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Abstract

Flagged uniform particle splitting was implemented with two methods to improve the 

computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by 

enhancing the production of secondary electrons in ionization events. In Method 1 the Geant4 

kernel was modified. In Method 2 Geant4 was not modified. In both methods a unique flag 

number assigned to each new split electron was inherited by its progeny, permitting 

reclassification of the split events as if produced by independent histories.

Computational efficiency and accuracy were evaluated for simulations of 0.5–20 MeV protons and 

1–20 MeV/u carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, 

(2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified 

with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based 

algorithm.

For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by 

direct ionization events of primary particles than when splitting electrons generated by the first 

ionization events of secondary electrons. The latter technique was selected for further 

investigation. The following results are for Method 2, with relative efficiencies about 4.5 times 

lower for Method 1. For endpoint (1), relative efficiency at 128 split electrons approached 

maximum, increasing with energy from 47.2±0.2 to 66.9±0.2 for protons, decreasing with energy 

from 51.3±0.4 to 41.7±0.2 for carbon. For endpoint (2), relative efficiency increased with energy, 

from 20.7±0.1 to 50.2±0.3 for protons, 15.6±0.1 to 20.2±0.1 for carbon. For endpoint (3) relative 

efficiency increased with energy, from 31.0±0.2 to 58.2±0.4 for protons, 23.9±0.1 to 26.2±0.2 for 

carbon. Simulation results with and without splitting agreed within 1% (2 standard deviations) for 

endpoints (1) and (2), within 2% (1 standard deviation) for endpoint (3).

In conclusion, standard particle splitting variance reduction techniques can be successfully 

implemented in Monte Carlo track structure codes.
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1 Introduction

In the study of initial damage to DNA from ionizing radiation, the spatial distribution of 

individual ionization events of charged particles is of particular importance [1]. The Monte 

Carlo method provides the means to estimate nanodosimetric quantities of interest such as 

the moments of probability distributions of ionization clusters [2] or the relative yield of 

single and clustered strand breaks in nanometric scaled geometries [3]. Monte Carlo 

radiation track-structure codes are available to simulate the transport of electrons and light 

ions interaction by interaction at nanometric scales [4]. This approach is much more 

demanding in computer processing time than the more conventional condensed-history 

Monte Carlo codes that are often used for calculation of dose or fluence distributions in 

radiotherapy. For such macroscopic calculations, the multitude of individual interactions that 

typically occur along the path of an energetic charged particle is condensed into an average 

path-segment or condensed history [5].

Following each and every interaction along a particle track can take considerable time. 

Techniques are available to speed up the simulation, such as the early termination of the 

particle track when its kinetic energy reaches a user-defined value [6], or the restriction of 

interaction-by-interaction tracking of particles to specific regions, with condensed-history 

tracking performed outside these regions [7]. These approaches can potentially introduce 

bias to the results, as the contribution of important tracks to the scoring region can be lost 

due to premature termination of primary particles or failure to generate secondary particles.

Variance reduction techniques (VRTs), by definition, reduce execution time to achieve the 

same statistical precision without introducing systematic errors into the results. The most 

widely used VRT is the particle splitting technique (PST), described in more detail in the 

Methods section, in any of its modalities: uniform [8], selective [9], directional [10], and 

geometry-based [11][12], among many others, (see, for example, [13] for a summary of 

VRTs in radiotherapy).

In this work, we explored the use of PSTs in Monte Carlo Track Structure (MCTS) 

simulations for calculation of nanodosimetric quantities, based on the distribution of 

ionization events about single tracks. Although PST is well established, the technique was 

developed to improve the scoring of volume-averaged quantities. Care must be taken to 

avoid systematic errors when implementing PST in track structure simulations. To our 

knowledge, this is the first time a variance reduction technique has been implemented and 

validated for Monte Carlo track-structure simulations for calculating nanodosimetric 

quantities. A variation of the uniform PST was implemented in the TOPAS-nBio extension 

of the well-established TOPAS Monte Carlo tool [14] built on the top of Geant4 [15]. The 

physical processes used were those available in the Geant4-DNA package [16], [17]. A gain 

in efficiency was anticipated as the moments of the ionization distributions are correlated 

with radiobiological quantities of high interest, including SSBs and DSBs [18], [19]. We 

determined the computational efficiency of this technique in the computation of the mean of 

ionization cluster size distributions and SSBs and DSBs classified with two different scoring 

approaches. The accuracy of our implementation of PST was validated with reference data 

generated without PST for protons and carbon with primary energies within the energy 
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range of interest in the Bragg peak of clinical proton and carbon ion beams. As an additional 

contribution, a new example named “splitting” is being developed to be included in the 

Geant4-DNA examples directory for future release of Geant4.

2 Materials and Methods

2.1 Geant4-DNA and TOPAS-nBio

We used TOPAS v3.0 with an alpha version of the TOPAS-nBio extension [20]. TOPAS and 

TOPAS-nBio are based on the Geant4-DNA free, open access software. TOPAS is available 

for download from www.topasmc.org, as of March 9, 2017 having a license fee. The 

TOPAS-nBio extension is currently under development and is intended to be open-source 

and freely available by 2019. TOPAS was built on top of Geant4 (version 10.2.p02), 

therefore all of the TOPAS physics relies on Geant4 capabilities. The physics list in TOPAS 

can be defined in (but is not restricted to) a modular way by combining the so-called Geant4 

physics constructors [14]. This work uses the G4EmDNAPhysics constructor. TOPAS allows 

use of other options; e.g. G4EmDNAPhysics_option1, etcetera. For example, the Kyriakou 

et al [21], [22] physics model for low-energy electron transport recently implemented in 

Geant4-DNA is available in TOPAS using the G4EmDNAPhysics_option4 constructor. In 

the physics list used in this work, the modeling of energy loss is based on the dielectric 

response function formalism, which allows the calculation of electronic excitation and 

ionization cross sections for electrons. The models available in the G4EmDNAPhysics 

constructor (ionization, vibrational excitation and attachment) are described in the references 

[17], [23], [24]. Briefly, for electrons these physical models include elastic scattering with 

the Screened Rutherford model, the Plane-Wave first Born approximation for description of 

ionization and electronic excitation from 11 eV to 1 MeV, the Møller-Bhabha model for 

ionization elsewhere, the Sanche model for vibrational excitation and the Melton model for 

molecular attachment. For protons, the Rudd model for ionization was used up to 2 MeV, 

whereas the ionization model described in [23] was used elsewhere; the Miller-Green model 

was used for electronic excitation from 11 eV to 500 keV, the model based on Born theory 

for energies above this limit, and the charge decrease was modeled with the Dingfelder 

model. For carbon the Rudd model for ionization was used from 0.5 MeV. Finally, for 

neutral hydrogen, the Rudd model for ionization, the Miller-Green formula from 11 eV to 

500 keV for excitation and the Dingfelder approach for charge increase from 100 eV to 100 

MeV were used.

2.2 Flagged uniform particle splitting

A modification of the well-known uniform PST was implemented. The split process was 

either applied to electrons produced by direct ionization events of primary particles, as 

illustrated with a simple example in Figure 1, or to electrons produced by ionization events 

from secondary electrons. Henceforth, these will be called splitting on primary ionization 
and splitting on first secondary ionization, respectively. In the latter case, the split process 

was applied only once per secondary electron at the first ionization from the secondary 

electron as this represented less complexity in programming and in the classification of the 

tracks at the final analysis.
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In both cases, when a particle experienced an ionization event in a region of interest 

previously defined by the user, the ionized electron was split into Ns electrons. The 

statistical weight of the electron was decreased by 1/Ns, as usually performed in uniform 

PST [8], ensuring energy conservation, as the weighted sum of the energy of the split 
electrons is equal to the energy of the ionized electron. The energy and momentum of every 

new electron were resampled accordingly to the corresponding Geant4 process. This split 

was performed independently of the physical model, that is, once that the ionization event 

was sampled under some specific physical model, then the split was applied to the ionized 

electron. Russian Roulette, typically used in combination with PST [8], was included in the 

following way. If the kinetic energy of the secondary electron was lower than a threshold 

value then it was either terminated with a residual probability of 1-1/Ns or the electron was 

kept with the statistical weight increased by a factor of Ns.

Special care must be taken in the analysis of track structures when the simulations are 

modified with the uniform PST. The cluster distribution could be biased as more tracks are 

produced within the same history, potentially leading to an overestimation of the cluster 

sizes due to the contribution of ionizations from new tracks as shown in Figure 1. In this 

idealized PST example, a primary charged particle traverses a double strand of DNA. An 

ionization event occurs and the secondary electron causes a single strand break (SSB) on one 

of the strands. The secondary electron is split into two additional electrons, one of these 

adding an extra SSB on the opposite strand. With SSB’s on opposing strands and separated 

by a distance of less than 10 base pairs, a DSB could be erroneously counted. Thus with 

PST, care must be taken to properly count the resulting number of SSBs and DSBs per 

primary particle.

To overcome this problem, a method was implemented that assigns a new virtual property to 

the split particle. A flag containing the split track identification number SplitTrackID was 

assigned to each new split electron, and inherited by all progeny (every particle generated or 

set in motion by the split electron). The default value was set to 1 and only particles with a 

SplitTrackID equal to 1 at ionization events were split.

At each splitting event, the flag associated with each new split electron was assigned an 

integer value from 3 to Ns+2. If the ionizing incoming particle was an electron, its 

corresponding SplitTrackID was set to 2 to distinguish it from electrons that were not 

split. If the incoming ionizing particle was a proton or a carbon ion, its SplitTrackID was 

kept equal to 1. This assignment allowed limiting the split to only once in the case of 

ionizations caused by electrons and allowed a split at every ionization event for protons or 

carbon.

Example tracks of a primary proton and its secondary electrons produced by ionization 

events are shown in Figure 2. On the left side of the figure, the split process was applied to 

the proton ionization process. In this example, the split process occurs at the ionization event 

of the primary proton at around z = 4 nm, producing three new electrons. On the right side, 

the split process was applied to the electron ionization process. As shown, a secondary 

electron set in motion by the proton (close to z = 0 nm) moves in the −x direction about 2 
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nm where the first ionization event of this electron invokes the split process, producing three 

new electrons.

When additional electrons were produced by a split electron further along its track, the 

SplitTrackID of this electron was inherited by all its progeny with no additional splitting. 

This flag allowed reclassification of the split events as if they were produced by independent 

histories. As an important note, for the final analysis, the contribution of the primary proton 

(and the first ionization of the secondary electron when splitting on first secondary 

ionization, see Figure 2) must be added to every scorer flagged with the SplitTrackID at 

the completion of the simulation of each history.

The use of Russian roulette combined with PST is a common practice in variance reduction 

for radiotherapy simulations. In this work, however, Russian roulette did not improve the 

efficiency (results not shown). That is, the penalty time to perform Russian roulette resulted 

in no reduction in execution time for the same statistical precision. In addition, significant 

bias was introduced into the results when the threshold energy to apply Russian roulette was 

increased. Thus, the final implementation of PST was done without Russian roulette.

2.3 Computational efficiency and validation

2.3.1 Scoring metrics and statistical uncertainty calculation—Two biologically 

meaningful quantities of interest in nanodosimetry are the first moment M1(Q) and the 

cumulative distribution F2(Q) of the ionization cluster size distribution P(ν|Q) produced by a 

particle beam of quality Q (see [2] [19] for more details). The cluster size ν is the number of 

ionizations produced within the scoring region by a single history [2]. The corresponding 

expressions for M1(Q) and F2(Q) are:

(1)

The quantities defined in Equation 1 were used to validate the variance-reduced simulations 

by comparing those results with data produced by reference simulations without PST 

(Ns=1). A different approach was used for SSB and DSB calculations, with the 

corresponding probability distributions obtained and analogous expressions to Equation 1 

used, but in this case using the number of SSBs or DSBs per history, instead of the quantity 

ν.

To calculate the statistical uncertainty Sx, we used the second moment of the probability 

distribution P(ν|Q) divided by the number of scored events and took the square root of this 

quantity. This method was performed for each of 12 statistically independent simulations 

(using different random seeds), and the average value of the statistical uncertainty was 

obtained.

Finally, the computational efficiency ε of the Monte Carlo simulations was calculated with:
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(2)

where T is the average execution time of the 12 simulations in seconds. As Sx is associated 

with a dimensionless quantity (mean cluster size, mean SSB or mean DSB) the unit of the 

efficiency is s−1.

The efficiency of PST using Method 1 and Method 2 was evaluated for representative 

simulations in nanodosimetry. The estimation of ionization distributions is described in the 

previous section. Complementary simulations for the estimation of SSB and DSB 

distributions classified with the DBSCAN algorithm and a geometry-based algorithm are 

described in the following two sections.

2.3.2 Use case: Ionization cluster size distributions—Ionization cluster size 

distributions produced by monoenergetic protons of 0.5, 1, 5, 10, and 20 MeV and carbon 

ions of 1, 5, 10, and 20 MeV/u were simulated normally incident on the midpoint of the 

curved surface of a homogeneous water cylinder of 5 nm diameter and 10 nm length. The 

use of a single angle of incidence was arbitrary. The dimensions of the cylinder have been 

proposed by others to estimate nanodosimetric track structure parameters in [25], [26]. The 

cylinder was centered in a cubic water phantom of 150×150×150 nm3. The particle split was 

restricted to those events occurring in the cylindrical region. For carbon, the particle split 

was applied only to the electron ionization process, as discussed below. Reference data was 

generated by simulating at least 1.5×105 and 5×104 histories for proton and carbon (for the 

lowest energies), respectively; whereas final simulations with PST required at least 1000 

histories for proton and carbon, respectively.

2.3.3 Use case: Single and double strand break yields—A complementary study of 

efficiency was performed for the estimation of SSB and DSB yields for several source 

energies in two scenarios. Again, the particle split was restricted to the scoring region.

In the first scenario, reference data was generated for SSB and DSB (without PST) for a 

mono-energetic and mono-directional point source of protons of 0.5, 1, 5, 10 and 20 MeV 

and carbon ions of 1, 5, 10 and 20 MeV/u, incident on the upstream surface of a water box 

of 1×1×0.5 µm3. The water box was centered in a water cube of 2×2×2 µm3. DNA is not 

present in the simulation. The SSBs and DSBs were estimated in the smaller phantom with 

the DBSCAN algorithm which is described in [27] and currently included in the extended 

examples of Geant4 (in the example named clustering [16]. The parameters for DBSCAN 

were a maximum distance of 3.4 nm, a threshold linear energy distribution from 5 eV to 

37.5 eV to define an SSB and a minimum of two SSBs to create a DSB [27]. Reference data 

was generated by simulating at least 105 and 104 histories for proton and carbon (for the 

lowest energies), respectively; whereas final simulations with PST required at least 5000 and 

1000 histories for proton and carbon, respectively.
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In the second scenario, for the same energies as in the first scenario, the SSB and DSB were 

classified as described in [28] by using the geometrical information of models from the 

Protein Data Bank database [29]. In this work, a model named pdb4dna was used. This 

model represents a tetranucleosome. The scoring region was limited to a box of 

4.85×7.61×12.6 nm3 (to 3 significant figures) embedded in a water cube of 50×50×50 nm3. 

The scoring region was irradiated with particles starting from points randomly distributed in 

a uniform distribution on the surface of a spherical shell with a 12.6 nm3 radius and directed 

into the sphere in random directions in a uniform distribution. A minimum energy of 8.22 

eV was required to form an SSB, and a DSB required at least 2 SSB’s within 10 base pairs 

[28]. Reference data was generated by simulating at least 106 and 1.2×105 histories for 

proton and carbon (for the lowest energies), respectively; whereas final simulations with 

PST required at least 5000 and 1000 histories for proton and carbon, respectively.

These two examples, available in release version 10.2 patch 02 of Geant4-DNA, were 

implemented in TOPAS-nBio by adding two new scorers, dbscan and pdb4dna, that can be 

attached to any geometry for future simulations. The reference simulations shown are for 

efficiency estimation purposes only. They do not constitute a benchmark comparison.

3 Results

3.1 Cluster size distributions

3.1.1 Protons—The dependence of the efficiency on Ns (incremented in powers of 2) for 

the estimation of the mean (first moment) of cluster size distributions is shown in Figure 3 

for five proton energies. Results comparing Method 1 (Geant4 kernel modified, see section 

2.2.1) and Method 2 (Geant4 not modified) for PST splitting on primary ionization are 

shown in the graph on the left. Results comparing Methods 1 and 2 for PST splitting on first 

secondary ionization are shown in the graph on the right. In both cases, efficiency increased 

with increasing energy and increasing Ns, up to 128 split electrons where the efficiency 

approaches a maximum at all energies simulated. When splitting on primary ionization, with 

Ns = 128, the relative efficiency (the ratio of efficiency between Ns = 128 and Ns = 1) for 

Method 2 increased by a factor of 12.4±0.1 at 0.5 MeV up to a factor of 21.8±1.0 at 20 MeV 

(similar values for Method 1). Splitting on the first secondary ionization resulted in an about 

3 times higher relative efficiency with PST. Using Method 2, the efficiency reached a 

maximum at Ns = 128, the relative efficiency increasing by a factor of 47.2±0.2 (31.0±0.1 

for Method 1) at 0.5 MeV up to a factor of 66.9±0.2 (59.1±0.4 for Method 1) at 20 MeV. In 

this latter case, the efficiency starts decreasing for larger values of Ns.

In both Methods 1 and 2, the results when using PST agreed with the reference simulation 

results for all energy values within 1% (within 0.2% statistical uncertainty, one standard 

deviation) for the M1(Q) and F2(Q) distributions calculated with Equation 1. The accuracy 

of PST with Ns = 128 for Method 2 is shown in Figure 4 (Method 1 results are not shown).

3.1.2 Carbon ions—The efficiency of the flagged uniform PST on first secondary 

ionization for ionization distributions produced with carbon is shown on the left side of 

Figure 5. The relative efficiency for PST implemented with Method 2 at Ns of 128, close to 
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the maximum, was 51.3±0.4 for 1 MeV/u, 47.5±0.3 for 5 MeV/u, 44.4±0.2 for 10 MeV/u 

and 41.7±0.2 for 20 MeV/u.

The graph on the right side of Figure 5 shows the probability distributions of ionization 

cluster size for the reference simulations and the variance-reduced simulations with Ns = 

128. For each of the energies the reference and PST simulations were run for approximately 

the same execution time. The reference data was calculated with sufficient statistical 

precision to validate the accuracy of PST in reasonable run times. The fractional uncertainty 

per bin for the distribution corresponding to 1 MeV/u is shown in the inset. Simulations with 

PST were run to achieve a much better statistical uncertainty than the reference data. The 

accuracy in M1(Q) and F2(Q) was confirmed within 1 standard deviation of the reference 

data.

3.2 Single and double strand break classification with the DBSCAN algorithm

All results of this section were obtained with PST implemented on the first secondary 

ionization. Since splitting on the first secondary ionization using Method 1 was much less 

efficient than Method 2 for the SSB and DSB use cases, and accuracy from the two methods 

was comparable for the cluster size distribution use case, accuracy validation for these cases 

was based solely on Method 2.

3.2.1 Protons—The efficiency of estimating the mean number of DSBs, with the 

DBSCAN algorithm implemented as a scorer in TOPAS-nBio, is shown on the left side of 

Figure 6. The efficiency gain is close to saturation for PST with Method 1 from Ns = 32 

whereas it continues to increase beyond this point for PST with Method 2. For the latter 

setup, at Ns = 128, efficiency gains from 20.7 ±0.1 at 0.5 MeV to 50.2 ±0.3 at 20 MeV were 

achieved. The graph on the right side of Figure 6 shows mean SSB and DSB for energies 

ranging from 0.5 to 20 MeV. The PST result agreed with the reference simulations within 

1% (statistical uncertainty of 0.5% or less, 1 standard deviation).

3.2.2 Carbon ions—Figure 7 shows the efficiency for DSB estimation with carbon in 

water. For all energies, the gains in the efficiency drop off with increasing values of Ns and 

approach saturation with Ns larger than 32 for PST implemented with Method 1, whereas 

they continue to increase beyond this point for PST implemented with Method 2. For the 

latter setup, at Ns = 128, the efficiency improvement of factors from 15.6 ±0.1 to 20.2 ±0.1 

were achieved for 1 MeV/u and 20 MeV/u, respectively. Figure 7 also shows the mean 

values of DSB and SSB as a function of energy for reference and variance-reduced (Ns = 

128) simulations. The maximum differences were below 0.5% (within statistical uncertainty 

of 0.5%, 1 standard deviation) for all energies.

3.3 Single and double strand break classification based on geometry

3.3.1 Protons—The efficiency with respect to Ns for DSBs classified with a geometry-

based algorithm [28] is shown on the left side of Figure 8. The relative efficiency ranges 

from a factor of 31.0 ±0.2 up to a factor 58.2 ±0.4 for Ns = 128. For energies of 5 MeV or 

higher, the efficiency continues to increase with increasing Ns, whereas for lower energies 

the efficiency nearly saturates at this point. The mean SSB and DSB values for energies 
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from 0.5 to 20 MeV are also shown on the right side of Figure 8 for both the reference and 

variance reduced simulations with Ns = 128. The mean number of SSBs agreed within 2% 

for all energies (statistical uncertainty below 1%). The mean number of DSBs agreed within 

3% at 10 MeV and below (statistical uncertainty of 2.5% or less), and within 7% at 20 MeV 

(statistical uncertainty of 4%).

3.3.2 Carbon ions—For carbon, the efficiency variation with respect to Ns is shown in 

Figure 9. The relative efficiency goes from 23.9 ±0.1 at 1 MeV/u to 26.2 ±0.2 at 20 MeV/u 

with Ns = 128, a modest increase in relative efficiency with increasing energy. The mean 

number of SSBs and DSBs for the reference simulations is compared to those for the 

variance-reduced simulations on the right side of Figure 9. The differences were within of 

2% for the mean number of SSBs (statistical uncertainties lower than 0.5%), and within 2% 

for the mean number of DSBs (statistical uncertainties of 1% or less).

4 Discussion

The flagged uniform PST implemented in TOPAS-nBio resulted in large efficiency gains 

without loss of accuracy. The necessity of propagating the flag from particles to their 

progeny was fulfilled with two methods. Method 1 involved a modification to the Geant4 

kernel. Method 2 involved the implementation of auxiliary classes without a modification of 

Geant4. Method 2 led to much higher efficiency gains than Method 1 when splitting on the 

first secondary ionization. Although the flag was updated in the particle splitting process in 

both methods, in Method 2 the flag was only propagated when a new particle was created, 

whereas in Method 1 the flag was propagated at the creation of a new particle and at every 

step of every particle, requiring many more operations and thus more execution time.

On the other hand, efficiency gains with Methods 1 and 2 were comparable when splitting 

on the primary ionization. As primary ionizations are more frequent events compared with 

secondary ionizations (about 8.5% more for 0.5 MeV protons, 34% for 20 MeV protons, 

6.5% more for 1 MeV/u, and 19% more for 20 MeV/u carbon ions in the examples of 

section 3.1.1 and 3.1.2, respectively), splitting primary ionizations in Method 2 requires 

more operations than splitting on the first secondary ionization, increasing execution time 

that led to efficiency gains comparable to Method 1. In the same way, particle splitting on 

primary ionization was less efficient than splitting on the first secondary ionization. The use 

of the particle splitting with the new model from [21], [22] may show higher relative 

efficiency gains (a factor of ~1.5) due to the much smaller ionization yield than obtained 

with the previous physics model.

Efficiency gains were achieved with protons and carbon in the energy range of interest in the 

Bragg peak of clinical proton and carbon ion beams for all three cases of nanometer-scale 

simulation considered. The efficiency gains in the calculation of nanodosimetric quantities 

of interest varied with the complexity of the application for proton and carbon ions and also 

varied with energy for proton beams (Figure 10). For proton sources, higher efficiency gains 

were achieved with larger energies (over 5 MeV) in all cases due to the sparse ionization 

patterns produced at these energies. Increasing the number of secondary electrons in the 

particle history by means of the split technique resulted in a large increase in the number of 
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ionizations events in the higher energy proton track, leading to a reduced variance without a 

correspondingly large increase in simulation time. On the other hand, for high LET protons 

(lower energies), the additional time required to transport the new particles was enough to 

impact the efficiency gain, with the efficiency saturating at lower values of Ns than the lower 

LET (higher energy) protons. For the energy range in this study, carbon has a higher LET 

than protons, as shown on the left side of Figure 10. Carbon with the lowest LET simulated 

in this study produced more ionization from primaries (carbon) than from secondaries 

(electrons) as discussed earlier. This leads to a relative efficiency similar to or slightly less 

than that for the highest LET protons in the study.

The relative efficiency is degraded with increasing complexity of the scoring technique as 

shown for both protons and carbon in Figure 10. In this work, the DBSCAN algorithm had a 

higher complexity than the other two algorithms. DBSCAN performs operations on data 

stored in arrays, using re-sampling in deposited energy and sorting operations to find 

ionization events spatially close enough to one to another to form clusters from the full set of 

ionization event locations scored during a particle history [30], [31]. The array size increases 

with Ns, dramatically increasing execution time compared with particle tracking or the 

scoring of ionization events. The geometry-based classification algorithm, on the other hand, 

resulted in a more efficient way to estimate SSB and DSB values, as no further re-sampling 

or complex sorting is performed after the transport of a single history [28]. The algorithm 

used to create cluster size distributions led to the highest efficiency gains and was the least 

complex, only requiring the storage of ionization events along the particle track.

Further improvement in efficiency can be achieved by restricting the use of MCTS codes to 

regions of interest while performing condensed-history Monte Carlo elsewhere [7]. This 

method performs best when the volume of the region of interest is much smaller than the 

container volume. For example, for the DBSCAN results shown in Figure 6, after restricting 

the MCTS transport to the scoring region, an improvement in efficiency is achieved as 

shown for protons in Figure 11. However, as Ns increases, the higher number of particles in 

the scoring region (where the split occurs) increases the execution time, reducing the 

efficiency. Efficiency may be further enhanced by combining splitting on primary ionization 

and first secondary ionization and possibly by splitting all ionization events. However, we 

chose to limit PST in this study to single ionizations on each track due to the much higher 

complexity in implementation and processing of multiple splits.

The Geant4 pdb2dna algorithm we used to estimate the number of DNA strand breaks was 

restricted to simple SSB’s and DSB’s [28]. We expect our demonstration of the performance 

of PST in this scenario will motivate further exploration of the capabilities of these kinds of 

techniques in more complex scenarios.

From Geant4 version 9.6, Geant4-DNA may be used to simulate the pre-chemical and 

chemical stages of water radiolysis [32], [33]. In this case we expect the distribution of 

radiolytic species to be unaffected by use of PST when the flag is used to produce the same 

weighted number of different radiolytic species. The study of PST in such scenarios needs to 

produce the correct weighted number of each of the radiolytic species at: 1) the pre-chemical 

stage, with the number of radiolytic species produced separated per split particle by using 
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the flag assigned at the splitting event, and 2) at the chemical stage, restricting the reaction 

between species to tracks of the same flag. However, this may prove impractical as the 

addition of new chemical tracks from the split particles will increase the already 

computationally high demand on CPU time of the chemical stage.

5 Conclusions

The variance reduction techniques applied in this work can provide significant gains in 

computational efficiency for Monte Carlo track structure codes without compromising 

accuracy. Splitting the electrons set in motion by primary particles in an ionization event 

proved to be less efficient than splitting the electrons set in motion by secondary electrons 

for only the first ionization event along the secondary electron track. The gain in efficiency 

in this latter case depended on the complexity of the scored quantity, offering a larger gain 

for less complex scoring methods. It also depended on the energy or LET of the particle of 

interest, providing a larger gain for low-LET, high-energy particles. Efficiency approached 

maximum near 128 split electrons for all use cases simulated with split on the first 

secondary ionization, with efficiency gains of 21–67 for 1–20 MeV protons, 16–51 for 1–20 

MeV/u carbon ions. The PST implementation we used applies to all physics models 

available in the underlying Geant4, although use of different physics models may affect the 

efficiency gain.

These techniques have been provided in TOPAS starting with version 3.1. Both the TOPAS 

release and the Geant4 example named “splitting” under development use the second 

method described in the Methods section.
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Appendix

Implementation

PST was implemented in TOPAS-nBio by using a concrete class based on the 

G4WrapperProcess class that allows biasing of a specific physical process. Prior to that, a 

special function is required to setup and inherit the SplitTrackID in the tracking process 

of Geant4. We implemented that function in two ways as described below.

The first method (hereafter referred to as Method 1), involved modification of the Geant4 

kernel by introducing two functions based on the standard Geant4 functions GetWeight() 

and SetWeight(). These functions propagate the statistical weight along the particle 

tracking; they return a double precision value. Analogous to these, we implemented the 

GetSplitTrackID() and SetSplitTrackID() functions. At the beginning of the 

simulation, the SetSplitTrackID() assigns a SplitTrackID value equal to 1 (integer) 

to every primary particle. This number is updated at the time the split process is performed 

and is propagated by the Geant4 transporting functions. Thus, the SplitTrackID can be 

accessed at any time with objects of the G4StepPoint or G4Track classes.
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The second method to implement the functions (hereafter referred to as Method 2), is based 

on a class inherit from the abstract class G4VUserTrackInformation and one based on 

the class G4UserTrackingAction. The SplitTrackID is set in the method 

G4UserTrackingAction::PreUserTrackingAction() and propagated to the progeny 

in the G4UserTrackingAction::PostUserTrackingAction() (see [34]). The value is 

updated in the concrete class based on G4WrapperProcess that performs the split particle 

process, as in the Method 1. Code 1 shows the main part of the code that performs the split 

process implementation and the updating of the splitTrackID value with Method 2.
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Figure 1. 
An idealized scenario of strand-break induction by ionizing particles. Particle splitting 

occurs at the ionization event. The resulting tracks of the primary charged particle, the 

original secondary electron (solid line) and the tracks of the two split electrons (dotted and 

dashed lines) produce DNA breaks (X) in this illustrative case (see text).
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Figure 2. 
Examples of simulated tracks initiated by a 0.5-MeV primary proton moving vertically 

upwards (red) with flagged uniform PST with Ns = 3 (unsplit secondary electron 

SplitTrackID equal to 2 - yellow, split electrons with SplitTrackID equal to 3 - blue, 4 - 

black, 5 - magenta). The graph shows two scenarios: Track splits at ionization event 

produced by the primary proton (left) and track splits at first ionization event produced by 

the secondary electron (right). Only one proton ionization event is shown for clarity.
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Figure 3. 
Efficiency variation in cluster size simulation with Ns for 0.5–20 MeV protons for both 

Methods 1 and 2 when applied to split on primary ionization (graph on left) and applied to 

split on first secondary ionization (graph on right). The maximum efficiency is about 3 times 

larger when splitting on first secondary ionization. The statistical uncertainty was well 

within the size of the markers.
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Figure 4. 
Validation of splitting on the first secondary ionization using Method 2. First moment M1(Q) 

(left) and cumulative distribution F2(Q) (right) of P (v|Q) shown as a function of the proton 

energy for the two physical processes for reference simulations and for simulations using the 

flagged uniform PST with Ns = 128. The relative difference between PST and reference 

results is also shown (empty triangles). The error bars on the relative difference represent 

one standard deviation.
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Figure 5. 
Left: Relative efficiency variation with Ns for a 1, 5, 10 and 20 MeV/u carbon ion source in 

the cluster size simulation. The particle split was applied with the first secondary ionization. 

Right: Cluster size probability distributions for the same energies for the reference 

simulation (markers) and the variance-reduced simulations with an Ns of 128 (solid lines). 

The error bars on the markers represent one standard deviation. The inset shows the 

fractional uncertainty in percent for the probability distribution corresponding to carbon ions 

of 1 MeV/u.
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Figure 6. 
Left: Efficiency variation with Ns for 0.5–20 MeV protons. Right: Mean SSB and mean 

DSB values for 0.5–20 MeV protons for the variance-reduced simulations with Ns = 128 

(empty squares). The difference between the reference and variance-reduced simulation is 

also shown at the bottom. The error bars represent one standard deviation.
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Figure 7. 
Left: Efficiency variation with Ns for several energies of the incoming carbon ion source. 

Right: Mean SSB and mean DSB values for proton energies from 1 to 20 MeV for PST with 

Ns = 128. The relative difference in percent is also shown at the bottom. The error bars 

represent one standard deviation.
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Figure 8. 
Left: Efficiency variation with Ns for 0.5–20 MeV protons. Right: The mean DSB and mean 

SSB values as a function of energy with Ns = 128 for the variance-reduced simulations. The 

relative difference is also shown, with the scale on the lower left. The error bars represent 

one standard deviation.
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Figure 9. 
Left: Efficiency variations with Ns for 1–20 MeV/u carbon ions. Right: The mean DSB and 

mean SSB values for 1–20 MeV/u carbon beams with Ns = 128 for the variance-reduced 

simulations. The relative difference is also shown, with the scale on the lower left axis. The 

error bars represent one standard deviation.
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Figure 10. 
Left: LET as a function of the proton and carbon ion energies simulated in this work. Right: 

The relative efficiency as a function of the primary particle LET for protons and carbon with 

Ns = 128. PST was implemented with Method 2.
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Figure 11. 
Left: DBSCAN efficiency variation with Ns for proton energies from 0.5 to 20 MeV. Dashed 

lines with filled markers correspond to the flagged uniform PST. Solid lines with empty 

markers correspond to PST plus restricted transport. Right: Double strand break distributions 

for reference data (solid lines) and efficiency enhanced simulations (PST plus restricted 

transport) with Ns = 128 (points).
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Code 1. 
Implementation of the split process in UserWrappedProcess.cc. GetSplitTrackID() 

and SetSplitTrackID were previously defined in a concrete class ( TrackInformation) 

derived from G4VUserTrackInformation as described in [34].
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