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Abstract 

 
Psychosocial Factors and Obesity: Examining the Impact of Genetic Predisposition and 

Epigenetic Regulation. 

 

by 

 

Emon Elboudwarej 

 

Doctor of Philosophy in Epidemiology 

 

University of California, Berkeley 

 

Professor Mahasin S. Mujahid, Chair 

 

Background 

Obesity is a metabolic condition characterized by high levels of abdominal adiposity and currently 

affects approximately 35% of all US adults. Obesity is commonly measured using the body mass 

index (BMI), measured in kg/m2, with a level ≥ 30 indicating obesity. There are significant sex 

and racial/ethnic disparities in obesity; the highest levels of age-adjusted obesity are seen in non-

Hispanic Black women (~58%) compared to the lowest levels seen, in non-Hispanic White women 

(~32%). Obesity is associated with many negative health outcomes, such as atherosclerotic 

cardiovascular disease (CVD) and various cancers (e.g. breast, colon, and endometrial), and has 

also been shown to be an independent risk factor for all-cause mortality.  

Given the multifactorial etiology of obesity, examining multiple pathways that incorporate 

biological, behavioral, and environmental effects on weight gain may provide insights that lead to 

the prevention of obesity. Previous studies have demonstrated modest effects of psychosocial 

factors (e.g. job-related demands, relationship demands, and personal health problems) on the risk 

of obesity. Additionally, genome-wide association studies (GWAS) on obesity have identified up 

to 97 genetic risk variants that are associated with a high BMI. The effects of BMI-associated 

genetic risk variants detected thus far have been weak, with the strongest predictor, the fat mass 

and obesity gene (FTO), contributing a 0.39 point increase in BMI for each copy of the risk allele, 

explaining only ~0.34% of total genetic variance.  

Two types of research studies that might help expand on the limited findings of previous research 

and help incorporate the effect of psychosocial factors and genetic factors together are gene by 

environment interaction studies and epigenetic studies (i.e. DNA methylation (DNAm) studies). 

Animal models have shown that acute stressors (e.g. maltreatment or maternal neglect) alter 

DNAm in mice and rats. Less is known about the interaction of psychosocial factors, genetic risk 

factors for obesity, and epigenetic regulation of those genetic risk factors in humans. However, 

genetic susceptibility to obesity, together with high levels of external stressors, may increase the 

risk of obesity and account for a previously unexplained proportion of the variance in obesity.   
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Methods 

This dissertation uses two analytical approaches to investigate the relationship between 

psychosocial risk factors and genetic risk factors and obesity: a systematic review and secondary 

data analyses. Chapter 2 presents a detailed systematic review of available studies of gene-

environment interaction studies and epigenetic studies that focus on the effects of psychosocial 

and genetic risk factors for obesity. Chapters 3 and 4 use secondary data from a large population-

based longitudinal cohort study, known as the Multi-Ethnic Study of Atherosclerosis (MESA).  

 

Chapter 3 explores the interaction of three psychosocial factors (i.e. chronic burden of stress, 

everyday hassles, and depression) and an obesity genetic risk score on obesity. Obesity genetic 

risk is derived from the most recent meta-analysis, which established 97 independent genetic 

variants associated with body mass index (BMI). This analysis was conducted using interval-

censored survival modeling using a Weibull distribution. Both multiplicative and additive effects 

were determined, so as to give a comprehensive assessment of genetic and psychosocial 

interactions.  

 

Chapter 4 investigates the effect of three psychosocial factors (i.e. chronic burden of stress, 

everyday hassles, and Cohen’s perceived stress) on DNAm levels of obesity risk genes. I employed 

a two-level model for each unique gene (87 genes from 97 obesity GWAS SNPs), treating the CpG 

as the level-1 unit and the individual as the level-2 unit. For genes associated with psychosocial 

variables, we assess cross-sectional associations between DNAm and genetic expression levels. 

An association between DNAm and expression demonstrates the functional importance of DNAm 

as a gene regulator.  

 

Significance 

This dissertation examines the interactive relationship between genetic and non-genetic factors as 

they relate to obesity. Previous findings for BMI-associated genetic risk factors have been 

relatively weak. The effects of psychosocial factors on obesity have been primarily examined 

through mechanisms that involve behavior change, such as altered diet patterns or altered physical 

activity. Assessing the epigenetic effects and gene-environment interactions of psychosocial 

factors and obesity genetic risk may reveal pathways through which people develop a greater risk 

for obesity.   

 

My findings provide evidence of an interaction between psychosocial factors and genetic risk for 

obesity in multiple subpopulations of the MESA cohort study. I identify several BMI-associated 

genes that are differentially methylated by levels of chronic stress. DNAm is significantly 

associated with genetic expression, revealing a functional mechanism by which exogenous factors 

affect genetic expression, not directly attributed to inherited genomic sequences. These findings 

suggest potential underlying biological mechanisms whereby psychosocial factors and genetic risk 

factors interact to cause obesity in a manner that is not mediated by altered behavioral patterns of 

energy intake and expenditure. As inherited genomic sequences are not easily modifiable to 

prevent negative health conditions, it is important to establish multiple systems where we can 

prevent additional cases of obesity by targeting a modifiable risk factor (e.g. psychosocial stress) 

that interacts with genes or affects their expression. Because obesity remains a major concern in 

the United States, investigators should continue to search for mechanisms through which it can 

occur, in order to help reduce the burden of obesity. 
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Chapter 1 

Introduction 

 

1.1 Background information 

Obesity is a medical condition that generally arises from an imbalance of energy intake and energy 

expenditure. Most studies categorize weight classes defined by the World Health Organization, 

using the body mass index (BMI) measure. Adolphe Quetelet first created BMI in the mid 19th 

century for studying what he referred to as social physics.[1] An astronomer and mathematician 

from Belgium, Quetelet discovered that adult body weight is proportional to the square of one’s 

height and was interested in measuring adiposity as a way of characterizing the overall health of a 

population.[2] Different levels of BMI can be reported categorically (in kg/m2), with overweight 

classified as having a BMI between 25.0 and 29.9, and obesity classified as any value 30.0 and 

above; In the year 2000, obesity was subcategorized into three classes: class I (moderately obese, 

BMI 30.0 to 34.9); class II (severely obese, BMI 35.0 to 39.9); class III (very severely obese, BMI 

40.0 and above). 

Obesity is a major public health concern affecting approximately 35% of all US adults. Examining 

the current trends in obesity in the US, Flegal et al. established that while the incidence of obesity 

has been plateauing in recent years, compared to the period from 2003-2008, the prevalence of 

obesity remains at an all time high.[3] Data from the 2012 National Health and Nutrition 

Examination Survey (NHANES) showed a 33.6% prevalence of overweight among US adults aged 

20 and older, and a prevalence of obesity of 34.9%.[3] That is, almost 70% of the US adults are 

either obese or overweight. There are also statistically significant racial and ethnic differences in 

obesity. Studies have shown that non-Hispanic Black (47.8%) and Hispanic individuals (42.5%) 

have a significantly higher prevalence of obesity compared to non-Hispanic Whites (32.6%).[4] 

 

According to the National Heart Lung and Blood Institute (NHLBI), obesity is associated with 

many adverse health conditions, including atherosclerotic cardiovascular disease (CVD), cancer 

(e.g. breast, colon, and endometrial), infertility in women, and metabolic syndrome 

(www.nhlbi.nih.gov). Obesity has also been established as an independent risk factor for all-cause 

mortality.[5] Because CVD is the leading cause of death in the United States,[6] more attention 

has been paid to obesity as a contributing factor in recent years. Further, the American Medical 

Association officially recognized obesity as a “disease” in 2013, in order to increase the urgency 

with which researchers and public health professionals address the epidemic.[7]  

 

In addition to the morbidity and mortality associated with obesity, the economic burden placed on 

the US health-care system is enormous. Using data from the U.S. Medical Expenditure Panel 

Survey (MEPS), Cawley and colleagues determined that in 2005, the direct cost of obesity-related 

health problems in the U.S. (e.g. treatment for asthma, prescription drugs for weight loss, bariatric 

surgery, and nutrition counseling) was an estimated $190 billion.[8] By 2006, obesity was 

estimated to be responsible nearly $86 billion in health-care associated spending each year, or 10% 
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of all public medical costs (8.5% of Medicare and 11.8% of Medicaid spending).[9] With the 

prevalence of obesity increasing each year, costs are projected to increase as well.  

 

 

Risk factors for obesity 

 

Although the exact causes of obesity remain unknown, there has been a great deal of research 

establishing myriad risk factors for obesity, commonly divided into biological, behavioral, and 

social factors. According to the Mayo Clinic and NIH, individual level determinants of obesity 

include, but are not limited to, genetic heritability, excessive eating, and an inactive or sedentary 

lifestyle.[10, 11] Social and economic factors have also been associated with obesity (e.g. cultural 

norms concerning body size, diet and food affordability), as well as neighborhood factors, such as 

safety and walkability. (www.mayoclinic.org) 

 

Obesity is best conceptualized in the context of a framework in which multiple networks 

(biological, behavioral, and social) interact to determine weight. In a recent review of public health 

paradigms and multilevel frameworks for disease onset, Glass et al. (2006) pooled the results of 

22 studies that have established multiple etiological pathways for obesity onset, encompassing 

biological, behavioral, and environmental effects on weight gain.[12] A multi-level framework for 

contributors to obesity is presented in Figure 1 (section 1.4). The figure highlights the health 

behaviors related to eating patterns and physical activity that have been extensively examined in 

relation to obesity. Also shown are biological factors such as Hypothalamic-Pituitary-Adrenal 

(HPA) activity, a hormone regulatory system for stress reactivity and metabolism, which affects 

weight through health behaviors regarding diet and physical activity, which are affected by mood 

or appetite.[12] Societal determinants, such as increased urbanization, economic growth, 

globalization of food markets, and food availability have been previously associated with obesity 

as well.[13]  

 

 

Psychosocial stress vs. stressors  

 

Stress can be operationalized in four general ways, as described by Kasl et al. [14]: 

1) By an environmental condition (objective measure of a stressor). 

2) By an appraisal of an environmental condition (perceived stress) 

3) By a response to an environmental condition or appraisal (biological stress response) 

4) As an interactive term between environmental demands and a person’s capacity to meet 

those demands (adaptive ability).   

 

This dissertation focuses on two categories of stress: objective measures of an environmental 

condition (i.e. the long-term accumulation of stressors such as difficulties with your job, health, or 

relationships), and the appraisal of an environmental condition (i.e. the perception of stress or 

unfair treatment). Psychology research in the early 1980’s examined objective measures of 

stressors that were classified into six distinct domains: work life, health, personal life, emotions, 

actions or behaviors, and life as a whole.[15] This can be advantageous when attempting to 

quantify the amount of stress experienced in a way that is comparable across individuals, as 

http://www.mayoclinic.org/
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perceived stress can be highly variable from person to person. The distinction between the 

condition of stress and measurable events that can be termed stressors is important to consider, as 

the literature is not consistent with how the impact of stress on health is best conceptualized. Kasl 

et al. also noted this lack of consensus across multiple studies, where there was no clear indication 

that objective events or subjective psychosocial perception were more meaningful measures for 

determining the impact stress on one’s health.[14] For this reason, the current dissertation focuses 

on both measures separately (objective and subjective) in order to account for potential 

discrepancies due to measurement, and not the effect of stress itself.   

 

 

Psychosocial stressors and obesity  

 

Psychosocial stressors, defined as social or environmental exposures or demands that place a 

burden on the adaptive capabilities of an individual,[16] may be risk factors for obesity. The link 

between psychosocial stressors and CVD has been examined extensively in previous research.[17, 

18] A 2005 review described multiple cases studies where acute psychosocial stressors (e.g. 

earthquakes or terrorist attacks) led to significant increases in sudden cardiac arrest.[17] Caregiver 

strain and occupational stress (e.g. high job demands, low job control) were also consistently 

associated with cardiovascular disease outcomes such as increased progression of atherosclerosis, 

or incident coronary heart disease from multiple longitudinal studies using validated measures of 

stress and clinically measured outcomes.[17] However, the link between psychosocial stressors 

and obesity is less well-established.   

 

A 2004 review by Overgaard et al. examined ten cross-sectional studies that found only a weak or 

no association between psychosocial stressors, in the job and work-related domain, and 

obesity.[19] The review focused on one job-related stressor (job demands) and two job-related 

factors: job latitudes (skill discretion and decision authority), and job strain (high demands, with 

low influence). Only one out of eight studies examining job demands showed a statistically 

significant relationship between the stressor and obesity.  Additionally, only two of ten studies 

found a statistically significant relationship between at least one of the job-related factors and 

obesity.   

 

Longitudinal data can provide stronger evidence of a cause effect relationship between 

psychosocial stressors and obesity (i.e. that the stressor preceded the onset of obesity). Two of the 

largest nationally representative, population-based, longitudinal studies, the Coronary Artery Risk 

Development in Young Adults (CARDIA) study and the Midlife in the United States (MIDUS) 

study, have examined whether social and psychosocial factors such as job-related demands, job 

immobility, and poor social relationships lead to weight gain and an increased likelihood of 

obesity.[20, 21] In 2011, Wardle et al. conducted a meta-analysis of 14 longitudinal cohort studies 

examining the stressor-obesity relationship in adults. They limited the analysis to prospective 

cohort studies that examined stressors such as caregiver strain (i.e. providing basic care for 

children or the elderly), and work-related stressors. While the meta-analysis found a statistically 

significant effect of stressors on objective measures of adiposity (e.g. waist circumference), the 

relationship was observed only in males, not females, and the effect sizes were small (e.g. males 

from 15 studies had a combined effect size r=0.024, 95% CI (0.006,0.042)). [22]  
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There have been four large population-based longitudinal cohort studies, outside the US that have 

examined the relationship between psychosocial stressors and obesity. These studies were not 

included in the meta-analysis by Wardle et al. Much like the findings from cross-sectional studies, 

results from longitudinal studies were inconsistent. As early as 1986, Van Strien et al. established 

that negative life events (e.g. a death in the family, spousal separation, or financial problems), were 

associated with weight gain over a six-month follow-up period.[23] However, again the observed 

effect was significant in only men, and focused primarily on the effect of stressors and subsequent 

emotional eating behaviors that would contribute to obesity (i.e. the diet-mediated effect of stress 

and obesity).[23]  

 

A study by Harding et al. of 5,118 participants from the Australian Diabetes Obesity and Lifestyle 

study (AusDiab) showed that increased psychosocial stress s associated with weight gain over a 

five-year follow up period.[24] Stress in this study was measured two ways: first, by a “perceived 

stress questionnaire” comprised of 30 items (e.g. feelings of tension over the previous 12-month 

period) and second, a 13-item stressful life events questionnaire, summed over a 12-month period.  

Harding et al. found a string association between both “perceived stress” and life event stressors 

and weight gain over five years in both men and women. Two studies examining the Whitehall 

Cohort II population also found that work-stress was positively associated with subsequent change 

in BMI.[25, 26] However, results varied by baseline BMI categories, where lean men with higher 

stress exhibited weight loss and obese men with higher stress exhibited weight gain over the follow 

up period, with no interaction observed in women.[26]  

 

One of the most well known longitudinal studies of obesity in the United States, conducted by 

Block et al., suggested a role of psychosocial stressors for the recently observed increases in 

obesity.[20] Block et al. found that psychosocial stressors such as “job-related demands”, and 

“difficulty paying bills” were significantly associated with subsequent weight gain in men.[20] 

Additionally, measures such as “perceived constraints in life,” and “strains in relations with family,” 

were significantly associated with subsequent weight gain in women.  

 

The conflicting evidence across multiple longitudinal cohort studies and multiple cross-sectional 

studies indicates that other potential mechanisms linking stressors and obesity should be 

investigated. As mentioned previously, obesity is conceptualized in a multi-level framework, with 

many contributing factors (section 1.3; Figure 1). Evidence provided by Block and colleagues 

highlights the need for expanding obesity research to include psychosocial factors that contribute 

to obesity, above and beyond the more proximal factors traditionally associated with weight gain, 

such as diet and activity. Despite conflicting results of observational studies in humans, we know 

from extensive research using experimental models in rats and mice that there is biological 

plausibility for how the biological response to stressors can lead to obesity.[27] These biological 

mechanisms by which stressors can induce obesity will be explored in the following section.  

 

Potential mechanism linking psychosocial stressors to obesity 

 

One mechanism by which stress is believed to influence obesity is through a relationship between 

stress and eating behavior. A review in 2014 summarized the current arguments concerning the 
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relationship between stress and eating and found that increased stress alters eating habits, but not 

necessarily in a consistent fashion. Some individuals increase food intake when they experience 

stress, while others decrease food intake.[28] This review however, did not differentiate between 

acute and chronic stress. Acute stress is defined as a physiological stress response to an unexpected, 

single event brought on by a stressor (e.g. being attacked by a predator)[29] Chronic stress is the 

persistence of acute stressors over time, which elicits a unique psychophysiological response 

different from that resulting from acute stress.[29] The distinction between acute and chronic stress 

is important to keep in mind, as conflicting results from studies researching the stress-obesity 

relationship may be partly attributed to the type of stress being examined.  

 

A systematic review conducted in 2012 by Moore et al. showed overwhelming support for the 

hypothesis that high levels stress are associated with less healthy eating habits;[30] it should be 

noted that this was based on cross-sectional studies only and included studies that examined 

objective stressors (job demands) and subjective stress (Cohen’s perceived stress scale[31] and 

Karasak’s demand/control model[32]). However, another review in 2014 showed that eating habits 

are affected differently by acute and chronic stress.[33] Acute stress is thought to suppress appetite 

through the release of corticotropin-releasing hormone (CRH), which initiates an immediate 

response to fight against danger, which is evolutionarily advantageous.[33] Alternatively, when a 

stressor is activating the stress response chronically, glucocorticoids levels will be elevated for 

prolonged periods of time and activate lipoprotein lipase in adipose tissue, which leads to increased 

fat storage.[33] The evolutionary and biological reasoning for fat storage would lead one to assume 

that there should be unequivocal evidence that those experiencing chronic stressors over the long 

term are more likely to store fat and thus, become obese. This is not necessarily the case, as 

evidenced by the previous studies summarized thus far. Therefore, additional mechanisms must 

be examined. 

 

 

Genetics factors in obesity 

 

In recent years, a strong argument has been made for a genetic contribution to obesity in humans. 

The biological and evolutionary basis for appetite and fat storage due to hormone release invokes 

the role of genes, as we know that stress-response biomarkers (e.g. glucocorticoids, such as 

cortisol) are heavily regulated by genetic factors.[34] Once again, this highlights the multifactorial 

nature of weight gain.  

 

Many genetic epidemiologic studies, including genome linkage, fine mapping, and candidate gene 

studies have identified several single nucleotide polymorphisms (SNPs) associated with BMI. 

Additionally, genome wide association studies (GWAS) have improved upon other approaches by 

allowing for the examination of a wide range of common variants associated with obesity. A recent 

meta-analysis of GWA studies has identified up to 97 genetic predictors of high BMI, including 

the strongest genetic factor discovered to date, the fat mass and obesity gene, FTO.[35, 36] As 

opposed to a single gene’s contribution to disease, discovering a network of genetic factors and 

pathways of genetic interaction highlights the potential for polygenic mechanisms contributing to 

obesity.[37] Modern technologies have allowed for a comprehensive assessment of the genetic 

contribution to obesity, with many genes working together to lead to obesity.   
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GWAS discoveries have not, however, identified very strong predictors of obesity. For example, 

genetic variation in the strongest predictor, FTO, confers only a 0.39-point increase of BMI for 

each copy of the risk allele. This would explain only 0.34% of the total genetic variance with 

respect to obesity.[35] In order to address this limitation, Belsky and colleagues developed a 

method for examining total polygenic genetic risk using an obesity genetic risk score (oGRS) and 

have found encouraging results.[38] The oGRS can be used for trans-ethnic replication (i.e. 

replication in populations of varied ancestry), even if the risk variants were established in 

populations of European descent,[39] making it an attractive measure for generalizing genetic risk 

to broader populations. Still, the genetic role in obesity is not enough to explain even a majority 

of obesity cases, and it is believed that interactions between genes and environment provide more 

insight into etiology of disease. Therefore, it is important to establish other risk factors that work 

independently of (or synergistically with) genetic factors that increase the likelihood of being 

obese. 

 

 

Gene-environment interactions and obesity 

 

One way of examining the multifactorial causal connection between weight gain and obesity is by 

conducting studies that examine the interaction of endogenous and exogenous factors. Interest in 

the gene by environment interaction literature suggests a genetic predisposition for obesity works 

synergistically with non-genetic factors to increase the risk of obesity. However, this literature 

remains focused on the interactions of gens and dietary factors or socioeconomic status.[40] A 

study was conducted by Andreasen et al. exploring the interactive effect of FTO and physical 

activity on obesity, found that carriers of the A allele at the rs9939609 locus showed a significant 

increase in BMI with physical passivity, compared to those homozygous for the A allele.[41] 

Additionally, a gene-diet interaction was established for APOA5[42] as well as for ADRB3,[43] 

and IL6R,[44] each showing an interaction with higher energy intake leading to increases in the 

risk of obesity.  

 

 

Epigenetics and obesity 

 

Understanding psychosocial stress from a vantage point that includes genetic interactions is 

important and timely. Recent studies have shown that genes responsible for regulating the stress 

response (e.g. CRH and glucocorticoids such as cortisol) can be differentially expressed in those 

with and without obesity, potentially due to epigenetic regulation.[45] Examining the impact of 

stress on DNA methylation and genetic expression can help to elucidate alternative complex 

mechanisms linking psychosocial factors and obesity.  

Epigenetics has recently emerged as a mechanism by which genetic expression influences can 

affect disease risk. Epigenetics is a term used for anything that might be an un-inherited regulation 

of inheritable genetic transcripts. This may occur in many ways, from chromosomal binding and 

telomere lengths[46, 47] to histone acetylation[48] or DNA methylation. DNA methylation, which 

is defined as the addition of a methyl group (CH3) to cytosine/guanine base pairs, may help to 

understand how genes are being expressed in the body; this is due to the regulatory nature of DNA 
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methylation, as it is impeding or promoting genetic transcription and is affected by exogenous 

factors. The growing interest in epigenetic regulation is supported by the fact that non-genetic 

exposures, such as diet, smoking and environmental toxins, are directly associated with altered 

DNA methylation levels.[49-51] Increased DNA methylation leads to differential expression of 

genes by blocking transcription[52] (i.e. preventing a gene from being expressed or “turned on” in 

the body).  

 

Methylation is a recurring process that is believed to be dynamic throughout the life course, with 

evidence showing that methylation is reversible[53, 54]. Examining factors that contribute to 

methylation can reveal modifiable molecular mechanisms for genetic expression that transcend 

inheritance of genomic sequences. The potential of psychosocial factors affecting DNA 

methylation can illuminate how regulation of genetic expression by stress is contributing to obesity 

in humans. The present dissertation focuses on DNA methylation as the regulatory agent of genetic 

expression. 

 

 

Stress, obesity, and DNA methylation 

 

The impact of stressors on DNA methylation has been thoroughly documented in animal models, 

with numerous studies showing how acute stressors (e.g. maltreatment or maternal neglect) alter 

DNA methylation in mice[55, 56] and rats.[57] The relationship between stress and methylation 

has not been as clear in humans, as observational studies do not allow for similar control of cause 

and effect where subjects would be experimentally stressed and then measured for subsequent 

changes in DNA methylation. Sasaki et al provided a thorough review of studies on stressors and 

DNA methylation in 2013.[58] They examined studies that assessed the relationship between DNA 

methylation and the following stress/stressors/social factors: abuse and neglect in early life and 

maternal care in early life lastly, differing DNA methylation patterns of glucocorticoid receptor 

genes was observed in the cord blood of children with mothers who experience high stress during 

pregnancy.   

 

The majority of studies included in the review by Sasaki et al. focused on acute stressors and early 

life events. Thus, there is a significant gap in the literature with respect to measures of chronic 

stress and DNA methylation in adults. One study of DNA methylation differences in monozygotic 

twins, conducted by Fraga et al., showed that DNA methylation significantly changed between co-

twins over their life course.[59] Their study showed that despite similar experiences in early life, 

given that twins are generally reared together, DNA methylation became markedly different in 

adulthood.[59]  

 

An epigenome wide analysis was recently conducted in nearly 500 subjects of European ancestry, 

found five DNA methylation markers that were associated with obesity.[60] Further, Zhao et al. 

in a 2014 twin study examined methylation patterns in stress genes and found a significant 

association with obesity at the promoter region of serotonin transporter gene, SLC6A4.[61] Zhao 

and colleagues found associations between methylation of genes related to stress response and 

obesity, indicating that potentially different life stressors or management of the stress response can 
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be different in genetically similar people. In other words, the environment impacted obesity 

through DNA methylation in a way previously unexplained by genetic sequences alone.  

 

Prior research has highlighted how early life exposures to stressful events can result in observable 

epigenetic modifications later in life, by broad increases in DNA methylation across the entire 

genome and at specific genes.[62, 63] Less is known about modifications that occur due to 

psychosocial stressors experienced in adulthood. While there have been previous studies 

investigating the role of DNA methylation on obesity, to my knowledge, none has conducted such 

a study from a candidate gene approach based on obesity risk genes discovered from GWA studies. 

Given the dynamic nature of the factors contributing to obesity, understanding the epigenetic 

mechanisms will be essential in bridging the divide between socio-environmental exposures and 

genetic predisposition to obesity. 

 

 

Limitations of existing research  

 

Numerous studies have established a connection between psychosocial factors and obesity via 

coping mechanisms that influence one’s diet and/or physical activity. However, few have assessed 

the interaction of psychosocial factors and the genetic risk of obesity. Furthermore, no studies to 

date have examined the potential effect of psychosocial factors on DNA methylation of all GWAS 

derived obesity risk genes.  

 

A potential criticism of observational methylation studies in humans is that it can be too difficult 

to determine the exact cause of the DNA methylation change. DNA methylation is a dynamic and 

ongoing process (demethylation and remethylation occur daily and have the potential to persist), 

and exactly how the changes occur or persist is still being established. As mentioned previously, 

countless exposures can be causing methylation levels to change, and being able to isolate risk 

factors and quantify their impact on methylation can be challenging; however, it is necessary in 

studying the genetic determinants of obesity.  

 

A majority of epigenetic and DNA methylation studies have focused on developmental stages of 

life and early childhood, given that a great deal of genetic programming (e.g. imprinting and x-

inactivation), occurs during fetal development.[64] However, psychosocial factors that may be 

influencing DNA methylation can occur at any time point throughout an individual’s life, 

including when relationship difficulties or job-related stressors are present. As most healthy 

individuals are susceptible to obesity at any time, it is important to characterize how psychosocial 

factors in adulthood might be contributing to overall risk of obesity.  
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1.2 Specific Aims 

The overall goal of this dissertation is to improve our understanding of the link between 

psychosocial factors and obesity by examining the role of genetic predisposition and epigenetic 

regulation of genetic risk factors. My primary, secondary, and tertiary specific aims are the 

following:  

1) Examine the current state of the literature on the relationship between genomic and 

psychosocial factors associated with obesity. 

2) Examine associations between self-reported psychosocial factors and obesity risk, and 

whether associations are modified by genetic risk in a longitudinal study.  

a. Hypotheses:  

i. Individuals with higher baseline levels of psychosocial factors will have 

higher rates of obesity over the study follow-up time, independent of 

potentially confounding covariates. 

ii. Associations between psychosocial factors and obesity will be modified by 

genetic risk. An obesity genetic risk score will modify the effects of 

psychosocial factors, such that associations will be strongest among those 

with a high genetic risk.  

3) Examine associations between psychosocial factors and DNA methylation in genetic risk 

variants associated with obesity.  

a. Hypotheses: 

i. There will be a statistically significant association between psychosocial 

factors and DNA methylation levels of obesity genes.  

ii. There will be a statistically significant association between DNA 

methylation levels of obesity genes and gene expression levels. 

 

The first aim will be investigated by conducting a systematic review of publicly available studies. 

Aims 2 and 3 will be achieved using secondary data analyses of the longitudinal cohort study 

known as the Multi-Ethnic Study of Atherosclerosis (MESA). The MESA dataset is from a 

population-based, multi-ethnic cohort, with measures of psychosocial factors, genetic variants and 

DNA methylation, in addition to objective measures of obesity. 
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1.3 Tables and Figures 

 

Figure 1. Multi-level framework for obesity risk 
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Chapter 2 

The contribution of genomic and psychosocial factors to obesity 

 

2.1 Introduction 

Obesity, commonly measured by body mass index or BMI in (kg/m2), has become a significant 

public health problem in modern America, affecting approximately 35% of all US adults.[3] 

Examining the current trends in obesity in the US, Flegal et al. established that while the prevalence 

of obesity is plateauing in more recent years, compared to the period from 2003-2008, the 

prevalence of obesity remains at all time highs.[3] Sex and racial/ethnic disparities in obesity 

remain a significant concern, with nearly a two-fold increase in the age-adjusted prevalence among 

non-Hispanic Black women (~58%) compared to non-Hispanic White women (~32%).[3] The 

impact of obesity on important health outcomes is significant. Obesity is associated with an 

increased risk of many negative health conditions, such as atherosclerotic cardiovascular disease 

(CVD), various types of cancer (e.g. breast, colon, and endometrial), reproductive infertility in 

women, and metabolic syndrome (www.nhlbi.nih.gov), among others. Obesity has also been 

established as an independent risk factor for all-cause mortality.[5]  

Obesity is a key example of a health condition with a multifactorial etiology. Multiple networks 

(biological, behavioral, and social) may act independently or together to affect weight. In a recent 

review of public health paradigms and multilevel frameworks for disease onset by Glass et al. 

(2006), multiple pathways for obesity etiology that incorporated biological, behavioral, and 

environmental effects on weight gain were described.[12] Glass and colleagues highlighted the 

health behaviors related to eating patterns and physical activity that have been extensively 

examined in relation to obesity.  

Indeed, the two most well-established, proximal risk factors of obesity are energy intake and 

energy expenditure.[65] Nevertheless, significant disparities persist in the population by factors 

not directly related to diet or physical activity.[66, 67] A seminal paper by Rand and Kuldau 

showed significant differences in obesity by race and sex, age group, and socioeconomic 

status.[68] This paper established that myriad social factors, and not merely heritable traits, could 

have a lasting impact on the risk of obesity. However, only a few studies have previously examined 

the effect of psychosocial factors (e.g. depression, relationship strain, difficulty paying bills, and 

job related demands), on obesity.[20, 21, 69, 70] 

Notwithstanding limited or conflicting evidence in humans,[19] previous animal studies have 

shown that chronic exposure to stressors increases levels of glucocorticoids in the blood, which in 

turn leads to excess fat storage. We also know from extensive experimental studies in rats and 

mice where the biological response to stressors over an extended period of time can lead to 

adiposity, independent of dietary intake or level of physical activity.[27] Thus, there is a scientific 

basis for investigating the role of more distal factors that contribute to obesity in humans.  

http://www.nhlbi.nih.gov/
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Prior studies have shown that neither psychosocial nor behavioral factors alone can explain the 

total variance in BMI. Genetic contributions to obesity research have expanded as obesity is a 

highly heritable trait and can be polygenic or a rare, familial, monogenic condition.[71] Genome-

wide association studies (GWAS), which expanded dramatically around the late 2000’s, led to 

multiple discoveries of single nucleotide polymorphisms (SNPs) that were associated with a wide 

array of diseases and conditions, including autoimmune disorders such as multiple sclerosis and 

systemic lupus erythematosus and metabolic conditions, such as type 2 diabetes mellitus.[72]  

Numerous obesity GWAS have been conducted in the past decade, with the most recent meta-

analysis conducted by Locke et al. in 2014. This meta-analysis identified 97 genetic predictors of 

high BMI (56 novel loci) from 339,224 individuals.[36] Genetic findings will continue to expand 

as risk variants are constantly being discovered, due to the greater power of larger studies. The 

utility of this constant expansion, however, is not yet clear. Despite the many genetic variants 

discovered for obesity, genetic variation in even the strongest predictor, the fat mass and obesity 

gene, or FTO, contributed to only a 0.39 point increase in BMI for each copy of the risk allele, 

which can explain only ~0.34% of the total genetic variance.[35] While genetic findings have been 

limited, it is not to say that the genetic contribution to obesity is negligible. Given the highly 

expensive procedures required to discover these genes (approximately of $125,000 per discovered 

locus)[72] and the growing desire to treat obesity in a genetically personalized way,[37] different 

methods that can address a larger proportion of the obesity variance must be prioritized.  

A distinct area of research that unites genetic and non-genetic determinants of disease is Gene by 

Environment (GxE) interactions. GxE studies look at the joint effect of genetic variants and 

exogenous factors, often referred to as the environment, but which can be any non-genetic factor. 

With respect to obesity research in the GxE framework, Choquet et al. found that the 

environmental components of many studies have focused on physical activity, dietary habits, age, 

sex, and race/ethnicity[73] However, studies to date have not extensively examined interactions 

between genetic and psychosocial social factors, which is an important limitation in the field. 

There are plausible biological mechanisms by which stress and gene interactions may lead to 

obesity. Animal models have shown that chronic exposure to stress can cause the prolonged release 

of stress-response hormones such as glucocorticoids.[74] Glucocorticoids are regulated by genetic 

factors,[34] and persistent high levels in the blood can lead to fat storage.[74] Therefore, the 

genetic influence on stress-response, coupled with an environment of high levels of external 

stressors, may increase the risk of obesity and characterize a previously unexplained proportion of 

the obesity variance.   

Epigenetics has also emerged as a mechanism by which genetic risk factors for obesity might be 

over-expressed or under-expressed in people with high levels of psychosocial stress. Although 

obesity is a highly heritable trait, as evidenced by concordance rates derived from studies utilizing 

monozygotic twins,[75] heritability is not simply genetic inheritance.[76, 77] The lack of strong 

effects in single variants mentioned previously has contributed to the widespread desire to discover 

the “missing heritability” of complex genetic diseases, whereby another distinct area of research, 

epigenetic inheritance, has been discussed as a possible avenue of exploration.[78] Epigenetics is 

a term used for the inherited or un-inherited regulation of genetic expression that is not due to 

changes in inherited genetic material. This may occur in many ways, from chromosomal binding 

and telomere length[46, 47] to histone acetylation[48] to the most commonly studied mechanism, 
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DNA methylation.[79] DNA methylation has become the most prominent aspect of epigenetics 

to emerge in recent studies due to the its relative economical advantages over more costly 

approaches, expansive genome-wide coverage thanks to modern microarray technologies,[80] and 

its direct and lasting impact on gene expression.[81] DNA methylation is a dynamic process that 

fluctuates constantly and occurs at every stage of life,[82] making it an attractive candidate for 

public health interventions even well into adulthood.  

The effect of stressors on DNA methylation has been thoroughly documented in animal models, 

with numerous studies showing how acute stressors (e.g. maltreatment or maternal neglect) alter 

DNA methylation in mice[55, 56] and rats.[57] The relationship between stress and methylation 

has not been as clear in humans, as observational studies do not allow for similar control of cause 

and effect where subjects would be experimentally stressed and then measured for subsequent 

changes in DNA methylation. However several studies have shown that adverse childhood events 

(e.g. abuse and neglect) can alter phenotypic trajectories[83] and can carry the impact on DNA 

methylation well into adulthood[84] through broad increases in DNA methylation across the entire 

genome and at specific genes.[62, 63] Less is known about modifications that occur due to 

psychosocial stressors experienced in adulthood. 

 

Incorporating genetic and non-genetic approaches into research to discover complex, 

multifactorial biological pathways is essential for understanding obesity in a comprehensive way. 

Intervening on environmental (non-genetic) factors that interact with (or block the function of) 

genetic markers is possible immediately, whereas genetic findings may not translate into a direct 

public health intervention in the near term. The growth of obesity as a major public health concern 

supports the need for determining all potential avenues by which obesity may arise and be 

prevented. The overall goal of this study was to conduct a systematic review of epidemiologic 

research examining the intersection of genetic and psychosocial factors in relation to obesity. 

Specifically, I reviewed studies that examined: 1) if the interaction of genetic and psychosocial 

factors is synergistically associated with obesity and 2) if epigenetic pathways (via regulation by 

DNA methylation) could identify a new mechanism by which psychosocial factors lead to obesity. 

We assessed the strengths and limitations of the current body of literature on this topic and make 

recommendations for future studies. 

 

2.2 Methods 

This review was done according to Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) Guidelines. 

 

Search strategy 

An electronic search of the National Center for Biotechnology Information (NCBI) PubMed 

database and Google scholar was conducted separately for GXE studies and epigenetic studies 

published between January 1, 2007 and June 1, 2016. These dates were selected based on a review 

by Visccher et al. that showed that the first GWAS was reported in 2005, but the expansion of 
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GWAS publications was initiated in 2007.[72] However, the expansion of GWAS publications 

was initiated in 2007 by the Welcome Trust Case Control Consortium (WTCCC), comprising a 

large dataset that was designed specifically for array-based SNP discovery with significant 

coverage of the human genome.[72, 85]  

The searches included a combination of Medical Subject Headings, or MeSH terms, and terms 

open to “All Fields” in order not to omit potential studies that did not contain exact MeSH 

terminology. Obesity can be measured in a multitude of ways; therefore, we allowed for our search 

to include terms such as body-mass index (BMI), waist-hip ratio (WHR) and waist circumference 

(WC). Terms for psychosocial factors included but were not limited to “psychological stress”, 

“stressor”, or subcomponents of commonly used stress scores, such as “discrimination”, “hassles” 

or “job strain.”[86, 87] We decided to also include terms such as “SES”, “education”, “depression”, 

and “income” in order to include studies that might have emphasized these measure but also looked 

at psychosocial factors in a sub-analysis. 

Essential to our main goal for this review is synthetizing information on gene-environment 

interactions, as they incorporate the joint effects of each exposure, and not merely studies that 

address genetic and non-genetic components separately. Therefore, we specifically searched for 

the MeSH term “Gene-Environment Interaction,” which is a well-known category of genetic 

studies. For the epigenetics search, we used identical terms that were common between the two 

study types, but switched out “Gene-Environment Interaction” with either “Epigenetics” or “DNA 

Methylation.” Only human studies published in English were searched, as there are many animal 

models in genetic research that do not provide relevant information about self-reported 

psychosocial factors and obesity. The complete PubMed search criteria are available in 

Supplementary table S1.    

 

Selection of studies and inclusion/exclusion criteria 

For the GxE articles, inclusion criteria were based on studies of human adults (aged 19 years or 

older) published in English between January 1, 2007 and June 1, 2016. This resulted in 111 articles 

for title and abstract review (Figure 1). We additionally excluded studies in the following 

prioritized order: 1) Studies with the wrong outcome, meaning any study that did not consider 

obesity or some measurement of obesity as it’s main or secondary outcome. 2) Studies that were 

focused on any population other than human adults (i.e. animals or children). This reduced the 

number of studies to 31 GxE articles that were retained for full review. We next excluded articles 

in the following prioritized order: 1) any studies that did not include psychosocial factors as their 

environmental exposure. 2) Any studies that were the wrong study type, meaning mediation 

analyses, gene-gene interaction studies, methods papers, Narrative reviews, commentary, abstracts 

only, or studies without primary data. We allowed for the non-systematic inclusion of cited 

references from our relevant articles, which added one study, yielding a final set of four GxE 

studies for review and summarization.  

For Epigenetic studies, inclusion criteria were based on studies of human adults (aged 19 years or 

older) published in English between January 1, 2007 and June 1, 2016. This produced 106 articles 



 

 

15 

for title and abstract review (Figure 1). The search strategy for Epigenetic studies was designed 

to retrieve articles that assessed either the impact of DNA methylation on obesity, the impact of 

psychosocial factors on DNA methylation of obesity risk variants, or the combination of all three 

components. Exclusion criteria were prioritized in the following order: 1) Studies with the wrong 

outcome, meaning any study that did not consider obesity or some measurement of obesity as the 

main or secondary outcome. 2) Studies that were focused on any population other than human 

adults. This resulted in 35 epigenetic articles to be considered for full review. We then excluded 

articles in the following prioritized order: 1) any study that did not have some aspect of objectively 

or subjectively measured psychosocial factors incorporated into it, 2) any studies that were the 

wrong study type, meaning mediation analyses, methods papers, narrative reviews, commentaries, 

abstracts only, or studies without primary data. We allowed for less stringent criteria on the final 

set of epigenetic articles in order to incorporate studies that looked at genes involved in pathways 

that are associated with psychosocial factors and biological response mechanisms to stressors,[88-

90] but did not measure psychosocial factors directly. An additional study was non-systematically 

included from cited references, resulting in a final set of five epigenetic studies for detailed review 

and summarization. A flowchart of the article filtering process was created using the Google drive 

web tool, draw.io diagrams (section 2.5; Figure 1).  

 

2.3 Results 

GxE review 

Study characteristics 

Our GxE search resulted in two longitudinal cohort studies,[91, 92] and two case-control 

studies.[93] Each study was comprised of a varied set of demographic characteristics: Kring 2010 

(N=126 stressed caregivers/122 non-stressed, white men and women),[94] Marmorstein et al. 

(N=903 men, 521 women of various race/ethnicities (white, black, Native-American, Asian-

Pacific Islander, Hispanic),[91] Singh et al. (N=5,805 men and women of various race/ethnicities 

(white, black, Native-American, Hispanic),[92] and Kring 2011 (N=475 obese cases/709 non-

obese, all White men). Each study assessed sex and race/ethnicity by self-report. With the 

exception of the Marmorstein study, which had an overall mean age of 21.9 years at the end of 

follow-up,[91] the rest of the studies were comprised of a generally older population of adults with 

mean ages of ~49,[93] ~62,[92] and ~63 years of age.[94]  

 

Study outcomes and exposure measurement 

Three of the four studies examined psychosocial factors measuring validated measures of chronic 

stress: the chronic burden of stress scale (Singh, 2014),[92] chronically stressed caregivers (Kring, 

2010),[94] and another seven-item chronic stress score (Kring, 2011).[93] The fourth study 

conducted by Marmorstein and Hart considered receipt of public assistance in childhood as 

evidence of a stressor.[91] Each study looked at a combination of obesity measures, including hip 

circumference,[92] waist circumference,[93, 94] and body-mass index (BMI).[91] A particular 



 

 

16 

strength of the studies examined in the current review is that each used measures of chronic 

psychosocial factors that preceded obesity measurements, establishing a clear temporal sequence 

of events.   

 

Genetic factors 

None of the four GxE papers incorporated information from obesity risk genes that have been 

derived from genome-wide association studies (GWAS) or within the strongest candidate gene to 

date, FTO.[35] Singh et al. employed a genome-wide approach as a method of discovering novel 

loci associated with obesity (as measured by hip circumference).[92] Kring et al. 2010 selected 

Apolipoprotein E (APOE) as an attractive candidate gene because of its relationship to Type 2 

diabetes mellitus and cardiovascular conditions, as well as its role in lipid metabolism.[94] Kring 

et al. 2011 selected APOE in an effort to replicate prior findings. Last, Marmorstein et al. selected 

the MAOA gene, given its established role in moderating responses to stressors and for its potential 

role in obesity in males.[91]  

 

Main findings 

Each of the four GxE studies found a statistically significant interaction between a psychosocial 

factor and genetic determinant of obesity. Quantitative results revealed a total of 8 statistically 

significant positive interactions, from three unique genes (EBF1, APOE, MAOA), multiple 

measures of psychosocial factors, and multiple measures of obesity. While Singh et al. did not 

report specific effect sizes, the investigators showed five SNPs within the Early B-cell Factor 1 

gene (EBF1) that interacted with a chronic burden of stress score, and reached genome-wide 

significance for hip circumference (p-value <9.46E-08).[92] The study was conducted in 2,460 

White men and women. While data were available on other racial or ethnic groups, none of the 

gene-stress interactions was significant in non-whites. For the lead SNP (EBF1 rs4704963:T>C) 

revealed that carriers of the minor allele (CC/CT) had a linear increase in waist girth, hip girth, 

and BMI at higher chronic stress levels. Each of three SNPs (rs17056278, rs17056298, and 

17056398) that were also available in an independent sample from the Framingham Heart 

Study[95] were replicated for hip circumference (p-value <0.02), and validated by significant 

associations with BMI and waist circumference (p-value <0.02).  

Two studies that employed a targeted candidate gene approach found significant GxE associations 

with waist circumference.[93, 94] Kring et al. found a statistically significant interaction between 

one of three genetic variants (APOE:rs439401) with caregiver status, in both additive (p-

value=0.047) and dominant (p-value=0.026) genetic models.[94] Chronically stressed individuals 

who were homozygous for the minor T-allele at rs43940 had a statistically significantly greater 

waist circumference compared to individuals without stress. The study was conducted in 341 

White women, and the findings were replicated in a subsequent study of 1,184 White men, using 

a self-report seven-item chronic stress score[93]. The replication study showed that a 5cm increase 

in waist circumference was significantly associated with a 9% increase in the odds of being 

homozygous for the minor T-allele among stressed men (OR=1.09 [1.01;1.17]). Similarly, a two-
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unit increase in BMI level was significantly associated with rs43940 and chronic stress 

(OR=1.09 [1.02;1.17]).    

Last, Marmorstein et al. found a relationship between the short allele for a variant in the X-linked 

gene, Monoamine oxidase A (MAOA) and a psychosocial stressor (receipt of public assistance) 

with BMI.[91] This study utilized 903 men of multiple racial/ethnic backgrounds. The interaction 

of MAOA with receiving public assistance alone was not statistically significant. However, the 

study found that age-dependent BMI trajectories (from adolescence into adulthood) were 

statistically different in those with the MAOA short allele that also received public assistance, 

compared to other groups.[91] These results expand on the previous GxE study findings by 

providing evidence of a functional polymorphism that interacts with a psychosocial factor to 

contribute to a more rapid increase in BMI level.  

 

Limitations 

Each study acknowledged limitations of their findings. The studies were primarily limited by the 

absence of replication, and at times referred to their studies as exploratory analyses, while stressing 

the need for continued work in the areas of research that integrate genetic and non-genetic factors. 

Only one investigator had the ability to replicate GxE interactions in an independent dataset[92, 

93] 

Each of the GxE studies was done primarily on White/European subjects due to the availability of 

samples,[61, 94, 96] maximizing statistical power or lack of main effects in non-white 

populations,[92] or the necessity to replicate prior findings in White populations.[93] Studies only 

conducted in White populations limit the ability to generalize the findings to other populations of 

different ancestries. Therefore, future studies should focus on replicating these findings in 

independent datasets that include racial/ethnic diverse groups. A primary concern in genome-wide 

analyses is the issue of making false discoveries from conducting many statistical tests (i.e. 

multiple testing concerns). Bonferonni corrected p-values were used in GxE studies in order to 

address this concern.[92] Additionally, the total number of tests performed were reduced by 

avoiding genome-wide scans, in favor of a targeted approach based on specific loci from candidate 

genes. [91, 93, 94]  

As with most case-control studies, the potential for recall bias is certainly possible. The studies in 

the current review used a combination of self-reported measures of psychosocial factors,[91-94] 

self-reported height and weight,[91, 92] or clinical assessment of obesity measures.[93, 94] Self-

reporting psychosocial factors is common practice, however, the potential for recalling stressful 

events differentially by those who have obesity versus those who do not, could lead to inflated 

effect sizes between stress and obesity. Furthermore, different scales for psychosocial stress makes 

it difficult to synthesize information across various studies, as investigators define surrogate 

measures for stress in myriad ways. Ultimately, the intention is to identify biological mechanisms 

underlying the relationship between stress and obesity through inflammatory pathways, serotonin 

response, or HPA activity/cortisol release. Measuring these biomarkers directly can be costly and 
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thereby limit the number of participants in a study, which effectively leads to decreased power 

for studies to identify statistically significant associations.  

 

Epigenetic Review 

Study characteristics 

Our search resulted in five cross-sectional studies, (one of which also had longitudinal measures). 

Each study was comprised of a relatively small sample of various racial/ethnic groups: Na et al. 

(N=284, Korean women),[97] Perez-Cornago et al. (N=41, Spanish (White) of unspecified 

sex),[96] Zhang et al. (N=165, men and women of various race/ethnicities (non-Hispanic White, 

non-Hispanic Black, Hispanic)),[98] Gomes et al. (N=126, Brazilian men and women),[99] and 

Zhao et al. (N=168, White men).[61] Each study included individuals with a wide range of ages. 

While one study made no explicit reference to the mean age of participants,[96] the studies by Na 

et al. and Zhang et al. reported similar mean ages of 31.9 and 29.4 years respectively.[97, 98] The 

remaining two studies had older participants of 70.8 years[99] and 55 years of age, 

respectively.[61] 

 

Study outcomes and exposure measurement 

The final set of epigenetic articles from our systematic search included one study that assessed the 

exposure of mean (global) methylation[99] and four studies that targeted genes involved in pro-

inflammatory and stress-response mechanisms.[61, 96-98] In cross-sectional studies, designation 

of the exposure and outcome was not always made explicit. These studies examined the effect of 

obesity (BMI >30) on IL6 methylation,[97] global methylation and depression,[98] continuous 

BMI and depression with global methylation,[99] and the effect of SLC6A methylation on BMI, 

body weight, waist circumference, and waist to hip ratio.[61] The final study, examined 

associations between DNA methylation of the serotonin receptor 2A (HTR2A) gene and waist 

circumference, BMI, and body weight, in addition to longitudinal changes in fat mass or changes 

in depressive symptoms.[96] 

 

Genetic factors 

DNA methylation is known to be allele-specific,[35, 100-102] which is a limitation that is 

routinely addressed in epigenetic studies. Speculating that polymorphisms associated with 

methylation could be playing a confounding role, Perez-Cornago attempted to validate methylation 

levels with genetic expression levels, although results were not significant. Another method of 

dealing the genetic confounding of methylation levels was employed by Zhao et al. as this study 

was conducted in monozygotic twins, assuring that any paired differences in methylation were not 

attributable to varying genotypes. Failure to validate or replicate findings was a limitation of all of 

the epigenetic studies. Researchers took steps to address spurious DNA methylation findings by 
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validating methylation levels with more precise techniques, such as pyrosequencing,[61, 97] or 

by correlating methylation with gene expression levels.[96]  

 

Main findings 

In four of the five articles reviewed, a significant association was established between global or 

gene-specific hypermethylation and increases in various measures of obesity.[61, 96-98] The last 

study, conducted by Gomes et al., found no significant correlation between global methylation and 

BMI (p-value=0.12) or depression (p-value=0.83).[99] Contrary to non-significant findings of 

Zhang et al.,[98] Na and colleagues found a statistically significant association between IL6 

promoter hypermethylation and obesity in a cross-sectional study of 284 Korean women.[97] Zhao 

et al. showed that hypermethylation of promoter CpGs within the serotonin transporter gene 

(SLC6A) was associated with increased BMI, body weight and waist circumference, but not WHR, 

a point that the authors suggest is understandable, given consistent prior research that indicates 

WHR is a poor measure of abdominal adiposity.[61] Additionally, unadjusted cross-sectional 

analyses revealed a significant relationship between serotonin receptor 2A (HTR2A) mean 

methylation and waist circumference, but not with BMI, body weight, fat mass, or depression, as 

measured by the Beck Depression Inventory Score.[96] 

In longitudinal analyses, one study found that following a weight loss intervention program, 

hypermethylation of 6 CpGs in HTR2A was associated with a weaker reduction in fat mass 

(including 5 CpGs with BMI (p-value <0.05)), as well as an attenuated decrease in depressive 

symptoms (mean-HTR2A (p-value=0.003); HTR2A:cg24118521 (p-value=0.023)).[96] This 

would suggest that the reduced expression of HTR2A (by nature of methylation blocking 

transcription) is contributing to persistent levels of obesity and depression. The authors were 

unable to validate their findings, observing no association between methylation and expression 

levels, citing reasons that will be expanded on in the discussion section of this review.[96]  

 

Limitations 

Use of the cross-sectional study design makes it impossible to determine if methylation levels are 

a cause or result of obesity/increased BMI. This is a concern that Na et al. acknowledged, along 

with the speculative nature of what the true causal direction may be. As adipose tissue has known 

endocrine properties,[103] it is difficult to say with any certainty whether the methylation patterns 

in cross-sectional obesity studies are a cause or consequence of obesity status. Another study 

presented in this review, conducted cross-sectional, as well as longitudinal analyses, but could not 

determine if methylation was a cause of high BMI, or if methylation levels allowed BMI to persist 

at high levels, as repeated measures of DNA methylation were not taken. 

Two of the epigenetic studies focused solely on non-Hispanic White individuals due to availability 

of samples.[61, 96] This echoes a similar pattern observed in the GxE literature search, and limits 

the generalizability of any findings to other racial/ethnic groups. The previous studies highlight a 

need for the field to include populations of different ancestries in order to examine the complex 
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interactions of psychosocial factors on DNAm and obesity in multiple populations. 

Additionally, studies with small sample sizes that conduct many tests are hindered by low power 

and limited in their ability to detect significant effects. 

Similar to genome-wide analyses, these epigenetic studies were susceptible to making false 

discoveries from multiple comparisons of independent hypotheses. However, the Benjamini and 

Hochberg method of correcting for multiple comparisons[104] was employed in array-based DNA 

methylation studies to account for this potential limitation.[96] Additionally, using global 

measures instead of site-specific methylation[99] eliminated many potential tests. Likewise, 

employing a targeted approach by interrogating CpGs in specific genes based on a priori 

knowledge[61, 96-98] diminished multiple testing concerns. Nevertheless, the possibility of 

reporting false positives should be taken into account. 

 

2.4 Discussion 

Primary results 

The overall goal of this study was to determine if psychosocial factors interact with genetic risk to 

play a role in obesity or weight gain, and in doing so, help bridge the gap in information regarding 

health disparities still observed today. Our systematic search of electronic articles yielded very few 

studies that examined interactive effects or epigenetic effects on obesity measures, with only nine 

studies identified in total that met all eligibility criteria. Among GxE findings, we found multiple 

examples that indicated a positive interactive effect of psychosocial factors with genetic factors 

leading to an increase in measures of hip circumference,[92] waist circumference,[93, 94] and 

BMI.[91, 93] Among methylations studies we found mixed results, where global methylation was 

not associated with BMI or depression,[99] while site-specific tests found that hypermethylation 

of sites within HTR2A, SLC6A, and IL6 was associated with various measures of obesity.[61, 96, 

97] 

To our knowledge, this is first systematic review to examine the interaction of psychosocial factors 

and genetic risk for obesity that also examines the role of epigenetic regulation. The epigenetic 

search revealed little in the way of an ideal study that encompassed the sequential pathway from 

environment to methylation change to negative health outcome. Rather, each study either assessed 

the impact of DNA methylation on obesity and psychosocial factors (namely, depression) as 

separate outcomes,[96, 99] or focused on genes associated with stress-response mechanisms, 

without directly evaluating measures of psychosocial stress.[61, 97, 98] 

The limitation in the number of studies available for review was anticipated as GxE and epigenetic 

studies are relatively new fields of research. Furthermore, given that that epigenetic remodeling 

occurs primarily in utero,[105] and is perhaps most fluid during embryogenesis,[106] it is not 

surprising that there are so few DNA methylation studies examining adults, and then specifically, 

adulthood obesity. Still, MZ twin studies have shown that independent of inherited genomic 

sequences, DNA methylation patterns can become altered throughout adulthood,[59] and thus, 

these studies make good candidates for elucidating the effect of the environment on adverse health 

outcomes.  
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As mentioned previously, the desire to discover the “missing heritability” of complex genetic 

diseases, obesity included, has led to the expansion of gene-environment interaction studies, and 

especially epigenetic studies. However, it should be noted that epigenetics in particular is likely a 

better mechanism for determining missing causality of complex disease, than missing 

heritability.[107] As Slatkin et al. demonstrates, epigenetic marks (e.g. DNA methylation) would 

have to persist for many generations in order to explain missing heritability that is not uncovered 

from candidate gene or GWAS,[107] and at this time, that information is not available.  

The current review has shown that there are many difficulties that come with trying to elucidate 

GxE and epigenetic effects not directly inherited from genetics alone. These challenges include 

poor study design, measurement discrepancies, and limited available data. We found that the 

potential for false discoveries in GxE and epigenetic studies was a substantial concern of multiple 

investigators. As mentioned previously, no one single polymorphism can explain a large 

proportion of observed BMI variance.[35] A method that can address both multiple testing 

concerns and the need for polygenic risk assessment, is the use of genetic risk scores, which are 

gaining prominence in the field of genetic epidemiology,[108, 109] including studies of 

obesity.[38, 39]  

Future studies should employ study design and analytical methods that mitigate the possibility of 

false positives from conducting many statistical tests. An ideal example of both these techniques 

can be found in the work of Needham et al. who conducted a study on SES trajectories from 

childhood to adulthood and DNA methylation in a multi-ethnic cohort.[110] The study used a 

targeted approach by selecting CpGs within specific stress-response and inflammatory pathways. 

Analytically, the investigators assessed methylation at the gene level, with specific CpG sites 

acting as “repeated measures” in a multi-level model, which also allowed for intra-gene correlation 

of DNA methylation to be taken into account.[110] 

Studies that are conducted with repeated measures (i.e. longitudinally) to assess temporality as 

well as the mediatory role of DNA methylation from psychosocial factor to obesity would be ideal. 

Cao-Lei et al. conducted one such study, but it was not included in the final set of relevant articles, 

having been excluded for not being in the population of interest (i.e. adults).[111] Evaluating the 

mediating effect of DNA methylation from prenatal maternal stress to obesity in offspring at age 

13.5 years, the researchers identified CpGs using a targeted approach for genes that were in 

pathways associated with Type 1 and Type 2 diabetes mellitus. The study discovered a slightly 

protective effect of DNA methylation, meaning it limited the role of objective stress on adverse 

metabolic outcomes. Future research should employ similar methods to those employed by Cao-

Lei et al.,[111] so that DNA methylation can be assessed as a mediator between an environmental 

stimulus and negative health outcome. 

The growing interest in epigenetic regulation is supported by the fact that non-genetic exposures 

such as diet, smoking and environmental toxins are directly associated with altering DNA 

methylation levels.[49-51] Increased DNA methylation leads to differential expression of genetic 

material by blocking transcription[52]; inhibiting transcription prevents a gene from being 

expressed or “turned on.” Additionally, methylation is a recurring process that is believed to be 

dynamic throughout the life course, with evidence showing that methylation is indeed 

reversible[53, 54]. 
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Non-representative sample populations 

The benefit of limiting a study to a genetically homogenous population is ensuring that any 

discoveries are truly due to causal polymorphisms and thereby not related to an artifact of genetic 

ancestry.[112] This is especially true for smaller studies utilizing a candidate gene approach that 

do not have the benefit of genome-wide data to adjust for ancestral principal components. However, 

we know that the effects of stressors are experienced and responded to differently among 

racial/ethnic subgroups and can lead to differing health outcomes.[113] Additionally, obesity 

genetic risk variants differ by racial/ethnic subgroups[36]. Therefore, future researchers would do 

well to expand their study populations to non-whites in order t address all potential social and 

biological mechanisms by which the “Gene by psychosocial interactions” contribute to obesity. 

    

A comment on twin studies 

It should be noted that the concept of an environmental impact on genetic predisposition for disease 

is not by any means novel. Two canonical divisions of epidemiology, genetic and social, are often 

pitted against each as a representation of the age-old debate of whether poor health outcomes are 

derived from biological inheritance or adaptations in response to one’s environment (i.e. nature vs. 

nurture). What is ultimately lacking in the current literature are studies that integrate genetic and 

environmental factors together to explain a joint effect on negative health outcomes (e.g. obesity). 

Attempts at addressing the nature vs. nurture debate are exemplified in twin studies. While no twin 

studies made it into the final set of relevant studies, it should be noted that prior research has 

attempted to assess the impact of environmental factors while also considering the role that 

genetics plays in the etiology of obesity.  

As early as 1986, Stunkard et al. conducted a twin study in order to produce heritability estimates 

of obesity that could be attributed to genetics and the environment.[75] The study found that 80% 

of heritability, as determined by concordance rates among monozygotic (MZ) and dizygotic (DZ) 

twins respectively, was accounted for by genetics. The variable discordance rate in MZ twins was 

then assumed to represent environmental (non-genetic) factors contributing to obesity. Although, 

the authors recognized that a potential bias in heritability estimates exists due to non-additive 

variance, GxE interactions, and unequal shared-environments among MZ and DZ twins. [75] 

Many twin studies have sought to eliminate the effect that genes play by selecting only MZ twins. 

One particular twin study that was retrieved from our initial search showed the effect of 

psychosocial factors in identical twins discordant for obesity, with obese co-twins having 

significantly higher levels of two measures of psychological distress.[114] This study was 

excluded however, because while genetics was taken into account, the monozygotic twin design 

is effectively eliminates the genetic component in order to isolate the psychosocial component.  

In addition to the limitations presented thus far, the current systematic review acknowledges the 

potential threats to validity, including publication bias, article selection bias, and the use of studies 

with unrepresentative sample populations.[115] To our knowledge, the current systematic review 

is in accordance with PRISMA guidelines for reporting scientific studies.[116]  
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We have attempted to summarize the body of work that has been conducted with respect to the 

effect of psychosocial factors on obesity, in a way that integrates genetic predisposition or 

epigenetic regulation. We observed that there are few studies that address the joint effect of genetic 

and psychosocial contributors to obesity. There were multiple examples where each factor was 

examined separately, or by studies in monozygotic twin studies that attempt to isolate one effect 

over another. Also, there are only a few examples of GxE interaction studies or epigenetic studies 

that show clear temporal ordering from an environmental stimulus to mediating effect on DNA 

methylation to adverse health outcome. Further, we observed that genome-wide epigenetic and 

GxE studies are limited due to design complications, or lack of power driven by inadequate sample 

sizes and multiple testing issues.  

GxE interaction and epigenetic studies also have practical applications for points of intervention. 

The findings lend themselves as diagnostic tools for individuals at higher risk for metabolic 

conditions. Gene-environment interaction studies are ideal for assessing a point of intervention for 

obesity reduction, as blocking the environmental trigger of the genetic association (i.e. stress 

reduction) can still prevent disease, despite a polymorphism lacking functional or biological 

relevance. Similarly if DNA methylation is being altered by the environment, then the environment 

can be intervened on to prevent disease when we would otherwise consider the heritable risk factor 

to be something that was unchangeable.  

Ideally, researchers going forward will conduct longitudinal studies using well-defined 

population-based cohorts, and employ statistical methods that limit the total number of tests 

performed. As more data become available, replication studies can help confirm already 

established associations, and expand into previously unavailable populations. Finally, validation 

of findings by multiple technologies for genetic and epigenetic studies will ensure that results can 

be interpreted directly and not in a speculative manner. The discovery of new pathways that can 

increase the risk for obesity allows for the implementation of new techniques for treatment and 

intervention. A key benefit of establishing gene-environment interactions and epigenetic 

mechanisms is that it allows for the intervention on a modifiable risk factor, e.g. psychosocial 

stress, to eliminate the effect of an unchangeable genomic sequence. As obesity remains a 

pervasive issue in the United States, researchers must examine multiple mechanisms by which 

interventions can be put into place to reduce the overall public health burden of the disease. 
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2.5 Tables and Figures 

Figure 1. Flowchart of electronic search strategy along with steps included for article exclusion 

criteria. 

 

Articles that fell into multiple exclusion categories were prioritized in the following order: wrong 

study outcome, wrong study population, wrong study type, or wrong environmental exposure. 

Thus, no article has been counted twice in the flowchart. 

* Examples of “wrong environmental exposure” include dietary measures or behavioral factors 

such as physical activity, and smoking. 
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Table 1: Significant results from gene-psychosocial factor interactions with various measures of obesity. 

Author/Year 

No. of 

Subjects 

Study 

pop. 

Psychosocial 

factor 

Obesity 

measure SNP CHR Gene Effect estimate 

GxE 

P-value Replicated 

Singh, 2014 2,460 White 
Men and 
Women 

Chronic 
burden of 
stress 

Hip Circ. a  
 

rs4704963 
rs17056278 
rs17056298 
rs10077799 
rs17056318 

5 
5 
5 
5 
5 

EBF1 
EBF1 
EBF1 
EBF1 
EBF1 

B = 2.98 
Not Reported 
Not Reported 
Not Reported 
Not Reported 
 

7.14E-09 
7.14E-09 
1.30E-08 
1.71E-08 
2.33E-08 

N/A 
Yes 
Yes 
N/A 

 
Yes 

Kring, 2010 341 White 
Women 

Chronically 
stressed 
caregivers 

Waist 
Circ. 

rs439401 19 
 

APOE 
 

F = 3.10  
(additive model) 

0.047 Yes 

        F = 5.00  
(dominant model) 
 

0.03 Yes 

Kring, 2011 1,184 White 
Men 

Cumulative 
stress score 

Waist 
Circ. 

rs439401 19 APOE OR = 1.09c  
95%CI = (1.02-1.17) 
 

0.01c N/A 
 

    BMI    OR = 1.09c 

95%CI = (1.01-1.17 
 

0.02c N/A 
 

Marmorstein, 

2010 

903 Men 
 

Receipt of 
public 
assistance  

BMI Short allele X MAOA B = 0.42 (SE=0.14) <0.01b N/A 
 

a Primary results for BMI and waist circumference GxE interactions reached the p-value <0.005 for all 5 SNPs, but not genome-wide 

significance (p<5.0E-08). 
b Result was only significant in a 3-way interaction with Age. The 2-way interaction with the psychosocial and genetic factor did not 

reach statistical significance. 
c This is not the GxE interaction odds ratio and p-value, but the significant stratified result within stressed individuals. The odds ratio 

represents the odds of being homozygous for the minor allele in APOE:rs439401, given high levels of waist circumference/BMI and 

chronic stress. 
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 Supplementary Table S1. Detailed search terms for GxE and Epigenetic electronic articles 

 Search terms for electronic retrieval of articles are presented here.  

 

 

Gene by environments 

interaction studies 

(GxE) 

(N=111 results) 

 

PubMed search: 

("gene-environment interaction"[All Fields] OR "gene-

stress"[All Fields] OR "genetic interaction"[All Fields] OR 

"gene variants"[All Fields]) AND ("SES"[All Fields] OR 

"race"[All Fields] OR "education"[All Fields] OR 

"income"[All Fields] OR "depression"[All Fields] OR 

"discrimination"[All Fields] OR "hassle"[All Fields] OR 

"stress"[All Fields]) AND ("obesity/genetics"[All Fields] OR 

"obesity"[All Fields] OR "obese"[All Fields] OR 

"obesity/epidemiology"[All Fields] OR "body mass 

index"[All Fields] OR "waist hip ratio"[All Fields] OR "waist 

circumference"[All Fields] OR "body fat"[All Fields] OR 

"adiposity"[All Fields] OR "BMI"[All Fields] OR 

"WHR"[All Fields]) AND (("2007/01/01"[PDAT] : 

"2016/06/01"[PDAT]) AND "humans"[MeSH Terms] AND 

English[lang]) 

Google Scholar: 

gene-stress interaction bmi obese obesity 

Epigenetic studies 

(N=106 results) 

PubMed search: 

("stressor"[All Fields] OR "HPA"[All Fields] OR "stress 

response"[All Fields] OR "serotonin"[All Fields] OR 

"stress"[All Fields] OR "psychosocial"[All Fields] OR 

"depression"[All Fields] OR "hassle"[All Fields] OR 

"discrimination"[All Fields]) AND ("epigenetic"[All Fields] 

OR "methylation"[All Fields]) AND ("obesity/genetics"[All 

Fields] OR "obesity"[All Fields] OR 

"obesity/epidemiology"[All Fields] OR "body mass 

index"[All Fields] OR "waist hip ratio"[All Fields] OR "waist 

circumference"[All Fields]) AND (("2007/01/01"[PDAT] : 

"2016/06/01"[PDAT]) AND "humans"[MeSH Terms] AND 

English[lang]) 
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Chapter 3 

Genetic modification of the effect of self-reported psychosocial factors on 

obesity 

 

3.1 Introduction 

Obesity continues to be a public health concern, with the prevalence in the US remaining at an all-

time high (35.5% among adult men and 35.8% among adult women).[3] There are significant 

disparities in obesity, with racial/ethnic minorities more likely to be obese compared to no-

Hispanic White individuals. Higher age-adjusted prevalences are observed among non-Hispanic 

black women (58.5%) and Hispanic populations (39.1%), compared to non-Hispanic white men 

and women (34.3%).[3] Obesity is a concern as it is a risk factor for various chronic conditions, 

such as cardiovascular disease, as well as an independent predictor of overall mortality.[5] The 

current situation with regard to obesity shows that there is a sustained need for discovering all 

possible causes contributing to the onset or persistence of the condition.   

Over the past 30 years, many genetic epidemiologic studies, including candidate gene studies, 

genome linkage, fine mapping, and genome-wide association studies (GWAS) have identified 

numerous single nucleotide polymorphisms (SNPs) associated with BMI. GWAS findings have 

been encouraging, yet limited in identifying very strong predictors of obesity. For example, 

variation in the strongest genetic predictor, fat mass and obesity gene (FTO), confers at best an 

increase in BMI of 0.39 for each copy of the risk allele (explaining only 0.34% of total genetic 

variance).[35] Additionally, replication of FTO has yielded mixed results in various racial and 

ethnic populations, with some showing weak or no association,[117] and others showing definitive 

associations in populations of Chinese[118] or African origin.[119]  

Weak genetic findings highlight the limited ability of individual loci to predict common outcomes. 

In order to synthesize genetic discoveries in a way that incorporates a broader polygenic 

contribution to obesity, Belsky and colleagues developed a method for examining total genetic risk 

using an obesity genetic risk score (oGRS) with promising results.[38] Polygenic risk scores allow 

for the incorporation of the most recently discovered SNPs available for research. The most recent 

meta-analysis for obesity risk genes was conducted in 2014 by Locke et al., which identified 97 

genetic predictors of high BMI (56 novel loci), from studies that included 339,224 individuals.[36] 

These new methods for assessing total genetic risk are timely and warranted and can provide added 

insight for obesity risk to supplement the non-genetic risk factors that have predominantly led 

obesity research.  

Although much of the literature on non-genetic determinants of obesity has focused on health 

behaviors (e.g. altered diet or physical activity), there is a greater recognition of the potential role 

of psychosocial factors in the etiology of the condition. Two of the largest nationally representative, 

population-based longitudinal studies from the Coronary Artery Risk Development in Young 

Adults (CARDIA) cohort and the Midlife in the United States (MIDUS) study have previously 
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examined how social and psychosocial factors, can lead to weight gain and increase the likelihood 

of obesity.[20, 21] These studies found that psychosocial factors, such as difficulty paying bills 

and job-related demands, increased the likelihood of obesity.[20] An additional psychosocial 

factor, depression,[69, 70] has also been strongly implicated in weight and obesity.  

Current arguments emphasize that a key mechanism by which stress may lead to obesity is through 

altering behavioral patterns related to diet or total caloric intake.[28] Alternative biological 

pathways have been explored in animal models where chronic exposure to stressors led to excess 

levels of glucocorticoids in the blood, which can influence fat storage.[74] Though similar 

mechanisms have not been tested thoroughly in humans, biological plausibility exists for the role 

of psychosocial factors on obesity onset, not directly attributed to behavioral patterns. Given the 

multifactorial nature of obesity, new mechanisms warrant exploration. As biological pathways are 

interconnected with genetic factors, a unique model system that can link psychosocial factors with 

obesity is the gene-environment interaction.  

Gene by environment interaction studies (GxE) suggest that a genetic predisposition for obesity 

works synergistically or antagonistically with non-genetic factors to modify the risk of obesity. 

GxE studies have the potential to build on weak findings in previous studies looking at genetics or 

psychosocial factors alone, by revealing cases that occur only in the presence of both exposures 

simultaneously. While the current literature primarily focuses on the interactions of dietary factors 

or socioeconomic status,[40] there are several examples of how psychosocial stress/stressors 

interact with genetic risk variants (e.g. APOE[120], MAOA[120], and EBF1[120]) to increase the 

likelihood of obesity or weight gain. GxE findings thus far have been either weak, or restricted to 

homogenous populations of European ancestry because of sample availability or to avoid 

confounding by population stratification. Concerns regarding population stratification can be 

mitigated by the use of oGRS scores, which are effective in multi-ethnic populations[120] and can 

maximize sample size to detect main effects of psychosocial factors.  

The overall goal of the current study was to examine whether psychosocial factors and an obesity 

genetic risk score act independently or synergistically to affect the risk of obesity. The specific 

research questions were: 1) is there an independent association between psychosocial factors and 

genetic factors in relation to incident obesity, 2) is the association between psychosocial factors 

and obesity modified by genetic factors, and 3) do any significant associations vary by 

race/ethnicity. We hypothesized that individuals with higher levels of baseline psychosocial 

factors will have a higher risk of obesity over the study follow-up period. Additionally, 

associations between psychosocial factors and obesity will be modified by an obesity genetic risk 

score, such that associations will be the strongest among those with high genetic risk and high 

psychosocial stress/depression.  
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3.2 Methods 

 

Subjects 

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study of 6,814 

individuals recruited between July 2000 and August 2002 at six field centers around the United 

States: Columbia University, New York; Johns Hopkins University, Baltimore; Northwestern 

University, Chicago; UCLA, Los Angeles; University of Minnesota, Twin Cities; Wake Forest 

University, Winston Salem.[121] Participants were from diverse racial and ethnic backgrounds 

(non-Hispanic White, African-American, Hispanic, Asian-American) and free from clinical CVD 

at baseline.[121] Data collection included study questionnaire and clinical measurements taken at 

baseline and four follow-up exams (approximately every two years through January 2012). 

Detailed methods and recruitment procedures have been described elsewhere.[122]  

Of all MESA participants recruited at baseline, 6,429 consented to providing DNA samples for 

genotyping. A total of 68 subjects were excluded for poor genotyping quality (call rate <95%). 

Subjects were then removed for missing data on psychosocial factors (total N=100; CSS(N=27), 

EHS(N=37), CES-D(N=5), missing two exposures (N=6), missing all three exposures (N=25)). 

No participants were missing outcome data, but an additional 469 were removed due to missing 

information on one or more of the key study covariates. Implementing these exclusion criteria 

yielded a final analytic sample of 5,792. Institutional Review Board (IRB) approval was obtained 

at each study site, with written informed consent given by all MESA study participants.  

 

Outcome assessment 

The primary outcome was obesity. Anthropometric measures such as height and weight 
were taken at each clinical examination and BMI was calculated as weight/height (kg/m2). Obesity 

was defined as having a BMI greater than or equal to 30 kg/m2. Prevalent cases of obesity at 

baseline were not excluded in primary analyses, but accounted for by analytical procedures 

described below.  

 

Psychosocial factors 

Three psychosocial variables were assessed via study questionnaire at baseline: chronic 

psychological stress (the chronic burden scale developed for the Healthy Women Study);[123] 

everyday hassles, developed from perceptions of discrimination and unfair treatment;[124, 125] 

and depression.[126] 

The chronic burden of stress scale (CSS) was measured as the sum of the number of times a subject 

answered yes to the following ongoing stressful problems for the past six months (own health, 

close person health, job, financial, or relationship). [86] Participants were given an option to 
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classify the level of stress for each domain on a scale from 1-3; 1 being “not very stressful,” 3 

being “very stressful.” A chronic burden score was analyzed by summing the number of domains 

in which moderate-to-very stressful was identified. Possible scores of CSS ranged from 0 to 5 and 

were analyzed categorically as high or low chronic stress (2+ vs. <2; referent), based on previous 

methods.[127] 

The Everyday Hassles Scale (EHS) is a validated nine-item scale that measures day-to-day 

incidents of unfair treatment, based on the frequency of encounters in which someone perceived 

that he/she was treated unfairly.[128] Examples of perceived unfairness included being called 

names, implied to be a liar or unintelligent, etc. Each item ranged from 1-6 (1=never to 6=almost 

every day), with the final score calculated as a sum of all nine items. A higher score on the scale 

represented a higher frequency of hassles each day and, therefore, more stressors. The scale was 

examined based on previous literature as a dichotomous variable: high discrimination (19+) versus 

moderate to no discrimination (<19; referent).[87] Internal reliability/consistency estimates for the 

EHS measure were good in the final set of complete cases used in all analyses (Cronbach’s alpha= 

0.88, 95% CI (0.87, 0.89)).  

We additionally assessed the possibility of there being an increased effect of having high 

psychosocial stress in both chronic burden and everyday hassles that might not have been captured 

by assessing each variable individually. This new composite variable was called “high stress-both” 

(or HS-both) and was examined as a dichotomous variable.   

Depression was analyzed as a dichotomous variable (Yes/No) based on depressive symptoms 

measured using the Center for Epidemiological Studies-Depression (CES-D) inventory,[129] 

which ranged in MESA from 0 to 53. An affirmative for depression entails scoring at least 16 on 

the CES-D scale, based on previous methods.[130] The CES-D has been a reliable measure for 

depression in multiple ethnic groups, including European-Americans, African-Americans, 

Mexican-Americans, and Chinese populations.[129, 131, 132] This measure has also been 

previously associated with waist circumference in the MESA population.[133] Internal 

reliability/consistency estimates for the CES-D were reasonable, but not ideal, based on certain 

accepted standards[134] (Cronbach’s alpha=0.68, 95% CI (0.67,0.70)).  

 

Genotyping and imputation QC  

All MESA participants were genotyped using the Affymetrix Human SNP array 6.0 (Affymetrix 

Inc., Santa Clara, CA), which provided information on more than 900,000 informative SNPs. 

Additional genotypes were imputed to the 1000 genomes Phase I integrated variant set for all 

ancestries by each ethnic group in MESA separately.[135] Imputation was performed using 

IMPUTE v2.2.2.[136] Multiple quality control measures were employed to ensure SNP and 

sample quality, as described previously.[137] Briefly, prior to imputation, SNP exclusion criteria 

included the removal of monomorphic SNPs, heterozygosity greater than 53%, or a missing rate 

greater than 5% across all samples. Samples with call rates less than 95%, duplicate samples and 

sex mismatches were also removed. Analyses were only performed on the combination of 

genotyped and imputed SNPs together. Genetic risk scores are less sensitive to SNPs with low 

minor allele frequency (MAF), and the more SNPs that are included in the risk score, the more 
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likely the score will approach a normal distribution.[38] Thus, no SNPs were filtered out due to 

low MAF. All SNPs had an imputation quality score greater than 0.3.  

As there is uncertainty in the exact call of imputed genotypes, a “dosage” level was calculated 

when necessary. Imputed SNPs are given a dosage score based on the probability of having a 

certain number of copies at each variant, as opposed to an outright number of 0, 1 or 2 alleles and 

these analytical methods have proven effective when accounting for the uncertainty of imputed 

genetic data.[138] For example, if an individual is given a 0.30 probability of having one copy and 

0.70 probability of having two copies of the risk allele at an imputed SNP, rather than defer to the 

allele count that has a higher probability, we calculated a total risk dosage of the variant by 

summing up the weighted allele-specific probabilities (i.e 0.30*1 + 0.70 *2).  

 

Obesity genetic risk score 

Of the 97 BMI-associated SNPs that were established from prior GWAS and a comprehensive 

meta-analysis conducted by Locke et al.,[36] we selected a total of 93 available QC’d SNPs to 

calculate a weighted obesity genetic risk score (oGRS) for all study participants, based on 

established validated methods developed by Belsky and colleagues.[38] The oGRS is a weighted 

measure that derives weights from high BMI susceptibility loci beta values determined from the 

largest and most recent meta-analysis on obesity genes to date.[36] At each locus, the number of 

risk alleles is multiplied by the weights for said variant. The final score was calculated by summing 

weighted values across all 93 loci. A higher weighted score translates to greater genetic 

susceptibility. The current study used weights derived from the Locke et al. meta-analysis 

conducted for “all ancestries,” which encompassed people who self-identified as European-

American, African-American, or Chinese-American. The weights from all ancestries created the 

score used for the main oGRS variable and will be hereafter referred to as the oGRS-meta. 

The benefit of using this weighted risk score instead of individual variants is that the oGRS can be 

used for trans-ethnic replication, even if the risk variants were established in populations of 

European ancestry.[39] Testing a three-way interaction between each psychosocial factor by 

continuous oGRS-meta by race revealed no significant interaction, and thus race-stratified 

analyses were not considered as part of the main findings (supplemental table S1). However, due 

to lingering concerns of heterogeneity for oGRS-meta and obesity within racial/ethnic sub-

populations, race-stratified supplementary analyses were performed using racial/ethnic specific 

risk scores for subgroups of MESA’s European-Americans, Chinese-Americans and African-

Americans, employed in multi-ethnic populations by Domingue and colleagues.[39] These sub-

scores were comprised of the 93 European-by-descent derived SNPs for MESA’s non-Hispanic 

White participants (oGRS-EU), 75 SNPs for Asian-American participants (oGRS-CHN), and 72 

SNPs for African-American participants (oGRS-AFA), based on directional consistency with 

European-only analyses conducted by Locke et al.[36] The weights used for sub-scores are based 

on beta estimates from populations of European, African, and Chinese ancestry respectively.[36] 

(see supplementary table S2 for list of genetic predictors and weights that comprise each subset of 

oGRS). All oGRS scores were made into a dichotomous variable by a median split for ease of 

interpretation using hazard ratios. 
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It should be noted that each racial/ethnic specific sub-score was weighted by the beta values 

derived by Locke et al. in racial/ethnic subpopulations separately. Therefore, the weights applied 

to each supplementary oGRS do not match the oGRS-meta weights and cannot be compared across 

groups. To our knowledge, there is no consensus in the current literature regarding an obesity 

genetic risk score that is specific to Hispanic adults, and therefore, no Hispanic-specific risk score 

was evaluated in the current study. However, in race-stratified analyses the oGRS-meta was used 

in the Hispanic-American sub-population.    

 

Additional study covariates: 

Initial models (Model 1) accounted for a “basic” set of individual-level socio-demographic 

confounders, including age, sex, and self-reported race/ethnicity. Model 2 additionally adjusted 

for the covariates of smoking status (ever vs. never smoked), education level (see table 1 for 

details), and per capita adjusted household income per $10,000 or (continuous income/# people 

supported)/10,000); hereafter this will be referred to as the “fully adjusted” set of covariates. Both 

Models 1 and 2 accounted for population stratification in order to determine direct genetic 

contributions from obesity genes, independent of variation due to genetic origin. This was done 

using three principal components that explained at least 95% of total observed genetic variation in 

the population and was calculated from methods described previously.[139, 140] Briefly, principal 

components in MESA were derived from genotyped SNPs after pruning SNPs in linkage 

disequilibrium based on an R2>0.2. The initial set of SNPs was determined within self-reported 

Hispanic-Americans and further refined in the remaining ethnic groups from African-Americans, 

to European-Americans, to Chinese-Americans, yielding a final set of 76,804 SNPs for PC analysis.  

Additionally, physical activity was controlled for in the fully adjusted models as it has a direct 

impact on energy expenditure and is a known correlate of stress.[141] Physical activity was 

measured as the number of active minutes in a typical week using a detailed questionnaire adapted 

from the Cross-Cultural Activity Participation Study and validated for a multiethnic cohort.[142] 

The influence on weight gain caused by energy intake is directly caused by one’s nutritional diet. 

Prior research has indicated a potential interactive effect between genes and diet on BMI.[143] 

However, a recent study of 68,317 individuals of European ancestry showed no evidence of an 

interaction between diet score and obesity genetic risk score on BMI, although it did show a 

nominally significant effect with waist-hip ratio.[144] Given the potential relationship between 

stress and eating patterns, fully adjusted models also accounted for caloric intake, measured in 

kcal/day. 

 

Statistical analysis 

In descriptive analyses we examined the univariate distribution of all study variables and bivariate 

associations between the study outcome and all study covariates (Table 1). We also calculated the 

effect of oGRS on BMI at baseline, adjusting for principal components, for all subjects and 

subsequently stratified by race to determine if the oGRS was performing as expected. This was 
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assessed continuously and by oGRS quartiles to show the dose-response effect on BMI levels by 

increasing genetic risk categories.  

The prevalence of obesity in the overall MESA cohort was 31.8% at baseline, with 517 incident 

cases (11.9% cumulative incidence) by the end of exam 5. The overall rate of incident obesity in 

MESA by exam 5 was 17/1000 person-years (Table 2). The potential for the relatively low 

incidence of obesity to inhibit statistical power led us to conduct our main analysis using both 

prevalent and incident cases. We employed parametric, interval censored survival analysis to test 

main hypotheses, modeling associations between psychosocial factors, genetic risk scores, and 

their interactive effect on obesity. We used age as the time scale in order to incorporate prevalent 

obesity cases at baseline. This method, detailed previously,[145, 146] accounts for the subjects’ 

varying age-based entry points into the study and allowed us to maximize the amount of 

information our data can provide on the relationship between our exposures of interest and obesity.  

Prevalent cases were treated as left censored with baseline age as the upper interval boundary, and 

incident cases were censored within the interval defined by age at last obesity-free exam point to 

age at obesity onset. All remaining participants free of obesity or lost to follow-up were considered 

right censored at the final exam in which they participated. Analysis was conducted using a 

Weibull distribution for the hazard based on graphical evidence (plotting the log(-log(Survival)) 

and model fit (AIC values).[147] The log(-log(survival)) plots showed no clear violation in the 

proportional hazards assumption for binary oGRS-meta or any psychosocial factor variable. This 

indicated that the Weibull model was, in fact, appropriate.    

Psychosocial factors (CSS, EHS, HS-both, and Depression) were the “environment” exposures of 

interest, and gene-environment interaction (GxE) was assessed with obesity on both the 

multiplicative and additive scales. Each model included main effects for both genetic and 

psychosocial factors, along with a cross product term for oGRS and psychosocial factor to 

determine interaction on a multiplicative scale. Multiplicative interactions were assessed using 

likelihood ratio tests, with Wald statistic p-values <0.05 considered statistically significant, after 

correcting for multiple comparisons, using a non-conservative false discovery rate.[104] Multiple 

testing was performed for main effect and interaction p-values for models 1 and 2 across all 

exposure variables in primary analyses (N=24 tests). In supplementary analyses stratified by 

race/ethnicity, results were corrected for a total of 60 tests. 

We used hazard ratios to calculate the Relative Excess Risk due to Interaction (RERI), as described 

by Knol, et al,[148] which determined if there was an interactive effect on the additive scale. 

Confidence intervals for the RERI were obtained from the 2.5% and 97.5% quantiles of 2000 

bootstrapped samples. The current study had power to detect an interactive effect of 1.8 or greater, 

assuming certain dependencies of main genetic and environmental effects, based on methods 

detailed by VanderWeele et al.[149] These dependencies included a dichotomous designation for 

oGRS, an assumed marginal prevalence of 25% for both E and G exposures, and main effect sizes 

of 1.5. All regression models were conducted in R using the Survival package.[150] Effect 

estimates were reported as hazard ratios, with confidence intervals calculated by the delta 

method[151] using the SurvRegCensCov package.[152]  
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3.3 Results 

 

Descriptive statistics 

Demographic information on all MESA subjects can be found in Table 1. There was a total of 

5,792 subjects available for analyses, with roughly 30% already obese at the initiation of the study. 

Of the 4,003 non-obese subjects at baseline, 486 (12%) went on to become obese at some point, 

with the total cohort contributing 28,380 person-years of follow-up. Obese cases contributed, on 

average, 4.03 person-years of follow-up time (range=1-11), with non-obese subjects contributing 

roughly 7.47 person-years (range=0-11). An unadjusted incidence rate of 16 obesity cases per 1000 

person-years was observed in the current study.  

The overall MESA population was comprised of older adults at baseline (mean=62.0, sd=10.2), 

with non-obese subjects slightly older than prevalently obese subjects (62.6 vs 61.0; p-value 

<0.001). The cohort was a majority female (52.0%) and the breakdown by self-reported 

racial/ethnic categories showed that most participants identified as non-Hispanic White (40.4%), 

with 13.2% Chinese-American, 23.1% African-American, and 23.2% Hispanic-American. 

Race/ethnicity was significantly associated with prevalent obesity (p-value <0.001) and incident 

obesity (p-value <0.001). The cohort was relatively well educated, with roughly 92% of the 

population having received at least a high school diploma and 18.7% having received post-college 

training. Education showed a significant trend with prevalent and incident obesity, with higher 

education associated with a lower likelihood of obesity.   

The weighted obesity genetic risk score was normally distributed in the population (mean=2.17, 

range=1.61-2.76). We assessed the unadjusted effects of oGRS-meta with prevalent obesity both 

continuously and in quartiles of genetic risk. Statistically higher cell counts were observed in non-

obese subjects with low risk and prevalently obese subjects with high risk (p-value <0.001). This 

trend was evident in incident cases as well (p-value=0.008).  

Each of the three psychosocial factors examined (CSS, EHS, Depression) was associated with 

prevalent and incident obesity in bivariate analyses. An apparent dose-response relationship by 

categories of increasing CSS was observed. Among prevalent cases of obesity, the frequencies of 

low, moderate, and high levels of chronic stress were 8.6%, 9.6% and 12.7%, respectively. This 

effect appeared to become attenuated among incident cases (low=3.8%, moderate=3.7%, 

high=4.2%). Every covariate shown in Table 1 was significantly associated with prevalent obesity 

at the alpha 0.05 level, in unadjusted bivariate analyses, except for smoking status. Other than 

income, sex, physical activity, and depression, all other covariates were also associated with 

incident obesity.  

We assessed the impact of the oGRS-meta with continuous BMI at baseline using simple linear 

regression, to ensure that the score was performing as expected. We found that oGRS-meta was 

significantly associated with BMI in the overall cohort (beta=0.56, 95%CI (0.43, 0.70)) and within 

non-Hispanic White, Chinese, and Hispanic racial/ethnic subsets, but not in African-Americans 

(supplementary table S3). This was done primarily to ensure that a risk score using meta-analysis 

weights from European, African, and Chinese ancestries could apply to the MESA population, 



 

 

35 

which included Hispanic subjects as well. These results also revealed that the highest quartile of 

genetic risk was significantly associated with increased BMI in MESA, regardless of race/ethnicity. 

The oGRS-meta performed better than the race/ethnicity specific sub-scores and weights for 

baseline BMI, indicating that oGRS-meta is perhaps a better measure for determining genetic risk 

for obesity in a multi-ethnic population.     

 

Survival analysis 

In Model 1, adjusting for basic covariates (age, sex, race/ethnicity, and principal components), 

there were statistically significant associations between each of the main exposures CSS/oGRS-

meta and obesity; oGRS-high vs. low (HR 1.23, 95%CI (1.10, 1.37); p-value=0.008), CSS-high 

vs. low (HR 1.42, 95%CI (1.25, 1.61); p-value=0.010) (Table 2, Model 1). No significant 

multiplicative or additive interaction was observed. Main effects were attenuated but remained 

statistically significant upon additional adjustment for smoking, education, income, exercise, and 

caloric intake. (Table 2, Model 2). The main effect for oGRS-high in fully adjusted models was a 

hazard ratio of 1.20, (95%CI (1.08,1.34); p-value=0.004), and for CSS-high, a HR of 1.18 (95%CI 

(1.04,1.35); p-value=0.026). Similar to Model 1, no interaction was detected on the multiplicative 

or additive scale in the fully adjusted model.  

No model comparisons for EHS, HS-both, or depression yielded a statistically significant 

association with obesity. This was true when adjusting for the basic or full set of covariates. The 

main effect for oGRS remained statistically significant for both adjustment sets, regardless of 

which psychosocial variable was included in the model (Model 1: p-value <0.05; Model 2: p-value 

<0.05). There was no evidence of interaction on either the multiplicative or additive scale. All 

models were subsequently examined comparing those in the highest quartile of genetic risk versus 

the lower three quartiles. While main effects for oGRS-meta were consistently stronger across 

each comparison and all models failed to show a significant interaction on either scale (data not 

shown).   

 

Supplementary analyses    

We tested the potential for heterogeneity of the main effects variables and obesity by sex or race. 

In tests for three-way interactions, we observed no statistically significant effect, and thus 

stratifying by these third variables was not necessary. However, as mentioned in the methods 

section, due to the nature of how oGRS SNPs are discovered in populations of certain ancestries 

and weighted according to those populations as well, we felt it necessary to supplement our main 

findings with race-stratified results. For each racial/ethnic subgroup in MESA, we analyzed the 

effects of each psychosocial variable and oGRS-meta, as well as the race/ethnicity weighted oGRS 

sub-scores defined in the methods section. Results were only presented for the fully adjusted 

models (Table 3).  

In African-American subjects, the main effects of oGRS-meta and oGRS-AFA were not significant 

in any model, regardless of which psychosocial factor was being compared. However, we observed 
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a significant negative interaction on the additive scale with oGRS-AFA and CSS (RERI= -0.27, 

95%CI (-0.55, -0.01). Also, we observed a sub-additive interaction for oGRS-meta and EHS 

(RERI= -0.31, 95%CI (-0.55, -0.06), but not with oGRS-AFA. This additive interaction persisted 

when looking at the composite measure of CSS/EHS and oGRS-meta (RERI= -0.42, 95%CI (-

0.75, -0.10). Evaluating depression and oGRS-AFA, we observed negative interactive effects 

additive scale (RERI= -0.58, 95%CI (-1.03, -0.22). 

Hispanic subjects did not have a Hispanic-specific oGRS sub-score to evaluate, so we elected to 

use the oGRS-meta instead. There appeared to be a significant interaction with EHS on the 

multiplicative scale (HR=1.76, 95 % CI (1.12, 2.78)). However, after correcting for multiple 

comparisons, the multiplicative effect was no longer significant at the 0.05 level (adjusted p-

value=0.08). A positive additive interaction with EHS was observed (RERI= 0.56, 95%CI (0.24, 

0.90)), despite null main effects in the fully adjusted models. This interactive effect was carried 

through to the measure looking at high stress in both CSS/EHS as well (HS-both RERI= 0.42, 

95%CI (0.03,0.80)). Additive effects trended more strongly in the positive direction when 

comparing those in the highest quartile of genetic risk with those in the bottom three quartiles (data 

not shown). No other comparisons in Hispanic Americans reached statistical significance.  

For non-Hispanic White participants, significant main effects for oGRS-meta and oGRS-EU with 

obesity were detected for all comparisons, regardless of which psychosocial factor was being 

examined. No significant interactions were observed on either the multiplicative or additive scale. 

In the Asian-American subset, sample sizes were too small to draw meaningful conclusions. All 

models had difficulty with convergence, likely due to the low counts of obesity in this population.  

 

3.4 Discussion 

The current study assessed whether genetic and psychosocial factors act independently or 

synergistically to increase the risk of obesity. In fully adjusted models, there was an 18% to 20% 

increased risk of obesity in those with high genetic risk, with an 18% increased risk of obesity in 

those with high levels of chronic burden of stress (CSS). The main effect for EHS in the model 

adjusting for a basic set of covariates did not reach statistical significance, nor did a combined 

measure of CSS and EHS looking at those with high levels of both exposures. Therefore, it would 

seem that CSS is capturing a unique effect of stress on obesity in the MESA cohort. There was no 

evidence to support an independent effect of depression on obesity risk. Regardless of which 

psychosocial factor was being examined, there was no evidence of multiplicative or additive 

interaction in any model comparison for the overall cohort.  

Only the effects of oGRS-meta and CSS were robust to model specifications. The oGRS-meta 

finding provides support for the use of polygenic risk scores in determining obesity risk from a 

large set of SNPs previously associated with increased BMI. While the CSS was designed to 

measure more objective instances of stressors that occur over a long period of time (e.g. job-related 

demands, difficulty paying bills, or social relationship demands), the EHS measure incorporates 

topics of perceived hassles or perceived unfair treatment.[153] Researchers have long tried to 

determine the best measures for quantifying stress, and the debate regarding objective versus 

subjective scales has persisted for years. Prior research has shown how perceived stress can 
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correlate with biomarkers representative of the stress response and obesity[20, 154] or continuous 

weight gain.[24] An important omission from these studies was the contribution of genetic risk 

factors, and future studies should incorporate some measure of genetic risk, as the current study 

has demonstrated.  

Showing how psychosocial variables operate within strata of genetic risk (supplementary table S4), 

it is apparent that regardless of genetic risk level, a high level of chronic burden of stress is 

independently associated with obesity. We did not observe the same effect when looking at other 

psychosocial factors. For example, comparing the doubly-exposed participants with high genetic 

risk and high everyday hassles to subjects with neither exposure, we saw a significant relative 

hazard of 1.29 (95%CI 1.09, 1.45). The genetic risk predictor is likely driving this effect, given 

that we observe no effect of everyday hassles within specific stratum of genetic risk (oGRS-

metalow: HR= 1.04, 95%CI (0.90, 1.21); oGRS-metahigh: HR= 1.08, 95%CI (0.93, 1.25)). Thus, 

the oGRS-meta and CSS are stronger risk factors for obesity than everyday hassles. It is likely that 

the objective factors measured by the chronic burden of stress scale might be simply stronger 

predictors of the biological response that leads to obesity than the everyday hassles scale, when 

also adjusting for genetic risk.  

To our knowledge, this is one of the first studies to examine gene by environment interactions of 

comprehensive obesity genetic risk using the validated oGRS and detailed measures of 

psychosocial factors in a large multi-ethnic dataset. Previous studies have focused on individual 

candidate genes. In a recent study using a multi-ethnic population, Singh et al. found that SNPs 

within the Early B-cell Factor 1 gene (EBF1) interacted with the chronic burden of stress score for 

hip circumference (p-value <9.46E-08), but only in White participants.[92] Further, a case-control 

study conducted by Kring et al. showed that SNPs within the APOE gene (rs439401) interacted 

with caregiver stress, leading to higher waist circumference.[93] This effect was replicated in an 

independent dataset using a self-reported seven-item chronic stress score.[93] The current study 

adds to this literature by providing evidence of interaction on the additive scale in race/ethnicity 

specific sub-sets.  

Additive interaction is commonly assessed to approximate what is commonly referred to as 

“biologic interaction.”[148] This occurs when there is a subset of the population that only develop 

the outcome when both exposures are present, potentially interacting biologically to cause disease 

that would have otherwise not occurred.[148] That form of synergy would support the diathesis 

stress model and explain why some people with a genetic predisposition may not develop the 

disease, when the second exposure is not present.[155, 156] This type of interaction would support 

the hypothesis that weak effects for obesity by either genetic risk or psychosocial measures alone 

were due to the fact that some subset of the population would be observed as obese only if both 

exposures were present together. This was the case for Hispanic-Americans in MESA with respect 

to the everyday hassles scale.  

While no evidence of multiplicative interaction was present in the overall cohort or race/ethnic 

specific subsets, it remains the case that oGRS by psychosocial stress interact on at least one level. 

Multiplicative interaction is often easiest to detect analytically, where we can use cross-product 

terms to extract a p-value directly from the model, giving us a commonly accepted measure of 

statistical significance.[157] Although there isn’t a consensus that interaction on the multiplicative 
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scale has any clear advantage over the additive scale, except to say that the two are different, and 

depending on the data structure, can reveal instances of interaction on one scale when there are 

null or opposite effects on the other.[157] Therefore, evidence of interaction in Hispanic 

Americans should not be underestimated, and the significance of this finding will be explored in 

the future.  

We did not find an interaction between depression and genetic risk, and depression was not 

independently associated with obesity after adjustment for study covariates. Three recent studies 

have examined the interaction and/or effect modification of genetic risk scores by depression for 

obesity. The studies were conducted using a weighted 32 SNP score in a population of European 

ancestry,[158] an un-weighted 21 SNP score in a multiethnic population,[159] and five polygenic 

risk scores of varying SNP count in a European population.[160] Each study revealed significant, 

albeit modest, interactive effects between obesity genetic risk and depression on BMI/obesity. 

Each of these studies, however, used the DSM-IV designation of Major Depressive Disorder 

(MDD) for defining depression.  

The lack of a significant main effect in the current study may not be attributed to depression itself 

but rather the use of the CES-D scale, as opposed to clinically based definitions of depressive 

disorders. Multiple forms of the scale are employed in current research, depending on the 

investigator’s a priori decision to use the entire scale or a sub-scale.[161, 162] A 2013 review in 

PLOS One highlighted numerous concerns that certain components of the CES-D scale for 

measuring depression might be assessing other constructs, such as social anxiety disorders; 

Furthermore, particular components are sensitive to sex and cultural biases.[163] Additionally, the 

CES-D internal reliability/consistency estimate in the current study was not ideal, indicating that 

the CES-D may not be approximating a single latent construct. Altogether, this indicates that the 

CES-D score may be inconsistent for assessing clinical depression in certain populations.  

There also appears to be a discrepancy regarding the effect of depression on obesity, depending on 

how obesity is measured. Our findings are consistent with those of a prior study in the MESA 

cohort that found negligible effects of the CES-D on continuous BMI.[133] This previous study 

did, however, establish an association between depression and waist circumference, with the 

authors positing that depression was perhaps more indicative of visceral adiposity than the general 

adiposity that BMI measures. Thus, multiple issues of exposure and outcome measurement cannot 

be disregarded for why an effect may not have been observed here. 

The strength of the main effect for oGRS-meta in the overall cohort highlights the utility of using 

composite risk scores for assessing obesity risk, as opposed to the minimal effects detected when 

using individual candidate genes. Very few studies have assessed obesity genetic risk in non-

European ancestry populations; large scale GWAS SNPs are frequently discovered in subjects with 

European ancestry. This is primarily due to methodological constraints of the need for large sample 

sizes in genetically homogenous populations, which maximize statistical power for SNPs to reach 

significance at the genome wide level.[72] Additionally, early examples of the oGRS score showed 

weaker findings in non-European populations,[38] making it an unattractive measure until more 

SNPs could be discovered in subjects of varying ancestries. As the oGRS can now be comprised 

of 97 SNPs discovered from recent meta-analyses, and has been previously shown to be effective 

in trans-ethnic populations,[36, 39] the current study was able to successfully examine 
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comprehensive genetic risk in multiple racial/ethnic populations. We were able to show that an 

oGRS using weights from the Locke et al. meta-analysis of “all-ancestries”[36] was associated 

with higher BMI levels at baseline in the overall MESA cohort, as well as in subsets stratified by 

self-reported race (except for African-Americans), adjusting for population stratification, age, and 

sex.  

Despite the strength of the oGRS using meta-analyzed weights in the overall cohort, we elected to 

perform a stratified analysis by self-reported race to determine if there was any additional variation 

in effect that could be explained by race/ethnicity-specific GRS subs-scores and weights. We were 

unable to detect multiplicative or additive interaction in the entire MESA cohort. The lack of 

multiplicative interaction for the overall cohort indicates that the hazard ratio that we observed did 

not exceed the expected joint probability of having the combination of each exposure together. In 

other words, the rate of obesity in the doubly exposed did not exceed the expected joint probability 

of having high genetic risk and high psychosocial stress together.  

We observed several instances of additive interaction in African-Americans and Hispanic-

Americans separately. Sub-additive interaction was present in African-American subjects for each 

of the three psychosocial factors, as well as in the composite measure for CSS/EHS, indicating a 

protective effect of having high genetic risk and high levels of stress, compared with what was 

expected. The results for African-American subjects may not be very informative, given that 

neither the oGRS-meta, nor the oGRS-AFA, was significantly associated with BMI levels at 

baseline. It is possible that these measures were not accurately capturing true genetic risk of obesity 

in African-Americans. That being the case, any evidence of interaction should be interpreted 

cautiously.  

Positive additive interaction was observed in stratified analyses for Hispanic participants for the 

everyday hassles measure. It should be noted that this was only performed using the oGRS-meta, 

given that there is no current specific risk score developed for Hispanic-American adults. However, 

given that the oGRS-meta was associated with BMI at baseline in Hispanic subjects when 

adjusting for population stratification, it is possible that this result is, in fact, a true positive finding. 

To our knowledge, no studies have assessed the meta-analysis weighted oGRS in Hispanic 

populations. We observed null main effects for both exposures in adjusted models, yet a positive 

interaction on the additive scale. This was supported by the potential of a multiplicative interaction, 

although this result diminished after correcting for multiple testing. Nevertheless, interaction on 

the additive scale provides evidence that for Hispanic individuals with high genetic risk and high 

levels of everyday hassles, there is a greater likelihood of obesity than we would otherwise expect 

from simply adding the two main effects together. Thus, there is a subset of Hispanic-Americans 

who only became obese when exposed to both high genetic risk and high everyday hassles together.  

The limited findings between psychosocial factors and genetic risk with obesity in other groups 

suggests that further research is needed to fully elucidate the interaction of genes and psychosocial 

factors in non-Hispanic populations. For example, there is a growing interest in epigenetic 

regulation of genetic risk factors. As genetic risk is predicated on the idea that risk genes are being 

over expressed in the body and thus directly biologically causing obesity, if there were factors that 

could regulate gene expression, then that might explain why people with high genetic risk and high 

stress are not experiencing obesity. This was true for African-American subjects in the current 
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study, where the protective interactive effect might be explained by exogenous factors that are 

regulating genetic expression of obesity risk genes (e.g. psychosocial stress). Evidence for the 

intersection of stress, epigenetics, and obesity can be seen in recent studies that have examined 

how stress reactivity is associated with DNA methylation levels, a known regulator of genetic 

expression.[45] Many non-genetic factors other than psychosocial risk, such as diet, smoking and 

environmental toxins have been associated with DNA methylation.[49-51] Additionally, an 

epigenome wide analysis conducted by Zhao et al. in a 2014 twin study examined methylation 

patterns in stress genes and found a significant association with obesity at the promoter region of 

SLC6A4.[61] Future studies should consider the role of epigenetic regulation between 

psychosocial factors and obesity risk genes.  

Results that differed across each type of psychosocial factor were particularly noteworthy. While 

the CSS was designed to measure more objective instances of stressors that occur over a long 

period of time (e.g. job-related demands, difficulty paying bills, or social relationship demands), 

the EHS measure incorporates topics of perceived hassles or perceived unfair treatment.[153] 

Researchers have long been trying to determine the best measures for quantifying stress, and the 

debate between using objective versus subjective scales has persisted over the years. The argument 

exists that self-reported measures such as perceived stress are known to correlate with stress 

response biomarkers, which have been previously associated with obesity[20, 154] and with 

continuous weight gain.[24] Therefore, it is difficult to say with certainty that one measure is 

superior over another. Nevertheless, future studies would benefit from supplementing or validating 

self-reported measures with biomarkers of stress in the same population.   

 

Strengths and limitations 

The current study was strengthened by the use of robust statistical methods for survival 

analysis,[145, 146] detailed questionnaires that measured multiple psychosocial factors, and 

expansive coverage of obesity genetic risk factors. This is the largest and, to our knowledge, first 

study of its kind that assesses the interaction of a validated obesity genetic risk score with 

psychosocial factors on obesity in a population-based multi-ethic cohort.  

Several limitations warrant comment. A low number of incident cases of obesity necessitated the 

use of interval censored survival analysis in lieu of traditional Cox models. This analysis allowed 

for the inclusion of left-censored prevalent cases at baseline to boost power. Although interval 

censored survival analysis was an improvement upon traditional Cox models, the current study 

was still underpowered to detect small main effect sizes. Additionally, the use of prevalent cases 

limited our ability to establish clear temporal ordering of psychosocial factors and obesity. 

Additionally, the MESA cohort was comprised of an older adult population, with some participants 

as old as 94 years of age at the end of follow-up. Older subjects who completed the study follow-

up without becoming obese were considered right-censored, with the potential of becoming obese 

in the future, when in all likelihood this was not possible at such advanced ages.  

There is a slight potential for spurious findings in race-stratified analyses given that the SNPs and 

weights used for oGRS-meta were derived from ancestries that did not include Hispanic 

populations. However, Hispanic ancestry has been found to be a mixture of European, Native 
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American, and African ancestries,[164] which could translate to obesity risk genes coming from a 

mixture of ancestries as well. The oGRS is gauging an overall genetic risk that is less susceptible 

to bias when including SNPs with weak effects.[38] If European derived SNPs had weak effects 

in Hispanic Americans, the overall score itself remained unbiased. To mitigate these concerns, we 

tested the association between oGRS-meta and increased BMI in Hispanic subjects at baseline, 

and results indicated that it was a useful predictor of genetic risk for obesity.  

The score for oGRS-meta/oGRS-AFA in African-American subjects was less effective in 

determining increased BMI levels at baseline. Race/ethnic specific scores are perhaps not the best 

measures for genetic risk in this population, presenting a significant limitation of the current study. 

As mentioned previously, results in this population should be interpreted cautiously. 

Our decision to use self-reported measures was primarily to assess if perception of stress could be 

effective in determining obesity risk. In the long run, the efficacy of self-reported measures of 

psychosocial factors will allow for larger studies with more comprehensive assessments of stress 

that are less expensive and easier to measure. Maximizing sample size by the use of less expensive 

methods will also increase the power to detect significant interactions.  

The purpose of this study was to evaluate the hypothesis that genetic and psychosocial factors 

might interact to cause obesity. By assessing interaction, the current study established whether or 

not intervening on a modifiable exposure (psychosocial stress) to reduce obesity risk would be 

useful. Using comprehensive analytical methods, we have shown that an obesity genetic risk score 

and chronic burden of stress can independently impact obesity in a large multiethnic cohort. We 

found no clear evidence of an oGRS by psychosocial factor interaction when looking at the entire 

MESA cohort. There was evidence that positive interaction was present on the multiplicative and 

additive scales for the everyday hassles measure and oGRS-meta in Hispanic-Americans. Future 

studies would benefit from examining this relationship in an independent set of Hispanic-

American adults. While an overall causal mechanism by which these factors biologically interact 

was not established, future studies should investigate how epigenetic mechanism might explain 

weak interactive effects in various populations. 
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3.5 Tables and Figures 

Table 1. Demographic information on complete cases of MESA participants at baseline and follow-up (N=5,792) 

 Baseline  Follow-up  

 
Overall Non Obese 

Prevalent 

Obese 
Overall 

Never 

Obese 

Incident 

Obese 

Incidence 

Ratea 

N # (%) 5,792 4,003 (69.1) 1,789 (30.1) 4,003 3,535 (88.3) 468 (11.7) 16 
   p<0.001   p<0.001  

oGRS-metab  2.17 (0.16) 2.16 (0.16) 2.19 (0.16) 
 

2.16 (0.16) 2.16 (0.16) 2.18 (0.16) 
 

 

   p<0.001   p<0.001  

  Quartile 1 1,448 1,090 (18.8) 358 (6.18) 1,090 (18.8) 980 (24.4)   110 (2.74) 14 
  Quartile 2 1,448 1,010 (17.4) 438 (7.56) 1,010 (17.4)   901 (22.5)   109 (2.72) 15 
  Quartile 3 1,448 994 (17.2) 454 (7.83) 994 (17.2)   879 (22.0)   115 (2.87) 17 
  Quartile 4 1,448   909 (15.7) 539 (9.30)   909 (15.7)   775 (19.4)   134 (3.35) 21 

   p<0.001   p=0.008  

Chronic Burden of Stressc        

Low (0) 1,998 (34.5) 1,500 (25.9) 498 (8.60) 1,500 (25.9) 1,348 (33.7)   152 (3.79) 14 
Moderate (1) 1,823 (31.4) 1,268 (21.9) 555 (9.58) 1,268 (21.9) 1,118 (27.9)   150 (3.74) 17 

High (2+) 1,971 (34.0) 1,235 (21.3) 736 (12.7) 
p<0.001 

1,235 (21.3) 1,069 (26.7)   166 (4.15) 
p=0.027 

19 

Everyday Hasslesc        

Low (9) 1,587 (27.4) 1,177 (20.4)    410 (7.07) 1,177 (20.4) 1,050 (26.2)   127 (3.17) 16 
Moderate (10-18) 3,028 (52.2) 2,081 (35.9) 947 (16.4) 2,081 (35.9) 1,849 (46.2)   232 (5.80) 15 

High (19+) 1,177 (20.3)    745 (12.9)    432 (7.46) 
p<0.001 

   745 (12.9)    636 (15.9)   109 (2.72) 
p=0.021 

19 

High Stress Both CSS/EHS        

No 5,201 (89.7) 3,651 (63.0)    1,550 (26.8) 3,651 (63.0)  3,239 (80.9)   412 (10.3) 16 
Yes 591 (10.3) 352 (6.08) 239 (4.12) 

p<0.001 
352 (6.08) 296 (7.39)   56 (1.40) 

p=0.013 
21 

Depression        

No 5,072 (87.6) 3,542 (61.2) 1,530 (26.4) 3,542 (61.2) 3,136 (78.3)    406 (10.1) 16 
Yes    720 (12.4)    461 (7.96)    259 (4.47) 

p=0.002 
   461 (7.96)    399 (9.97)      62 (1.55) 

p=0.241 
21 
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Baseline Ageb 62.0 (10.2) 62.6 (10.4) 61.0 (9.73) 62.6 (10.4) 63.1 (10.4) 59.1 (9.23)  

   p<0.001   p<0.001  
Sex        

  Female 3,013 (52.0) 1,970 (34.0) 1,043 (18.0) 1,970 (34.0) 1,740 (43.5)    230 (5.75) 16 
  Male 2,779 (48.0) 2,033 (35.1)    764 (12.9) 2,033 (35.1) 1,795 (44.8)    238 (5.95) 17 

   p<0.001   p=1.00  
Race/ethnicity        

  Non-Hispanic White 2,342 (40.4) 1,687 (29.1)    655 (11.3) 1,687 (29.1) 1,483 (37.0)    204 (5.10) 16 
  Chinese-American    767 (13.2)    734 (12.7)      33 (0.57)    734 (12.7)    706 (17.6)      28 (0.70) 5 
  African-American 1,338 (23.1)    746 (12.9)    592 (10.2)    746 (12.9)    638 (15.9)    108 (2.70) 22 

  Hispanic-American 1,345 (23.2)    836 (14.4)    509 (8.78)    836 (14.4)    708 (17.7)    128 (3.20) 23 
   p<0.001   p<0.001  

Baseline BMIb 28.2 (5.42) 25.4 (2.88) 34.6 (4.25) 25.4 (2.88) 24.9 (2.75) 28.6 (1.32)  
   p<0.001   p<0.001  

Physical Activity  

(Median(SD) MET hrs/week) 

14.0 (39.1) 15.8 (40.7) 10.5 (33.3) 
p<0.001 

15.8 (40.7) 15.9 (40.5) 15.9 (44.7) 
p=0.257 

 

Energy intake  
(Median(SD) kcal/day) 

1,476 (863) 1,430 (819) 1,593 (949) 
p<0.001 

1,430 (819) 1,408 (804) 1,540 (888) 
p<0.001 

 

Smoking status        

  Never 2,963 (51.2) 2,075 (35.8) 888 (15.3) 2,075 (35.8) 1,856 (46.4) 219 (1547) 15 
  Ever  2,829 (48.8) 1,928 (33.3) 901 (15.6) 1,928 (33.3) 1,697 (41.9) 249 (6.22) 19 

   p=0.129   p=0.023  

Income Median (SD) 2.18 (2.08) 2.25 (2.16) 2.08 (1.86) 2.25 (2.16) 2.25 (2.18) 2.19 (2.03)  
   p<0.001   p=0.944  

Education        
 Less than high school diploma 1,039 (17.9) 710 (12.3) 329 (5.68) 710 (12.3) 619 (15.5) 91 (2.27) 21 
High school grad/some college  1,936 (33.4) 1,254 (21.7) 682 (11.8) 1,254 (21.7) 1,088 (27.2) 166 (4.15) 19 

Technical/associate/bachelor  1,736 (30.0) 1,223 (21.1) 513 (8.86) 1,223 (21.1) 1,085 (27.1) 138 (3.45) 15 
Post college training 1,081 (18.7) 816 (14.0) 265 (4.58) 816 (14.0) 743 (18.6) 73 (1.82) 11 

   p<0.001   p=0.019  

a Incidence density rates are reported as the number of cases per 1000 person-years.  
b Continuous variables reported as a mean (standard deviation). 
c 

While primary analyses for psychosocial variables were performed using dichotomous variables, tertiles are presented here to show a clear dose-

response effect with increasing levels of the Chronic Burden of Stress Scale (CSS) and Everyday Hassles Scale (EHS) measures. Categorical variables 

were reported as the total number of subjects and proportion of all participants at baseline or follow-up. P-values for continuous variables were reported 

from a student’s T-test for comparison of obesity cases to non-cases. P-values for categorical variables were reported from a Chi-squared test.  
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Table 2. Primary results from parametric interval censored survival analysis using Weibull regression (N=5,792) 

 
Model 1  Model 2  

 HR (95%CI) P-valuea HR (95%CI) P-valuea 

Chronic Burden of Stress 

(CSS) 

   

oGRS-high 

 
1.18 (1.06, 1.32) 

 
0.008 

 
1.20 (1.08, 1.34) 

 
0.004 

CSS-high 1.21 (1.07, 1.37) 0.010 1.18 (1.04, 1.35) 0.026 

Interaction 0.99 (0.83, 1.17) 0.990 0.97 (0.82, 1.16) 0.990 

RERI 0.02 (-0.13, 0.17) --- 0.00 (-0.21, 0.20) --- 

Everyday Hassles  

(EHS) 

oGRS-high 1.17 (1.06, 1.29) 0.007 1.18 (1.07, 1.30) 0.004 
EHS-high 1.03 (0.89, 1.19) 0.990 1.04 (0.90, 1.21) 0.986 

Interaction 1.03 (0.84, 1.25) 0.990 1.02 (0.84, 1.24) 0.990 
RERI 0.04 (-0.13, 0.19) --- 0.03 (-0.2, 0.24) --- 

High stress in Both  

CSS and EHS 

oGRS-high 1.17 (1.07, 1.28) 0.004 1.19 (1.08, 1.30) 0.004 
HS-both 1.09 (0.91, 1.31) 0.732 1.09 (0.91, 1.30) 0.732 

Interaction 1.03 (0.81, 1.33) 0.990 1.00 (0.78, 1.29) 0.990 
RERI 0.06 (-0.15, 0.27) --- 0.02 (-0.28, 0.32) --- 

Depression 

oGRS-high 1.17 (1.07, 1.29) 0.004 1.19 (1.08, 1.30) 0.004 

Dep. 1.06 (0.89, 1.27) 0.934 1.03 (0.86, 1.23) 0.990 

Interaction 1.01 (0.79, 1.29) 0.990 1.00 (0.78, 1.27) 0.990 

RERI 0.03 (-0.18, 0.22) --- 0.00 (-0.26, 0.27) --- 

Results from interval censored survival regression using a Weibull distribution are presented here. Model 1 adjusts for principal components, age, race, and 

sex. Model 2 represents the fully adjusted model that controls for all core covariates described in the methods section. The referent group is participants below 

the median level of the obesity genetic risk score (oGRS-meta), and low to moderate psychosocial factor. CSS stands for the chronic burden of stress scale. 

EHS stands for the everyday hassles scale. High stress in both CSS/EHS is compared to a referent population that has never experienced both psychosocial 

factors at a high level. Depression represents the comparison of subjects scoring above and below 16 on the CES-D scale. Hazard ratios and confidence 

intervals for main effects and multiplicative interaction were calculated using the delta method. RERI confidence intervals were calculated using model runs 

from 2000 bootstrapped samples.  P-values were computed from Wald test z-statistics. 
a P-values have been corrected for multiple testing using a false discovery rate across all categories of psychosocial factor (N=24 tests). Results in bold font 

are statistically significant at the FDR alpha 0.05 level. 
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Table 3.  Race-stratified analyses for Model 2, fully adjusted model controlling for core covariates from parametric interval 

censored survival analysis using Weibull regression 

 Race Specific 

 

Overall 

(N=5,792) 

White  

(N=2,342) 

Black  

(N=1,338) 

Hispanic 

(N=1,345) 

Chinesea 

(N=767) 

 
oGRS-meta oGRS-meta oGRS-EU oGRS-meta oGRS-AFA oGRS-meta oGRS-

meta/-CHN 

CSS        

  oGRS-high 1.20 (1.08, 1.34) 1.41 (1.17, 1.69) 1.41 (1.17, 1.70) 1.07 (0.87, 1.31) 1.04 (0.85, 1.28) 1.12 (0.91, 1.37) --- 
  CSS-high 1.18 (1.04, 1.35) 1.17 (0.92, 1.48) 1.18 (0.93, 1.49) 1.33 (1.08, 1.64) 1.40 (1.12, 1.73) 1.03 (0.82, 1.32) --- 

  Interaction 0.97 (0.82, 1.16) 0.96 (0.71, 1.28) 0.94 (0.70, 1.26) 0.86 (0.63, 1.18) 0.80 (0.59, 1.09) 1.13 (0.80, 1.58) --- 
  RERI 0.00 (-0.21, 0.20) -0.01 (-0.27, 0.25) -0.03 (-0.3, 0.23) -0.17 (-0.47, 0.09) -0.27 (-0.55, -0.01) 0.15 (-0.13, 0.41) --- 

EHS        
  oGRS-high 1.18 (1.07, 1.30) 1.35 (1.15, 1.58) 1.35 (1.15, 1.58) 1.11 (0.91, 1.34) 0.96 (0.79, 1.16) 1.05 (0.88, 1.25) --- 

  EHS-high 1.04 (0.90, 1.21) 1.03 (0.76, 1.38) 1.03 (0.77, 1.38) 1.14 (0.92, 1.41) 1.01 (0.81, 1.27) 0.72 (0.50, 1.02) --- 
  Interaction 1.02 (0.84, 1.24) 1.13 (0.79, 1.61) 1.12 (0.79, 1.59) 0.75 (0.54, 1.03) 0.99 (0.72, 1.36) 1.76 (1.12, 2.78) --- 

  RERI 0.03 (-0.2, 0.24) 0.18 (-0.11, 0.47) 0.18 (-0.12, 0.45) -0.31 (-0.55, -0.06) -0.01 (-0.25, 0.2) 0.56 (0.24, 0.90) --- 
HS-both        

  oGRS-high 1.19 (1.08, 1.30) 1.37 (1.18, 1.59) 1.38 (1.18, 1.60) 1.07 (0.90, 1.27) 0.96 (0.81, 1.14) 1.10 (0.93, 1.30) --- 
  HS-both 1.09 (0.91, 1.30) 1.13 (0.78, 1.62) 1.19 (0.83, 1.70) 1.33 (1.04, 1.71) 1.16 (0.89, 1.52) 0.68 (0.44, 1.05) --- 

  Interaction 1.00 (0.78, 1.29) 1.11 (0.71, 1.74) 1.02 (0.66, 1.59) 0.69 (0.47, 1.03) 0.96 (0.65, 1.40) 1.61 (0.91, 2.86) --- 
  RERI 0.02 (-0.28, 0.32) 0.23 (-0.21, 0.67) 0.1 (-0.35, 0.52) -0.42 (-0.75, -0.10) -0.06 (-0.36, 0.24) 0.42 (0.03, 0.80) --- 

Dep.        
  oGRS-high 1.19 (1.08, 1.30) 1.39 (1.19, 1.62) 1.39 (1.19, 1.61) 1.03 (0.87, 1.21) 1.01 (0.86, 1.20) 1.11 (0.93, 1.33) --- 

  Dep. 1.03 (0.86, 1.23) 1.15 (0.79, 1.66) 1.16 (0.80, 1.69) 1.17 (0.87, 1.58) 1.42 (1.02, 1.97) 0.86 (0.64, 1.16) --- 
  Interaction 1.00 (0.78, 1.27) 0.96 (0.61, 1.52) 0.94 (0.60, 1.47) 0.80 (0.51, 1.27) 0.60 (0.38, 0.95) 1.19 (0.81, 1.77) --- 

  RERI 0.00 (-0.26, 0.27) 0.01 (-0.40, 0.42) -0.04 (-0.46, 0.36) -0.23 (-0.59, 0.14) -0.58 (-1.03, -0.22) 0.17 (-0.13, 0.44) --- 
Race/ethnicity specific results are reported for the obesity genetic risk score (oGRS-meta) as well as Racial/ethnic oGRS sub-scores. The referent group is participants below the median 

level of oGRS, and low to moderate psychosocial factor. CSS stands for the chronic burden of stress scale. EHS stands for the everyday hassles scale. High stress in both CSS/EHS is 

compared to a referent population that has never experienced both psychosocial factors at a high level. Depression represents the comparison of subjects scoring above and below 16 on 

the CES-D scale. Hazard ratios and confidence intervals for main effects and multiplicative interaction were calculated using the delta method. RERI confidence intervals were calculated 

using model runs from 2000 bootstrapped samples. Non-RERI results in bold font are statistically significant at the FDR corrected 0.05 level (N=60 tests). Bolded RERI values are based 

on confidence intervals, as p-values were not calculable.  
a 

Due to low sample size, we were unable to draw meaningful conclusions and therefore, results will not be presented. Due to the very low incidence of obesity among Chinese participants, 

these models had difficulties with convergence.   
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Supplementary Table S1. Hazard ratios and p-values from testing 3-way interactions for continuous main exposures by 

race/ethnicity and Sex (N=5,792) 

 

 

 

 

 

 

Table S1 shows the three-way interaction results performed in order to determine if models needed to be stratified by race 

or sex. All models adjusted for pc1-3 to account for the influence of population stratification, as well as baseline measures 

of age, race, and sex. Models represent the hazard of obesity given 1 standard deviation increase in continuous oGRS 

using “meta” weights. CSS stands for the Chronic Burden of Stress Scale, EHS stands for the Everyday Hassles Scale, 

and Dep stands for depression.   

 

 

 

 

 

 

  

 HR (95% CI) P-value 

oGRS-meta x race/ethnicity x CSS 1.01 (0.98, 1.04) 0.386 

oGRS-meta x race/ethnicity x EHS 1.00 (0.996, 1.01) 0.408 

oGRS-meta x race/ethnicity x Dep 0.99 (0.91, 1.09) 0.909 

oGRS-meta x Sex x CSS 1.01 (0.98, 1.04) 0.694 

oGRS-meta x Sex x EHS 1.00 (0.99, 1.01) 0.166 

oGRS-meta x Sex x Dep 1.08 (0.83, 1.42) 0.548 
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Supplementary Table S2. Features of obesity risk genes and weights used for oGRS measures (N= 97 SNPs) 

rsID 

Gene 

located at 

or near loci Chr 

Risk/non-

risk allele  

(overall 

risk allele 

frequency 

in MESA) 

oGRS 

weights  

(non-

Hispanic 

White) 

oGRS weights 

(African-

American) 

oGRS 

weights  

(Chinese-

American) 

oGRS 

Meta 

weights 

rs1000940 RABEP1 17 G/A (0.326) 0.0192 0.0149 0.0104 0.018 

rs10132280 STXBP6 14 C/A (0.631) 0.0230 0.0104 0.033 0.022 

rs1016287 LINC01122 2 T/C (0.258) 0.0229 -0.0076 0.0051 0.023 

rs10182181 ADCY3 2 G/A (0.566) 0.0307 0.0427 0.0335 0.031 

rs10733682 LMX1B 9 A/G (0.473) 0.0174 0.0061 0.0161 0.019 

rs10938397 GNPDA2 4 G/A (0.338) 0.0402 0.0534 0.0366 0.040 

rs10968576 LINGO2 9 G/A (0.226) 0.0249 0.0374 0.0104 0.025 

rs11030104 BDNF 11 A/G (0.825) 0.0414 0.0904 0.0478 0.042 

rs11057405 CLIP1 12 G/A (0.953) 0.0307 0.0339 Monomorphic / 
 rare (<1%) 

0.030 

rs11126666 KCNK3 2 A/G (0.263) 0.0207 -0.0124 0.0100 0.020 

rs11165643 PTBP2 1 T/C (0.482) 0.0218 0.0216 0.0053 0.022 

rs11191560 NT5C2 10 C/T (0.117) 0.0308 0.0260 0.0271 0.031 

rs11583200 ELAVL4 1 C/T (0.578) 0.0177 0.0175 0.0083 0.017 
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rs1167827 HIP1 7 G/A (0.589) 0.0202 0.0132 0.0063 0.020 

rs11688816 EHBP1 2 G/A (0.574) 0.0172 -0.0032 0.0053 0.015 

rs11727676
a
 HHIP 4 T/C (NA) 0.0358 -0.0081 Monomorphic / 

 rare (<1%) 
0.037 

rs11847697 PRKD1 14 T/C (0.153) 0.0492 -0.0041 Monomorphic / 
 rare (<1%) 

0.037 

rs12016871
 a

 MTIF3 13 T/C (NA) 0.0298 0.0127 0.0103 0.030 

rs12286929 CADM1 11 G/A (0.526) 0.0217 0.0049 0.0149 0.021 

rs12401738 FUBP1 1 A/G (0.219) 0.0211 0.0126 Monomorphic / 
 rare (<1%) 

0.020 

rs12429545 OLFM4 13 A/G (0.148) 0.0334 0.0400 0.0309 0.032 

rs12446632 GPRC5B 16 G/A (0.903) 0.0403 0.0134 Monomorphic / 
 rare (<1%) 

0.040 

rs12566985 FPGT 1 G/A (0.633) 0.0242 0.0104 0.0211 0.024 

rs12885454 PRKD1 14 C/A (0.735) 0.0207 0.0127 0.0058 0.020 

rs12940622 RPTOR 17 G/A (0.556) 0.0182 0.0194 0.0164 0.018 

rs13021737 TMEM18 2 G/A (0.853) 0.0601 Insufficient data 
 available  

0.0589 0.060 

rs13078960 CADM2 3 G/T (0.129) 0.0297 0.0018 Monomorphic / 
 rare (<1%) 

0.029 

rs13107325 SLC39A8 4 T/C (0.059) 0.0477 0.0530 Monomorphic / 
 rare (<1%) 

0.047 

rs13191362 PARK2 6 A/G (0.924) 0.0277 0.0366 Monomorphic / 
 rare (<1%) 

0.029 

rs13201877 IFNGR1 6 G/A (0.084) 0.0233 0.0197 0.0067 0.024 

rs1441264 MIR548A2 13 A/G (0.659) 0.0175 -0.0122 -0.0022 0.017 



 

 

4
9

 
rs1460676 FIGN 2 C/T (0.200) 0.0197 0.0163 0.0211 0.021 

rs1516725 ETV5 3 C/T (0.873) 0.0451 0.0328 0.0547 0.045 

rs1528435 UBE2E3 2 T/C (0.626) 0.0178 0.0030 0.0097 0.018 

rs1558902 FTO 16 A/T (0.253) 0.0818 0.0658 0.0734 0.081 

rs16851483 RASA2 3 T/G (0.095) 0.0483 0.0817 0.0171 0.048 

rs16907751 ZBTB10 8 C/T (0.911) 0.0350 0.0005 0.0454 0.033 

rs16951275 MAP2K5 15 T/C (0.607) 0.0311 0.0260 0.0273 0.030 

rs17001654 SCARB2 4 G/C (0.172) 0.0306 -0.0013 0.0237 0.030 

rs17024393 GNAT2 1 C/T (0.038) 0.0658 0.0101 Monomorphic / 
 rare (<1%) 

0.061 

rs17094222 HIF1AN 10 C/T (0.178) 0.0249 0.0175 0.0138 0.025 

rs17203016 CREB1 2 G/A (0.121) 0.0210 -0.0199 0.0225 0.021 

rs17405819 HNF4G 8 T/C (0.767) 0.0224 0.0094 0.0199 0.022 

rs17724992 PGPEP1 19 A/G (0.743) 0.0194 0.0225 0.0187 0.020 

rs1808579 C18orf8 18 C/T (0.492) 0.0167 -0.0013 0.0019 0.016 

rs1928295 TLR4 9 T/C (0.559) 0.0188 -0.0086 0.0138 0.018 

rs2033529 TDRG1 6 G/A (0.199) 0.0190 0.0126 -0.0037 0.018 

rs2033732 RALYL 8 C/T (0.791) 0.0192 -0.0117 0.0047 0.018 

rs205262 C6orf106 6 G/A (0.390) 0.0221 0.0159 0.0115 0.021 
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rs2075650 TOMM40 19 A/G (0.887) 0.0258 Insufficient data 

 available  
0.0156 0.026 

rs2080454 CBLN1 16 C/A (0.462) 0.0168 0.0146 0.0108 0.017 

rs2112347 POC5 5 T/G (0.563) 0.0261 0.0021 0.0214 0.025 

rs2121279
 a

 LRP1B 2 T/C (NA) 0.0245 -0.0315 Monomorphic / 
 rare (<1%) 

0.024 

rs2176040 LOC646736 2 A/G (0.227) 0.0141 0.0122 0.0037 0.015 

rs2176598 HSD17B12 11 T/C (0.320) 0.0198 0.0126 -0.0031 0.019 

rs2207139 TFAP2B 6 G/A (0.175) 0.0447 0.0554 0.0296 0.045 

rs2245368 DTX2P1 7 C/T (0.259) 0.0317 -0.0084 0.0212 0.029 

rs2287019 QPCTL 19 C/T (0.859) 0.0360 0.0659 0.0252 0.035 

rs2365389 FHIT 3 C/T (0.367) 0.0200 Insufficient data 
 available  

0.0059 0.020 

rs2650492 SBK1 16 A/G (0.147) 0.0207 0.0145 0.0167 0.021 

rs2820292 NAV1 1 C/A (0.414) 0.0195 0.0134 0.0051 0.018 

rs2836754 ETS2 21 C/T (0.467) 0.0164 0.0045 0.0176 0.017 

rs29941 KCTD15 19 G/A (0.683) 0.0182 -0.0002 -0.0018 0.018 

rs3101336 NEGR1 1 C/T (0.662) 0.0334 0.0036 0.0203 0.032 

rs3736485 DMXL2 15 A/G (0.541) 0.0176 0.0094 0.0047 0.016 

rs3810291 ZC3H4 19 A/G (0.451) 0.0283 0.0189 0.0338 0.029 

rs3817334 MTCH2 11 T/C (0.353) 0.0262 0.0083 0.0215 0.026 
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rs3849570 GBE1 3 A/C (0.399) 0.0188 -0.0075 -0.0044 0.018 

rs3888190 ATP2A1 16 A/C (0.319) 0.0309 0.0174 0.0252 0.031 

rs4256980 TRIM66 11 G/C (0.560) 0.0209 0.0200 0.0137 0.021 

rs4740619 C9orf93 9 T/C (0.482) 0.0179 0.0033 -0.0042 0.017 

rs4787491 INO80E 16 G/A (0.501) 0.0159 0.0222 0.0137 0.015 

rs492400 USP37 2 C/T (0.446) 0.0158 0.0025 0.0022 0.015 

rs543874 SEC16B 1 G/A (0.202) 0.0482 0.0571 0.0648 0.050 

rs6091540 ZFP64 20 C/T (0.270) 0.0188 0.0167 0.0124 0.019 

rs6465468 ASB4 7 T/G (0.190) 0.0166 -0.0037 0.0005 0.016 

rs6477694 EPB41L4B 9 C/T (0.405) 0.0174 0.0057 0.0100 0.017 

rs6567160 MC4R 18 C/T (0.196) 0.0556 0.0621 0.0487 0.056 

rs657452 AGBL4 1 A/G (0.485) 0.0227 -0.0056 0.0142 0.023 

rs6804842 RARB 3 G/A (0.520) 0.0185 0.0110 0.0070 0.018 

rs7138803 BCDIN3D 12 A/G (0.276) 0.0315 0.0470 0.0193 0.032 

rs7141420 NRXN3 14 T/C (0.564) 0.0235 0.0183 0.0114 0.023 

rs7164727 LOC100287

559 
15 T/C (0.500) 0.0180 0.0057 -0.0033 0.019 

rs7239883 LOC284260 18 G/A (0.369) 0.0164 0.0041 0.0058 0.015 

rs7243357 GRP 18 T/G (0.817) 0.0217 0.0243 0.0186 0.022 
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rs758747 NLRC3 16 T/C (0.403) 0.0225 0.0046 0.0229 0.023 

rs7599312 ERBB4 2 G/A (0.734) 0.0220 0.0078 0.0078 0.021 

rs7715256 GALNT10 5 G/T (0.518) 0.0163 0.0410 0.0437 0.017 

rs7899106 GRID1 10 G/A (0.070) 0.0395 0.0303 Monomorphic / 
 rare (<1%) 

0.038 

rs7903146 TCF7L2 10 C/T (0.738) 0.0234 0.0305 0.0255 0.024 

rs9374842 LOC285762 6 T/C (0.781) 0.0187 0.0066 -0.0026 0.020 

rs9400239 FOXO3 6 C/T (0.529) 0.0188 -0.0003 0.0209 0.017 

rs9540493
 a

 MIR548X2 13 A/G (NA) 0.0172 0.0180 0.0130 0.018 

rs9641123 CALCR 7 C/G (0.259) 0.0191 0.0037 0.0069 0.019 

rs977747 TAL1 1 T/G (0.573) 0.0167 -0.0077 0.0133 0.017 

rs9914578 SMG6 17 G/C (0.328) 0.0201 -0.0095 0.0268 0.020 

rs9925964 KAT8 16 A/G (0.647) 0.0192 0.0127 Monomorphic / 
 rare (<1%) 

0.020 

       97 total SNPs 
74 w/ directional  

consistency 
77 w/ directional  
consistency 

 

This table present a full list of BMI associated genes, along with SNPs that are specific to multiple race/ethnicities.   

Weights were derived from a meta-analysis conducted by Locke et al. 2015. The oGRS-meta weights are derived 

from the full meta-analysis in subjects of “all ancestries.” Weights derived from homogenous populations of 

European, African, or east Asian ancestry were used in race/ethnicity specific sub-scores for MESA’s non-Hispanic 

White, African-American, and Chinese-American participants respectively.  
a
 The bolded SNPs were not available in MESA after quality control measures were implemented.  
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Supplementary Table S3. Continuous baseline BMI by oGRS-meta, adjusting for pc1-3, age, and sex at baseline.   

 Overall (N=5,792) 

Beta (95%CI) 

Non-Hispanic 

White (N=2,342) 

Beta (95%CI) 

African-American 

(N=1,338) 

Beta (95%CI) 

Asian-American 

(N=767) 

Beta (95%CI) 

Hispanic 

(N=1,345) 

Beta (95%CI) 

oGRS-meta 0.56 (0.42,0.69) 0.65 (0.46, 0.86) 0.29 (-0.06, 0.65) 0.32 (0.05,0.59) 0.65 (0.38,0.93) 
oGRS-EU  0.66 (0.46, 0.86)    
oGRS-AFA   -0.03 (-0.35, 0.30)   
oGRS-CHN    0.20 (-0.03, 0.43)  

      

oGRS-meta      

Q2 0.49 (0.13, 0.86) 0.22 (-0.41, 0.87) 0.87 (0.08, 1.67) 0.41 (-0.14, 0.96) 0.55 (-0.25, 1.36) 

Q3 0.63 (0.26, 1.00) 0.92 (0.30, 1.54) 0.26 (-0.57, 1.09) 0.53 (-0.14, 1.19) 0.42 (-0.37, 1.20) 

Q4 1.45 (1.08, 1.84) 1.60 (1,01, 2.19) 0.99 (0.01, 1.96) 0.63 (-0.28, 1.53) 1.61 (0.83, 2.40) 

Results are shown for the effect on continuous BMI for every 1 standard deviation increase in oGRS in the overall MESA cohort 

and race/ethnicity specific subsets. Items in bold are statistically significant at the alpha 0.05 level. Weights for obesity genetic risk 

score (oGRS) measures were derived from a meta-analysis conducted by Locke et al. 2015. The oGRS-meta weights are derived 

from the full meta-analysis in subjects of “all ancestries.” Weights derived from homogenous populations of European, African, or 

east Asian ancestry were used in race/ethnicity specific sub-scores for MESA’s non-Hispanic White (oGRS-EU), African-American 

(oGRS-AFA), and Chinese-American (oGRS-CHN) participants respectively. Quartiles of the oGRS-meta score are presented 

comparing the top three quartiles (Q2,Q3,Q4) to those in the lowest quartile of genetic risk (Q1, not shown). 
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Supplementary Table S4. Primary results from parametric interval censored survival analysis using Weibull regression, stratified by 

oGRS categories (N=5,792) 

 

 
oGRS-meta 

 

  Below Median  Above Median  

 

 

N 

with/without 

obesity 

HR (95%CI); 

p-value 

 N 

with/without 

obesity 

HR (95%CI); 

p-value 

E1 vs. E0 

within strata 

of G 

Chronic Burden of 

Stress (CSS)  

 

  <2 599/1329 
 

1.00 (Ref)  756/1137 
 

1.20 (1.08, 1.34) 
 

 

2+ 416/552 1.18 (1.04, 1.35)  486/517 1.39 (1.22, 1.57) 1.19 (1.04, 1.36) 
      1.15 (1.02, 1.29)  

Everyday Hassles  

(EHS) 

<19 764/1541 1.00 (Ref)  952/1358 1.18 (1.07, 1.30)  

19+ 251/340 1.04 (0.90, 1.21)  290/296 1.29 (1.09, 1.45) 1.17 (0.99, 1.40) 

      1.08 (0.93, 1.25)  

High stress in Both  

CSS and EHS 

No 874/1716 1.00 (Ref)  1088/1523 1.19 (1.08, 1.30)  

Yes 141/165 1.09 (0.91, 1.30)  154/131 1.29 (1.05, 1.55) 1.15 (0.90, 1.46) 

      1.1 (0.92, 1.31)  

Depression 
No 871/1676 1.00 (Ref)  1065/1460 1.19 (1.08, 1.30)  

Yes 144/205 1.03 (0.86, 1.23)  177/194 1.22 (1.03, 1.45) 1.19 (0.95, 1.49) 
      1.04 (0.88, 1.23)  

Results are from models fully adjusted for the core covariates. The hazard ratio (HR) comparing psychosocial factor high to low 

within high obesity genetic risk scores (oGRS-meta) is extracted from the model restricted to only those with high oGRS-meta. 

This means that the HR and confidence intervals calculated for that measure are derived from the delta method in the restricted 

model, and not a direct calculation of the high stress/high genetic risk HR compared to the low stress/high genetic risk HR. The 

same can be said for the HR of oGRS-meta within strata of psychosocial factor. The number of people with and without obesity 

is a combination of prevalent and obese cases.  Confidence intervals for the HR in the doubly-exposed was derived from 2000 

bootstrapped samples.  
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Chapter 4 

Psychosocial factors and DNA methylation of obesity risk genes 

 

4.1 Introduction 

Obesity is a growing public health concern as it is a major risk factor for chronic diseases such as 

cardiovascular disease and an independent predictor of overall mortality.[5] The prevalence of 

obesity in the US has been increasing over time, and there are significant racial/ethnic differences 

in obesity such that racial and ethnic minorities have a higher prevalence compared to whites.[3] 

While the exact causes of obesity remain unknown, numerous biological, behavioral, and social 

factors have been linked to obesity in previous research. 

Recently, there has been a strong argument for a genetic contribution to obesity. Over the past 30 

years, many genetic epidemiologic studies including candidate gene studies, genome linkage, and 

fine mapping have identified several single nucleotide polymorphisms (SNPs) associated with 

BMI. However, now with genome wide association studies (GWAS), which improve upon other 

approaches by allowing for the examination of a wide range of common variants associated with 

disease, new discoveries have been made. GWAS studies have identified up to 97 genetic 

predictors of higher BMI, including, but not limited to, FTO, TMEM18, and MC4R (B).[36]  

Despite recent advancements in the genetics of obesity, genetic variation in even the strongest 

predictor, FTO, confers at best an increase in BMI of 0.39 for each copy of the risk allele 

(explaining only 0.34% of total genetic variance).[35] Researchers have been tasked with 

incorporating genetic information in ways that can explain a larger proportion of the variance in 

BMI. DNA methylation (DNAm), the most common epigenetic mechanism explored currently, 

serves as a method for elucidating the effects of genetic risk factors on BMI that are not directly 

caused by the heritable genomic sequence. This is due to the regulatory nature of DNAm, the 

addition of a methyl group to cytosine/guanine base pairs (CG dinucleotides or CpGs), which 

affects genetic expression most prominently by either directly blocking protein binding or by long 

term inactivation of gene promoter regions.[165]  

As DNAm is affected globally and site-specifically by non-heritable obesity risk factors (e.g. 

diet,[166] physical activity[120] and smoking[51]), it is an attractive approach for exploring the 

effects of the “environment” on genetic pre-disposition for obesity phenotypes or BMI more 

generally. Many studies have examined the effect of behavioral factors such as exercise or smoking 

on obesity epigenetics in a multitude of ways.[120, 167] However, to our knowledge, very few 

have examined the role of psychosocial factors on methylation,[62, 63] and none has used a 

candidate gene approach based on all BMI associated genes discovered from GWAS. 

This is a curious omission from the current literature given the established role of multiple 

psychosocial stressors/factors known to affect weight in adults, such as job-related demands, lack 

of decision authority, perceived constraints in life, and strain in family relations.[20] Further, prior 

research has highlighted how early life exposures to stress can result in observable epigenetic 
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modifications later in life, both globally and at specific genes.[62, 63] Less is known, however, 

about modifications that occur due to psychosocial factors experienced in adulthood. Although the 

mechanisms by which this occurs are not exactly clear, understanding that genes can be affected 

by non-genetic factors may elucidate new pathways by which psychosocial factors can cause 

weight gain and ultimately, obesity. 

To address the aforementioned gaps in the current literature, we used the Multi-Ethnic Study of 

Atherosclerosis (MESA) cohort study to investigate the associations between psychosocial factors 

in adulthood and DNAm in BMI-associated genes using a targeted gene approach. The overall 

goal was to examine the effects of stress on DNAm of BMI associated genes in order to establish 

a new mechanism of obesity etiology. Based on the evidence presented thus far regarding the 

complex relationship between stress, DNAm, and obesity, we hypothesized that there would be 

statistically significant associations between psychosocial factors and DNAm levels of candidate 

genes. Further, as DNAm is a known regulator of genetic expression,[52] we hypothesized that 

there would be statistically significant inverse association between DNAm levels in candidate 

genes of interest and genetic expression.  

 

4.2 Methods 

Subjects 

MESA study subjects were recruited from six field centers in the US: Columbia University, New 

York; Johns Hopkins University, Baltimore; Northwestern University, Chicago; UCLA, Los 

Angeles; University of Minnesota, Twin Cities; Wake Forest University, Winston Salem. The 

population-based longitudinal cohort, comprised of 6,814 participants free of clinical CVD at 

baseline (approximately 1,100 from each field center), was designed for the purpose of 

investigating the prevalence, correlates, and progression of subclinical CVD and the risk factors 

that contribute to it. (http://mesa-nhlbi.org/). Participants were recruited from each field center’s 

geographic boundaries by a random selection of names within each census tract, as well as 

telephone recruitment, church membership rosters, DMV registries, etc. (please see www.mesa-

nhlbi.org, paragraph 4.2 for detailed recruitment procedures).[122] Each study participant who 

consented to enroll in the cohort had baseline information collected via questionnaire in July 2000, 

and followed up at four subsequent time points for a total of five exams to assess clinical outcomes 

and mortality, ending in January 2012.  

 

Epigenetic information was collected between April 2010 and February 2012 (MESA Exam 5) as 

part of a genetic sub-study of 1,264 MESA participants who gave informed consent for DNA 

extraction and had available DNA for methylation analysis. Epigenetic study participants were 

adults ranging from 44 to 83 years of age (mean=60.2; sd=9.49) and were balanced equally by sex 

and by racial/ethnic subgroup. The current study utilizes two time points for all primary analyses 

(Exam1: baseline and Exam5: end of follow-up). Institutional Review Board (IRB) approval was 

obtained from each of the participating study sites in MESA.  

 

 

http://mesa-nhlbi.org/
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Methylation assay and QC measures 

DNA from peripheral blood leukocytes was used to interrogate DNA methylation markers, 

referred to as CpGs. Using the Illumina Infinium HumanMethylation450 BeadChip microarray 

(450k) (Illumina, Inc., San Diego, CA USA) and processed according to manufacturer protocols. 

This assay measures signal intensities of methylated and unmethylated probe sequences, and 

reports Average Beta values, a proxy measure for percent methylation of cytosine’s at >480,000 

CpGs. Extensive quality control (QC) measures were performed in order to ensure the reliability 

and quality of DNAm results using GenomeStudio software developed by Illumina.  

 

QC was performed in two phases: pre-processing and CpG filtering. Pre-processing of all 450k 

data included quantile normalization, as well as background subtraction and internal control 

normalization according to default settings in the lumi R package.[168] Additionally, checks were 

made for sex and race/ethnicity incongruity along with outlier identification by multidimensional 

scaling (MDS) plots. CpG filtering was conducted according to the following criteria: 1) removed 

probes with sub-optimal detection (p-value >0.05 in at least 10% of samples) (N=695 CpGs); 2) 

removed probes containing SNPs within 10 base pairs of the CpG of interest (N=36,359 CpGs) 

along with 65 “rs” coded highly polymorphic SNPs that are not related to DNAm.[169]; 3) 

removed non-autosomal CpGs (N=10,923).[169] Supplementary Figure S1 shows a detailed 

flowchart of CpG removal procedures. Of the 437,600 post-QC CpGs available for analysis, 2,528 

were selected from BMI associated genes established in the most recent GWAS (see Table 1 for 

list of gene descriptions).[35, 36, 170] CpGs were assigned to genes based on Illumina annotation.  

 
Each gene-specific CpG was given an M-value, calculated as the log2 ratio of the methylated to 

the unmethylated intensities.[171] This measures ranges from completely unmethylated (-6) to 

completely methylated (6). M-values were used to meet the assumptions of normality and 

homoscedasticity required for the analytical methods employed in the current study.  

Prior evidence has indicated that hypermethylation in the promoter region of a gene is associated 

with reduced gene expression, whereas hypermethylation in the gene body is associated with 

increased gene expression [172]. Therefore, incorporating information on promoter status was 

essential for all analyses. Based on methods previously developed by Whitaker et al, each CpG 

was designated as being within a promoter region if the site was 2500 bases upstream or 500 bases 

downstream of a transcription start site.[173] Transcription start site was identified by the RefSeq 

Genes track in the UCSC Genome Browser.[174] Shore/Shelf status at each CpG was determined 

according to Illumina annotation, which defines CpG island shores or shelves as being located 

4000 bp outside of CpG island boundaries (North or South).  

 

During sample processing, in order to mitigate a potential bias from batch effects, samples were 

randomly allocated to chips and chip positions using stratified sampling. Additionally, residual 

chip and chip position effects were adjusted prior to analysis. This was done by first running a 

linear regression of chip number and chip position on DNAm by each CpG separately. The residual 

differences from each model were then added to the mean value of the CpG for that model, yielding 

chip-corrected DNAm estimates. 
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Gene expression 

Available DNA from MESA Exam 5 was used for transcriptomic (expression) data processed with 

the Illumina HumanHT-12 v4 Expression BeadChip, which interrogates approximately 48,000 

transcripts across the genome. QC measures for expression data included the following: 1) 

background correction performed in GenomeStudio; 2) Bead-type summarization using the 

beadarray package in R[175]; 3) Estimated non-negative signal, performed quantile normalization, 

log transformation, eliminated control probes, and detected outliers using the limma package in 

R.[176-178] Transcripts were filtered out according to the following criteria: 1) poorly detected in 

at least 10% of all samples (p-value >0.01); 2) probes that contain a SNP; 3) probes with low 

variance across samples (<10th percentile). 4) probes that overlap with non-unique regions. A more 

detailed description of implemented QC protocol for DNAm and expression data can be found in 

Liu et al.[179] Chip effects were adjusted for expression data prior to analysis, using identical 

methods to the DNAm correction. 

 

Psychosocial factors  

The chronic burden of stress scale (CSS) is measured as the sum of the number of times a subject 

answered yes to the following ongoing stressful problems (own health, close person health, job, 

financial, or relationship).[180] This problem needed to last more than six months to be considered 

affirmative. Possible scores of CSS range from 0 to 5 and CSS was analyzed categorically as high 

(2 or more), medium (1) and low (0; referent) chronic stress, based on previous methods.[127] 

The Everyday Hassles Scale (EHS) is a validated nine-item scale that measures day-to-day 

incidents of unfair treatment based on the frequency of encounters in which the subject was treated 

unfairly.[128] Examples of perceived unfairness include being called names, implied as a liar or 

unintelligent, etc. Each item ranges from 1-6 (1=never to 6=almost every day), with the final score 

calculated as a sum of all nine items. A higher score on the scale represents a higher frequency of 

hassles each day and therefore more stressors. This scale has been previously validated for use in 

multi-ethnic populations.[181, 182] The scale will be examined based on previous literature as a 

categorical variable: 9 = no discrimination (low), 10 to 18 = moderate discrimination (med), or 

>18 = high discrimination (high).[87, 124, 181] Internal reliability /consistency estimates of the 

EHS measure were fairly good based on commonly accepted standards (Cronbach’s alpha= 0.88, 

95%CI (0.85, 0.88)). 

The validated, four-item Cohen’s perceived stress scale (PSS-4) [31, 183] was used as the third 

psychosocial factor. The scale was only available at MESA Exam 5, and calculated as the sum of 

four questions related to control, confidence, things going your way, and insurmountable 

difficulties (possible values range from 0-never to 5-always). The PSS-4 had questionable internal 

reliability/consistency (Cronbach’s alpha= 0.65, 95%CI (0.67, 0.70)), this is consistent with 

previous studies examining the validity of the PSS-4 with more extensive versions of the 

scale.[184] As the Cronbach measure is sensitive to the number of components included in the 

test,[134] the estimate may be attributed to the PSS only being comprised of four questions. Given 

the suboptimal level of reliability in the measure and to maximize statistical power, the PSS-4 was 

analyzed as a dichotomous variable by the midpoint of the scale (Low ≤8 vs. high >8). A value 
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greater than 8 on the PSS-4 scale ensures that an individual experienced stress “fairly often” for at 

least one component. For information on the subcomponents of each psychosocial factor, please 

refer to supplementary table S1. 

 

Covariate descriptions 

DNAm models were adjusted for the following core set of covariates: age, sex, BMI, race/ethnicity, 

education, income, and enrichment scores for each of four major white blood cell types 

(neutrophils, B cells, T cells, and natural killer cells) to correct for differential peripheral blood 

composition. All covariates were baseline measures evaluated at MESA Exam 1, with the 

exception of cell composition, which was assessed at MESA Exam 5, when sample collection for 

the Epigenetic study was conducted.  

Height and weight measurements for calculating continuous BMI were taken at clinical MESA 

Exam 1 and reported in kg/m2. There were three racial/ethnic groups in the current study (non-

Hispanic White, African-American, and Hispanic). Education was measured categorically by the 

following designations: 1) Less than high school diploma; 2) High school graduate or some college, 

but no degree; 3) Technical/associate/bachelor degree; and 4) Post college training. Income was 

calculated as a continuous measure, representing per capita adjusted household income per 

$10,000 or (continuous income/# people supported)/10,000).  

 

Supplementary analyses adjusted for physical activity (total metabolic equivalent of task (MET) 

minutes/week of all light, moderate, and vigorous activity). Total physical activity was self-

reported at MESA Exam 1 using a detailed semi-quantitative questionnaire based on the Cross-

Culture Activity Participation Study.[121] Additionally, total caloric intake (kcal/day) was 

assessed at MESA Exam 1 using a food frequency questionnaire that was adapted from the Insulin 

Resistance Atherosclerosis Study to ensure cross-cultural validity.[121] Physical activity and 

caloric intake were incorporated in order to account for stress related behavioral factors that may 

affect DNAm.  

 

Lastly, for any significant findings, we explored if additionally controlling for saturated, 

monounsaturated, and polyunsaturated fat intake mitigated the effects. This was performed to 

account for information in the current literature that found Western-like diet patterns (high 

saturated fat intake) exacerbated cardiovascular and hypothalamic-pituitary-adrenal (HPA) 

responses to chronic stress.[185] Therefore, we intended to control for the indirect effect of stress 

on DNAm by fat consumption.   

 

 

Statistical analyses 

Initial analyses included descriptive distributions, as well as bivariate tests between each covariate 

and each psychosocial measure. Bivariate tests were conducted for continuous variables using a 

Student’s T-test for the PSS-4 and an analysis of variance (ANOVA) for CSS and EHS measures. 

Categorical comparisons were tested using a standard Chi-squared test. Tests were considered 

statistically significant at the alpha 0.05 level. 
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To avoid multiple testing concerns associated with conducting thousands of statistical tests for all 

CpGs of interest, we employed a two-level model for each unique gene (87 genes from 97 obesity 

GWAS SNPs) treating the CpG as the level-1 unit and the individual as the level-2 unit.  

Hierarchical models allow for repeated measures in longitudinal data, and analogously, we treated 

multiple CpGs within each gene as a “repeated measure” within an individual. The two-level 

model allowed us to fit a regression to the individual measurements while accounting for 

systematic unexplained variation among CpGs in the each gene. Each individual had a unique 

random intercept, which allowed for “within-subject” correlation of gene-specific CpGs to vary 

across individuals, along with fixed effects for the association between psychosocial factor and 

gene-specific DNAm. Such techniques have proven to be effective in prior DNAm studies of 

similar design.[110, 186]  

The two-level model also allowed for CpG specific variables such as shore/shelf status and 

promoter status, along with an interaction term of CpG type (shore/shelf or promoter indicator) 

and psychosocial factor, to be included in all gene-level analyses. 

The basic model was as follows: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1 𝑃𝐹𝑖 +  𝛽′2 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑖 + 𝛽′3 𝐼𝑗 + 𝛽′4 𝑃𝐹𝑖 ∙ 𝐼𝑗 + 𝜂𝑖 + 𝜖𝑖𝑗    

     𝑌𝑖𝑗: The methylation value for site j for individual 𝑖 within each given gene 

     𝑃𝐹𝑖: Psychosocial Factor measure on individual 𝑖 

     𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑖: Covariate measures on individual 𝑖 

     𝐼𝑗: Promoter region indicator ( 𝐼𝑗 = 1 affirmative; else 𝐼𝑗 = 0) 

     𝛽0: Overall mean of M-value when all predictors are 0 (model intercept) 

     𝛽1: Difference in M-value between psychosocial factor categories  

     𝛽′2: Vector of parameter estimates by demographic covariates 

     𝛽′3: Vector of parameter estimates by CpG type (promoter or shore/shelf) 

     𝛽′4:  Vector of parameter estimates for the difference in psychosocial factor effect on the M-

value between promoter and non-promoter sites or between shore/shelf and non-shore/shelf sites/  

     𝜂𝑖 : Random effect for individual 𝑖, 𝜂𝑖~𝑁(0, 𝜎2
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 

      𝜖𝑖𝑗: Residual site-level error 𝜖𝑖𝑗~𝑁(0, 𝜎𝑒𝑟𝑟𝑜𝑟
2 ) 

The errors 𝜖𝑖𝑗 with variance 𝜎𝑒𝑟𝑟𝑜𝑟
2  represent the gene-specific “within-subject-variation”, which 

may include DNAm measurement error, natural variation in DNAm between unique CpGs, and 

variation between subjects beyond what is explained by the stress level indicator. The random 

effect for an individual 𝜂𝑖 with variance 𝜎2
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  represents variation between individuals, 

beyond what is explained by gene-level DNAm.  
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Prior genomic studies have confirmed that DNAm can be allele-specific,[35, 100-102] and thus, 

independent tests of association should account for SNPs within a pre-defined region of the CpG 

site. A standard practice in array-based DNA methylation studies is to remove any CpG from the 

analysis that may be affected by the presence of a SNP within or near the probe interrogating the 

CpG of interest. As mentioned previously, the current study filtered out CpGs based on Illumina 

annotation of a SNP being within 10 base pairs of the CpG of interest. We additionally flagged a 

larger set of CpGs that might be affected by SNPs based on a recent study by Liu et al. using 450k 

data, which identified 97,658 CpG-SNP pairings where methylation was significantly associated 

with genotype.[187]  

Supplementary models were examined to ensure that we were not missing potential effects that 

were being masked by various model specifications: 1) initial models stratified by sex, 2) initial 

models stratified race, 3) initial models stratified ever/never obese, 4) using a restricted set of the 

core covariates (no longer adjusting for baseline BMI) and 5) creating a composite score for stress 

for those with exposure to high levels of stress in at least two of the three psychosocial variables. 

For genes associated with any one of the psychosocial variables, we assessed whether genetic 

expression is also associated with DNAm. Cross-sectional associations between DNA methylation 

and gene expression levels were assessed at the end of the study follow-up period (exam 5). We 

fit a single model for each gene transcript, which treated transcript level as the dependent variable, 

adjusting for a core set of covariates (age, sex, race/ethnicity, and enrichment scores for neutrophils, 

B cells, T cells and natural killer cells) as the predictors. These methods have been used previously 

in a similar study by Needham et al.[110] 

All p-values for fixed effects in multilevel models were obtained by Kenward and Roger’s methods 

for mixed model comparisons. [188] Despite minimizing all potential test that could have been 

performed, results were additionally adjusted for multiple testing using a non-conservative false 

discovery rate, as detailed by Benjamini and Hochberg.[189] All analyses were performed using 

R version (R v3.3.1 (2016-06-21)).[190] Several R packages were used for data pre-processing 

(lumi)[168] and multilevel modeling (lme4, pbkrtest).[191, 192] Flowchart of DNAm QC and CpG 

filtering process was created using the Google drive web tool, draw.io diagrams. 
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4.3 Results 

Of the 1,264 participants in the methylation study, 284 were removed due to missing data on study 

covariates, leaving a final sample size of N=1,180. There were a total of 2,528 CpGs within 87 

unique obesity genes available for analysis after performing quality control measures and CpG 

reduction. The median number of CpGs per gene was 19 (mean~29), ranging from as low as 3 

sites to 395 sites per gene (Table 1). There was good coverage of promoter regions, as most genes 

had at least a third of all CpGs located within the promoter.  

Demographic information can be found in Table 2. The MESA participants are an older population 

of adults, with a mean age of 59.9 years at baseline. A majority of the participants were female 

(51.5%) and identified as non-Hispanic White (48.0%). The average BMI level in the overall 

population was just towards the high end of the overweight range at 29.2 kg/m2. An overwhelming 

majority were non-smokers (86.5%) and tended to be educated, with only 13.8% not having 

received at least a high school degree.  

Psychosocial variables are presented either categorically or dichotomously as detailed in the 

methods section. Approximately 38.7% of the cohort identified as having a high chronic burden 

of stress, with another ~30% claiming to have at least some level of moderate (medium) stress. 

The CSS was associated with age, sex, baseline BMI, and adjusted income in bivariate analyses 

(p-values <0.001), but not with race, smoking status or education level (p-value >0.05). For the 

everyday hassles measure, 54.2% reported a medium level, while 23.6% reported experiencing 

high levels. This measure was associated with age, race/ethnicity, smoking status, adjusted income, 

and categorical education (p-values <0.05).  BMI level and sex distribution did not significantly 

differ across categories of EHS (Table 1). Cohen’s perceived stress scale indicated that roughly 

40% of the population perceived their lives to be stressful. Education was significantly associated 

with the PSS-4 (p-value=0.001). Also, a significant amount of women and those with higher 

income reported higher levels of perceived stress (p-values <0.001). No other covariates 

significantly varied by PSS-4 level.   

 

Hierarchical models for gene-level DNAm analysis 

For multilevel models adjusting for core covariates, we found two genes (C9orf93 and FIGN) that 

were significant on some level of the CSS psychosocial factor at an uncorrected alpha threshold 

of 0.05. For the gene C9orf93, those with high CSS had a higher level of methylation compared to 

those with low CSS (beta= 0.055, p-value=0.008). Additionally, we observed an interaction 

between high CSS and sites within the promoter region of C9orf93 showing lower levels of 

methylation compared to the referent population (beta= -0.064, p-value=0.006). For FIGN, the 

only potentially significant finding was with the interaction between high CSS and sites within the 

shore/shelf region (beta=0.133, p-value=0.004). CSS comparisons were also robust to additional 

adjustments for physical activity and caloric intake (not shown).  

We recognized the potential for CpGs to vary within a gene, depending on the type of site (i.e. 

promoter or shore/shelf),[193] and therefore conducted a sensitivity analysis for potentially 

significant results by including a random slope for specific site types. Results did not change 
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significantly for either C9orf93 or FIGN in these sensitivity models. Most notably, however, none 

of these findings was significant after correcting for multiple comparisons using FDR, indicating 

potentially spurious results. No marginally significant effects were observed for the EHS or PSS-

4 measures.  

 

Supplementary analyses 

In order to expand on the findings with the CSS score, we attempted to use several different models 

to determine whether or not there was a true effect of CSS on DNAm levels. The supplementary 

models included a restricted set of covariates (no longer adjusting for baseline BMI), a composite 

score for stress for those with exposure to high levels of stress in at least two of the three 

psychosocial variables, and subsequently, models stratified by sex, race, or ever/never obese. The 

stratified models were employed primarily to account for a differential effect of the exposures on 

DNAm by race/ethnicity categories and sex. Models that stratified for ever/never obese were to 

account for the potential feedback loop of obesity causing DNAm of obesity risk genes and not in 

the assumed temporal ordering of psychosocial factor to stress measure to DNAm.  

These supplementary findings showed minimal improvement on the genes that were significantly 

associated any of the psychosocial factors and DNAm, with only FIGN and C9orf39 still coming 

up in various comparisons. FIGN was significant for the interaction between CSS-high and 

shore/shelf sites only in non-Hispanic White participants. Additionally, we observed an interaction 

between CSS-high and promoter sites only in obese subjects. Similar to the main FIGN results, at 

the uncorrected alpha 0.05 level, the composite score of stress that incorporated EHS and PSS-4 

showed that higher levels of stress interacted with shore/shelf sites within FIGN. In stratified 

analyses, this finding persisted only in obese and non-Hispanic White subjects.  

For C9orf93, the original finding of an interaction between high CSS and promoter sites was 

significant only in subjects who were not obese at baseline or during follow-up. However, once 

again, none of these supplementary results passed multiple testing corrections, indicating that 

earlier results were likely to be false positives. Further, neither C9orf93 nor FIGN had expression 

transcripts available to bolster confidence by validating the original findings.  

 

Site-specific tests 

The motivation for using multi-level models was to maximize statistical power, by reducing the 

total number of hypothesis tests performed. However, given the minimal findings at the gene-level, 

a supplementary analysis looked at all CpG sites individually to account for the possibility that a 

large number of non-significant CpGs were masking some potentially strong effects. This  analysis 

was done by performing linear regression of each psychosocial variable by DNAm at each CpG, 

totaling 12,640 tests. The top ten findings, as presented in table 4, show two unique CpGs that 

reached statistical significance at the FDR corrected threshold of 0.20 (NAV1:cg17753974 

comparing CSS-med to CSS-low and SMG6:cg17648080 comparing CSS-high to CSS-low). The 
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FDR corrected q-values for NAV1:cg17753974 and SMG6:cg17648080 were 0.15 and 0.17, 

respectively.  

The effect in NAV1:cg17753974 remained unchanged in a supplementary model that additionally 

adjusted for dietary factors of saturated, monounsaturated, and polyunsaturated fats (N=1,160; 

beta= -0.048, unadjusted p-value=2.07e-05). However, when adding in lifestyle factors such as 

exercise (measure in total metabolic equivalent of task (MET) minutes per week), the effect 

became slightly attenuated (beta= -0.043, unadjusted p-value=0.002). Further, examining 

NAV1:cg17753974 in CSS-high, we observed a similar result to CSS-med that simply did not pass 

FDR correction (beta= -0.03, p-value=0.015, q-value= 0.998).  

SMG6:cg17648080 also remained relatively unchanged when additionally adjusting for dietary 

factors of saturated, monounsaturated, and polyunsaturated fats (N=1,160; beta= -0.097, p-

value=2.55e-05). Similarly, the effect became slightly attenuated when adding exercise to the 

linear model (beta= -0.088, p-value=0.002).  

In order to determine the functional relevance of the NAV1 finding, we examined the association 

between DNAm and genetic expression, utilizing one available transcript for the NAV1 gene. We 

found that DNAm was significantly associated with expression in the model adjusting for the core 

covariates of age, sex, baseline BMI, race/ethnicity, and the four major cell type compositions 

(probeID: ILMN_1703374; estimate > 0, p-value=0.008). Expression data were not available for 

SMG6. 

 

4.4 Discussion 

The appeal of epigenetic studies is in discovering the impact of non-genetic factors on how genes 

may be expressed in the body and cause negative health conditions. The multifactorial nature of 

obesity risk made it a prime outcome for discovering sites that might be affected by environmental 

or social factors, including psychosocial stress. To our knowledge, this study is the first of it’s kind 

to assess multiple measures of psychosocial stress on DNA methylation of the most comprehensive 

set of GWAS-derived obesity risk genes in a large multi-ethnic cohort. Using robust methods to 

interrogate gene-level DNAm, we were also able to incorporate CpG level information to 

determine if there were interactions between psychosocial measures and sites within gene 

promoter regions or CpG island shores and shelves. This study also benefited from the availability 

of genetic expression data.  

We found mixed evidence to support the relationship between psychosocial stress and DNAm. 

Our analysis found that only one of the three psychosocial stress measures, chronic burden of stress, 

appeared to have a modest effect on methylation at the gene-level and at individual CpGs. 

Specifically, we found that chronic burden of stress measure appeared to have some effect at the 

gene-level for FIGN and C9orf93. The positive direction of effect in FIGN indicated that subjects 

with higher levels of CSS had greater DNAm. Conversely, in C9orf93 we found that subjects with 

higher levels of CSS had lower levels of DNAm, and an apparent interaction between CSS-high 

and promoter CpGs. While the results appeared promising, after correcting for multiple 

comparisons the effects were no longer statistically significant. While these genes are derived from 
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recent GWAS and meta-analyses for obesity, we found minimal information about the functional 

importance of FIGN and C9orf93 with respect to their role in obesity or psychosocial stress.  

FIGN, or Figetin, Microtubule Severing Factor, is know to be involved in cellular and 

developmental processes, including embryogenesis,[194] and is a member of the AAA family, 

functioning as a chaperone to ATPase.[195] Beyond that, its function with respect to obesity 

remains unknown. There is relatively little information about how C9orf93, also known as 

CCDC171, or coiled-coil domain containing 171,[196] might play a role in obesity directly or be 

affected by stressors. Given the weak associations observed with both of these genes, there may 

be little reason to move forward with them as candidates for identifying the effect of psychosocial 

stress on DNAm. 

A similar study conducted recently by Needham and colleagues examined DNAm for genes in 

stress and inflammatory pathways, some of which had been previously associated with 

psychosocial factors.[110] Their study showed that trajectories of socioeconomic status (defined 

by educational attainment) from childhood into adulthood were significantly associated with gene-

level DNAm and consequent expression in CD1D, F8, FKBP5, KLRG1, and NLRP12.[110] 

Needham et al. presented a strong case for a relationship between social factors and DNAm for 

genes directly related to the stress response, and posited psychosocial factors as a potential 

mechanism by which the stress response could lead to altered DNAm levels.  

Findings from Needham et al. showing the strength of using social measures on DNAm are 

supported by the results of another recent study of psychosocial stress and DNAm of genes related 

to the stress-response system.[197] The study, conducted by Unternaehrer et al., examined the role 

of the Trier Social Stress Test (TSST) on DNAm of the OXTR and BDNF genes. While a 

significant effect was reported for OXTR methylation, no effect was observed in BDNF, an obesity-

associated gene that was also not significantly associated with psychosocial factors in the current 

study. Unternaehrer and colleagues discussed previous examples where changes in BDNF 

methylation were associated with childhood adversity.[198] This indicated that perhaps 

methylation in the BDNF gene is more susceptible to long-term effects of stress experienced in 

early life. This would also support the finding from Needham et al., which showed a significant 

effect of childhood measures of SES and SES trajectories on DNAm in adulthood. Overall, the 

mixed findings from the current study are likely indicative of two possibilities: 1) Long-term 

measures of psychosocial factors that incorporate childhood exposures are more relevant for 

DNAm changes in adulthood, or 2) the effect of psychosocial factors on gene-level methylation of 

obesity risk genes may simply be weaker. 

The greatest effect estimate from site-specific tests was observed in comparisons of the chronic 

burden of stress variable with methylation of the Neuron Navigator 1 gene (NAV1). 

NAV1:cg17753974 is located on chromosome 1q32.1, within the gene body, and is a Shore/Shelf 

site (South Shelf) not associated with any SNPs thought to influence DNAm levels.[187] NAV1 is 

a protein-coding gene that is expressed primarily in the nervous system, as well as the heart, and 

thought to be involved in neuronal development and regeneration.[199, 200] This gene is located 

in a region that contains a cluster of genes (MYF4, FMOD, REN, PMCA4, TNNI1) thought to be 

associated with heart function[199] and was found to be over-expressed in cardiovascular tissue 

in mice.[201] To our knowledge, there is currently no information on how the gene functions with 
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respect to psychosocial stressors or obesity. However, its expression in cardiovascular tissue may 

indicate a more complex mechanism by which the stress response impacts cardio-metabolic 

systems to contribute to overall obesity. The NAV1 gene appears to be a noteworthy candidate for 

exploration of epigenetic influence on cardio-metabolic activity. 

Prior studies have shown that DNAm from single CpGs can be significantly correlated with genetic 

expression levels.[202] Over-expression of genetic risk factors examined for obesity or increased 

BMI in the current study would indicate an increased likelihood for obesity at a later time point. 

However, it is difficult to say with certainty what functional role DNAm plays in blocking 

transcription of a gene not located within the promoter region, as this is biologically what is 

assumed to be most directly responsible for the association.[81] Although, a recent study by 

Wagner and colleagues found that CpG location was less relevant for the sign of the correlation 

with gene expression compared to chromatin state, highlighting that the complex mechanisms by 

which DNAm can affect expression are still not well understood.[202] 

Results from the current study revealed hypomethylation of the NAV1 site comparing those with 

medium level of chronic burden of stress to those with a low level. While this site was not located 

within the promoter region of the gene, we observed a significant effect of DNAm at this site with 

genetic expression of the NAV1 transcript, ILMN_1703374. The direction of the effect was in the 

expected inverse direction, with hypomethylation leading to increased expression, as the 

ILMN_1703374 regression beta value was significantly above 0 at a p-value of 0.002. The 

relationship between psychosocial factors and DNAm of obesity genes is only meaningful if it 

translates to an increased risk of obesity at a later time point. Given that DNAm was assessed at 

the end of the follow-up period, it is difficult to say whether or not hypomethylation of NAV1 

would lead to more cases of obesity or vice versa (potential reverse-causation). Based on our 

results, we have determined that the association between the chronic burden of stress and DNAm 

warrants further investigation. Future studies would benefit from examining the mediatory role of 

NAV1 methylation in the pathway from chronic burden of stress to obesity at a later time point.  

 

Strengths and limitations 

The current study was strengthened by several key features. To our knowledge, this was the largest 

study of its kind to assess the impact of multiple psychosocial factors with DNA methylation of 

87 obesity risk genes. Further, the use of a large multi-ethnic population improves upon 

generalizability of results compared to other studies that are restricted to small homogenous 

populations. Using high throughput array based technology for DNAm (specifically, with 450k 

data) was also a major strength allowing us to obtain expansive genomic coverage of obesity risk 

genes. We were able to supplement evidence of DNAm differences with expression analyses, 

despite relatively small effects for our most significant DNAm findings. Lastly, we were able to 

adjust for cell composition of four major white blood cell types found in peripheral blood, which 

is an improvement upon studies that fail to do so. This reduces a major source of criticism of 

epigenetic studies that use DNA from peripheral blood, as DNAm is highly cell type and tissue 

specific with respect to methylation levels.[203]  
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A few limitations warrant comment. When correcting for epigenetic “noise,” it was necessary to 

impose multiple quality control normalization techniques, which can hinder the ability to detect 

significant differences. Though not available in the current study, supplementing 450k findings 

with other methylation technologies (e.g. pyrosequencing) would help validate our results, 

although the current study benefitted from the availability of genetic expression data, validating 

the CpG site-specific results.  

The psychosocial factors examined were intended to assess multiple forms of stress, including 

objective (CSS), perceived (PSS-4), and discriminatory measures (EHS). While the internal 

reliability of the EHS measure was quite good, the same could not be said of the PSS-4. As 

mentioned in the discussion section, the use of stress measures that are not accurately capturing 

some latent construct of more general stress limits our interpretation of results. The PSS-4 is 

generally easier to collect as the questions can be administered via telephone, but future studies 

should consider using a version of the PSS that includes more components so as to strengthen the 

consistency of the measure.   

Another possible explanation for the minimal findings in the PSS-4 is that it was assessed cross-

sectionally with DNAm at MESA Exam 5. Given that we observed several cases of the impact 

chronic measures of stress on DNAm, it is possible that there was not enough time for PSS 

measures to have an effect on DNAm. While there isn’t a clear consensus on the exact timeframe 

required for stressful life experiences to affect DNAm changes, earlier studies showing effects of 

longer-term exposures indicate that cross-sectional assessment of stress and methylation may not 

detect significant differences.  

We elected to employ a more rigorous approach for our CpG filtering criteria, primarily to ensure 

that methylation changes were reflective of responses to stress and not merely due to the presence 

of a SNP within the Illumina probe. This approach is common in DNAm studies that do not have 

the benefit of adjusting for genotypic variation among subjects. The current study was also limited 

in this respect. Future studies that can incorporate genetic data to account for allele-specific 

methylation changes would strengthen statistically significant findings.  

Genetic data would also allow for the inclusion of genetic ancestry markers to adjust for variation 

that might be explained by population stratification. While we were to able to control for self-

reported measures of race/ethnicity, recent studies have shown mixed results with respect to how 

well self-reported race matches populations of homogenous ancestry. There have been reports of 

a strong correlation between self-report of being non-Hispanic White and European ancestry,[204] 

but weaker evidence of clustering of self-reported race and genetic ancestry for African-

Americans[204, 205] and Asian-Americans.[206] The possibility of residual confounding by 

population stratification remains a concern that should be addressed in future studies.  

As mentioned previously, DNAm is highly cell-type and tissue specific. A potential limitation in 

the current study is the use of DNA from peripheral blood leukocytes in the first place. There are 

examples of how DNAm is significantly altered in adipose tissue after intervening on factors 

related to stress, such as physical activity,[120] indicating that there may be biological systems 

that are more reflective of DNAm changes in the short term, depending on the tissue examined. 

Ideally, studies should have tissues specific to the disease available for DNAm analysis, but in the 

context of a large population-based cohort study, this may not be economical or practically feasible.  
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It is important to note that the current study was not well powered to detect small effects. 

Consequently, we did not employ a more stringent cutoff for FDR significance, consistent with 

recent DNAm studies.[110] The FDR q-value of 0.2 ensured that there was less than a 20% chance 

this discovery was, in fact, a false positive.[207] This cutoff was used to prevent limiting the study 

from discovering sites that may be of interest for future research. However, a more stringent cutoff 

would further minimize the concern of reporting a false positive finding.  

The current study aimed to investigate the relationship between psychosocial factors and DNAm 

of obesity risk genes. We were able to show that a specific CpG within NAV1 was significantly 

lower in DNAm for those with some level of chronic burden of stress, compared to those with no 

stress, and this result was associated with a higher level of expression in MESA participants. While 

we observed minimal evidence of small effects at the gene-level for FIGN and C9orf93, these 

findings ultimately did not withstand FDR correction, indicating that they were likely false 

positives. As prior studies have established significant effects of social factors on genes from 

various other pathways, more research is warranted. Future studies would benefit from further 

exploration of the full network of genes that might be affected by psychosocial factors, and if the 

sites within NAV1 can be replicated in independent populations. 
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4.5 Tables and Figures 

Table 1. Features of CpG sites in obesity risk genes (N=2,528 CpGs) 

Gene 

# of 

CpG 

sites 

# In 

promoter 

region 

(%) 

# In 

shore/shelf 

region 

(%) 

# 

associated 

with 

SNPs (%) 

Expression 

data 

available 

ADCY3 29 11 (37.9) 9 (31.0) 2 (6.90) Yes 

AGBL4 52 27 (51.9) 17 (32.7) 1 (1.90) No 

ASB4 17   8 (47.1) 3 (17.6) 0 (0.00) No 

ATP2A1 27 12 (44.4) 16 (59.3) 0 (0.00) No 

BCDIN3D 14 12 (85.7) 8 (57.1) 0 (0.00) Yes 

BDNF 74 59 (79.7) 38 (51.4) 0 (0.00) No 

C18orf8 10   8 (80.0) 2 (20.0) 0 (0.00) No 

C6orf106 21   9 (42.9) 11 (52.4) 0 (0.00) No 

C9orf93 7   6 (85.7) 2 (28.6) 0 (0.00) No 

CADM1 47 13 (27.7) 10 (21.3) 0 (0.00) No 

CADM2 27   9 (33.3) 12 (44.4) 0 (0.00) No 

CALCR 34 29 (85.3) 18 (52.9) 0 (0.00) No 

CBLN1 15   9 (60.0) 4 (26.7) 0 (0.00) No 

CLIP1 25   7 (28.0) 7 (28.0) 0 (0.00) Yes 

CREB1 16   9 (56.2) 4 (25.0) 0 (0.00) Yes 

DMXL2 12   7 (58.3) 3 (25.0) 1 (8.30) Yes 

EHBP1 35 17 (48.6) 11 (31.4) 0 (0.00) Yes 

ELAVL4 23 20 (87.0) 2 (8.70) 0 (0.00) No 

EPB41L4B 12   3 (25.0) 6 (50.0) 0 (0.00) Yes 

ERBB4 33   6 (18.2) 11 (33.3) 1 (3.00) No 

ETS2 16   7 (43.8) 7 (43.8) 0 (0.00) Yes 
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ETV5 28 17 (60.7) 10 (35.7) 0 (0.00) No 

FHIT 56 12 (21.4) 10 (17.9) 0 (0.00) Yes 

FIGN 22 10 (45.5) 7 (31.8) 0 (0.00) No 

FOXO3 42 16 (38.1) 6 (14.3) 0 (0.00) Yes 

FPGT 14 13 (92.9) 10 (71.4) 0 (0.00) No 

FTO 36 14 (38.9) 4 (11.1) 0 (0.00) Yes 

FUBP1 15   7 (46.7) 8 (53.3) 0 (0.00) Yes 

GALNT10 40   7 (17.5) 11 (27.5) 1 (2.50) Yes 

GBE1 17 11 (64.7) 9 (52.9) 0 (0.00) Yes 

GNAT2 7   6 (85.7) 0 (0.00) 0 (0.00) No 

GNPDA2 10   7 (70.0) 5 (50.0) 0 (0.00) Yes 

GPRC5B 20   8 (40.0) 3 (15.0) 0 (0.00) Yes 

GRID1 59 21 (35.6) 15 (25.4) 0 (0.00) No 

GRP 16 13 (81.2) 7 (43.8) 0 (0.00) No 

HHIP 18 15 (83.3) 9 (50.0) 0 (0.00) No 

HIF1AN 11 10 (90.9) 0 (0.00) 0 (0.00) Yes 

HIP1 42 13 (31.0) 13 (31.0) 0 (0.00) Yes 

HNF4G 3   1 (33.3) 0 (0.00) 0 (0.00) No 

HSD17B12 19 11 (57.9) 5 (26.3) 0 (0.00) No 

IFNGR1 12   8 (66.7) 6 (50.0) 0 (0.00) Yes 

INO80E 18 14 (77.8) 3 (16.7) 0 (0.00) Yes 

KCNK3 29   5 (17.2) 13 (44.8) 0 (0.00) Yes 

KCTD15 14   6 (42.9) 4 (28.6) 0 (0.00) Yes 

LINGO2 3   0 (0.00) 0 (0.00) 0 (0.00) No 

LMX1B 46   8 (17.4) 19 (41.3) 0 (0.00) No 

LRP1B 37   9 (24.3) 11 (29.7) 0 (0.00) No 
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MAP2K5 23   8 (34.8) 4 (17.4) 1 (4.30) Yes 

MC4R 6   5 (83.3) 0 (0.00) 0 (0.00) No 

MIR548A2 10   0 (0.00) 0 (0.00) 0 (0.00) No 

MTCH2 13   8 (61.5) 6 (46.2) 0 (0.00) Yes 

MTIF3 26 22 (84.6) 4 (15.4) 0 (0.00) Yes 

NAV1 67 29 (43.3) 12 (17.9) 0 (0.00) Yes 

NEGR1 22 13 (59.1) 4 (18.2) 0 (0.00) No 

NLRC3 24   7 (29.2) 5 (20.8) 0 (0.00) No 

NRXN3 67 13 (19.4) 14 (20.9) 0 (0.00) No 

NT5C2 24 10 (41.7) 5 (20.8) 2 (8.30) Yes 

OLFM4 8   6 (75.0) 0 (0.00) 0 (0.00) No 

PARK2 75 18 (24.0) 15 (20.0) 3 (4.00) No 

PGPEP1 16 12 (75.0) 8 (50.0) 0 (0.00) No 

PRKD1 20 10 (50.0) 4 (20.0) 0 (0.00) No 

PTBP2 13 10 (76.9) 6 (46.2) 0 (0.00) Yes 

QPCTL 19 16 (84.2) 6 (31.6) 0 (0.00) Yes 

RABEP1 15   7 (46.7) 7 (46.7) 0 (0.00) Yes 

RALYL 31 21 (67.7) 12 (38.7) 0 (0.00) No 

RARB 28 17 (60.7) 0 (0.00) 1 (3.60) No 

RASA2 19   8 (42.1) 4 (21.1) 0 (0.00) Yes 

RPTOR 395 11 (2.80) 214 (54.2) 15 (3.80) Yes 

SBK1 19   6 (31.6) 11 (57.9) 1 (5.30) Yes 

SCARB2 18 12 (66.7) 5 (27.8) 0 (0.00) Yes 

SEC16B 9   4 (44.4) 0 (0.00) 0 (0.00) No 

SLC39A8 23 20 (87.0) 4 (17.4) 0 (0.00) Yes 

SMG6 44 13 (29.5) 8 (18.2) 0 (0.00) No 



 

 

72 

STXBP6 17   4 (23.5) 2 (11.8) 0 (0.00) No 

TAL1 23   0 (0.00) 13 (56.5) 0 (0.00) No 

TCF7L2 79 11 (13.9) 24 (30.4) 0 (0.00) Yes 

TDRG1 9   8 (88.9) 0 (0.00) 0 (0.00) No 

TFAP2B 43   8 (18.6) 24 (55.8) 0 (0.00) No 

TLR4 3   2 (66.7) 0 (0.00) 0 (0.00) Yes 

TMEM18 16 10 (62.5) 6 (37.5) 1 (6.20) Yes 

TOMM40 12 10 (83.3) 3 (25.0) 0 (0.00) Yes 

TRIM66 10   7 (70.0) 0 (0.00) 0 (0.00) Yes 

UBE2E3 14   7 (50.0) 4 (28.6) 0 (0.00) Yes 

USP37 16 12 (75.0) 2 (12.5) 0 (0.00) Yes 

ZBTB10 14   6 (42.9) 7 (50.0) 0 (0.00) No 

ZC3H4 16   8 (50.0) 5 (31.2) 0 (0.00) Yes 

ZFP64 42 14 (33.3) 18 (42.9) 0 (0.00) No 

CpGs included in this table are based on the number of total CpGs after 

quality control filtering was employed.  The column labeled “Expression 

data available” indicates that there is at least one transcript within the gene, 

available for functional analysis. The column for “# of CpGs associated 

with SNPs” is based on associations detailed by Liu et al. 
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Table 2. Demographic information on MESA participants (N=1,180) 

  Chronic Burden of Stress Score Everyday Hassles Score Cohen’s PSS-4 

 Overall Low Med High Low Med High Low High 

N 1,180 372 (31.5) 351 (29.7) 457 (38.7) 261 (22.1) 639 (54.2) 280 (23.7) 708 (60.0) 472 (40.0) 

          

Age Mean (SD) 59.9 (9.49) 61.5 (9.46) 61.0 (9.40) 57.8 (9.22) 63.1(9.69) 60.4 (9.27) 55.7 (8.34) 60.3 (9.30) 59.4 (9.77) 

    p<0.001   p<0.001  p=0.119 

Sex          

  Female 608 (51.5) 151 (12.8) 180 (15.3) 277 (23.5) 124 (10.5) 346 (29.3) 138 (11.7) 334 (28.3) 274 (23.2) 

  Male 572 (48.5) 221 (18.7) 171 (14.5) 180 (15.3) 137 (11.6) 293 (24.8) 142 (12.0) 374 (31.7) 198 (16.8) 

    p<0.001   p=0.135  p<0.001 

Race/ethnicity          

  Non-Hispanic White 566 (48.0) 190 (16.1) 164 (13.9) 212 (18.0) 104 (8.81) 352 (29.8) 110 (9.32) 346 (29.3) 220 (18.6) 

  African-American 237 (20.1)   64 (5.42)   73 (6.19) 100 (8.47)   31 (2.63) 129 (10.9)   77 (6.52) 146 (12.4)   91 (7.71) 

  Hispanic 377 (31.9) 118 (10.0) 114 (9.66) 145 (12.3) 126 (10.7) 158 (13.4)   93 (7.88) 216 (18.3) 161 (13.6) 

    p=0.477   p<0.001  p=0.426 

BMI (kg/m2) Mean (SD) 29.2 (5.26) 28.4 (4.71) 29.4 (5.32) 29.8 (5.55) 28.8 (4.80) 29.4 (5.27) 29.4 (5.62) 29.2 (5.20) 29.3 (5.35) 

    p<0.001   p=0.352  p=0.947 

Smoking status          

  No 1035 (86.5) 320 (27.1) 313 (26.5) 387 (32.8) 237 (20.1) 551 (46.7) 232 (19.7) 616 (52.2) 404 (34.2) 

  Yes   162 (13.5)   52 (4.41)   38 (3.22)   70 (5.93)   24 (2.03)   88 (7.46)   48 (4.07)   92 (7.80)   68 (5.76) 

    p=0.174   p=0.026  p=0.544 

Income Median (SD) a 2.25 (1.89) 2.25 (2.05) 2.25 (1.87) 2.08 (1.74) 1.80 (1.66) 2.25 (2.00) 2.22 (1.78) 2.25 (1.99) 1.88 (1.68) 

    p<0.001   p<0.001  p<0.001 

Education b          

  Category 1 163 (13.8)   57 (4.83)   45 (3.81)   61 (5.17)   69 (5.85)   75 (6.36) 19 (1.61)   81 (6.86)   82 (6.95) 

  Category 2 432 (36.6) 118 (10.0) 141 (11.9) 173 (14.7)   95 (8.05) 238 (20.2) 99 (8.39) 257 (21.8) 175 (14.8) 

  Category 3 369 (31.3) 118 (10.0) 110 (9.32) 141 (11.9)   57 (4.83) 214 (18.1) 98 (8.31) 220 (18.6) 149 (12.6) 

  Category 4 216 (18.3)   79 (6.69)   55 (4.66)   82 (6.95)   40 (3.39) 112 (9.49) 64 (5.42) 150 (12.7)   66 (5.59) 

    p=0.243   p<0.001  p=0.001 

 
Statistical tests for continuous covariates were done using a Student’s T-test for PSS-4 and ANOVA for CSS and EHS measures. Categorical covariates were tested using a standard Chi-

squared test. P-values less than 0.05 are in bold.  
a Income is a continuous measure calculated by per capita adjusted household income per $10,000 (continuous income/# of people supported)/10,000). 
b Categories 1-4 for the education variable are coded as follows: 1) Less than high school diploma; 2) High school graduate or some college, but no degree; 3) Technical/associate/bachelor 

degree; 4) Post college training. 
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Table 3. Multivariate regression of M-value on psychosocial factors in obesity risk genes (N=1,197) 

 C9orf93  FIGN 

 Estimate SE P-val q-val  Estimate SE P-val q-val 

CSS med  0.026 0.040 0.107 0.999   -0.031 0.027 0.247 0.999 
CSS high  0.036 0.022 0.008 0.999   -0.016 0.025 0.521 0.999 

Promoter -5.596 0.017 0.000 -  -5.120 0.032 0.000 - 

Shore/Shelf -0.027 0.013 0.045 -  -0.634 0.035 0.000 - 

CSS med * Promoter -0.038 0.025 0.127 0.999  0.001 0.047 0.984 0.999 

CSS high * Promoter -0.064 0.023 0.006 0.999  -0.048 0.044 0.271 0.999 

CSS med * Shore/Shelf 0.007 0.019 0.697 0.999  0.058 0.050 0.246 0.999 

CSS high * Shore/Shelf 1.54e-03 0.018 0.931 0.999  0.133 0.047 0.004 0.999 

This tables reports DNAm findings for the chronic burden of stress scale measure (CSS) and potentially 

significant genes at the unadjusted alpha 0.05 level; these values are marked in bold font. The referent group for 

comparisons is study participants with low CSS. Results are derived from a two-level model treating the CpG as 

the level-1 unit and the individual as level-2 unit, adjusting for core covariates: categorical education and 

continuous per capita adjusted household income, sex, smoking status, race/ethnicity, and enrichment score for 

the four major blood cell types (B cells, T cells, NK cells, and neutrophils). 
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Table 4. Site-specific linear regression of M-Value on psychosocial factors in obesity risk genes (N=1,180) 

CpG site specific tests were conducted using linear regression, adjusting for core covariates: categorical education and continuous per 

capita adjusted household income, sex, smoking status, race/ethnicity, and enrichment score for the four major blood cell types (B cells, 

T cells, NK cells, and neutrophils). Results in bold font indicate that the test reached and FDR significance threshold of 0.20, correcting 

for 12,640 tests. The referent group is the low level of the psychosocial factor, for any of the three exposures examined. CSS represents 

the chronic burden of stress scale measure, categorized by low, medium and high stress. EHS represents the everyday hassles scale, 

categorized by low, medium and high discrimination. PSS-4 represents Cohen’s perceived stress scale, categorized by low and high, 

perceived stress. 

Psychosocial 

Factor  

(ref: Low) 

Gene TargetID 

 

Chr 

 

Estimate P-val q-val 
Promoter 

region 

Shore/Shelf 

region 

SNP 

associated 

Expression 

Data 

 

CSS med NAV1 cg17753974 1 -0.048 1.02e-05   0.152 No Yes No Yes 

CSS high SMG6 cg17648080 17 -0.096 2.68e-05 0.169 Yes No No No 

PSS-4 high CALCR cg05284750 6 -0.066 1.34e-04 0.405 Yes Yes No No 

EHS med GBE1 cg14465376 9 -0.060 1.60e-04 0.405 No No No Yes 

PSS-4 high NAV1 cg14780255 1 -0.039 1.51e-04 0.405 No No No Yes 

EHS med HIP1 cg02713883 10 -0.041 4.46e-04 0.719 No Yes No Yes 

CSS med TCF7L2 cg03089923 3 -0.054 5.34e-04 0.719 No No No Yes 

EHS med USP37 cg05867885  -0.058 5.69e-04 0.719 No Yes No No 

PSS-4 high FOXO3 cg08345465 7 -0.035 4.96e-04 0.719 No No No Yes 

CSS med NAV1 cg23236366 1 -0.043 4.32e-04 0.719 Yes No No Yes 
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Table S1. Detailed questionnaire information for psychosocial variables 

a
 Positive items were reverse coded when calculating the total values for PSS-4. 

  

Chronic Burden of 

Stress Scale (CSS) 

Response options: 

___No 

___Yes 

 

Ongoing problems lasting greater than 6 months in one of 

the following domains: 

1) Personal Health 

2) Health of a loved one 

3) Job 

4) Relationship 

5) Financial 

 

Everyday Hassles Scale 

(EHS) 

Response options: 

1. Four or more times  

2. Two or three times  

3. Once  

4. Never 

 

6) You have been treated with less courtesy than other 

people  

7) You have been treated with less respect than other 

people 

8) You have received poorer service than other people at 

restaurants or stores  

9) People have acted as if they think you are not smart 

10) People have acted as if they are afraid of you 

11) People have acted as if they think you are dishonest  

12) People have acted as if they’re better than you are  

13) You have been called names or insulted  

14) You have been threatened or harassed  
 

Cohen’s Perceived 

Stress Scale (PSS-4) 

Response options: 

___0=never 

___1=almost never  

___2=sometimes  

___3=fairly often  

___4=very often  

1) In the last month, how often have you felt that you 

were unable to control the important things in your 

life? 

 

2) In the last month, how often have you felt confident 

about your ability to handle your personal problems? a 

 

3) In the last month, how often have you felt that things 

were going your way? a 

 

4) In the last month, how often have you felt difficulties 

were piling up so high that you could not overcome 

them? 
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Figure S1. Flowchart of DNAm QC procedures and CpG filtering criteria at multiple 

stages 
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Chapter 5 

Conclusion 

 

5.1 Summary of key findings 

Obesity is a medical condition affecting approximately 35% of all US adults. It is characterized by 

increased abdominal adiposity and associated with myriad negative health outcomes, including 

CVD and various cancers (e.g. breast, colon, and endometrial). Obesity has also been found to be 

an independent risk factor for overall mortality. Not only is obesity a significant public health 

concern in the broader population, but also, disparities in the prevalence of obesity by sex and 

race/ethnicity lead to disproportionate burdens placed on various sub-populations. For example, 

the age-adjusted prevalence of obesity among non-Hispanic Black women is approximately 58%, 

while in non-Hispanic White women, it is only approximately 32%. Obesity is a multifactorial 

condition and, as a result, it must be examined with respect to multiple pathways that incorporate 

biological, behavioral, and environmental risk factors. This dissertation aimed to address 

limitations of previous studies by examining the association between psychosocial and genetic risk 

factors and obesity, as well as psychosocial factors and DNA methylation of obesity risk genes.   

Conducting a systematic review of publicly available studies, I found that there were few examples 

of gene-environment interaction studies (N=4) examining the association between psychosocial 

factors and genetic risk factors and obesity. These studies found the following statistically 

significant associations between various measures of psychosocial factors, genetic factors and 

obesity: 1) chronic burden of stress score and SNPs in EBF1 with hip circumference, 2) chronically 

stressed caregiver status and SNPs in APOE with waist circumference, 3) cumulative stress score 

and SNPs in APOE with waist circumference and BMI, and 4) receipt of public assistance and the 

MAOA short allele with BMI.  There were also few epigenetic studies (N=5 studies) that 

investigated the relationship between psychosocial factors, obesity and DNA methylation. Four of 

these studies reported statistically significant associations, albeit with modest effects, between 

various obesity measures (e.g. BMI, body weight, waist circumference, and waist to hip ratio), 

psychosocial measures (e.g. depression), and DNA methylation of genes in inflammatory 

pathways (e.g. IL6) or genes involved in the biological stress-response (e.g. SLC6A and HTR2A). 

Results of the systematic review showed that both GxE and epigenetic studies were generally 

limited to small sample populations of non-Hispanic Whites. The limited number of studies, and 

the modest effects reported, indicated that more research is required and should include 

populations of varied race/ethnicity, so as to provide more generalizable findings. 
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Results from the gene-environment interaction study in chapter 3 established statistically 

significant main effects in the overall MESA population for an obesity genetic risk score and for 

the chronic burden of stress scale with obesity. I did not find statistically significant interactive 

effects, on either the multiplicative or additive scale, between any of the psychosocial factors 

examined (e.g. chronic burden of stress, everyday hassles, and depression) and an obesity genetic 

risk score and obesity. In supplementary analyses, stratified by race/ethnicity, I showed evidence 

of statistically significant sub-additive interaction between each of the psychosocial factors with 

the obesity genetic risk score and obesity in African-Americans. Furthermore, additive interaction 

was statistically significant in Hispanic-Americans, comparing the everyday hassles measure, 

obesity genetic risk score and obesity.  

Chapter 4 presented results from a DNA methylation study in which I found no statistically 

significant relationship between any of three psychosocial factors (i.e. chronic burden of stress, 

everyday hassles, and Cohen’s perceived stress scale) and gene-level DNA methylation of 87 

BMI-associated genes. At the CpG level, I found statistically significant associations between the 

chronic burden of stress scale measure and DNA methylation of sites within the NAV1 and SMG6 

genes. Using a single available transcript from genetic expression data, I showed that NAV1 DNA 

methylation was statistically significantly inversely correlated with NAV1 expression (i.e. higher 

NAV1 DNA methylation was associated with decreased expression). Together, chapters 4 and 5 

are to my knowledge, the first studies of their kind to examine multiple psychosocial factors and 

comprehensive obesity polygenic risk with obesity and DNA methylation of obesity risk genes in 

a large, multi-ethnic, longitudinal cohort study. 

 

5.2 Conclusion and future directions 

The effect of psychosocial factors on obesity is thought to operate primarily through mediating 

mechanisms, such as energy intake (diet) and expenditure (physical activity). However, animal 

models have consistently suggested that independent of these behavioral factors, there are 

underlying biological mechanisms that can lead to fat-storage based on a stress-response reaction 

to an external stimulus of stress. As these mechanisms have not been fully elucidated in humans, 

this dissertation aimed to identify potentially new model systems that incorporate psychosocial 

risk with obesity genetic risk to cause obesity. This was examined by conducting a gene-

environment interaction study and a DNA methylation study in a large multi-ethnic longitudinal 

cohort. Both analyses showed specific examples of statistically significant relationships between 

psychosocial risk factors and genetic risk factors of obesity.  

As emphasized throughout this dissertation, gene-environment interactions and epigenetic 

mechanisms allow for intervention on a modifiable risk factor like psychosocial stress, when 

intervening on inherited genetic sequences may not be practical or feasible. There remains a clear 

genetic component of obesity risk, and therefore, establishing new points of intervention is 

essential to preventing specific cases of obesity where onset only occurs in the presence of a 

psychosocial factor or when a gene is differentially expressed due to the effect of psychosocial 

stress on DNA methylation. Future research should expand on these studies in order to replicate 

or validate the current dissertation’s findings, as well as to investigate biological pathways through 
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which interactions between psychosocial factors and genetic factors occur, in order to understand 

fully all mechanisms of the risk of obesity. 
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