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Abstract

A Hybrid Dynamical Systems Theory for Legged Locomotion

by

Samuel A. Burden

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Legged locomotion arises from intermittent contact between limbs and terrain. Since it
emerges from a closed–loop interaction, reductionist study of body mechanics and terrestrial
dynamics in isolation have failed to yield comprehensive strategies for forward– or reverse–
engineering locomotion. Progress in locomotion science stands to benefit a diverse array of
engineers, scientists, and clinicians working in robotics, neuromechanics, and rehabilitation.
Eschewing reductionism in favor of a holistic study, we seek a systems–level theory tailored
to the dynamics of legged locomotion.

Parsimonious mathematical models for legged locomotion are hybrid, as the system state
undergoes continuous flow through limb stance and swing phases punctuated by instanta-
neous reset at discrete touchdown and liftoff events. In their full generality, hybrid systems
can exhibit properties such as nondeterminism and orbital instability that are inconsistent
with observations of organismal biomechanics. By specializing to a class of intrinsically self–
consistent dynamical models, we exclude such pathologies while retaining emergent phenom-
ena that arise in closed–loop studies of locomotion.

Beginning with a general class of hybrid control systems, we construct an intrinsic state–
space metric and derive a provably–convergent numerical simulation algorithm. This resolves
two longstanding problems in hybrid systems theory: non–trivial comparison of states from
distinct discrete modes, and accurate simulation up to and including Zeno events. Focusing
on models for periodic gaits, we prove that isolated discrete transitions generically lead the
hybrid dynamical system to reduce to an equivalent classical (smooth) dynamical system.
This novel route to reduction in models of rhythmic phenomena demonstrates that the
closed–loop interaction between limbs and terrain is generally simpler than either taken
in isolation. Finally, we show that the non–smooth flow resulting from arbitrary footfall
timing possesses a non–classical (Bouligand) derivative. This provides a foundation for
design and control of multi–legged maneuvers. Taken together, these contributions yield
a unified analytical and computational framework—a hybrid dynamical systems theory—
applicable to legged locomotion.
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Chapter 1

Introduction

Dynamic interaction with the environment provides the foundation for autonomy. An agent’s
perception of the world, and its action in it, is directly mediated by the physical phenom-
ena governing the coupling of its self with the non–self. It is the agent’s primary aim to
respond appropriately to the consequences of its motor actions in the world. Biological or-
ganisms have developed exquisite strategies to achieve this aim across a staggering array
of physical scales, material compositions, and body morphologies. In contrast, artifacts1

are numb, dumb, and clumsy, struggling with each step in the perception → action loop
depicted in Figure 1.1. As scientists and engineers, we will not be permitted the luxury of
uncovering the principles underlying autonomy through random experimentation over evo-
lutionary timescales. Instead, we must derive systematic methodologies for reverse– and
forward–engineering of sensorimotor control.

Given the astounding range of ecological contexts populated by autonomous agents, our
insights will necessarily be specialized to the dominant physical phenomena at a particular
scale of interest. At interplanetary scales we concern ourselves with propulsion through
gravitational landscapes, while at microscopic scales stochastic diffusion dominates. Between
these two extremes, agents interact with viscous media governed by aero–, hydro–, and terra–
dynamics. Though a significant fraction of Earth’s biomass is buoyed throughout its life by
fluids, the human condition is relentlessly held at the terrestrial interface between air and
water. Thus in this thesis we attend to sensorimotor control of intermittent interaction with
terra firma.

1artifact, n. An object made or modified by human workmanship, as opposed to one formed by natural
processes [OED].
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perception action

agent

environment

Figure 1.1: Sensorimotor control loop. Autonomous agents interact continually with their
environments through a closed loop that transforms perception to action. The coupled
system can exhibit emergent behavior not predicted by a reductionist analysis of the agent
or its environment in isolation.

1.1 Robotics, Neuromechanics, and Rehabilitation

Recent decades have witnessed a confluence of approaches to study sensorimotor control
stemming from disparate areas in engineering, science, and medicine. Three such incident
fields have direct bearing on the macro scale: robotics, neuromechanics, and rehabilitation.
The aims of these three fields are complementary in that an advance in one area can lead
to progress in either of the others. This provides a unique opportunity to conduct fruitful
research at the disciplinary boundary. However, systematically translating results between
domains requires development of a common conceptual framework. We contend that the
potential for transformative payoffs and co–benefits justifies the effort required, and briefly
summarize some trends and targets of opportunity.

Robotics: engineering discipline concerned with programming matter to perform work.
Artifacts must move out of structured and sterile environments into the “real world” char-
acterized by dynamically–changing environments and autonomous external agents. Driven
by a societal need for safe collaboration between robots and humans both in the factory and
in homes [NRI], requirements for rigid manipulation and noiseless observations [Mur+94;
Ma+04] must be relaxed in favor of task–driven perception and action [Baj88; Kod92; Soa13].

Neuromechanics: scientific discipline focused on the coupling between a nervous system
and environment through musculoskeletal structures. A reductionist focus on either neuro-
physiology or biomechanics alone will fail to yield understanding of the mechanisms leading
to animal behavior [Nis+07]; Figure 1.2a. Similarly, we must reject the false dichotomy of
“sensory” and “motor” neuroscience that splits the sensorimotor loop within the processing
system, recognizing instead that “neural computation is inescapably closed–loop” [Rot+14];
Figure 1.2b. Aspects of this closed–loop approach have been championed under various
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neurophysiology

biomechanics

perception action

agent

environment

(a) neurophysiology vs. biomechanics

sensory neuroscience

motor neuroscience

perception action

agent

environment

(b) sensory vs. motor neuroscience

Figure 1.2: False dichotomies in the sensorimotor control loop. (a) Biomechanics focuses on
the dynamic interaction between an agent’s body and the environment, whereas neurophysi-
ology studies the internal transformation of sensory data to motor commands. (b) Cognitive
neuroscience focuses on representations in the nervous system formed from impinging sensory
data, whereas motor control seeks principles underlying behavior synthesis.

labels: Wiener’s “cybernetics” [Wie48]; Bernstein’s “emergent problems in the regulation
of motor acts” [Ber67]; Full and Koditschek’s “templates–and–anchors” hypothesis [FK99].
This effort is supported by early–career awards at the disciplinary interface [BWF; SF].

Rehabilitation: medical discipline concerned with enhancing natural human ability and
mitigating disability. Of particular interest are novel therapies, prostheses, and assistive
devices that augment the intrinsic ability of individuals. Originally conceived in the realm
of individualized genomic diagnosis and pharmacological treatment [Hoo+04; HC10], the
paradigm of personalized healthcare should extend to neurophysiological, behavioral, and
rehabilitative therapy. The need to automatically tailor healthcare to an individual’s trauma,
pathology, and deficiency is driven by the increase in elderly, underserved, and military
veteran populations, both domestically and abroad. This area is bolstered by initiatives in
translational medicine [Col11] and neurotechnology [Ins+13].

1.1.1 Common Cause

Engineers have in organisms proof–of–concept designs that dramatically outperform their
robotic counterparts: insects survive in the wild despite loss of multiple limbs [Guf99]; the
cost of transport in animals is orders of magnitude smaller than comparable robots [Col+05].
The disparity in performance between extant animals and robots is especially galling since
animal body designs meet many conflicting constraints (ontogeny, reproduction, metabolism)
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that do not burden artifacts [Ram+04]. Scientists can use robotic surrogates in comparative
studies to overcome limitations in diversity of scale, morphology, and material composition
found in the animal kingdom [QR98; Rit+00; Kla+00; Kod+04; Del04; LB11]. Clinicians
stand to benefit both from the forward engineering and design capabilities devised by en-
gineers as well as the reverse engineering techniques and results derived by scientists, for
instance in the design of active assistive devices [Fer+05; Don+08; Mar+11].

1.1.2 Common Challenge

In each discipline, one essential challenge lies in the dynamical complexity arising from the
interaction of an agent with its environment. From a reductionist viewpoint, this interaction
seems hopelessly complex, combining distributed hierarchies of feedback loops in the senso-
rimotor system with the hydro–, aero–, or terra–dynamics and Newtonian mechanics that
dominate the macro scale. As a consequence, recent years have seen an emergence of systems–
level approaches that study the closed–loop dynamics of an agent interacting with its envi-
ronment. In robotics, concepts of embodied [Pfe+07] or mechanical [Bli+07] intelligence as
well as morphological computation [Hau+11], communication [Rie+10], or control [Füc+12]
assert that behaviors of interest arise from the dynamical coupling of feedback and informa-
tion processing elements distributed throughout the body and environment. Neuromechanics
itself arose from the recognition that neither neuroscience nor biomechanics alone could pro-
vide a full account of animal behavior [Nis+07], and capitalizes on broader trends toward
integrative and comparative approaches to organismal biology [Vog07; Sch+09].

1.2 Systems Theory for Sensorimotor Control

Given the aforementioned complexity of the physical phenomena under investigation, it may
seem misguided to seek a systems–level theory for sensorimotor control. While we struggle to
understand the principles of perception and action in isolation, it seems hopeless to directly
study their interaction. In actual fact, there exists a wealth of evidence—experimental,
phenomenological2, and sociological—that justifies the systems–level approach as a viable
alternative to reductionism. We review this evidence before proceeding to specify the essen-
tial elements that constitute a systems theory. Drawing analogies from successful examples
of the systems approach, we focus attention on the underpinnings of a systems theory for
sensorimotor control.

2phenomenology, n. The division of any science which is concerned with the description and classification
of its phenomena, rather than causal or theoretical explanation. [OED]
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1.2.1 Justification for a Systems–Level Approach

Experimental

Animal musculoskeletal structure is highly overdetermined; there are many more mechanical
degrees–of–freedom and enervated muscles than would be strictly necessary to achieve any
given task. Initially viewed as as the “problem of motor redundancy” [Ber67], this excess
may actually provide significant benefits without incurring substantive costs. In the modern
view, organisms “exploit the bliss of motor abundance” [Lat12] via predictable strategies
including muscle synergies [TM05; dB05; TM07], internal degrees–of–freedom (or uncon-
trolled manifolds) [SS99], and optimality [FH85; TJ02; Tod04; Sco04]. These emergent
phenomena resolve redundancy, maintain stability, and aid perturbation recovery [Loe+99].
Thus whole–body behaviors such as locomotion can be achieved largely through mechanical
means [Kod+04]. Even complex environments comprised of flowing, fluidizing granular me-
dia do not necessarily increase the dynamical complexity of the closed–loop interaction that
gives rise to locomotion [Li+13].

Phenomenological

Terrestrial locomotion of animals shares striking similarities across a range of scales, mor-
phologies, and material compositions. Animals as diverse as hexapedal cockroaches, quad-
rupedal canines, and bipedal birds bounce like a monopode in the saggital plane [Bli89;
BF93; Ghi+03; Hol+06], and a prosthesis tuned for competitive athletics restored biome-
chanically similar functionality to a human [Wey+09]. Turning the monopode on its side
yields qualitative agreement with sprawled–posture gaits of hexapods and quadrupeds in the
lateral plane [SH00b; SH00a; SH01; Sch+02]. These “template” models embody and exploit
“self–stabilization” [KF99] mechanisms underlying turning and perturbation recovery [JF99;
JF02; Ful+02; KH07; Kuk+09] and properly embed in “anchored” neuromechanical vari-
ants [Hol+06; Pro+10]. Biologically–inspired robots can rely on purely feedforward inputs
to execute dynamically–stable rhythmic locomotion [Sar+01; Kim+06; Bir+09; Hoo+10;
McG90; Col+05] and manipulation [SA93; RD12] tasks. This synergistic interaction between
the nervous system and body can be studied with system–level neuromechanical simulation
models [Edw10]. Thus, “integrative approaches reveal not only how each component within
a locomotor system operates but how they function as a collective whole” [Dic+00].

Sociological

Engineering, science, and medicine stand to benefit tremendously from interdisciplinary col-
laborative investigation of sensorimotor control. However, disparities in the detailed physics
of perception, processing, and action in the different domains threaten to obstruct efficient
transmission of advances across disciplinary boundaries. Despite progress in the areas of
biologically–inspired materials, sensors, actuators, and processors, robots and animals will
remain comprised of vastly different components for the foreseeable future. Given this in-
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herent disparity, the systems–level approach possesses a major advantage over reductionism
in that its advances are not tied to the underlying physics. Representations for mechanisms
discovered in one domain are necessarily abstracted in the systems approach, facilitating
translation to other fields. This has been demonstrated most strikingly in the qualitative
translation of mechanisms for rapid running [Sar+01; Kim+06; Bir+09], turning [Hoo+10],
and inversion [Mon+12] from neuromechanics to robotics. Thus, “systems theory, espe-
cially dynamical systems theory, may provide [a] shared language and fruitful avenues of
interdisciplinary integration” [Sch+09].

1.2.2 Elements of a Systems Theory

The notion that one can fruitfully study aspects of a class of physical phenomena holistically
without necessarily expending the substantial effort required to distill a collection of funda-
mental mechanisms is appealing. This has led some to develop a theory of systems [Ber84]
that provides concepts of equivalence and generic properties of graphical representations.
However, the generality inherent in this approach is unlikely to provide design or mechanis-
tic principles useful for practitioners of engineering, science, or medicine. Therefore we seek
an approach tailored to sensorimotor control.

For our purposes, a systems theory is a unified analytical, computational, and experimental
framework that enables systematic study of a class of physical phenomena.

Analytical elements: intrinsically self–consistent techniques for dynamical modeling.
Concepts include: genericity, minimality, and equivalence of model structures; inter-
connection and feedback between subsystems; stability, sensitivity, and robustness
to uncertainty; reduction, embedding, (bi–)simulation, and approximation between
models; controllability and observability.

Computational elements: tractable algorithms for studying models on a computer.
Techniques include: numerical simulation algorithms to approximate trajectories
and reachable sets; statistical inference methods for parameter estimation and state
filtering; optimization tools including dynamic programming and the calculus of
variations; schemes for verification and model checking.

Experimental elements: practical procedures for transforming between models and data.
For instance: system identification and adaptation transform data collected from a
physical system to model structure or parameters; control synthesis and machine
learning transform models to behaviors on a physical system.

This classification is intended as a conceptual aid rather than a rigid partition. Although
analogous to the division into (1) system structures, (2) system dynamics, (3) control meth-
ods, (4) design methods in [Kit02b], our definition emphasizes the contributions from disci-
plines spanning applied mathematics, control theory, optimization, and statistics.



CHAPTER 1. INTRODUCTION 7

1.2.3 Linear Systems Theory

Linear systems theory is the exemplar of what we seek in sensorimotor control. It arose
from the unification of complementary efforts to model, control, and design stationary regu-
latory processes in the telecommunications, electronics, mechatronics, and aerospace indus-
tries [ÅK14]. The culmination of nearly a century of dedicated effort, it is comprised of a
unified framework [Kal59] for analysis [Bro70; CD91], computation [Lue69; And+99], and
experimentation [SB89; Lju99].

It is important to note that linear systems theory succeeds only within prescribed exper-
imental contexts. Linear lumped–parameter models of electrical circuits or flexible beams
must be augmented or replaced with continuum models in the presence of high–frequency
or high–amplitude driving signals. Linear state feedback stabilizes physical phenomena only
in a neighborhood of the operating point, and topological obstacles can preclude the pos-
sibility of global stabilization via linear feedback [May10]. Many fundamental biological
and biochemical processes exhibit stable oscillatory behavior precluded by the class of linear
dynamical systems [HB71; Td90; Gol96; Win01; Buz06].

The applicability of this theory to such a broad range of stationary regulatory phenom-
ena in mechanics, chemistry, electromagnetics, and biochemistry may be singular. We do
not expect other systems–level theories to apply to a similarly diverse collection of physical
phenomena. In fact, this broad applicability may be viewed as a consequence of the gener-
icity of linear dynamics (in the dynamical systems sense [Har60; GH83; Abb04]) amongst
the ubiquitous class of smooth stationary phenomena. In this view, the breadth of other
systems theories may be limited largely by the generality of their underlying class of models.
Nevertheless, linear systems theory provides a conceptual template for the framework we
seek. In generalizing to sensorimotor control, this example instructs us to focus on dynamic
phenomena that proliferate in the wider non–smooth and non–stationary world.

1.2.4 Other Systems Sciences

Although the systems–level approach has been fruitfully applied to formulate biological hy-
potheses for many years [Ros58; Mes68; Mil73; Rie77], it is presently enjoying a resurgence
in interest across biology, bioengineering, and biomedicine. Systems biology focuses on anal-
ysis [Alo06] and computational modeling [Kit02a] of intact biochemical reaction networks,
cells, tissues, and organisms [Kit02b]. Synthetic biology [And+06; BS05] seeks to repurpose
biomolecules and reaction networks to construct systems that achieve new engineering aims.
Advancements from both systems and synthetic biology translate to medicine, with hopes of
achieving a “systems approach to disease” [Hoo+04; PW09]. Despite tremendous progress
and intensive interest, “many breakthroughs in experimental devices, advanced software,
and analytical methods are required before the achievements of systems biology can live
up to their much–touted potential” [Kit02b]. Nevertheless, this rapidly–growing area pro-
vides another instructive example for the development of a systems–level theory that merges
complementary efforts in science, engineering, and medicine.
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1.3 Dynamical Systems Theory for Locomotion

Realizing a systems–level theory for sensorimotor control is a broad agenda that will require
contributions from a multi–disciplinary team of investigators over many years. As an exam-
ple, the systematic development of linear systems theory began in earnest with frequency–
domain methods developed by telephony researchers [Nyq32; Bod40] matured decades later
after combining contributions from numerous disciplines. In the space of a single disser-
tation, we can only aspire to contribute rudiments of the unified framework we seek, and
even then must restrict the class of physical phenomena under consideration. Thus in this
thesis we attend to derivation of a hybrid dynamical systems theory for legged locomotion.
We devote the remainder of this chapter to motivating and outlining our contributions.

1.3.1 Focus on Legged Locomotion

Mobility is critical for autonomy. Though artificial environments are increasingly navigable
via wheels and tracks, the existence of stairs, curbs, and other obstacles imply locomotion will
inevitably involve intermittent contact with the substrate. Consequently, legged locomotion
ought to be a primary focus of the systems–level approach to sensorimotor control.

Dynamic legged locomotion is characterized by intermittent interaction between limbs
and terrain. We coarsely divide limb motion into four epochs (swing, touchdown, stance,
liftoff ) as follows: limbs reciprocate freely (swing) above the ground, initiate contact with
the terrain (touchdown) and rapidly develop reaction force, leverage sustained contact with
the substrate (stance) to propel the body forward, and detach (liftoff ) to terminate the
interaction with the ground. Although the fundamental physical laws governing each epoch
are continuous, the touchdown and liftoff transitions typically comprise a small fraction of
the gait cycle. Thus a parsimonious approach to modeling locomotion compresses these
transitions into an instantaneous period of time. This results in a hybrid dynamical system
whose state evolution is governed by continuous–time flow punctuated by discrete–time reset.

1.3.2 Hybrid Dynamical Systems Theory Foundations

Each element of the unified framework we seek rests upon a shared modeling foundation.
As linear systems theory demonstrates, the success of a systems–level approach need not
depend on faithfulness to the underlying physics. Therefore we seek a modeling paradigm
that is phenomenological, i.e. one whose predictions agree well with empirical observations of
robot and animal locomotion, but whose consistency with contemporary reductionist theory
is not enforced. The parsimonious class of models proposed in the previous section—hybrid
dynamical systems—could fill this role. However, general hybrid systems exhibit behaviors
such as nondeterminism and orbital instability that are inconsistent with our observations of
the physical world. Therefore we derive foundations of a hybrid dynamical systems theory
for legged locomotion by focusing on the simplest pattern of locomotion: the periodic gait.
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1.3.3 Our Contributions

Overview Beginning with a general class of hybrid control systems, in Chapter 2 we derive
a state space metric and a provably–convergent numerical simulation algorithm. Specializing
to hybrid dynamical systems in Chapter 3, we demonstrate that models for periodic gaits
undergoing isolated transitions generically reduce to classical continuous–time dynamical
systems. Focusing further on discontinuous vector field dynamics in an individual hybrid
domain, we provide conditions in Chapter 4 that ensure the flow is continuous and piecewise–
differentiable near general periodic gaits.

Chapter 2 The study of hybrid control systems requires practical tools for approxima-
tion and comparison of system executions. Existing approaches to these problems impose
restrictions on the system’s continuous and discrete dynamics that are not satisfied for mod-
els of legged locomotion. To compare system states in distinct hybrid modes, we derive an
intrinsic state–space metric. This enables construction of the first trajectory–space metric
with respect to which the closed orbits that model periodic gaits are orbitally stable. This
metric is applied to develop a numerical simulation algorithm that converges uniformly to
any orbitally stable execution. Incidentally, the algorithm’s convergence is guaranteed up to
and including Zeno events, i.e. points where an execution’s transition times accumulate.

Chapter 3 Near an exponentially stable periodic orbit undergoing isolated transitions in a
hybrid dynamical system, we prove that executions generically contract superexponentially
to a constant–dimensional subsystem. Under a non–degeneracy condition on the rank de-
ficiency of the associated Poincaré map, the contraction occurs in finite time regardless of
the stability properties of the orbit. Hybrid transitions may be removed from the resulting
subsystem via a topological quotient that admits a smooth structure to yield an equivalent
smooth dynamical system. We demonstrate reduction of a high–dimensional underactuated
mechanical model for terrestrial locomotion, assess structural stability of deadbeat controllers
for rhythmic locomotion and manipulation, and derive a normal form for the stability basin
of a hybrid oscillator.

Chapter 4 Legged animals with four, six, and more legs exhibit gaits with near–simultaneous
touchdown of two or more limbs. The overlapping transition surfaces inherent in hybrid
models of such gaits introduce non–determinism or orbital instability in general hybrid sys-
tems. Under a non–degeneracy condition ensuring trajectories pass transversally through
transitions, we show that such models possess a well–defined flow that is Lipschitz continu-
ous and piecewise–differentiable. The definition of piecewise–differentiability we use implies
that although the flow is not classically differentiable, nevertheless it admits a first–order
approximation. We exploit this first–order approximation to infer existence of piecewise–
differentiable Poincaré maps, study structural stability of the flow, and derive techniques for
assessing stability, optimality, and controllability of periodic gaits.
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Chapter 2

Metrization and Simulation of Hybrid
Control Systems

For continuous–state dynamical systems and finite–state automata there separately exist
rich sets of tools for metrization and simulation. The interaction of discrete transitions
with continuous dynamics that is characteristic of hybrid control systems requires a new
approach. To address this limitation, in this chapter we construct a distance metric over the
state space of a hybrid control system and apply this metric to develop a provably–convergent
numerical simulation algorithm. Our framework imposes mild restrictions, enabling formal
investigation of a wide range of systems: the dynamics may be nonlinear, the continuous
dynamics may be controlled, and multiple discrete transitions may occur simultaneously, so
long as executions are orbitally stable.

Efforts to topologize and subsequently metrize hybrid control systems have been signif-
icant but fragmented. Nerode and Kohn [NK93] consider state–space topologies induced
by the finite–state automaton associated with the hybrid system. We propose a metric
topology over the state space of hybrid control systems, effectively metrizing the hybrifold
proposed by Simic et al. [Sim+05], as well as the colimit topology constructed by Ames
and Sastry [AS05] over the regularization proposed by Johansson et al. [Joh+99]. In con-
trast, Tavernini [Tav87] directly metrized the space of executions of hybrid systems, and
Gokhman [Gok08] later demonstrated the equivalence of the resulting topology with that
generated by the Skorohod trajectory metric (see Chapter 6 in [Pol84]). We highlight the
technical and practical limitations imposed by metrizing the trajectory space rather than
state space in Section 2.4.4.

The notion of regularization or relaxation of a hybrid system should not be confused with
the “relaxation” of hybrid inclusions described by Cai et al. [Cai+08]. Since interpreting our
hybrid control systems as hybrid inclusions yields singleton–valued “flow” and “jump” maps,
relaxation in this sense does not yield a distinct hybrid system. Sanfelice and Teel [ST10]
subsequently prove existence of approximating executions for a given “simulation” of a hy-
brid inclusion. In this chapter we consider the opposite problem of proving convergence of
approximating simulations for a given execution of a hybrid control system.
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The literature on numerical simulation of deterministic hybrid systems may be broadly
partitioned into two groups: practical algorithm development focused on obtaining high–
precision estimates of discrete event times, and theoretical proofs of convergence for simu-
lations of certain classes of hybrid systems. Practical algorithms aim to place time–steps
close to discrete event times using root–finding [Car78; Sha+91; GN92]. Theoretical proofs
of convergence have generally required restrictive assumptions. Esposito et al. [Esp+01],
for instance, apply feedback linearization to asymptotically guarantee event detection for
semi–algebraic guards, while Paoli and Schatzman [PS03] develop a provably–convergent
simulation algorithm for second–order mechanical states undergoing impact specified by a
unilateral constraint. The most general convergence results relax the requirement that dis-
crete transition times be determined accurately [Tav87; Tav09; Bur+11b], and consequently
can accommodate arbitrary nonlinear transition surfaces, Lipschitz continuous vector fields,
and continuous discrete transition maps. We extend this approach using our proposed metric
topology to prove convergence of simulations to executions of hybrid control systems that
satisfy an orbital stability property described in Section 2.3. Our simulation algorithm may
be applied to hybrid systems possessing control inputs and overlapping guards, representing
a substantial contribution beyond our previous efforts [Bur+11b] and those of others [Tav87;
Tav09].

The remainder of this chapter is organized as follows. Section 2.1 contains definitions
of the topological, metric, and dynamical system concepts used throughout. We present
our technique for metrization and relaxation of hybrid control systems in Section 2.2 and
apply these constructions to define a metric for comparing trajectories in hybrid control
systems. We then develop our algorithm for numerical simulation of hybrid control system
executions in Section 2.3, where we apply our trajectory metric to prove uniform convergence
of simulations to orbitally stable executions. The technique is illustrated in Section 2.4 using
examples for accuracy, verification, and novel hybrid control system behavior.

2.1 Preliminaries

2.1.1 Topology [Kel75]

The 2–norm is our finite–dimensional norm of choice unless otherwise specified. Given P ,
the set of all finite partitions of R, and n ∈ N, we define the total variation of f ∈ L∞(R,Rn)
by:

V(f) = sup

{
m−1∑

j=0

‖f(tj+1)− f(tj)‖1 | {tk}
m
k=0 ∈ P, m ∈ N

}
, (2.1.1)

where L∞(R,Rn) is the set of all almost everywhere bounded functions from R to Rn. The
total variation of f is a semi–norm, i.e. it satisfies the Triangle Inequality, but does not
separate points. f is of bounded variation if V(f) <∞, and we define BV (R,Rn) to be the
set of all functions of bounded variation from R to Rn.
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Given n ∈ N and D ⊂ Rn, ∂D is the boundary of D, and int(D) is the interior of
D. Recall that given a collection of sets {Sα}α∈A, where A might be uncountable, the
disjoint union of this collection is

∐
α∈A Sα =

⋃
α∈A Sα×{α}, a set that is endowed with the

piecewise–defined topology. Throughout this chapter we will abuse notation and say that
given ᾱ ∈ A and x ∈ Sᾱ, then x ∈∐α∈A Sα, even though we should write ιᾱ(x) ∈∐α∈A Sα,
where ιᾱ : Sᾱ →

∐
α∈A Sα is the canonical identification ιᾱ(x) = (x, ᾱ).

In this chapter we make extensive use of the concept of a quotient topology induced
by an equivalence relation defined on a topological space. We regard a detailed exposition
of this important concept as outside the scope of this document, and refer the reader to
Chapter 3 in [Kel75] or Section 22 in [Mun00] for more details. The next definition formalizes
equivalence relations in topological spaces induced by functions. If f : A → B, V ⊂ A, and
V ′ ⊂ B, then we let f(V ) = {f(a) ∈ B | a ∈ V } denote the image of V under f , and
f−1(V ′) = {a ∈ A | f(a) ∈ V ′} denote the pre–image of V under f .

Definition 2.1.1. Let S be a topological space, A,B ⊂ S two subsets, and f : A → B a
function. We define an f–induced equivalence relation Λf ⊂ S× S as the transitive closure
of the following relation:

{
(a, b) ∈ S× S | a ∈ f−1(b), or b ∈ f−1(a), or a = b

}
. (2.1.2)

a, b ∈ S are f–related, denoted by a
f∼ b, if (a, b) ∈ Λf . Moreover, the equivalence class of

x ∈ S is defined as [x]f =
{
a ∈ S | a f∼ x

}
, and the set of equivalence classes is defined as

S
Λf

=
{

[x]f | x ∈ S
}

. We endow the quotient S
Λf

with the quotient topology.

Note that Λf is an equivalence relation. An important application of the function–induced
quotient is the construction of a single topological space out of several disconnected sets.
Indeed, given a collection of sets {Sα}α∈A, where A is some index set, and a function f : U →∐

α∈A Sα, where U ⊂∐α∈A Sα, then Ŝ =
∐
α∈A Sα
Λf

is a topological space.

Next, we present a useful concept from graph theory that simplifies our ensuing analysis.

Definition 2.1.2. Let (J,Γ) be a directed graph, where J is the set of vertices and Γ ⊂ J×J

is the set of edges. Then, given j ∈ J, define the neighborhood of j, denoted Nj, by:

Nj = {e ∈ Γ | ∃j′ ∈ J s.t. e = (j, j′)}. (2.1.3)

2.1.2 Length Metrics [Bur+01]

Every metric space has an induced length metric, defined by measuring the length of the
shortest curve between two points. Throughout this chapter, we use induced length metrics
to metrize the function–induced quotients of disjoint unions of sets. To formalize this ap-
proach, we begin by defining the length of a curve in a metric space; the following definition
is equivalent to Definition 2.3.1 in [Bur+01].
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Sᾱ

a+ 1 b b+ 1a
0

1
Sα

γ(t3)

γ(t1)

γ(t2)

p = γ(0)

q = γ(1)

g

Figure 2.1: A g–connected curve γ with partition {ti}4
i=0, where Sα = [a, a+ 1] × [0, 1],

Sᾱ = [b, b+ 1]× [0, 1], and g : {a+ 1}× [0, 1]→ {b}× [0, 1] is defined by g(a+1, x) = g(b, x).

Definition 2.1.3. Let (S, d) be a metric space, I ⊂ [0, 1] be an interval, and γ : I → S be a
continuous function. Define the length of γ under the metric d by:

Ld(γ) = sup

{
k−1∑

i=0

d
(
γ(t̄i), γ(t̄i+1)

)
| k ∈ N, {t̄i}ki=0 ⊂ I, t̄0 < t̄1 < . . . < t̄k

}
. (2.1.4)

We now define a generalization of continuous curves for quotiented disjoint unions.

Definition 2.1.4. Let {Sα}α∈A be a collection of sets and f : U → ∐
α∈A Sα, where U ⊂∐

α∈A Sα. γ : [0, 1]→∐
α∈A Sα is f–connected if there exists k ∈ N and {ti}ki=0 ⊂ [0, 1] with

0 = t0 ≤ t1 ≤ . . . ≤ tk = 1 such that γ|[ti,ti+1) is continuous for each i ∈ {0, 1, . . . , k − 2},
γ|[tk−1,tk] is continuous, and limt↑ti γ(t)

f∼ γ(ti) for each i ∈ {0, 1, . . . , k − 1}. Moreover, in

that case {ti}ki=0 is called a partition of γ.

Note that, since each section γ|[ti,ti+1) is continuous, it must necessarily belong to a single
set Sα for some α ∈ A because the disjoint union is endowed with the piecewise–defined
topology. In the case when A = {α} is a singleton, then every id Sα–connected curve is
simply a continuous curve over Sα, where id Sα denotes the identity function in Sα. Figure 2.1
shows an example of a connected curve over a collection of two sets.

Using the concept of connected curves, we now define the induced length distance of a
collection of metric spaces. The induced length distance is a generalization of the induced
metric defined in Chapter 2 in [Bur+01].

Definition 2.1.5. Let {(Sα, dα)}α∈A be a collection of metric spaces, and let {Xα}α∈A be a
collection of sets such that Xα ⊂ Sα for each α ∈ A. Furthermore, let f : U → ∐

α∈AXα,

where U ⊂ ∐α∈AXα, and let X̂ =
∐
α∈AXα

Λf
. di,X̂ : X̂ × X̂ → [0,∞] is the f–induced length
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G(2,3)
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R(2,3)
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F1

D1 D2

D3

G(2,1)
G(1,2)

G(3,1)

R(1,2)

R(3,1)
F3

Figure 2.2: Illustration of a hybrid control system with three modes.

distance of X̂, defined by:

di,X̂(p, q) = inf

{
k−1∑

i=0

Ldαi
(
γ|[ti,ti+1)

)
| γ : [0, 1]→

∐

α∈A

Xα, γ(0) = p, γ(1) = q,

γ is f–connected, {ti}ki=0is a partition of γ,

{αi}k−1
i=0 s.t. γ

(
[ti, ti+1)

)
⊂ Xαi ∀i

}
.

(2.1.5)

We invoke this definition to metrize both subsets and disjoint unions of metric spaces. It
is important to note that although di,X̂ is non–negative, symmetric, and subadditive, it

does not necessarily separate points of X̂ (see Section 2.3 in [Bur+01]), and hence generally
only defines a pseudo–metric. In the special case where no function f is supplied, then
by convention we let f = idX , the identity function on X. This implies X̂ = X and the
induced metric coincides with the given metric. The following Lemma is a straightforward
consequence of Proposition 2.3.12 in [Bur+01].

Lemma 2.1.1. Let (S, d) be a metric space and X ⊂ S. Then di,X is a metric. Moreover,
the topology on X induced by di,X is equivalent to the topology on X induced by d.

2.1.3 Hybrid Control Systems

Motivated by the definition of hybrid systems presented in [Sim+05], we define the class of
hybrid systems of interest in this chapter.

Definition 2.1.6. A hybrid control system is a tuple H = (J,Γ,D, U,F,G,R), where:

• J is a finite set indexing the discrete states of H;
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• Γ ⊂ J× J is the set of edges, forming a directed graph structure over J;

• D = {Dj}j∈J is the set of domains, where each Dj is a subset of Rnj , nj ∈ N;

• U ⊂ Rm is the range space of control inputs, m ∈ N;

• F = {Fj}j∈J is the set of vector fields, where each Fj : R ×Dj × U → Rnj is a vector
field defined on Dj;

• G = {Ge}e∈Γ is the set of guards, where each G(j,j′) ⊂ ∂Dj is a guard in mode j ∈ J

that defines a transition to mode j′ ∈ J; and,

• R = {Re}e∈Γ is the set of reset maps, where each R(j,j′) : G(j,j′) → Dj′ defines the
transition from guard G(j,j′).

For convenience, we sometimes refer to hybrid control systems as just hybrid systems, and
we refer to the distinct vertices within the graph structure associated with a hybrid control
system as modes. Each domain in the definition of a hybrid control system is a metric space
with the Euclidean distance metric. A three–mode autonomous hybrid system, which is a
particular case of Definition 2.1.6 where none the vector fields {Fj}j∈J depend on the control
input, is illustrated in Figure 2.2. Note that we restrict control inputs to the continuous
flow, hence inputs do not have an effect during discrete transitions.

Next, we impose several technical assumptions that support existence and uniqueness of
trajectories on hybrid domains.

Assumption 2.1.1. Let H be a hybrid control system. Then the following statements are
true:

(1) For each j ∈ J, Dj is a compact nj–dimensional manifold with boundary.

(2) U is compact.

(3) For each e ∈ Γ, Ge is a closed, embedded, codimension 1, submanifold with boundary.

(4) For each e ∈ Γ, Re is continuous.

Assumption 2.1.2. For each j ∈ J, Fj is Lipschitz continuous. That is, there exists L > 0
such that for each j ∈ J, t1, t2 ∈ R, x1, x2 ∈ Dj, and u1, u2 ∈ U :

∥∥Fj(t1, x1, u1)− Fj(t2, x2, u2)
∥∥ ≤ L

(
|t1 − t2|+ ‖x1 − x2‖+ ‖u1 − u2‖

)
. (2.1.6)

Assumption 2.1.2 guarantees the existence and uniqueness for ordinary differential equations
in individual domains. In the sequel we will consider control inputs of bounded variation
u ∈ BV (R, U). Note that without loss of generality we take 0 as the initial time in the
following Lemma; a general initial time can be accommodated by a straightforward change
of variables.
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Lemma 2.1.2. Let H be a hybrid control system. Then for each j ∈ J, each initial condition
p ∈ Dj, and each control u ∈ BV (R, U), there exists an interval I ⊂ R with 0 ∈ I such that
the following differential equation has a unique solution:

ẋ(t) = Fj
(
t, x(t), u(t)

)
, t ∈ I, x(0) = p. (2.1.7)

x is called the integral curve of Fj with initial condition p and control u. Moreover, x|I is
absolutely continuous.

Proof. Let F̃j : R × Rnj × U → Rnj be any globally Lipschitz continuous extension to Fj
(guaranteed to exist by Theorem 1 in [McS34]). Given any p ∈ Dj ⊂ Rnj and u ∈ BV (R, U),

Proposition 5.6.5 in [Pol97] guarantees the existence of an integral curve x̃ : Ĩ → Rnj for F̃j
with initial condition x(0) = p. Note that x̃ is absolutely continuous by Theorem 3.35

in [Fol99]. Let I ⊂ Ĩ be the connected component of x̃−1(Dj) containing 0. Then x = x̃|I is
an absolutely continuous integral curve of Fj and x(I) ⊂ Dj. Note that x is unaffected by

the choice of extension F̃j.

The following definition is used to construct executions of a hybrid control system.

Definition 2.1.7. Let H be a hybrid control system, j ∈ J, p ∈ Dj, and u ∈ BV (R, U).
x : I → Dj is the maximal integral curve of Fj with initial condition p and control u if, given

any other integral curve with initial condition p and control u, such as x̃ : Ĩ → Dj, then

Ĩ ⊂ I.

Given a maximal integral curve x : I → Dj, a direct consequence1 of Definition 2.1.7 and
Assumption 2.1.1 is that either sup I = +∞, or sup I = t′ < ∞ and x(t′) ∈ ∂Dj. This fact
is critical during the definition of executions of a hybrid control systems in Section 2.3.

2.2 Metrization and Relaxation

In this section, we metrize a unified family of spaces containing all the domains of a hybrid
control system H. The constructed metric space has three appealing properties:

(1) the distance between a point in a guard and its image via its respective reset map is
zero;

(2) the distance between points in different domains are properly defined and finite; and,

(3) the distance between points is based on the Euclidean distance metric from each do-
main.

1This follows from continuity of integral curves and compactness of hybrid domains.
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D1

∐
D2

R̂

D1 D2

G(1,2) R(1,2)

(
G(1,2)

)

Λ
R̂−−−−−→

D1 D2

M

Figure 2.3: (left) Disjoint union of D1 and D2. (right) Hybrid quotient space M obtained
from the relation ΛR̂.

2.2.1 Hybrid Quotient Space

Using Definitions 2.1.5 and 2.1.6, we construct a metric space where the executions of a
hybrid control system reside. The result is a metrization of the hybrifold [Sim+05].

Definition 2.2.1. Let H be a hybrid control system, and let

R̂ :
∐

e∈Γ

Ge →
∐

j∈J

Dj (2.2.1)

be defined by R̂(p) = Re(p) for each p ∈ Ge. Then the hybrid quotient space of H is:

M =

∐
j∈JDj

ΛR̂

. (2.2.2)

Figure 2.3 illustrates the details about the construction described in Definition 2.2.1.
The induced length distance on M is in fact a distance metric:

Theorem 2.2.1. Let H be a hybrid control system, and let di,M be the R̂–induced length

distance of M, where R̂ is defined in (2.2.1). Then di,M is a metric on M, and the topology

it induces is equivalent to the R̂–induced quotient topology.

Proof. We provide the main arguments of the proof, omitting the details in the interest of
brevity. First, note that each domain is a normal space, i.e. every pair of disjoint closed
sets have disjoint neighborhoods. Second, note that each reset map is a closed map, i.e. the
image of closed sets under the reset map are closed. This fact follows by Condition 3 in
Assumption 2.1.1, since each guard is compact, thus reset maps are closed by the Closed
Map Lemma (Lemma A.52 in [Lee12]).

Let D̂ =
∐

j∈JDj and p, q ∈ D̂. We aim to show that if p and q yield distinct equivalence
classes (i.e. (p, q) /∈ ΛR̂) then the induced distance between them is strictly positive. Note
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that the equivalence classes [p]R̂ and [q]R̂ are each a finite collection of closed sets. Moreover,
since we can construct disjoint neighborhoods around each of these closed sets, then we can
conclude that there exists δ > 0 such that di,M

(
[p]R̂, [q]R̂

)
> δ. The proof concludes by

following the argument in Exercise 3.1.14 in [Bur+01], i.e. since each connected component

in D̂ is bounded, then M is also bounded (in the quotient topology). Then, using a simple
extension of Theorem 5.8 in [Kel75]2, we get that the identity map from M to the space

constructed by taking the quotient of all the points in D̂ such that di,M has zero distance is
a homeomorphism, thus they have the same topology.

It is crucial to note that all R̂–connected curves are continuous in the topology induced
by the metric di,M on the hybrid quotient space M. This implies in particular that exe-
cutions of hybrid control systems (to be defined in Section 2.3) are continuous in M since

the endpoint of the segment of an execution that lies in a guard Ge will be R̂–related to
the start point of the subsequent segment of the execution; alternately, this follows from
Theorem 3.12(b) in [Sim+05] since M is equivalent to the “hybrifold” construction in that
paper. This important property is foundational to the convergence results for sequences of
(relaxed) executions and their simulations derived in Section 2.3. For further details, we
refer the interested reader to Examples 3.2 and 3.3 in [Sim+05] where continuity is clearly
discussed for simple examples.

2.2.2 Relaxation of a Hybrid Control System

To construct a numerical simulation scheme which does not require the exact computation
of the time instant when an execution intersects a guard, we require a method capable of
introducing some slackness within the computation. This is accomplished by relaxing each
domain along its guard and then relaxing each vector field and reset map accordingly in
order to define a relaxation of a hybrid control system.

To formalize this approach, we begin by defining the relaxation of each domain of a hybrid
control system, which is accomplished by first attaching an ε–sized strip to each guard.

Definition 2.2.2. Let H be a hybrid control system. For each e ∈ Γ, let Sεe = Ge × [0, ε] be
the strip associated to guard Ge. For each j ∈ J, let

χj :
∐

e∈Nj

Ge →
∐

e∈Nj

Sεe , (2.2.3)

be the canonical identification of each point in a guard with its corresponding strip defined
for each p ∈ Ge as χj(p) = (p, 0) ∈ Sεe . Then, the relaxation of Dj is defined by:

Dε
j =

Dj

∐(∐
e∈Nj S

ε
e

)

Λχj

. (2.2.4)

2The extension aims to allow the domain of the map to be bounded instead of compact. The new proof
follows step–by–step the argument in [Kel75].
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Figure 2.4: Disjoint union of D1 and the strips in its neighborhood, {Sεe}e∈N1
(left), and the

relaxed domain Dε
1 obtained from the relation Λχ1 (right).
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Figure 2.5: Relaxed vector field F ε
1 on relaxed domain Dε

1.

By Condition 3 in Assumption 2.1.1, each point on a strip Sεe of Dj is defined using nj
coordinates (ζ1, . . . , ζnj−1, τ), shortened (ζ, τ), where τ is called the transverse coordinate
and is the distance along the interval [0, ε]. An illustration of Definition 2.2.2 together with
the coordinates on each strip is shown in Figure 2.4.

We endow each Sεe with a distance metric in order to define an induced length metric on
a relaxed domain Dε

j .

Definition 2.2.3. Let j ∈ J and e ∈ Nj. Endow Dj with di,Dj as its metric, and dSεe : Sεe ×
Sεe → [0,∞) as the metric on Sεe , defined for each ζ, ζ ′ ∈ Ge and τ, τ ′ ∈ [0, ε] by:

dSεe
(
(ζ, τ), (ζ ′, τ ′)

)
= di,Ge(ζ, ζ

′) + |τ − τ ′|. (2.2.5)

We now define a length metric on relaxed domains using Definitions 2.1.4 and 2.1.5.
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Theorem 2.2.2. Let j ∈ J, and let di,Dεj be the χj–induced length distance on Dε
j , where

χj is as defined in (2.2.3). Then di,Dεj is a metric on Dε
j , and the topology it induces is

equivalent to the χj–induced quotient topology.

Proof. Since di,Dεj is non–negative, symmetric, and subadditive, it remains to show that

it separates points. Let p, q ∈ Dε
j . First, we want to show that [p]χj = [q]χj whenever

di,Dεj (p, q) = 0. Note that for each e ∈ Nj and each pair p, q ∈ Ge, and by the Definition 2.1.5

and 2.2.3, dSεe ((p, 0), (q, 0)) ≥ di,Dj(p, q), hence no connected curve that “jumps” to a strip
can be shorter than a curve that stays in Dj. This fact immediately shows that for p, q ∈ Dj,
di,Dεj (p, q) = 0 implies that [p]χj = [q]χj . The case when one of the points is in Ge×(0, ε] ⊂ Sεe
follows easily by noting that those points can be separated by a suitably–sized dSεe–ball. The
proof concludes by following the argument in Exercise 3.1.14 in [Bur+01], as we did in the
proof of Theorem 2.2.1.

Refer to di,Dεj as the relaxed domain metric. Note that Theorem 2.2.2 can be proved using the
same argument as in the proof of Theorem 2.2.1, but we prove Theorem 2.2.2 to emphasize
the utility of the inequality relating the induced metric on a domain and the metric on each
strip.

Next, we define a vector field over each relaxed domain.

Definition 2.2.4. Let j ∈ J. For each e ∈ Nj, let the vector field on the strip Sεe , denoted
Fe, be the unit vector pointing outward along the transverse coordinate. In coordinates,

Fe
(
t, (ζ, τ), u

)
=
(
0, . . . , 0︸ ︷︷ ︸
ζ coords.

, 1
)T

. Then, the relaxation of Fj is:

F ε
j (t, x, u) =

{
Fj(t, x, u) if x ∈ Dj,

Fe(t, x, u) if x ∈ Ge × (0, ε] ⊂ Sεe , for some e ∈ Nj.
(2.2.6)

Note that the relaxation of the vector field is generally not continuous along each Ge, for
e ∈ Nj. As we show in Algorithm 2, this discontinuous vector field does not lead to sliding
modes on the guards [Utk77; Fil88], since the vector field on the strips always points away
from the guard. An illustration of the relaxed vector field F ε

j on Dε
j is shown in Figure 2.5.

The definitions of relaxed domains and relaxed vector fields allow us to construct a
relaxation of the hybrid control systems as follows:

Definition 2.2.5. Let H be a hybrid control system. The relaxation of H is a tuple Hε =
(J,Γ,Dε, U,Fε,Gε,Rε), where:

• Dε =
{
Dε
j

}
j∈J is the set of relaxations of the domains in D, and each Dε

j is endowed

with its induced length distance metric di,Dεj ;

• Fε =
{
F ε
j

}
j∈J is the set of relaxations of the vector fields in F;
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Figure 2.6: (left) Disjoint union of Dε
1 and Dε

2. (right) Relaxed hybrid quotient space Mε

obtained from the relation ΛR̂ε .

• Gε =
{
Gε
e

}
e∈Γ

is the set of relaxations of the guards in G, where Gε
e = Ge × {ε} ⊂ Sεe

for each e ∈ Γ; and,

• Rε =
{
Rε
e

}
e∈Γ

is the set of relaxations of the reset maps in R, where Rε
e : Gε

e → Dj′ for
each e = (j, j′) ∈ Γ and Rε

e(ζ, ε) = Re(ζ) for each ζ ∈ Gε
e.

2.2.3 Relaxed Hybrid Quotient Space

Analogous to the construction of the metric quotient space M, using Definitions 2.1.5
and 2.2.5 we construct a unified metric space where executions of relaxations of hybrid
control systems reside. The result is a metrization of the hybrid colimit [AS05] rather than
a metrization of the hybrifold as in the previous section.

Definition 2.2.6. Let Hε be the relaxation of the hybrid control system H. Also, let

R̂ε :
∐

e∈Γ

Gε
e →

∐

j∈J

Dε
j (2.2.7)

be defined by R̂ε(p) = Rε
e(p) for each p ∈ Gε

e. Then the relaxed hybrid quotient space of Hε

is:

Mε =

∐
j∈JD

ε
j

ΛR̂ε
. (2.2.8)

The construction in Definition 2.2.6 is illustrated in Figure 2.6.
We now show that the induced length distance on Mε is indeed a metric. We omit this

proof since it is identical to the proof of Theorem 2.2.1.

Theorem 2.2.3. Let H be a hybrid control system, let Hε be its relaxation, and let di,Mε be

the R̂ε–induced length distance of Mε, where R̂ε is defined in (2.2.7). Then di,Mε is a metric

on Mε, and the topology it induces is equivalent to the R̂ε–induced quotient topology.
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All R̂ε–connected curves are continuous under the metric topology induced by di,Mε which
is important when we study executions of hybrid systems in Section 2.3.

As expected, the metric on Mε converges pointwise to the metric on M.

Theorem 2.2.4. Let H be a hybrid control system, and let Hε be its relaxation. Then for
all p, q ∈M, di,Mε(p, q)→ di,M(p, q) as ε→ 0.

Proof. Abusing notation, let L(γ) denote the length of any connected curve γ, defined as
the sum of the lengths of each of its continuous sections under the appropriate metric. First,
note that di,M(p, q) ≤ di,Mε(p, q). This inequality follows since, as we argued in the proof
of Theorem 2.2.2, given an edge (j, j′) ∈ Γ, dSε

(j,j′)
((p′, 0), (q′, 0)) ≥ di,Dj(p

′, q′) for any pair

of points p′, q′ ∈ G(j,j′). Thus, adding the strips {Se}e∈γ in Mε only make the length of a
connected curve longer.

Now let D̂ =
∐

j∈JDj and D̂ε =
∐

j∈JD
ε
j . Given δ > 0, there exists γ : [0, 1]→ D̂, an R̂–

connected curve with partition {ti}ki=0, such that γ(0) = p, γ(1) = q, and di,M(p, q) ≤ L(γ) ≤
di,M(p, q) + δ. Moreover, without loss of generality let γε : [0, 1] → D̂ε be an R̂ε–connected

curve that agrees with γ on D̂, i.e. each section of γε on D̂ is identical, up to time scaling, to
a section of γ Thus γε has at most k ε–length extra sections, and L(γ) ≤ L(γε) ≤ L(γ) +kε.
Thus, di,Mε(p, q) ≤ L(γε) ≤ di,M(p, q) +kε+ δ. The result follows after noting this inequality
is valid for all δ > 0, thus di,Mε(p, q) ≤ di,M(p, q).

Note that Theorem 2.2.4 does not imply that the topology of Mε converges to the topology of
M. On the contrary, Mε is homotopically equivalent to the graph (J,Γ) for each ε > 0 [AS05],
whereas the topology of M may be different [Sim+05].

We conclude this section by introducing metrics between curves on Mε.

Definition 2.2.7. Let I ⊂ [0,∞) a bounded interval. Given any two curves γ, γ′ : I →Mε,
we define:

ρεI
(
γ, γ′

)
= sup

{
di,Mε

(
γ(t), γ′(t)

)
| t ∈ I

}
. (2.2.9)

Our choice of the supremum among point–wise distances in Definition 2.2.7 is inspired by
the sup–norm for continuous real–valued functions.

2.3 Numerical Simulation

This section contains our main result: discrete approximations of trajectories of hybrid
control systems, constructed using any variable step size numerical integration algorithm,
converge uniformly to the actual trajectories. This section is divided into three parts. First,
we define a pair of algorithms that construct executions of hybrid control systems and their
relaxations, respectively. Next, we develop a discrete approximation scheme for executions of
relaxations of hybrid control systems. Finally, we prove that these discrete approximations
converge to the executions of the original, non–relaxed, hybrid control system using the
metric topologies developed in Section 2.2.
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Figure 2.7: Discrete transition of an execution x.

Algorithm 1: execution of hybrid control system H.

Input: t = 0, j ∈ J, p ∈ Dj, and u ∈ BV (R, U).
1 Set x(0) = p.
2 while True do
3 Let γ : I → Dj be the maximal integral curve of Fj with control u such that

γ(t) = x(t).
4 Let t′ = sup I and x(s) = γ(s) for each s ∈ [t, t′). . if t′ <∞, then γ(t′) ∈ ∂Dj.
5 if t′ =∞, or @e ∈ Nj such that γ(t′) ∈ Ge then
6 Stop.
7 end
8 Let (j, j′) ∈ Nj be such that γ(t′) ∈ G(j,j′).

9 Set x(t′) = R(j,j′)

(
γ(t′)

)
, t = t′, and j = j′. . γ(t′)

R̂∼ x(t′).

10 end

2.3.1 Execution of a Hybrid System

We begin by defining an execution of a hybrid control system. This definition agrees with the
traditional intuition about executions of hybrid control systems which describes an execution
as evolving as a standard control system until a guard is reached, at which point a discrete
transition occurs to a new domain using a reset map. We provide an explicit definition to
clarify technical details required in the proofs below. Given a hybrid control system, H,
as in Definition 2.1.6, Algorithm 1 defines an execution of H via construction. A resulting
execution, denoted x, is an R̂–connected curve from some interval I ⊂ [0,∞) to

∐
j∈JDj.

Thus, abusing notation, we regard x as a continuous curve on M. Abusing notation again,
we regard x as a piece–wise continuous curve on Mε for each ε > 0. Figure 2.7 shows an
execution undergoing a discrete transition.

Note that executions constructed using Algorithm 1 are not necessarily unique. Indeed,
Definition 2.1.7 implies that once a discrete transition has been performed, the execution is
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Figure 2.8: Zeno execution x accumulating at p′ in a two–mode hybrid system.

unique until a new transition is made; however, the choice in Step 8 is not necessarily unique
if the maximal integral curve passes through the intersection of multiple guards. It is not
hard to prove that a sufficient condition for uniqueness of executions is that all the guards
are disjoint, even though, as we show in Section 2.4.4, uniqueness of the executions can be
obtained for some cases where guards do intersect.

With the definition of execution of a hybrid control system, we can define a class of
executions unique to hybrid control systems.

Definition 2.3.1. An execution is Zeno when it undergoes an infinite number of discrete
transitions in a finite amount of time. Hence, there exists T > 0, called the Zeno Time, such
that the execution is only defined on I = [0, T ).

Zeno executions are hard to simulate since they apparently require an infinite number of reset
map evaluations, an impossible task to implement on a digital computer. A consequence of
Algorithm 1 is that if x : I →M is an execution such that T = sup I <∞, then either

(1) x has a finite number of discrete transitions on I = [0, T ], and x(T ) ∈ ∂Dj for some
j ∈ J, or

(2) x is a Zeno execution and I = [0, T ).

We now introduce a property of Zeno executions of particular interest:

Definition 2.3.2. Let H be a hybrid control system, p ∈M, u ∈ BV (R, U), and x : [0, T )→
M be a Zeno execution with initial condition p, control u, and Zeno Time T . x accumulates
at p′ ∈M if limt→T di,M

(
x(t), p′

)
= 0.

Examples of Zeno executions that do not accumulate can be found in [Zha+01]. Figure 2.8
shows a Zeno execution that accumulates at p′. Note that for p′ to be a Zeno accumulation
point, it must belong to a guard of a hybrid control system.
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Figure 2.9: Non–orbitally stable execution with respect to the initial condition p′.

Since M is a metric space, we can introduce the concept of continuity of a hybrid execution
with respect to its initial condition and control input in a straightforward way. Employing
this definition, we can define the class of executions that are numerically approximable:

Definition 2.3.3. Let H be a hybrid control system, and assume that all the executions of
H are unique. Denote by x(p,u) : I(p,u) →M the hybrid execution of H with initial condition
p ∈ M and control u ∈ BV (R, U). Given T > 0, we say that the map (p, u) 7→ x(p,u) is
orbitally stable in [0, T ] at (p′, u′) ∈M×BV (R, U) if there exists a neighborhood of (p′, u′),
say N(p′,u′) ⊂M×BV (R, U), such that the following conditions are satisfied:

(1) [0, T ] ⊂ I(p,u) for each (p, u) ∈ N(p′,u′).

(2) The map (p, u) 7→ x(p,u)(t) is continuous at (p′, u′) for each t ∈ [0, T ].

As observed in Section III.B in [Lyg+03], executions that are not orbitally stable are difficult
to approximate with a general algorithm. Figure 2.9 shows a non–orbitally stable execution
that intersects the guard tangentially, and note that executions initialized arbitrarily close
to p′ ∈ D1 undergo different sequences of transitions. Unfortunately, there is presently
no general test (analytical or numerical) that ensures a given execution is orbitally stable.
Theorem III.2 in [Lyg+03] provides one set of sufficient conditions ensuring orbital stability.

2.3.2 Relaxed Execution of a Hybrid System

Next, we define the concept of relaxed execution for a relaxation of a hybrid control system.
The main idea is that, once a relaxed execution reaches a guard, we continue integrating over
the strip with the relaxed vector field, Fe, as in Definition 2.2.4. Given the hybrid control
system, H, its relaxation, Hε, for some ε > 0, Algorithm 2 defines a relaxed execution of
Hε via construction. The resulting relaxed execution, denoted xε, is a continuous function
defined from an interval I ⊂ [0,∞) to Mε. Note that this algorithm is only defined for initial
conditions belonging to Dj for some j ∈ J since the strips are artificial objects that do not
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appear in H. The generalization to all initial conditions is straightforward; we omit it to
simplify the presentation.

Algorithm 2: relaxed execution of hybrid control system H.

Input: t = 0, j ∈ J, p ∈ Dj, and u ∈ BV (R, U).
1 Set xε(0) = p.
2 while True do
3 Let γ : I → Dj, the maximal integral curve of Fj with control u such that

γ(t) = xε(t).
4 Let t′ = sup I and xε(s) = γ(s) for each s ∈ [t, t′). . if t′ <∞, then γ(t′) ∈ ∂Dj.
5 if t′ =∞, or @e ∈ Nj such that γ(t′) ∈ Ge then
6 Stop.
7 end

8 Let (j, j′) ∈ Nj such that γ(t′) ∈ G(j,j′), thus
(
γ(t′), 0

)
∈ Sε(j,j′).

9 Set xε(t′+τ) =
(
γ(t′), τ

)
for each τ ∈ [0, ε).

10 Set xε(t′+ε) = Rε
(j,j′)

(
γ(t′), ε

)
, t = t′+ε, and j = j′. .

(
γ(t′), ε

) R̂ε∼xε(t′+ε).

11 end

Step 9 of Algorithm 2 relaxes each instantaneous discrete transition by integrating over
the vector field on a strip, hence forming a continuous curve on Mε. Also note that our
definition for the relaxed execution over each strip Sεe , also in Step 9, is exactly equal to the
maximal integral curve of Fe. Figure 2.10a shows an example of a relaxed mode transition
produced by Algorithm 2. Given a hybrid system H and its relaxation Hε, the relaxed
execution of Hε produced by Algorithm 2 is a delayed version of the execution of H produced
by Algorithm 1, since the relaxed version has to expend ε time units during each discrete
transition. In that sense, our definition of relaxed execution is equivalent to an execution of
a regularized hybrid systems [Joh+99].

Note that if a relaxed execution is unique for a given initial condition and input, then
the corresponding hybrid execution is also unique, but not vice versa. Indeed, consider the
case of a hybrid execution performing a single discrete transition at a point, say p, where
two guards intersect, i.e. p ∈ Ge and p ∈ Ge′ , such that Re(p) = Re′(p). In this case the
hybrid execution is unique, but its relaxed counterpart either evolves via Se or Se′ , hence
obtaining 2 different executions. Nevertheless, both relaxed executions reach the same point
after evolving over the strip.

Next, we state our first convergence theorem.

Theorem 2.3.1. Let H be a hybrid control system and Hε be its relaxation. Let p ∈ M,
u ∈ BV (R, U), x : I → Mε be an execution of H with initial condition p and control u,
and let xε : Iε → Mε be a corresponding relaxed execution of x. Assume that the following
conditions are satisfied:
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xε(t′) xε(t′ + ε)

Rε(1,2)

(
Gε(1,2)

)Dε
2

Mε

G(1,2)

Dε
1

εxε(0)

(a) Mode transition of a relaxed execution xε in
a two–mode relaxed hybrid control system.

Dε
1

zε,h(tk)

τ
zε,h(tk+2)

ε

Rε(1,2)

(
Gε(1,2)

)Dε
2

Mε

G(1,2)

zε,h(0)

(b) Discrete approximation zε,h of a relaxed exe-
cution in a two-mode hybrid control system.

Figure 2.10: (left) Relaxed execution and (right) its discrete approximation.

(1) x is orbitally stable with initial condition p and control u;

(2) x has a finite number of discrete transitions or is a Zeno execution that accumulates;
and

(3) there exists T > 0 such that for each ε small enough, [0, T ] ⊂ I ∩ Iε if x has a finite
number of discrete transitions, and [0, T ) ⊂ I ∩ Iε if x is Zeno.

Then, limε→0 ρ
ε
[0,T ]

(
x, xε

)
= 0.

Proof. We provide the main arguments of the proof, omitting some details in the interest of
brevity. First, given j ∈ J and [τ, τ ′) ⊂ [0, T ] such that x(t) ∈ Dj for each t ∈ [τ, τ ′), then,
since x|[τ,τ ′) is absolutely continuous, for each t, t′ ∈ [τ, τ ′),

di,Mε

(
x(t), x(t′)

)
≤ Ldi,Dj

(
x|[t,t′)

)
=

∫ t′

t

∥∥Fj
(
s, x(s), u(s)

)∥∥ ds ≤ K(t′ − t), (2.3.1)

where K = sup
{∥∥F ε

j

(
t, x, u

)∥∥ | j ∈ J, t ∈ [0, T ], x ∈Mε, u ∈ U
}
<∞.

Second, let k ∈ N and {λi}ki=0 ⊂ [0, 1] be a sequence such that 0 = λ0 ≤ λ1 ≤ . . . ≤ λk =
1. Given ε > 0, let γt : [0, 1] → Mε be defined by γt(λ) = xλε(t). Thus, by Theorem 2.2.4
and Algorithm 2, γt(0) = x0(t) = x(t) and γt(1) = xε(t). Assume that xε(t) ∈ Dj for each
t ∈ [τ + ε, τ ′ + ε), where [τ, τ ′) is as defined above. Using Picard’s Lemma (Lemma 5.6.3
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in [Pol97]), for each t ∈ [τ + ε, τ ′),

‖xε(t+ ε)− x(t)‖ ≤ eL(t−τ)

(
‖xε(τ + ε)− x(τ)‖+

+

∫ t

τ

∥∥Fj
(
s, x(s), u(s)

)
− Fj

(
s+ ε, x(s), u(s+ ε)

)∥∥ ds

)

≤ eL(t−τ)

(
‖xε(τ + ε)− x(τ)‖+ L

∫ t

τ

ε+ ‖u(s)− u(s+ ε)‖ ds

)

≤ eL(t−τ)
(
‖xε(τ + ε)− x(τ)‖+

(
L+ V(u)

)
(t− τ)ε

)
,

(2.3.2)
where we have used a standard property of the functions of bounded variation (Exercise 5.1
in [Zie89]). Thus, if we assume that ‖xε(τ + ε)− x(τ)‖ = O(ε), i.e. that there exists C > 0
such that ‖xε(τ + ε)− x(τ)‖ ≤ Cε, then ‖xε(t+ ε)− x(t)‖ = O(ε) for each t ∈ [τ + ε, τ ′).
Using the same argument as above

∥∥xλi+1ε(t+ ε)− xλiε(t)
∥∥ = O((λi+1 − λi)ε), which implies

that γt is continuous for each t ∈ [τ + ε, τ ′), and that L(γt) = O(ε), hence di,Dj
(
xε(t +

ε), x(t)
)

= O(ε).
Assuming now that x performs 2 discrete transitions at times τ, τ ′ ∈ [0, T ], such that

τ + ε < τ ′, transitioning from mode j to j′, and the from mode j′ to j′′. Note that, by
definition, x|[0,τ) = xε|[0,τ). Moreover, since x is orbitally stable, we know that xε performs
the same 2 discrete transitions for ε small enough. Let τ ε+ε ∈ [0, T ] be such that xε(τ ε+ε) ∈
G(j′,j′′). Note that |τ ε − τ ′| = O(ε) since xε → x uniformly and x is Lipschitz continuous
(both propositions shown above). Assume that τ ′ ≤ τ ε + ε and consider the following upper
bounds:

(1) If t ∈ [τ, τ + ε), then x(t) ∈ Dj′ and xε(t) ∈ Sε(j,j′), thus:

di,Mε

(
x(t), xε(t)

)
≤ di,Dj′

(
x(t), x(τ)

)
+ dSε

(j,j′)

(
x(τ), xε(t)

)
= O(ε). (2.3.3)

(2) If t ∈ [τ + ε, τ ′), then x(t), xε(t) ∈ Dj′ , thus, using the bound obtained above:

di,Mε

(
x(t), xε(t)

)
≤ di,Dj′

(
x(t), x(t− ε)

)
+ di,Dj′

(
x(t− ε), xε(t)

)
= O(ε). (2.3.4)

(3) If t ∈ [τ ′, τ ε + ε), then x(t) ∈ Dj′′ and xε ∈ Dj′ , thus, denoting limt↑τ ′ x(t) = x(τ ′−):

di,Mε

(
x(t), xε(t)

)
≤ di,Dj′′

(
x(t), x(τ ′)

)
+ dSε

(j′,j′′)

(
x(τ ′), x(τ ′−)

)
+

+ di,Dj′
(
x(τ ′−), xε(τ ε + ε)

)
+ di,Dj′

(
xε(τ ε + ε), xε(t)

)

≤ O(ε).

(2.3.5)

(4) If t ∈ [τ ε + ε, τ ε + 2ε), then x(t) ∈ Dj′′ and xε ∈ Sε(j′.j′′), thus:

di,Mε

(
x(t), xε(t)

)
≤ di,Dj′′

(
x(t), x(τ ′)

)
+ dSε

(j′,j′′)

(
x(τ ′), xε(t)

)
≤ O(ε). (2.3.6)
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(5) If t ∈ [τ ε + 2ε, T ], then x(t), xε(t) ∈ Dj′′ , thus we get the same bound as in case 2.

Therefore, ρε[0,T ](x, x
ε) = O(ε) as desired. Note that the general case, with an arbitrary

number of discrete transitions and where the discrete transitions of xε occur before the
discrete transitions of x, follows by using the a similar argument as above by properly
considering the time intervals and then applying the upper bounds inductively.

Next, let us consider the case when x is a Zeno execution that accumulates on p′. Let δ >
0, then x|[0,T−δ] has a finite number of discrete transitions, and as shown above, di,Mε

(
x(T −

δ), xε(T − δ)
)

= O(ε). Moreover, di,Mε

(
x(T − δ), x(t)

)
= O(δ) and di,Mε

(
xε(T − δ), xε(t)

)
=

O(δ) for each t ∈ [T − δ, T ). The conclusion follows by noting that these bounds are valid
for each δ > 0.

2.3.3 Discrete Approximations

Finally, we are able to define the discrete approximation of a relaxed execution, which is
constructed as an extension of any existing ODE numerical integration algorithm. Given a
hybrid control system H, Ah

j : R × Rnj × U → Rnj , where h > 0 and j ∈ J, is a numeri-
cal integrator of order ω, if given p ∈ Dj, u ∈ BV (R, U), x the maximal integral curve of

Fj with initial condition p and control u, N =
⌊
T
h

⌋
, and a sequence {zk}Nk=0 with z0 = p

and zk+1 = Ah
j

(
kh, zk, u(kh)

)
, then sup

{
‖x(kh)− zk‖ | k ∈ {0, . . . , N}

}
= O(hω). This

definition of numerical integrator is compatible with commonly used algorithms, including
Forward and Backward Euler algorithms and the family of Runge–Kutta algorithms (Chap-
ter 7 in [LeV07]). Algorithm 3 defines a discrete approximation of a relaxed execution of Hε.
The resulting discrete approximation, for a step size h > 0, denoted by zε,h, is a function
from a closed interval I ⊂ [0,∞) to Mε.

We now make several remarks about Algorithm 3. First, the condition in Step 6 can
only be satisfied, i.e. the Algorithm only stops, if zε,h(tk) ∈ ∂Dj and Fj

(
tk, z

ε,h(tk), u(tk)
)

is
outward–pointing, since otherwise a smaller step–size would produce a valid point. Second,
the function zε,h is continuous on Mε. Third, and most importantly, similar to Algorithm 2,
the curve assigned to zε,h in Step 11 is exactly the maximal integral curve of Fe while on the
strip. By relaxing the guards using strips, and then endowing the strips with a trivial vector
field, we avoid having to find the exact point where the trajectory intersects a guard. Our
relaxation does introduce an error in the approximation, but as we show in Theorem 2.3.2,
the error is of order ε. Figure 3 shows a discrete approximation produced by Algorithm 3 as
it performs a mode transition.

Theorem 2.3.2. Let H be a hybrid control system and Hε its relaxation. Let p ∈ M,
u ∈ BV (R, U), and let x : I →Mε be a orbitally stable execution of H with initial condition
p and control u. Furthermore, let xε : Iε → Mε be a relaxed execution with initial condition
p and control u, and let zε,h : Iε,h → Mε be its discrete approximation. If [0, T ] ⊂ Iε ∩ Iε,h
for each ε and h small enough, then there exists C > 0 such that limh→0 ρ

ε
[0,T ]

(
xε, zε,h

)
≤ Cε.
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Algorithm 3: discrete approximation of execution of relaxed hybrid control system Hε.

Input: h > 0, k = 0, j ∈ J, and p ∈ Dj.
1 Set t0 = 0 and zε,h(0) = p.
2 while True do

3 Find n′ = inf
{
n ∈ N | Ah2−n

j

(
tk, z

ε,h(tk), u(tk)
)
∈ Dε

j

}

4 if n′ =∞ then
5 return zε,h|[0,tk].
6 end

7 Set tk+1 = tk + h2−n
′
, and zε,h(tk+1) = Ah2−n

′

j

(
tk, z

ε,h(tk), u(tk)
)
.

8 Set zε,h(t) = tk+1−t
tk+1−tk

zε,h(tk) + t−tk
tk+1−tk

zε,h(tk+1) for each t ∈ [tk, tk+1].

9 if ∃(j, j′) ∈ Nj such that zε,h(tk+1) ∈ Sε(j,j′) then

10 Set (q, τ) = zε,h(tk+1) ∈ Sε(j,j′), and tk+2 = tk+1 + ε− τ .

11 Set zε,h(t) = (q, t− tk+1 + τ) for each t ∈ [tk+1, tk+2).

12 Set zε,h(tk+2)=Rε
(j,j′)(q, ε), k = k + 2, and j = j′. . Note (q, ε)

R̂ε∼ zε,h(tk+2).

13 else
14 Set k = k + 1.
15 end

16 end

Proof. As we have done with the previous proofs, we only provide a sketch of the argument
in the interest of brevity. Assume that xε performs a single discrete transition in the interval
[0, T ] for each ε small enough, crossing the guard G(j,j′) at time τ ε. Then, since x is orbitally
stable and Ah is convergent with order ω, for ε and h small enough zε,h also crosses guard
G(j,j′) at time τ ε,hk′ ∈ [tk′ , tk′+1) for some k′ ∈ N, where {tk}Nk=0 is the set of time samples
associated to zε,h. Moreover, since xε(0) = zε,h(0), then for each δ > 0,

∣∣τ ε−tk′+1

∣∣ ≤ δ+O(hω)
and

∣∣tk′+2 − τ ε + ε
∣∣ = O(hω).

Define the following times:

σm = min
{
tk′+1, τ

ε
}
, σM = max

{
tk′+1, τ

ε
}
,

νm = min
{
tk′+2, τ

ε + ε
}
, νM = max

{
tk′+2, τ

ε + ε
}
,

(2.3.7)

and, in order to simplify our argument, assume that σM ≤ νm. Then on the interval [0, σm)
we get convergence due to Ah. On the interval [σm, σM) one execution has transitioned
into a strip, while the other is still governed by the vector field on Dj. On the interval
[σM , ωm) both executions are inside the strip, and on the interval [ωm, ωM) one execution
has transitioned to a new domain, while the second is still on the strip. After time ωM both
executions are in a new domain, and we can repeat the process.

Consider the following cases:

(1) By the convergence of algorithm Ah, di,Mε

(
xε(σm), zε,h(σm)

)
= O(hω).
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(2) Using (2.3.1) from the proof of Theorem 2.3.1,

di,Mε

(
xε(σM), zε,h(σM)

)
≤ di,Mε

(
xε(σM), xε(σm)

)
+ di,Mε

(
xε(σm), zε,h(σm)

)
+

+ di,Mε

(
zε,h(σm), zε,h(σM)

)
= O(hω). (2.3.8)

(3) Using the same argument as in the inequality above,

di,Mε

(
xε(νm), zε,h(νm)

)
≤ di,Mε

(
xε(σM), zε,h(σM)

)
+ 2ε. (2.3.9)

(4) Finally, again using the same argument as in case 2,

di,Mε

(
xε(νM), zε,h(νM)

)
≤ di,Mε

(
xε(νm), zε,h(νm)

)
+O(hω). (2.3.10)

The generalization to any relaxed execution defined on Mε and its discrete approximation
follows by noting that they perform a finite number of discrete jumps on any bounded interval
and that δ′ can be chosen arbitrarily small.

Next, we state the main result of this Section, which is a result of Theorems 2.3.1
and 2.3.2.

Corollary 2.3.1. Let H be a hybrid dynamical system and Hε be its relaxation. Let p ∈M,
u ∈ BV (R, U), x : I → Mε be an execution of H with initial condition p and control u,
xε : Iε →Mε be its corresponding relaxed execution, and zε,h : Iε,h →Mε be its corresponding
discrete approximation. If the following conditions are satisfied:

(1) x has a finite number of mode transitions or is a Zeno execution that accumulates,

(2) x is orbitally stable,

(3) [0, T ] ⊂ I ∩ Iε ∩ Iε,h for each ε and h small enough,

then limε→0
h→0

ρε[0,T ]

(
x, zε,h

)
= 0.

Proof. Note that, by Theorem 2.3.1 together with the Triangle Inequality, this corollary is
equivalent to proving that ρεI

(
xε, zε,h

)
→ 0 as both ε, h→ 0. Hence we show that ρεI

(
xε, zε,h

)

converges uniformly on h as ε → 0. Using an argument similar to the one in the proof of
Theorem 7.9 in [Rud76], proving the uniform convergence on h is equivalent to showing
that limh→0 lim supε→0 ρ

ε
I

(
xε, zε,h

)
= 0, but this is clearly true by Theorem 2.3.2, therefore

obtaining our desired result.
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2.4 Applications

We apply our provably–convergent numerical simulation algorithm in four examples: first
detailing its technical advantages over other approaches in Section 2.4.1; then comparing
its performance to existing state–of–the–art algorithms in Section 2.4.2; subsequently im-
plementing a benchmark hybrid system verification example in Section 2.4.3; and finally
demonstrating its use while computing the trajectories of a legged locomotion model in Sec-
tion 2.4.4. It is important to note that, to the best of our knowledge, there are no results in
the literature that can allow us to prove the orbital stability of the examples in Sections 2.4.2
and 2.4.3. However, using the techniques developed in Chapter 4, we can show that the ex-
ample in Section 2.4.4 is orbitally stable. In spite of our inability to formally check orbital
stability in each of the examples, we experimentally checked that the trajectories in each case
were continuous with respect small variations of the initial conditions and control inputs.

2.4.1 Particle in a Box

We describe a simple conceptual example that illustrates several technical advantages of
our intrinsic state space metric and convergent numerical simulation algorithm. Consider
the mechanical dynamics of a point mass confined to the first orthant in Rd, some d ∈ N.
When the particle impacts a coordinate plane, we stipulate that it undergoes perfect plastic
impact. This system is comprised of a rigid body subject to perfect unilateral constraints,
hence under mild constitutive assumptions it possesses unique solutions from every initial
condition defined for all forward time [Bal00, Theorem 10]. To formalize this example, let

D = T [0,∞)d ⊂ TRd, (2.4.1)

for each j ∈ {1, . . . , d} let

Gj =
{

(x, ẋ) ∈ ∂D : xj = 0, eTj ẋj < 0
}
,

and define Rj : Gj → D by

∀(x, ẋ) ∈ G : Rj(x, ẋ) = (x, ẋ− (eTj ẋ)ej),

where ej ∈ Rd is the j–th standard basis vector.
In the modeling framework of [ST10], these elements determine a hybrid system H =

(D,F,G,R) where: D is the flow set defined in (2.4.1); F : D → TD is the flow map (i.e.
vector field) defined by

∀(x, ẋ) ∈ D : F (x, ẋ) = (ẋ, 0);

G =
⋃d
j=1Gj is the jump set ; and R : G→ D is the jump map defined by

∀(x, ẋ) ∈ G : R(x, ẋ) =
∏
{Rj : j ∈ {1, . . . , d}, (x, ẋ) ∈ Gj}, (2.4.2)
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where the product in (2.4.2) denotes composition; since the Rj’s commute, R is well–defined.
Now fix i, j ∈ {1, . . . , d}, i 6= j, and consider a Cauchy sequence of initial conditions

{(xk, ẋk)}k∈N ⊂ Gj \Gi such that

lim
k→∞

(xk, ẋk) = (x, ẋ) ∈ Gi ∩Gj

for some i ∈ {1, . . . , d}\{j}; in other words, for each k ∈ N the point (xk, ẋk) is in Gj and not
in Gi, but in the limit as k tends to infinity the sequence converges to a point (x, ẋ) that is in
both Gi and Gj. Note that (xk, ẋk)→ (x, ẋ) and hence R(xk, ẋk) = Rj(xk, ẋk)→ Rj(x, ẋ) 6=
Ri ◦Rj(x, ẋ) = R(x, ẋ). This implies that R (regarded as a singleton–valued multifunction)
is not outer semicontinuous, so H fails to satisfy the “hybrid basic conditions” [ST10, As-
sumption 2.5]. More broadly, this example illustrates that the simulation results of [ST10]
cannot be applied to approximate trajectories of rigid body mechanical systems in which
more than one unilateral constraint can be active. The locomotion example in Section 2.4.4
provides another practical instance where trajectories of interest pass through overlapping
constraint surfaces.

2.4.2 Forced Linear Oscillator with Stop

We consider a single degree–of–freedom oscillator consisting of a mass that is externally
forced and can impact a plane fixed rigid stop, as in Figure 2.11a. The state of the oscillator
is the position, x(t) ∈ R, and velocity, ẋ(t) ∈ R, of the mass. The oscillator is forced
with a control u ∈ BV (R,R). The oscillator is modeled as a hybrid control system with
a single mode, denoted D, and single guard corresponding to the mass impacting the stop
with non–negative velocity, denoted G:

D =
{(
x(t), ẋ(t)

)
∈ R2 | x(t) ≤ xmax

}

G =
{(
x(t), ẋ(t)

)
∈ R2 | x(t) = xmax, ẋ(t) ≥ 0

} (2.4.3)

Upon impact, the state is updated using the reset map R(x, ẋ) =
(
x,−c ẋ

)
, where c ∈ [0, 1]

is the coefficient of restitution. Within the single domain, the dynamics of the system are
governed by ẍ(t) + 2aẋ(t) + ω2x(t) = m−1 u(t), where ω =

√
m−1k, a = 0.5m−1 µ, k is the

spring constant, and µ is the damping coefficient.
Given an initial condition

(
x(t0), ẋ(t0)

)
=
(
x0, ẋ0

)
∈ D, the oscillator’s motion is analyt-

ically determined by

x(t) = e−at
(
An cos(ω̃t) +Bn sin(ω̃t)

)
+ ω̃−1

∫ t

0

u(s)e−a(t−s) sin
(
ω̃(t− s)

)
ds

for each t ∈ [tn−1, tn), where ω̃ =
√
ω2 − a2 (assuming that the damping is sub–critical), with

tn such that x(t−n ) = xmax for each n ∈ N, and An and Bn are determined by the given initial
conditions when n = 0, or those determined by applying the reset map to x(t−n ) when n ≥ 1.
Note that determining the impact times can be done analytically. The analytical solution
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(a) Forced linear oscillator with
stop.
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(b) Position of the analytical solu-
tion of Example 1 in Table 2.1
(solid line), and position of the
stop (dotted line).
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(f) Computation times of Algo-
rithm 3 vs. the PS Method for
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Figure 2.11: A mechanical system (Figure 2.11a) and a pair of examples (Figs. 2.11b
and 2.11c) chosen to illustrate the accuracy of Algorithm 3 vs. the PS Method (Figs. 2.11d
and 2.11e) and their computation times (Figure 2.11f).

holds provided that the mass does not stick to the stop, since in that case the dynamics
are given by ẍ(t) + 2aẋ(t) + ω2x(t) = m−1

(
u(t) + λ(t)

)
, where λ(t) ∈ R denotes the force

generated by the stop to prevent movement. This equation holds as long as x(t) = xmax,
ẋ(t) = ẍ(t) = 0, and the reaction of the stop is negative, i.e. λ(t) ≥ mω2 xmax. For the
contact to cease, λ(t) −mω2 xmax must become zero and change sign. Once this happens,
the analytical solution can be used again to construct the motion of the mass with the initial
condition (xmax, 0).

Assuming that the forcing u is continuous (an assumption that is violated by many con-
trol schemes such as ones generated via optimal control) a convergent numerical simulation
scheme, which we call the PS Method, to determine the position of a mechanical system
with unilateral constraints was proposed in [PS03]. Fixing a step–size h > 0, their approach
is a two–step method that for a set of time instances, {tk}k∈N, computes a set of positions,
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Table 2.1: Parameters for simulations of the forced linear oscillator with mechanical stop.

a c tmax u(t) x0 ẋ0 xmax ω

Example 1 0.05 0.9 40π 20 cos(2.5 t) 11.36263 31.40358 14 2.5
Example 2 0.95 0.5 4π cos(t) −0.8 0 −0.8 1

zPS : {tk}k∈N → R, by:

zPS(t0) = x0, zPS(t1) = x0 + ẋ0h+
h2

2

(
u(0)− 2aẋ0 − ω2x0

)
,

zPS(tk+1) = −c zPS(tk−1) + min
{
yPS(tk), (1 + c)xmax

}
,

yPS(tk) =
1

1 + ah

(
h2u(tk) + (2− h2ω2)zPS(tk)−

(
(1− c)− (1 + c)a h

)
zPS(tk−1)

)
,

(2.4.4)
where tk+1 = tk + h for each k ∈ N.

We illustrate the performance of our approach by considering the two examples described
in Table 2.1 whose solutions, which are defined for all t ∈ [0, tmax], can be computed an-
alytically. The position component of the analytical trajectory of each example is plotted
in Figs. 2.11b and 2.11c. The evaluation of the performance of Algorithm 3 using ρε, as
in Definition 2.2.7, is shown in Figure 2.11d. To make our approach comparable to the PS
Method, for Ah we use a Runge–Kutta of order two which is called the midpoint method. We
cannot use ρε to compare our discrete approximation algorithm to the PS method since the
PS method does not compute the velocities of the hybrid system. Hence, we use the evalua-
tion metric proposed in [JL01] which compares a numerically simulated position trajectory,
zpos : {tk}k∈N → R, to the analytically computed position trajectory, xanalytic : [0, tmax]→ R,
at the sample points {tk}k∈N ∩ [0, tmax] as follows:

ρ̂(zpos, xanalytic) = max
{
|zpos(tk)− xanalytic(tk)| | {tk}k∈N ∩ [0, tmax]

}
. (2.4.5)

The result of this comparison is illustrated in Figure 2.11e. Finally, the computation time
on a 32 GB, 3.1 GHz Xeon processor computer for each of the examples as a function of
the step–size and relaxation parameter is shown in Figure 2.11f. Notice in particular that
we are able to achieve higher accuracy with respect to the ρ̂ evaluation metric at much
faster speeds. In Example 1, for step–sizes h ≤ 10−1, our numerical simulation method is
consistently more accurate by several orders of magnitude and generally several orders of
magnitude faster than the PS method. In Example 2, using a step–size of approximately
h = 10−2 and relaxation parameter ε = 2·10−7, our numerical simulation achieves a ρ̂ value of
approximately 10−4 while taking approximately 0.1 seconds, whereas the PS method requires
a step–size of h = 5 · 10−4 which takes approximately 5 seconds in order to achieve the same
level of accuracy.
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Figure 2.12: Navigation benchmark instances. Each instance map (symbols within each
square) is shown with its desired velocity (drawn in each square with an arrow). Sample
trajectories (drawn as lines beginning at filled in circles and ending at crosses) begin at some
of the initial conditions we attempt to verify.

2.4.3 Navigation Benchmark for Hybrid System Verification

Next, we illustrate the utility of Algorithm 3 by considering three instances of a nav-
igation benchmark proposed in [FI04] for hybrid system verification tools. The bench-
mark considers an object moving in the plane while following a set of desired velocities,
vdj =

(
sin
(
jπ
4

)
, cos

(
jπ
4

))
, for j ∈ {0, . . . , 7} where j is attributed to unit–sized squares ac-

cording to a labeling map. Special symbols denoted “Goal” and “Obstacle” are reserved for
a set of target and forbidden states, respectively. The labeling map for the three instances
considered within this subsection are illustrated in Figure 2.12, where the label j in each cell
refers to the desired velocity, target, or forbidden states. If the trajectory leaves the grid,
the desired velocity is the velocity of the closest cell.

The dynamics of the four dimensional state, (x, v) ∈ R4, are given by ẋ(t) = v(t), and
v̇(t) = A

(
v(t) − vdj

)
, where A =

( −1.2 0.1
0.1 −1.2

)
for the instances illustrated in Figs. 2.12a

and 2.12b and A =
( −0.8 −0.2
−0.1 −0.8

)
for the instance illustrated in Figure 2.12c. For each instance,

we attempt to verify that for all trajectories beginning from a set of initial conditions there
exists some finite time at which the “Goal” set is reached while avoiding the “Obstacle” set.
We perform this verification by discretizing over the given set of initial conditions.

For the instance illustrated in Figure 2.12a, we select a set of initial conditions x ∈
[0, 1] × [0, 1] and v ∈ [0.1, 0.5] × [0.05, 0.25]. By choosing 10, 000 uniformly spaced points
over the set of initial conditions, a step–size of 10−1, and relaxation size of 10−3, we are
able to verify this system in approximately 100 seconds. For the instance illustrated in
Figure 2.12b, we select a set of initial conditions x ∈ [3, 4]× [3, 4] and v ∈ [−1, 1]× [−1, 1].
This instance fails the verification task as trajectories are unable to reach the “Goal” set,
but do not ever intersect with the “Obstacle” set. By choosing 10, 000 uniformly spaced
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points over the set of initial conditions, a step–size of 10−1, and relaxation size of 10−3, we
discover that for this system the task is not verifiable in approximately 85 seconds. For the
instance illustrated in Figure 2.12a, we select a set of initial conditions x ∈ [3, 3.5]× [3, 3.5]
and v ∈ {0.5}× [−0.5, 0.5]. In this instance, verification is possible, but trajectories get close
to the “Obstacle” set. By choosing 10, 000 uniformly spaced points over the set of initial
conditions, a step–size of 10−1, and relaxation size of 10−3, we are able to verify this system
in approximately 210 seconds.

2.4.4 Simultaneous Transitions in Models of Legged Locomotion

As a terrestrial agent traverses an environment, its appendages intermittently contact the
terrain. Since the equations governing the agent’s motion change with each limb contact, the
dynamics are naturally modeled by a hybrid control system with discrete modes correspond-
ing to distinct contact configurations. Because the dynamics of dexterous manipulation are
equivalent to that of legged locomotion [Joh+12], such hybrid control systems model a broad
and important class of dynamic interactions between an agent and environment.

Legged animals commonly utilize gaits that, on average, involve the simultaneous tran-
sition of multiple limbs from aerial motion to ground contact [Ale84; Gol+99]. Similarly,
many multi–legged robots enforce simultaneous leg touchdown via virtual constraints im-
plemented algorithmically [Rai+86; Sar+01] or physical constraints implemented kinemati-
cally [Kim+06; Hoo+10]. Trajectories modeling such gaits pass through the intersection of
multiple transition surfaces in the corresponding hybrid control system models. Therefore
simulation of this frequently–observed behavior requires a numerical integration scheme that
can accommodate overlapping guards. Algorithm 3 has this capability, and to the best of
our knowledge is the only existing algorithm possessing this property. We demonstrate this
advanced capability using a pronking gait in a saggital–plane locomotion model illustrated
in Figure 2.13a.

Figure 2.13a contains an extension of the “Passive RHex–runner” in [SH06] that allows
pitching motion. A rigid body with mass m and moment–of–inertia I moves in the saggital
plane under the influence of gravity g. Linear leg–springs are attached to the body via a
frictionless pin joint located symmetrically at distance d/2 from the center–of–mass. The
leg–springs are massless with linear stiffness k, rest length `, and make an angle ψ with
respect to the body while in the air. When a foot touches the ground it attaches via a
frictionless pin joint, and it detaches when the leg extends to its rest length.

A pronk is a gait wherein all legs touch down and lift off from the ground at the same
time [Ale84; Gol+99]. Due to symmetries in our model, motion with pitch angle θ = 0 for all
time is invariant. Therefore periodic orbits for the spring–loaded inverted pendulum model
in [Ghi+03] correspond exactly to pronking gaits for our model. Figure 2.13b contains a
projection of the guards G(a,r), G(a,f), G(r,g), G(f,g) in (θ, z) coordinates for the transition
from the aerial domain Da to the ground domain Dg through rear stance Dr and front stance
Df . The pronking trajectory is illustrated by a downward–pointing vertical arrow, and a
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(a) Schematic for the saggital–plane locomotion model with three mechanical
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Figure 2.13: Schematic and discrete mode diagram for the saggital–plane locomotion model.
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t = −0.5 t = −0.2 t = 0.0 t = 0.2 t = 0.5

t = −0.5 t = −0.2 t = 0.0 t = 0.2 t = 0.3

Figure 2.14: Snapshots of pronk at discrete transition times with parameters
(m, I, k, `, d, g, ψ) = (1, 1, 30, 1, 1, 9.81, π/5), step size h = 10−3, relaxation parameter
ε = 10−2: (top) from initial condition (x0, z0, θ0, ẋ0, ż0, θ̇0) = (0, 1.1, 0, 3.4, 0, 0); (bottom)
same as (top) except θ̇0 = −0.4.

nearby trajectory initialized with negative rotational velocity is illustrated by a dashed line.
Figure 2.14 contains snapshots from these simulations.

The θ̇0 = 0 trajectory in Figure 2.13b clearly demonstrates the need for a simulation
algorithm that allows the intersection of multiple transition surfaces. We emphasize that
our state–space metric was necessary to derive a convergent numerical approximation for this
execution: since the discrete mode sequence differs for any pair of trajectories arbitrarily close
to the θ̇0 = 0 execution that pass through the interior of Dr and Df , respectively, a näıve
application of the trajectory–space metric in [Tav09] would yield a distance larger than unity
between the pair. Consequently no numerical simulation algorithm can be shown to converge
to the θ̇0 = 0 execution using a trajectory–space metric.

Another interesting property of this example is that it is possible to show (by care-
fully studying the transitions between vector fields through the guards) that the hybrid
quotient space M is a smooth 6–dimensional manifold near the pronk execution, and that
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the piecewise–defined dynamics yield a continuously–differentiable vector field on this quo-
tient. Since this system is intrinsically smooth, all trajectories are orbitally stable [Lee12,
Theorem D.6]. However, this observation argument would not apply if the model included
damping or other nonsmooth effects at limb touchdown. In these cases, it may be possible to
generalize the piecewise–differentiable flow derived in Chapter 4 to establish orbital stability.

As a final note to practitioners, we remark that our algorithm does not require a special-
ized mechanism to handle overlapping guards or control inputs: a single code will accurately
simulate any orbitally stable execution of the hybrid system under investigation, dramatically
simplifying practical implementation.

2.5 Discussion

We developed an algorithm for the numerical simulation of hybrid control systems and proved
the uniform convergence of our approximations to executions using a novel metrization of the
hybrid control system’s state space. The metric and the algorithm impose minimal assump-
tions on the hybrid system beyond those required to guarantee existence and uniqueness
of executions. Beyond their immediate utility, it is our conviction that these tools provide
a foundation for formal analysis and computational controller synthesis in a broad class of
Cyber–Physical Systems (CPS). For example, Girard and Pappas [GP07] developed a family
of approximate bisimulation metrics enabling comparison of entire CPS once a trajectory
metric is provided for each particular system. We developed a general method to construct
metrics on the state space and hence the space of trajectories for hybrid control systems,
significantly extending the class of CPS that can be studied in this paradigm. Further,
simulation provides a foundation for numerical tools including reachability–based controller
synthesis [Din+11] and numerical optimal control [Wes+03]. Current approaches to these
problems require a fixed discrete mode sequence, yielding a computational complexity com-
binatorial in the number of discrete modes. We conjecture that our relaxed state–space
metric enables generalizations of these algorithm which avoid combinatorial search by work-
ing in our continuous metric space. Finally, Tabuada [Tab07] proposed a control paradigm
wherein an embedded system is continually monitored but control effort is updated only
when an event specified by a threshold function on the state space is triggered. Implemen-
tation of this approach yields a CPS with state–dependent discrete transitions. We provide
an algorithm enabling accurate simulation of this closed–loop system, even in systems where
multiple events may trigger simultaneously.
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Chapter 3

Reduction and Smoothing near
Hybrid Periodic Orbits

Rhythmic phenomena are pervasive, appearing in physical situations as diverse as legged
locomotion [Hol+06], dexterous manipulation [Bue+94], gene regulation [GP78], and elec-
trical power generation [HR07]. The most natural dynamical models for these systems are
piecewise–defined or discontinuous owing to intermittent changes in the mechanical contact
state of a locomotor or manipulator, or to rapid switches in protein synthesis or constraint
activation in a gene or power network. Such hybrid systems generally exhibit dynamical
behaviors that are distinct from those of smooth systems [Lyg+03]. Restricting our atten-
tion to the dynamics near periodic orbits in hybrid dynamical systems, we demonstrate that
a class of hybrid models for rhythmic phenomena reduce to classical (smooth) dynamical
systems.

Although the results of this chapter do not depend on the phenomenology of the phys-
ical system under investigation, a principal application domain for this work is terrestrial
locomotion. Numerous architectures have been proposed to explain how animals control
their limbs; for steady–state locomotion, most posit a principle of coordination, synergy,
symmetry or synchronization, and there is a surfeit of neurophysiological data to support
these hypotheses [Gri85; Coh+82; Gol+99; TM05; Li+13]. Taken together, the empirical
evidence suggests that the large number of degrees–of–freedom (DOF) available to a lo-
comotor can collapse during regular motion to a low–dimensional dynamical attractor (a
template) embedded within a higher–dimensional model (an anchor) that respects the loco-
motor’s physiology [Hol+06; FK99]. We provide a mathematical framework to model this
empirically observed dimensionality reduction in the deterministic setting.

From a modeling viewpoint, a stable hybrid periodic orbit provides a natural abstraction
for the dynamics of steady–state legged locomotion. This approach has been widely adopted,
generating a variety of models of bipedal [McG90; Gri+02; Sey+03; Col+05] and multi–
legged [Ghi+03; SH00b; Kuk+09] locomotion as well as some control–theoretic techniques
for composition [KK02], coordination [Hay+12], and stabilization [Wes+03; Car+09; Shi+10]
of such models. In certain cases, it has been possible to embed a low–dimensional abstraction
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in a higher–dimensional physically–realistic model [PG09; AS11]. Applying these techniques
to establish existence of a reduced–order subsystem imposes stringent assumptions on the
dynamics of locomotion that are difficult to verify for any particular locomotor. In contrast,
the results of this chapter imply that hybrid dynamical systems generically exhibit dimension
reduction near periodic orbits solely due to the interaction of the discrete–time switching
dynamics with the continuous–time flow.

Under the hypothesis that iterates of the Poincaré map associated with a periodic orbit
in a hybrid dynamical system are eventually constant rank, we demonstrate the existence of a
constant–dimensional invariant subsystem that attracts all nearby trajectories in finite time
regardless of the stability properties of the orbit; this appears as Theorem 3.3.1. Assuming
instead that the periodic orbit under investigation is exponentially stable, we show in The-
orem 3.4.1 that trajectories generically contract superexponentially to a subsystem whose
dimension is determined by rank properties of the linearized Poincaré map at a single point.
The resulting subsystems possess a special structure that we exploit in Theorem 3.5.1 to con-
struct a topological quotient that removes the hybrid transitions and admits the structure
of a smooth manifold, yielding an equivalent smooth dynamical system.

In Section 3.6 we show how these results can be applied to reduce the complexity of
hybrid models for mechanical systems and analyze rhythmic hybrid control systems. The
example in Section 3.6.1 demonstrates that reduction can occur spontaneously in mechanical
systems undergoing plastic impacts. In Section 3.6.2 we present a family of (3 + 2n)–DOF
lateral–plane multi–leg models that provably reduce to a common 3–DOF mechanical system
independent of the number of limbs, n ∈ N; this demonstrates model reduction in the me-
chanical component of the class of neuromechanical models considered in [Hol+06; Kuk+09].
As further applications, we assess structural stability of deadbeat controllers for rhythmic
locomotion and manipulation in Section 3.6.3, and derive a normal form for the stability
basin of a hybrid oscillator in Section 3.6.4.

3.1 Preliminaries

3.1.1 Linear Algebra [CD91]

Through a standard abuse of notation, we conflate a linear map A : Rn → Rm with its
matrix representation A ∈ Rm×n in the standard basis. The range A(Rn) ⊂ Rm of a linear
map A is a subspace; we let rankA denote the dimension of this subspace. If An = 0 then
we say A is nilpotent. The spectrum of a square matrix A ∈ Rn×n is denoted

specA = {λ ∈ C : det(λI − A) = 0}
and the spectral radius is denoted by

ρ(A) = max{|λ| : λ ∈ specA}.
If ‖·‖ : Rn → R is a norm, we let ‖·‖i : Rn×n → R denote the corresponding induced
norm [CD91, Appendix A.6].
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3.1.2 Topology [Lee12]

If (X, ‖·‖) is a Banach space, we let Bδ(x) ⊂ X denote the open ball of radius δ > 0 centered
at x ∈ X; For X = Rn, we may emphasize the dimension n by writing Bn

δ (0) ⊂ Rn for the
open δ–ball. A subset of a topological space is precompact if it is open and its closure is
compact. A neighborhood of a point x ∈ X in a topological space X is a connected open
subset U ⊂ X containing x. The disjoint union of a collection of sets {Sj}j∈J is denoted

∐

j∈J

Sj =
⋃

j∈J

Sj × {j},

a set we endow with the natural piecewise–defined topology. If ∼ ⊂ D×D is an equivalence
relation on the topological space D, then we let D/∼ denote the corresponding set of equiv-
alence classes. There is a natural quotient projection π : D → D/∼ sending x ∈ D to its
equivalence class [x] ∈ D/∼, and we endow D/∼ with the (unique) finest topology making
π continuous [Lee12, Appendix A]. Any map R : G → D defined over a subset G ⊂ D
determines an equivalence relation ∼ ⊂ D ×D as the transitive closure of

{
(x, y) ∈ D ×D : x ∈ R−1(y), y ∈ R−1(x), or x = y

}
.

To clarify that the equivalence relation is determined by R we denote the quotient space as

D/∼ =
D

G
R∼ R(G)

.

3.1.3 Differential Topology [Hir76]

A Cr n–dimensional manifold M with boundary ∂M is an n–dimensional topological man-
ifold covered by an atlas of Cr coordinate charts {(Ua, ϕa)}a∈A where Ua ⊂ M is open,
ϕa : Ua → Hn is a homeomorphism, and

Hn = {(y1, . . . , yn) ∈ Rn : yn ≥ 0}

is the upper half–space; we write dimM = n. The charts are Cr in the sense that ϕa ◦ ϕ−1
b

is a Cr diffeomorphism over ϕb(Ua ∩ Ub) for all pairs a, b ∈ A for which Ua ∩ Ub 6= ∅; if
r =∞ we say M is smooth. The boundary ∂M ⊂M contains those points that are mapped
to the plane {(y1, . . . , yn) ∈ Rn : yn = 0} in some chart. A map P : M → N is Cr if M
and N are Cr manifolds and for every x ∈ M there is a pair of charts (U,ϕ), (V, ψ) with

x ∈ U ⊂ M and P (x) ∈ V ⊂ N such that the coordinate representation P̃ = ψ ◦ P ◦ ϕ−1 is
a Cr map between subsets of Hn. We let Cr(M,N) denote the normed vector space of Cr

maps between M and N endowed with the uniform Cr norm [Hir76, Chapter 2].
Each x ∈M has an associated tangent space TxM , and the disjoint union of the tangent

spaces is the tangent bundle

TM =
∐

x∈M

TxM.
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Note that any element in TM may be regarded as a pair (x, δ) where x ∈M and δ ∈ TxM ,
and TM is naturally a smooth 2n–dimensional manifold. We let T(M) denote the set of
smooth vector fields on M , i.e. smooth maps F : M → TM for which π ◦F (x) = idM where
π : TM → M is the canonical projection. It is a fundamental result that any F ∈ T(M)
determines an ordinary differential equation in every chart on the manifold that may be
solved globally to obtain a maximal flow φ : F →M where F ⊂ R×M is the maximal flow
domain [Lee12, Theorem 9.12].

If P : M → N is a smooth map between smooth manifolds, then at each x ∈M there is
an associated linear map

DP (x) : TxM → TP (x)N

called the pushforward. Globally, the pushforward is a smooth map

DP : TM → TN ;

in coordinates, it is the familiar Jacobian matrix. If M = X × Y is a product manifold, the
pushforward naturally decomposes as

DP = (DxP, DyP )

corresponding to derivatives taken with respect to X and Y , respectively. The rank of a
smooth map P : M → N at a point x ∈M is rankDP (x). If rankDP (x) = r for all x ∈M ,
we simply write rankDP ≡ r. If P is furthermore a homeomorphism onto its image, then
P is a smooth embedding, and the image P (M) is a smooth embedded submanifold. In this
case the difference dimN − dimP (M) is called the codimension of P (M), and any smooth
vector field F ∈ T(M) may be pushed forward to a unique smooth vector field

DP (F ) ∈ T(P (M)).

A vector field F ∈ T(M) is inward–pointing at x ∈ ∂M if for any coordinate chart (U,ϕ)
with x ∈ U the n–th coordinate of Dϕ(F ) is positive and outward–pointing if it is negative.

3.1.4 Hybrid Differential Topology

For our purposes, it is expedient to define hybrid dynamical systems over a finite disjoint
union

M =
∐

j∈J

Mj =
⋃

j∈J

Mj × {j} = {(x, j) : j ∈ J, x ∈Mj}

where Mj is a finite dimensional connected Cr manifold (possibly with boundary) for each
j ∈ J . We endow M with the unique largest topology with respect to which the (canonical)
inclusions Mj ↪→M are continuous [Lee12, Proposition A.25]. This makes M into a second–
countable, Hausdorff topological space which is locally Euclidean in the sense that each point
x ∈ M has a neighborhood that is homeomorphic to an open subset of Rnx , some nx ∈ N.
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Since the dimension is no longer required to be fixed, M is technically not a topological
manifold [Lee12, Chapter 1]. However, it is a mild generalization, hence we refer to it as a
hybrid topological manifold.

For each j ∈ J , Mj has an associated maximal Cr atlas Aj. We construct a maximal Cr

hybrid atlas for M by collecting charts from the atlases on the components of M :

A = {(U × {j}, ϕ ◦ πj) : j ∈ J, (U,ϕ) ∈ Aj}

where πj : Mj × {j} →Mj is the canonical projection. We refer to the pair (M,A) as a Cr

hybrid manifold, but may suppress the atlas when it is clear from context. We define the
hybrid tangent bundle as the disjoint union of the component tangent bundles,

TM =
∐

j∈J

TMj,

and the hybrid boundary as the disjoint union of the boundaries,

∂M =
∐

j∈J

∂Mj.

Let M =
∐

j∈JMj and N =
∐

`∈LN` be two hybrid manifolds. Note that if a map
R : M → N is continuous, then for each j ∈ J there exists ` ∈ L such that R(Mj) ⊂ N`

and hence R|Mj
: Mj → N`. Using this observation, we define differentiability for continuous

maps between hybrid manifolds. Namely, a map R : M → N is called Cr if R is continuous
and R|Mj

: Mj → N is Cr for each j ∈ J . In this case the hybrid pushforward

DR : TM → TN

is the Cr map defined piecewise as

DR|TMj
= D(R|Mj

)

for each j ∈ J . A Cr map F : M → TM is called a hybrid vector field if π ◦F = idM where
π : TM → M is the canonical projection, and we let T(M) denote the set of hybrid vector
fields on M .

3.1.5 Hybrid Dynamical Systems

We now define the class of hybrid systems considered in this chapter. This is a specialization
of hybrid automata [Lyg+03] that emphasizes the differential–geometric character of hybrid
phenomena.

Definition 3.1.1. A hybrid dynamical system is specified by a tuple H = (D,F,G,R) where:

D =
∐

j∈J Dj is a smooth hybrid manifold;
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ẋ = F |D1(x)

ẋ = F |D2(x)

G ∩D1G ∩D2
R|G∩D1

R|G∩D2

x|T1(0) = ξ

x|T1(t1)

x|T2(t1)

x|T3(t2)

x|T2(t2) x|T2(t)

Figure 3.1: Illustration of two–domain hybrid dynamical system H = (D,F,G,R) and
execution x : T → D defined over a hybrid time trajectory T = T1

∐
T2

∐
T3. In this

example, the restrictions x|T1 , x|T3 are confined to D1, i.e. x|T1 : T1 → D1, x|T3 : T3 → D1,
while x|T2 : T2 → D2. Consecutive components of T share a single instant in time, i.e.
T1 ∩ T2 = {t1}, T2 ∩ T3 = {t2}, and the corresponding states are related through the reset
map by x|T2(t1) = R(x|T1(t1)), x|T3(t2) = R(x|T2(t2)).

F : D → TD is a smooth vector field;

G ⊂ ∂D is an open subset of ∂D;

R : G→ D is a smooth map.

As in [Lyg+03], we call R the reset map and G the guard. When we wish to be explicit
about the order of smoothness, we will say H is Cr if D, F , and R are Cr as a manifold,
vector field, and map, respectively, for some r ∈ N.

Roughly speaking, an execution of a hybrid dynamical system is determined from an
initial condition in D by following the continuous–time dynamics determined by the vector
field F until the trajectory reaches the guard G, at which point the reset map R is applied
to obtain a new initial condition; see Figure 3.1 for an illustration. We formalize this using
the notion of a hybrid time trajectory [Lyg+03].

Definition 3.1.2. A hybrid time trajectory is a disjoint union of intervals T =
∐N

i=1 Ti
such that

1. N ∈ N ∪ {∞};

2. Ti ⊂ R is an interval for all i < N , and if N <∞ then TN ⊂ R is also an interval;
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3. Ti ∩ Ti+1 = {ti} for all i < N (i.e. Ti ∩ Ti+1 is nonempty and consists of a single
element).

Remark 3.1.1. This definition is equivalent to the hybrid time trajectory in [Lyg+03]; we
emphasize the natural (disjoint–union) topology to simplify the subsequent definition of an
execution.

Definition 3.1.3. An execution of a hybrid dynamical system H = (D,F,G,R) is a smooth
map x : T → D over a hybrid time trajectory T =

∐N
i=1 Ti satisfying:

1. ∀t ∈ T : d
dt
x(t) = F (x(t));

2. ∀i < N : x|Ti(ti) ∈ G, R(x|Ti(ti)) = x|Ti+1
(ti) where {ti} = Ti ∩ Ti+1.

If F is tangent to G at x ∈ G, there is a possible ambiguity in determining a trajectory
from x since one may either follow the flow of F on D or apply the reset map to obtain a
new initial condition y = R(x).

Assumption 3.1.1. F is outward–pointing on G.

Remark 3.1.2. The use of time–invariant vector fields and reset maps in Definition 3.1.1
is without loss of generality in the following sense. Suppose D is a hybrid manifold, G ⊂ ∂D
is open, and

F : R×D → TD, R : R×G→ D

define a time–varying vector field and reset map, respectively. Define

D̃ = R×D, G̃ = R×G,

and let F̃ : D̃ → TD̃, R̃ : G̃→ D̃ be defined by

F̃ =

(
∂

∂t
, F

)
∈ T(R×D), R̃ = (id R, R) : R×G→ R×D.

Then H̃ = (D̃, F̃ , G̃, R̃) is a hybrid dynamical system in the form of Definition 3.1.1.

3.2 Periodic Orbits and Poincaré Maps

In this chapter, we are principally concerned with periodic executions of hybrid dynamical
systems, which are nonequilibrium trajectories that intersect themselves; see Figure 3.2 for
an illustration.
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ẋ = F |D1(x)

ẋ = F |D2(x)

G ∩D1G ∩D2

R|G∩D1

R|G∩D2

γ

γ
α

Σ

P (ξ)

ξ

x

Figure 3.2: Illustration of a periodic orbit γ and Poincaré map P : U → Σ in a two–domain
hybrid dynamical system H = (D,F,G,R). The periodic orbit γ intersects the section
Σ ⊂ D1 transversally at {α} = γ∩Σ. An initial condition ξ ∈ Σ sufficiently close to α yields
an execution x : T → D that passes through Σ at the point P (ξ). This defines a Poincaré
map P : U → Σ over some neighborhood α ∈ U ⊂ Σ. The point α is a fixed point of P , i.e.
P (α) = α.

Definition 3.2.1. An execution γ : T → D is periodic if there exists s ∈ T , τ > 0 such that
s+ τ ∈ T and

γ(s) = γ(s+ τ). (3.2.1)

If there is no smaller positive number τ such that (3.2.1) holds, then τ is called the period
of γ, and we will say γ is a τ–periodic orbit.

Remark 3.2.1. The domain T of a periodic orbit may be taken to be the entire real line,
T = R, without loss of generality. In the sequel we conflate the execution γ : R → D with
its image γ(R) ⊂ D.

Motivated by the applications in Section 3.6, we restrict our attention to periodic orbits
undergoing isolated transitions, i.e. a finite number of discrete transitions that occur at
distinct time instants.

Assumption 3.2.1. Any periodic orbit γ undergoes finitely many isolated discrete transi-
tions each period.

In addition to excluding Zeno periodic orbits [OA11] from our analysis, this assumption
enables us to construct Poincaré maps (see [HS74; GH83] for the classical case) associated
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with the hybrid periodic orbit γ. Roughly speaking, a Poincaré map

P : U → Σ

is defined over an open subset U ⊂ Σ of an embedded codimension–1 submanifold Σ ⊂ D
that intersects the periodic orbit at exactly one point

{α} = γ ∩ Σ

by tracing an execution from x ∈ U forward in time until it intersects Σ at P (x). The
submanifold Σ is referred to as a Poincaré section. It is known that this procedure yields a
map that is well–defined and smooth near the fixed point α = P (α) [AG58; Gri+02; Ner+02;
WA12]. The construction is more delicate than for continuous–time dynamical systems since
trajectories of hybrid systems do not necessarily vary continuously with initial conditions;
the proof of Lemma 3.2.1, below, contains formal details. Unlike the classical case, Poincaré
maps in hybrid systems need not be full rank.

A straightforward application of Sylvester’s inequality [CD91, Appendix A.5.3] shows that
the rank of the Poincaré map is bounded above by the minimum dimension of all hybrid
domains. More precise bounds are pursued elsewhere [WA12], but the following Proposition
will suffice for the Applications in Section 3.6.

Proposition 3.2.1. If P : U → Σ is a Poincaré map associated with a periodic orbit γ,
then

∀x ∈ U : rankDP (x) ≤ min
j∈J

dimDj − 1.

It is a standard result for continuous–time dynamical systems that the eigenvalues of
the linearization of the Poincaré map at its fixed point—commonly called Floquet multipli-
ers—do not depend on the choice of Poincaré section [GH83, Section 1.5]. This generalizes
to the hybrid setting in the sense that there exist similarity transformations relating the
non–nilpotent portion of the Jordan forms for linearizations of Poincaré maps defined over
different sections. Note that, since Proposition 3.2.1 implies that zero eigenvalues will gener-
ally have different algebraic multiplicity for linearized Poincaré maps obtained from sections
located in hybrid domains with different dimensions, we do not expect the nilpotent Jordan
blocks for these linear maps to bear any relation to one another.

Lemma 3.2.1. If P : U → Σ, P̃ : Ũ → Σ̃ are Poincaré maps associated with a periodic
orbit γ with fixed points P (α) = α, P̃ (α̃) = α̃, then specDP (α) \ {0} = specDP̃ (α̃) \ {0}.
Moreover, with

J =

(
A 0
0 N

)
, J̃ =

(
Ã 0

0 Ñ

)

denoting the Jordan canonical forms of DP (α) and DP̃ (α̃), where 0 6∈ specA ∪ spec Ã and

N , Ñ are nilpotent, we conclude that A is similar to Ã.
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Proof. The periodic orbit undergoes a finite number of transitions k ∈ N, so we may index
the corresponding sequence of domains as1 D1, . . . , Dk. Without loss of generality, assume
the Dj’s are distinct2 and let {αj} = γ ∩G ∩ ∂Dj be the exit point of γ in Dj. We wish to
construct the Poincaré map Pj associated with the periodic orbit over a neighborhood of αj
in G. For j ∈ {1, . . . , k} let:

φj : Fj → Dj be the maximal flow of F |Dj on Dj;

Uj ⊂ Dj be a neighborhood of R(αj−1) over which Lemma 3.A.1 from Appendix 3.A.1
may be applied between R(αj−1) ∈ Dj and G ∩ ∂Dj to obtain a time–to–impact map
σj : Uj → R;

Gj ⊂ G ∩ ∂Dj be defined as Gj = R−1(Uj+1);

ρj : Gj → Gj+1 be defined by ρj(x) = φj+1(σj+1 ◦R(x), R(x)).

The Poincaré map defined over Gj is obtained formally by iterating the ρ’s around the cycle:

Pj = ρj−1 ◦ · · · ◦ ρ1 ◦ ρk ◦ · · · ◦ ρj. (3.2.2)

The neighborhood Σj ⊂ Gj of αj over which this map is well–defined is determined by
pulling Gj backward around the cycle,

Σj =
(
ρ−1
j ◦ · · · ◦ ρ−1

k ◦ ρ−1
1 ◦ · · · ◦ ρ−1

j−1

)
(Gj),

and similarly for any iterate of Pj. Note that Pj(αj) = αj is a fixed point of Pj by construc-

tion. Without loss of generality we assume3 Σ, Σ̃ ⊂ G so that P = Pj and P̃ = Pi for some
i, j ∈ {1, . . . , k}.

We proceed by showing that, given a chain of generalized eigenvectors associated with
a non–zero eigenvalue of DPj(αj) for some j ∈ {1, . . . , k}, we can construct a chain of
generalized eigenvectors associated with DPi(αi) for each i ∈ {1, . . . , k}. Fix j ∈ {1, . . . , k}
and λ ∈ specDPj(αj) with λ 6= 0. Suppose

{
x`j
}m
`=1

is a chain of generalized eigenvectors
associated with λ, i.e. DPj(αj)x

m
j = λxmj and for all ` ∈ {1, . . . ,m− 1}:

x`j = (DPj(αj)− λI)x`+1
j . (3.2.3)

For all ` ∈ {1, . . . ,m}, define x`j+1 = Dρj(αj)x
`
j and noteDρj(αj)DPj(αj) = DPj+1(αj+1)Dρj(αj)

by (3.2.2). Combining this observation with (3.2.3) yields

DPj+1(αj+1)xmj+1 = DPj+1(αj+1)Dρj(αj)x
m
j

= Dρj(αj)DPj(αj)x
m
j

= λDρj(αj)x
m
j = λxmj+1,

1We regard subscripts modulo k so that Dk ≡ D0.
2Otherwise we can find {Bj}kj=1 such that Bj ⊂ Dj is open,

⋃k
j=1Bj contains γ, and Bi ∩ Bj = ∅ if

i 6= j, then proceed on D̃ =
∐k
j=1Bj .

3Otherwise we may introduce fictitious guards Σ and/or Σ̃ near γ and repeat the construction.
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so that λ ∈ specDPj+1(αj+1) and for all ` ∈ {1, . . . ,m− 1}:

x`j+1 = Dρj(αj)x
`
j

= Dρj(αj)(DPj(αj)− λI)x`+1
j

= (DPj+1(αj+1)Dρj(αj)− λDρj(αj))x`+1
j

= (DPj+1(αj+1)− λI)x`+1
j+1.

Note that
{
x`j+1

}m
`=1

must be linearly independent since they map to the linearly independent

collection
{
λx`j
}m
`=1

through the composition of linear maps Dρj−1(αj−1) · · ·Dρj+1(αj+1).

Therefore we conclude
{
x`j+1

}m
`=1

is a chain of generalized eigenvectors for DPj+1(αj+1) as-
sociated with λ. Proceeding inductively, for any i ∈ {1, . . . , k} we obtain a corresponding
chain for DPi(αi). Since the subspace associated with a maximal chain of generalized eigen-
vectors for a linear map is invariant under the linear map, it follows that the non–nilpotent
Jordan blocks of DPj(αj) must be in one–to–one correspondence with those of DPi(αi) for
any i ∈ {1, . . . , k}.

3.3 Exact Reduction

When iterates of the Poincaré map associated with a periodic orbit of a hybrid dynamical
system have constant rank, executions initialized nearby converge in finite time to a constant–
dimensional subsystem.

Theorem 3.3.1 (Exact Reduction). Let γ be a periodic orbit that undergoes isolated tran-
sitions in a hybrid dynamical system H = (D,F,G,R), P : U → Σ a Poincaré map for γ,
m = minj dimDj, and suppose there exists a neighborhood V ⊂ U of {α} = γ ∩U and r ∈ N
such that rankDPm(x) = r for all x ∈ V . Then there exists an (r + 1)–dimensional hybrid
embedded submanifold M ⊂ D and a hybrid open set W ⊂ D for which γ ⊂ M ∩W and
trajectories starting in W contract to M in finite time.

Proof. We begin in step (i) by applying Lemma 3.B.1 from Appendix 3.B.1 to construct an
r–dimensional submanifold S of the Poincaré section Σ that is invariant under the Poincaré
map P . Subsequently, in (ii) we flow S forward in time for one cycle, i.e. until it returns to
Σ, to obtain for each j ∈ J an (r+1)–dimensional submanifold Mj ⊂ Dj that contains γ∩Dj

and is invariant under F . Finally, in (iii) for each j ∈ J we construct an open set Wj ⊂ Dj

containing γ ∩Dj so that the collection M =
∐

j∈J attracts all trajectories initialized in the
hybrid open set W =

∐
j∈J in finite time.

(i) Applying Lemma 3.B.1 from Appendix 3.B.1 to P , there is a neighborhood V ⊂ U of
{α} = γ ∩ U such that S = Pm(V ) is an r–dimensional embedded submanifold of U ⊂ Σ,
P |S maps S diffeomorphically onto P (S), and P (S)∩S is an open subset of S. Without loss
of generality we assume U ⊂ G ∩ ∂D1 and the periodic orbit γ passes through each domain
once per cycle. For notational convenience, for each j ∈ J we will let j + 1 ∈ J denote
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Figure 3.3: Applying Theorem 3.3.1 (Exact Reduction) to a hybrid dynamical system
H = (D,F,G,R) containing a periodic orbit γ with associated Poincaré map P : U → Σ
yields an invariant subsystem M =

∐
j∈JMj. Nearby trajectories contract to M in finite

time.

the subsequent domain visited by γ (i.e. we identify J with an additive monoid of integers
modulo |J |). Set

{α1} = γ ∩G ∩ ∂D1,

let U2 ⊂ D2 be a neighborhood of R(α1) over which Lemma 3.A.1 from Appendix 3.A.1
may be applied to construct a time–to–impact map σ2 : U2 → R, let G1 = R−1(U2) be a
neighborhood of α1 in G ∩ ∂D1, and let φ1 : F1 → D1 the maximal flow of F |D1 on D1.
Proceed inductively forward around the cycle to construct, for each j ∈ J : the exit point

{αj} = γ ∩G ∩ ∂Dj;

time–to–impact map σj : Uj → R over a neighborhood Uj ⊂ Dj containing R(γj−1); a
neighborhood

Gj = R−1(Uj+1) ⊂ G ∩ ∂Dj

containing αj; and the maximal flow φj : Fj → Dj of F |Dj on Dj.
(ii) By flowing S forward through one cycle, for each j ∈ J we will construct a submanifold

Mj ⊂ Dj that is diffeomorphic to [0, 1] × Rr. Observe that, since P |S is a diffeomorphism,
with S1 = S ∩ G1 we have that the restriction R|S1 is a diffeomorphism onto its image and
F |R(S1) is nowhere tangent to R(S1). Let M2 ⊂ D2 be the embedded submanifold obtained
by flowing R(S1) to G∩∂D2, and let S2 = M2∩G2; observe that S2 is diffeomorphic to S1, M2

is diffeomorphic to [0, 1]×S2, and F |D2 is tangent to M2. Proceed inductively forward around
the cycle to construct, for each j ∈ J , an embedded submanifold Sj ⊂ Gj diffeomorphic to
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S1 and a submanifold Mj ⊂ Dj diffeomorphic to [0, 1]× Sj such that F |Dj is tangent to Mj.
Note that S1 is diffeomorphic to the r–dimensional manifold Rr, so dimMj = r+ 1 for each
j ∈ J . The subsystem

M =
∐

j∈J

Mj ⊂ D

contains γ, is invariant under the continuous flow by construction, and is invariant under
the reset map in the sense that

R−1(M) ∩M ⊂ G ∩M

is open.
(iii) Finally, let

W1 = φ−1
j (R× V ) ⊂ D1

be the open set that flows into V , where S = Pm(V ) was defined in step (i). Let

W|J | = φ−1
|J |(R

−1(W1)) ⊂ D|J |

be the open set that flows into W1 where |J | denotes the number of elements in J . Proceed
inductively backward around the cycle to construct, for each j ∈ J , an open set Wj ⊂ Dj

that flows into S in finite time. Then the hybrid open set

W =
∐

j∈J

Wj ⊂ D

contains γ and all executions initialized in W flow into S ⊂M in finite time.

Since M is invariant under the continuous dynamics (i.e. F |M is tangent to M) and the
discrete dynamics (i.e. R(G∩M) ⊂M), it determines a hybrid subsystem that governs the
stability of γ in H.

Corollary 3.3.1. The collection

H|M = (M,F |M , G ∩M,R|G∩M)

is a hybrid dynamical system with periodic orbit γ.

See Figure 3.4 for an illustration of this subsystem.

Corollary 3.3.2. The periodic orbit γ is Lyapunov (resp. asymptotically, exponentially)
stable in H if and only if γ is Lyapunov (resp. asymptotically, exponentially) stable in H|M .

When the rank at the fixed point α = P (α) achieves the upper bound stipulated by
Proposition 3.2.1, the following Corollary ensures that DPm is constant rank (and hence
Theorem 3.3.1 may be applied). This is important since it is possible to compute a lower
bound for rankDPm(α) via numerical simulation [Bur+13a].
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Figure 3.4: The subsystem obtained by applying Theorem 3.3.1 near a periodic orbit γ may
be extracted to yield a hybrid dynamical system H|M = (M,F |M , G ∩M,R|G∩M).

Corollary 3.3.3. If DPm(α) achieves the upper bound specified by Proposition 3.2.1, i.e.

rankDPm(α) = min
j∈J

dimDj − 1 = m− 1,

then there exists an open set V ⊂ U containing α such that rankDPm(x) = m − 1 for all
x ∈ V . Thus the hypotheses of Theorem 3.3.1 are satisfied with r = m− 1.

If the Poincaré map attains the same constant rank r for two subsequent iterates, it is
not necessary to continue up to iterate m = minj dimDj before checking the hypotheses of
Theorem 3.3.1.

Corollary 3.3.4. If there exists a neighborhood W ⊂ U of α and k, r ∈ N such that

∀x ∈ W : rank DP k(x) = r and rank DP k+1(α) = rank DP k(α),

then there exists a neighborhood V ⊂ W of α such that

rank DPm(x) = r

for all x ∈ V . Thus the hypotheses of Theorem 3.3.1 are satisfied with r = rank DP k(α).

Proof. We know rankDPm(α) = r since k bounds the ascent of DP (α) [CD91, §4.3], so
rankDPm ≥ r near α. But by Sylvester’s inequality we have

rankDPm(x) ≤ min
{

rankDPm−k(P k(x)), rankDP k(x)
}

for all x near α. Therefore rankDPm ≡ r near α.
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The choice of Poincaré section in Theorem 3.3.1 is irrelevant in the sense that the Poincaré
map P̃ : Ũ → Σ̃ defined over any other Poincaré section Σ̃ will be constant–rank in a
neighborhood Ṽ ⊂ Ũ of its fixed point {α̃} = γ ∩ Σ̃, as the following Corollary shows; this
follows directly from Lemma 4 in [Bur+11a].

Corollary 3.3.5. Under the hypotheses of Theorem 3.3.1, if P̃ : Ũ → Σ̃ is any other
Poincaré map for γ with fixed point α̃ = P̃ (α̃), then there exists an open subset Ṽ ⊂ Ũ
containing α̃ such that

∀x ∈ Ṽ : rankDP̃m(x) = r.

Thus the hypotheses of Theorem 3.3.1 are satisfied for P̃ with r = rank DP̃m(α).

3.4 Approximate Reduction

Restricting our attention to exponentially stable periodic orbits, we find that a hybrid system
generically contracts superexponentially to a constant–dimensional subsystem near a periodic
orbit.

Theorem 3.4.1 (Approximate Reduction). Let γ be an exponentially stable periodic orbit
undergoing isolated transitions in a hybrid dynamical system H = (D,F,G,R), P : U → Σ a
Poincaré map for γ with fixed point {α} = γ ∩Σ, m = minj dimDj, and r = rankDPm(α).
Then there exists an (r+ 1)–dimensional hybrid embedded submanifold M ⊂ D such that for
any ε > 0 there exists a hybrid open set W ε ⊂ D for which γ ⊂ M ∩W ε and the distance
from trajectories starting in W ε to M contracts by ε each cycle.

Proof. We begin with an overview of the proof strategy. First (i), for each j ∈ J we con-
struct a Poincaré map Pj over a Poincaré section Σj ⊂ G ∩ ∂Dj and apply Lemma 3.B.2
from Appendix 3.B.2 to obtain a change–of–coordinates in which Pj splits into two compo-
nents: a linear map that only depends on the first r coordinates and a nonlinear map whose
linearization is nilpotent at the fixed point of Pj. Second (ii), for each j ∈ J we construct
an r–dimensional submanifold Sj ⊂ Σj such that R|Sj is a diffeomorphism near the fixed
point of Pj. We subsequently flow the image R(Sj) forward until it impacts the guard to
construct an (r + 1)–dimensional submanifold Mj+1 ⊂ Dj+1 that contains γ ∩ Dj+1 and is
invariant under F . Third (iii), for each j ∈ J we apply Lemma 3.B.3 from Appendix 3.B.3
to construct a distance metric on an open set Wj ⊂ Dj containing γ ∩ Dj with respect to
which executions contract superexponentially toward Mj.

(i) Without loss of generality we assume U ⊂ G∩∂D1 the periodic orbit γ passes through
each domain once per cycle. As in the proof of Theorem 3.3.1, for each j ∈ J we will let
j + 1 ∈ J denote the subsequent domain visited by γ (i.e. we identify J with an additive
monoid of integers modulo |J |). For each j ∈ J let Pj : Uj → Σj be a Poincaré map for γ
defined over

Uj ⊂ Σj ⊂ G ∩ ∂Dj,
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and let
{αj} = γ ∩G ∩ ∂Dj

be the exit point of γ in Dj. By a straightforward application of Sylvester’s inequality [CD91,
Appendix A.5.4], we find rankDPm

j (αj) = r for all j ∈ J . Applying Lemma 3.B.2 from
Appendix 3.B.2 implies that for each j ∈ J there exists an open set Vj ⊂ U containing αj
and a C1 diffeomorphism ϕj : Vj → Rnj−1 where nj = dimDj such that ϕj(αj) = 0 and the
coordinate representation

P̃j = ϕj ◦ Pj ◦ ϕ−1
j

of Pj has the form

P̃j(zj, ζj) = (Ajzj, Sj(zj, ζj))

where zj ∈ Rr, ζj ∈ Rnj−1−r, Aj ∈ Rr×r is invertible, Sj(0, 0) = 0, and DζjSj(0, 0) is
nilpotent. For each j ∈ J , let Πj : Vj → G be a smooth map defined as follows. Given
x ∈ Vj, write (zx, ζx) = ϕj(x) ∈ Rr × Rnj−r−1 and let Πj(x) = ϕ−1

j (zx, 0).
(ii) Fix j ∈ J and let

Nj = ϕ−1
j (Rr × {0}) ⊂ Vj,

which is an r–dimensional embedded submanifold tangent to the non–nilpotent eigendirec-
tions of DPm

j (αj). Observe that

rankDR|G∩Nj(αj) = r = dimNj,

hence by the Inverse Function Theorem [Lee12, Theorem C.34] there is a neighborhood Sj ⊂
Nj containing αj such that R|Sj : Sj → D is a diffeomorphism onto its image R(Sj) ⊂ Dj+1.
Furthermore, since rankDPm

j (αj) = r, the vector field is transverse to R(Sj) at αj, i.e.

F (R(αj)) 6∈ TR(αj)R(Sj),

and we assume Sj was chosen small enough so that F is transverse along all of R(Sj). Let
Mj+1 ⊂ Dj+1 be the embedded submanifold obtained by flowing R(Sj) forward to G; note
that Mj+1 is diffeomorphic to [0, 1]× Rr. Observe that

M =
∐

j∈J

Mj

is invariant under the continuous flow (i.e. F |M is tangent to M) and approximately invariant
under the reset map in the sense that DR|G∩M is tangent to M on γ: for all j ∈ J and
δ ∈ Tαj(G ∩M) we have

DR|G∩M(αj)δ ∈ TR(αj)M.

Observe that R ◦ Πj|G∩Mj
: G ∩Mj →Mj+1 is a diffeomorphism onto its image.

(iii) Fix ε > 0 and apply the construction in the proof of Lemma 3.B.3 from Ap-
pendix 3.B.3 to obtain a radius δ > 0 and for each j ∈ J a norm

‖·‖εj : Rnj−1 → R
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such that the nonlinearity
P̃j(zj, ζj)− (Ajzj, 0)

contracts exponentially fast with rate ε on B
nj−1
δ (0) ⊂ Rnj−1 as measured by ‖·‖εj . For each

j ∈ J define
V ε
j = ϕ−1

j (B
nj−1
δ (0)) ⊂ G ∩ ∂Dj,

let φj : Fj → Dj denote the maximal flow of F |Dj on Dj, and let

W ε
j = φ−1

j (R× V ε
j ) ⊂ Dj

be the (open) set of points that flow into V ε
j . Since φj is the flow of a smooth vector field

transverse to V ε
j , any x ∈ W ε

j can be written uniquely as x = φj(tx, vx) for some tx ≤ 0 and
vx ∈ V ε

j . Using this representation, we endow W ε
j with a distance metric dεj : W ε

j ×W ε
j → R

by defining
dεj(x, y) = |tx − ty|+ ‖ϕj(vx)− ϕj(vy)‖εj .

Observe that the exponential contraction of P̃j at rate ε in ‖·‖εj to ϕj(Mj ∩ G) implies
exponential contraction of executions initialized in W ε

j at rate ε to M in dεj .
Finally, let W ε =

∐
j∈JW

ε
j and M ε = M ∩W ε. Define a smooth hybrid map Πε : G ∩

W ε → G piecewise for each j ∈ J by observing that G∩W ε
j ⊂ Vj and letting Πε(x) = Πj(x)

for all x ∈ G ∩W ε
j .

Corollary 3.4.1. Letting M ε = M ∩W ε, the collection H|Mε = (M ε, F |Mε , G ∩M ε, R ◦
Πε|G∩Mε) is a C1 hybrid dynamical system with periodic orbit γ, where Πε : G ∩W ε → G is
the smooth hybrid map constructed in the proof of Theorem 3.4.1.

Although the submanifold M ⊂ D is invariant under the continuous dynamics of H in
the sense that F |M is tangent to M , the reset map must be modified to ensure M is invariant
under the discrete dynamics. However, since DR|G∩Mε = D(R ∩ Πε)|G∩Mε , the map Π does
not affect R to first order.

Remark 3.4.1. We emphasize that hypothesis on the rank of the Poincaré map P : U → Σ
in Theorem 3.4.1 (rankDPm(α) = r at the point {α} = γ∩Σ) is weaker than the hypothesis
in Theorem 3.3.1 (rankDPm(x) = r for all x in an open set V ⊂ U). In particular, approxi-
mating the rank over an uncountably infinite set typically involves estimates on higher–order
derivatives of Pm.

If the rank is constant for two subsequent iterates of the linearized Poincaré map, then
the rank is constant for all subsequent iterates, including iterate m = minj dimDj.

Corollary 3.4.2. If there exist k ∈ N such that rank DP k(α) = rank DP k+1(α), then

rank DPm(α) = rank DP k(α).

Thus the hypotheses of Theorem 3.4.1 are satisfied with r = rank DP k(α).
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α

Σ ∩ M̃

ẋ = F̃ (x)

γ

γ

M̃ =
M

G ∩M R∼ R(G ∩M)

Figure 3.5: The hybrid subsystem H|M obtained by Corollary 3.3.1 to Theorem 3.3.1
(Exact Reduction) may be smoothed via Theorem 3.5.1 (Smoothing) to yield a continuous-

time dynamical system (M̃, F̃ ).

3.5 Smoothing

The subsystems yielded by Theorems 3.3.1 and 3.4.1 on exact and approximate reduction
share important properties: the constituent manifolds have the same dimension; the reset
map is a hybrid diffeomorphism between disjoint portions of the boundary; and the vector
field points inward along the range of the reset map. Under these conditions, we can globally
smooth the hybrid transitions using techniques from differential topology to obtain a single
continuous–time dynamical system. Executions of the hybrid (sub)system are preserved as
integral curves of the continuous–time system. This provides a smooth n–dimensional gen-
eralization of the hybrifold construction in [Sim+05], the phase space constructed in [Sch98]
to analyze mechanical impact, as well as the change–of–coordinates constructed in [De10,
§3.1.1] to simplify analysis of juggling.

Theorem 3.5.1 (Smoothing). Let H = (M,F,G,R) be a hybrid dynamical system with
M =

∐
j∈JMj. Suppose dimMj = n for all j ∈ J , R(G) ⊂ ∂M , ∂M = G

∐
R(G), R is

a hybrid diffeomorphism onto its image, and F is inward–pointing along R(G). Then the
topological quotient

M̃ =
M

G
R∼ R(G)

may be endowed with the structure of a smooth manifold such that:

1. the quotient projection π : M → M̃ restricts to a smooth embedding for each j ∈ J :

π|Mj
: Mj → M̃ ;
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(a) H = (D,F,G,R)
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Σ ∩M1

ẋ = F |M1(x)

ẋ = F |M2(x)

G ∩M1

G ∩M2 R|G∩M1
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(b) H|M = (M,F |M , G ∩M,R|G∩M )

α

Σ ∩ M̃
ẋ = F̃ (x)

γ

γ

M̃ =
M

G ∩M R∼ R(G ∩M)

(c) (M̃, F̃ )

Figure 3.6: Reduction to and smoothing of a hybrid subsystem. (a) Applying Theorem 3.3.1
(Exact Reduction) to a hybrid dynamical system H = (D,F,G,R) containing a periodic or-
bit γ with associated Poincaré map P : U → Σ yields an invariant subsystem M =

∐
j∈JMj;

nearby trajectories contract to M in finite time. (b) The subsystem may be extracted to yield
a hybrid dynamical system H|M . (c) The hybrid system H|M may subsequently be smoothed

via Theorem 3.5.1 (Smoothing) to yield a continuous-time dynamical system (M̃, F̃ ). Appli-
cation of Theorem 3.5.1 to the subsystem yielded by Theorem 3.4.1 (Approximate Reduction)
is illustrated by replacing H|M in (b) by H|Mε .

2. there is a smooth vector field F̃ ∈ T(M̃) such that any execution x : T → M of H

descends to an integral curve of F̃ on M̃ via π : M → M̃ :

∀t ∈ T :
d

dt
π ◦ x(t) = F̃ (π ◦ x(t)).

Proof. Let S ⊂ G∩Mi be a connected component in some domain i ∈ J , and let k ∈ J be the
index for which R(S) ⊂Mk. The hypotheses of this Theorem together with Assumption 3.1.1
ensure Lemma 3.A.2 from Appendix 3.A.2 may be applied to attach Mi to Mk to yield a
new smooth manifold M̃ik. The hybrid system defined over the domain

∐{
M̃ik

}
∪ {Mj : j ∈ J \ {i, k}}

and guard G \ S satisfies the hypotheses of this Theorem, hence we may inductively attach
domains on each connected component that remains in G\S. This yields a smooth manifold

M̃ and vector field F̃ ∈ T(M̃) with the required properties.

Remark 3.5.1. As illustrated in Figure 3.6, Theorem 3.5.1 is applicable to the subsystems
H|M , H|Mε that emerge as a consequence of the Corollaries to Theorems 3.3.1 and 3.4.1,
respectively. Thus a class of hybrid models for periodic phenomena may be reduced (exactly
or approximately) to smooth dynamical systems.
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3.6 Applications

The Theorems of Section 3.1.5 apply directly to autonomous hybrid dynamical systems; in
Section 3.6.1 we demonstrate that reduction to a smooth subsystem can occur spontaneously
in a mechanical system undergoing intermittent impacts. The results are also applicable to
systems with control inputs; in Section 3.6.2 we synthesize a state–feedback control law
that reduces a family of multi–leg models for lateral–plane locomotion to a common low–
dimensional subsystem, and in Section 3.6.3 we analyze the structural stability of event–
triggered deadbeat control laws for locomotion. Finally, the reduction of hybrid dynamics to
a smooth subsystem provides a route through which tools from classical dynamical systems
theory can be generalized to the hybrid setting; in Section 3.6.4 we extend a normal form
for limit cycles.

3.6.1 Spontaneous Reduction in a Vertical Hopper

In this section, we apply Theorem 3.3.1 (Exact Reduction) to the vertical hopper example
shown in Figure 3.7. This system evolves through an aerial mode and a ground mode. In
the aerial mode, the lower mass moves freely at or above the ground height. Transition
to the ground mode occurs when the lower mass reaches the ground height with negative
velocity, where it undergoes a perfectly plastic impact (i.e. its velocity is instantaneously set
to zero). In the ground mode, the lower mass remains stationary. Transition to the aerial
mode occurs when the aerial mode force allows the mass to lift off. We now formulate this
model in the hybrid dynamical system framework of Definition 3.1.1.

The aerial mode Da (see Figure 3.7 for notation) consists of

(y, ẏ, x, ẋ) ∈ Da = TR× TR≥0,

and the vector field F |Da is given by µÿ = k(`−(y−x))−µg, mẍ = −k(`−(y−x))−bẋ−mg.
The boundary

∂Da = {(y, ẏ, x, ẋ) ∈ Da : x = 0}
contains the states where the lower mass has just impacted the ground, and a hybrid tran-
sition occurs on the subset

Ga = {(y, ẏ, 0, ẋ) ∈ ∂Da : ẋ < 0}

of the boundary Da where the lower mass has negative velocity. The state is reinitialized in
the ground mode via R|Ga : Ga → Dg defined by

R|Ga(y, ẏ, 0, ẋ) = (y, ẏ).

In the ground mode
Dg = {(y, ẏ) ∈ TR : −k(`− y) ≤ mg},
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m, b x(t)

µ
y(t)

k, `, a

g

Figure 3.7: Schematic of vertical hopper from Section 3.6.1. Two masses m and µ, con-
strained to move vertically above a ground plane in a gravitational field with magnitude
g, are connected by a linear spring with stiffness k and nominal length `. The lower mass
experiences viscous drag proportional to velocity with constant b when it is in the air, and
impacts plastically with the ground (i.e. it is not permitted to penetrate the ground and its
velocity is instantaneously set to zero whenever a collision occurs). When the lower mass is
in contact with the ground, the spring stiffness is multiplied by a constant a > 1.

the boundary consists of the set of configurations where the force in the aerial mode allows
the lower mass to lift off,

∂Dg = {(y, ẏ) ∈ Dg : −k(`− y) = mg},

and the vector field F |Dg is given by

µÿ = ak(`− y)− µg.

A hybrid transition occurs when the forces balance and will instantaneously increase to pull
the mass off the ground,

Gg = {(y, ẏ) ∈ ∂Dg : ẏ(t) > 0},
and the state is reset via R|Gg : Gg → Da defined by

R|Gg(y, ẏ) = (y, ẏ, 0, 0).

This defines a hybrid dynamical system (D,F,G,R) where

D = Da

∐
Dg, F ∈ T(D), G = Ga

∐
Gg, R : G→ D.

With parameters
(m,µ, k, b, `, a, g) = (1, 3, 10, 5, 2, 2, 2),
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numerical simulations suggest the vertical hopper possesses a stable periodic orbit

γ = (y∗, ẏ∗, x∗, ẋ∗)

to which nearby trajectories (y, ẏ, x, ẋ) converge asymptotically. Choosing a Poincaré section
Σ in the ground domain Dg at mid-stance,

Σ = {(y, ẏ) : ẏ = 0} ⊂ Dg,

we find numerically4 using parameter values given in the caption of Figure 3.7 that the hopper
possesses a stable periodic orbit γ that intersects the Poincaré section at γ ∩Σ = {α} where

α = (y, ẏ) ≈ (0.94, 0.00).

Using finite differences, we determine that the linearization DP of the associated scalar–
valued Poincaré map P : Σ → Σ has eigenvalue specDP (α) ≈ 0.57 at the fixed point
P (α) = α. The rank of the Poincaré map P attains the upper bound of Proposition 3.2.1,
hence Corollary 3.3.3 implies the rank hypothesis of Theorem 3.3.1 (Exact Reduction) is
satisfied. Thus the dynamics of the hopper collapse to a one degree–of–freedom mechanical
system after a single hop. Geometrically, the portion of the reduced subsystem in each
domain is diffeomorphic to [0, 1] × R. Algebraically, the constraint that activates when the
lower mass impacts the ground transfers to the aerial mode where no such physical constraint
exists: the lower mass state (x, ẋ) is uniquely determined by the upper mass state (y, ẏ) for
all future times.

3.6.2 Reducing a (3 + 2n) DOF Polyped to a 3 DOF LLS

A primary motivation for the present work is analysis of legged locomotion. Several ap-
proaches have been proposed for embedding lower–dimensional dynamics in legged robot
systems, notably hybrid zero dynamics [Wes+03] and active embedding [AS11]. Complement-
ing these engineering approaches and predating them, the templates and anchors hypotheses
(TAH) [FK99] conjectures that animal locomotion behaviors arise through reduction of the
anchor dynamics governing the nervous system and body [Hol+06] to lower–dimensional
template dynamics that encode a specific behavior [SH00b; Ghi+03]. One well–studied tem-
plate is the Lateral Leg Spring (LLS) [SH00b] model for sprawled posture running, which has
been shown to match how cockroaches run and begin to recover from perturbations [JF02].
Higher–dimensional neuromechanical variants of the model have been shown to reduce states
associated with the nervous system [Hol+06]. In this section, we focus on reduction in the
mechanical dynamics of limbs. Specifically, we synthesize a state–feedback control law under
which the underactuated lateral–plane polyped illustrated in Figure 3.8a exactly reduces to
the Lateral Leg–Spring (LLS) [SH00b] model in Figure 3.8b. With n limbs, the polyped

4 For numerical simulations, we use a recently–developed algorithm [Bur+13a] with step size h = 1×10−2

and relaxation parameter ε = 1× 10−10.
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(xk, yk)
mk µk

(a) polyped with n = 4 legs; leg #k is annotated

θV, `

m, J

(x, y)

β

h

(b) Lateral Leg–Spring (LLS) [SH00b]

Figure 3.8: Schematics for lateral–plane locomotion models described in Section 3.6.2.

possesses (3 + 2n) degrees–of–freedom (DOF); the LLS has 3 DOF. This example serves a
dual purpose: first, it demonstrates how our theoretical results can be applied to reduce
an arbitrary number of DOF in a locomotion model; second, it suggests a mechanism that
legged robot controllers could exploit to anchor a desired template.

Before we proceed with describing the reduction procedure in detail, we give an overview
of the approach and the connection with Theorem 3.3.1. We begin in Section 3.6.2 by de-
scribing the dynamics of the LLS template and polyped anchor. Then in Section 3.6.2 we
construct a smooth state feedback law that ensures that trajectories of the polyped body ex-
actly match those of the LLS; we accomplish this by simply ensuring the net wrench [Mur+94]
comprised of generalized forces and torques acting on the polyped body matches that of the
LLS for all time. Subsequently, in Section 3.6.2 we modify the feedback law to further
ensure the states associated with the polyped’s limbs reduce after a single stride via Theo-
rem 3.3.1. Finally, in Section 3.6.2 we discuss the effect of perturbations on the closed–loop
reduced–order system.

Dynamics of Lateral Leg–Spring (LLS) and n–leg polyped

The LLS is an energy–conserving lateral–plane model for locomotion comprised of a massless
leg–spring with elastic potential V affixed at hip position h to an inertial body with two
translational (x, y) and one rotational (θ) DOF. The system is initialized at the start of a
stride by orienting the leg at a fixed angle β with respect to the body at rest length ` and
touching the foot down such that the leg will instantaneously contract. The step ends once
the leg extends to its rest length by touching the foot down on the opposite side of the body;
subsequent steps are defined inductively. In certain parameter regimes, the model possesses
a periodic running gait [SH00b].

The underactuated hybrid control system illustrated in Figure 3.8a extends neurome-
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chanical models previously proposed to study multi–legged locomotion [Hol+06; Kuk+09]
by introducing masses into n ≥ 4 feet connected by massless limbs affixed at hip locations
{hk}nk=1 on the inertial body. We assume that each foot can attach or detach from the
substrate at any time, and the transition from swing to stance entails a plastic impact that
annihilates the kinetic energy in a foot. We assume that each limb k is fully–actuated; for
simplicity we assume the inputs act along the Cartesian coordinates and do not saturate so
that any (µk, νk) ∈ R2 is feasible at any limb configuration. We let

q0 = (x, y, θ) ∈ Q0 = R2 × S1

denote the position and orientation of the body, and for each k ∈ {1, . . . , n} we let

qk = (xk, yk) ∈ Qk ∈ R2

denote the position of the k–th foot. The configuration space of the polyped is the (n+1)–fold
product

n∏

k=0

Qk.

The n–leg polyped’s dynamics thus have the form

Mq̈0 =
n∑

k=1

(−µk,−νk, 0) Adgk , mkq̈k = (µk, νk) (3.6.1)

where M = diag(m,m, J) ∈ R3×3 is the mass distribution of the body and Adgk ∈ R3×3

transforms a wrench applied at the k–th hip to an equivalent wrench applied at the body
center–of–mass [Mur+94, §5.1].

Embedding LLS in polyped

For any subset K ⊂ {1, . . . , n} of limbs, let

∑

k∈K

(−µk,−νk, 0) Adgk ∈ T ∗Q0 (3.6.2)

denote the net wrench [Mur+94] on the body resulting from actuating legs in K. Then
so long as no two hips are coincident, any desired wrench may be imposed on the body
by appropriate choice of inputs to the limbs in K. In the next section we describe a limb
coordination procedure that ensures there will be a subset K(t) ⊂ {1, . . . , n} of limbs in
stance that can impose the LLS’s wrench and cancel the reaction wrench from actuating
other limbs at any time t.
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Reducing polyped to LLS

We construct a smooth state feedback control law yielding a closed–loop Poincaré map
PA : UA → ΣA for the polyped that splits as PA : UT × UN → ΣT × ΣN such that

PA(z, ζ) = (PT (z), PN(z)) (3.6.3)

where PT : UT → ΣT is a Poincaré map for the LLS and PN : UT → ΣN is a smooth map. In
the form (3.6.3) it is clear that since PT is a diffeomorphism near the fixed point α = PT (α),
all iterates of PA have constant rank equal to rank DPT (α) = dim ΣT near α, and therefore
Theorem 3.3.1 applies.

Partition the n ≥ 4 limbs into two disjoint sets

swing
∐

stance,

ensuring |swing|, |stance| ≥ 2. Initialize at the beginning of a step at time t with LLS
and polyped body state (q0(t), q̇0(t)) and polyped limb states {(qk(t), q̇k(t))}nk=1 by attaching
stance limbs and detaching swing limbs from the ground. Note that the termination time τ
for the LLS step depends smoothly on the initial condition (q0(t), q̇0(t)). For each k ∈ swing
choosing constant inputs

(µk, νk) = 2((x(τ), y(τ)) + r(θ(τ))q̄k − qk(t)− τ q̇k(t))/τ 2 (3.6.4)

ensures that the limb will reach a fixed location q̄k in the body frame of reference at time τ .
For each k ∈ stance choose inputs (µk, νk) to cancel the reaction wrench from the swing limbs
and impose the LLS acceleration on the polyped body. At time t + τ , exchange the stance
and swing limb sets and proceed as with the previous step from the new initial condition.
After two steps, it is clear that the positions and velocities of the polyped’s n limbs are
uniquely determined by the body initial condition (q0(t), q̇0(t)). Therefore the polyped’s
Poincaré map has the form of (3.6.3), so Theorem 3.3.1 implies the polyped anchor reduces
exactly to the LLS template after a single stride.

Qualitative description of reduction

The active embedding described in Section 3.6.2 ensures the polyped body motion is always
identical to that of the LLS, regardless of the state of the limbs. The limb posture control
in Section 3.6.2 guarantees the limb states are determined by the LLS body state after two
steps, and furthermore synchronizes touchdown and liftoff events with those of the LLS.

Effect of perturbations and parameter variations

The qualitative description in the preceding section makes it clear that, following a suf-
ficiently small perturbation or parameter variation, the closed–loop polyped will continue
to track and ultimately reduce to an LLS that experiences the corresponding disturbance.
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Note that this conclusion requires that the polyped maintains the same control architecture
exploited above to obtain the product decomposition in (3.6.3). In particular, the controller
must maintain observability of the full state and controllability of the limbs. We study the
effect of more general perturbations in the next section.

3.6.3 Deadbeat Control of Rhythmic Hybrid Systems

Generalizing the example from the previous section, we now consider a system wherein a
finitely–parameterized control input updates when an execution passes through a distin-
guished subset of state space. This form control in rhythmic hybrid systems dates back (at
least) to Raibert’s hoppers [Rai86] and Koditschek’s jugglers [Bue+94], and has received
recent interest [Car+09; Rem+10]. We model this with a hybrid system H = (D,F,G,R)
whose vector field and reset map depend on a control input that takes values in a smooth
boundaryless manifold Θ. The value of the control input may be updated whenever an ex-
ecution passes through the guard G, but it does not change in response to the continuous
flow. Suppose for some θ ∈ Θ that H possesses a periodic orbit γ, let

P : U ×Θ→ Σ

be a Poincaré map associated with γ where U ⊂ Σ ⊂ G, and let {α} = γ ∩ Σ. In this
section we study deadbeat control of the discrete–time nonlinear control system

xi+1 = P (xi, θi) (3.6.5)

and the discrete–time linear control system obtained by linearizing P about the fixed point
α = P (α, θ),

δxi+1 = DxP (α, θ)δxi +DθP (α, θ)δθi. (3.6.6)

The control architecture we present is well–known for linear and nonlinear maps arising
in locomotion [Car+09]; the novelty of this section lies in the connection to exact and
approximate reduction via Theorems 3.3.1 and 3.4.1.

Exact reduction over one cycle

As studied in [Car+09], an application of the Implicit Function Theorem [Lee12, Theo-
rem C.40] shows that if rankDθP (α, θ) = dim Σ then there exists a neighborhood V ⊂ U of
α and a smooth feedback law ψ : V → Θ such that

∀x ∈ V : P (x, ψ(x)) = α,

i.e. ψ is a deadbeat control law for (3.6.5). Since ψ is smooth, the closed–loop Poincaré map
Pψ : V → Σ defined by

∀x ∈ V : Pψ(x) = P (x, ψ(x))
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satisfies the hypotheses of Theorem 3.3.1 (Exact Reduction) with rank r = 0, so the invariant
hybrid subsystem yielded by the Theorem is simply the periodic orbit γ.

In practice it may be desirable to reduce fewer than dim Σ coordinates. If there exists a
smooth function h : Σ→ Rd that satisfies

h ◦ P (α, θ) = 0 and rank Dθh ◦ P (α, θ) = d,

then the preceding construction yields a closed–loop system that reduces via Theorem 3.3.1
to the embedded d–dimensional submanifold h−1(0) near α.

Exact reduction over multiple cycles

If rank DθP (α, θ) < dim Σ, as noted in [Car+09] it may be possible to construct a deadbeat
control law by applying inputs over multiple cycles. Specifically, let P0 = P and for each
` ∈ N define P` : U` ×Θ` → Σ by

P`(x, (θ1, . . . , θ`)) = P (P`−1(x, (θ1, . . . , θ`−1)), θ`) (3.6.7)

for all (x, (θ1, . . . , θ`)) ∈ U` × Θ` where U` ⊂ U is a neighborhood of α sufficiently small to
ensure (3.6.7) is well–defined. Then if there exists k ∈ N such that

rank D(θ1,...,θk)Pk(α, (θ, . . . , θ)) = dim Σ, (3.6.8)

the construction from the previous paragraph yields a smooth k–step feedback law

ψk : Vk → Θk

such that the closed–loop hybrid system reduces via Theorem 3.3.1 to the periodic orbit
γ after k cycles. We conclude this section by noting that [Car+09] contains an example
that performs exact reduction after two cycles, and for which reduction in fewer cycles is
impossible.

Approximate reduction

Since (3.6.8) is equivalent to controllability [CD91, Chapter 8d.5] of the linear control sys-
tem (3.6.6), it is worthwhile to consider the linear control problemAny stabilizable subspace
S [CD91, Chapter 8d.7] of (3.6.6) can be rendered attracting in a finite number of steps
k ∈ N with linear state feedback

δθi = Ψδxi

where Ψ is a fixed matrix [O’R81]. Applying this linear feedback law to the nonlinear
system (3.6.5) yields a closed–loop Poincaré map PΨ such that the rangespace of the k–th
iterate of its linearization is contained in S,

DxP
k
Ψ(α)

(
Rdim Σ

)
⊂ S.
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Therefore Theorem 3.4.1 (Approximate Reduction) yields an invariant hybrid subsystem,
tangent to S on Σ, that attracts nearby trajectories superexponentially. Thus, although
feedback laws for the nonlinear control system (3.6.5) constructed above can be computed
using the procedure described in [Car+09] to achieve exact reduction to the target subsystem,
if approximate reduction suffices in practice then one may simply apply the linear deadbeat
controller computed for (3.6.6).

Structural stability of deadbeat control

Suppose the preceding development is applied to a model that differs from that used to con-
struct the feedback law ψ ∈ C∞(V,Θ). We study the structural stability [GH83, Section 1.7]
of attracting invariant sets arising in this class of systems by applying the Theorems of Sec-
tion 3.1.5. If the models differ by a small smooth deformation (as would occur if there was
a small perturbation in model parameters), one interpretation of this change is that some

ψ̃ ∈ Bε(ψ) ⊂ C∞(V,Θ)

is applied to the model for which ψ is deadbeat, where ε > 0 bounds the error. For all ε > 0
sufficiently small, ψ̃ yields a perturbed closed–loop Poincaré map P̃ : V → Σ possessing
a unique fixed point α̃ ∈ V , and α̃ is an exponentially stable fixed point of the perturbed
system.

We conclude by noting that it is possible for the structure of the hybrid dynamics to
constrain the achievable perturbations. For instance, if one domain of the hybrid system
has lower dimension than that in which the Poincaré map is constructed, then zero is
always a Floquet multiplier regardless of the applied feedback; in this case Theorem 3.4.1
(Approximate Reduction) implies the existence of a proper submanifold of the Poincaré
section Σ to which trajectories contract superexponentially in the presence of any (sufficiently
small) smooth perturbation to the closed–loop dynamics.

3.6.4 Hybrid Floquet Coordinates

When a hybrid system reduces to a smooth dynamical system near a periodic orbit via
Theorem 3.3.1 (Exact Reduction), we can generalize the Floquet normal form [Flo83; Guc75;
Rev09; RG12] using Theorem 3.5.1 (Smoothing). Broadly, this demonstrates how the
Theorems of Section 3.1.5 can be applied to generalize constructions from classical dynamical
systems theory to the hybrid setting. More concretely, this provides a theoretical framework
that justifies application of the empirical approach developed in [Rev09; RG12] to estimate
low–dimensional invariant dynamics in data collected from physical locomotors.

Consider a hybrid dynamical system H = (D,F,G,R) with τ–periodic orbit γ that
satisfies the hypotheses of Theorem 3.3.1. Let M ⊂ D be the (r + 1)–dimensional invariant
hybrid subsystem yielded by the Theorem, and W ⊂ D a hybrid open set containing γ that
contracts to M in finite time. Let (M̃, F̃ ) denote the smooth dynamical system obtained by
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applying Theorem 3.5.1. Under a genericity condition5 there exists a neighborhood U ⊂ M̃
of γ and a smooth chart ϕ : U → Rr × S1 such that the coordinate representation of the
vector field has the form

Dϕ ◦ F̃ ◦Dϕ−1(z, θ) =

(
ż

θ̇

)
=

(
A(θ)z
2π/τ

)
(3.6.9)

where z ∈ Rr and θ ∈ S1. In these coordinates, each θ ∈ S1 determines an embedded
submanifold

Ñθ = Rr × {θ} ⊂ Rr × S1

that is mapped to itself after flowing forward in time by τ ; for this reason, the submanifolds
Ñθ are referred to as isochrons [Guc75]. Each x ∈ Ñθ may be assigned the phase θ ∈ S1; if
γ is stable, then as t→∞ the trajectory initialized at x will asymptotically converge to the
trajectory initialized at (0, θ).

The isochrons may be pulled back to any precompact hybrid open set V ⊂ W containing
γ in the original hybrid system as follows. The proof of Theorem 3.3.1 implies there exists
a finite time t < ∞ such that every execution initialized in V is defined over the time
interval [0, t] and reaches M before time t; without loss of generality, we take this time to

be a multiple kτ of the period of γ for some k ∈ N. Let ψ : V → M̃ denote the map
that flows an initial condition x ∈ V forward by t time units and then applies the quotient
projection π : M → M̃ obtained from Theorem 3.5.1 to yield the point ψ(x) ∈ M̃ . Then
the constructions in the proof of Theorem 3.3.1 imply that ψ is a smooth map in the sense
defined in Section 3.1.4, i.e. it is continuous and ψ|V ∩Dj is smooth for each j ∈ J . Now for
any θ ∈ S1 the set

Nθ = ψ−1(U)

is mapped into Ñθ after kτ units of time; we thus refer to Nθ ⊂ D as a hybrid isochron. We
conclude by noting that Nθ will generally not be a smooth (hybrid) submanifold.

3.7 Discussion

Generically near an exponentially stable periodic orbit in a hybrid dynamical system, tra-
jectories contract superexponentially to a subsystem containing the orbit. Under a non–
degeneracy condition on the rank of any Poincaré map associated with the orbit, this con-
traction occurs in finite time regardless of the stability of the orbit. Hybrid transitions may
be removed from the resulting subsystem, yielding an equivalent smooth dynamical system.
Thus the dynamics near stable hybrid periodic orbits are generally obtained by extending the
behavior of a smooth system in transverse coordinates that decay superexponentially. Al-
though the applications presented in Section 3.6 focused on terrestrial locomotion [Hol+06],

5Either the periodic orbit is exponentially stable or it is hyperbolic and the associated Floquet multipliers
do not satisfy any Diophantine equation [GH83, Chapter 3.3].
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we emphasize that the theoretical results in this chapter do not depend on the phenomenology
of the physical system under investigation, and are hence equally suited to study rhythmic
hybrid control systems appearing in robotic manipulation [Bue+94], biochemistry [GP78],
and electrical systems [HR07].

In addition to providing a canonical form for the dynamics near hybrid periodic orbits,
the results of this chapter suggest a mechanism by which a many–legged locomotor or a
multi–fingered manipulator may collapse a large number of mechanical degrees–of–freedom
to produce a low–dimensional coordinated motion. This provides a link between disparate
lines of research: formal analysis of hybrid periodic orbits; design of robots for rhythmic
locomotion and manipulation tasks; and scientific probing of neuromechanical control ar-
chitectures in humans and animals. Our theoretical results show that hybrid models of
rhythmic phenomena generically reduce dimensionality, and our applications demonstrate
that this reduction may be deliberately designed into an engineered system. We furthermore
speculate that evolution may have exploited this reduction in developing its spectacularly
dexterous agents.
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3.A Continuous–Time Dynamical Systems

Definition 3.A.1. A continuous–time dynamical system is a pair (M,F ) where:

M is a smooth manifold with boundary ∂M ;

F is a smooth vector field on M , i.e. F ∈ T(M).

3.A.1 Time–to–Impact

When a trajectory passes transversely through an embedded submanifold, the time required
for nearby trajectories to pass through the manifold depends smoothly on the initial condi-
tion [HS74, Chapter 11.2]. This provides the prototype used in the proofs of Theorems 3.3.1
and 3.4.1 for the dynamics near the portion of a hybrid periodic orbit in one domain of a
hybrid system.

Lemma 3.A.1. Let (M,F ) be a smooth dynamical system, φ : F → M the maximal flow
associated with F , and G ⊂ M a smooth codimension–1 embedded submanifold. If there
exists x ∈ M and t ∈ Fx such that φ(t, x) ∈ G and F (φ(t, x)) 6∈ TxG, then there is a
neighborhood U ⊂ M containing x and a smooth map σ : U → R so that σ(x) = t and
φ(σ(y), y) ∈ G for all y ∈ U ; σ is called the time–to–impact map.

Proof. Near φ(t, x), G is the zero section of a constant–rank map h : M → R where
Dh(φ(t, x)) 6= 0. Define g : F → R by g(s, y) = (h ◦ φ)(s, y). Then since F is transverse to
G at φ(t, x),

∂g

∂t
(t, x) = Dh(F (φ(t, x))) 6= 0.

By the Implicit Function Theorem see Theorem C.40 in [Lee12] there exists a neighborhood
U of x and a smooth map σ : U → R so that σ(x) = t and g(σ(y), y) = 0 for all y ∈ U , i.e.
φ(σ(y), y) ∈ G.

Remark 3.A.1. This lemma is applicable when G ⊂ ∂M .

3.A.2 Smoothing Flows

Two continuous–time dynamical systems can be smoothly attached to one another along
their boundaries to obtain a new continuous–time system [Hir76, Theorem 8.2.1]. Distinct
hybrid domains were attached to one another using this construction in Section 3.1.5.

Lemma 3.A.2. Suppose (M1, F1), (M2, F2) are n–dimensional continuous–time dynamical
systems, there exists a diffeomorphism R : ∂M1 → ∂M2, F1 is outward–pointing along ∂M1,
and F2 is inward–pointing along ∂M2. Then the topological quotient

M̃ =
M1

∐
M2

∂M1
R∼ ∂M2
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can be endowed with the structure of a smooth manifold such that for j ∈ {1, 2}:

1. the quotient projections πj : Mj → M̃ are smooth embeddings; and

2. there is a smooth vector field F̃ ∈ T(M̃) that restricts to Dπj(Fj) on π(Mj) ⊂ M̃ .

Proof. Let φj : Fj → Mj be the maximal flow associated with Fj on Mj. Then there is a

neighborhood Ũj ⊂ Fj of {0}×Mj on which the flow is defined, and with Uj = Ũj∩(R×∂Mj),
transversality of Fj along ∂Mj implies φj : Uj → Mj is an embedding which is the identity
on {0} × ∂Mj. Since F1 is outward–pointing and F2 is inward–pointing, the neighborhoods
are one–sided and without loss of generality we may assume for j = 1, 2 that there exist
continuous positive functions δj : ∂Mj → [0,∞) such that U1 = {(−δ1(x), 0] : x ∈ ∂M1}
and U2 = {[0, δ2(x)) : x ∈ ∂M2}. Therefore U = U1

∐
U2

∂M1'∂M2
inherits a smooth structure from

its product structure, i.e. the fibers Ux = (−δ1(x), δ2(ϕ(x))) × {x} are smooth curves for
x ∈ ∂M1 and both {0} × ∂M1 ↪→ U and {0} × ϕ−1(∂M2) ↪→ U are smooth embeddings; let
ϕ : U → Rn denote the chart. Note in addition that by construction the constant vector
field ∂

∂t
∈ T(Uj) pushes forward to Fj|φj(Uj)∩Mj

∈ T(φj(Uj) ∩Mj), since (Dφj)
∂
∂t

= Fj.

We construct the smooth structure on M̃ = M1
∐
M2

∂M1'∂M2
by covering M with interior charts

from the Mj’s together with U . Note that since φj|Uj : Uj →Mj is a smooth embedding, the
interior charts on Mj are smoothly compatible with the product chart on U , and the natural

quotient projections πj : Mj ↪→ M̃ are smooth embeddings. Finally, (Dπ1)F1 = (Dπ2)F2

along π1(∂M1) by construction, whence the vector field F̃ ∈ T(M̃) which restricts to Fj on
Mj, j = 1, 2, is well–defined and smooth.

Remark 3.A.2. The smooth structure constructed in Lemma 3.A.2 is unique up to diffeo-
morphism [Hir76, Theorem 2.1 in Chapter 8].
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3.B Discrete–time Dynamical Systems

Definition 3.B.1. A discrete–time dynamical system is a pair (Σ, P ) where:

Σ is a smooth manifold without boundary;

P is a smooth endomorphism of Σ, i.e. P : Σ→ Σ.

In studying hybrid dynamical systems, we encounter smooth maps P : Σ → Σ that are
noninvertible. Viewing iteration of P as determining a discrete–time dynamical system, we
wish to study the behavior of these iterates near a fixed point α = P (α). Note that if
P has constant rank equal to k < n = dim Σ, then its image P (Σ) ⊂ Σ is an embedded
k–dimensional submanifold near α by the Rank Theorem [Lee12, Theorem 4.12]. With an
eye toward model reduction, one might hope that the composition (P ◦ P ) : Σ → P (Σ) is
also constant–rank, but this is not generally true6.

In this section we provide three results that introduce regularity into iterates of a nonin-
vertible map P : Σ→ Σ on an n–dimensional manifold Σ near a fixed point P (α) = α. If the
rank of DP is strictly bounded above by m ∈ N and if Pm, the m–th iterate of P , has con-
stant rank equal to r ∈ N near the fixed point α, then P reduces to a diffeomorphism over an
r–dimensional invariant submanifold after m iterations; this result is given in Section 3.B.1.
Even if DPm is not constant rank, as long as α is exponentially stable then P can be ap-
proximated by a diffeomorphism on a submanifold whose dimension equals rank DPm(α);
this is the subject of Section 3.B.2. A bound on the error in this approximation is provided
in Section 3.B.3.

3.B.1 Exact Reduction

If the rank of P : Σ → Σ is strictly bounded above by m ∈ N and the derivative of the
m–th iterate of P has constant rank near a fixed point, then the range of P is locally an
embedded submanifold, and P restricts to a diffeomorphism over that submanifold. This
originally appeared without proof as Lemma 3 in [Bur+11a].

Lemma 3.B.1. Let (Σ, P ) be an n–dimensional discrete–time dynamical system with P (α) =
α for some α ∈ Σ. Suppose the rank of P is strictly bounded above by m ∈ N and there
exists a neighborhood W ⊂ Σ of α such that rank DPm(x) = r for all x ∈ W . Then
there is a neighborhood V ⊂ Σ containing α such that Pm(V ) is an r–dimensional embedded
submanifold near α and there is a neighborhood U ⊂ Pm(V ) containing α that P maps
diffeomorphically onto P (U) ⊂ Pm(V ).

In the proof of Lemma 3.B.1, we make use of a fact from linear algebra obtained by passing
to the Jordan canonical form.

Proposition 3.B.1. If A ∈ Rn×n and rankA < m, then rank(A2m) = rank(Am).

6Consider the map P : R2 → R2 defined by P (x, y) = (x2, x).
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Proof. (of Lemma 3.B.1) By the Rank Theorem [Lee12, Theorem 4.12], there is a neighbor-
hood V ⊂ Σ of α for which S = Pm(V ) is an r–dimensional embedded submanifold and by
Proposition 3.B.1 we have

rank(DPm|S)(α) = rankD(Pm ◦ Pm)(α)

= rankDPm(α).

Therefore DPm|S : TαS → TαS is a bijection, so by the Inverse Function Theorem [Lee12,
Theorem C.34], there is a neighborhood W ⊂ S containing α so that Pm(W ) ⊂ S and
Pm|W : W → Pm(W ) is a diffeomorphism.

We now show that W is invariant under P in a neighborhood of α. By continuity of P ,
there is a neighborhood L ⊂ V containing α for which P (L) ⊂ V and Pm(L) ⊂ W . The set
U = Pm(L) is a neighborhood of α in S. Further, we have

P (U) = P ◦ Pm(L) = Pm ◦ P (L) ⊂ S.

The restriction Pm|U : U → Pm(U) is a diffeomorphism since U ⊂ W , whence P |U is a
diffeomorphism onto its image P (U) ⊂ S.

3.B.2 Approximate Reduction

Now suppose that iterates of P are not constant rank but α = P (α) is exponentially
stable, meaning that the spectral radius ρ(DP (α)) = max{|λ| : λ ∈ specDP (α)} satisfies
ρ(DP (α)) < 1. We show that P may be approximated by a diffeomorphism defined on a
submanifold whose dimension equals the number of non–zero eigenvalues of DP (α). The
technical result we desire was originally established by Hartman [Har60]7. We apply Hart-
man’s Theorem to construct a C1 change–of–coordinates that exactly linearizes all eigendi-
rections corresponding to non–zero eigenvalues of DP (α).

Lemma 3.B.2. Let (Σ, P ) be an n–dimensional discrete–time dynamical system. Suppose
α = P (α) is an exponentially stable fixed point and let r be the number of non–zero eigen-
values of DP (α). Then there is a neighborhood U ⊂ Σ of α and a C1 diffeomorphism

ϕ : U → Rn such that ϕ(α) = 0 and the coordinate representation P̃ = ϕ ◦ P ◦ ϕ−1 of P has
the form

P̃ (z, ζ) = (Az, N(z, ζ))

where z ∈ Rr, ζ ∈ Rn−r, A ∈ Rr×r is invertible, N : ϕ(U) → Rn−r is C1, N(0, 0) = 0, and
DζN(0, 0) is nilpotent.

7The statement in [Har60] only considered invertible contractions. However, as noted in [AG94], the
proof in [Har60] of the result we require does not make use of invertibility and the conclusion is still valid if
zero is an eigenvalue of the linearization. For details we refer to [Abb04].
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Proof. Let (U0, ϕ0) be a smooth chart for Σ with α ∈ U0 and ϕ0(α) = 0. We begin by
verifying that the hypotheses of Theorem 3.C.1 from Appendix 3.C are satisfied for the map
P0 : ϕ0(U0) → Rn defined by P0 = ϕ0 ◦ P ◦ ϕ−1

0 . Let λ ∈ specDP0(0) be the eigenvalue
with largest magnitude, and ` ∈ N its algebraic multiplicity. Applying the linear change–of–
coordinates that puts DP0(0) into Jordan canonical form, we assume

DP0(0) =

(
A 0
0 B

)

where B ∈ R`×` and specB = {λ}. Now in the notation of Theorem 3.C.1 from Ap-
pendix 3.C,

P0(x, y) = (Ax+X(x, y), By + Y (x, y))

where x ∈ Rn−`, y ∈ R`, and X, Y are smooth and X(0, 0) = 0, Y (0, 0) = 0; note that m = 0
(there is no z coordinate) at this step. Because X and Y are smooth on the neighborhood U0

of the origin, their derivatives are uniformly Lipschitz and Hölder continuous on a precompact
open subset of U0.

Theorem 3.C.1 from Appendix 3.C implies there exists a neighborhood U1 ⊂ Rn of the
origin and a C1 diffeomorphism ϕ1 : U1 → Rn for which the map P1 : ϕ1(U1)→ Rn defined
by P1 = ϕ1 ◦ P0 ◦ ϕ−1

1 has the form (after reversing the order of the coordinates)

P1(z1, ζ1) = (A1z1, N1(z1, ζ1))

where z1 ∈ Rr1 , r1 > 0, ζ1 ∈ Rn−r1 and A1 ∈ Rr1×r1 is invertible. Observe that the
map P1 satisfies the hypotheses of Theorem 3.C.1 from Appendix 3.C. Therefore we may
inductively apply the Theorem to construct a sequence of coordinate charts {(Uk, ϕk)}Kk=1

and corresponding maps {Pk}Kk=1 such that for all k ∈ {1, . . . , K}
Pk(zk, ζk) = (Akzk, Nk(zk, ζk))

where zk ∈ Rrk , ζk ∈ Rn−rk , Ak ∈ Rrk×rk is invertible, and rk > rk−1 (note that r0 = 0).
The sequence terminates at a finite K < ∞ with rK = r = rankDP n(α). Therefore in the
C1 chart (U,ϕ) given by ϕ = ϕK ◦ · · · ◦ ϕ0 and U = ϕ−1(Rn), the coordinate representation

P̃ = ϕ ◦ P ◦ ϕ−1 of P has the form

P̃ (z, ζ) = (Az, N(z, ζ))

where z ∈ Rr, ζ ∈ Rn−r and A ∈ Rr×r is invertible. Since A is invertible and rankDP̃ n(α) =
r, DζN(0, 0) is nilpotent.

3.B.3 Superstability

Finally, we recall that if all eigenvalues of the linearization of a map at a fixed point are zero—
a so–called “superstable” fixed point [WA12]—then the map contracts superexponentially;8

this is a straightforward consequence of Ostrowski’s Theorem [Ort90, p. 8.1.7].
8The map need not be nilpotent simply because its linearization is; consider the map P : R→ R defined

by P (x) = x2.
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Lemma 3.B.3. Let P : Rn → Rn be a C1 map with P (0) = 0, specDP (0) = {0}. Then for
every ε > 0 and norm ‖·‖ : Rn → R there exists δ, C > 0 such that

∀x ∈ Bδ(0), k ∈ N :
∥∥P k(x)

∥∥ ≤ Cεk‖x‖.

The proof of Lemma 3.B.3 relies on the following elementary fact regarding induced norms [Ort90,
p. 1.3.6].

Proposition 3.B.2 (1.3.6 in [Ort90]). Given ε > 0 and A ∈ Rn×n, there exists a norm
‖·‖ : Rn → R such that ‖A‖i ≤ ρ(A) + ε, where ‖·‖i : Rn×n → R is the operator norm
induced by ‖·‖ and ρ(A) is the spectral radius of A.

Proof. (of Lemma 3.B.3) Given ε > 0, choose the norm ‖·‖ : Rn → R obtained by applying
Proposition 3.B.2 to DP (0) so that ‖DP (0)‖i ≤ 1

2
ε. Since DP is continuous, there exists a

δ > 0 such that

∀x ∈ Bδ(0) : ‖DP (x)−DP (0)‖i <
1

2
ε.

Whence we find for ‖x‖ < δ that

‖DP (x)‖i = ‖DP (x)−DP (0) +DP (0)‖i
≤ ‖DP (x)−DP (0)‖i + ‖DP (0)‖i ≤ ε.

Combined with 8.1.4 in [Ort90] (a generalization of the Mean Value Theorem to vector–
valued functions), we find for all x ∈ Bδ(0),

‖P (x)‖ ≤ sup
s∈[0,1]

‖DP (sx)‖i‖x‖ ≤ ε‖x‖.

Iterating, for all k ∈ N and ‖x‖ < δ we have
∥∥P k(x)

∥∥ ≤ εk‖x‖. Since all norms on finite–
dimensional vector spaces are equivalent, the desired result follows immediately.

Remark 3.B.1. Let (Σ, P ) be an n–dimensional discrete–time dynamical system that satis-
fies the hypotheses of Lemma 3.B.2 near α = P (α). Then P has a coordinate representation

P̃ (z, ζ) = (Az,N(z, ζ)) in a neighborhood of α where A is an invertible matrix, N(0, 0) = 0,
and specDζN(0, 0) = {0}. Therefore given ε > 0 we can apply Lemma 3.B.3 to the nonlin-

earity P̃ (z, ζ) − (Az, 0) = (0, N(z, ζ)) to find δ, C > 0 such that for all (z, ζ) ∈ Bδ(0) and
k ∈ N: ∥∥∥P̃ k(z, ζ)−

(
Akz, 0

)∥∥∥ ≤ Cεk‖(z, ζ)‖.

We conclude that P is arbitrarily well–approximated near α by a diffeomorphism on a sub-
manifold whose dimension equals rankDP n(α).
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3.C C1 Linearization of a Noninvertible Map

The technical result we desire was originally established by Hartman in the course of proving
that an invertible contraction is C1–conjugate to its linearization9. The original statement
in [Har60] only considered invertible contractions. However, as noted in [AG94], the proof
in [Har60] of the result we require does not make use of invertibility and the conclusion is still
valid if zero is an eigenvalue of the linearization. For details we refer the reader to [Abb04],
which also contains a generalization to hyperbolic periodic orbits whose eigenvalues satisfy
genericity conditions.

Theorem 3.C.1 (Induction Assertion in [Har60]). Let U ⊂ Rn be a neighborhood of the
origin and P : U → Rn a C1 map of the form

P (x, y, z) = (Ax+X(x, y, z), By + Y (x, y, z), Cz)

such that

DP (0) =




A 0 0
0 B 0
0 0 C




where:

1. x ∈ Rk, y ∈ R`, z ∈ Rm and k + `+m = n;

2. A ∈ Rk×k, B ∈ R`×`, and C ∈ Rm×m;

3. X : Rn → Rk and Y : Rn → R` are C1;

4. DxX, DyX, DxY , and DyY are uniformly Lipschitz continuous in (x, y);

5. DzX and DzY are uniformly Hölder continuous in z;

Suppose all the eigenvalues of B have the same magnitude, that the eigenvalues of A have
smaller magnitude and those of C have larger magnitude than those of B, and all eigenvalues
of DP (0) lie inside the unit disc:

∀b, β ∈ specB : |b| = |β|;
∀a ∈ specA, b ∈ specB, c ∈ specC : 0 ≤ |a| < |b| < |c| < 1.

Then there is a neighborhood of the origin V ⊂ Rn and a C1 diffeomorphism ϕ : V → Rn of
the form

ϕ(x, y, z) = (x+ ϕX(z), y + ϕY (x, y, z), z)

9Readers may be more familiar with the Hartman–Grobman Theorem see [GH83, Theorem 1.4.1] or
[Sas99, Theorem 7.8]hich states that the phase portrait near an exponentially stable fixed point of a discrete–
time dynamical system is topologically conjugate to its linearization.
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for which Dϕ(0) = I and for all (u, v, w) ∈ ϕ(V ) we have

(ϕ ◦ P ◦ ϕ−1)(u, v, w) = (Au+ U(u, v, w), Bv, Cw)

where:

1. U : ϕ(V )→ Rk is C1;

2. DuU is uniformly Lipschitz continuous in (u, v, w);

3. DvU and DwU are uniformly Lipschitz continuous in u;

4. DvU and DwU are uniformly Hölder continuous in (v, w).

Remark 3.C.1. Theorem 3.C.1 may be applied inductively to exactly linearize all eigendi-
rections corresponding to non–zero eigenvalues via a C1 change–of–coordinates; this is the
content of Lemma 3.B.2 in Section 3.B.2.
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Chapter 4

Piecewise–Differentiable Flow through
Overlapping Guards

Legged animals with four, six, and more limbs exhibit gaits with near–simultaneous touch-
down of two or more legs [Ale84; Gol+99; Hol+06]. The appearance of such simultane-
ous contact gaits in terrestrial locomotion across unrelated species suggests they confer
some inherent advantage. Locomotion is commonly modeled as a hybrid dynamical oscilla-
tor [Lyg+03] that undergoes discontinuous hybrid transitions when legs touch down [Rai86;
KK02; Gri+02; Col+05; Hol+06; Rem+10]. Although analytical tools exist to study or-
bits that pass transversely through non–intersecting switching surfaces (e.g. to assess sta-
bility [AG58; Gri+02] and compute first–order variations [HP00; WA12]), general hybrid
systems that admit simultaneous discrete transitions can easily accept executions that are
neither unique nor orbitally stable [Lyg+03]. Analysis of trajectories passing through over-
lapping guards has generally been limited to two transversally–intersecting surfaces of dis-
continuity [Iva98; DL11; DB+08; Biz+13]. Extensions to arbitrary numbers of guards has
been restricted to the case of pure phase oscillators [MS90].

We study a class of discontinuous vector fields that arise in biomechanics [Hol+06] and
neuroscience [Biz+13]. Under the conditions that (i) the vector field’s discontinuities are
locally confined to a finite number of smooth submanifolds and (ii) the vector field is “trans-
verse” to these surfaces in an appropriate sense, we show that the vector field yields a
well–defined flow that is Lipschitz continuous and piecewise–differentiable. The definition of
piecewise–differentiability we use (introduced only recently [Bar+95; Roc03; Sch12]) implies
that although the flow is not classically differentiable, nevertheless it admits a first–order
approximation (the so–called Bouligand derivative [Sch12, Chapter 3]). We exploit this
first–order approximation to infer existence of piecewise–differentiable impact maps and as-
sess structural stability of the flow.
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4.1 Preliminaries

4.1.1 Topology [Fol99]

If U ⊂ X is a subset of a topological space, then IntU ⊂ X denotes its interior and ∂U
denotes its boundary. Let f : X → Y be a map between topological spaces. If U ⊂ X then
f |U : U → Y denotes the restriction. If V ⊂ Y then f−1(V ) = {x ∈ X : f(x) ∈ V } denotes
the pre–image of V under f .

4.1.2 Differential Topology [Lee12]

Given Cr manifolds D,N , we let Cr(D,N) denote the set of Cr functions from D to N .
H ⊂ D is a Cr codimension-k submanifold of the d-dimensional manifold D if every x ∈ H
has a neighborhood U ⊂ D over which there exists a Cr diffeomorphism h : U → Rd such
that

H ∩ U = h−1
({
y ∈ Rd : yk+1 = · · · = yd = 0

})
.

If f ∈ Cr(D,N) then at every x ∈ D there exists an induced linear map Df(x) : TxD →
Tf(x)N called the pushforward (in coordinates, Df(x) is the Jacobian linearization of f at
x ∈ D). When N = R, we will invoke the standard identification TyN ' R for all y ∈ N and
regard Df(x) as a linear map from TxD into R for every x ∈ D. If U ⊂ D and f : U → N

is a map, then a map f̃ : D → N is a Cr extension of f if f̃ is Cr and f̃ |U = f .

4.1.3 Non–Smooth Dynamical Systems [Fil88]

A (possibly discontinuous or non–differentiable) map F : D → TD is a vector field if
π ◦F = idD where π : TD → D is the natural projection and idD is the identity map on D.
A vector field may, under appropriate conditions, yield an associated flow φ : F → D defined
over an open subset F ⊂ R ×D called a flow domain; in this case for every x ∈ D the set
Fx = F ∩ (R× {x}) is an open interval containing the origin, the restriction φ|Fx : Fx → D
is absolutely continuous, and the derivative with respect to time is Dtφ(t, x) = F (φ(t, x))
for almost every t ∈ Fx. A flow is maximal if it cannot be extended to a larger flow domain.
An integral curve for F is an absolutely continuous function ξ : I → D over an open interval
I ⊂ R such that ξ̇(t) = F (ξ(t)) for almost all t ∈ I; it is maximal if it cannot be extended
to an integral curve on a larger open interval.

4.1.4 Piecewise Differentiable Functions [Sch12]

Let r ∈ N∪{∞} and D ⊂ Rd be open. A continuous function f : D → Rn is called piecewise–
Cr if near every x ∈ D there exists an open set U ⊂ D containing x and a finite collection
{fj : U → Rn}j∈J of Cr–functions such that for all x ∈ U we have f(x) ∈ {fj(x)}j∈J. The
functions {fj}j∈J are called selection functions for f |U , and f is said to be a continuous
selection of {fj}j∈J. A selection function fj is said to be active at x ∈ U if f(x) = fj(x).



CHAPTER 4. PIECEWISE–DIFFERENTIABLE FLOW 81

We let PCr(D,Rn) denote the set of piecewise–Cr functions from D to Rn. Note that PCr

is closed under composition and pointwise maximum or minimum of a finite collection of
functions. Piecewise–differentiable functions possess a useful but non–classical derivative
Df : TD → TRn called the Bouligand derivative (or B–derivative) [Sch12, Chapter 3]; this
is the content of Lemma 4.1.3 in [Sch12]. We let Df(x; v) denote the B–derivative of f
evaluated along the tangent vector v ∈ TxD. The B–derivative is positively homogeneous,
i.e. ∀v ∈ TxD,λ ≥ 0 : Df(x;λv) = λDf(x; v).

4.2 Local and Global Flow

4.2.1 Event–Selected Vector Fields Discontinuities

To simplify the statement of our definitions and results, we fix notation of some objects in
Rn: +1 ∈ Rn denotes the vector of all ones and −1 its negative; ej is the j–th standard
Euclidean basis vector; Bn = {−1,+1}n ⊂ Rn is the set of corners of the n-dimensional
cube.

The flow of a discontinuous vector field F : D → TD over an open domain D ⊂ Rd

can exhibit pathological behaviors ranging from nondeterminism to orbital instability. We
will investigate local properties of the flow when the discontinuities are confined to a finite
collection of smooth submanifolds through which the flow passes transversally, as formalized
in the following definitions.

Definition 4.2.1. Given a vector field F : D → TD over an open domain D ⊂ Rd and a
function h ∈ Cr(U,R) defined on an open subset U ⊂ D, we say that h is an event function
for F on U if there exists a positive constant f > 0 such that Dh(x)F (x) ≥ f for all x ∈ U .
A codimension–1 embedded submanifold Σ ⊂ U for which h|Σ is constant is referred to as a
local section for F .

Note that if h is an event function for F on a set containing ρ ∈ D then necessarilyDh(ρ) 6= 0.
We will show that vector fields that are differentiable everywhere except a finite collection

of local sections give rise to a well–defined flow that is piecewise–differentiable. This class of
event–selected vector fields is defined formally as follows.

Definition 4.2.2. Given a vector field F : D → TD over an open domain D ⊂ Rd, ρ ∈ D,
we say that F is event–selected Cr at ρ if there exists an open set U ⊂ D containing ρ and
a collection {hj}nj=1 ⊂ Cr(U,R) such that:

1. (event functions) hj is an event function for F on U for all j ∈ {1, . . . , n};

2. (Cr extension) for all b ∈ {−1,+1}n = Bn, with Db = {x ∈ U : bj(hj(x)− hj(ρ)) ≥ 0},
F |IntDb admits a Cr extension Fb : U → TU .

(Note that for any b ∈ Bn such that IntDb = ∅ the latter condition is satisfied vacuously.)
We let ECr(D) denote the set of vector fields that are event–selected Cr at every x ∈ D.
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For an illustration of an event–selected Cr vector field in the plane D = R2, refer to Fig-
ure 4.2.

4.2.2 Construction of the Piecewise–Differentiable Flow

The following constructions will be used to state and prove results throughout the chapter.
Suppose F : D → TD is event–selected Cr at ρ ∈ D. By definition there exists a neigh-
borhood ρ ∈ U ⊂ D and associated event functions {hj}nj=1 ⊂ Cr(U,R) that divide U into
regions {Db}b∈Bn by defined by Db := {x ∈ U : (hj(x)− hj(ρ))bj ≥ 0}. The boundary of each
Db is contained in the collection of event surfaces {Hj}nj=1 defined for each j ∈ {1, . . . , n} by
Hj := {x ∈ U : hj(x) = hj(ρ)}. For each j ∈ {1, . . . , n} and b ∈ Bn, we refer to the surface
Hj as an exit boundary in positive time for Db if hj(Db) ⊂ (−∞, 0]; we refer to Hj as an exit
boundary in negative time if hj(Db) ⊂ [0,+∞). In addition, the definition of event–selected
Cr implies that there is a collection of Cr vector fields {Fb : U → TU}b∈Bn ⊂ Cr(U, TU)
such that F |IntDb = Fb|IntDb for all b ∈ Bn.

Budgeted time–to–boundary

For each b ∈ Bn with IntDb 6= ∅, let φb : Fb → U be a flow for Fb over a flow domain Fb ⊂
R×U containing (0, ρ); recall that φb ∈ Cr(Fb, U) since Fb ∈ Cr(U, TU). Each H ∈ {Hj}nj=1

is a local section for F , and therefore a local section for Fb as well. This implies Fb(ρ) is
transverse to H (more precisely, Fb(ρ) 6∈ TρH), thus the Implicit Function Theorem [Lee12,
Theorem C.40] implies there exists a Cr “time–to–impact” map τHb : UH

b → R defined on an
open set UH

b ⊂ D containing ρ such that

∀x ∈ UH
b : (τHb (x), x) ∈ Fb and φb(τ

H
b (x), x) ∈ H. (4.2.1)

The collection of maps
{
τHb
}
b∈Bn

are jointly defined over the open set Ub :=
⋂n
j=1 U

Hj
b .

Any x ∈ Ub can be taken to any H ∈ {Hj}nj=1 by flowing with the vector field Fb for time

τHb (x) ∈ R.
We now define functions τ+

b , τ
−
b : R × Ub → R that specify the time required to flow

to the exit boundary of Db in forward or backward time, respectively, without exceeding a
given time budget:

∀(t, x) ∈ R× Ub : τ+
b (t, x) = max

{
0,min

(
{t} ∪

{
τ
Hj
b (x) : bj < 0

}n
j=1

)}
,

∀(t, x) ∈ R× Ub : τ−b (t, x) = min

{
0,max

(
{t} ∪

{
τ
Hj
b (x) : bj > 0

}n
j=1

)}
.

(4.2.2)

Since τ+
b , τ

−
b are obtained via pointwise minimum and maximum of a finite collection of Cr

functions, we conclude τ+
b , τ

−
b ∈ PCr(R × Ub,R). See Figure 4.1 for an illustration of the

component functions of τ+
b in a planar vector field.
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ẋ = F[−1,+1](x)
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Figure 4.1: Illustration of a vector field F : D → TD that is event–selected Cr near

ρ ∈ D = R2. The functions
{
τ
Hj
[−1,−1]

}2

j=1
specify the time required to flow via the vector

field F[−1,−1] to the surface Hj. The pointwise minimum min
{
τ
Hj
[−1,−1](x)

}2

j=1
is used in the

definition of τ+
[−1,−1] in (4.2.2).

Flow–to–boundary

By composing the flow φb with the budgeted time–to–boundary functions τ+
b , τ

−
b , we now

construct functions that flow points up to the exit boundary of Db in forward or backward
time over domains

V+
b =

{
(t, x) ∈ R× Ub : (τ+

b (t, x), x) ∈ Fb
}
,

V−b =
{

(t, x) ∈ R× Ub : (τ−b (t, x), x) ∈ Fb
}
.
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(Note that V+
b ,V

−
b are open since τ+

b , τ
−
b are continuous and nonempty since (0, ρ) ∈ V+

b ,V
−
b .)

For each b ∈ Bn define the functions ζ+
b : V+ → D, ζ−b : V− → D by

∀(t, x) ∈ V+
b : ζ+

b (t, x) = φb
(
τ+
b (t, x), x

)
,

∀(t, x) ∈ V−b : ζ−b (t, x) = φb
(
τ−b (t, x), x

)
.

Clearly ζ+
b ∈ PCr(V+

b , D) and ζ−b ∈ PCr(V−b , D) since they are obtained by composing PCr

functions [Sch12, §4.1]. Loosely speaking, the function ζ+
b coincides with φb for pairs (t, x)

that do not cross the forward–time exit boundary of Db. Yet unlike φb, it is the identity
(stationary) flow over the remainder of its domain. More precisely, for t < 0 and for values
of

t > t+b := min
{
τ
Hj
b (x) : bj < 0

}n
j=1
,

the function τ+
b (t, x) is constant (and hence the derivative with respect to time Dtζ

+
b (t, x) =

0), while for t ∈ (0, t+b ) we have ζ+
b (t, x) = φb(t, x) (and hence Dtζ

+
b (t, x) = Fb(φb(t, x))).

Now fix x ∈ Db, choose b′ ∈ Bn \ b, and for t ∈ R define

t+b′(t) := min
{
τ
Hj
b′

(
ζ+
b (t, x)

)
: b′j < 0

}n
j=1
.

Applying the conclusions from the preceding paragraph, with t′ ∈ R the composition

ζ+
b′ (t
′, ζ+

b (t, x))

is classically differentiable with respect to both t′ and t almost everywhere. Furthermore,
we can deduce that the derivative of the composition with respect to t is Fb(φb(t, x)) when
t ∈

(
0, t+b

)
and zero where it is otherwise defined; similarly, the derivative with respect to

t′ is Fb′
(
φb′(t

′, ζ+
b (t, x)

)
when t′ ∈

(
0, t+b′(t)

)
and zero where it is otherwise defined. If we

impose the relationship t′ := t− τ+
b (t, x), we have t′ = 0 for any t ∈ (0, t+b ). The composition

ζ+
b′ (t− τ+

b (t, x), ζ+
b (t, x))

follows the flow for Fb from x toward (but never passing) the exit boundary of Db, then
follows the flow of Fb′ from ζ+

b (t, x) toward the exit boundary of Db′ .

Combining budgeted time–to–boundary with flow–to–boundary

Define ϕ+
b : V+

b → R×D, ϕ−b : V−b → R×D by

∀(t, x) ∈ V+
b : ϕ+

b (t, x) =
(
t− τ+

b (t, x), ζ+
b (t, x)

)
=
(
t− τ+

b (t, x), φb
(
τ+
b (t, x), x

))
,

∀(t, x) ∈ V−b : ϕ−b (t, x) =
(
t− τ−b (t, x), ζ−b (t, x)

)
=
(
t− τ−b (t, x), φb

(
τ−b (t, x), x

))
.

(4.2.3)

Clearly ϕ+
b ∈ PCr(V+

b ,R×D) and ϕ−b ∈ PCr(V−b ,R×D). Intuitively, the second component
of the ϕ+

b , ϕ−b functions flow according to Fb up to exit boundaries of Db in forward or
backward time, respectively, while the first component deducts the flow time t − τ±b (t, x)
from the total time budget t. These functions satisfy an invariance property:

∀(t, x) ∈
(
V+
b ∩ (−∞, 0]× Ub

)
: ϕ+

b (t, x) = (t, x),

∀(t, x) ∈
(
V−b ∩ [0,+∞)× Ub

)
: ϕ−b (t, x) = (t, x).

(4.2.4)
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Figure 4.2: Illustration of a vector field F : D → TD that is event–selected Cr near
ρ ∈ D = R2. The vector field is discontinuous across the Cr codimension–1 submanifolds
H1, H2 ⊂ D. For each b ∈ Bn = {[−1,−1], [+1,−1], [−1,+1], [+1,+1]}, if IntDb 6= ∅ then
the vector field restricts as F |IntDb = Fb|IntDb where Fb : Ub → TUb is a smooth vector field
over a neighborhood ρ ∈ Ub ⊂ D. An initial condition y ∈ D[−1,−1] flows in forward time to
φ(t, y) ∈ D[+1,+1] through y+

[+1,−1] ∈ H1 and y+
[+1,+1] ∈ H2. An initial condition z ∈ D[+1,+1]

flows in backward time to φ(−t, y) ∈ D[−1,−1] through z−[−1,−1] ∈ H1 ∩H2.

Obtaining flow via composition

Consider now the formal composition

φ = π2 ◦
(

+1∏

b=−1

ϕ+
b

)
◦
(
−1∏

b=+1

ϕ−b

)
(4.2.5)

where π2 : R ×D → D is the canonical projection and
∏+1

b=−1 denotes composition in lexi-

cographic order (similarly
∏−1

b=+1 denotes composition in reverse lexicographic order). The
set φ−1(D) ⊂ R×D is open (since φ is continuous) and nonempty (since combining (4.2.4)
and (4.2.5) implies φ(0, ρ) = ρ). Therefore there exist open neighborhoods 0 ∈ J ⊂ R,
ρ ∈ V ⊂ D such that F = J × V ⊂ φ−1(D). Clearly φ ∈ PCr(F, D) since it is obtained by
composing PCr functions.

Lemma 4.2.1. If the vector field F : D → TD is event–selected Cr at ρ ∈ D, then φ ∈
PCr(F, D) defined by (4.2.5) is differentiable with respect to time for almost all (t, x) ∈ F

and
Dtφ(t, x) = F (φ(t, x)). (4.2.6)
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Proof. Choose x ∈ D such that (0, x) ∈ F. We will show that φ|Fx is classically differentiable
for almost all times t ∈ Fx. Let t− = inf Fx, t+ = supFx so that 0 ∈ Fx = (t−, t+). We
construct a partition of [0, t+) as follows. For each b ∈ Bn, let (t+b , x

+
b ) =

(∏
a<b ϕ

+
a

)
(t+, x)

where the composition is over all a ∈ Bn that occur before b lexicographically; refer to
Figure 4.2 for an illustration of the sequence {yb}b∈Bn generated by an initial condition

y ∈ D−1. Note that
{
t+ − t+b

}
b∈Bn

is (lexicographically) non–increasing and t+ − t++1 +

τ+
+1(t++1, x

+
+1) = t+. Defining the interval

Jb = [t+ − t+b , t+ − t+b + τ+
b (t+b , x

+
b )],

we have [0, t+) ⊂ ⋃b∈Bn J
+
b and Int J+

a ∩ Int J+
b = ∅ for all a ∈ Bn \ {b}. Observe that

∀t ∈ Int J+
b : φ(t, x) = π2 ◦ ϕ+

b (t− (t+ − t+b ), x+
b ) ∈ IntDb,

where the condition is vacuously satisfied if Int J+
b = ∅. Therefore for all t ∈ Int J+

b , the
piecewise–differentiable function φ is classically differentiable with respect to time at (t, x)
and we have

Dtφ(t, x) = Dπ2Dtϕ
+
b (t− (t+ − t+b ), x+

b )

= Fb(π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (φ(t, x)).

Applying an analogous argument in backward time, we conclude that Dtφ(t, x) = F (φ(t, x))
for almost all t ∈ (t−, t+) = Fx. Since (0, x) ∈ F was arbitrary, the Lemma follows.

4.2.3 Piecewise–Differentiable Flow

We now show that the piecewise–differentiable function φ ∈ PCr(F, D) defined in (4.2.5) is
in fact a flow for the discontinuous vector field F . See Figure 4.2 for an illustration of this
flow.

Theorem 4.2.1. Suppose the vector field F : D → TD is event–selected Cr at ρ ∈ D. Then
there exists a flow φ : F → D for F over a flow domain F ⊂ R ×D containing (0, ρ) such
that φ ∈ PCr(F, D) and

∀(t, x) ∈ F : φ(t, x) = x+

∫ t

0

F (φ(s, x)) ds. (4.2.7)

Proof. We claim that φ ∈ PCr(F, D) from (4.2.5) satisfies (4.2.7). Applying the fundamental
theorem of calculus [Sch12, Proposition 3.1.1] in conjunction with Lemma 4.2.1 and positive–
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homogeneity of the derivative (4.2.6), we find

φ(t, x) = φ(0, x) +

∫ 1

0

Dφ(tu, x; t, 0)du

= x+

∫ t

0

Dφ(s, x; t, 0)
1

t
ds

= x+

∫ t

0

Dtφ(s, x)ds

= x+

∫ t

0

F (φ(s, x))ds.

If the vector field F : D → TD is event–selected Cr at every point in the domain D, we
may stitch together the local flows obtained from Theorem 4.2.1 to obtain a global flow.

Corollary 4.2.1. If F ∈ ECr(D), then there exists a unique maximal flow φ ∈ PCr(F, D)
for F . This flow has the following properties:

(a) For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve of F
starting at x.

(b) If s ∈ Fx, then Fφ(s,x) = Fx − s = {t− s : t ∈ Fx}.

(c) For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt → D−t is
a piecewise–Cr homeomorphism with inverse φ−t.

Proof. This follows from a straightforward modification of the analogous Theorem 9.12
in [Lee12] (simply replace all occurrences of the word “smooth” with “PCr”). We reca-
pitulate the argument in Appendix 4.A.

If a vector field is event–selected Cr at every point along an integral curve, the following
Lemma shows that it is actually Cr at all but a finite number of points along the curve.

Lemma 4.2.2. Suppose the vector field F : D → TD is event–selected Cr at every point
along an integral curve ξ : I → D for F over a compact interval I ⊂ R. Then there exists a
finite subset δ ⊂ ξ(I) such that F is Cr on ξ(I) \ δ.

Proof. Let δ ⊂ ξ(I) be the set of points where F fails to be Cr. If |δ| =∞, then since ξ(I)
is compact there exists an accumulation point α ∈ ξ(I). Since F is event–selected Cr at α,
there exists ε > 0 such that F is Cr at every point in the set (Bε(α) ∩ ξ(I)) \ {α}, but this
violates the existence of an accumulation point α ∈ δ. Therefore |δ| <∞.
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Remark 4.2.1. One of the major values of Theorem 4.2.1 lies in the fact that piecewise–
differentiable functions possess a useful but non–classical first–order approximation called
the Bouligand derivative as described in Section 4.1.4. This Bouligand derivative (or B–
derivative) is weaker than the classical (Fréchet) derivative, but significantly stronger than
the directional derivative. The B–derivative of the composition (4.2.5) can be computed by
applying the chain rule [Sch12, Theorem 3.1.1].

4.3 Time–to–Impact and Poincaré Maps

4.3.1 Piecewise–Differentiable Time–to–Impact Map

Theorem 4.3.1. Suppose the vector field F : D → TD is event–selected Cr at ρ ∈ D. If
σ ∈ Cr(U,R) is an event function for F on an open neighborhood ρ ∈ U ⊂ D, then there
exists an open neighborhood ρ ∈ V ⊂ D and piecewise–differentiable function µ ∈ PCr(V,R)
such that

∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ) (4.3.1)

where φ ∈ PCr(F, D) is a flow for F and (0, ρ) ∈ F.

Proof. Theorem 4.2.1 ensures the existence of a flow φ ∈ PCr(F, D) such that F ⊂ R ×D
contains (0, ρ). Let α = σ ◦ φ, and note that there exist open neighborhoods 0 ∈ T ⊂ R,
ρ ∈ W ⊂ D such that α ∈ PCr(T ×W,R). We aim to apply an Implicit Function Theorem
to show that the equation α(s, x) = σ(ρ) has a unique piecewise–differentiable solution
s = µ(x) near (0, ρ).

Specializing Definition 16 in [RS97], a sufficient condition for α to be completely co-
herently oriented with respect to its first argument at (0, ρ) is that the (scalar) derivatives
Dαj(0, ρ; 1, 0) of all essentially active selection functions {αj : j ∈ Ie(α, (0, ρ))} have the same
sign. Lemma 4.2.1 implies the time derivatives of all essentially active selection functions for
φ at (0, ρ) are contained in the collection {Fb(ρ) : b ∈ Bn, Db 6= ∅} where {Fb : b ∈ Bn} are
the Cr vector fields that define F near ρ. Since σ is an event function for F , there exists
f > 0 such that

∀b ∈ Bn : Dσ(ρ)Fb(ρ) ≥ f > 0.

This implies α is completely coherently oriented with respect to time at (0, ρ). Therefore
we may apply Corollary 20 in [RS97] to obtain an open neighborhood 0 ∈ V ⊂ R and a
piecewise–differentiable function µ ∈ PCr(V,R) such that (4.3.1) holds.

Corollary 4.3.1. Suppose the vector field F : D → TD is event–selected Cr at every point
along an integral curve ξ : [0, t] → D for F . If σ ∈ Cr(U,R) is an event function for F on
an open set U ⊂ D containing ξ(t), then there exists an open neighborhood ξ(0) ∈ V ⊂ D
and piecewise–differentiable function µ ∈ PCr(V,R) that satisfies (4.3.1).

Proof. Corollary 4.2.1 ensures the existence of a flow φ ∈ PCr(F, D) such that F ⊂ R×D
contains [0, t] × {ξ(0)}. Let µ̃ ∈ PCr(Ṽ ,R) be the impact time function for σ obtained by
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applying Corollary 4.3.1 at ξ(t) = φ(t, ξ(0)). Then with V =
{
x ∈ D : φ(t, x) ∈ Ṽ

}
, noting

that V is nonempty since ξ(0) ∈ V and open since φ is continuous, the function µ : V → R
defined by µ(x) = t+ µ̃ ◦ φ(t, x) is piecewise–Cr and satisfies (4.3.1).

Theorem 4.3.1 enables us to easily derive a canonical form for the flow near an event–
selected vector field discontinuity.

Corollary 4.3.2. Suppose the vector field F : D → TD is event–selected Cr at ρ ∈ D,
and let φ : F → D be the flow obtained from Theorem 4.2.1. Then there exists a piecewise–
differentiable homeomorphism ψ : V → W between neighborhoods ρ ∈ V ⊂ D, 0 ∈ W ⊂ Rd

such that
∀x ∈ V, t ∈ Fx : ψ ◦ φ(t, x) = ψ(x) + te1

where e1 ∈ Rd is the first standard Euclidean basis vector.

Proof. Let σ ∈ Cr(U,R) be an event function for F on a neighborhood ρ ∈ U ⊂ D that is
linear1. Theorem 4.3.1 implies there exists a piecewise–differentiable time–to–impact map
µ ∈ PCr(V,R) on a neighborhood ρ ∈ V ⊂ D such that

∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ),

i.e. φ(µ(x), x) lies in the codimension–1 subspace Σ = σ−1(σ(ρ)). Define ψ : V → R× Σ by

∀x ∈ V : ψ(x) = (−µ(x), φ(µ(x), x)).

Clearly ψ ∈ PCr(V,R × Σ) and hence ψ is continuous. Furthermore, it is clear that ψ is
injective since (i) πΣψ(x) = πΣψ(y) implies x and y lie along the same integral curve, and
(ii) distinct points along an integral curve pass through Σ at distinct times. It follows from
Brouwer’s Open Mapping Theorem [Bro11a; Hat02] that the image W = ψ(V ) is an open
subset of Rd. This implies ψ is a homeomorphism between V and W . With ι : R×Σ→ R×D
denoting the canonical inclusion, the inverse of ψ ∈ PCr(V,W ) is φ◦ ι|W ∈ PCr(W,V ), thus
ψ is a PCr homeomorphism. Finally, using the semi–group property of the flow φ and the
fact that µ ◦ φ(t, x) = µ(x)− t for all x ∈ V, t ∈ Fx,

∀x ∈ V, t ∈ Fx : ψ ◦ φ(t, x) = (−µ ◦ φ(t, x), φ(µ ◦ φ(t, x), φ(t, x)))

= (t− µ(x), φ(µ(x)− t, φ(t, x)))

= (t− µ(x), φ(µ(x), x))

= ψ(x) + te1.

Thus the flow is conjugate via a piecewise–differentiable homeomorphism to a flowbox [HS74,
§11.2], [Lee12, Theorem 9.22].

1Existence of a linear event function is always guaranteed. For instance, take the linear approximation
at ρ of any nonlinear event function for F
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4.3.2 Piecewise–Differentiable Poincaré Map

Definition 4.3.1. An integral curve γ : R → D is a periodic orbit for the vector field
F : D → TD if there exists t > 0 such that γ(t) = γ(0) and Dtγ(s) 6= 0 for all s ∈ [0, t].
The minimal t > 0 for which γ(t) = γ(0) is referred to as the period of γ, and we say that
γ is a t–periodic orbit for F .

We now apply Theorem 4.3.1 in the important case where the integral curve is a periodic
orbit to construct a piecewise–differentiable Poincaré map. Suppose the vector field F :
D → TD is event–selected Cr at every point along a t–periodic orbit γ for F . Then given
a local section Σ ⊂ D for F that intersects γ at {α} = γ ∩ Σ, Corollary 4.3.1 implies
there exists a piecewise–differentiable impact time function µ ∈ PCr(V,R) defined over an
open neighborhood α ∈ V such that µ(α) = t. With V ∩ Σ, we let ψ : V → Σ be the
piecewise–differentiable map defined by

∀x ∈ V : ψ(x) = φ(µ(x), x). (4.3.2)

Theorem 4.3.2. Suppose the vector field F : D → TD is event–selected Cr at every point
along a periodic orbit γ for F . Then given a local section Σ ⊂ D for F that intersects γ at
{α} = γ∩Σ, there exists an open neighborhood α ∈ V ⊂ D such that the impact map (4.3.2)
restricts to a piecewise–differentiable (Poincaré) map P ∈ PCr(S,Σ) on S = V ∩ Σ.

Proof. Without loss of generality assume γ(0) ∈ Σ. Let T be the period of γ, apply Theo-
rem 4.3.1 to γ|[0,T ] to obtain an open set V ⊂ D containing γ(0) and a piecewise–Cr impact
time map µ ∈ PCr(V,R), and define ψ : V → Σ as in (4.3.2). Then with S = V ∩ Σ, the
restriction P = ψ|S is a piecewise–Cr Poincaré map for γ.

Since the Poincaré map P : S → Σ yielded by Theorem 4.3.2 is piecewise–differentiable,
it admits a first–order approximation (its Bouligand derivative) DP : TS → TΣ that can
be used to assess local exponential stability of the fixed point P (α) = α. This topic will be
investigated in more detail in Section 4.5.1.

4.4 Perturbed Flow

In this section we study how the flow associated with an event–selected Cr vector field varies
under perturbations to both the smooth vector field components and the event functions.

4.4.1 Perturbation of Vector Fields

Suppose F : D → TD is event–selected Cr at ρ ∈ D with respect to the components of
h ∈ Cr(D,Rn). Then by Definition 4.2.2 there exists U ⊂ D containing ρ such that for
each b ∈ Bn either IntDb = ∅ or Db ⊂ U and F |IntDb admits a Cr extension Fb : U →
TU . We note that F is determined on U up to a set of measure zero from h and the
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function F̂ ∈ Cr
(∐

b∈Bn U,
∐

b∈Bn TU
)

defined by F̂ |{b}×U = Fb|U . Note that we regard

Cr
(∐

b∈Bn U,
∐

b∈Bn TU
)

as a vector space under pointwise addition of tangent vectors and
the norm ∥∥∥F̂

∥∥∥
Cr

=
∑

b∈Bn

∥∥∥F̂ |{b}×U
∥∥∥
Cr
. (4.4.1)

Thus in the sequel we consider perturbations to event–selected Cr vector fields in the space
Cr
(∐

b∈Bn U,
∐

b∈Bn TU
)
.

Theorem 4.4.1. Let F ∈ Cr
(∐

b∈Bn D,
∐

b∈Bn TD
)
, h ∈ Cr(D,Rn) determine an event–

selected Cr vector field at ρ ∈ D, r ≥ 2. Then for all ε > 0 there exists δ > 0 such that for
all F̃ ∈ BCr

δ (F ):

(a) pairing h with the perturbed vector field F̃ determines an event–selected Cr vector field
at ρ;

(b) the perturbed flow φ̃ : F̃ → D obtained by applying Theorem 4.2.1 to this perturbed

vector field satisfies φ̃ ∈ BC0

ε (φ) on F̃ ∩ F and (0, ρ) ∈ F̃ ∩ F;

Proof of Theorem 4.4.1. Claim (a) follows directly from from continuity of the Fb’s. We
claim that (b) follows from [Fil88, Theorem 1 in §8 of Chapter 2], which we reproduce as
Theorem 4.B.1 in Appendix 4.B. Given any G ∈ Cr(

∐
b∈Bn D,

∐
b∈Bn TD) for which (G, h)

determines an event–selected Cr vector field, define a set–valued map G : D → 2TD as
follows:

∀x ∈ D : G(x) =
{
G|{b}×D(x) : b ∈ Bn, x ∈ Db

}
. (4.4.2)

It is straightforward to verify that solutions to the differential inclusion ẋ ∈ G(x) coincide
with those of the differential equation ẋ = G(x) since the derivatives of the (absolutely
continuous) solution functions agree almost everywhere. Furthermore, the map G satisfies
Assumption 4.B.1 over the domain of the flow for G. Claim (b) then follows by applying

Theorem 4.B.1 to F determined from F by (4.4.2) and F̃ determined from F̃ ∈ BCr

δ (F )
by (4.4.2).

4.4.2 Perturbation of Event Functions

It is a well–known fact that the solution of n equations in n unknowns generically varies
continuously with variations in the equations. This observation provides a basis for study-
ing structural stability of the flow associated with event–selected Cr vector fields when
there are exactly n = d = dimD event functions, since for a collection of event functions
{hj}dj=1 ⊂ Cr(D,R) whose composite h ∈ Cr(D,Rd) satisfies detDh(ρ) 6= 0, the existence
of a unique intersection point ρ̃ and the set of possible transition sequences undertaken
by nearby trajectories are unaffected by a sufficiently small perturbation h̃ of h. We now
combine this observation with the previous Theorem.
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Theorem 4.4.2. Let F ∈ Cr
(∐

b∈Bn D,
∐

b∈Bn TD
)
, h ∈ Cr(D,Rd) determine an event–

selected Cr vector field at ρ ∈ D and suppose Dh(ρ) is invertible and r ≥ 1. Then for all

ε > 0 sufficiently small there exists δ > 0 such that for all F̃ ∈ BCr

δ (F ), h̃ ∈ BCr

δ (h):

(a) there exists a unique ρ̃ ∈ Bδ(ρ) such that h̃(ρ̃) = 0 and h̃(x) 6= 0 for all x ∈ Bδ(ρ)\{ρ̃};

(b) pairing h̃ with the perturbed vector field F̃ determines an event–selected Cr vector field
at ρ̃;

(c) the perturbed flow yielded by Theorem 4.2.1, φ̃ : F̃ → D, satisfies φ̃ ∈ BC0

ε (φ) on

F̃ ∩ F 6= ∅;

Proof of Theorem 4.4.2. Smooth dependence of the intersection point follows from the Im-
plicit Function Theorem [Zei95, Theorem 4.E] since Cr functions over compact domains com-
prise a Banach space [Hir76, Chapter 2.1]. Specifically, if h ∈ Cr(D,Rn) satisfies h(ρ) = 0
for some ρ ∈ D and Dh(ρ) is invertible2, then there exists α, β > 0 and ρ̃ ∈ Cr(Bα(h), Bβ(ρ))

such that for all h̃ ∈ Bα(h) the point ρ̃(h̃) is the unique zero of h̃ on Bβ(ρ), i.e. h̃(ρ̃(h̃)) = 0

and for all x ∈ Bβ(ρ) \
{
ρ̃(h̃)

}
we have h̃(x) 6= 0. This establishes (a); (b) follows from

continuity.
For any δ′ > 0, we can choose δ > 0 sufficiently small to ensure that F̃ ∈ BCr

δ (F ),

h̃ ∈ BCr

δ (h) implies Dh̃−1 ◦ F̃ ∈ BCr

δ′ (Dh−1 ◦ F ); let F̃ ′ = Dh̃−1 ◦ F̃ , F ′ = Dh−1 ◦ F . With

φ̃′ : F̃′ → Rd, φ′ : F′ → Rd denoting the flows for F̃ ′, F ′, Theorem 4.4.1 implies that δ′ > 0
can be chosen sufficiently small to ensure ϕ̃ ∈ BC0

ε′ (ϕ) for any ε′ > 0. Since φ̃ = h̃ ◦ ϕ̃ ◦ h̃−1,

φ = h ◦ φ ◦ h, we conclude that δ > 0 can be chosen sufficiently small to ensure φ̃ ∈ BC0

ε (φ)

on F̃ ∩ F. This establishes (c).

4.5 Applications

In this section, we apply the theoretical results from Sections 4.2, 4.3, and 4.4 to derive
conditions for stability, optimality, and controllability of rhythmic phenomena in piecewise–
differentiable flows. In the sequel, we will assume given an event–selected Cr vector field F ∈
ECr(D) over an open domain D ⊂ Rd possessing a periodic orbit γ : R→ D. Theorem 4.2.1
and Corollary 4.2.1 together yield a maximal flow φ ∈ PCr(F, D) for F . Theorem 4.3.2 yields
a Poincaré map P ∈ PCr(S,Σ) over any local section Σ ⊂ D that intersects the periodic
orbit at {α} = γ ∩ Σ.

4.5.1 Stability

The Bouligand derivative DP : TS → TΣ of the piecewise–differentiable Poincaré map
P : S → Σ yielded by Theorem 4.3.2 can be used to assess local exponential stability of

2Note that necessarily n = dimD.
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the fixed point P (α) = α, as the following Corollary shows; this generalizes Proposition 3
in [Iva98] to stability of fixed points for arbitrary PCr functions.

Corollary 4.5.1. Suppose P ∈ PCr(S,Σ) has a fixed point P (α) = α and DP is a contrac-
tion over tangent vectors near α, i.e. there exists c ∈ (0, 1), δ > 0, and ‖·‖ : Rd−1×Rd−1 → R
such that

∀x ∈ Bδ(α) ⊂ S ∩ Σ, v ∈ TxΣ : ‖DP (x; v)‖ ≤ c‖v‖.
Then γ is an exponentially stable periodic orbit.

Proof. By the fundamental theorem of calculus [Sch12, Proposition 3.1.1],

∀x, y ∈ Bδ(α) : ‖P (x)− P (y)‖ ≤
∫ 1

0

‖DP (y + s(x− y);x− y)‖ds

≤ c‖x− y‖.

We conclude that P is a contraction over the compact ball Bδ(α), whence its unique fixed
point P (α) = α is exponentially stable [Ban22] [Lee12, Lemma C.35].

Remark 4.5.1. Near α, the Poincaré map P is a continuous selection of a finite collection
of Cr functions, {Pj}j∈J. The maximum of the local Lipschitz constants of these selection
functions provides a Lipschitz constant for P near α [Sch12, Corollary 4.1.1]. Since each
selection function Pj is continuously differentiable, the supremum of the induced norm of its
(Fréchet) derivative provides a local Lipschitz constant for Pj. By shrinking the neighbor-
hood under consideration, continuity implies this supremum can be made arbitrarily close to
the induced norm of the derivative at α. Thus if max{‖DPj(α)‖}j∈J < 1, the contraction
hypothesis of Corollary 4.5.1 is satisfied on a neighborhood of α, whence the Poincaré map
P is a contraction near α. The condition max{‖DPj(α)‖}j∈J < 1 is exactly the hypothesis
for stability in [Iva98, Proposition 3].

4.5.2 Optimality

In this section, we consider the finite–dimensional non–smooth optimization problem

min
z∈Z

J(z) (4.5.1)

where Z ⊂ Rm is open and J ∈ PCr(Z,R). We transcribe several variants of this problem
into the canonical form (4.5.1) before proceeding to discuss a solution strategy.

Suppose that we are given a loss function L ∈ Cr(D,R), whose value we seek to minimize
after following the flow for a specified amount of time. For instance, given t ∈ R we may
wish to solve the problem

min
x∈D

L ◦ φ(t, x).
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Letting J ∈ PCr(Z,R) be defined by J(z) = L ◦ φ(t, z) for all z ∈ Z = D, we obtain the
equivalent problem (4.5.1). Alternately, we may wish to restrict to the Poincaré section Σ
to solve the problem

min
x∈S

L ◦ P (x).

Letting J ∈ PCr(Z,R) be defined by J(z) = L ◦ P (z) for all z ∈ Z = S, we obtain the
equivalent problem (4.5.1). It is also straightforward to: incorporate a cost that accumu-
lates along the state trajectory; include the final time as a decision variable [Pol97, §4.1.2];
optimize over a subset of the state variables; or accommodate parameters (and hence finitely–
parameterized control inputs).

The non–smooth problem in (4.5.1) has been studied extensively, yielding analytical
conditions for optimality [BTZ82; Cha89] and “bundle–method” algorithms [Kiw85; SZ92;
Lem+95] applicable under more general hypotheses than we have imposed in (4.5.1). In par-
ticular, regardless of which problem formulation we adopted above, near any z ∈ Z we may
effectively (if laboriously) enumerate the selection functions {Jj}j∈J for J and compute their

derivatives
{
DkJj : j ∈ J, k ∈ {1, . . . , r}

}
up to order r. Thus in the vernacular of [WF86]

we seek to solve a composite non–smooth problem. This extra structure leads to second–order
algorithms that significantly outperform the more general “bundle–method” [WF86; Fle00].

4.5.3 Controllability

Suppose that the domain D splits as D = X ×Θ where X ⊂ Rm and Θ ⊂ R` are open sets.
Suppose further that with the induced splitting F = (FX , FΘ) : X×Θ→ TX×TΘ we have

∀(x, θ) ∈ X ×Θ : FΘ(x, θ) = 0. (4.5.2)

The interpretation is that θ ∈ Θ is a parameter whose value affects the vector field but is not
itself affected by the continuous–time dynamics. Note that (4.5.2) implies that the induced
splitting γ = (γX , γΘ) : R→ X ×Θ satisfies

∀t ∈ R : γΘ(t) = γΘ(0); (4.5.3)

we let η = γΘ(0) denote the parameter value associated with the periodic orbit γ, and let
(ζ, η) = α.

Suppose now that the parameter may be adjusted whenever the system trajectory passes
through the Poincaré section Σ, and for simplicity assume the section splits as Σ = ΣX ×Θ.
With SX = S ∩ ΣX , we let

P = (PX , PΘ) : SX ×Θ→ ΣX ×Θ (4.5.4)

denote the induced splitting of the Poincaré map; note that (4.5.3) implies that PΘ(x, θ) = θ
for all (x, θ) ∈ SX ×Θ. We may regard PX as defining a discrete–time control system

xi+1 = PX(xi, θi). (4.5.5)
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As in Section 3.6.3, we seek to apply an Implicit Function Theorem to assess deadbeat
controllability of (4.5.5) near the fixed point P (ζ, η) = (ζ, η). Unlike the case considered in
Section 3.6.3, the map PX is non–smooth. However, since PX is piecewise–differentiable, we
may adapt an Implicit Function Theorem due to Scholtes to obtain a sufficient condition for
deadbeat controllability via piecewise–differentiable state feedback.

Corollary 4.5.2. Let PX ∈ PCr(SX × Θ,ΣX) be given in (4.5.4), and let {PX,j}j∈J ⊂
Cr(SX×Θ,ΣX) be selection functions for PX near (ζ, η). If the matrices {DθPX,j(ζ, η) : j ∈ J}
have the same nonvanishing determinant sign and the piecewise–linear equation

DPX(x, θ;u, v)− w = 0 (4.5.6)

has a unique solution v(u,w) for every u ∈ Rm and w ∈ R`, then there exist neighborhoods
ζ ∈ U ⊂ Rm, η ∈ V ⊂ R` and a piecewise–differentiable function ψ ∈ PCr(U, V ) such that

∀x ∈ U : PX(x, ψ(x)) = ζ,

i.e. ψ is a 1–step deadbeat control law for (4.5.5).

Proof. This is a straightforward specialization of [Sch12, Theorem 4.2.3].

Remark 4.5.2. The condition that (4.5.6) have a unique solution is equivalent to the condi-
tion that PX be completely coherently oriented with respect to θ at (ζ, η); see Definition 16
and Theorem 18 in [RS97]. This provides a straightforward (though laborious) computational
procedure to check the hypotheses on this Corollary.

4.6 Discussion

Piecewise–smooth vector fields whose discontinuities are locally confined to a finite col-
lection of local sections generate Lipschitz continuous global flows. These flows possess
a non–classical (Bouligand) derivative that can be used to: assess stability of Poincaré
maps; implement scalable algorithms to solve non–smooth optimization problems; and de-
termine deadbeat controllability near a periodic orbit. This significantly broadens the class
of non–smooth dynamics that can be studied with tractable analytical and computational
techniques. In particular, the tools we derived for stability, optimality, and controllability
are suitable for non–smooth dynamics arising in multi–legged biomechanics [Hol+06] and
neuron populations [Biz+13], and hence provide a foundation for dynamical modeling of
neuromechanical systems.
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4.A Global Piecewise–Differentiable Flow

Lemma 4.A.1 (Translation Lemma). Let D ⊂ Rd be open, F ∈ ECr(D), J ⊂ R be an

interval, and ξ : J → D an integral curve for F . For any b ∈ R, the curve ξ̂ : Ĵ → D defined
by ξ̂(t) = ξ(t+ b) is also an integral curve for F , where Ĵ = {t : t+ b ∈ J}.

Proof. Clearly ξ̂ ∈ PCr(Ĵ , D), whence the fundamental theorem of calculus [Sch12, Propo-

sition 3.1.1] in conjunction with Lemma 4.2.1 implies ξ̂ is an integral curve for F .

Theorem 4.A.1 (Fundamental Theorem on Flows). If F ∈ ECr(D), then there exists a
unique maximal flow φ ∈ PCr(F, D) for F . This flow has the following properties:

(a) For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve of F
starting at x.

(b) If s ∈ Fx, then Fφ(s,x) = Fx − s = {t− s : t ∈ Fx}.

(c) For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt → D−t is
a piecewise–Cr homeomorphism with inverse φ−t.

Proof. This proof is a straightforward adaptation of the proof of Theorem 9.12 in [Lee12].
Theorem 4.2.1 shows that there exists an integral curve for F starting at each point

x ∈ D. Suppose ξ, ξ̃ : J → D are two integral curves for F defined on the same open interval

J such that ξ(t0) = ξ̃(t0) for some t0 ∈ J . Let S =
{
s ∈ J : ξ(s) = ξ̃(s)

}
. Clearly S 6= ∅

since t0 ∈ S, and S is closed in J by continuity of integral curves. On the other hand,
suppose t1 ∈ S. Applying Theorem 4.2.1 near x = ξ(t1), we see that there exists an interval

t1 ∈ I ⊂ R such that ξ|I = ξ̃|I . This implies S is open in J . Since J is connected, S = J ,

which implies ξ|J = ξ̃|J . Thus any two integral curves that agree at one point agree on their
common domain.

For each x ∈ D, let Fx be the union of all domains of integral curves for F originating
at x at time 0. Define φx : Fx → D by letting φx(t) = ξ(t), where ξ is any integral curve
starting at x and defined on an open interval containing 0 and t. Since all such integral
curves agree at t by the argument above, φx is well–defined, and is obviously the unique
maximal integral curve starting at p.

Now let F = {(t, x) ∈ R×D : t ∈ Fx} and define φ : F → D by φ(t, x) = φx(t). We
also write φt(x) = φ(t, x). By definition, φ satisfies property (a) in the statement of the
fundamental theorem: for each x ∈ D, φx is the unique maximal integral curve for F starting
at x. To verify the group laws, fix any x ∈ D and s ∈ Fx, and write y = φ(s, x) = φx(s).
The curve ξ : (Fx− s)→ D defined by ξ(t) = φx(t+ s) starts at y, and Lemma 4.A.1 shows
that ξ is an integral curve for F . Since φ is a function, ξ agrees with φy on their common
domain, which is equivalent to

∀s ∈ Fx, t ∈ Fφ(s,x) : (s+ t ∈ Fx) =⇒ (φ(t, φ(s, x)) = φ(t+ s, x)). (4.A.1)
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The fact that φ(0, x) = x for all x ∈ D is obvious. By maximality of φx, the domain of
ξ cannot be larger than Fy, which means that Fx − s ⊂ Fy. Since 0 ∈ Fx, this implies
−s ∈ Fy, and the group law (4.A.1) implies that φy(−s) = x. Applying the same argument
with (−s, y) in place of (s, x), we find that Fy + s ⊂ Fx, which is the same as Fy ⊂ Fx − s.
This proves (b).

Next we show that F is open in R × D (so it is a flow domain) and that φ : F → D is
PCr. Define a subset W ⊂ F as the set of all (t, x) ∈ F such that φ is defined and PCr on
a product neighborhood of (t, x) of the form J × U ⊂ F, where J ⊂ R is an open interval
containing 0 and t and U ⊂ D is a neighborhood of x. Then W is open in R × D, and
the restriction φ|W ∈ PCr(W,D), so it suffices to show that W = F. Suppose this is not
the case. Then there exists some point (τ, x0) ∈ F \W . For simplicity, assume τ > 0; the
argument for τ < 0 is similar (and can be obtained, for instance, by considering the flow for
−F ).

Let t0 = inf{t ∈ R : (t, x0) 6∈ W} [Lee12, Figure 9.6]. By Theorem 4.2.1, φ is defined and
PCr in some product neighborhood of (0, x0), so t0 > 0. Since t0 ≤ τ and Fx0 is an open
interval containing 0 and τ , it follows that t0 ∈ Fx0 . Let y0 = φx0(t0). By Theorem 4.2.1
again, there exists ε > 0 and a neighborhood U0 of y0 such that (−ε, ε) × U0 ⊂ W . We
will use the group law (4.A.1) to show that φ admits a PCr extension to a neighborhood of
(t0, x0), which contradicts our choice of t0.

Choose some t1 < t0 such that t1 + ε > t0 and φx0(t1) ∈ U0. Since t1 < t0, we have
(t1, x0) ∈ W , so there is a product neighborhood (t1−δ, t1 +δ)×U1 ⊂ W for some δ > 0. By
definition of W , this implies φ is defined and PCr on [0, t1 + δ)×U1. Because φ(t1, x0) ∈ U0,

we can choose U1 small enough that φ maps {t1}×U1 into U0. Define φ̃ : [0, t1 +ε)×U1 → D
by

∀(t, x) ∈ [0, t1 + ε)× U1 : φ̃(t, x) =

{
φt(x), x ∈ U1, 0 ≤ t < t1,
φt−t1 ◦ φt1(x), x ∈ U1, t1 − ε < t < t1 + ε.

The group law for φ guarantees that these definitions agree where they overlap, and our
choices of U1, t1, and ε ensure that this defines a PCr map. By Lemma 4.A.1, each map
t 7→ φ̃(t, p) is an integral curve of F , so φ̃ is a PCr extension of φ to a neighborhood of
(t0, x0), contradicting our choice of t0. This completes the proof that W = F.

Finally, we prove (c). The fact that Dt is open is an immediate consequence of the fact
that F is open. From part (b) we deduce that

x ∈ Dt =⇒ t ∈ Fx =⇒ Fφt(x) = Fx − t
=⇒ −t ∈ Fφt(x) =⇒ φt(x) ∈ D−t,

which shows that φt maps Dt to D−t. Moreover, the group laws then show that φ−t ◦ φt is
equal to the identity on Dt. Reversing the roles of t and −t shows that φt◦φ−t is the identity
on D−t, which completes the proof.
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4.B Perturbation of Differential Inclusions

In the proof of the perturbation results of Section 4.4, we relied on a result due to Filippov.
For completeness, we reproduce the statement of the result we required, and clarify some
vague points in the statement.

Assumption 4.B.1 ([Fil88, Chapter 2, §8, Theorem 1]). In the domain F a set–valued
function F (t, x) satisfies the basic conditions if for all (t, x) ∈ F the set F (t, x) is nonempty,
bounded, and closed, convex, and the function F is upper semicontinuous in t, x.

Here, F is understood to be a subset of R× Rd, and F is upper semicontinuous as a multi-
function F : F → 2Rd [Cla90, §2.1].

Theorem 4.B.1 ([Fil88, Chapter 2, §8, Theorem 1]). Let F (t, x) satisfy Assumption 4.B.1
in the open domain F; t0 ∈ [a, b], (t0, x0) ∈ F; let all the solutions of the problem

ẋ ∈ F (t, x), x(t0) = x0 (4.B.1)

exist for all t ∈ [a, b] and their graphs lie in F.
Then for any ε > 0 there exists a δ > 0 such that for any t∗0 ∈ [a, b], x∗0 and F ∗(t, x)

satisfying the conditions

|t∗0 − t0| ≤ δ, |x∗0 − x0| ≤ δ, dF(F ∗, F ) ≤ δ

and Assumption 4.B.1, each solution of the problem

ẋ∗ ∈ F ∗(t, x∗), x∗(t∗0) = x∗0 (4.B.2)

exists for all t ∈ [a, b] and differs from some solution of (4.B.1) by not more than ε.

Here, a “solution of the problem (4.B.1)” on the interval [a, b] ⊂ R is an absolutely continuous
function y : [a, b]→ Rd [Fol99, pg. 105]; its “graph lies in F” if {(t, y(t)) : t ∈ [a, b]} ⊂ F.
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Chapter 5

Conclusion and Future Directions

This thesis contributes intrinsic techniques for state space metrization and numerical sim-
ulation (Chapter 2), reduction and smoothing (Chapter 3), and first–order approximation
(Chapter 4) of the non–smooth flow yielded by hybrid dynamical models for periodic gaits.
In each context, we sought generic structures that do not vanish under perturbation. Though
tailored to the dynamics of legged locomotion, the tools we derived are not restricted to this
setting, and hence may find fruitful application in the study of rhythmic hybrid phenomena
arising in electrical circuits [SD81], robotic manipulation [Bue+94], power systems [HR07],
biochemistry [GP78], biology [MS90], or neuroscience [Biz+13].

We contend that, taken together, these contributions provide the essential elements of a
hybrid dynamical systems theory for legged locomotion. First, they closely parallel results
available in the classical (smooth) dynamical systems theory: we generalized simulation and
linearization techniques from the classical to the hybrid setting while preserving convergence
and approximation properties. Second, they sharply divide hybrid from classical dynamical
systems theory: whereas we demonstrated that hybrid models of periodic gaits undergoing
isolated footfall transitions generically reduce to a classical system, we showed that no such
reduction is possible when two or more limbs can touch down nearly simultaneously. Third,
they yield foundational tools upon which we expect to construct a more elaborate edifice.
We devote the remainder of this chapter to our plans for contributing to the goal, outlined
in the Introduction, of establishing a systems theory for sensorimotor control.
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5.1 Towards Sensorimotor Control Theory

In this thesis, we contributed fundamental elements of a dynamical systems theory for rhyth-
mic locomotion (and hence, by a change–of–coordinates, manipulation [JK13a]). This pro-
vides a foundation upon which a systems–level theory for sensorimotor control may be built.
However, substantial work remains to establish the unified analytical, computational, and
experimental framework described in the Introduction. Here we propose possible extensions
in support of this vision.

Analytical elements: intrinsically self–consistent techniques for dynamical modeling.
Classical notions of observability for linear [Kal59] and nonlinear [Son84] control
systems are tacitly built upon the topological and metric properties of Euclidean
space; thus the intrinsic state space metric we introduced in Section 2.2 provides
the possibility of obtaining observability criteria in general hybrid control systems.
Qualitative approximation for piecewise–differentiable maps [KS95] may enable gen-
eralization of the route to model reduction explored in Sections 3.3 and 3.4 to the
non–smooth flow constructed in Section 4.2. Necessary and sufficient conditions for
optimality in the calculus of variations rely on a first–order variation of the flow;
thus the Bouligand derivative of our piecewise–differentiable flow could support a
tractable specialization of the general maximum principle [Sus99] to our setting.

Computational elements: tractable algorithms for studying models on a computer.
The approximate deadbeat control architecture in Section 3.6.3 provides a method
to stabilize hybrid oscillators at a superexponential rate and only requires inverting a
(linearized controllability) matrix [O’R81]; this computationally–tractable technique
could be used for instance to stabilize hybrid zero dynamics subsystems [Gri+02;
Wes+03]. Scalable algorithms for optimal control of constrained nonlinear sys-
tems utilize finite–dimensional approximations that rely on uniformly convergent
numerical simulations [Pol97, Chapter 4], thus the (uniformly convergent) simula-
tion algorithm we derived in Section 2.3 may support generalization of the consistent
approximations framework [Pol97] to the hybrid setting.

Experimental elements: practical procedures for transforming between models and data.
Generalizing classical parameter identification algorithms [Lju99] to hybrid models
for locomotion is challenging due to seemingly unavoidable discrete decision vari-
ables that assign observations to hybrid modes. To avoid this discrete subprob-
lem, it is possible to formulate an equivalent estimation problem for the smooth
subsystem that generically arises near periodic orbits [Bur+12]. Preliminary re-
sults indicate this approach can be used to probe perturbation recovery in running
cockroaches [Bur+13b]. Generalizations to inverse modeling within subclasses of
hybrid models based on recent advances in machine learning [Elh+12] are doomed
to succeed in simulation [Bur+14; Elh+14]; the practical relevance of this approach
must to be validated experimentally, e.g. for turning control in minimally–actuated
robots [Hoo+10].
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5.2 Frontiers in Robotics, Neuromechanics, & Rehab

In parallel with the effort to derive elements of a systems theory for sensorimotor control
described in the previous section, we also plan to pursue the complementary aim of ob-
taining advancements within individual disciplines using existing techniques. Conducting
these studies in a nascent systems framework lends support for the systems approach while
exposing critical foci for subsequent efforts at abstraction and generalization.

5.2.1 Dynamic and Dexterous Robotics

Robots succeed in structured and sterile environments. Hand–tuning can achieve spectac-
ular maneuvers executed in open–loop [Mon+12; JK13b], but these behaviors are sensitive
to the experimental preparation. If artifacts are to accomplish useful tasks outside the labo-
ratory, we must develop systematic techniques for synthesizing new behaviors and adapting
mechanical designs.

Synthesis of dynamic multi–legged maneuvers

Were the dynamics of legged locomotion smooth as a function of state, then receding–horizon
model predictive control provides an effective approach to maneuver synthesis [Gar+89].
This approach generalizes to fixed footfall sequences [Mom+05], but is intractable for multi–
legged maneuvers due to the combinatorial explosion of the set of possible footfall sequences.
Enumerating footfall sequences may be unavoidable when the flow has discontinuities arising
from rigid collision mechanics [Rem+10]. Focusing instead on models that yield a piecewise–
differentiable flow as in Chapter 4 provides the opportunity to apply scalable non–smooth
optimization algorithms to search directly over the intrinsic hybrid state space of Chap-
ter 2 while avoiding the combinatorial footfall sequence subproblem. Preliminary evidence
suggests this approach synthesizes higher jumps for a vertical hopper [Bur+14] than that
achievable with a simple sinusoid [Agu+12].

Data–driven improvements to mechanical design

Facilitated by the rise of rapid prototyping techniques [Cha+02; Woo+08; Mut+14] and
commercial interest [Rai+08], a menagerie of legged robots have been built in recent years
that achieve unprecedented levels of mobility. Proposing modifications to the mechanical
design of an existing robot that improves locomotion performance (as measured by speed,
specific resistance [GK51], or mean time–to–failure [BT09]) remains an art that relies largely
on laborious mechanical prototyping. Analytical and computational models can provide
qualitative [Hoo+10] and quantitative [Zha+13] insights for robot design. Tailoring these
models to the physical system through parameter identification [Bur+12] and inverse mod-
eling [Elh+14] techniques may improve the fidelity of their predictions, allowing roboticists
to implement only the most promising mechanical revisions devised in simulation.
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5.2.2 Principles of Neuromechanical Sensorimotor Control

Neural and mechanical feedback in perturbation recovery

Although the nervous system effects exquisite control over the body, experiments with de-
cerebrate cats that walk [She10; Bro11b] and cockroaches that reject large perturbations
extremely rapidly [JF02] indicate that neural feedback is not solely responsible for produc-
ing stable gaits. Perturbing the sensorimotor loop can reveal mechanisms contributing to
the observed closed–loop behavior [Rot+14]. One such study concludes that neural feedback
in cockroaches occurs at a significant delay—one to two strides—following a large lateral
perturbation [Moo+10; Rev+13]. Associating mechanical models to experimental data en-
ables systematic characterization of the role played by neural and mechanical feedback in
perturbation recovery [Bur+13b].

Modeling humans embedded amid automation

Human interaction with the physical world is increasingly mediated by automation. Factory
workers facilitate and monitor repetitive or intricate manufacturing tasks to ensure process
safety and product quality. Captains of air and watercraft oversee autopilot systems and
intervene to compensate for unexpected equipment failures or environmental disturbances.
Doctors perform minimally–invasive surgeries via compact but high–precision endoscopic
robots. Drivers rely on lanekeeping assistance and automated braking during highway driv-
ing, with the prospect of vehicles that drive themselves (at least until the first snowfall) on
the immediate horizon. The proliferation of these semiautonomous systems raises critical
concerns regarding safety and reliability of the closed–loop behavior, as little is known about
the effect of such intermediaries on the behavior of the coupled human/automation system.

5.2.3 Automated Tools for Diagnosis and Rehabilitation

Despite steady progress in closely–related engineering and science disciplines, the quanti-
tative diagnostic and rehabilitative tools available to physiatrists remain primitive. There
are many challenges involved in translating engineering methods and scientific insights into
clinical practice, not least of which is the daunting task of integrating findings from disparate
fields into a unified framework tailored to a class of patients. Considering that the overarch-
ing goal of physiatry is to restore functionality while respecting the constraints imposed by
a patient’s trauma or disease, the systems approach provides a natural framework to achieve
this integration. Focusing on the design and control of prostheses, exoskeletons, and other
assistive devices, a need arises for dynamical behavior synthesis and data–driven design of
assistive devices, as well as an understanding of the mechanisms governing neuromechani-
cal perturbation recovery and the closed–loop dynamics of humans interacting with semi–
autonomous artifacts. These advances must ultimately be integrated with real–time and
adaptive brain–machine interfaces and low–power sensor networks distributed throughout
the body and environment.
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5.3 Interdisciplinary Collaboration and Training

The contributions of this thesis were motivated and influenced to a significant degree by
experimental biomechanics. Although it is possible to construct artifacts (by means of
stiff materials, reinforced joints, and a willful neglect of damage to motor gearboxes) whose
behavior exhibits the extreme sensitivity with respect to initial conditions inherent in models
of rigid impact, this sensitivity is not typically observed in nature’s locomotors. Thus we
sought intrinsically self–consistent modeling techniques that preclude such pathologies. And
although locomotion arises at the bewilderingly complex interface of aero–, hydro–, and
terra–dynamics, strikingly simple behaviors consistently emerge across scale, material, and
morphology. This lead us to eschew dichotomies that divide the perception → action loop
(Figure 1.2) and focus instead on emergent phenomena in closed–loop systems.

This collaborative interdisciplinary approach must be deliberately cultivated. Science is
a sociological phenomenon [Kuh70], hence crossing the disciplinary divide requires shared
conceptual frameworks and cross–disciplinary training. We envision a hierarchical progres-
sion [And72] where advancements in robotics, neuromechanics, and rehabilitation merge in a
systems–level study of sensorimotor control. This approach addresses the challenge inherent
in disciplinary integration [Nis+07; Sch+09] while facilitating synergistic cross–pollination of
methods and mechanisms [Mil+12; Cow+14]. The additional effort required will be justified
by the benefits conferred to each discipline’s individual practitioners.

The closest analogue for our aim is the integration of synthetic [BS05; HC10] and sys-
tems [Kit02b; Hoo+04] biology. Although these remain distinct fields, they traffic largely
in the same physical media: biological molecules, cells, and tissues. In contrast, the natural
and artificial building blocks of sensorimotor control are fundamentally different [Vog98];
exceptions notwithstanding [Cha+02; Woo+08; Mut+14], animals and robots make use of
fundamentally different materials, sensors, actuators, and processors. This gap is particularly
challenging to bridge pedagogically, where a significant portion of a practitioner’s expertise
is simply not applicable in other disciplines. Since systems–level insights necessarily abstract
away from the detailed physics giving rise to a phenomena of interest, they provide a natural
medium through which advancements in one domain may be directly translated to another.
Thus we envision the systems approach comprising a core component of training for the next
generation of engineers, scientists, and clinicians working at the disciplinary interface.
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