its left kernel is the span of the vector w = (0, 1, 1, 0). Therefore,

0 = wM5 =

0
1
1
0


T


v521 + 5v511 v522 + 5v512 v523 + 5v513 v524 + 5v514 v525 + 5v515
v11v

4
21 − 3v311v

2
21 v12v

4
22 − 3v312v

2
22 v13v

4
23 − 3v313v

2
23 v14v

4
24 − 3v314v

2
24 v15v

4
25 − 3v315v

2
25

3v211v
3
21 − v411v21 3v212v

3
22 − v412v22 3v213v

3
23 − v413v23 3v214v

3
24 − v414v24 3v215v

3
25 − v415v25

5v311v
2
21 + v511 5v312v

2
22 + v512 5v313v

2
23 + v513 5v314v

2
24 + v514 5v315v

2
25 + v515

 .

Hence the five columns of the desired tight frame V = (vij) are the distinct zeros in P1 of

f(v1i, v2i) = v1iv
4
2i − 3v3

1iv
2
2i + 3v2

1iv
3
2i − v4

1iv2i for i = 1, . . . , 5.

We find

V =

(
1 0 1 α 1
0 1 1 1 α

)
∈ G5,2.

It remains to solve the linear system of nine equations in λ = (λ1, . . . , λ5) given by

T = λ1x
8 + λ2y

8 + λ3(x+ y)8 + λ4(αx+ y)8 + λ5(x+ αy)8.

The unique solution to this system is λ1 = λ2 = λ3 = λ5 = 1 and λ4 = 1552 + 896
√

3. ♦

4.2.5.4 Waring-enhanced frame decomposition

We now examine the decomposition problem for n ≥ 3. Since no determinantal represen-
tation of Tr,n,d is known, a system of equations must be solved to recover (V, λ) from a

given tensor in T̂r,n,d. In some special situations, we can approach this by taking advantage
of known results on Waring decompositions. For instance, in Example 4.2.1 the Waring
decomposition is already the frame decomposition. Example 4.2.17 shows that this is an
exceptional situation.

We demonstrate the “Waring-enhanced” frame decomposition for the ternary quartic∑
i+j+k=4

24
i!j!k!

tijkx
iyjzk = 467x4+152x3y+1448x3z+660x2y2−1488x2yz+4020x2z2+536xy3

−1992xy2z+2352xyz2+944xz3+227y4−1000y3z+2148y2z2−1960yz3+1267z4.

Ternary quartics of rank ≤ 5 form a hypersurface of degree 6 in P14. The equation of this
hypersurface is the determinant of the 6× 6 catalecticant matrix C. Here the dimension is
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one less than expected; this is the first entry in the Alexander-Hirschowitz list (4.2.27). For
the given quartic,

C =


t400 t310 t301 t220 t211 t202

t310 t220 t211 t130 t121 t112

t301 t211 t202 t121 t112 t103

t220 t130 t121 t040 t031 t022

t211 t121 t112 t031 t022 t013

t202 t112 t103 t022 t013 t004

 =


467 38 362 110 −124 670
38 110 −124 134 −166 196
362 −124 670 −166 196 236
110 134 −166 227 −250 358
−124 −166 196 −250 358 −490
670 196 236 358 −490 1267

.
(4.2.34)

This matrix has rank 5 and its kernel is spanned by the vector corresponding to the quadric
q = 14u2 − uv − 2uw − 4v2 − 11vw − 10w2. The points (u : v : w) in P2 that lie on the
conic {q = 0} represent all the linear forms ux + vy + wz that may appear in a rank 5
decomposition.

Our task is to find five points on the conic {q = 0} that form a frame V ∈ G5,3. This
translates into solving a rather challenging system of polynomial equations. One of the
solutions is

V = (v1, v2, v3, v4, v5) =

−1 2 2 1 + 2
√

3 −1 + 2
√

3

2 2 −1 −2 +
√

3 2 +
√

3
0 1 −2 5 −5

 .

The given ternary quartic has the frame decomposition v⊗4
1 + v⊗4

2 + v⊗4
3 + v⊗4

4 + v⊗4
5 .

4.2.5.5 Exploring the fradeco variety

The following tasks make sense for any variety X ⊂ PN arising in an applied context: (i)
sample points on X, (ii) compute the dimension and degree of X, (iii) compute an irreducible
decomposition of X, (iv) find a parametrization of X, (v) find some polynomials that vanish
on X, (vi) determine polynomials that cut out X, (vii) find generators for the ideal of X.
Numerical algebraic geometry (NAG) furnishes tools for addressing these points. In our
study, X is the fradeco variety Tr,n,d. We used NAG to find answers in some cases. In what
follows, we explain our computations. Particular emphasis is placed on the results reported
in subsection 4.2.4 for the degree and Hilbert function of Tr,n,d. All computations are carried

out by working on the affine cone T̂r,n,d ⊂ Symd(Cn).

4.2.5.6 Dimension and degree

The dimension and degree of the affine variety T̂r,n,d can be computed directly from the mixed
parametric-implicit representation in (4.2.32). The dimension can be found by selecting a
random point on Fr,n×Rr, determining its tangent space via [145], and then taking the image
of this tangent space via the derivative of the map Σd. The image is a linear subspace in
Symd(Rn), and its dimension is found via the rank of its defining matrix. These matrices are
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usually given numerically, in terms of points sampled from Fr,n, so we need to use singular
value decompositions.

The computation of the degree is carried out using monodromy. We obtained the results
of Theorem 4.2.21 by applying essentially the same technique as in [86, 88], adapted to our
situation where the mapping is from an implicitly defined source. Here are some highlights
of this method for T̂r,n,d. We performed these computations using Bertini and MatLab.

Let c denote the codimension of T̂r,n,d, as given by the formula in Conjecture 4.2.20.

The degree of T̂r,n,d is the number of points in the intersection with a random c-dimensional
affine subspace of Symd(Cn). Here we represent the fradeco variety purely numerically,
namely as the set of images of points (V, λ) under the parametrization Σd shown in (4.2.32).

This method verifies the dimension of T̂r,n,d because the intersection would be empty if the
dimension were lower than expected.

As a first step, we compute a numerical irreducible decomposition of the funtf vari-
ety Fr,n. This also gives its degree and dimension, as shown in Table 4.1. In particular, we
obtain degree-many points of Fr,n that lie in a random linear space of dimension equal to
codim(Fr,n).

We take V to be one of these generic points in Fr,n, we select a random vector λ ∈ Cr,
and we compute the fradeco tensor Σd(V, λ). We also fix a random c-dimensional linear
subspace R of Symd(Cn) and a random point U in the c-dimensional affine space R+ U .

By construction, the affine cone T̂r,n,d and the affine space R+ U intersect in deg(T̂r,n,d)
many points in Symd(Cn). One of these points is Σd(V, λ). Our goal is to discover all
the other intersection points by sequences of parameter homotopies that form monodromy
loops. Geometrically, the base space for these monodromies is the vector space quotient
Symd(Cn)/R.

We fix two further random points P1 and P2 in Symd(Cn). These represent residue classes
modulo the linear subspace R. The data we fixed now define a (triangular) monodromy loop

(R+ U) ∩ T̂r,n,d

))

(R+ P2) ∩ T̂r,n,d

55

(R+ P1) ∩ T̂r,n,doo

We use Bertini to perform each linear parameter homotopy. This constructs a path (Vt, λt)
in the parameter space. Here t runs from 0 to 3. We start at (V0, λ0) = (V, λ), the point

Σd(Vi, λi) lies in (R+Pi)∩ T̂r,n,d for i = 1, 2, and Σd(V3, λ3) is back in (R+U)∩ T̂r,n,d. With
high probability, Σd(V3, λ3) 6= Σd(V, λ) holds, and we have discovered a new point. Then we

iterate the process. Let Sk := {Σd(V, λ), . . . ,Σd(V
′, λ′)} denote the subset of (R+U)∩T̂r,n,d

that has been found after k steps. In the next monodromy loop we trace the paths of Sk to
produce S̃k+1, the endpoints of monodromy loops starting from Sk. Using MatLab, we then
merge the point sets to form Sk+1 = Sk ∪ S̃k+1. We repeat this process until no new points
are found after 20 consecutive monodromy loops. The number of points in Sk is very strong
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numerical evidence for the degree of Tr,n,d. At this point, one can also use the trace test [141]
with pseudowitness sets [87] to confirm that degree.

4.2.5.7 Numerical Hilbert Function

We wish to learn the polynomial equations that vanish on Tr,n,d. The set I of all such
polynomials is a homogeneous prime ideal in the polynomial ring over Q whose variables are
the entries ti1i2···id of an indeterminate tensor T . We write this polynomial ring as

Q[T ] =
⊕
e≥0

Q[T ]e '
⊕
e≥0

Syme(Symd(Qn)) = Sym∗(Symd(Qn)).

The space of all polynomials of degree e in the ideal I is the subspace

Ie = I ∩Q[T ]e ⊂ Q[T ]e ' Syme(Symd(Qn)).

A natural approach is to fix some small degree e and to ask for a Q-linear basis of Ie.
The dimensions of these vector spaces are organized into the Hilbert function

N → N, e 7→ dimQ(Ie).

We used Bertini and Matlab to determine specific values of the Hilbert function. In some
cases, an independent Maple computation was used to construct a basis for the Q-vector
space Ie.

Fix values for r, n, d. As discussed above, we can use the parametrization (4.2.32) to
produce many sample points T = Σd(V, λ) on Tr,n,d. The condition f(T ) = 0 translates into
a linear equation in the coefficients of a given polynomial f ∈ Q[T ]e, and Ie is the solution
space to these equations as T ranges over Tr,n,d. We write these linear equations as a matrix

whose number of columns is dim(Q[T ]e) =
((n+d−1

d )+e−1
e

)
, and with one row per sample point

T . In practice we take enough sample points so that Ie is sure to equal the kernel of that
matrix.

This procedure may be carried out in exact arithmetic over Q when sufficiently many
exact points can be found on Fr,n. When floating point approximations are used, some care
is required in choosing the appropriate number of points and a sufficient degree of precision.
This numerical test can become inconclusive in high dimension due to these issues. Using
floating point arithmetic and 30,000 points of Fr,n we obtained the values listed in Table 4.3.
The blanks indicate that we did not find conclusive evidence for the exact value of dim(Ie)
in that case. For T5,4,3, T6,3,4, T6,4,3, T7,3,5, and T8,3,5 we also found no conclusive numerical
evidence for equations in degrees less than 5.

The calculation of dim(Ie) is a numerical rank computation via singular value decompo-
sition, so at least in principle it is possible to also extract a basis of Ie. However, in practice,
round-off errors yield imprecise values for the coefficients of the basis elements of Ie. This
makes it difficult to reliably determine an exact Q-basis of Ie by numerical methods.
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aaaaaaa
ideal

deg e 2 3 4 5 6

dim I(T5,2,9)e 0 0 5 46 235
dim I(T4,3,4)e 6 127 1093 5986
dim I(T4,3,5)e 27 651 6370
dim I(T5,3,4)e 0 1 21
dim I(T5,3,5)e 0 20 633
dim I(T6,3,5)e 0 0 1

Table 4.3: Numerical computation of the Hilbert functions of fradeco varieties

To discover the explicit ideal generators displayed in Subsections 4.2.3 and 4.2.4, we
instead used exact arithmetic in Maple. A key step was to produce points in the funtf
variety Fr,n that are defined over low-degree extension of Q, and to map them carefully via
Σd. To accomplish this, we used the representation of Gr,n discussed in Subsection 4.2.2.
In our experiments, we found that the solve command in Maple was able to handle dense
linear systems with up to 3, 500 unknowns.

4.3 Conclusion

In the first section of this chapter we studied the varieties of orthogonally decomposable
tensors in two different cases: symmetric and ordinary tensors. We showed that these
varieties are defined set-theoretically by quadratic equations that arise from the associativity
of a certain algebra defined by the given tensor. Motivated by these results and by the fact
that odeco tensors constitute a very low-dimensional variety, in the second section of this
chapter we extended the definition of odeco tensors to that of frame decomposable tensors.
In small cases we described the variety of such tensors and we showed how one can find their
frame decomposition.
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Chapter 5

Superresolution without Separation

This chapter provides a theoretical analysis of diffraction-limited superresolution, demon-
strating that arbitrarily close point sources can be resolved in ideal situations. Precisely,
we assume that the incoming signal is a linear combination of M shifted copies of a known
waveform with unknown shifts and amplitudes, and one only observes a finite collection of
evaluations of this signal. We characterize properties of the base waveform such that the
exact translations and amplitudes can be recovered from 2M+1 observations. This recovery
can be achieved by solving a weighted version of basis pursuit over a continuous dictionary.
Our analysis shows that `1-based methods enjoy the same separation-free recovery guar-
antees as polynomial root finding techniques such as Prony’s method or Vetterli’s method
for signals of finite rate of innovation. Our proof techniques combine classical polynomial
interpolation techniques with contemporary tools from compressed sensing. This chapter is
based on joint work with Geoffrey Schiebinger and Benjamin Recht titled Superresolution
without separation [137].

5.1 Introduction

Imaging below the diffraction limit remains one of the most practically important yet theoret-
ically challenging problems in signal processing. Recent advances in superresolution imaging
techniques have made substantial progress towards overcoming these limits in practice [62,
119], but theoretical analysis of these powerful methods remains elusive. Building on poly-
nomial interpolation techniques and tools from compressed sensing, this chapter provides
a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily
close point sources can be resolved in ideal situations.

We assume that the measured signal takes the form

x(s) =
M∑
i=1

ciψ(s, ti), (5.1.1)
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Figure 5.1: An illustrative example of (5.1.1) with the Gaussian point spread function
ψ(s, t) = e−(s−t)2 . The ti are denoted by red dots, and the true intensities ci are illus-
trated by vertical, dashed black lines. The super position resulting in the signal x is plotted
in blue. The samples S would be observed at the tick marks on the horizontal axis.

Here ψ(s, t) is a differentiable function that describes the image at spatial location s of a
point source of light localized at t. The function ψ is called the point spread function, and
we assume its particular form is known beforehand. In (5.1.1), t1, . . . , tM are the locations
of the point sources and c1, ..., cM > 0 are their intensities. Throughout we assume that
these quantities together with the number of point sources M , are fixed but unknown. The
primary goal of superresolution is to recover the locations and intensities from a set of
noiseless observations

{x(s) | s ∈ S} .
Here S is the set of points at which we observe x; we denote the elements of S by s1, . . . , sn.
A mock-up of such a signal x is displayed in Figure 5.1.

In this section, building on the work of Candès and Fernadez-Granda [31, 32, 66] and
Tang et al [20, 150, 149], we aim to show that we can recover the tuple (ti, ci,M) by solving
a convex optimization problem. We formulate the superresolution imaging problem as an
infinite dimensional optimization over measures. Precisely, note that the observed signal can
be rewritten as

x(s) =
M∑
i=1

ciψ(s, ti) =

∫
ψ(s, t)dµ?(t) . (5.1.2)

Here, µ? is the positive discrete measure
∑M

i=1 ciδti , where δt denotes the Dirac measure
centered at t. We aim to show that we can recover µ? by solving the following optimization
problem:

minimize
µ

∫
w(t)µ(dt)

subject to x(s) =

∫
ψ(s, t)dµ(t), s ∈ S

suppµ ⊂ B

µ ≥ 0 .

(5.1.3)
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Here, B is a fixed compact subset of the real line and w(t) is a weighting function that
weights the measure at different locations. The optimization problem (5.1.3) is over the set
of all positive finite measures µ supported on B.

The optimization problem (5.1.2) is an analog of `1 minimization over the continuous
domain B. Indeed, if we know a priori that the ti are elements of a finite discrete set Ω, then
optimizing over all measures subject to suppµ ⊂ Ω is precisely equivalent to weighted `1

minimization. This infinite dimensional analog with uniform weights has proven useful for
compressed sensing over continuous domains [150], resolving diffraction-limited images from
low-pass signals [31, 66, 149], system identification [138], and many other applications [41].
We will see below that the weighting function essentially ensures that all of the candidate
locations are given equal influence in the optimization problem.

Our main result, Theorem 5.1.4, establishes that for one-dimensional signals, under rather
mild conditions, we can recover µ? from the optimal solution of (5.1.3). Our conditions,
described in full-detail below, essentially require the observation of at least 2M + 1 samples,
and that the set of translates of the point spread function forms a linearly independent set.
In Theorem 5.1.1 we verify that these conditions are satisfied by the Gaussian point spread
function for any M source locations with no minimum separation condition. This is the first
analysis of an `1 based method that matches the separation-free performance of polynomial
root finding techniques [157, 53, 124]. Our motivation for such an analysis is that `1 based
methods generalize to higher dimensions and are empirically stable in the presence of noise.

Boyd, Schiebinger and Recht [25] show that the problem (5.1.3) can be optimized to
precision ε in polynomial time using a greedy algorithm. In our experiments in Section 5.3,
we use this algorithm to demonstrate that our theory applies, and show that even in multiple
dimensions with noise, we can recover closely spaced point sources.

5.1.1 Main Result

We restrict our theoretical attention to the one-dimensional case, leaving the higher-dimensional
cases to future work. Let ψ : R2 → R be our one dimensional point spread function, with
the first argument denoting the position where we are observing the image of a point source
located at the second argument. We assume that ψ is differentiable in both arguments.

For convenience, we will assume that B = [−T, T ] for some large scalar T . However,
our proof will extend to more restricted subsets of the real line. Moreover, we will state
our results for the special case where S = {s1, . . . , sn}, although our proof is written for
possibly infinite measurement sets. We define the weighting function in the objective of our
optimization problem via

w(t) =
1

n

n∑
i=1

ψ(si, t) .

Our main result establishes conditions on ψ such that the true measure µ? is the unique
optimal solution of (5.1.3). Importantly, we show that these conditions are satisfied by the
Gaussian point spread function with no separation condition.
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Theorem 5.1.1. Suppose |S| > 2M , and ψ(s, t) = e−(s−t)2. Then for any t1 < . . . < tM ,
the true measure µ? is the unique optimal solution of (5.1.3).

Before we proceed to state the main result, we need to introduce a bit of notation and
define the notion of a Tchebycheff system. Let K(t, τ) = 1

n

∑n
i=1 ψ(si, t)ψ(si, τ), and define

the vector valued function v : R→ R2M via

v(s) =
[
ψ(s, t1) . . . ψ(s, tM) d

dt1
ψ(s, t1) . . . d

dtM
ψ(s, tM)

]T
. (5.1.4)

Definition 5.1.2. A set of functions u1, . . . , un is called a Tchebycheff system (or T-system)
if for any points τ1 < . . . < τn, the matrixu1(τ1) . . . u1(τn)

...
un(τ1) . . . un(τn)


is invertible.

Conditions 5.1.3. We impose the following three conditions on the point spread function
ψ:

Positivity For all t ∈ B we have w(t) > 0.

Independence The matrix 1
n

∑n
i=1 v(si)v(si)

T is nonsingular.

T-system {K(·, t1), . . . , K(·, tM), d
dt1
K(·, t1), . . . , d

dtM
K(·, tM), w(·)} form a T-system.

Theorem 5.1.4. If ψ satisfies Conditions 5.1.3 and |S| > 2M , then the true measure µ? is
the unique optimal solution of (5.1.3).

Note that the first two parts of Conditions 5.1.3 are easy to verify. Positivity eliminates
the possibility that a candidate point spread function could equal zero at all locations—
obviously we would not be able to recover the source in such a setting! Independence is
satisfied if

{ψ(·, t1), . . . , ψ(·, tM),
d

dt1
ψ(·, t1), . . . ,

d

dtM
ψ(·, tM)} is a T-system.

This condition allows us to recover the amplitudes uniquely assuming we knew the true ti
locations a priori, but it is also useful for constructing a dual certificate as we discuss below.

We remark that we actually prove the theorem under a weaker condition than T-system.
Define the matrix-valued function Λ : R2M+1 → R(2M+1)×(2M+1) by

Λ(p1, . . . , p2M+1) :=

[
κ(p1) . . . κ(p2M+1)

1 . . . 1

]
, (5.1.5)

where κ : R→ R2M is defined as

κ(t) =
1

n

n∑
i=1

ψ(si, t)

w(t)
v(si) . (5.1.6)
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Our proof of Theorem 5.1.4 replaces condition T-system with the following:

Determinantal There exists ρ > 0 such that for any t−i , t
+
i ∈ (ti − ρ, ti + ρ), and

t ∈ [−T, T ], the matrix Λ
(
t−1 , t

+
1 , . . . , t

−
M , t

+
M , t

)
is nonsingular whenever t, t−i , t

+
i are distinct.

This condition looks more complicated than T-system and is indeed nontrivial to verify.
It is essentially a local T-system condition in the sense that the points τi in Definition 5.1.2
are restricted to lie in a small neighborhood about the ti. It is clear that T-system implies
Determinantal. The advantage of the more general condition is that it can hold for
finitely supported ψ, while this is not true for T-system. In fact, it is easy to see that
if T-system holds for any point spread function ψ, then Determinantal holds for the
truncated version ψ(s, t)1{|s − t| ≤ 3T}, where 1{x ≤ y} is the indicator variable equal
to 1 when x ≤ y and zero otherwise. We suspect that Determinantal may hold for
significantly tighter truncations.

As we will see below, T-system and Independence are related to the existence of
a canonical dual certificate that is used ubiquitously in sparse approximation [33, 71]. In
compressed sensing, this construction is due to Fuchs [71], but its origins lie in the the-
ory of polynomial interpolation developed by Markov and Tchebycheff, and extended by
Gantmacher, Krein, Karlin and others (see the survey in Section 5.1.2).

In the continuous setting of superresolution, the dual certificate becomes a dual polyno-
mial: a function of the form Q(t) = 1

n

∑n
j=1 ψ(sj, t)q(sj) satisfying

Q(t) ≤ w(t)

|Q(ti)| = w(t), i = 1, . . . ,M.
(5.1.7)

To see how T-system might be useful for constructing a dual polynomial, note that as
t+1 ↓ t1 and t−1 ↑ t1, the first two columns of Λ(t+1 , t

−
1 , . . . , t) converge to the same column,

namely κ(t1). However, if we divide by the difference t+1 − t−1 , and take a limit then we
obtain the derivative of the second column. In particular, some calculation shows that
T-system implies

det

[
A κ(t)
ω w(t)

]
6= 0 ∀t 6= ti,

where A = 1
n

∑n
i=1 v(si)v(si)

T is the matrix from Independence, and

ω = [w(t1), . . . , w(tM), w′(t1), . . . , w′(tM)].

Taking the Schur complement in w(t), we find

det

[
A κ(t)
ω w(t)

]
= detA

[
ωTA−1κ(t)− w(t)

]
.

Hence it seems like the function ωTA−1κ(t) might serve well as our dual polynomial.
However, it remains unclear from this short calculation that this function is bounded above
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by w(t). The proof of Theorem 5.1.4 makes this construction rigorous using the theory of
T-systems.

Before turning to the proofs of these theorems (cf. Sections 5.2.1 and 5.2.4), we survey
the mathematical theory of superresolution imaging.

5.1.2 Foundations: Tchebycheff Systems

Our proofs rely on the machinery of Tchebycheff1 systems. This line of work originated in
the 1884 doctoral thesis of A. A. Markov on approximating the value of an integral

∫ b
a
f(x)dx

from the moments
∫ b
a
xf(x)dx, . . . ,

∫ b
a
xnf(x)dx. His work formed the basis of the proof by

Tchebycheff (who was Markov’s doctoral advisor) of the central limit theorem in 1887 [151].
Recall that we defined a T-system in Definition 5.1.2. An equivalent definition of a T-

system is: the functions u1, ..., un form a T-system if and only if every linear combination
U(t) = a1u1(t)+ · · ·+anun(t) has at most n−1 zeros. One natural example of a T-system is
given by the functions 1, t, . . . , tn−1. Indeed, a polynomial of degree n− 1 can have at most
n− 1 zeros. Equivalently, the Vandermonde determinant does not vanish,∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
t1 t2 . . . tn
t21 t22 . . . t2n
...

tn−1
1 tn−1

2 . . . tn−1
n

∣∣∣∣∣∣∣∣∣∣∣
6= 0,

for any t1 < . . . < tn. Just as Vandermonde systems are used to solve polynomial interpo-
lation problems, T-systems allows the generalization of the tools from polynomial fitting to
a broader class of nonlinear function-fitting problems. Indeed, given a T-system u1, ..., un, a
generalized polynomial is a linear combination U(t) = a1u1(t)+ · · ·+anun(t). The machinery
of T-systems provides a basis for understanding the properties of these generalized poly-
nomials. For a survey of T-systems and their applications in statistics and approximation
theory, see [72, 94, 95]. In particular, many of our proofs are adapted from [95], and we call
out the parallel theorems whenever this is the case.

5.1.3 Prior art and related work

Broadly speaking, superresolution techniques enhance the resolution of a sensing system,
optical or otherwise; resolution is the distance at which distinct sources appear indistin-
guishable. The mathematical problem of localizing point sources from a blurred signal has
applications in a wide array of empirical sciences: astronomers deconvolve images of stars to
angular resolution beyond the Rayleigh limit [125], and biologists capture nanometer resolu-
tion images of fluorescent proteins [22, 91, 133, 162]. Detecting neural action potentials from

1Tchebycheff is one among many transliterations from Cyrillic. Others include Chebyshev, Chebychev,
and Cebysev.
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extracellular electrode measurements is fundamental to experimental neuroscience [61], and
resolving the poles of a transfer function is fundamental to system identification [138]. To
understand a radar signal, one must decompose it into reflections from different sources [89];
and to understand an NMR spectrum, one must decompose it into signatures from different
chemicals [149].

The mathematical analysis of point source recovery has a long history going back to
the work of Prony [124] who pioneered techniques for estimating sinusoidal frequencies.
Prony’s method, a multivariate version of which was discussed in Subsection 1.3.2, is based on
algebraically solving for the roots of polynomials, and can recover arbitrarily closely spaced
frequencies. The annihilation filter technique introduced by Vetterli [157] can perfectly
recover any signal of finite rate of innovation with minimal samples. In particular the theory
of signals with finite rate of innovation shows that given a superposition of pulses of the form∑
akψ(t− tk), one can reconstruct the shifts tk and coefficients ak from a minimal number

of samples [53, 157]. This holds without any separation condition on the tk and as long as
the base function ψ can reproduce polynomials of a certain degree (see [53, Section A.1] for
more details). The algorithm used for this reconstruction is however based on polynomial
rooting techniques that do not easily extend to higher dimensions. Moreover, this algebraic
technique is not robust to noise (see the discussion in [148, Section IV.A] for example).

In contrast we study sparse recovery techniques. This line of thought goes back at least
to Carathéodory [36, 35]. Our contribution is an analysis of `1 based methods that matches
the performance of the algebraic techniques of Vetterli in the one dimensional and noiseless
setting. Our primary motivation is that `1 based methods may be more stable to noise and
generalize to higher dimensions (although our analysis currently does not).

It is tempting to apply the theory of compressed sensing [11, 33, 34, 50] to problem (5.1.3).
If one assumes the point sources are located on a finite grid and are well separated, then some
of the standard models for recovery are valid (e.g. incoherency, restricted isometry property,
or restricted eigenvalue property). With this motivation, many authors solve the gridded
form of the superresolution problem in practice [10, 12, 55, 56, 63, 90, 113, 128, 143, 144,
162]. However, this approach has some significant drawbacks. The theoretical requirements
imposed by the classical models of compressed sensing become more stringent as the grid
becomes finer. Furthermore, making the grid finer can also lead to numerical instabilities
and computational bottlenecks in practice.

Despite recent successes in many empirical disciplines, the theory of superresolution imag-
ing remains limited. Candès and Fernandes-Granada [32] recently made an important con-
tribution to the mathematical analysis of superresolution, demonstrating that semi-infinite
optimization could be used to solve the classical Prony problem. Their proof technique has
formed the basis of several other analyses including that of Bendory et al [19] and that of
Tang et al [149]. To better compare with our approach, we briefly describe the approach
of [19, 32, 149] here.

They construct the vector q of a dual polynomial Q(t) = 1
n

∑n
j=1 ψ(sj, t)qj as a linear

combination of ψ(s, ti) and d
dti
ψ(s, ti). In particular, they define the coefficients of this linear
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combination as the least squares solution to the system of equations

Q(ti) = sign(ci), i = 1, . . . ,M ;

d

dt
Q(t)

∣∣∣
t=ti

= 0, i = 1, . . . ,M.
(5.1.8)

They prove that, under a minimum separation condition on the ti, the system has a unique
solution because the matrix for the system is a perturbation of the identity, hence invertible.

Much of the mathematical analysis on superresolution has relied heavily on the assump-
tion that the point sources are separated by more than some minimum amount [14, 19,
32, 52, 58, 117, 51]. We note that in practical situations with noisy observations, some
form of minimum separation may be necessary. One can expect, however, that the required
minimum separation should go to zero as the noise level decreases: a property that is not
manifest in previous results. Our approach, by contrast, does away with the minimum sep-
aration condition by observing that the matrix for the system (5.1.8) need not be close to
the identity to be invertible. Instead, we impose Conditions 5.1.3 to guarantee invertibility
directly. Not surprisingly, we use techniques from T-systems to construct an analog of the
polynomial Q in (5.1.8) for our specific problem.

Another key difference is that we consider the weighted objective
∫
w(t)dµ(t), while prior

work [19, 32, 149] has analyzed the unweighted objective
∫
dµ(t). We, too, could not remove

the separation condition without reweighing by w(t). In Section 5.3 we provide evidence that
this mathematically motivated reweighing step actually improves performance in practice.
Weighting has proven to be a powerful tool in compressed sensing, and many works have
shown that weighting an `1-like cost function can yield improved performance over standard
`1 minimization [70, 96, 155, 24]. To our knowledge, the closest analogy to our use of weights
comes from Rauhut and Ward, who use weights to balance the influence of dynamic range
of bases in polynomial interpolation problems [129]. In the setting of this section, weights
will serve to lessen the influence of sources that have low overlap with the observed samples.

We are not the first to bring the theory of Tchebycheff systems to bear on the problem
of recovering finitely supported measures. De Castro and Gamboa [40] prove that a finitely
supported positive measure µ can be recovered exactly from measurements of the form{∫

u0dµ, . . . ,

∫
undµ

}
whenever {u0, . . . , un} form a T-system containing the constant function u0 = 1. These mea-
surements are almost identical to ours; if we set uk(t) = ψ(sk, t) for k = 1, . . . , n, where
{s1, . . . , sn} = S is our measurement set, then our measurements are of the form

{x(s) | s ∈ S} =
{∫

u1dµ, . . . ,

∫
undµ

}
.

However, in practice it is often impossible to directly measure the mass
∫
u0dµ =

∫
dµ as re-

quired by (5.1.3). Moreover, the requirement that {1, ψ(s1, t), . . . , ψ(sn, t)} form a T-system
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does not hold for the Gaussian point spread function ψ(s, t) = e−(s−t)2 (see Remark 5.2.6).
Therefore the theory of [40] is not readily applicable to superresolution imaging.

We conclude our review of the literature by discussing some prior literature on `1-based
superresolution without a minimum separation condition. We would like to mention the
work of Fuchs [71] in the case that the point spread function is band-limited and the samples
are on a regularly-spaced grid. This result also does not require a minimum separation
condition. However, our results hold for considerably more general point spread functions
and sampling patterns. Finally, in a recent paper Bendory [18] presents an analysis of `1

minimization in a discrete setup by imposing a Rayleigh regularity condition which, in the
absence of noise, requires no minimum separation. Our results are of a different flavor, as
our setup is continuous. Furthermore we require linear sample complexity while the theory
of Bendory [18] requires infinitely many samples.

5.2 Proofs

In this section we prove Theorem 5.1.4 and Theorem 5.1.1. We start by giving a short list of
notation to be used throughout the proofs. We write our proofs for an arbitrary measurement
S which need not be finite for the sake of the proof. Let P denote a fixed positive measure
on S, and set

w(t) =

∫
ψ(s, t)dP (s).

For concreteness, the reader might think of P as the uniform measure over S, where if S is
finite then w(t) = 1

n

∑n
j=1 ψ(sj, t). Just note that the particular choice of P does not affect

the proof.

5.2.0.0.1 Notation Glossary

• We denote the inner product of functions f, g ∈ L2
P by 〈f, g〉P :=

∫
f(t)g(t)dP (t).

• For any differentiable function f : R2 → R, we denote the derivative in its first argu-
ment by ∂1f and in its second argument by ∂2f .

• For t ∈ R, let ψt(·) = ψ(·, t).

5.2.1 Proof of Theorem 5.1.4

We prove Theorem 5.1.4 in two steps. We first reduce the proof to constructing a function
q such that 〈q, ψt〉P possesses some specific properties.
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Proposition 5.2.1. If the first three items of Conditions 5.1.3 hold, and if there exists a
function q such that Q(t) := 〈q, ψt〉P satisfies

Q(tj) = w(tj), j = 1, . . . ,M (5.2.1)

Q(t) < w(tj), for t ∈ [−T, T ] and t 6= tj,

then the true measure µ? :=
∑M

j=1 cjδtj is the unique optimal solution of the program 5.1.3.

This proof technique is somewhat standard [33, 71]: the function Q(t) is called a dual
certificate of optimality. However, introducing the function w(t) is a novel aspect of our proof.
The majority of arguments have w(t) = 1. Note that when

∫
ψ(s, t)dP (s) is independent of

t, then w(t) is a constant and we recover the usual method of proof.
In the second step we construct q(s) as a linear combination of the ti-centered point

spread functions ψ(s, ti) and their derivatives ∂2ψ(s, ti).

Theorem 5.2.2. Under the Conditions 5.1.3, there exist α1, . . . , αM , β1, . . . , βM , c ∈ R such
that Q(t) = 〈q, ψt〉P satisfies (5.2.1), where

q(s) =
M∑
i=1

(αiψ(s, ti) + βi
d

dti
ψ(s, ti)) + c.

To complete the proof of Theorem 5.1.4, it remains to prove Proposition 5.2.1 and Theo-
rem 5.2.2. Their proofs can be found in Sections 5.2.2 and 5.2.3 respectively.

5.2.2 Proof of Proposition 5.2.1

We show that µ? is the optimal solution of problem (5.1.3) through strong duality. The dual
of problem (5.1.3) is

maximizeq 〈q, x〉P
subject to 〈q, ψt〉P ≤ w(t) for t ∈ [−T, T ].

(5.2.2)

Since the primal (5.1.3) is equality constrained, Slater’s condition naturally holds, implying
strong duality. As a consequence, we have

〈q, x〉P =

∫
w(t)dµ(t) ⇐⇒ q is dual optimal and µ is primal optimal.

Suppose q satisfies (5.2.1). Hence q is dual feasible and we have

〈q, x〉P =
M∑
j=1

cj
〈
q, ψtj

〉
P

=
M∑
j=1

cjQ(tj)

=

∫
w(t)dµ?(t).
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Therefore, q is dual optimal and µ? is primal optimal.
Next we show uniqueness. Suppose the primal (5.1.3) has another optimal solution

µ̂ =
M̂∑
j=1

ĉjδt̂j

such that {t̂1, . . . , t̂M̂} 6= {t1, . . . , tM} := T . Then we have

〈q, x〉P =
∑
j

ĉj

〈
q, ψt̂j

〉
P

=
∑
t̂j∈T

ĉjQ(t̂j) +
∑
t̂j /∈T

ĉjQ(t̂j)

<
∑
t̂j∈T

ĉjw(t̂j) +
∑
t̂j /∈T

ĉjw(t̂j) =

∫
w(t)dµ̂(t).

Therefore, all optimal solutions must be supported on {t1, . . . , tM}.
We now show that the coefficients of any optimal µ̂ are uniquely determined. By con-

dition Independence, the matrix
∫
v(s)v(s)TdP (s) is invertible. Since it is also positive

semidefinite, it is positive definite, so, in particular its upper M ×M block is also positive
definite.

det

∫  ψ(s, t1)
...

ψ(s, tM)

 [ψ(s, t1) . . . ψ(s, tM)
]
dP (s) 6= 0.

Hence there must be s1, . . . , sM ∈ S such that the matrix with entries ψ(si, tj) is nonsingular.

Now consider some optimal µ̂ =
∑M

i=1 ĉiti. Since µ̂ is feasible we have

x(sj) =
M∑
i=1

ĉiψ(sj, ti) =
M∑
i=1

ciψ(sj, ti) for j = 1, . . . ,M.

Since ψ(si, tj) is invertible, we conclude that the coefficients c1, . . . , cM are unique. Hence
µ? is the unique optimal solution of (5.1.3).

5.2.3 Proof of Theorem 5.2.2

We construct Q(t) via a limiting interpolation argument due to Krein [103]. We have adapted
some of our proofs (with nontrivial modifications) from the aforementioned text by Karlin
and Studden [95]. We give reference to the specific places where we borrow from classical
arguments.

In the sequel, we make frequent use of the following elementary manipulation of deter-
minants:
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a b

f

Figure 5.2: The point a is a nodal zero of f , and the point b is a non-nodal zero of f .

t1
t2

t1 − ε t1 + ε t2 + εt2 − ε

Q̃ε(t)

w(t)

Q̃(t)

Figure 5.3: The relationship between the functions w(t), Q̃ε(t) and Q̃(t). The function Q̃ε(t)
touches w(t) only at ti ± ε, and these are nodal zeros of Q̃ε(t) − w(t). The function Q̃(t)
touches w(t) only at ti and these are non-nodal zeros of Q̃(t)− w(t).

Lemma 5.2.3. If v0, . . . , vn are vectors in Rn, and n is even, then∣∣v1 − v0 . . . vn − v0

∣∣ =

∣∣∣∣v1 . . . vn v0

1 . . . 1 1

∣∣∣∣ .
We leave the proof of this lemma to the reader.
In what follows, we consider ε > 0 such that

t1 − ε < t1 + ε < t2 − ε < t2 + ε < · · · < tM − ε < tM + ε.

Definition 5.2.4. A point t is a nodal zero of a continuous function f : R→ R if f(t) = 0
and f changes sign at t. A point t is a non-nodal zero if f(t) = 0 but f does not change
sign at t. This distinction is illustrated in Figure 5.2.

Our proof of Theorem 5.2.2 proceeds as follows. With ε fixed, we construct a function

Q̃ε(t) =
M∑
i=1

α[i]
ε KP (t, ti) + β[i]

ε ∂2KP (t, ti)

such that Q̃ε(t) = w(t) only at the points t = tj ± ε for all j = 1, 2, . . . ,M and the points
tj ± ε are nodal zeros of Q̃ε(t)− w(t) for all j = 1, 2, . . . ,M . We then consider the limiting
function Q̃(t) = lim

ε↓0
Q̃ε(t), and prove that either Q̃(t) satisfies (5.2.1) or 2w(t)− Q̃(t) satisfies

(5.2.1). An illustration of this construction is pictured in Figure 5.3.
We begin with the construction of Q̃ε. We aim to find the coefficients αε, βε to satisfy

Q̃ε(ti − ε) = w(ti − ε) and Q̃ε(ti + ε) = w(ti + ε) for i = 1, . . . ,M.
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This system of equations is equivalent to the system

Q̃ε(ti − ε) = w(ti − ε) for i = 1, . . . ,M

Q̃ε(ti + ε)− Q̃ε(ti − ε)
2ε

=
w(ti + ε)− w(ti − ε)

2ε
for i = 1, . . . ,M.

(5.2.3)

Note that this is a linear system of equations in αε, βε with coefficient matrix given by

Kε :=


KP (tj − ε, ti) ∂2KP (tj − ε, ti)

1
2ε

(
KP (tj + ε, ti)−KP (tj − ε, ti)

)
1
2ε

(
∂2KP (tj + ε, ti)− ∂2KP (tj − ε, ti)

)

 .

That is, the equations (5.2.3) can be written as

Kε


|
αε
|
|
βε
|

 =



w(t1 − ε)
...

w(tM − ε)
1
2ε

(w(t1 + ε)− w(t1 − ε))
...

1
2ε

(w(tM + ε)− w(tM − ε))


.

We first show that the matrix Kε is invertible for all ε sufficiently small. Note that as
ε→ 0 the matrix Kε converges to

K :=


KP (tj, ti) ∂2KP (tj, ti)

∂1KP (tj, ti) ∂1∂2KP (tj, ti)

 =

∫
v(s)v(s)TdP (s),

which is positive definite by Independence. Since the entries of Kε converge to the entries
of K, there is a ∆ > 0 such that Kε is invertible for all ε ∈ (0,∆). Moreover, K−1

ε converges
to K−1 as ε→ 0 and for all ε < ∆, the coefficients are uniquely defined as

|
αε
|
|
βε
|

 = K−1
ε



w(t1 − ε)
...

w(tM − ε)
1
2ε

(w(t1 + ε)− w(t1 − ε))
...

1
2ε

(w(tM + ε)− w(tM − ε))


. (5.2.4)
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We denote the corresponding function by

Q̃ε(t) :=
M∑
i=1

α[i]
ε KP (t, ti) + β[i]

ε ∂2KP (t, ti).

Before we construct Q̃(t), we take a moment to establish the following remarkable conse-
quences of the Determinantal condition. For all ε > 0 sufficiently small the following
hold:

(a). Q̃ε(t) = w(t) only at the points t1 − ε, t1 + ε, . . . , tM − ε, tM + ε.

(b). These points t1 − ε, t1 + ε, . . . , tM − ε, tM + ε are nodal zeros of Q̃ε(t)− w(t).

We adapted the proofs of (a) and (b) (with nontrivial modification) from the proofs of
Theorem 1.6.1 and Theorem 1.6.2 of [95].

Proof of (a). Suppose for the sake of contradiction that there is a τ ∈ [−T, T ] such that
Q̃ε(τ) = w(τ) and τ /∈ {t1 − ε, t1 + ε, . . . , tM − ε, tM + ε}. Then we have the system of 2M
linear equations

Q̃ε(tj − ε)
w(tj − ε)

− Q̃ε(τ)

w(τ)
= 0 j = 1, . . . ,M

Q̃ε(tj + ε)

w(tj + ε)
− Q̃ε(τ)

w(τ)
= 0 j = 1, . . . ,M.

Rewriting this in matrix form, the coefficient vector
[
αε βε

]
=
[
α

[1]
ε · · · α

[M ]
ε β

[1]
ε · · · β

[M ]
ε

]
of Q̃ε satisfies[

αε βε
] (
κ(t1 − ε)− κ(τ) κ(t1 + ε)− κ(τ) . . . κ(tM + ε)− κ(τ)

)
=
[
0 . . . 0

]
.

(5.2.5)
By Lemma 5.2.3 applied to the 2M + 1 vectors v1 = κ(t1 − ε), . . . , v2M = κ(tM + ε), and
v0 = κ(τ), the matrix for the system of equations (5.2.5) is nonsingular if and only if the
following matrix is nonsingular:[

κ(t1 − ε) . . . κ(tM + ε) κ(τ)
1 . . . 1 1

]
= Λ(t1 − ε, . . . , tM + ε, τ).

However, this is nonsingular by the Determinantal condition. This gives us the contra-
diction that completes the proof of part (a).

Proof of (b). Suppose for the sake of contradiction that Q̃ε(t) − w(t) has N1 < 2M
nodal zeros and N0 = 2M − N1 non-nodal zeros. Denote the nodal zeros by {τ1, ..., τN1},
and denote the non-nodal zeros by z1, . . . , zN0 . In what follows, we obtain a contradiction by
doubling the non-nodal zeros of Q̃ε(t)−w(t). We do this by constructing a certain generalized
polynomial u(t) and adding a small multiple of it to Q̃ε(t)− w(t).
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τ1 τ2 τ3 τ4

ζ1 ζ2

ζ3

u(t)

Q̃ε(t)− w(t)

τ
0

Figure 5.4: The points {τ1, τ2, τ3, τ4} are nodal zeros of Q̃ε(t)−w(t), and the points {ζ1, ζ2, ζ3}
are non-nodal zeros. The function u(t) has the appropriate sign so that Q̃ε(t)−w(t) + δu(t)
retains nodal zeros at τi, and obtains two zeros in the vicinity of each ζi.

We divide the non-nodal zeros into groups according to whether Q̃ε(t)− w(t) is positive
or negative in a small neighborhood around the zero; define

I− := {i | Q̃ε ≤ w near zi} and I+ := {i | Q̃ε ≥ w near zi}.

We first show that there are coefficients a0, . . . , aM , and b1, . . . , bM such that the polynomial

u(t) =
M∑
i=1

aiKP (t, ti) +
M∑
i=1

bi∂2KP (t, ti) + a0w(t)

satisfies the system of equations

u(zj) = +1 j ∈ I−
u(zj) = −1 j ∈ I+

u(τi) = 0 i = 1, . . . , N1

u(τ) = 0,

(5.2.6)

where τ is some arbitrary additional point. The matrix for this system is

W



κ(z1)T 1
...

κ(zN0)
T 1

κ(τ1)T 1
...

κ(τN1)
T 1

κ(τ) 1


where W = diag

(
w(z1), . . . , w(zN0), w(τ1), . . . , w(τN1), w(τ)

)
. This matrix is invertible by

Determinantal since the nodal and non-nodal zeros of Q̃ε(t) − w(t) are given by t1 −
ε, . . . , tM + ε. Hence there is a solution to the system (5.2.6).

Now consider the function

U δ(t) = Q̃ε(t) + δu(t) =
M∑
i=1

[α[i]
ε + δai]KP (t, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (t, ti) + δa0w(t)
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where δ > 0. By construction, u(τi) = 0, so U δ(t)− w(t) has nodal zeros at τ1, . . . , τN1 . We
can choose δ small enough so that U δ(t)−w(t) vanishes twice in the vicinity of each zi. This
means that U δ(t)−w(t) has 2M +N0 zeros. Assuming N0 > 0, select a subset of these zeros
p1 < . . . < p2M+1 such that there are two in each interval [ti − ρ, ti + ρ]. This is possible if
ε < ρ and δ is sufficiently small. We have the system of 2M + 1 equations

M∑
i=1

[α[i]
ε + δai]KP (p1, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (p1, ti) = (1− δa0)w(τ)

...

M∑
i=1

[α[i]
ε + δai]KP (p2M+1, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (p2M+1, ti) = (1− δa0)w(τ).

Subtracting the last equation from each of the first 2M equations, we find that

(α[1]
ε + δa1, . . . , β

[M ]
ε + δbM)

(
κ(p1)− κ(p2M+1) . . . κ(p2M)− κ(p2M+1)

)
= (0, . . . , 0).

This matrix is nonsingular by Lemma 5.2.3 combined with the Determinantal condition.
This contradiction implies that N0 = 0. This completes the proof of (b).

We now complete the proof by constructing Q̃(t) from Q̃ε(t) by sending ε → 0. Note
that the coefficients αε, βε converge as ε → 0 since the right hand side of equation (5.2.4)
converges to

K−1



w(t1)
...

w(tM)
w′(t1)

...
w′(tM)


=


|
α
|
|
β
|

 .

We denote the limiting function by

Q̃(t) =
M∑
i=1

αiKP (t, ti) +
M∑
i=1

βi∂2KP (t, ti). (5.2.7)

We conclude that w(t)− Q̃(t) does not change sign at ti since w(t)− Q̃ε(t) changes sign only
at ti ± ε.

We now show that the limiting process does not introduce any additional zeros of w(t)−
Q̃(t). Suppose Q̃(t) does touch w(t) at some τ1 ∈ [−T, T ] with τ1 6= ti for any i = 1, ...,M .
Since w(t) − Q̃(t) does not change sign, the points t1, . . . , tM , τ1 are non-nodal zeros of
w(t)− Q̃(t). We find a contradiction by constructing a polynomial with two nodal zeros in
the vicinity of each of these M + 1 points (but possibly only one nodal zero in the vicinity
of τ1 if τ1 = T or τ1 = −T ).



CHAPTER 5. SUPERRESOLUTION WITHOUT SEPARATION 162

For sufficiently small γ > 0, the polynomial

Wγ(t) = Q̃(t) + γw(t)

attains the value w(t) twice in the vicinity of each ti and twice in the vicinity of τ1. In other
words there exist p1 < . . . < p2M+2 such that Wγ(pi) = w(pi). Therefore

Q̃(pi) = (1− γ)w(pi) for i = 1, . . . , 2M + 2,

and so Q̃(pi)
w(pi)
− Q̃(p2M+1)

w(p2M+1)
= 0 for i = 1, 2, ..., 2M . Thus, the coefficient vector for the polynomial

Q̃(t) lies in the left nullspace of the matrix(
κ(p1)− κ(p2M+1) . . . κ(p2M)− κ(p2M+1)

)
.

However, this matrix is nonsingular by Lemma 5.2.3 and the Determinantal condition.
Collecting our results, we have proven that Q̃(t)−w(t) = 0 if and only if t = ti and that

Q̃(t)−w(t) does not change sign when t passes through ti. Therefore one of the following is
true

w(t) ≥ Q̃(t) or Q̃(t) ≥ w(t)

with equality iff t = ti. In the first case, Q(t) = Q̃(t) fulfills the prescriptions (5.2.1) with

q(t) =
M∑
i=1

αiψ(s, ti) + βi
d

dti
ψ(s, ti).

In the second case, Q(t) = 2w(t)− Q̃(t) satisfies (5.2.1) with

q(t) = 2−
M∑
i=1

αiψ(s, ti) + βi
d

dti
ψ(s, ti).

5.2.4 Proof of Theorem 5.1.1

Integrability and Positivity naturally hold for the Gaussian point spread function
ψ(s, t) = e−(s−t)2 . Independence holds because ψ(s, t1), . . . , ψ(s, tM) together with their
derivatives ∂2ψ(s, t1), . . . , ∂2ψ(s, tM) form a T-system (see for example [95]). This means
that for any s1 < . . . < s2M ∈ R, ∣∣v(s1) . . . v(s2M)

∣∣ 6= 0,

and the determinant always takes the same sign. Therefore, by an integral version of the
Cauchy-Binet formula for the determinant (cf. [94]),

∣∣∣ ∫ v(s)v(s)TdP (s)
∣∣∣ = (2M)!

∫
s1<...<s2M

∣∣v(s1) . . . v(s2M)
∣∣
∣∣∣∣∣∣∣
v(s1)T

...
v(s2M)T

∣∣∣∣∣∣∣ dP (s1) . . . dP (s2M) 6= 0.



CHAPTER 5. SUPERRESOLUTION WITHOUT SEPARATION 163

To establish the Determinantal condition, we prove the slightly stronger statement:

|Λ(p1, . . . , p2M+1)| =
∣∣∣∣∫ [v(s)

1

] [
ψ(s,p1)
w(p1)

. . . ψ(s,p2M+1)

w(p2M+1)

]
dP (s)

∣∣∣∣ 6= 0 (5.2.8)

for any distinct p1, . . . , p2M+1. When p1, . . . , p2M+1 are restricted so that two points pi, pj lie
in each ball (tk − ρ, tk + ρ), we recover the statement of Determinantal.

We prove (5.2.8) with the following key lemma.

Lemma 5.2.5. For any s1 < . . . < s2M+1 and t1 < . . . < tM ,∣∣∣∣∣∣∣∣∣∣∣∣∣

e−(s1−t1)2 · · · e−(s2M+1−t1)2

−(s1 − t1)e−(s1−t1)2 · · · −(s2M+1 − t1)e−(s2M+1−t1)2

...
...

e−(s1−tM )2 · · · e−(s2M+1−tM )2

−(s1 − tM)e−(s1−tM )2 · · · −(s2M+1 − tM)e−(s2M+1−tM )2

1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Before proving this lemma, we show how it can be used to prove (5.2.8). By Lemma
5.2.5, we know in particular that for any s1 < · · · < s2M+1,

det

[
v(s1) · · · v(s2M+1)

1 · · · 1

]
6= 0

and is always the same sign. Moreover, for any s1 < · · · < s2M+1, and any p1 < . . . < p2M+1,

det

 ψ(s1, p1) . . . ψ(s1, p2M+1)
...

ψ(s2M+1, p1) . . . ψ(s2M+1, p2M+1)

 > 0.

Any function with this property is called totally positive and it is well known that the
Gaussian kernel is totally positive [95]. Now, to show that Determinantal holds for the
finite sampling measure P , we use an integral version of the Cauchy-Binet formula for the
determinant:∣∣∣∣∫ [v(s)1

] [
ψ(s,p1)
w(p1)

. . .
ψ(s,p2M+1)

w(p2M+1)

]
dP (s)

∣∣∣∣ =
= (2M + 1)!

∫
s1<···<s2M+1

∣∣∣∣v(s1) · · · v(s2M+1)
1 · · · 1

∣∣∣∣
∣∣∣∣∣∣∣∣

ψ(s1,p1)
w(p1)

. . .
ψ(s1,p2M+1)

w(p2M+1)

...
ψ(s2M+1,p1)

w(p1)
. . .

ψ(s2M+1,p2M+1)

w(p2M+1)

∣∣∣∣∣∣∣∣ dP (s1) . . . dP (s2M+1).

The integral is nonzero since all integrands are nonzero and have the same sign. This
proves (5.2.8).
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Proof of Lemma 5.2.5. Multiplying the 2i − 1 and 2i-th row by et
2
i and the i-th column

by es
2
i , and subtracting ti times the 2i − 1-th row from the 2i-th row, we obtain that we

equivalently have to show that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

es1t1 es2t1 . . . es2M+1t1

s1e
s1t1 s2e

s2t1 . . . s2M+1e
skt1

es1t2 es2t2 . . . es2M+1t2

...
es1tM es2tM . . . es2M+1tM

s1e
s1tM s2e

s2tM . . . s2M+1e
s2M+1tM

es
2
1 es

2
2 . . . es

2
2M+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

The above matrix has a vanishing determinant if and only if there exists a nonzero vector

(a1, b1, ..., aM , bM , aM+1)

in its left null space. This vector has to have nonzero last coordinate since by Example 1.1.5.
in [95], the Gaussian kernel is extended totally positive and therefore the upper 2M × 2M
submatrix has a nonzero determinant. Therefore, we assume that aM+1 = 1. Thus, the
matrix above has a vanishing determinant if and only if the function

M∑
i=1

(ai + bis)e
tis + es

2

(5.2.9)

has at least the 2M + 1 zeros s1 < s2 < ... < s2M+1. Lemma 5.2.7, applied to r = M and
d1 = · · · = dM = 1, establishes that this is impossible. To complete the proof of Lemma 5.2.5,
it remains to state and prove Lemma 5.2.7.

Remark 5.2.6. The inclusion of the derivatives is essential for the shifted Gaussians to
form a T-system together with the constant function 1. In particular, following the same
logic as in the proof of Lemma 5.2.5, we find that {1, e(s−t1)2 , . . . , e(s−tM )2} form a T-system
if and only if the function

M∑
i=1

aie
tis + es

2

has at most M zeros. However, for M = 3 the function has 4 zeros if we select a1 = −3,
t1 = 1, a2 = 7, t2 = 0, a3 = −5, t3 = −1.

Lemma 5.2.7. Let d1, ..., dr ∈ N. The function

φd1,...,dr(s) =
r∑
i=1

(ai0 + ai1s+ · · ·+ ai(2di−1)s
2di−1)etis + es

2

has at most 2(d1 + · · ·+ dr) zeros.



CHAPTER 5. SUPERRESOLUTION WITHOUT SEPARATION 165

Proof. We are going to show that φd1,...,dr(s) has at most 2(d1 + · · · + dr) zeros as follows.
Let

g0(s) = φd1,...,dr(s).

For k = 1, ..., d1 + · · ·+ dr, let

gk(s) =

{
d2

ds2

[
gk−1(s)e(−tj+t1+···+tj−1)s

]
, if k = d1 + · · ·+ dj−1 + 1 for some j,

d2

ds2

[
gk−1(s)

]
, otherwise.

(5.2.10)

If we show that gd1+···+dr(s) has no zeros, then, gd1+···+dr−1(s) has at most two zeros, counting
with multiplicity. By induction, it will follow that g0(s) has at most 2(d1 + · · · + dr) zeros,
counting with multiplicity. Note that if d1 + · · ·+ dj−1 ≤ k < d1 + · · ·+ dj−1 + dj, then

gk(s) = (ãj,2(k−d1+···+dj−1) + · · ·+ ãj,(2dj−1)s
2dj−1−2(k−d1+···+dj−1))+

+
r∑

i=j+1

(ãi0 + · · ·+ ãi(2di−1)s
2di−1)e(ti−(t1+···+tj−1))r + cfi(r)e

r2

where c > 0 is a constant and r := s − ci. We are going to show that fi(r) is a sum of
squares polynomial such that one of the squares is a positive constant. This would mean
that gk(s) = fk(s)e

s2 has no zeros.
Denote

p0(s) = 1

p1(s) = 2s

...

pi(s) = 2spi−1(s− ci) + p′i−1(s− ci),

where c1, ..., ci are constants. It follows by induction that the degree of pi(s) is deg(pi) = i
and the leading coefficient of pi(s) is 2i.

We will show by induction that

fi(s) = pi(s)
2 +

1

2
p′i(s)

2 + · · ·+ 1

2ii!
p

(i)
i (s)2

=
i∑

j=0

1

2jj!
p

(j)
i (s)2.

When i = 0, we have that f0(s) = 1 and
∑0

j=0
1

2jj!
p

(j)
0 (s)2 = 1. We are going to prove

the general statement by induction. Suppose the statement is true for i − 1. By the rela-
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tionship (5.2.10), we have

fi(s)e
s2 =

d2

ds2

[
es

2

fi−1(s− ci)
]

=
d2

ds2

[
es

2
i−1∑
j=0

1

2jj!
p

(j)
i−1(s− ci)2

]
(5.2.11)

=
i−1∑
j=0

es
2

2jj!

{
2p

(j+2)
i−1 (s− ci)p(j)

i−1(s− ci) + 2p
(j+1)
i−1 (s− ci)2

+ (4s2 + 2)p
(j)
i−1(s− ci)2 + 8sp

(j)
i−1(s− ci)p(j+1)

i−1 (s− ci)
}

We need to show that this expression is equal to es
2
(
∑i

j=0
p
(j)
i (s)2

2jj!
). Since

pi(s) = 2spi−1(s− ci) + p′i−1(s− ci),

it follows by induction that p
(j)
i (s) = 2jp

(j−1)
i−1 (s−ci)+2sp

(j)
i−1(s−ci)+p

(j+1)
i−1 (s−ci). Therefore

we obtain

es
2

(
i∑

j=0

p
(j)
i (s)2

2jj!
) = es

2
i∑

j=0

1

2jj!

[
2jp

(j−1)
i−1 (s− ci) + 2sp

(j)
i−1(s− ci) + p

(j+1)
i−1 (s− ci)

]2

.

= es
2

i∑
j=0

1

2jj!

[
4j2p

(j−1)
i−1 (s− ci)2 + 4s2p

(j)
i−1(s− cI)2 + p

(j+1)
i−1 (s− ci)2+

+ 8jsp
(j−1)
i−1 (s− ci)p(j)

i−1(s− ci)+
+ 4sp

(j)
i−1(s− ci)p(j+1)

i−1 + 4jp
(j−1)
i−1 (s− ci)p(j+1)

i−1 (s− ci)
]

(5.2.12)
There are four types of terms in the sums (5.2.11) and (5.2.12):

p
(j)
i−1(s− ci)2, s2p

(j)
i−1(s− ci)2, p

(j−1)
i−1 (s− ci)p(j)

i−1(s− ci), and sp
(j−1)
i−1 (s− ci)p(j)

i−1(s− ci).

For a fixed j ∈ {0, 1, ..., i + 1}, it is easy to check that the coefficients in front of each of
these terms in (5.2.11) and (5.2.12) are equal. Therefore,

fi(s) = pi(s)
2 +

1

2
p′i(s)

2 + · · ·+ 1

2ii!
p

(i)
i (s)2

=
i∑

j=0

1

2jj!
p

(j)
i (s)2

Note that since deg(pi) = i, the i-th derivation p
(i)
i (s) equals the leading coefficient of pi(s),

which, as we discussed above, equals 2i. Therefore, the term 1
2ii!
p

(i)
i (s)2 equals 2ii!. Thus,

one of the squares in fi(s) is a positive number, so fi(s) > 0 for all s.
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5.3 Numerical Experiments

In this section we present the results of several numerical experiments to complement our
theoretical results. To allow for potentially noisy observations, we solve the constrained least
squares problem

minimize
µ≥0

n∑
i=1

(∫
ψ(si, t)dµ(t)− x(si)

)2

subject to

∫
w(t)µ(dt) ≤ τ

(5.3.1)

using the conditional gradient method proposed in [25].

5.3.1 Reweighing matters for source localization

Our first numerical experiment provides evidence that weighting by w(t) helps recover point
sources near the border of the image. This matches our intuition: near the border, the mass
of an observed point-source is smaller than if it were measured in the center of the image.
Hence, if we didn’t weight the candidate locations, sources that are close to the edge of the
image would be beneficial to add to the representation.

We simulate two populations of images, one with point sources located away from the
image boundary, and one with point sources located near the image boundary. For each
population of images, we solve (5.3.1) with w(t) =

∫
ψ(s, t)dP (s) (weighted) and with w(t) =

1 (unweighted). We find that the solutions to (5.3.1) recover the true point sources more
accurately with w(t) =

∫
ψ(s, t)dP (s).

We use the same procedure for computing accuracy as in [134]. Namely we match true
point sources to estimated point courses and compute the F-score of the match. To describe
this procedure in detail, we compute the F-score by solving a bipartite graph matching
problem. In particular, we form the bipartite graph with an edge between ti and t̂j for all
i, j such that ‖ti − t̂j‖ < r, where r > 0 is a tolerance parameter, and t̂1, . . . , t̂N are the
estimated point sources. Then we greedily select edges from this graph under the constraint
that no two selected edges can share the same vertex; that is, no ti can be paired with two
t̂j, t̂k or vice versa. Finally, the t̂i successfully paired with some tj are categorized as true
positives, and we denote their number by TP . The number of false negatives is FN = M−TP ,
and the number of false positives is N − TP . The precision and recall are then P = TP

TP+FN
,

and R = TP
TP+FP

respectively, and the F-score is the harmonic mean:

F =
2PR

P +R
.

We find a match by greedily pairing points of {τ1, . . . , τN} to elements of {t1, . . . , tM}, and
a tolerance radius r > 0 upper bounds the allow distance between any potential pairs. To
emphasize the dependence on r, we sometimes write F (r) for the F-score.
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Both populations contain 100 images simulated using the Gaussian point spread function

ψ(s, t) = e−
(s−t)2

σ2

with σ = 0.1, and in both cases, the measurement set S is a dense uniform grid of n = 100
points covering [0, 1]. The populations differ in how the point sources for each image are
chosen. Each image in the first population has five points drawn uniformly in the interval
(.1, .9), while each image in the second population has a total of four point sources with two
point sources in each of the two boundary regions (0, .1) and (.9, 1). In both cases we assign
intensity of 1 to all point sources, and solve (5.3.1) using an optimal value of τ (chosen with
a preliminary simulation).

The results are displayed in Figure 5.5. The left subplot shows that the F-scores are
essentially the same for the weighted and unweighted problems when the point sources are
away from the boundary. This is not surprising because when t is away from the border
of the image, then

∫
ψ(s, t)dP (s) is essentially a constant, independent of t. But when the

point sources are near the boundary, the weighting matters and the F-scores are dramatically
better as shown in the right subplot.

Figure 5.5: Reweighing matters for source localization. The two plots above compare the
quality of solutions to the weighted problem (with w(t) =

∫
ψ(s, t)dP (s)) and the unweighted

problem (with w(t) = 1). When point sources are away from the boundary (left plot), the
performance is nearly identical. But when the point sources are near the boundary (right
plot), the weighted method performs significantly better.
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(a) (b)

Figure 5.6: Sensitivity to point-source separation. (a) The F-score at tolerance radius r = 0.1
as a function of normalized separation d

σ
. (b) The black trace shows an image for d

σ
= 1

2
. The

green stars show the locations (x-coordinate) and weights (y-coordinate) of the true point
sources. The red dots show the recovered locations and weights.

5.3.2 Sensitivity to point-source separation

Our theoretical results assert that in the absence of noise the optimal solution of (5.1.3) re-
covers point sources with no minimum bound on the separation. In the following experiment,
we explore the ability of (5.3.1) to recover pairs of points as a function of their separation.
The setup is similar to the first numerical experiment. We use the Gaussian point spread
function with σ = 0.1 as before, but here we observe only n = 50 samples. For each separa-
tion d ∈ {.1σ, .2σ, . . . , 1.9σ, 2σ}, we simulate a population of 20 images containing two point
sources separated by d. The point sources are chosen by picking a random point x away from
the border of the image and placing two point sources at x± d

2
. Again, each point source is

assigned an intensity of 1, and we attempt to recover the locations of the point sources by
solving (5.3.1).

In the left subplot of Figure 5.6 we plot F-score versus separation for the value of τ
that produces the best F-scores. Note that we achieve near perfect recovery for separations
greater than σ

4
. The right subplot of Figure 5.6 shows the observations, true point sources,

and estimated point sources for a separation of d
σ

= 1
2
. Note the near perfect recovery in

spite of the small separation.
Due to numerical issues, we cannot localize point sources with arbitrarily small d > 0.

Indeed, the F-score for d
σ
< 1

4
is quite poor. This does not contradict our theory because
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(a) (b)

Figure 5.7: Sensitivity to noise. (a) The F-score at tolerance radius r = 0.1 as a function of
normalized separation d

σ
. (b) The black trace is the 50 pixel image we observe. The green

stars show the locations (x-coordinate) and weights (y-coordinate) of the true point sources.
The red dots show the recovered locations and weights.

numerical ill-conditioning is in effect adding noise to the recovery problem, and we expect
that a separation condition will be necessary in the presence of noise.

5.3.3 Sensitivity to noise

Next, we investigate the performance of (5.3.1) in the presence of additive noise. The setup
is identical to the previous numerical experiment, except that we add Gaussian noise to the
observations. In particular, our noisy observations are

{x(si) + ηi | si ∈ S}

where ηi ∼ N (0, 0.1).
We measure the performance of (5.3.1) in Figure 5.7. Note that we achieve near-perfect

recovery when d > σ. However, if d < σ the F-scores are clearly worse than the noiseless
case. Unsurprisingly, we observe that sources must be separated in order to recover their
locations to reasonable precision. We defer an investigation of the dependence of the signal
separation as a function of the signal-to-noise ratio to future work.
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5.3.4 Extension to two-dimensions

Though our proof does not extend as is, we do expect generalizations of our recovery result
to higher dimensional settings. The optimization problem (5.3.1) extends immediately to
arbitrary dimensions, and we have observed that it performs quite well in practice. We
demonstrate in Figure 5.8 the power of applying (5.3.1) to a high density fluorescence image
in simulation. Figure 5.8 shows an image simulated with parameters specified by the Single
Molecule Localization Microscopy challenge [83]. In this challenge, point sources are blurred
by a Gaussian point-spread function and then corrupted by noise. The green stars show the
true locations of a simulated collection of point sources, and the red dots show the support
of the measure output by (5.3.1) applied to the greyscale image forming the background of
Figure 5.8. The overlap between the true locations and estimated locations is near perfect
with an F-score of 0.98 for a tolerance radius corresponding to one third of a pixel.

5.4 Conclusions and Future Work

In this section we have demonstrated that one can recover the centers of a nonnegative sum
of Gaussians from a few samples by solving a convex optimization problem. This recovery is
theoretically possible no matter how close the true centers are to one-another. We remark
that similar results are true for recovering measures from their moments. Indeed, the atoms
of a positive atomic measure can be recovered no matter how close together the atoms are,
provided one observes twice the number of moments as there are atoms. Our work can be
seen as a generalization of this result, applying generalized polynomials and the theory of
Tchebycheff systems in place of properties of Vandermonde systems.

As we discussed in our numerical experiments, this work opens up several theoretical
problems that would benefit from future investigation. We close with a very brief discussion
of some of the possible extensions.

5.4.1 Noise

Motivated by the fact that there is no separation condition in the absence of noise, it would
be interesting to study how the required separation decays to zero as the noise level de-
creases. One of the key-advantages of using convex optimization for signal processing is that
dual certificates generically give stability results, in the same way that Lagrange multipliers
measure sensitivity in linear programming. Previous work on estimating line-spectra has
shown that dual polynomials constructed for noiseless recovery extend to certify properties
of estimation and localization in the presence of noise [31, 66, 149]. We believe that these
methods should be directly applicable to our problem set-up.
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Figure 5.8: High density single molecule imaging. The green stars show the locations of a
simulated collection point sources, and the greyscale background shows the noisy, pixelated
point spread image. The red dots show the support of the measure-valued solution of (5.3.1).
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5.4.2 Higher dimensions

One logical extension is proving that the same results hold in higher dimensions. Most
scientific and engineering applications of interest have point sources arising from one to four
dimensions, and we expect that some version of our results should hold in higher dimensions.
Indeed, we believe a guarantee for recovery with no separation condition can be proven in
higher dimensions with noiseless observations. However, it is not straightforward to extend
our results to higher dimensions because the theory of Tchebycheff systems is only developed
in one dimension. In particular, our approach using limits of polynomials does not directly
generalize to higher dimensions.

5.4.3 Other point spread functions

We have shown that our Conditions 5.1.3 hold for the Gaussian point spread function, which
is commonly used in microscopy as an approximation to an Airy function. It will be very
useful to show that they also hold for other point spread functions such as the Airy function
and other common physical models. Our proof relied heavily on algebraic properties of
the Gaussian, but there is a long, rich history of determinantal systems that may apply to
generalize our result. In particular, works on properties of totally positive systems may be
fruitful for such generalizations [9, 123].

5.4.4 Model mismatch in the point spread function

Our analysis relies on perfect knowledge of the point spread function. In practice one never
has an exact analytic expression for the point spread function. Aberrations in manufacturing
and scattering media can lead to distortions in the image not properly captured by a forward
model. It would be interesting to derive guarantees on recovery that assume only partial
knowledge of the point spread function. Note that the optimization problem of searching both
for the locations of the sources and for the associated wave-function is a blind deconvolution
problem, and techniques from this well-studied problem could likely be extended to the
super-resolution setting. If successful, such methods could have immediate practical impact
when applied to denoising images in molecular, cellular, and astronomical imaging.



174

Bibliography

[1] A. Aggrawal et al. “Finding minimal convex nested polygons”. In: Information and
Computation 83 (1989), pp. 98–110.

[2] J. Alexander and A. Hirschowitz. “Polynomial interpolation in several variables”. In:
Journal of Algebraic Geometry 4.2 (1995), pp. 201–222.

[3] E. Allman, C. Matias, and J. Rhodes. “Identifiability of parameters in latent structure
models with many observed variables”. In: Annals of Statistics 37 (2009), pp. 3099–
3132.

[4] E. Allman, J. Rhodes, and A. Taylor. “A semialgebraic description of the general
Markov model on phylogenetic trees”. In: SIAM Journal on Discrete Mathematics 28
(2014), pp. 736–755.

[5] E. Allman et al. “Tensors of nonnegative rank two”. In: Linear Algebra and its Ap-
plications 473 (2015), pp. 37–53.

[6] A. Anandkumar, R. Ge, and M. Janzamin. “Guaranteed non-orthogonal tensor de-
composition via altenating rank-1 updates”. In: JMLR: Workshop and Conference
Proceedings 40 (2015), pp. 1–77.

[7] A. Anandkumar, R. Ge, and M. Janzamin. “Sample Complexity Analysis for Learning
Overcomplete Latent Variable Models through Tensor Methods”. In: Preprint:arxiv:1408.0553+
(2014).

[8] A. Anandkumar et al. “Tensor Decompositions for Learning Latent Variable Models”.
In: Journal of Machine Learning Research (2012).

[9] T. Ando. “Totally positive matrices”. In: Linear algebra and its applications 90 (1987),
pp. 165–219.

[10] W.U. Bajwa et al. “Compressed channel sensing: A new approach to estimating sparse
multipath channels”. In: Proc. IEEE 98.6 (2010), pp. 1058–1076.

[11] R. Baraniuk. “Compressive sensing [lecture notes]”. In: IEEE Signal Process Mag
24.4 (2007), pp. 118–121.

[12] R. Baraniuk and P. Steeghs. “Compressive radar imaging”. In: In IEEE Radar Conf.,
Waltham, MA (2007), pp. 128–133.



BIBLIOGRAPHY 175

[13] S. Basu, R. Pollack, and M. F. Roy. Algorithms in real algebraic geometry. Vol. 10.
Algorithms and Computation in Mathematics. Berlin: Springer Verlag, 2003.

[14] D. Batenkov and Y. Yomdin. “Algebraic fourier reconstruction of piecewise smooth
functions”. In: Math. Comput. 81 (2012).

[15] D.J. Bates et al. Numerically Solving Polynomial Systems with Bertini. Software,
Environments, and Tools. SIAM, 2013.

[16] K. Batselier, H. Liu, and N. Wong. “A constructive algorithm for decomposing a
tensor into a finite sum of orthonormal rank-1 terms.” In: SIAM Journal on Matrix
Analysis and Applications 36.3 (2015), pp. 1315–1337.

[17] E. Beale. “Discussion of ”Maximum likelihood from incomplete data via the EM algo-
rithm” by A. Dempster, N. Laird and D. Rubin”. In: Journal of the Royal Statistical
Society, Series B 39 (1977), pp. 22–23.

[18] T. Bendory. “Robust recovery of positive stream of pulses”. In: Preprint: arXiv:1503.08782
(2015).

[19] T. Bendory, S. Dekel, and A. Feuer. “Robust recovery of stream of pulses using convex
optimization”. In: Preprint: arXiv:1412.3262 (2014).

[20] B.N. Bhaskar, G. Tang, and B. Recht. “Atomic norm denoising with applications to
line spectral estimation”. In: IEEE Transactions on Signal Processing 61.23 (2013),
pp. 5987–5999.

[21] C. Bocci, E. Carlini, and F. Rapallo. “Perturbation of matrices and nonnegative rank
with a view toward statistical models”. In: SIAM Journal on Matrix Analysis and
Applications 32 (2011), pp. 1500–1512.

[22] J.S. Bonifacino et al. “Imaging intracellular fluorescent proteins at nanometer reso-
lution”. In: Science 313 (2006), pp. 1642–1645.

[23] A. Boralevi et al. “Orthogonal and unitary tensor decomposition from an algebraic
perspective”. In: Preprint arXiv:1512.08031 (2015).

[24] R. Von Borries, C.J. Miosso, and C. Potes. “Compressed sensing using prior infor-
mation”. In: Computational Advances in Multi-Sensor Adaptive Processing, 2007.
CAMPSAP 2007. 2nd IEEE International Workshop on. IEEE. 2007, pp. 121–124.

[25] N. Boyd, G. Schiebinger, and B. Recht. “The alternating descent conditional gradient
method for sparse inverse problems”. In: Preprint. (2015).

[26] J. Brachat et al. “Symmetric Tensor Decomposition”. In: Linear Algebra and its
Applications 433.11-12 (2010), pp. 851–872.

[27] M. Brambilla and G. Ottaviani. “On the Alexander-Hirschowitz theorem”. In: Journal
of Pure and Applied Algebra 212 (2008), pp. 1229–1251.

[28] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation
theory. Vol. 231. Boston, MA: Birkhäuser, 2005.
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