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EPIGRAPH

Tommy: Did you hear I finally graduated?

Richard Hayden: Yeah, and just a shade under a decade too. All right.

Tommy: You know a lot of people go to college for seven years.

Richard Hayden: I know, they’re called doctors.

Tommy Boy

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 The Trajectory Learning Problem . . . . . . . . . . . . . . . . . . . . . 4
2.2 Existing Trajectory Learning Approaches . . . . . . . . . . . . . . . . 5

2.2.1 Flow Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Trajectory Clustering . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Co-Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 Collecting Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Questions to Address . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Background Modeling for Motion Detection . . . . . . . . . . . . . . . 13
3.3 Multi-Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Dynamics Modeling . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Appearance Modeling . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Tracking Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 4 Learning Trajectory Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Questions to Address . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Hierarchical Activity Decomposition . . . . . . . . . . . . . . . . . . . 22
4.3 Trajectory Learning Framework . . . . . . . . . . . . . . . . . . . . . . 24

vi



4.4 Goal Level Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Points of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.2 POI-Based Filtering of Tracks . . . . . . . . . . . . . . . . . . . 27

4.5 Spatial Level Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.1 Trajectory Clustering . . . . . . . . . . . . . . . . . . . . . . . 28
4.5.2 Cluster Validation . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Dynamic-Temporal Level Learning . . . . . . . . . . . . . . . . . . . . 32
4.6.1 Activity HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Activity HMM Training . . . . . . . . . . . . . . . . . . . . . . 33
4.6.3 Updating Activities . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Activity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7.1 Trajectory Summarization . . . . . . . . . . . . . . . . . . . . . 35
4.7.2 Online Tracking Analysis . . . . . . . . . . . . . . . . . . . . . 37

4.8 Experimental Studies and Analysis . . . . . . . . . . . . . . . . . . . . 40
4.8.1 Quality of Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8.2 Trajectory Classification . . . . . . . . . . . . . . . . . . . . . . 42
4.8.3 Abnormal Trajectories . . . . . . . . . . . . . . . . . . . . . . . 42
4.8.4 Tracking Classification . . . . . . . . . . . . . . . . . . . . . . . 42
4.8.5 Tracking Prediction . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8.6 Abnormalities During Tracking . . . . . . . . . . . . . . . . . . 44
4.8.7 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 5 Monitoring Highway Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Questions to Address . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Vehicle Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Vehicle Features . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Track Based Classification Refinement . . . . . . . . . . . . . . 55

5.4 Highway Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 Traffic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 Utilization and Efficiency . . . . . . . . . . . . . . . . . . . . . 59
5.4.3 Daily Speed Profile . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.1 Vehicle Classification . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Flow Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Trajectory Pattern Analysis . . . . . . . . . . . . . . . . . . . . 71

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 6 Wide-Area Contextual Awareness . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Questions to Address . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 System Description, Framework and Functionalities . . . . . . . . . . . 77
6.3 Information Archival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Data Collection and Sensors . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Learning and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.1 Object Classification . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5.2 Traffic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



6.5.3 Trajectory Learning . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.6.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.2 Geo-Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.3 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6.4 Online/Mobile Access . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Wide Area Activity Analysis . . . . . . . . . . . . . . . . . . . . . . . 85
6.8 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 7 Automobile Surround Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Questions to Address . . . . . . . . . . . . . . . . . . . . . . . . 90
7.1.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Vehicle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 LISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Trajectory Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.1 Special Considerations for Vehicle Surround . . . . . . . . . . . 97
7.4.2 Learning Modifications . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5.1 Examining Rear Trajectories . . . . . . . . . . . . . . . . . . . 99
7.5.2 Examining Front Trajectories . . . . . . . . . . . . . . . . . . . 101

7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix A Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1.1 I5SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.1.2 I5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.1.3 CROSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.1.4 LABOMNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix B Comparison of Trajectory Clustering Techniques . . . . . . . . . . . . . . . 109
B.1 Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.1.2 HU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.1.3 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.1.4 DTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.1.5 LCSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.1.6 PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.1.7 Modified Hausdorff . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.2 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2.1 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.2 Agglomerative . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.3 Divisive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.4 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.5 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2.6 Spectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



B.3 Clustering Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.3.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.3.3 Gaussian Kernel Evaluation . . . . . . . . . . . . . . . . . . . . 117
B.3.4 Clustering Method Evaluation . . . . . . . . . . . . . . . . . . 117
B.3.5 Distance Measure Evaluation . . . . . . . . . . . . . . . . . . . 117
B.3.6 Dataset Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



LIST OF FIGURES

Figure 2.1: Block Diagram of Trajectory Based Video Monitoring . . . . . . . . . . . . . 5

Figure 3.1: Tracking Through Short Occlusion . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3.2: Broken Trajectories Due to Occlusion . . . . . . . . . . . . . . . . . . . . . . 18

Figure 4.1: Hierarchy for Activity Understanding . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4.2: General Framework for Trajectory Analysis . . . . . . . . . . . . . . . . . . . 24
Figure 4.3: Three Staged Learning Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 4.4: Interesting Image Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4.5: Spectral Clustering Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4.6: Route Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4.7: Activity HMM Encoding Spatio-Temporal Dynamics . . . . . . . . . . . . . . 33
Figure 4.8: MLLR Update of Activity Models . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4.9: Abnormality Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 4.10: Abnormal Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 4.11: Activity Prediction in U-Turn . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 4.12: Online Unusual Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.13: Activity Analysis Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 4.14: Interstate 5 (I5) experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.15: OMNI1 Experiements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 4.16: OMNI2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 4.17: OMNI Abnormal Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.18: Abnormality ROC Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 4.19: TSC Cluster Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.1: Vehicle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 5.2: Vehicle Classification Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 5.3: Classification Improvement from Tracking . . . . . . . . . . . . . . . . . . . . 56
Figure 5.4: I5 Aggregate Traffic Measurements . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 5.5: I5 Lane-Level Traffic Measurements . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.6: Vehicle-Based Traffic Measurements . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.7: Highway Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 5.8: Daily Speed Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 5.9: Speed Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 5.10: Different Directional Speed Profiles . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 5.11: Visual Variance in a Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 5.12: Nearest Neighbor Performance for different k . . . . . . . . . . . . . . . . . . 67
Figure 5.13: Confidence Sampled Vehicle Type Classification Accuracy . . . . . . . . . . . 69
Figure 5.14: Example of Track-Based Classification Improvement . . . . . . . . . . . . . . 70
Figure 5.15: Example of Shadows Corrupting Classification . . . . . . . . . . . . . . . . . 70
Figure 5.16: Camera and Loop Sensor Configuration . . . . . . . . . . . . . . . . . . . . . 71
Figure 5.17: Flow Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 5.18: Flow Comparison between VECTOR and PeMS . . . . . . . . . . . . . . . . 73
Figure 5.19: Speed Comparison between VECTOR and PeMS . . . . . . . . . . . . . . . . 73
Figure 5.20: Highway I5 Trajectory Pattern Analysis . . . . . . . . . . . . . . . . . . . . . 74
Figure 5.21: Highway I5 Abnormalities Images . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 6.1: CANVAS Monitoring Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 6.2: UCSD Campus Video Network . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



Figure 6.3: CANVAS Visualization Page . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 6.4: Video/GPS Calibration and Geo-Registration . . . . . . . . . . . . . . . . . . 84
Figure 6.5: Enhanced Situational Awareness with Infrastructure . . . . . . . . . . . . . . 86
Figure 6.6: Mobile Device Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 6.7: Automotive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 7.1: Critical Areas of Vehicle Surround . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 7.2: LISA Video Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 7.3: Lane change maneuver. Notice the turn indicator before the lane change and

the lane line as the change occurs. . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 7.4: RADAR Surround Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 7.5: SWA Trajectory Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 7.6: ACC Trajectory Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure A.1: Trajectory Clustering Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure B.1: Gaussian Kernel Cluster Quality . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure B.2: Clustering Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure B.3: Average performance for the different similarity measures for each dataset. . 119
Figure B.4: Comparison of Datasets with Different Speed Profiles . . . . . . . . . . . . . 120

xi



LIST OF TABLES

Table 2.1: Exemplary Flow Quantization Activity Modeling Techniques . . . . . . . . . . 6
Table 2.2: Exemplary Trajectory Clustering Activity Modeling Techniques . . . . . . . . 8
Table 2.3: Exemplary Co-Occurrence Activity Modeling Techniques . . . . . . . . . . . . 10

Table 4.1: Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 4.2: Trajectory Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 4.3: Live Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 4.4: Trajectory Analysis Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.1: Selected Studies in Video Based Vehicle Classification . . . . . . . . . . . . . 52
Table 5.2: Image and Measurement Based Classification Rates % . . . . . . . . . . . . . 55
Table 5.3: Percentage Accuracy for Hourly Test Clips . . . . . . . . . . . . . . . . . . . . 64
Table 5.4: 24 Hour Vehicle Classification Confusion Matrix . . . . . . . . . . . . . . . . . 65
Table 5.5: Vehicle Classification Confusion Matrix for Best Performing Hour . . . . . . . 65
Table 5.6: Comparison of Nearest Neighbor Classifier Variants . . . . . . . . . . . . . . . 66
Table 5.7: Tracking Refinement Compared with Best Match . . . . . . . . . . . . . . . . 68
Table 5.8: I5 Lane Classification Rate % . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table A.1: Experimental Dataset Characterization . . . . . . . . . . . . . . . . . . . . . . 108

Table B.1: Trajectory Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table B.2: Clustering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table B.3: Best Clustering Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xii



ACKNOWLEDGEMENTS

Coming to UCSD has been one of the most amazing experiences in my life. When I

started graduate school I was not sure what I wanted to do, just that I was not ready to go to

work for the rest of my life. I never could have imagined how fulfilling and rewarding the process

would be.

Over the course of my graduate work I have come across so many fantastic people that

have helped shape my life. There is no way I could single out every one and it is impossible for

me to articulate my gratitude and how much each person has affected me on this PhD journey.

I am a forgetful person and will leave out many who deserve much credit (and after seven years

there are a great many) but this is for everyone who stood by me.

In particular, I want to extend a heartfelt thanks to my respected committee. Dr.

Belongie, Dr. Vasconcelos, and Dr. Kreutz-Delgado thank you for keeping an open door and

a critical ear. Your questions and guidance have significantly contributed to this work. Dr.

Karbhari receives special distinction for remaining on my committee even after moving thousands

of miles across the country to bigger and better things. Finally, my advisor Dr. Mohan Trivedi

has stood by me these last seven years as my greatest advocate and champion. I can finally

appreciate your decision to let me find my own interest and motivation. Your enthusiasm and

expectation of excellence is infectious. The moment I went to sleep then woke up thinking about

research, I got it.

I will be forever grateful for all my San Diego, Berkeley, and San Jose friends. You are

the ones who help keep me grounded and maintain my sanity. In particular, I am indebted to

the House members. Through Sorrento Valley to Brassica, you have been there for me all these

years, providing both technical and emotional support. I rely on you to keep me connected, and

this is one group I am sure I will not forget.

Most importantly, I want to thank my family for patiently waiting for me to finish. It

might have seemed like I was just enjoying the sun and the beach but we finally have a doctor

in the family. This dissertation is for my parents who have always remained proud of all my

decision and allowed me the freedom to pursue academics without hesitation. I can never repay

all the love and support you have shown over the years. I hope you know this could never have

happened without you.

Chapter 2 is in part a reprint of material that appears in the IEEE Transactions on

Circuits and Systems for Video Technology, 2008, by Brendan T. Morris and Mohan M. Trivedi.

The dissertation author was the primary investigator and author of this paper.

Chapter 3 is in part a reprint of material that appears in the IEEE Transactions on

Intelligent Transportation Systems, 2008, by Brendan T. Morris and Mohan M. Trivedi. The

dissertation author was the primary investigator and author of this paper.

Chapter 4 is in part a reprint of material in submission to the IEEE Transactions on

xiii



Pattern Analysis and Machine Intelligence, 2010, and material that appears in the Proceedings of

the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2009,

the Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2008,

and the Proceedings of the IEEE International Conference on Advanced Video and Signal based

Surveillance (AVSS), 2008, all by Brendan T. Morris and Mohan M. Trivedi. The dissertation

author was the primary investigator and author of these papers.

Chapter 5 is in part a reprint of material that appears in the IEEE Transactions on

Intelligent Transportation Systems, 2008, the Proceedings of the IEEE International Conference

on Intelligent Transportation Systems (ITSC), 2007, the Proceedings of the IEEE International

Conference on Advanced Video and Signal based Surveillance (AVSS), 2006, the Proceedings of

ITSC, 2006, all by Brendan T. Morris and Mohan M. Trivedi. The dissertation author was the

primary investigator and author of this paper.

Chapter 6 is in part a reprint of material that will appear in the IEEE Intelligent Systems

Magazine, 2010, by Brendan T. Morris and Mohan M. Trivedi. The dissertation author was the

primary investigator and author of these papers.

Chapter 7 is in part a reprint of material that appears in the Proceedings of the IEEE

International Conference on Vehicular Electronics and Safety (ICVES), 2009, by Brendan T.

Morris and Mohan M. Trivedi. The dissertation author was the primary investigator and author

of this paper.

Appendix B is a reprint of material that appears in the Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2009, by Brendan Morris and Mohan Trivedi.

The dissertation author was the primary investigator and author of these papers.

xiv



VITA

2002 B. S. in Electrical Engineering and Computer Science
with honors, University of California, Berkeley

2006 M. S. in Electrical and Computer Engineering,
University of California, San Diego

2010 Ph. D. in Electrical and Computer Engineering,
University of California, San Diego

PUBLICATIONS

B. Morris and M. Trivedi, “Robust classification and tracking of vehicles in traffic video streams,”
in Proc. IEEE Conf. Intell. Transport. Syst., Toronto, Canada, Sep. 2006, pp. 1078–1083.

B. Morris and M. Trivedi, “Improved vehicle classification in long traffic video by cooperating
tracker and classifier modules,” in Proc. IEEE Inter. Conf. on Advanced Video and Signal based
Surveillance, Sydney, Australia, Nov. 2006, pp. 9–14.

B. Morris and M. Trivedi, “Real-time video based highway traffic measurement and performance
monitoring,” in Proc. IEEE Conf. Intell. Transport. Syst., Seattle, Washington, Sep. 2007, pp.
59–64.

B. T. Morris and M. M. Trivedi, “A survey of vision-based trajectory learning and analysis for
surveillance,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 8, pp. 1114–1127, Aug.
2008, Special Issue on Video Surveillance.

B. T. Morris and M. M. Trivedi, “Learning, modeling, and classification of vehicle track patterns
from live video,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 3, pp. 425–437, Sep. 2008.

B. Morris and M. Trivedi, “Learning and classification of trajectories in dynamic scenes: A
general framework for live video analysis,” in Proc. IEEE Inter. Conf. on Advanced Video and
Signal based Surveillance, Santa Fe, New Mexico, Sep. 2008, pp. 154–161.

B. Morris and M. Trivedi, “An adaptive scene description for activity analysis in surveillance
video,” in Proc. IEEE Inter. Conf. on Pattern Recog., Tampa, Florida, Dec. 2008.

B. Morris and M. Trivedi, “Learning trajectory patterns by clustering:experimental studies and
comparative evaluation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Mi-
ami, Florida, jun 2009, pp. 312–319.

B. T. Morris and M. M. Trivedi, “Contextual activity visualization from long-term video obser-
vations,” IEEE Intell. Syst., to be published.

B. T. Morris and M. M. Trivedi, “Unsupervised multilevel trajectory learning for long-term
adaptive activity understanding,” IEEE Trans. Pattern Anal. Mach. Intell., 2010, in review.

xv



ABSTRACT OF THE DISSERTATION

Understanding Activity from Trajectory Patterns

by

Brendan Tran Morris

Doctor of Philosophy in Electrical and Computer Engineering

University of California, San Diego, 2010

Professor Mohan Trivedi, Chair

A fundamental goal of Computer Vision is to provide scene understanding and situational

awareness. In order to deliver on this promise, traditional monitoring systems were designed

for specific environmental situations, such as a specific time, place, or activity scenario. A

well versed expert defines the events of interest by hand for the particular application. While

effective, these techniques do not scale well, they typically have poor generalization, are inflexible

to behavioral changes, and the analysis rules may not reflect the true nature of the scene but

a priori expectations. The conventional methods to understand activities must be scaled to

match growing need. Society’s rapid acceptance of video use in a wide variety of locations and

applications has promoted the deployment of large camera networks. These networks monitor

complex scenes and deliver volumes of video data that can not be digested without automated

assistance.

This dissertation investigates unsupervised activity understanding by analyzing patterns

of motion trajectories. A practical approach is introduced and carefully developed to overcome

the difficulties with trajectory learning, namely the definition of a simple activity model that can

be robustly inferred from crude measurements, the automatic determination of the number of

typical activities in a scene, and methods to observe dynamic scenes over long periods. The activ-

ity analysis framework is able to process and analyze activity, providing activity characterization,

prediction, and abnormality detection, in real-time for real world utility.

The efficacy of the trajectory learning framework is demonstrated in three distinct arenas.
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Highway traffic is monitored using a single camera with the VECTOR system, multiple sensors

are integrated and combined in a unified space with CANVAS, and driving maneuvers analyzed

from within a moving automobile. This extension of the trajectory learning paradigm to a

broad range of (untouched) application spaces further highlights the dissertation contributions.

Finally, extensive performance evaluation and characterization is conducted to provide a missing

benchmark for the field.
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Chapter 1

Introduction

A fundamental goal of Computer Vision is to provide understanding of activities. Tradi-

tionally, monitoring systems were designed for specific environmental situations, such as a specific

time, place, or activity scenario. The knowledge structures used for analysis were designed by

hand by a well versed expert who defined the events of interest for the particular application.

While effective, it is prohibitive to completely specify everything of interest. The rules may be

difficult to develop and have poor generalization and be inflexible to behavioral changes. Finally,

as applications become more complex, the design of rule-based systems might not be sufficient

because they may not provide a realistic portrayal of behavior. The activity definitions might

not actually reflect the true nature of behavior but a priori expectations.

The conventional methods to understand activities must be scaled to fit today’s growing

needs. Society is rapidly accepting the use of cameras in a wide variety of locations and ap-

plications. The dramatic decrease in cost for quality video equipment coupled with the ease of

transmitting and storing video data has led to widespread use of vision based analysis systems.

Cameras are in continuous use all around, along highways to monitor traffic, for security of air-

ports and other public places, and even in our homes. Large networks of cameras monitoring

complex scenes stream loads of data on a daily basis. This data must be analyzed quickly for real

comprehension. The sheer volume of this video data impedes accurate human analysis. Moni-

toring for interesting events, which rarely occur, is a tedious and tiring job which necessitates

computer vision solutions to help automate the process and assist operators.

To this end, intelligent cameras are desired. Cameras that through observation, can

automatically build an internal description of a the scene. The camera’s memory (historical

observations) allows the it to learn and predict what is interesting or important (activities and

predict future behaviors). And for long term use, the cameras should be adaptable to changes,

whether environmental or behavioral.

Although automatically understanding activity is a very challenging problem with a large

1
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space of possible activities each defined differently for different scenes, for different objects, and by

the specific monitoring requirements, learning from trajectory patterns provides a method imbue

intelligence to cameras in an unsupervised manner. My observing motion patterns over time

it is possible to extract the underlying activity processes that generate object trajectories. By

relying on experience, as opposed to complex models, activities can be generally described. Once

activities are learned then the behaviors of every scene agent can be understood for description

and summarization, prediction, and in order to detect unusual occurrences.

1.1 Challenges

There are many challenges for real world implementation of trajectory based activity

analysis. The main difficulties encountered in activity analysis from trajectory patterns are the

following:

• Difficulties with detection and tracking lead to broken and incomplete trajectories.

• There is wide variation among different scenes due to types of objects observed and activity

complexity.

• Understanding over long time periods presents non-stationary activity processes.

• For maximum utility, activity analysis must occur in real-time on any camera setup with

little supervision and minimal constraints.

These challenges provide opportunities for engineering solutions for practical application.

1.2 Contributions

This dissertation introduces an analysis framework that enables the understanding of

activity from observation of trajectory patterns. A three stage hierarchical modeling process in

developed to determine the typical activities in an unsupervised fashion for a novel camera scene

without a priori knowledge. Using the learned activity models, the activity of each detected

object can be classified, predicted, or deemed unusual during live operation in real-time. The

list of main contributions in trajectory based activity analysis are as follows:

• Introduction of a three stage hierarchical learning process to model typical and recurrent

activity.

• A method to automatically estimate the number of activities in a scene.

• A process to adapt activity models to better fit data for long term usage.



3

• The activity analysis occurs in real-time on live video for immediate notification.

• Extensive evaluation, which is missing from the literature, of the activity analysis is pro-

vided.

• The learning framework’s generality is demonstrated on a wide variety of scenes, differing

in types of objects observed, structure, and interactions.

The dissertation also addresses questions of learning robustness in the presence of noise

and incomplete data, provides critical comparison of similarity metrics for trajectories, the de-

velopment of evaluation metrics to characterize activity analysis performance, and examines

trajectory relevance for traffic monitoring, surveillance, and safety.



Chapter 2

Background

This chapter provides a definition of learning trajectory patterns for activity analysis

and defines the scope of the dissertation. A summary of previous work is presented followed by

a short explanation of the the trajectory learning approach taken in this dissertation.

2.1 The Trajectory Learning Problem

Automatically understanding activity is a very challenging problem. The space of possi-

ble activities is huge and defined differently for different scenes, for different objects, and by the

specific monitoring requirements of the end user. With such a rich and diverse activity space it

is difficult to imagine general procedures capable of working over a wide range of scenarios.

In order to be tractable, this dissertation limits itself to far-field applications, as would

be typically encountered in surveillance or other monitoring situations. In these scenarios, it

is quite difficult to extract elaborate descriptions of the objects or actions. But, the cue of

interest, which can be reliably obtained, in these cases is motion. In addition, typical motion

is not completely random but structured and repetitive. Since object motion is continuous, a

trajectory (a sequence summarizing the spatio-temporal characteristics of a moving object) is

assumed to have been generated as a realization from a set of hidden random processes that

signify the typical activities that are present.

The diagram in Fig. 2.1 presents the basic steps for activity understanding from tra-

jectory patterns. Objects are initially observed by a camera and the motion of each individual

is tracked. The resulting trajectories are the only feature that is used to model the scene and

infer the underlying activities. By learning a scene description low-level situational awareness is

obtained automatically. The awareness goal is to understand and characterize the behavior of

every object in the scene. In order to understand an object, the activity analysis engine must be

able to characterize current behavior, predict future behavior, and detect abnormalities (things

4
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Object
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Scene
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Trajectories
Annotated

Video
Input
Video

Figure 2.1: The basic block diagram for trajectory based surveillance. The front-end system

consists of robust object detection and tracking to produce the trajectories. The tracks are used

to build a scene model to describe the surveillance situation and perform activity analysis.

that are unusual) in an unsupervised fashion. For practical application, the analysis must hap-

pen in real-time to ensure prompt notification and adequate response and must be adaptable to

changes for long term usage.

There are a number of components to a trajectory learning and activity analysis system

and not all can be touched on in this dissertation. For further discussion, the review by Morris

and Trivedi [90] presents a wide range of applications and highlights the challenges and common

approaches to trajectory learning an modeling.

2.2 Existing Trajectory Learning Approaches

Automatic scene understanding got it’s start in the mid 1990s when neural networks

gained popularity in the learning community. Using neural networks to find complex relationships

between inputs and outputs as well as pattern discovery gave birth to the field of trajectory

learning. Unlike earlier work that used explicit models to describe a surveillance scene, trajectory

learning avoids assigning any prior scene knowledge and instead builds activity models based on

observable events in an unsupervised manner. Utilizing a data-driven modeling approach allows

more flexible deployment because it does not require a priori scene knowledge or user intervention.

2.2.1 Flow Quantization

Flow quantization learning techniques sequentially fed in flow vectors to the learning

machine. The sequence of vectors caused a unique activation pattern to explain an activity

based on trajectory history.

The earliest work (summarized in Table 2.1) utilized neural networks to perform vector

quantization and to learn the typical motion patterns in a surveillance scene. Pioneering work by

Johnson and Hogg [55] described motion using a flow vector, summarizing position and velocity

during tracking. The flow vector was feed to a large dual-layer self organizing map (SOM)

connected by leaky neurons which jointly quantized the flow vectors and learned the typical
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Table 2.1: Exemplary Flow Quantization Activity Modeling Techniques

Publication Path Usage Comments

Johnson 1995 [55] Classification Paths learned using a dual-layer SOM connected by leaky

neurons. The leaky neurons contains the memory of a path

while output nodes merely indicate a path cluster. The

trajectories were linearly resampled for consistent point

density during training. The flow vector input ft consisted

of both spatial and dynamic information.

Sumpter 2000 [111] Prediction The leaky SOM architecture was extended for prediction

by incorporating feedback from the output nodes to the

leaky neurons which enabled analysis of incomplete tra-

jectories.

Owens 2000 [92] Abnormality A self-organizing feature map was used to quantize flow

vectors. The two-dimensional structure created neighbor-

hoods of similar prototype vectors where allowed for clus-

ter visualization. Flow points were evaluated in real-time,

without needed a complete trajectory, to distinguish ab-

normal behavior.

motion patterns. The motion patterns relied on the short term memory of flow activations which

weakly implied the sequencing of trajectory points. Sumpter and Bulpitt [111] extended this work

for motion prediction by incorporating a feedback loop between the output layer and the leaky

neurons. The prediction capability enabled real-time analysis by handling incomplete trajectories.

Owens and Hunter [92] used a self-organizing feature map (SOFM) to detect abnormalities. A

two-dimensional output layer performed vector quantization where learning updates occurred

in small neighborhoods around a winning neuron creating a topological map useful for cluster

visualization. In this framework, learning proceeded in an online fashion on individual flow

vectors rather than waiting for a full trajectory. Suspicious points were discovered if the match

between a flow vector, which considered position, velocity, and acceleration, had a large Euclidean

distance with the winning neuron exemplar vector.

The problem with these neural network techniques was the complicated training process.

The networks required large amounts of data, a number of sensitive parameters and weights

needed to be fine-tuned, and it took considerable amount of time [51].
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2.2.2 Trajectory Clustering

Trajectory clustering techniques did not use individual flow vectors as learning inputs

but instead used a full trajectory. This explicitly modeled the sequential nature of trajectory

samples and improved learning speed.

In 2004, Hu et al . [51] greatly improved the learning speed by introducing a new SOFM

where all the output neurons were arranged into a single layer which required only a single

training phase rather than the two needed for the different SOM layers previously. This new

structure used a full (fixed-length) trajectory as the network input with each input node con-

nected to all the output nodes. The weights connecting the input to an output node defined a

prototype trajectory (activity). Soon it was realized that this network architecture was perform-

ing clustering of trajectories and it paved the way for the trajectory clustering based activity

modeling techniques currently in use (see Table 2.2). Work by Porikli [97] assumed a trajectory

was generated by a hidden Markov model (HMM). A HMM was fit to every trajectory in the

training set and a form of spectral clustering was performed in the HMM parameter space. This

provided HMM models for the typical clusters that were used to classify new trajectories. The

quality of the HMM models was quantified using a validity score. Also in 2004, Junejo et al . [56]

developed a hierarchical activity representation to account for spatial, velocity, and curvature

features. Abnormal trajectories were detected by testing each stage of the hierarchy which gave

an explanation of why something was considered abnormal. This work used a min-cut graph

algorithm, with trajectories as nodes and edges corresponding to the Hausdorff distance between

nodes, to cluster trajectories. In 2005, Bashir [7] broke trajectories into smaller sub-tracks based

on curvature. The sub-tracks were projected onto a PCA space and clustered using k-means.

Each sub-track represented a state in a Markov model which allowed for prediction based on tran-

sitions. Hu et al . continued there trajectory learning work through 2007 [48, 50] by extending

trajectory analysis to include classification, prediction, and anomaly detection. Activities were

learned in a two-stage clustering process. In the first stage, only the spatial information was used

while the second stage further refined the clusters by incorporating velocity. Each cluster was

modeled as a chain of Gaussian distributions which enabled probabilistic explanations of activity.

In addition, a tightness and separation criteria was used in an iterative learning framework to

determine the number of clusters needed to describe the scene activity.

The previous approaches all utilized a batch learning approach. Before clustering, a

database of trajectories needed to be collected by observing the scene over a sufficient amount

of time. This collection process required a setup time before any analysis could be performed

and limited activity models to only those that had been previously observed in training. In

contrast, online learning methods allow for dynamic activity definitions which evolve as new data

is observed. In 2005, Makris and Ellis [76] presented the first online trajectory learning method

which was used to classify trajectories. Each trajectory pattern was described based on a spatial
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Table 2.2: Exemplary Trajectory Clustering Activity Modeling Techniques

Publication Path Usage Comments

Hu 2004 [51] Classification,

Prediction,

Abnormality

Neural network learning speed was greatly increased by

using a full trajectory for input which required only a single

training phase. A set linked output nodes corresponded to

a path prototype which was characterized for prediction

and abnormality detection.

Porikli 2004 [97] Classification A trajectory was modeled by an HMM whose parameters

were used as a feature vector for clustering. Cluster centers

were formed using a mutual fitness similarity measure. The

number of clusters was estimated using a validity score.

Junejo 2004 [56] Classification,

Abnormality

Path clusters were formed using the min-cuts graph al-

gorithm with trajectory nodes and associated Hausdorff

distance as the edges. The paths consisted of the center

plus a spatial envelope and was augmented with a velocity

and curvature profile for abnormality characterization.

Makris 2005 [76] Classification Paths with a center and spatial envelope was learned in an

online fashion for adaptability to changing conditions.

Bashir 2005 [7] Classification,

Prediction

Trajectories were broken into atomic sub-trajectories based

on curvature. The sub-tracks were projected into a PCA

space for k-means clustering. The learned sub-paths

formed the states of a Markov model allowing prediction

of behavior from sub-path transitions.

Piciarelli 2006 [95] Classification,

Prediction

Paths learned in an online fashion allowing paths to split

into a tree-like structure where nodes were common among

the children. Trajectories were compared without normal-

ization using a novel time-windowed Euclidean distance.

The tree representation allowed path prediction by esti-

mating the transitions probabilities between nodes.

Hu 2007 [50] Classification,

Prediction,

Abnormality

Paths are learned in a two-stage spectral clustering pro-

cedure. The first stage used only spatial information and

verified clusters using the TSC. The second clustering stage

included velocity and the resulting clusters were modeled

by a chain of Gaussian probability distributions.
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envelope. New trajectories that fell within the envelope modified the activity definition while

new envelopes were spawned for ill-fitting trajectories. In a similar vein, Piciarelli and Foresti

[95] developed an online trajectory clustering method in 2006. Clusters were represented in a

tree-like structure with node sharing. Trajectories were compared with a novel time-windowed

Euclidean distance designed to gauge the similarity between a trajectory and a cluster (which

has a spatial extent). The tree representation allowed for prediction by counting the transitions

between nodes.

The trajectory clustering approaches to activity analysis are popular and varied. A

problem with these approaches is the lack of comparison to explain the relative strengths and

weaknesses of the approaches.

2.2.3 Co-Occurrence

Although trajectory clustering has been the most popular automatic activity analysis

approach, recently there has been a small push to avoid tracking altogether. Instead of explicitly

tracking objects, motion units are examined to find structure. These techniques follow a bag-

of-words approach and try to find words that co-occur with regularity. The set of co-occurring

motion words represent an activity. Exemplary co-occurrence techniques are summarized in

Table 2.3.

Stuaffer and Grimson [110] learned activities in a hierarchical fashion by building up a

co-occurrence of codebook flows in 2000. They disregarded track ordering and instead viewed

a trajectory as a set of points that tend to occur together. Given a newly tracked object, they

could determine the activity just by vector quantization of the the flow. Zhong et al . created a

codebook of visual words based on motion histograms to detect abnormal activity in 2004. The

words describing an activity were learned through bipartite graph co-clustering. In 2008, Xiang

and Gong [131] examined abnormality detection as well by providing incrementally adaptive

models. Trajectory points were clustered using Gaussian mixture modeling into a codebook.

Activities were described as a multiple observation HMM and found through spectral clustering.

The resulting clusters provided a composite behavior model of a video clip. Current work by Wang

[126, 125] adapts word-document clustering techniques for visual monitoring. First a codebook

of typical flow vectors is defined from the training set to provide the vocabulary. The flow words

are grouped into semantic regions corresponding to segments of activity. The generative models

used for clustering provide an explanation for how activities are formed and abnormalities are

probabilistically defined.

Co-occurrence techniques typically can handle lots of data, but they may require large

amounts of data to accurately learn activity. A complaint is that the intuitive notion of temporal

sequencing is lost when examining a bag-of-words representation which may ignore subtle differ-

ences in behavior with this aggregate view. Another shortcoming of the techniques that do not
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Table 2.3: Exemplary Co-Occurrence Activity Modeling Techniques

Publication Path Usage Comments

Stauffer 2000 [110] Classification Each trajectory is quantized into a small set of accept-

able flow vectors describing position and velocity and a

codebook co-occurrence matrix is formed. The complete

training co-occurrence matrix is hierarchically decomposed

in binary tree-like fashion describing a pmf of codewords.

The order of flow codewords was lost in the procedure.

Zhong 2004 [138] Classification,

Abnormality

A codebook of visual words is created from m × m mo-

tion histograms. The set of words in an activity is learned

through bipartite graph co-clustering. The resulting eigen

decomposition produces an embedding mapping into the

activity space.

Xiang 2008 [132] Classification,

Abnormality

Trajectory points are clustered using GMM into a set of ac-

tivities. The posterior probability of all activities is mod-

eled with a multiple observation HMM (MOHMM) that

allows computation of a similarity matrix for spectral clus-

tering. The resulting clusters provides a composite behav-

ior model for a video clip.

Wang 2008 [125] Classification,

Abnormality

Word-document clustering techniques are adapted for vi-

sual monitoring. A codebook of flow vectors is defined to

describe the motion vocabulary and clustered into activity

topics. The distribution of topics succinctly describes the

scene activities.
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use tracking is that they are not able to provide the activity of individuals but a more holistic

scene description.

2.3 Proposed Approach

It has been shown that by analyzing trajectory patterns the activity structure of a scene

can be automatically inferred. Further, these extracted patterns can be used to explain current

behavior, predict future activity, and detect abnormalities. Unfortunately, rigorous performance

characterization is lacking from the trajectory learning literature. Without this experimental

validation, the quality and utility of these unsupervised activity analysis techniques in real-world

deployment is unknown. This dissertation attacks this short coming by developing a practical

trajectory learning framework that is able to model activities, provides a comparison of trajectory

similarity measures, automatically determine the number of activities in a scene, and quantifies

the real-time performance of activity analysis. The generality of the framework is highlighted by

a number of experiments on very different scenes.
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Chapter 3

Collecting Trajectories

Before understanding activity, it is necessary to first determine how to describe an ac-

tivity. In this work, motion is the important cue for activity. To fully describe the behaviors

in a scene the motion of each object should be accurately recorded. In this preliminary chapter

we describe how object motion is extracted by visual tracking. This low-level process results in

the trajectory features necessary for inferring activity. This preliminary chapter presents a short

overview of the visual tracker utilized throughout the dissertation.

3.1 Motivation

Object tracking is one of the fundamental tasks within the field of computer vision. The

widespread use cameras has greatly increased the need for automated video analysis and interest

in object tracking. As noted in the survey on object tracking by Yilmaz et al . [134], the use of

object tracking is prevalent in a variety of tasks such as

• motion-based recognition - human identification based on gait or automatic object detection

• automated surveillance - monitoring a scene to detect suspicious activities or unlikely events

• video indexing - automatic annotation and retrieval of the videos in multimedia databases

• human-computer interaction - gesture recognition or eye gaze tracking for data input to

computers

• traffic monitoring - real-time gathering of traffic statistics to direct traffic flow

• vehicle navigation - video-based path planning and obstacle avoidance capabilities.

Tracking is defined as the problem of estimating the trajectory of an object as it moves

around a scene. To this end, a tracker must assign consistent labels to objects for the times they

12
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are in view. The tracker generates a trajectory by detecting an object, locating its position in

every video frame, and making associations between frames.

In the monitoring situation, there is a far-field view of objects which result in low resolu-

tion and discrimination. In these situations, it is difficult to accurately extract complex features.

Only coarse motion attributes, e.g . location, can be robustly obtained. Since motion is the major

cue for activity, activities can be defined by motion profiles which indicate how an object moves

through a scene. By simultaneously tracking many objects, the sate of each individual object,

e.g . position, velocity, acceleration, size, etc., can be continually maintained and updated to

summarize activity.

Through the visual tracking front end, extracted trajectories are used as output features

for higher level activity understanding and situational awareness.

3.1.1 Questions to Address

In order to analyze activity, it is necessary to simultaneously track many objects. Key

issues to address are how to make the tracker flexible enough to work in a variety of monitoring

environments and situations, be adaptable to changing conditions, and perform in real-time to

enable live activity analysis.

3.1.2 Chapter Summary

This chapter presents a real-time background subtraction based visual tracker capable of

generating the raw trajectories features for activity analysis. The tracker uses an adaptive back-

ground subtraction scheme to detect moving objects and tracks multiple targets. The tracker has

been tested in a variety of locations and over long periods of time. But, the tracker performance

is limited in dense scenes with high occlusion rates or in severe lighting conditions.

3.2 Background Modeling for Motion Detection

Foreground pixels belonging to moving objects are quickly determined by using an adap-

tive background subtraction scheme. Each background pixel is modeled as a single Gaussian

process [129], composed of two parameters; µ, a time averaged pixel intensity, and σ, the stan-

dard deviation of pixel intensity. The Gaussian parameters at the current time t are adapted

as

µt = (1− α)µt−1 + αIt (3.1)

σ2
t = (1− β)σ2

t−1 + β(It − µt)2. (3.2)

The update parameters α, β ∈ [0, 1] control how quickly the background distribution is able to

change as each new video frame, It, is received. Foreground pixels, which indicate change, do



14

not fit the video statistics.

The foreground image is obtained by thresholding the background difference to find

objects not part of the background

Iforeground = (It − µt) > B(σt + σ0). (3.3)

Here σ0 is a small constant to suppress noise associated with low variance scenes typically encoun-

tered during low light and shadowed situations and B is the deviation threshold. The threshold

B determines how different the current intensity of a pixel needs to be from the background

in order to be a likely object. Since threshold B is difficult to fix as a single value in outdoor

applications with varying lighting conditions, it is adaptively defined for each pixel by its local

neighborhood, N ×N , intensity,

Bij = min
{(

Bmax −Bmin
Im + Iσ

)
IN +Bmin, Bmax

}
. (3.4)

Equation (3.4) sets up a threshold that adapts to local lighting intensity, IN , by comparison to

the mean image intensity and standard deviation, Im and Iσ respectively. The values of Bmax
and Bmin indicate the maximal and minimal deviation necessary for detection. The threshold

B adjusts to local lighting conditions. When lighting is lower, a smaller threshold is used be-

cause object and background intensity are less differentiable. By defining the threshold for each

individual pixel ij, the foreground extraction process is able to handle situations with varying

lighting as would be the case if a large shadow from a building covered part of the camera view.

The foreground is further processed to fill in any holes using morphological opera-

tions. Each blob is then labeled by connected component analysis to form detections and

simple morphological measurements are taken, mt = {area, breadth, compactness, elongation,

perimeter, convex hull perimeter, bounding box, best fit ellipse parameters, roughness, centroid,

M10,M01,M20,M02} [108], to compactly represent the object shape appearance.

3.3 Multi-Object Tracking

After foreground regions have been located, the detections can be tracked. By tracking

objects, a sequence of object states

ST = {s1, . . . , st, . . . , sT } (3.5)

is used to produce a trajectory which summarizes an object’s activity in the camera view. During

tracking, each object is modeled as a feature augmented point. The state of an object

st =

[
ft

mt

]
, ft =


xt

yt

ut

vt

 , mt =


η0
...

η15

 , (3.6)
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consists of the position xy, velocity uv, and shape appearance m at a given time t. It is assumed

that objects are rigid bodies that move along a smooth path with constant velocity. These

assumptions lead to the following state equations

st+1 =

[
F 0

0 M

]
st. (3.7)

Where F explains the dynamical changes of ft and M characterizes the appearance change of

mt.

The identity of each individual object is maintained through the tracking procedure. New

foreground detections are associated to existing tracks through nearest global neighbor matching.

This track update occurs only when a detected object matches both a dynamics and appearance

model which are treated separately in practice. Object dynamics are modeled by employing a

Kalman filter [62] for optimal one step prediction and appearance is defined by a set of shape

features.

3.3.1 Dynamics Modeling

An object’s dynamics characterizes how it moves within the camera field of view

ft+1 = Fft. (3.8)

It is assumed that an object (the centroid of a detection region) follows a regular motion pattern.

Therefore, the future state of an object can be optimally predicted using a Kalman filter with a

constant velocity model. The state update equation becomes

ft+1 = Fft + wt =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1




xt

yt

ut

vt

+ wt. (3.9)

In this model, ∆t corresponds to the update rate which is equal to the video frame rate and

wt is a noise term. The model uses the previous velocity to determine the new position. It is

important that the model also allows for non-constant velocity because of the noise term as it is

unlikely that object speed will remain completely constant.

The observation model directly relates the detected region measurement f̃ to object state

f̃t = ft + et = [x̃t, ỹt, x̃t − xt, ỹt − yt]T . (3.10)

The .̃ notation denotes the dynamics of a detected foreground blob and et is a Gaussian noise term

associated with measurement inaccuracy. New tracks are initialized by instantiating a Kalman

filter with a velocity obtained by a nearest neighbor match [ũ1, ṽ1]T = [x̃2 − x̃1, ỹ2 − ỹ1]T .
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A Kalman filter for a track is updated using the matching blob detection. A blob matches

if the Kalman track prediction f̂t+1 and a measurement are within a small distance

f̂t+1 − f̃t < ε. (3.11)

Detections that are deemed consistent with the dynamics model are fully matched after taking

into account appearance.

3.3.2 Appearance Modeling

In addition to the dynamic model, a track has an associated appearance model. This

appearance model is used to resolve matching ambiguities. These ambiguities mainly arise be-

cause of high object density or occlusion. This model guarantees appearance along a trajectory

does not change drastically, by enforcing consistency between frames.

The similarity at time t between a detection, m̃t, and a track, mt is given by

Sm = [(mt − m̃t)TΣ−1(mt − m̃t)]−1 > Tm, (3.12)

where Σ is a diagonal matrix with entries equal to the measurement variance learned during

training and Tm is a match threshold. When in a crowded scene, the best match is the detection

that fits the motion model and has the most similar appearance to the track. This constraint

implicitly manages occlusion when objects either merge or split by instantiating new tracks. The

track appearance is adaptively updated upon consistent match with a detection m̃t

mt = (1− γ)m̃t + γmt−1, (3.13)

given the track and detection measurements at the current time. The γ ∈ [0, 1] controls how

quickly the objects appearance may change during tracking. By adjusting the shape appearance

model, objects can be tracked through larger variations such as when a vehicle makes a turn at

an intersection.

3.4 Tracking Difficulties

There are a number of common difficulties when tracking objects. Yilmaz et al . [134]

summarizes them as

• loss of information caused by projection of the 3D world on a 2D image,

• noise in images,

• complex object motion,

• nonrigid or articulated nature of objects,
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• partial and full object occlusions,

• complex object shapes,

• scene illumination changes, and

• real-time processing requirements.

The main difficulties encountered in this work stem from occlusion and illumination. Monitoring

outdoor spaces over long periods of time present changing illumination which can cause strong

cast shadows. These shadows can disrupt object detection by both making an object seem larger

and causing two nearby objects to be detected as a single one as form of occlusion. These occlusion

instances create broken and trajectories which ultimately results in an incomplete description of

an activity.

3.4.1 Occlusion

Vehicle and human tracking is a well understood problem and relatively easy to solve

when there is only one object. Unfortunately as the number of objects increases the complexity

increases as well. The major difficulty when tracking many objects is occlusion which causes

incomplete or incorrect trajectories.

Inter object occlusion occurs with two different objects are in close proximity and one

blocks the other from the camera view. Occlusions of short duration are gracefully handled

by continuing to predict the object location until it reappears. In Fig. 3.1 two vehicles get

close enough to be merged into a single detection. Since neither track has a matching detection

because of the the differing appearance, a new track is instantiated. When the vehicles separate

the tracker is able to reconnect the detections to the initial tracks. Longer occlusion can cause

two types of tracking errors, merging and splitting of objects [57]. As shown in Fig. 3.2 a

merge occurs when two separate objects are detected as one while splits arise when a two objects

initially merged separate into individuals. A recovery pass over the completed tracks applying

heuristic rules [79] or using spatio-temporal cues [58] can repair occluded tracks by accounting

for motion consistency.

While track based occlusion recovery is possible in many situations, it will prove difficult

when there is high object density which causes a high rate of occlusion and occlusion pairs.

External cues are needed to indicate merging of multiple objects. The temporal constraints need

to augmented by appearance modeling [59, 42, 93]. By improving object detection with a mean

shift color clustering algorithm [25], shadow removal [98], and inclusion of temporal occlusion

modeling will improve tracker performance.
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Figure 3.1: Occlusion causes initialization of new trajectories. When the occlusion is of short

duration the tracking module is able to recover the correct trajectory labels.

(a)

(b)

Figure 3.2: Merge and split occlusion types which can be recovered using temporal reasoning.

(a) Merged detection (b) Split detection

3.4.2 Shadows

Shadows are a major concern for background subtraction based object detection. Out-

door monitoring over long periods of time guarantees cast shadows, either from surrounding

environment structures such as buildings or from the moving objects themselves, will be present.

While shadows do corrupt the quality of localization, object appearance, and cause object merges

(shadows connect objects) this work does not specifically handle shadows. The assumption is that

the trajectory patterns and inherent dynamics are only loosely correlated with shadow detection

errors. A large literature dealing with shadow estimation and suppression techniques exists for

the interested reader. [46, 98, 31]

3.5 Concluding Remarks

Although the visual tracker developed in this work is fairly simple, it has proven effec-

tive in a number of different environments and situations. Even while using a simple background

model and limited appearance constraints, without explicit occlusion handling or shadow sup-

pression, sufficient trajectories have been extracted for surveillance-type camera setups. The

tracking operates in real-time which enables analysis of live video streams, detects objects accu-

rately enough for recognition of many object types, and produces consistent trajectories suitable

for activity analysis.
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Chapter 4

Learning Trajectory Patterns

Using background modeling and subtraction, moving objects are extracted and their

identities maintained and tracked over time. Observable motion does not occur randomly but

has structure. Repeated activity generate patterns of trajectories which can be examined over

time for automatic learning of new scenes without manual supervision.

4.1 Motivation

The dramatic decrease in cost for quality video equipment coupled with the ease of

transmitting and storing video data has led to widespread use of vision based analysis systems.

Cameras are in continuous use all around, along highways to monitor traffic, for security of

airports and other public places, and even in our homes. Methods to manage these huge volumes

of video data is necessary. It becomes almost an impossible task to continually monitor these video

sources manually forcing researchers to develop methods to recognize certain events and activities

of interest. These methods provide a means to compress video data into a more manageable form

as well as give annotations that can be used for search indexing. While understanding video in

general seems a daunting task, it can be quite successful when analyzing a particular setting.

The review of dynamic scenes by Buxton [16] presents a wide variety of techniques for visually

understanding human and vehicle actions that are effective but usually require domain knowledge.

Researchers have long been interested in understanding human behavior. Early vision

work examined activity sequences through template matching or state space approaches [2]. More

recently, nine actions were examined with a HMM formulation based on a sequence of 3D voxel

body configurations [53]. Volumetric space-time shapes induced by human actions have been

constructed to compare with an activity database [40]. Current recognition techniques focus not

just on full body gestures but might concentrate on specific body parts such as hand and arms or

head and face [82]. These activity techniques rely on a local configuration of body parts which is

20
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not well suited for far field applications because they require high resolution to distinguish parts.

In contrast, surveillance monitoring has focused on more coarse motion based activity

with almost no prior object model. Rather than specifying individual parts, the center of mass

motion is considered of either rigid or deformable objects (e.g . vehicles and humans). Early on,

simple activity recognition schemes defined interesting zones and trip wires that could signal

an alert when crossed. These alerts have been used to focus attention of high resolution PTZ

image capture [115], accumulate traffic counts [67] and origin-destination information [80], and

detect loitering individuals [12, 133]. As more video surveillance sites were erected, automatic

methods to detect interesting activities increased with a major research thrust in the area of

unusual or abnormal behavior detection. By observing and collecting trajectories, over time a

model for scene is developed characterizing typical activity [27] from data rather than by manual

specification. Trajectories that are not well explained by the typical models were considered

abnormal [92, 52, 48, 56]. Others have tried to avoid difficulties with explicitly tracking individual

objects, due to scene clutter and occlusion, and relied only on inter-frame motion. Drawing

inspiration from document clustering research, activities (attributed to the entire frame or clip)

are viewed as a collection of motion words [138, 130, 126, 125, 127].

Through motion analysis, video cameras are able to learn how and what to monitor. By

adding intelligence to cameras, larger networks can be accurately managed and monitored over

longer periods and wider areas with minimal supervision.

4.1.1 Questions to Address

Automatic scene understanding and activity analysis is a challenging problem which

poses many difficult questions:

• How should activities be learned and represented?

• How can the number of activities in a novel scene be determined without a priori knowledge?

• How can the activity models be used over long periods of time when activities are dynamic?

• What types of analysis can be performed using unsupervised models?

4.1.2 Chapter Summary

In this chapter a practical approach toward understanding activities is presented. A

multi-level learning framework is introduced to automatically learn the typical activities in a

scene without requiring specific domain knowledge. Without supervision, trajectory patterns are

extracted and used to form probabilistic models of activity. The models enable online analysis

of live video and provide contextual awareness. The practical approach to learning trajectory

patterns illuminates several key questions:
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• In applications that provide low resolution information, motion is a reliable activity cue.

An activity can be modeled as an ordered sequence of actions with each action denoted by

location and dynamics.

• Activities can be robustly extracted by clustering observed trajectories.

• Although the number of activities in a scene is not known, it can be estimated by examining

the quality of trajectory clusters. An accurate activity count is obtained by over-clustering

the trajectories and merging similar clusters.

• When observing scenes over long time periods, the activities present will change. Activities

can be adjusted online with new trajectories during live analysis to better match current

observations. New activities can be modeled by collecting novel trajectories and periodically

clustering.

• Using the action based activity models, it is possible to summarize what activities have

occurred and determine which were atypical. More importantly, activity analysis can be

performed in real-time to make predictions on future behavior and provide timely notifica-

tion of unusual actions and events.

The analysis framework is evaluated on a number of diverse datasets to thoroughly

characterize performance. This detailed evaluation is missing from the literature and provides a

benchmark for future research.

4.2 Hierarchical Activity Decomposition

A key to designing an effective learning framework is to examine and limit the types of

behaviors to be analyzed. In the surveillance setting, rough body motion is a low level feature

that can be reliably extracted through visual tracking. When using just this coarse feature, a

behavior can be characterized by four main components (Fig. 4.1); its goal, the spatial extent, the

dynamics, and the temporal duration. Together these characteristics are used to answer questions

and describe an activity. They form an explanation hierarchy which allows more complete and

refined description of an activity.

Level 1 (Goal). Describes the beginning and end of a behavior.

Knowing the goal or objective of an object provides the simplest activity description

by providing an origin and destination. This is the type of information is needed by the trans-

portation community to understand where people are traveling and to adequately meet that

demand.

Level 2 (Spatial). Describes where a behavior occurs in space.
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A B

(a) 1 Goal Level

A B

(b) 2 Spatial Level

A B

(c) 3 Dynamics Level

A B

(d) 4 Temporal Level

Figure 4.1: Hierarchy for activity understanding. (a) The goals indicate noteworthy destinations

and provide a mechanism for high level reasoning of behaviors. (b) Spatially different routes

to reach the same goal describe different behaviors. (c) Similar routes are further distinguished

based on dynamic information such as speed. (d) A behavior is temporally decomposed into a set

of sequential actions to provide the finest description granularity. Subtleties such as the duration

of actions indicate differences between similar behaviors.

By recording the location an agent follows between goals (the route), it is possible to

differentiate behaviors spatially. Different routes between locations can correspond to vastly

different behaviors such as taking the straight route to a destination versus going on the “scenic”

route.

Level 3 (Dynamic). Describes the manner in which a behavior is performed.

Besides location, dynamic attributes provide further disambiguation between behaviors.

This level allows activities to be separated from within the same route. A tentative driver will

have dramatically different velocity and acceleration profile than a “speed demon” even when

driving along the same highway.

Level 4 (Temporal). Describes when a behavior is performed and for what time duration.

The last component for behavior characterization is the temporal description. By de-

composing a behavior into smaller atomic parts, more detailed variations are allowed. This

decomposition highlights the sequential nature of actions as well as their time duration with

respect to an activity. Similar behaviors may be composed of the same core actions but are

distinguished by the amount of time spent in each action or the order the actions are performed.
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Figure 4.2: General framework for trajectory analysis. Trajectories are collected by visual track-

ing. They can be clustered into a set of typical patterns which are then probabilistically modeled

and used for live activity analysis.

The above definitions describe a hierarchical behavior decomposition useful for descrip-

tion at varying levels of granularity. The multi-leveled interpretation allows disambiguation of

behaviors given different criteria with each level adding to the completeness of activity description

4.3 Trajectory Learning Framework

This paper develops a probabilistic trajectory analysis framework, shown in Fig. 4.2, to

learn and describe activity. The analysis occurs in two phases. The initial phase, observation,

uses the behavior hierarchy to build activity models in the 3 staged approach shown in Fig. 4.3.

In the second phase, testing, the activity models are used to describe and predict behavior and

detect abnormalities in real-time on live video. The initial activity models are updated with new

observations and augmented by consistent behaviors not observed during the training period to

better reflect the surveillance scene.

The analysis framework must cope with a number of real-world implementation issues.

In a new scene, the number of typical activities is not known a priori and must be estimated

automatically. In addition, the learning and evaluation algorithms must be robust to noisy

tracking because trackers will invariably fail due to environmental conditions and occlusion. The

framework must gracefully handle these incomplete trajectories for real implementation. Finally,

when monitoring a site over long periods, the initial training period may not reflect the current

scene configuration necessitating approaches to modify the activity models.

During the learning phase, objects are observed and tracked using visual tracking soft-

ware to compile a trajectory database. The tracker used in this work segments potential fore-

ground objects using motion based background subtraction and tracks are maintained with the
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Figure 4.3: In order to match the multi-level behavior model, a three staged learning procedure is

adopted to first learn goals, followed by spatial routes between goals, and finally probabilistically

model spatio-temporal dyanmics.

use of a Kalman filter to predict motion and an appearance model for consistency [89].

A trajectory is a sequence F = {f1, . . . , ft, . . . , fT } of T flow vectors. A flow vector

ft = [xt, yt, ut, vt]T compactly represents an object’s motion at time t by the xy position and

corresponding component velocities uv. After trajectories have been collected into a training

database, activities are modeled by learning each of the hierarchy levels in the 3 stage approach

of Fig. 4.3. Points of interest (POI) are learned through expectation maximization in the

goal level. Spatial routes are formed by clustering trajectories. Finally, both the dynamic and

temporal characteristics of an activity are encoded probabilistically using a hidden Markov model

(HMM) in the third stage. The evaluation phase uses the learned activity models as a descriptive

vocabulary for online analysis. As a new object is tracked, its activity is characterized, future

behavior is predicted, and alarms can be raised if there is unusual behavior.

The following sections provide more of the framework details, providing explanation of

the 3 staged learning procedure and evaluation methodology.

4.4 Goal Level Learning

The first activity level locates points of interest (POI) in the image plane, which are

regions where objects enter and leave the scene or where objects tend to spend a significant
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amount of time. By learning the graph nodes, a vocabulary to describe the path in terms of

goals is formed. The POI are used to filter noise trajectories arising from incorrect tracking

by retaining only tracks that begin and end at POI nodes. This filtering procedure provides

robustness to tracking failures and improves later clustering results.

4.4.1 Points of Interest

There are three different types of zones in a scene, entry, exit, and stop. The entry

and exit zones are the locations where objects either appear or disappear from the scene, such

as the edge of a camera field of view, and correspond to the first, f1, and last, fT , tracking

point respectively. The stop zones indicate scene landmarks where objects tend to idle or remain

stationary, such as vehicles at a toll booth or a person sitting at a desk. The stop points arise

from samples with very low speed that are also within a small radius R for more than τ seconds

[13]. This ensures a stationary object remains in a particular location. Just relying on a low

speed threshold can contaminate the set of stop points. For example, every sample of a vehicle

tracked during congestion could be consistent with the low speed check even though it travel

across the camera field of view.

The interest zones are learned through a 2D Gaussian mixture modeling (GMM) proce-

dure [76]. A zone

Z =
Z∑
i=1

ziG([x, y]T, µi,Σi) (4.1)

is composed of Z Gaussians G([x, y]T, µ,Σ) of [x, y]T image coordinates for a compact repre-

sentation and learned using expectation maximization (EM) [28]. Each mixture component i

denotes a different scene POI which is located on the image plane by its mean µi and its size is

specified by Σi.

Since it is not known a priori how many POI belong in a zone, the number must be

estimated. A zone is over-mixed by using a large Z to ensure all existing POI are modeled. The

importance of a POI is defined by its density

di =
zi

π
√
|Σi|

. (4.2)

Zone components with low density do not have much support in the training data. They are

considered of low importance and most likely arise from noise in the tracking process (incomplete

trajectories). The noise components can be automatically discarded using a density criterion

based on the threshold

Ld =
αZ

π
√
|ΣZ |

(4.3)

where 0 < αZ < 1 is a user defined weight and ΣZ is the covariance matrix of the entire zone

dataset [76]. The threshold Ld indicates the density of an average mixture in the zone. In this
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Figure 4.4: Entry/Exit interest are zones learned by Gaussian mixture modeling.

way, tight mixtures with high density indicate a true POI while low density mixtures, di < Ld,

imply tracking noise since they are not well localized.

Fig. 4.4 shows the entry/exit zones learned for an intersection with green denoting entry

and red exit POI. Noise mixtures from broken tracks, which are removed, are drawn in black in

Figs. 4.14a and 4.15a. The yellow in Fig. 4.16a marks stop zones. Notice the desk in the upper

right and smart board in the lower left are correctly discovered but stop zones were also found

overlapping with entry/exit zones because objects further away from the omni camera have very

little apparent motion due to the high degree of lens distortion.

4.4.2 POI-Based Filtering of Tracks

The POI modeling procedure indicates goals for the surveillance scene which can be

used to help the activity training process. Trajectories that do not begin and end in a POI are

considered a tracking error and removed from the training database and trajectories that travel

through a stop zone are split into separate tracks leading into and out of the zone. This provides

consistent trajectories for improved activity modeling. Noise tracks, generated by tracking failure,

would make behavior learning more difficult because they are not adequately explained and effort

would be wasted if the noise was modeled.

The choice of Z for a zone was not critical because when underspecified, EM will usually

create a large mixture covering multiple POI. As long as Z is not so small as to group points from

far away POI then noisy trajectories can be removed. Alternatively, instead of using classical EM,

it might be possible to automatically select the number of mixture components in conjunction

with estimation [35].

4.5 Spatial Level Learning

The second behavior level focuses on spatial support, differentiating tracks based on

where they occur. Once the scene goals are explained by POI in the first level, the way from
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node to node is described by spatial routes.

4.5.1 Trajectory Clustering

After POI-based filtering, a training database of clean trajectories is available for group-

ing into routes which separate different ways to get between goals. These routes can be learned

in unsupervised fashion through clustering. The clustering extracts the most typical trajectory

patterns and only relies on the definition of similarity between tracks. The main difficulty when

trying to learn routes is the time-varying nature of activities which leads to unequal length tra-

jectories. They must be compared using a procedure that is able to measure similarity between

differing sized inputs.

In this work, spatial routes are learned by first finding the distance between training

trajectory pairs using the longest common subsequence (LCSS) distance. LCSS was found to

provide the best clustering performance when compared with a number of other popular distance

measures [136, 88]. A similarity matrix is formed from the pairwise trajectory distances and

spectrally decomposed to generate clusters. Since the number of clusters is not known a priori,

the count is estimated through an agglomerative merge procedure to represent the scene routes.

LCSS Trajectory Distance

Since trajectories are realizations of an activity process, the length of trajectories can be

of unequal length based on the properties of differing activities. Even worse, even trajectories

sample from the same activity can be of unequal length due to sampling rate and speed of action.

In order to compare trajectories, a distance measure must be able to handle variable sized inputs.

LCSS is an alignment tool for unequal length data that is robust to noise and outliers

because not all points need to be matched. Instead of a one-to-one mapping between points,

a point with no good match can be ignored to prevent unfair biasing. The LCSS distance for

trajectories suggested by Vlachos et al . [123] is defined as

DLCSS(Fi, Fj) = 1− LCSS(Fi, Fj)
min(Ti, Tj)

, (4.4)

where the LCSS(Fi, Fj) value specifies the number of matching points between two trajectories

of different length Ti and Tj .

LCSS(Fi, Fj) =


0 Ti = 0 | Tj = 0

1 + LCSS(FTi−1
i , F

Tj−1
j )

dE(fi,Ti , fj,Tj ) < ε

& |Ti − Tj | < δ

max (LCSS(FTi−1
i , F

Tj
j ), LCSS(FTii , F

Tj−1
j )) otherwise

(4.5)

The recursive definition of matches (4.5), which can be efficiently computed with dynamic

programming, looks for points that are with small Euclidean distance ε and sampled within a δ

time window. The term F t = {f1, . . . , ft} denotes all the sample points in F up to time t.
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Spectral Clustering of Trajectories

1. Construct similarity graph S,

sij = e−D
2
LCSS(Fi,Fj)/2σ

2
(4.6)

2. Compute the normalized Laplacian L,

L = I −D−1/2SD−1/2 (4.7)

3. Compute the first K eigenvectors of L

4. Let U ∈ RNxK be the matrix constructed with eigenvectors as columns

5. Cluster the rows of U using FCM

Figure 4.5: Basic steps for spectral clustering of trajectories as presented by Ng et al . [91].

Spectral Clustering

Spectral clustering has become popular technique recently because it can be efficiently

computed and has improved performance over more traditional clustering algorithms. Spectral

methods do not make any assumptions on the distribution of data points and instead relies on

eigen-decomposition of a similarity matrix which approximates an optimal graph partition [91].

The basic steps for spectral clustering are outlined in Fig. 4.5

The similarity matrix S = {sij}, which represents a fully connected graph, is constructed

from the LCSS trajectory distances using a Gaussian kernel function

sij = e−D
2
LCSS(Fi,Fj)/2σ

2
∈ [0, 1]. (4.6)

where the parameter σ describes the trajectory neighborhood. Large values of σ cause trajectories

to have a higher similarity score while small values lead to a more sparse similarity matrix (more

entries will be very small).

Using the normalized spectral decomposition presented by Ng et al . [91] a Laplacian

matrix is formed using the similarity of training trajectories

L = I −D−1/2SD−1/2 (4.7)

with D is a diagonal matrix with elements the sum of the same row in S. The first K eigenvectors

of L are used as the columns of a new matrixN×K, U . Finally, the rows of U , each corresponding

to a trajectory, are clustered using fuzzy C means (FCM) [94]. The initial cluster centers are

chosen based on the orthogonal initialization method proposed by Hu et al . [50].

The advantage of FCM clustering in the last spectral stage are soft class assignment that

minimizes the effects of outliers and the resulting cluster membership values uik ∈ [0, 1] which

indicate the quality of sample i. The membership variable uik tells how confidently trajectory i
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is placed in cluster k. High membership means little route ambiguity, or a typical realization of

an activity process.

Route Creation

The spectral clustering process partitions the trajectory training database into the groups

of similar patterns. A route is defined as a prototype from each group. The route prototype is

chosen as an average of trajectories in a cluster, which utilizes the membership values uik returned

from FCM.

In order to average trajectories of different length, each trajectory F has its velocity

information ignored and is spatially resampled to a fixed length L. Rather than simply subsam-

pling the resampled track representation F̄ = {f̄1, . . . , f̄L} seeks to evenly distribute points along

the trajectory (based on arc length). The sampling ensures the distance between consecutive

points is equal

d(f̄l, f̄l+1) ∼ 1
L− 1

T−1∑
t=1

d(ft, ft+1) (4.8)

d(fi, fj) =
√

(xi − xj)2 + (yi − yj)2, (4.9)

to completely remove dynamic information (as hidden in the sampling rate). This prevents

regions of higher sample density from contributing bunches of points in a single area as could

occur if an object moved more slowly during a section of its trajectory. Finally, a vector F̄ =

[x1, y1, . . . , xL, yL], representing a point in the R2L route space, is constructed for each of the N

training trajectories (the notation for F̄ is slightly abused here).

Each route is determined by the weighted average of the training database

rk =
∑N
i=1 u

2
ikF̄i∑N

i=1 u
2
ik

(4.10)

where uik is the membership of training example i to cluster k and indicates the quality of

assignment. High membership indicates little route ambiguity; a typical trajectory of route k.

The set of typical routes in a scene are encoded by the prototypes {rk}.

4.5.2 Cluster Validation

The number of routes, Nr, in a scene must be estimated because it is not known a priori.

Initially, FCM clusters into a large number of prototypes, K > Nr. The prototypes are refined

to a smaller number of routes (Nr) by merging similar clusters.

The merge procedure compares routes by finding an alignment between pairs of routes

using dynamic time warping (DTW) [99]. DTW is used to equally value all matches and provide

a one-to-one matching between points on a route. After alignment, two clusters, rm and rn, are
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Figure 4.6: (a) Spatial routes learned through spectral clustering with K = 30 clusters. (b)

Nr = 10 remaining routes after merging similar routes.

considered similar based on the count of closely matched points or if the total distance between

routes is small. The count of matches is

M(rm, rn) =
L∑
l=1

I (dl(rm, rn) < εd) (4.11)

dl(rm, rn) =
√

(xm(l)− xn(l))2 + (ym(l)− yn(l))2, (4.12)

where I(.) is the indicator function. The total distance between routes is

Dr =
L∑
l=1

dl. (4.13)

The threshold value εd pixels was chosen experimentally for good results and is based on how

closely routes are allowed to exist in the image plane. When either M(rm, rn) > TM or Dr < Lεd,

then routes rm and rn are considered similar. A cluster correspondence list is created from these

pairwise similarities, forming similarity groups {Vs}. Each correspondence group is reduced to

a single route. The membership weight of every training trajectory is pushed onto the reduced

route, e.g .

ũmi = umi + uni ∀i. (4.14)

where ũ represents the membership after merging.

In practice we have found that FCM tends not to over fit the data but instead finds

several very similar clusters, making the merge algorithm effective. Fig. 4.6 shows the paths

learned by the clustering and merge procedure. The initial clustering used K = 30 but after

merging only the Nr = 19 true lanes remain.
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4.6 Dynamic-Temporal Level Learning

The clustering procedure locates paths spatially but this is insufficient for the highest

level of behavior analysis. Not only do we need to know where objects are located but also the

manner in which they travel. The dynamics are needed to completely characterize an activ-

ity. Using HMMs, the spatio-temporal properties of every activity is encoded probabilistically,

completing the third and fourth levels of the behavior hierarchy.

The advantage of modeling activities by HMMs is the sequential nature matches the

action sequence view of activity (and time-ordered progression of trajectories) and the simplicity

of training and evaluation. HMMs define a natural procedure to compare different length tracks,

as will generally occur, through optimal time normalization. Unlike with clustering, the full

unsampled trajectories containing position and velocity are used to incorporate dynamics.

4.6.1 Activity HMM

The activity HMM is a standard hidden Markov model that leverages the structure of

trajectories. Each HMM is compactly represented as λk = (Ak, Bk, π0) and is designed to have

Q states, for simplicity, rather than to try and estimate an optimal number [113].

The HMM states reflect the underlying actions that make up an activity. An action is

described by its position xy and velocity uv. Each of the Q states {qj}Qj=1 are modeled by a

Gaussian distribution

qj = G(f, µj ,Σj) (4.15)

of unknown mean µj and covariance Σj with flow f = [x, y, u, v]T. The HMM states correspond

to Bk and explain the trajectory observations.

The vector π0 specifies the initial state probabilities of the HMM and is defined based

on the sequential structure of activity actions

π0(j) =
1
C
e−αpj j = 1, . . . , Q. (4.16)

with C a normalization constant to ensure valid probabilities. This definition allows tracks to

begin in any action state which is important for online analysis when tracks are incomplete. The

choice of αp is not crucial as long as there is non-zero probability for each state.

The Q ×Q matrix Ak = {ai,j} specifies the probability of transitioning from a state qi
to state qj . Again, the nature of activity causes Ak to be highly structured. The matrix is block

diagonal with highest probability on the main diagonal which indicates the action sequence taken

to complete a behavior.

Both the transition probabilities Ak and the action states which define Bk must be

estimated while π0 is fixed to define an activity. The estimation was accomplished using the

routes learned through clustering.
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Figure 4.7: Spatio-temporal dynamics of paths encoded by HMMs.

4.6.2 Activity HMM Training

An HMM is trained for each activity by dividing the training set D into Nr disjoint

sets, D =
⋃Nr
k=1Dk. The set Dk is the collection of trajectories belonging to route rk based on

membership

k∗ = argmax
k

uik ∀i. (4.17)

Only those trajectories with membership uik∗ > 0.9 are retained when creating training set

D∗k because they are the typical trajectories and can be confidently placed into route r∗k. By

using only highly confident tracks, HMM training is eased and made more precise because of

outlier removal. Using path training sets Dk, the Nr HMMs can be efficiently learned using

standard methods such as the Baum-Welch method [100]. The set of HMMs learned for the

traffic intersection are shown in Fig. 4.7 and specify where lanes are located as well as how

vehicles are expected to move in the lane.

There is no need to manually select “good” trajectories for the modeling step because

they are automatically discovered through the POI-based filtering and route membership thresh-

olding which makes is easy to deploy a new camera system.

4.6.3 Updating Activities

The activity HMMs learned above accurately depicts the scene at the time of training, but

in a surveillance setting there is no guarantee that the activity processes are stationary. Activities

will be dynamic and the models must reflect the changes over time. Two complimentary adaption

methods are used to update the HMM database. The first is an online scheme which refined the

existing activity HMMs based on newly observed trajectories while the second introduced new

models by periodic learning rounds.
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(a) (b) (c)

Figure 4.8: Online MLLR update of path HMM allows adjustments on the fly. (a) Initial path

between doorways. (b) New path learned after a table is positioned to block the walkway. Notice

the path must bend around the table. (c) The original path in green is adjusted to track the

change with the MLLR incremental adaptation shown in magenta.

Online Incremental Update

After training, the activity models are optimal, for the training data, but might not

reflect the current configuration of the scene. Small variations and perturbations could arise from

various causes such as camera movement or path reconfiguration, e.g . people walking around a

puddle. A trajectory deemed to have been generated by a particular activity can be used to

update the HMM in an online fashion using maximum likelihood linear regression (MLLR).

MLLR computes a set of linear transformations that reduce the mismatch between the initial

model and new (adaption) data. The adapted HMM state mean is given by

µ̂j = Wkξj , (4.18)

where Wk is the 4 × (4 + 1) transformation matrix for activity k and ξj is the extended mean

vector

ξj = [1, µT
j ]T = [1, µx, µy, µu, µv]T (4.19)

of state j. The state j represents an individual action that makes up an activity and µj =

[µx, µy, µu, µv]T summarizes the location and dynamics of the action. Wk = [b H] produces an

affine transformation for each Gaussian HMM state with H is a transformation and b a bias term.

The transformation matrix Wk can be found using EM [36] by solving the auxiliary equation

T∑
t=1

Q∑
j=1

Lj(t)Σ−1
j ftξ

T
j =

T∑
t=1

Q∑
j=1

Lj(t)Σ−1
j Wkξjξ

T
j (4.20)

where Lj(t) = p(qj(t)|F ) is the likelihood of HMM state qj at time t given the new trajectory

F . The optimization is performed over all Q states of an HMM to provide an activity level

regression.

Each time a new trajectory is classified into path λk (Section 4.7.1), a transformation is

learned and applied to the mean of each of the HMM states for a sequential online update. The
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update

µj(t+ 1) = (1− αMLLR)µj(t) + αMLLRWk(t)ξj ∀j (4.21)

modifies the mean of existing path λk to better fit new observations at time t. The learning rate

αMLLR ∈ [0, 1] is a user defined parameter set to control the importance of a new trajectory.

Using αMLLR = 0.5 there was almost complete adjustment after 10 trajectories when a path was

blocked by a table and people were forced to walk around (Fig. 4.8).

Incorporating New Activities

The MLLR update allows modification of existing activities but in order to introduce

new and unseen activities into the activity set, we adopt a periodic batch learning procedure

[48]. Abnormal trajectories (defined in Section 4.7.1) that do not fit any of the HMMs well are

collected into an auxiliary training database. Once the database has grown sufficiently large it

can be passed through the learning machinery to periodically augment the activity set. Since the

abnormality database is populated by trajectories which did not fit any of the existing models,

any consistent patterns extracted indicate new activities. In this way, repetitive motions initially

considered abnormal could be assimilated into the typical activity set, e.g . if construction of a

new lane on a highway was completed and opened to traffic.

4.7 Activity Analysis

After the the offline learning process, the underlying activities present in a visual scene

are compactly represented by the set of activity HMMs. Using these learned models, the activ-

ity of scene agents can be accurately characterized from live video. Activity analysis includes

describing current actions, predicting future behavior, and finally, detection of abnormal and un-

usual events. The processing occurs either after an object exits the camera field of view, with a

summary of its activity and whether it was expected, or it occurs online, while under observation

and tracked.

4.7.1 Trajectory Summarization

As trajectories were completed, a summary of the object activity was generated. This

summary explained what activity the object completed and determined if it was typical.

Trajectory Classification

A novel trajectory can be classified by the activity that best described the observation

sequence. Using probabilistic Bayesian inference, the activity label is determined by maximum
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Figure 4.9: Automatic selection of abnormality threshold is based on the average likelihood of

in class samples (green) to out of class samples (red). The sensitivity parameter β is a tunable

parameter to control the sensitivity of abnormality detection.

likelihood estimation.

k∗ = argmax
k

P (F |λk) (4.22)

The likelihood of activity λk can be solved efficiently for the HMM using the forward-backward

procedure [100]. The classification determines the activity which most likely generated the tra-

jectory (which HMM best explains the observation sequence).

Abnormal Trajectories

While every track is classified into a path λk∗ , the quality of this assignment will be low

for abnormal trajectories. Since only typical trajectories are used to learn the HMMs, outliers are

not well modeled. These abnormal trajectories can be recognized as those with low log-likelihood

logP (F |λk∗) < LLTk∗ . The decision threshold is learned during training by comparing the

average likelihood of samples in training set Dk to those outside.

LLink =
1
|Dk|

∑
i∈Dk

logP (Fi|λk) (4.23)

LLoutk =
1

N − |Dk|
∑
i/∈Dk

logP (Fi|λk) (4.24)

LLTk = β(LLink − LLoutk ) + LLout (4.25)

The sensitivity factor β ∈ [0, 1] controls the abnormality rate with larger β causing more tra-

jectories to be considered anomalous. The automatic threshold selection process if visualized in
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(a) (b) (c) (d)

Figure 4.10: Abnormal trajectories (a) Wide u-turn (b) Illegal loop (c) Off-road driving (d)

Travel in opposite direction

Fig. 4.9 where the green line signifies LLink , red signifies LLoutk , and black indicates the threshold

LLTk.

A few examples of abnormalities are displayed in Fig. 4.10. In (a), although u-turns were

allowed, the wide arc was atypical. The illegal loop off-road driving in (b) and (c) respectively

are clearly unusual. The trajectory in (d) looks acceptable but it actually came from a vehicle

traveling in the wrong direction.

4.7.2 Online Tracking Analysis

Although it is interesting to provide a summary of complete tracks, it is often more

important in surveillance to recognize activity as it occurs. In these situations, we want to know

what actions are currently being performed in order to assess the surveillance situation. This

allows timely response to critical events. It is important to note that within this framework

each individual scene agent is considered separately to provide details for each rather than a

more holistic frame level (or clip level) description. Rather than state something interesting is

happening, the agent level analysis explains where and to whom it occurs.

During online analysis, a description of activity is generated based on the most current

information. With each new video frame, a track is updated and the activity description is

refined. The difficulty with online analysis is that at the time of evaluation an activity has not

been completed (a full trajectory has not been obtained). The activity analysis must operate

with incomplete data; the data up to the current time t, F = {f1 . . . ft}. Therefore, the online

analysis infers activity based on the actions an agent has undertaken.

Activity Prediction

Online analysis grants the ability to react to situations as they arise. Real-time analysis

reasoning provides the alerts necessary for timely response. This response time could be improved

if the monitoring system were able to infer intentions and determine what will happen before

it actually occurs. Accurate prediction can help reduce reaction time or even avoid undesirable
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(a) (b) (c) (d)

Figure 4.11: Activity prediction during a u-turn. The green signifies the most likely predicted

maneuver, yellow the second best guess, and red the top-3 guess with the associated confidence

in the colored box. (a) The motion model estimated points (light blue X) fit well during linear

motion. (b) During turns, the motion model very poorly approximates the u-turn. (c) Halfway

through the u-turn, the prediction can accurately gauge the maneuver while the motion model is

very far off. (d) Realignment into a lane but activity memory still indicates the u-turn in green.

situations by providing a buffer to take counter measures and corrective actions.

Future object activity can be inferred from the current tracking information. But, instead

of using all the tracking points accumulated up to time t, only a small window of data is retained

Fwpwc = {ft−wc , . . . , ft−1, ft, f̂t+1, . . . , f̂t+wp}. (4.26)

The windowed track consists of wc past measurements, the current point ft, as well as wp future

points. The future points f̂t+τ is estimated by applying the tracking motion model τ time steps

ahead. By utilizing only the windowed trajectory, only the recent history is considered during

online evaluation because old samples may not correlate well with the current activity. This

allows an agent to be monitored over very long time periods by discarding stale data.

The activity prediction is made at the current time t by evaluating (4.22) with F replaced

by its windowed version F
wp
wc .

λk∗(t) = argmax
k

P (Fwpwc |λk) (4.27)

This prediction has a further time horizon than standard one step prediction (Kalman prediction)

because it leverages the acceptable activities rather than relying on a generic motion model.

During complex maneuvers, motion models will fail when predicting more than a few time steps

into the future.

An example of the superiority of the trajectory pattern prediction is shown in Fig. 4.11.

The top 3 best activity predictions are color coded as green for best match, yellow as top-2, and

red as top-3 and their associated confidence is presented in the colored box. During the straight
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(a) (b) (c)

Figure 4.12: Online unusual event detection occurs at time of occurrence. Green bounding box

indicates acceptable behavior while red is for something unusual. (a) Illegal loop. (b) Off-road

driving (c) A left turn starts out as expected but a peculiarity is detected in the middle because

of the sharp transition. A short time later the activity state returns to acceptable.

sections (a) the motion model estimates behavior well with the light blue X’s. As the turn

progresses, (b) and (c), the estimates drift while the activity prediction accurately determines the

maneuver. Finally in (d), the estimates re-align in the straight section but the activity memory

helps distinguish the u-turn in green. Over the life of a trajectory, the prediction encodes the

object history {λk∗(1), . . . , λk∗(t), . . . , λk∗(T )}. Consistent activity is denoted by consecutive

labels which are equal while lane changes occur at the transitions between labels.

Unusual Action Detection

Similar to abnormal trajectories, unusual actions can be detected during tracking. These

anomalies indicate deviations the instant they occur. Since only a windowed version of a track

is used during tracking the the log-likelihood threshold (4.25) needs to be adjusted. The new

threshold is

LLT tk = γtk
[
βt(LLink − LLoutk ) + LLoutk

]
, (4.28)

γtk =
E[#{q}|wc]

Q
.

The abnormality threshold is adjusted with γt to account for the reduced probability mass asso-

ciated with a partial trajectory. The term γt corresponds to the fraction of states visited in the

online evaluation window. This assumes uniform state duration for a full trajectory and averages

the log-likelihood into each model state Q while the numerator E[#{q}|wc] is the expected num-

ber of states that will be visited in an observation window. The adjustment term is estimated

as

γtk ∼
Qwc/T̄k

Q
=
wc
T̄k
, (4.29)

with T̄k the average length of training trajectories in Dk corresponding to path λk. T̄k/Q the

number of samples per state which results in Qwc/T̄k as the number of states in a window. Notice

that the window only considers wc and sets wp = 0 to make assessments only on observed data.
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Figure 4.13: (a) CROSS - Simulated traffic intersection with 19 maneuvers. (b) I5 - Highway

traffic with 4 lanes in either direction. (c) OMNI - Human activity in a laboratory space viewed

with omni-directional camera. The topographical map representation of a scene has POI nodes

and graph edges depict the routes.

Table 4.1: Experimental Parameters

N D L Q wc wp β βt

CROSS 1900 1764 15 15 10 1 0.88 0.9

I5 606 261 15 15 5 3 0.8 0.95

OMNI 117(131) 55(98) 15 30 30 10 0.9 0.65

Here βt ∈ [0, 1] is again chosen to ensure detection of most suspicious tracking points. We choose

the βt that results in approximately 10% false positive rate (FPR) on the training set with the

assumption that there are no unusual events in the training set. (This is fair because any unusual

actions in the training set would be discovered and provide a lower FPR).

As soon as an object strays from an activity model, an unusual action alarm is triggered

for timely detection. Examples of unusual actions are given in Fig. 4.12. The illegal loop and

off-road driving from Fig. 4.10 are seen in (a) and (b) respectively. The time evolution of a

detection in shown in (c) where initially typical behavior is denoted with a green box but in the

middle of a sharp left turn the box turns red indicating an unusual action. Finally, a short time

later the action state stabilizes back at green.

4.8 Experimental Studies and Analysis

The following section presents performance evaluations for the proposed trajectory dy-

namics analysis system. We evaluate the accuracy of classification, prediction, and abnormality

detection. The results are compiled from a set of experimental studies of different scenes. We

consider a simulated traffic intersection (CROSS), Fig. 4.13a, a view of highway traffic on Inter-

state 5 (I5), Fig. 4.13b, and an indoor laboratory viewed by an omni-directional camera (OMNI),
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Table 4.2: Trajectory Experimental Results

Np lane assignment abnormality detection

CROSS 19 9191/9500 96.7% 168/200 84%

I5 8 879/923 95% - -

OMNI1 7 23/26 88.5% 10/14 71.4%

OMNI2 15 12/16 75% 15/18 83.3%

Fig. 4.13c. The parameters used in the experiments are compiled in Table 4.1 while Tables 4.2

and 4.3 summarize the study results.

4.8.1 Quality of Paths

Before evaluating the activity analysis performance, the quality of the automatically

learned paths is addressed. The true number of lanes in the traffic scenes is known and the

number of paths in the lab scene is manually defined based on examination of the training set.

The lanes of the traffic scenes were identified effectively. All 19 of the intersection

maneuvers were discovered. The intersection contained the largest number of paths but they

are most easily distinguished because of the favorable camera view. In the I5 experiment (Fig.

4.14), all 8 of the lanes were located but there were also 2 false lanes identified. These extra

lanes appear in the southbound direction closest to the camera where perspective distortion

causes more variance in lane localization. Since the trajectories logged the centroid of a vehicles’

bounding box, different vehicles in the same lane generated slightly different tracks because of

object height. In this case, the merge technique was not able to pinpoint a single lane but instead

retained two routes. This compromise was necessary to resolve the more tightly spaced lanes in

the northbound direction. Performing camera calibration to work in a regular coordinate system

rather than the image plane would ameliorate the effects of perspective distortion.

In contrast, the omni camera observed lightly constrained motion through the lab space.

Although there are no physical lanes, virtual lanes appear between doorways and desks. There

were two separate omni experiments, denoted OMNI1 and OMNI2. The first experiment only

contained 7 paths which were all correctly discovered (Fig. 4.15). The OMNI2 experiment

shown in Fig. 4.16 was more complex, using the POI nodes shown in Fig. 4.13c there were 15

unique paths. Although the path learning procedure found 15 paths, 2 were unexpected noise

paths around the table at node c (radius of stop zones was too small). The 2 missing paths had

little training support after POI and membership filtering but could be learned with more data.

These OMNI datasets are particularly difficult as paths do not have clear separation and contain

significant overlap.
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Figure 4.14: Interstate 5 (I5) experiments. (a) Learned Entry/Exit zones, enter in green, exit in

red, and black indicates noise. (b) Routes after merging. (c) HMM path models.

4.8.2 Trajectory Classification

Using (4.22) each sample trajectory is placed into its most likely path. The intersection

experiment had 9191 of 9500 trajectories correctly labeled. The lane number for 879 of 923

manually labeled tracks from I5 video were correctly labeled for 95% accuracy. Not surprisingly,

most classification errors occur in the northbound lanes (93% vs. 98% southbound) where the

lanes appear very close in the image plane. This proximity led to misclassification as large

vehicles could occlude multiple lanes. The test set for the OMNI1 experiment was collected over

24 hours on a single Saturday without participant awareness for natural tracks. The 23 of 26

typical trajectories were correctly classified. The OMNI2 test set was collected by test subjects

walking through the lab over a 30 minute period. In this set only 12 of the 16 (75%) modeled

trajectories were correctly assigned to a path. But, 14/16 were in the top 2 best matches and

15/16 in the top 3.

4.8.3 Abnormal Trajectories

Using β = 0.88, 84% of the anomalous trajectories were correctly identified in the CROSS

experiment. In the first omni experiment, 10/14 abnormal trajectories were detected and 15/18

were discovered in the second experiment. Fig. 4.17 gives examples of abnormal trajectories in

the OMNI experiments.

4.8.4 Tracking Classification

The tracking classification accuracy measures how many individual points during track-

ing had the same label as the true full track label. This assumes an object remains along the

same path during its entire tracking life. The traffic scenes, with the simpler lanes, had high

tracking classification results. The accuracy was 84.1% for the intersection and 94.4% for the

highway. In contrast, the two omni experiments had significantly lower accuracy of 65.4% and

59.4% respectively. They suffered degraded performance due to the complexity of the scene such
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Figure 4.15: OMNI1 experiments (a) Learned interesting zones, enter in green and exit in red.

(b) Routes after merging. (c) HMM path models.
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Figure 4.16: OMNI2 experiments, (a) Updated zones, notice there are stop zones (yellow) not

previously present in OMNI2. (b) Re-clustering of trajectories forms new routes. (e) Larger set

of HMM paths learned in experiment 2.

as partly overlapping paths. When viewing the windowed data, there is little distinction between

going from node a to g or from a to f because the routes share significant space. Velocity pro-

files had the influence when trying distinguishing activities. Looking at the top-2 best matches

provided 72.7% accuracy and the top-3 match had 84.2% detection for OMNI1. Using more

historical track data would improve classification but add more detection delay to the system.

It was not uncommon for the classification to make mistakes at the beginning and toward the

end of tracking where data was unavailable and less salient. When ignoring the first wc/2 = 15

samples at the beginning of trajectories improves the accuracy to 68% for the OMNI2 set, almost

a 10% improvement.
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Table 4.3: Live Experimental Results

Np lane assignment prediction unusual event detection

CROSS 19 35197/41871 84.1% 35077/41871 83.8% 830/999 83.1%

I5 8 14045/14876 94.4% 13859/14876 93.2 % - -

OMNI1 7 2054/3139 65.4% 2220/3139 70.7% 756/945 80.0%

OMNI2 15 1599/2693 59.4% 1656/2693 61.5% - -

(a) (b)

Figure 4.17: Abnormal trajectories. (a) Abnormal trajectory discovered in OMNI1 training set.

Track follows along the border of the room. (b) Abnormal trajectory because of backtracking

along path. Red X’s indicate the beginning of a tracking abnormality when reversing path.

4.8.5 Tracking Prediction

Similar to classification, prediction tries to classify a window of tracking data, except

future tracking points are inferred based on local motion description. Again, the accuracy is

measured by the number of prediction labels that share the same label as the full trajectory.

The prediction accuracy for the intersection was 83.8% and was 93.2% for I5. The results for

the lab were 79.7% for OMNI1 and 61.5% for OMNI2. Clearly the prediction scheme works

quite well for straight paths but is limited when analyzing more complex routes, as seen with

classification as well. The estimated future tracking points do not always fit the path well when

it is curved using just the local dynamics. In a hairpin turn, such as the u-turn in Fig. 4.11, the

assumption is to continue straight rather than double back. As with tracking classification, the

prediction accuracy for the omni scenes similarly suffers due to path overlap. Yet, surprisingly,

by using wp > 0 for prediction there is improvement in accuracy over classification for the OMNI

experiments.

4.8.6 Abnormalities During Tracking

Tracking abnormalities indicate the exact time and location of unusual events. It is

noted that these events occur in groups of successive points, where the number of points is

proportional to the duration. The intersection contained 999 anomalous points and 839 were
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Figure 4.18: Comparison of live abnormality detection ROC characteristics for the CROSS inter-

section experiment. Using only the current tracking point as done by Hu produces a high false

positive rate.

correctly detected. Using βt = 0.65 in OMNI1, 756/945 abnormal points are detected. While

these results seems promising, it comes at a steep price. The accompanying false positive rate

is 55.1 and 63.7% respectively. Fig. 4.18 shows the receiver operating characteristic (ROC)

curve for the CROSS experiment in blue. This curve diplays much room for improvement but

may be misleading because it only accounts for direct correlation between detections and true

abnormalities. If the detection delay is too long there will be no overlap between the detection

and true abnormality groups. Even worse, each detection then contributes a false positive. A

better measure of accuracy might be the detection of a single live abormality point within an

appropriate delay window. Since the ground truth is determined by a human, this also highlights

a major difficulty when evaluating an abnormality detection system. There may be time instances

where abnormalities are too subtle for a human observer to detect but is very apparent to the

computer and it is unknown which “expert” to trust. In Fig. 4.17b we show only the first point

in a group of live tracking abnormalities. Though it looks to be an acceptable path, the person

backtracks between node a and g before ending at node f .

4.8.7 Comparative Analysis

In order to validate our work, we compare or system against another trajectory analysis

system. We use the system presented by Hu et al . in 2006 [48] with their improved spectral clus-

tering technique developed in 2007 [50]. The comparison looks at the quality of route extraction

from clustering and activity recognition results on the CROSS dataset.
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Figure 4.19: TSC measure of cluster quality used by Hu et al . to automatically select the number

of routes. Spectral clustering had better separation between clusters than FCM but still had

difficulty selecting Nr (denoted by the red X).

In order to learn the routes, Hu et al . [48] uses spectral clustering and automatically

determines the number of routes using the tightness and separation criterion (TSC). The plot

in Fig. 4.19 shows the TSC values for different number of clusters K for the test sets. Note: a

smaller TSC value indicates better clusters (tighter more compact clusters with greater separation

between different clusters). Although spectral clustering produces better separated routes than

FCM it is not readily apparent what the optimal choice for K should be. The red X indicates the

true number of paths and unfortunately choosing the K value that minimizes the TSC does not

always produce the correct number because of local minima. In contrast, by our over-clustering

method, all paths were found but with multiple routes in dense areas rather than providing

an underestimate. The merge technique was effective when the separation between routes was

similar but not as effective with large perspective distortion. The automatic choice of clusters is

a formidable problem yet to be solved as both techniques presented have difficulties.

Next, the results of activity recognition between the two systems is compared. In [48], the

routes are modeled as a chain of Gaussians very similar to an HMM. The main difference is time

normalization is done probabilistically with the HMM while the chain does this based on track

length (dividing a trajectory into Q parts with each part corresponding to a small set of points).

Using the average distance between a trajectory and a chain, the likelihood of a path is estimated

as an exponential random variable. Their abnormal trajectory threshold is chosen as the minimal

value in a path set Dk. Finally, they estimate the probability of an unusual point during live

analysis by seeing how well the current tracking point is modeled by the best fit Gaussian state.

Table 4.4 gives quantitative comparison between the two systems on the intersection dataset.
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Table 4.4: Comparison with Hu et al . [48] for CROSS dataset

assignment abnormality prediction live unusual

Hu [48] 98.01% 91.0% 69.48% 31.39%

CVRR 96.7% 84.0% 84.1% 53.84%

Notice there is no live classification column because activity classification and prediction are

equivalent in Hu’s implementation. Since a Gaussian chain and an HMM are very similar, the

results for full trajectories are quite similar, but the HMM paths are much more effective during

live analysis. The HMM time normalization procedure is more robust than the length based

normalization used by Hu. The ROC curve in Fig. 4.18 shows significant improvement when

using a small time window over just the current sample point. When accepting only 10% FP

there is almost 30% better performance.

4.9 Concluding Remarks

This chapter proposes a general framework for live video activity analysis based on

trajectory learning. A behavior vocabulary is learned in a 3 stage hierarchical process that

locates goals with Gaussian mixture modeling, connects them spatially through clustering, and

probabilistically models spatio-temporal dynamics by HMMs. In addition to learning activities,

the models are able to adapt to changing conditions to better represent the scene’s current

configuration for long term analysis. This allows object trajectories to be classified into a typical

activity, predict future behavior, and detect abnormal actions in real-time. The comprehensive

experimental analysis of three varied scenes demonstrates the generality of the trajectory analysis

framework.
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Chapter 5

Monitoring Highway Traffic

The previous chapter explained how a scene can be automatically monitored just through

careful observation of motion patterns. This chapter presents VECTOR (VEhicle Classifier and

Traffic flOw analyzeR), a vision system for monitoring highway traffic as a concrete example of

the utility of trajectory based analysis. In addition to replicating current highway management

measurements, visual tracking and trajectory pattern analysis provides informative information

not accessible through standard inductive loop sensors.

The learned motion patterns define the lane configuration of the highway link and the

manner in which traffic flows. A more complete characterization of highway usage is presented by

examining fleet composition (types of vehicles on the road), the safety of the link is characterized

based on daily speed profiles, and spatial occurring events (e.g . lane changes and abnormal

driving patterns).

5.1 Motivation

The last 100 years has brought great advancements and developments in personal trans-

portation transforming the horse drawn world into one dominated by automobiles. The emergence

of the automobile has opened up the world, providing almost unlimited access and mobility. In

the United States alone, a staggering 240 million vehicles travel over 12 million miles annually

on a network consisting of 4 million miles of road whose maintenance costs $40 million [120].

Such a large infrastructure has immediate social, economic, energy, and environmental impact.

Motor vehicle taxes generate $30 billion annually. Americans use 175 billion gallons of fuel for

highway travel releasing a number of emissions into the air. Between 1995 and 2001 there was

10% increase in average commute time as people experienced slower speeds and increased delay

while stuck in congestion [119]. Perhaps most alarming were the 2.5 million injury accidents

and 41 thousand motor vehicle related fatalities in 2008 [117]. These numbers represent just a

48
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small portion of worldwide dependence on automobiles and emerging countries such as India and

China will dramatically effect the future of transportation.

To manage such a vast transportation network, it is essential to invest in intelligent

transportation systems (ITS) technologies. ITS solutions provide the means to extract and man-

age information necessary for continued advancement. Without their use it would be impossible

to continually monitor our roadways, as no human could process such large amounts of data.

The key requirements for successful ITS systems are the ability to extract and process data

in real-time, provide robustness to a wide range of operating conditions, and technologies that

can adapt to changes in the environment which is essential for long term deployment. The ITS

community has the power to improve the quality of modern life by providing greener transporta-

tion solutions, greater satisfaction through smoother commutes, and ultimately a safer driving

experience.

In order to assess a highway system, traffic engineers, planners, researchers, and users

need data collection, processing, and analysis tools to provide performance measures. These

performance metrics enable ITS solutions. They aid traffic engineering operational decisions

and assist planners determine how to alleviate congestion bottlenecks or optimally place traffic

control equipment.

The main sensor in use for traffic applications is the inductive-loop sensor which is able

to sense passing metal objects. The loop is a mature technology that is resistant to inclement

weather and other environmental factors and provides counts on the number of vehicles it sees

(flow) and the amount of time it is active (occupancy). Although it is the industry standard,

inductive loops must be installed into the road surface which requires a proper maintenance

schedule for operation [65]. Unfortunately, even with with a regular service routine, many sensors

will be down at a given time. California has an extensive network of loop sensors covering the

entire state to monitor 30,573 miles of highway. Out of the 30,246 deployed detectors, it is

estimated that 28.4% are not operable [19]. (This is just about the national average 25% [65]).

A sensor is considered bad for a number of reasons with the most often reasons cited as no data

transmitted, a controller that is down, or a sensor card just being off. There are a number of

reasons for loop sensor failure but the most often cited is road wear-and-tear. It is costly, both

in service time and associated delay for lane blockage, to repair these broken sensors.

In contrast to inductive loop sensors, video based traffic sensors are appealing because

of generally lower maintenance and replacement costs [81]. Video cameras are an attractive

infrastructure sensor because of an active research community, high informational content, and

widespread deployment. Video sensors are also able to directly measure traffic flow parameters

such as density and speed which must be inferred using loops from algorithms that analyze flow

and occupancy. In addition, cameras provide a visual record (when saved) which humans can

easily interpret, a wide field of view which enables coverage of multiple lanes and gives spatial

information (origin-destination (OD) [80]), provides rich contextual data (vehicle appearance),
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and can be utilized for multiple uses (red light violation, speed cameras). Red light and speeding

cameras have been widely deployed by a number of agencies because they enable an accessible

view of conditions with relative ease and minimal intrusion. These cameras provide valuable

video signals that can be reused not just for enforcement but for alternative computer vision

based traffic management such as highway congestion performance measurements [85], detection

of stalled vehicles [57, 58], vehicle classification [84], as well as intersection safety [49, 106].

An active computer vision and ITS community ensure continual advancements in pro-

cessing power and capabilities. To be useful, the visual traffic parameter data must be generated

in real-time and stored in a database for highway model construction. This supply of historical

information is required researchers for managing traffic congestion [101], is necessary for traffic

prediction [124], and provides other application benefits by viewing data over time rather than

just using current conditions [102].

5.1.1 Questions to Address

In this chapter we address the following questions:

• Can a single camera replace multiple inductive loops for highway monitoring?

• What added value can video supply to traffic management?

• How can historical measurements be utilized for activity analysis?

5.1.2 Chapter Summary

In this chapter, the VEhicle Classifier and Traffic flOw analyzeR (VECTOR) system is

introduced which provides video based highway analysis. VECTOR provides wide coverage of a

highway link using a single camera to classify passenger vehicles, generate loop-like measurements,

provide real-time link efficiency estimates, and maintain day of the week history for vehicle speed

profiles. This work proves the following:

• A single camera is able to generate traffic measurements similar to loops for all lanes and

in both directions of travel. This makes video based highway monitoring an affordable

alternative to inductive sensors.

• In addition to loop measurements, video provides a visual record of vehicles that can be

used to determine the types of vehicles using a road segment based on appearance. The

FOV of a camera provides spatial support which enables direct speed calculations as well

as the study of the paths drivers take (for lane changes and unusual activity).

• Utilizing historical measurements provides context for behavior analysis. The record of

speed and flow over the course of a day enables real-time link efficiency calculation and

detection of potentially dangerous fast drivers.
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The VECTOR system for highway monitoring provides a case study which proves the

utility of trajectory learning techniques. Using the same observe and learn paradigm, more

cameras can be used along the highway to provide greater coverage.

5.2 Related Work

Video has become a favorite traffic monitoring sensor because of flexible installation

and high information content. With a single camera, a full highway segment can be monitored

without disrupting traffic to install loops into every single lane. Initially, researchers tried to

imitate loop detectors in video. Virtual loop detectors were arranged on the roadway in video to

accumulate video counts [67]. The virtual loop acted exactly like an inductive loop placed in the

ground, it detected when a vehicle crossed over it. Similarly, virtual lines have been constructed

to count vehicles traveling in opposite directions [116]. The line stretches across the highway,

perpendicular to the road direction, in order to count all vehicles with a single “sensor.” These

virtual sensor techniques did not take full advantage of the spatial information as observed in an

image.

Visual tracking maintains a record of each vehicle while in the camera view. This record

enables simple counting for flow as well as speed estimation by measuring the distance traveled

in a time interval. Objects are detected for tracking with three popular methods; interest point

detection, model fitting, and background subtraction. The main problem in video tracking is

the extraction of objects in a wide range of conditions, enabling accurate association. Interest

point based trackers [10] are robust to occlusion because they handle missing features at the cost

of more complicated data association. Model based approaches deal with changing lighting and

occlusion by fitting the object model, 3D models [49, 64] or contours [14], to the data. Unfortu-

nately, it is computationally difficult to enumerate models for all potential objects. Background

subtraction based trackers provide computationally simple solutions for foreground extraction but

have diminished performance when occlusion or shadows are present. Recent work has looked to

overcome shortcomings due to occlusion [57, 64, 122, 79, 139, 41], shadows [46, 98, 47], and from

weather and lighting conditions [58, 139, 109, 54]. The computational simplicity coupled with

the many techniques to combat lighting and occlusion issues has made background subtraction

a favorite vehicle detection technique.

Unfortunately, the accuracy of the vehicle tracking framework for highway monitoring is

dependent upon the quality of segmentation. The segmentation task becomes much more difficult

as environmental factors change (lighting, shadows, occlusion, or camera motion), when objects

are very small, or in very dense traffic situations (congetsion). To avoid these issues, some

avoid tracking all together and instead rely on a holistic approach to examine group motion.

The spatio-temporal properties of motion fields at different levels of congestion are learned to

categorize traffic video [21]. This type of analysis only classifies the level of congestion but does
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Table 5.1: Selected Studies in Video Based Vehicle Classification

paper accuracy % classes speed measurement

Lipton 98 [72] 83 (4 hrs) 3 - car, people,

other

14 fps dispersedness

Gupte 02 [43] 70 (20 mins) 2 - car, non-car 15 fps width, height

Avery 04 [6] 92 (1 hr) 2 - truck, non-truck - length

Gepperth 05 [38] 90 2 - car, non-car > 30 fps oriented energy

Hasegawa 05 [45] 91 6 - pedestrian,

sedan, van, pickup

truck, mule, other

2-3 fps blob measurements

Zhang 06 [135] 70 4 - truck, sedan,

van, pickup

5 fps image based PCA

VECTOR
87 (1 hr) 8 - sedan, pickup,

suv, van, semi,

truck, bike, merged

30 fps blob measurements
78 (14 hrs)

not quantify it.

A missing measurement need for transportation management is accurate fleet composi-

tion. This data is useful for understanding the differing effects of commercial or private vehicles

on highway control and for the study of environmental impact from emissions [20] or infrastruc-

ture load assessment [118]. Current loop technology is able to separate large, multi-axle, vehicles

from passenger vehicles but has difficulty make fine distinctions. Cameras offer a visual descrip-

tion of objects that can be leveraged to determine type. Table 5.1 provides a short summary of

vehicle classification research. The aim is to distinguish between as many vehicles types as possi-

ble in real-time. Early work used a single dispersedness measure to separate vehicles and humans

from other objects [72]. Vehicles in a parking lot were classified into 6 general types using linear

discriminant analysis (LDA) of blob measurements [45]. A non-linear hierarchical classifier has

been constructed by inputing a vehicle image into a multi-class kernel support vector machine

(SVM) [135]. Good model type recognition results have been demonstrated using a hierarchical

algorithm by extracting features from the front of a vehicle [137].

The rest of the chapter describes VECTOR’s functionality. First, a method to accu-

rately classify passenger vehicle types is presented followed by traffic statistic accumulation. The

traffic measurements are used to characterize the highway segment usage and detect potentially

dangerous driving. Finally, in depth experiments showed the effectiveness of vehicle classifica-

tion and traffic measurement and explained how trajectory learning is used for further highway

characterization.
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(a) Sedan (b) Pickup

(c) SUV (d) Van

(e) Bike (f) Merged

(g) Truck

(h) Semi

Figure 5.1: Sample images from each vehicle class.

5.3 Vehicle Classification

VECTOR classifies vehicles into the 8 different types, {Sedan, Pickup, SUV, Van, Semi,

Truck, Bike, Merged}, seen in Fig. 5.1. The block diagram depicting the VECTOR classification

scheme is in Fig. 5.2. After object detection, the extracted blob features (3.13) are transformed

into a space that better separates the vehicle types using Fisher’s linear discriminant analysis

(LDA) [9]. For each frame a vehicle is tracked, its transformed features are used to generate a

single frame classification using a weighted K nearest neighbor (wkNN) technique. Finally, the

frame classification results are compiled and incorporated into a single vehicle label for the entire

track.

5.3.1 Vehicle Features

In order to distinguish each of the vehicle types, discriminating features had to be chosen

to adequately express the inter class variation.
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Figure 5.2: Block diagram for the proposed classification scheme.

Selection

Three different types of features were examined for vehicle type discrimination, image

(im), blob (bm), and edge (em). The image features considered the raw pixel intensity of aligned

vehicle detections. The blob measurements consisted of 16 features obtained using morphological

operations, mt = [η0, . . . , η15]T = {area, breadth, compactness, elongation, perimeter, convex hull

perimeter, length, long and short axis of fitted ellipse, roughness, centroid, the 4 first and second

image moments} [108]. The edge based features were constructed using the popular SIFT [74]

descriptor. Unfortunately, SIFT was not usable because of the low resolution of far away vehicles

creating spare representations.

Processing

Rather than operate directly on raw features, the vehicle feature vector was transformed

into a lower dimensional space to reduce computational complexity for real-time implementation.

Features were projected either using principle component analysis (PCA) based on the covariance

of all vehicles or using linear LDA which tries to separate classes using individual statistics.

Let Dc = {x1, . . . , xNc} be a set of Nc training vectors for class c, each of dimension

d, with mean µc = 1
Nc

∑Nc
i=1 xi. The full training set, D = {D1, . . . , DC}, is composed of the

training samples from all classes and has mean µ = 1
N

∑N
i=1 xi, where N =

∑
cNc. The LDA

projection is given by the maximization problem

PLDA = argmax
w

|wTSBw|
|wTSWw|

(5.1)

where SB is the between class scatter matrix and SW is the within class scatter matrix.

SB =
C∑
i=1

Ni(µi − µ)(µi − µ)T (5.2)

SW =
C∑
i=1

∑
xk∈DC

(xk − µi)(xk − µi)T (5.3)

(5.4)
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Table 5.2: Image and Measurement Based Classification Rates %

Classifier Sedan Pickup SUV Semi Total

PCA-im 89.51 25.00 45.22 100 72.21

LDA-im 51.54 55.00 26.09 25.00 45.60

PCA-bm 90.43 20.00 23.48 91.67 67.12

LDA-bm 90.43 40.00 53.91 100 76.52

The solution to this maximization leads to the generalized eigen problem SBw = λSWw. The

top M eigenvectors are retained to obtain the LDA projection matrix,

xLDA = PLDAx = [w1, ..., wi, ..., wM ]x (5.5)

Comparison

A comparison between the image and blob features is shown in Table 5.2 for a 4 class

problem. The blob features were generally better than the image results because of difficulty

accurately aligning vehicle samples. The combination of LDA on blob features was chosen for

VECTOR because it was the best performing technique and because generating blob features

and the projection were quite fast because of the small dimensionality.

5.3.2 Track Based Classification Refinement

Information redundancy obtained by the sequential images of a vehicle during visual

tracking can be exploited to improve vehicle type classification. The uncertainty from a single

video frame can be reduced through track based refinement to overcome noisy measurements.

Detection Classification

The wkNN rule [45] is a modification of the NN classifier to assign a sample to every

class rather than a binary indication of class membership. This soft membership is encoded in

the class weight wc, which builds robustness to noise and outliers. A larger weight indicates a

higher likelihood of class c being a match. The weight for a particular class wc is determined by

adding the similarity of the K closest training samples with label c. The label of an individual

detection, LD, is the class with highest weight.

wc =
K∑
i=1

mi∈Dc

1
‖ xi − xt ‖

(5.6)

LD = argmax
c

wc (5.7)
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Figure 5.3: The classification accuracy improves as more tracking information is used with track

based refinement. By using the complete track to do classification there is approximately 30%

improvement over using just the first sample in a track. T is the total number of samples in a

track and t ≤ T is the number of samples used for classification.

In (5.6), xt is a new test sample to classify given the training, D =
⋃C
c=1Dc, set consisting of all

xi. To completely specify the weights of the C vehicle types, K ×C comparisons must be made.

Track Classification

Tracking gives a record of an object while in the camera view. Each time instant along

a track is an example of the object, giving us T examples over the course of a track. Given these

T samples, the track classification is found by maximum likelihood estimation.

LT = argmax
c

T∑
t=1

lnp(xt|c)

= argmax
c

T∑
t=1

ln
wtc∑
c w

t
c

. (5.8)

The likelihood p(xt|c) of class c is approximated by normalizing (5.6) for each sample t in

a track to be a valid probability. The track class is refined each frame as the track is updated. The

track label takes into account all the evidence throughout the entire track to make a decision

on class type rather than a single frame measurement that could potentially be corrupted by

many sorts of noise. It is shown in Fig. 5.3 that as more information is utilized, the classification

accuracy improves. The final track label is the last class assigned before the track ends. Fig.

5.14 gives examples of the track classifier overcoming incorrect detection classification results.
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Classification Confidence

The confidence in classification label LT can be measured by the track likelihood

Cprob =
1
Z

max
c

T∏
t=1

p(xt|c), Z =
C∑
c=1

T∏
t=1

p(xt|c) (5.9)

Cprob = max
c

T∑
t=1

lnp(xt|c). (5.10)

or by the sidelobe ratio

Csl =
p1 − p2

p1
, (5.11)

where p1 and p2 are the first and second highest track likelihoods. The sidelobe ratio is a more

appropriate measure because it gives a measure of how much stronger class LT is than the closest

competing class (see Fig. 5.13 in Section 5.5).

5.4 Highway Flow Analysis

Flow analysis utilizes the trajectory learning models of activity to describe the road and

lane configuration. As vehicles are tracked, their current lane number is determined using the

techniques of Chapter 4 to mimic the output of inductive loop sensors. Using cameras has the

advantage of providing appearance and spatial readings not possible with loops. Vehicle level

analysis is accomplished through object classification and through understanding of trajectory

patterns which enable detection of lane changes an abnormal activity.

5.4.1 Traffic Statistics

Using trajectory information, the time series of fundamental highway usage parameters,

analogous to those obtained from conventional loop detectors, is collected in real-time. This

system delivers flow (#vehicles
time ), density (#vehicles

distance ), and average speed (MPH) in 30 second

intervals, averaged over a 5 minute window. The primary traffic measure of flow counts the

number of vehicles every 30 seconds and indicates link usage. The VECTOR flow statistic is

generated by counting the number of passing vehicles in the 30 second update interval. The

vehicles are counted as they exit the camera field of view to simulate a spot sensor. Density

is the average number of vehicles in the camera view normalized by the roadway length and

measures highway crowding. The link density can be directly measured using the area coverage

provided by cameras whereas it must be inferred based on occupancy (% of loop activity) and

flow using loops. The speed is the average velocity of all tracked vehicles in the 30 second interval

which is difficult to obtain using loops. Manual roadway calibration was necessary in order to

obtain localized units and convert from pixels/sec into MPH. While it is possible to obtain speed

measurements with special loop configurations (double loop detectors), research has shown that
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Figure 5.4: Density, flow, and speed for north and south bound directions of Interstate 5.

they are unreliable and that speed calculation algorithms based solely on flow and occupancy are

superior [19].

Fig. 5.4 gives examples of the accumulated statistics in the north and south bound

directions of US Interstate 5 (I5) on a Friday evening. Density greatly increases in the southbound

direction between 15:00-16:00 with an accompanying increase in flow. But, the increased usage

leads to a large reduction in link speed. Once the evening commute is in full swing, between

16:00-18:00, the speed is only 20 MPH, density is capped at approximately 175 vehicles per mile,

and the flow follows a downward trend after reaching its limit of 60 vehicles per 30 seconds.

In order to match loop detector data, measurements must be taken for each highway

lane. The lane is determined during tracking based on the road configuration. Each tracked

vehicle is placed into its corresponding lane depending on its trajectory position to observe the

effects of individual lane congestion. Fig. 5.5 shows the south bound statistics for each of the

highway lanes. In 5.5a it is evident lane 4 (the slow lane) is occupied by more vehicles. During

the commute hours this difference is greatly increased from 30 vehicles/mile to 80 vehicles/mile

which causes congestion. This is revealed in Fig. 5.5b by noting the increased flow and density

until a sudden flow drop shortly after 16:00. The congestion in the slow lane spills over into the

adjacent lanes causing a comparable loss in speed over all the lanes as is evident in Fig 5.5c. This

phenomenon demonstrates the need for on and off ramp management to control the slow lane as

well as the entire highway link itself.

Besides reproducing loop detector data, video provides a means for extracting more rich

contextual information. Traffic parameters are compiled for each type of vehicle based on the

vehicle classifier. Fig. 5.6 plots the flow and speed of different vehicle types on a weekday. In

Fig. 5.6a there are clearly many more sedans on the road than any other class of vehicles but

during the evening commute the number of Pickups and SUVs on the road appear to switch;

during the day there are more Pickups and during rush hour there are more SUVs. One may

speculate this occurs because contractors and other workers (construction or landscaping) who

need pickups start and end their work earlier than the more typical 9-5 day. In 5.6b it is noted
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Figure 5.5: Individual lane density, flow, and speed for south bound direction of Interstate 5.
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(a) Flow: Distribution of highway usage by vehicle
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(b) Speed: Semi trucks travel at noticeably lower

speeds.

Figure 5.6: Traffic statistics separated by vehicle type.

that most of the vehicles travel at approximately the same speed (the speed of traffic) but the

larger Semi trucks tend to travel slower than passenger vehicles, matching intuition.

5.4.2 Utilization and Efficiency

Flow, speed, and occupancy are useful traffic parameters for congestion management [22].

Chen et al . showed that congestion was not caused by demand exceeding capacity but because

of inefficient operation of highways during periods of peak demand. Their work considered a

productivity argument to define link efficiency as

η =
VMT/60
V HT

. (5.12)

The value VMT = flow × section length is the total number of vehicle miles traveled, V HT =
VMT
speed is the total number of vehicle hours, and 60 is the sustained speed at maximal flow in mph
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Figure 5.7: Highway lane efficiency.

based on empirical distribution data. The efficiency, η, is a measure of congestion delay, or the

extra time vehicles are forced to travel below 60 MPH.

Using the accumulated VECTOR usage statistics, the efficiency, at a given time t, can

be better estimated taking into account changes in flow by

η̂(t) =
flow(t)× speed(t)
flowmax × speedmax

. (5.13)

This efficiency estimate η̂ is the ratio of the actual to maximal throughput. The maximum

values of flow and speed are maintained by averages over time (see Section 5.4.3) which means

the efficiency rating can be greater than 1. Using VECTOR, the efficiency can be directly

computed from raw measurements in real-time.

Fig. 5.7 shows lane efficiency over time of the north and south bound directions of the

highway. Congestion is clearly evident during the evening commutes, where the efficiency drops

significantly. It is interesting to note that while the efficiency of the south bound direction drops

because of congestion the north bound highway does not suffer from congestion. The reduced

efficiency in the fast lane is actually due to under utilization. Here the flow in lane 1 is much

lower while utilization of lane 4 increased due to an exit ramp. These usage statistics can be

used to develop control strategies to reduce congestion and save delay.

5.4.3 Daily Speed Profile

The large amounts of data collected by this system allows usage analysis not just over

the course of a single day, but over many days. To build useful highway models, it is important

to incorporate the differences in traffic behavior as a function of time. Fig. 5.8 demonstrates

the differences in the speed profile for work and non-work days. The Friday congestion slow
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Figure 5.8: Highway speed profile comparing weekend and weekdays.

(a) Car slowing (yellow box) before stopping on the

shoulder.

(b) Car coming to rest (red box) on the shoulder of

the highway.

Figure 5.9: User defined speed profiling.

down between 16:00-19:00 is severe and significantly greater than the other weekdays. (The

Monday and Tuesday commute is noticeable but it is a much more subtle speed disturbance).

This demonstrates the need to model each day individually.

By using a database of historical speed measurements, a model of daily highway speed

patterns can be constructed to incorporate the traffic speed fluctuations during the course of a

week. Seven daily models are generated by averaging across each specific day (Fig. 5.8b). During

live tracking, the VECTOR system indicates the motion state of each vehicle by the color of its’

bounding box; {speeding, normal, slow, stopped} = {blue, green, yellow, red}. The motion state
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Figure 5.10: Friday evening high volume traffic showing merging of vehicles. The north and

south bound directions have differing speed profiles because of southbound congestion.

is defined as

SV (v) =


Stopped, 0 ≤ v < 0.15V dD(t)

Slow, 0.15V dD(t) ≤ v < 0.6V dD(t)

Normal, 0.6V dD(t) ≤ v < 1.1V dD(t)

Speeding, 1.1V dD(t) ≤ v

, (5.14)

where V dD(t) is the average speed at time t for the day D in direction d ={North, South, East,

West} and v is the vehicle speed. The average speed V dD(t) is the average speed as observed

over a number of training days. An example of the speed profiling is demonstrated in Fig. 5.9.

A test vehicle slows (Fig. 5.9a) before coming to a complete stop on the shoulder of the road

(Fig. 5.9b). Fig. 5.10 demonstrates the speed profiling at 18:30:00 during a Friday evening

commute. Notice the north bound direction only contains freely moving vehicles while there are

slow moving ones (red and yellow bounding box) in the south bound lanes. Different profiles

are maintained in both the north and southbound directions to properly account for their own

unique temporal variations. On Friday (D =F), congestion causes V SF (18 : 30) ≈ 25 MPH going

south (d = South) while North retains the faster V NF (18 : 30) ≈ 70 MPH flow. The speed state

can be used as an indicator of dangerous situations because it locates abnormal and potential

unsafe driving patterns based on historical data.

5.5 Experimental Evaluations

The following experiments test the performance of the VECTOR system. Classification

is tested over the course of a single day and flow analysis is compared both with hand counted

vehicles and with inductive loop detector data from Berkeley’s Freeway Performance Measure-

ment Project (PeMS) [19]. The manual evaluation checks the raw 30 second output over a small

interval while the PeMS loop comparison determines utility over longer time periods.
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(a) 08:17:19 (b) 10:13:32

(c) 14:06:17 (d) 17:00:48

(e) 17:45:06 (f) 19:43:02

Figure 5.11: Examples of typical illumination and shadow variations in the highway scene over

a day.



64

Table 5.3: Percentage Accuracy for Hourly Test Clips

time sedan pickup suv van semi truck bike merged total count
06:21 94.9 59.5 81.9 31.6 50.0 33.3 0 97.5 81.5 405
07:19 96.2 32.5 83.2 06.7 66.7 25.0 100 98.0 84.7 497
08:17 61.2 33.3 91.9 14.3 50.0 50.0 100 96.7 67.6 530
09:15 53.2 38.7 82.3 53.9 37.5 23.1 100 96.8 63.7 444
10:13 36.8 26.7 77.3 26.7 71.4 40.0 0 93.9 51.0 357
11:11 63.4 47.2 90.4 28.0 66.7 33.3 - 89.6 68.6 417
12:09 86.0 71.7 82.6 48.0 50.0 37.5 100 96.9 80.8 432
13:08 95.6 76.3 83.5 39.1 100 50.0 - 97.9 87.0 393
14:06 96.9 77.8 84.2 18.2 - 66.7 100 94.9 86.2 449
15:04 96.0 76.4 81.9 23.1 100 09.1 100 100 85.4 492
16:02 97.1 66.2 76.0 24.0 100 55.6 100 100 85.7 553
17:00 99.1 65.5 62.0 03.6 - 0 100 94.5 83.0 630
17:45 89.0 75.9 52.8 10.0 - 100 67.0 97.7 76.0 297
18:45 96.0 57.9 73.9 10.5 - 100 50.0 97.9 84.6 382
19:43 95.0 77.8 78.5 0 100 100 - 100 86.5 222

5.5.1 Vehicle Classification

The visual VECTOR system is in constant operation, continually generating tracking,

classification, and traffic flow data. It is important for this system to work over long periods of

time to be competitive with the loop detector network. This section presents classification results

over a 24 hour test period. Example frames from the test are shown in Fig. 5.11 and demonstrate

the various lighting conditions encountered over a day. Vehicles are classified into 8 different types

{Sedan, Pickup, SUV, Van, Semi, Truck, Bike, Berged}, with example images of each shown in

Fig. 5.1. The classes considered are the most often occurring vehicle types based on the 2001

National Household Travel Survey (NHTS) conducted by the U.S. Department of Transportation

(DOT) [119]. This survey found non-commercial vehicle use of 56.5% wagon/auto/car, 18.4%

pickup, 12.0% suv, 9.0% van, and 2.2% bike. The remaining classes of truck and semi model

large commercial vehicles, while the merged type is used to indicate occlusion. The TSV class

is a conglomerate of trucks, SUV, and Vans and comprise examples that were too difficult to be

classified by human because of poor image resolution or vehicle ambiguity.

The classifier evaluation was conducted over a 24 hour period. The highway NTSC

(352x240 resolution) video was streamed and processed at approximately 15 frames/sec. Five

minute clips were annotated at each hour of the day for careful evaluation. A total of 6,500

vehicle tracks were labeled. The class distribution can be seen in Table 5.4.
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Table 5.4: Confusion matrix for all hours of test. Total classification accuracy of 78.4% over 6500

test tracks

sedan pickup suv van semi truck bike merged
sedan 2726 127 202 55 0 0 1 0
pickup 40 374 52 24 0 14 0 4

suv 411 113 1147 172 0 3 0 4
van 15 11 54 83 0 6 0 7
semi 0 0 0 0 26 1 0 1
truck 1 5 1 2 11 36 0 0
bike 1 0 0 0 0 0 18 0

merged 7 7 6 10 3 31 2 677
total 3201 637 1462 346 40 91 21 702

% correct 85.2 58.7 78.5 24.0 65.0 39.6 85.7 96.4
% correct 85.2 58.7 80.1 56.5 85.7 96.4

Table 5.5: Confusion matrix for test clip at 14:06:17 on 06/12/06: Classification accuracy of

87.1% best performing time.

sedan pickup suv van semi truck bike merged
sedan 216 4 9 3 0 0 0 0
pickup 3 35 3 6 0 0 0 0

suv 2 3 65 17 0 0 0 1
van 0 0 1 6 0 0 0 0
semi 0 0 0 0 0 0 0 0
truck 1 2 0 0 0 4 0 1
bike 0 0 0 0 0 0 7 0

merged 0 1 0 1 0 2 0 57
totals 216/222 35/45 65/77 13/33 0/0 7/7 4/6 56/59

% correct 96.9 77.8 84.4 18.2 - 100 66.7 94.9

Vehicle Classifier Training

The classifier was trained by running the tracking software on video and manually la-

beling the vehicle type of the 4778 detected vehicles. A large amount of data is generated in a

relatively short amount of time because each frame of a track gives another example of a partic-

ular vehicle. Unfortunately, the classifier is scene specific and any new location would have to be

manually re-trained because the features are view dependent.

24 Hour Results

Using k = 5 for the wkNN classifier, a 78.4% classification rate was obtained over the

6500 tracks. The hourly classification accuracy can be seen in Table 5.3. Unfortunately, the

classifier did not work well for all times of the day. At night, the low light conditions impeded
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Table 5.6: Comparison of Nearest Neighbor Classifier Variants

merged sedan pickup suv semi van truck bike total
NN 0.9302 0.7604 0.5513 0.6411 0.5750 0.2120 0.4286 0.7619 0.6963
kNN 0.9459 0.8391 0.5719 0.6815 0.5750 0.1920 0.4176 0.6667 0.7463

wKNN 0.9644 0.8516 0.5829 0.7813 0.6500 0.2321 0.3956 0.8571 0.7809

vehicle detection and instead focused on headlights. During the daylight hours, classification

accuracy is usually in the mid 80% except between the morning hours of 08:00-12:00 where it

drops significantly. Strong shadows caused distortion of vehicle shape which caused many sedans

to be misclassified as an SUV. The vehicle t2 in Fig. 5.15 is a correctly detected sedan but t3 has a

larger detection outline making it easily confusable with a SUV based on the blob measurements.

The less severe performance hit between 17:00-18:00 is again attributed to shadows, but this time

to environmental occlusion from trees on a hill (Figs. 5.11d and 5.11e). The utilization trajectory

based classification helps recover from regions of poor detection due to cast shadows.

The performance of each vehicle type is presented in Table 5.4. Similar accuracy is

obtained for Sedan, SUV, Bike, and Merged but Van and Truck had very low performance.

Since Van appear quite similar to SUV and Truck with Semi, combining them resulted in a 3%

improvement to 81.8%. A comparison with Table 5.5, which was the best performing hour, shows

the most difficult class to distinguish is the Van. The lower rates associated with the Truck class

mostly arise because the object detected would fragment these larger vehicles. Clearly, more

robust detection schemes which account for shadows e.g . [98] would improve the results.

Nearest Neighbor Comparison

The performance of common NN variants are compared in Table 5.6 which shows that

the wkNN technique has significant improvement over traditional NN and moderate gains over

standard kNN, which only considers the k closest neighbors and ignores the labels. Interestingly,

the performance of the wkNN classifier does not change much for different k values unlike kNN

which needs large k to approach the wkNN rate (Fig. 5.12).

Track Based Refinement

Using the multiple views afforded by tracking, classification improves 8% using the full

trajectory as opposed to the first frame. The performance improves as more information is

included as can be seen in Table 5.7. The best match (BM) method [45] collects the classification

weights at each frame and at the end of a trajectory makes a final class label decision based on
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Figure 5.12: The performance of kNN is improved as the number of neighbors k is increased but

it has little effect on the wkNN.

the highest observed weight.

L(t) = argmax
c

wc(t) (5.15)

w(t) = maxwc(t) (5.16)

t∗ = argmax
t

w(t) (5.17)

L∗ = L(t∗). (5.18)

The trajectory refinement method has only a small 2% improvement over BM. Prior work using

a different set of vehicle classes and smaller training set displayed significant improvements [83].

In that work, using trajectory refinement produced a 14% improvement.

Confidence Weighted Classification

In Fig. 5.13, the classification accuracy is presented based on the classifier confidence.

When considering vehicles with higher confidence, only examples greater than the threshold

Csl > CT , the performance improves as expected. Accuracy increases from 77.5% to 94% while

simultaneously using 6,500 to 1,336 tracks between 0% to 99.99% confidence. At low confidence

there is a larger gap between the full 8 class and smaller 6 class problems. This indicates the

trade-off between classification accuracy, number of vehicle types, and confidence. The plots were

generated by utilizing a random subset, 60% split, of the training database and averaging the

results of 20 different runs on the 24 hour test data.
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Table 5.7: Tracking Refinement Compared with Best Match

t = 1 t = 0.5T t = T BM
06:21 0.7630 0.8074 0.8049 0.7704
07:19 0.7425 0.8068 0.8471 0.8290
08:17 0.6075 0.6434 0.6755 0.6679
09:15 0.5518 0.6014 0.6374 0.6396
10:13 0.4790 0.5154 0.5070 0.5182
11:11 0.6307 0.6715 0.6835 0.6451
12:09 0.7176 0.7894 0.8056 0.7917
13:08 0.7964 0.8575 0.8651 0.8397
14:06 0.7996 0.8597 0.8619 0.8441
15:04 0.8110 0.8435 0.8537 0.8435
16:02 0.7920 0.8300 0.8571 0.8354
17:00 0.6857 0.8190 0.8286 0.8079
17:45 0.6128 0.7306 0.7306 0.6936
18:45 0.8063 0.8377 0.8429 0.8377
19:43 0.7928 0.8649 0.8649 0.8243
total 0.7071 0.7666 0.7809 0.7634

5.5.2 Flow Comparison

The feasibility of using a single camera to monitor all lanes in both direction of a highway

link was examined in two ways. Raw sensor measurements, as accumulated in 30 second time

intervals, were compared with hand counted flow over a small time period. A longer analysis

examined how well VECTOR’s measurement matched the loop data accumulated by PeMS.

Manual Flow Comparison

The accuracy of the VECTOR measurement system was tested by comparing the esti-

mated flow to manual vehicle counts over a 30 minute period. The true 30 second vehicle counts

are averaged in a 5 minute sliding window for a direct comparison with the VECTOR output.

The comparison plots in Fig. 5.17 plots the 5 minute hand count average as a blue line, a green

line represents the VECTOR output, and a red line shows the error. The ground truth flow error

is usually less than 2 vehicles in every 30 second window demonstrating the estimate accuracy.

The strong correlation between the truth data and the visual VECTOR output is clearly evident

in lane 1 but there is inconsistency before 16:48 in lane 4 as seen in Fig. 5.17b. The flow is un-

derestimated because of roadside shadowing similar to 5.11e. The two slowest lanes were covered

by shadows and many vehicles were not detected. The detection parameters were adjusted (σ0

in (3.3)) correcting the flow estimates for agreement with the truth data as shown in Fig. 5.17d.
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Figure 5.13: Classification accuracy using different number of classes and confidence metrics. The

6 class test combines SUV+Van and Semi+Truck. Only vehicles with Csl > CT are considered

when determining the classification accuracy.

PeMS Loop Comparison

The extracted traffic parameters were also evaluated over a longer time period by com-

parison with loop detector measurements available from the PeMS website. The PeMS website

provides flow and average speed in 5 minute aggregate windows rather than the raw 30 second

intervals output by the sensors. Figs. 5.18 and 5.19 plot the south bound PeMS data along with

the 5 minute corrected VECTOR estimates.

The comparison plots in Figs. 5.18 and 5.19 show strong correlation between the video

and loop based statistics. Flow spikes are accurately tracked close to 18:00 in Figs. 5.18b and

(c). In the Monday plots, there seems to be a noticeable difference which is most apparent when

examining speed (Fig. 5.19c). There is an early morning drop in PeMS speed and conversely a

significant evening slowing of traffic in the VECTOR plot. Visual inspection of the video stream

confirmed the slowing traffic described by VECTOR. The discrepancy in speed measurements

come from the differing sensor configurations, Fig. 5.16. The PeMS loop detectors are on the

opposite north side of the Busy Genesee Ave. ramp from the camera setup. The speed is

mismatched because of vehicles entering and exiting this ramp. The higher level of congestion

on Friday evening causes a backup north of the Genesee ramp to the southbound loop detector

while on Monday it is not as severe and does not extend as far. The Monday morning slowdown

observed by PeMS is from cars exiting the highway.

The added coverage area, lower cost of service, and multi-use possibility from video
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(a) (b)

Figure 5.14: Examples of track classification correcting for misclassified detection. (a) Track

40: Van misclassified as SUV by Detection Classifier but correctly labeled by Track Classifier.

(b) Track 56: SUV misclassified as Van by Detection Classifier but correctly labeled by Track

Classifier.

Figure 5.15: Object detection corrupted by shadows making a sedan appear as a SUV.

monitoring provides clear advantages over inductive loop sensors. The performance comparison

of VECTOR with true flow and PeMS results show visual sensors can accurately estimate traffic

parameters making it as useful as a traffic sensor.

Occlusion Handling

Care was necessary when comparing PeMS to VECTOR. The camera-roadway configura-

tion was chosen for high classification but was not optimal for detection. Perspective distortion

could cause multiple vehicles to merge into a single detection. The Merged vehicle class was

defined in order to capture and compensate for this deficiency. The merged vehicles were statis-

tically counted when determining flow aggregates. During free flowing traffic, occlusions occurred

in 10.7% of tracks. (This includes anywhere during tracking not just at the counting region at

the edge of the camera FOV). The merge situation significantly increases during high density

as shown in Fig. 5.10. In congestion, 25% of all trajectories where merged with 20% of those

containing 3 or more vehicles. When a merged track left the camera FOV, it was statistically

counted as 2.17 which was the mean of the empirical distribution of vehicles in a merge situation.
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Camera

Loop Detectors

Figure 5.16: Camera and PeMS loop detector sensor configuration on opposite sides of the

Genesee Ave. ramp.

Table 5.8: I5 Lane Classification Rate %

Lane 1 Lane 2 Lane 3 Lane 4 Total

South 98.7 100 96.2 97.6 98.0

North 100 91.7 84.4 94.6 93.0

5.5.3 Trajectory Pattern Analysis

The following results can not be obtained using loop detectors since they are spot sensors

and do not provide spatial coverage of a highway link. [REF why lane changes are good to

know - emissions, congestion, etc... traffic microscopic models coifman itsc2006, lane changes for

congestion kamijo, kang and chang itsc2004] Lane Changes, Abnormalities.

As indicated by Table 5.8, the trajectory learning technique works well for the straight

lanes of the highway even at a long distance (> 200 ft) under perspective distortion. In Fig.

5.20 the number of lane changes and abnormalities over the course of a day are recorded. A

comparison with the Monday flow in Fig. 5.18c shows that there are increased lane changes

during the higher flow times. This might be expected because more cars on the road would

indicate a higher need or desire to maneuver into a more freely flowing lane. Fig. 5.21 highlights

a few trajectories that were marked as abnormal.

24 hour test is a monday so make connection between lane change rate and increased

flow on Fig. 5.18c.
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(d) Lane 4

Figure 5.17: True lane flows, 5 minute average truth, and VECTOR module flow comparison.

5.6 Concluding Remarks

A visual activity analysis scheme based on tracking was developed for live highway

monitoring and activity analysis. The VECTOR system adds real-time situational awareness

to visual monitoring by leveraging the recurrent patterns of highway motion to automatically

build a lane description and high level activity models. VECTOR is able to use a single camera

to extract highway performance measures crucial for traffic management in both directions of a

busy link. It adds In addition to standard loop type measurements, the visual system is able to

provide a more complete view of usage by categorizing the types of vehicles on the road, measuring

link utilization and efficiency in real-time, and recognizing potentially dangerous driving based

on historical speed profiles. Finally, by studying and understanding trajectory patterns on the

highway, spatial analysis, not possible using current spot sensors, enable the detection and count

of lane changes and abnormal driving behavior.
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(a) Friday 10/06/06 Flow
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(b) Sunday 10/08/06 Flow
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(c) Monday 10/09/06 Flow

Figure 5.18: Comparison between PeMS data and the Flow Analysis module shows strong agree-

ment in flow numbers.
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(a) Friday 10/06/06 Speed
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(b) Sunday 10/08/06 Speed
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(c) Monday 10/09/06 Speed

Figure 5.19: Comparison between PeMS data and the Flow Analysis module for speed statistics.

Acknowledgements

Chapter 5 is in part a reprint of material that appears in the IEEE Transactions on

Intelligent Transportation Systems, 2008, the Proceedings of the IEEE International Conference

on Intelligent Transportation Systems (ITSC), 2007, the Proceedings of the IEEE International

Conference on Advanced Video and Signal based Surveillance (AVSS), 2006, the Proceedings of

ITSC, 2006, all by Brendan T. Morris and Mohan M. Trivedi. The dissertation author was the

primary investigator and author of this paper.

The support for this work came from the NSF-Bridge grant, ITR, and TSWG. Special

thanks goes to UC Discovery for allowing the design, deployment, and continuous operation of

the unique DIVA testbed at UCSD.



74

6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

Time

C
ou

nt

 

 

N
abn

N
lc

Figure 5.20: Highway trajectory pattern analysis shows increased lane changes during the hours

of higher flow.

(a) (b) (c)

Figure 5.21: Highway I5 abnormalities. (a) Vehicle on shoulder during entrance. (b) Vehicle

slows to exit in northbound direction on top of image. (c) Truck falsely identified as abnormal

because detection centroid is high and appears to be on the side of the road.



Chapter 6

Wide-Area Contextual Awareness

The previous chapters presented methods to analyze a single infrastructure mounted

camera in an unsupervised manner. This chapter develops a unifying framework that provides

spatial context and awareness over large areas and multiple (different) sensors. The following

framework provides the first steps toward wide area coverage and hints at safety applications

that utilize communication between infrastructure and independent agents traveling around the

coverage area.

6.1 Motivation

Intelligent monitoring of environments has progressed rapidly in the past 10 years [26].

Major technological advancements have pushed the field toward ever more complex environments.

The decreased price of video cameras, a primary sensor for surveillance applications, along with

improved quality has enabled the use of multiple cameras in more varied spaces. Vast amounts of

generated data can be transmitted efficiently because of high quality video compression techniques

and improved wireless communication which facilitates flexible setup and configuration. And

most importantly, the research community has made great strides in providing intelligence to

these spaces. Low level problems such as object detection and tracking are possible in real-

time, making common surveillance tasks, such as monitoring a sensitive area for unauthorized

entry, straightforward. Intelligent monitoring now seeks to provide situational awareness for

semantically meaningful understanding of environment activity.

A key to accurately understanding an environment is to incorporate the needs of the user

of the monitoring system. A human must be included in the analysis loop for critical decisions

because these decisions must be based on a good understanding of the environment and the

monitoring situation. Unfortunately, due to vasts amounts of streaming information, limited at-

tention, and distributed awareness, a human operator can not accurately monitor large areas and

75
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networks effectively. Automatic computational techniques are vital for the monitoring process in

order to highlight and guide user attention to relevant areas to relieve tedious concentration on

non-critical information. The challenge is to distill the volumes of monitoring information into

a manageable quantity and present it to a user in such a way that appropriate decisions can be

made promptly (in sufficient amount of time).

This chapter presents a surveillance and monitoring system called CANVAS. CANVAS

is a Contextual Activity Notification Visualization Analysis System that spatially integrates

distributed sensors. It is used to develop advanced monitoring techniques, integrate cameras and

GPS enabled devices, and centralize information [115]. It provides a flexible backbone which

allows improvements to vision algorithms while providing a seamless visualization interface. The

visualization provides a user with environmental context for the distributed analysis modules in

a customizable web interface.

6.1.1 Questions to Address

The following chapter tries to answer the following questions:

• How can multiple distributed sensors be combined to provide larger context?

• How can differing sensors and information sources be intuitively combined?

• How can monitoring analysis and results be presented in a usable fashion?

6.1.2 Chapter Summary

We developed the Contextual Activity Notification Visualization Analysis System (CAN-

VAS) to provide large area environment coverage and broad situational awareness capabilities.

The system architecture provides a general framework to collect data from a wide range of

sensors, specifically infrastructure mounted cameras and the LISA vehicular testbeds, learn com-

putational models of activity for live analysis, and provides an online user visualization interface.

The development of CANVAS has led to the following observations:

• Spatially distributed sensors can be naturally combined based on their relative position. A

larger environmental context is built through the combination of individual sensor scope.

• The use of the global positioning system (GPS) abstracts sensors type, e.g . infrastructure

cameras, vehicles, or smart, in favor of measurements localization. By providing a transfor-

mation between the sensor space and GPS coordinates, arbitrary information sources can

be fused for contextual understanding.

• With the use of GPS localization, a map based presentation of the monitoring environment

along with contextual cues provides an intuitive interface for user interaction and higher

level situational analysis.
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Figure 6.1: CANVAS Monitoring Diagram. The monitoring framework relies on a layer of physi-

cal infrastructure which includes cameras and other sensors. The raw sensory data is archived in

a database for retrieval. The notification layer relies on a Visualization module to provide needed

data in real-time whenever it is required. User inputs are able to customize and modify results.

A hidden layer connects the physical devices to the visualization. This hidden layer incorporates

the Analysis and associated Learning modules to provide contextual information to a user.

Initial CANVAS use has shown promise as a tool for developing advanced safety systems

that utilize integrated sensing from infrastructure and GPS enabled devices.

6.2 System Description, Framework and Functionalities

The block diagram in Fig. 6.1 depicts the major components of CANVAS. The central

goal of the system is to have ubiquitous access. This is reflected by the Archival block located

in the center of the diagram. A database collects and stores data which is accessible through

a standard internet connection for quick retrieval. Most of the database storage is devoted

to Data Collection from connected sensors. Any number of sensors can be hooked into the

database. Typical sensors are video and audio devices which each have specialized data extraction

techniques, such as position estimates via tracking or object descriptors. The archive data is

utilized to train computational modules in the Learning block. Example modules can distinguish

different types of objects, e.g . distinguish pedestrians from vehicles, model highway traffic flow,

and compactly represent activity through trajectory learning. The models are archived and used

for Live Analysis where current sensor readings are utilized in conjunction with the trained

models to describe the current state of the scene. The results of live analysis may be wired back

into the database as added supplementary features, e.g . a trajectory has position and velocity
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as well as a description of what type of object it is. Finally, the database contents are made

available to a user through a Visualization module. A user is able to query the database to

retrieve only relevant information and have the display updated in real-time.

Notice the modules (besides Data Collection) all pass informations in both directions

from the Archival block. This gives the system the ability to dynamically change over time.

Models developed through learning techniques can query more recent data in order to update

and refine results which in turn modifies the output of live analysis. Modification is even possible

through the Visualization module. In this case, the user is able to customize results in order to

present the most relevant information for his task. These goals of the end user can help dictate

the types of analysis that are necessary.

6.3 Information Archival

The heart of CANVAS is the database archival system. A MySQL relational database

system is implemented to provide access to organized information tables to multiple users. The

widespread use of MySQL has led to the development of many libraries to connect with the

database from different programming languages and operating systems. This operational flexi-

bility allows virtually any machine with a network connection to communicate with the database

and access its data.

The main goal of the archival block is to timestamp and store sensor data which provides

measurements on the state of the monitored world. As the database is updated, a historical

context emerges which is necessary for accurate scene understanding. The centralized database

allows for a fluid design because it can grow and adapt to new information types and requests as

necessary. Training databases, used for learning, can be separated and maintained as subsets of

the full database. New information and measurement types can be included with the addition of

new sensors or computational modules. This adaptation is necessary for long-term use because

monitoring needs can change over time.

The database is split into three main partitions, sensors, models, and data. The first

partition holds information about all the connected sensors. Each camera sensor is denoted by its

type (ptz or omni), location (latitude and longitude), and information for mapping (ptz setting

and conversion from image to world coordinates). When new cameras are installed they are

quickly integrated into the CANVAS system by including this sensor information. The model

partition maintains the learning results utilized during live analysis. This partition denotes the

model functionality and the parameters necessary for analysis. The last database partition deals

with the raw sensor data.

A set of secondary databases are populated by video processing for use by the learn-

ing modules. The measurement database holds information describing the appearance of each

detected object for type classification. Tracking information, including location, speed, and ac-
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Figure 6.2: UCSD video network. A network of video cameras is situated around campus to

provide coverage of different environments. Both rectilinear PTZ as well as omni-directional

cameras are used to monitor highway vehicle traffic and the close interactions of people and

vehicles on campus.

celeration, are stored in the tracks database for trajectory learning. The traffic modeling module

relies on information stored in the highway statistics database which includes vehicle flow, den-

sity, and speed logged every 30 seconds. Finally, the live database is automatically updated using

current data to provide information for visualization.

6.4 Data Collection and Sensors

The Data Collection front end provides all the meaningful and useful signals for CAN-

VAS. All the low level data generation and extraction happens within this block. Sensor specific

filters are designed to extract measurements or features from raw sensors. Some filters are quite

simple and merely pass the raw measurement onto the database, e.g . inductive loop sensors, while

more complicated filters require processing e.g . tracking for motion description and measurements

of object size and shape.

Video cameras are the primary sensors in use for this work. Fig. 6.2 shows a map

of UCSD along with a few of the many camera nodes situated around campus. A variety of

environments, both indoor to outdoor, as well as different coverage and different objects of

interest are present. Using the principle of distributed interactive video arrays (DIVA) [115],

monitoring of highway traffic along Interstate 5, human/vehicle interactions on campus roads,

and people indoors is performed using both pan-tilt-zoom (PTZ) controllable and wide area

covering omni-directional cameras. The networked cameras stream video for remote processing
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while non-streaming cameras require a local machine to capture and send analysis data along a

network link.

Ancillary sensors CANVAS currently considered are GPS enabled devices. The popu-

larity of smart phones provides location information of users. The LISA testbeds are equipped

with GPS receivers and it provides tagged vehicle data. Driving parameters such as speed are

logged according to road location and uploaded after a drive. With mobile internet connectivity,

these measurements could be streamed in real-time.

Together the positions from infrastructure and mobile devices provide the raw data for

environment monitoring and understanding. Logging the GPS coordinates provides trajectories

that can be examined for activity awareness.

6.5 Learning and Analysis

Although the Learning module usually operates as an offline process and Analysis is

needed in real-time, the two modules are very closely linked. Live analysis relies on the learned

models to make sense of sensor data and understand the monitoring scene. This section describes

a number of learning techniques and the questions that can be answered during live analysis using

the model database.

For each Learning module, a training database is created by extracting the needed in-

formation from the Archival database. A training database is accumulated by collecting the

appropriate signals over a sufficient time period. Analysis models can be created by applying

learning algorithms on the compiled data. Database maintenance updates training data for

adaptive models which more accurately represent the current configuration of the monitoring

scene.

Analysis modules are essential for effective monitoring because it eases the cognitive load

of a human observer. Multiple analysis tasks can be run in parallel on multiple video feeds which

is something quite difficult for a human.

6.5.1 Object Classification

Classification, as described in Chapter 5, identifies the the type of detected object based

on its visual signature. Each camera has an associated transformation matrix, PLDA (5.1), a list

containing the names of object types, and a nearest neighbor database for each type. Using the

2001 US DOT National Household Travel Survey for guidance, the 7 most often occurring vehicle

types {Sedan, Pickup, SUV, Van, Semi, Truck, Bike} are identified in highway streams. This

detailed real-time fleet composition is a missing management component essential for estimating

emissions or infrastructure load assessment [118]. On campus, detected objects are marked as

either {car, pedestrian, biker, skateboarder, or a group of people}. This classification helps with
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criticality assessment of situations when vehicles and people interact in close proximity.

6.5.2 Traffic Modeling

Chapter 5 also demonstrated how effective traffic management relied on the knowledge

of the location and number of vehicles in a transportation network. It showed how a single

infrastructure camera could effectively monitor a highway link to extract the essential lane level

measures of flow (#vehicles
time ), density (#vehicles

distance ), and speed (MPH). These traffic parameters are

stored into the database where they can be aggregated over time to build the daily speed profiles,

Section 5.4.3.

6.5.3 Trajectory Learning

Recently, one of the most popular techniques for automated surveillance and monitoring

is trajectory learning (see Chapter 4). This technique makes it easier to monitor larger video

networks because activity models are learned automatically without need for manual specifica-

tion. Trajectories, consisting of location and speed, are stored in the model database to build

the activity models λ = (π0, A,B). Each of the Q Gaussian dynamics states are defined by its

two parameters, mean µq and covariance Σq.

During live analysis, at each time instant an activity prediction is made to augment

the trajectory description. At the end of tracking, a track level activity label is assigned along

with the abnormality state. These features incorporate automatic trajectory learning into the

contextual activity environment.

6.6 Visualization

The main goal of the Visualization block is to provide a common environment for

the display of real-time information and live analysis. The visualization environment presents

an immersive and interactive display that preserves the context of the information sources. Si-

multaneous access to different data sources, with control of the area, scale, and information of

interest, while still preserving surrounding environmental context, enables a cohesive picture that

provides the user a complete situational awareness [44]. Awareness is realized through functional

display layers built for each Analysis module where each additional visualization layer provides

a more detailed picture of the monitoring state.

While providing expansive environmental context, care is taken to avoid distractions

that can detract from the principle monitoring task [68]. Instead of overloading the display with

large amounts of annotations, information is distilled and visualized through the use of icons and

avatars (examples in Fig. 6.3). The filtered view of information limits cognitive load and helps

focus attention on the locations most likely to be interesting through automatic highlighting [39].
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(a)

(b)

Figure 6.3: CANVAS Visualization Page. (a) A campus street is monitored using two slightly

overlapping cameras. The output of object classification and tracking is marked on the map.

Icons indicate the object type and are placed on the map based on camera geo-registration

information to map image coordinates to GPS. (b) Environmental context is presented using an

aerial image of the highway. The detected vehicles are marked with car icons which appear in

the different road lanes.
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The Visualization block indicates the location of sensors with respect to one another,

gives access to raw video feeds, presents pertinent analysis results, and provides a user interface

to navigate, query, and customize the display.

6.6.1 Mapping

Although the world is three dimensional, information is not contextualized in a 3D en-

vironment because it limits usage to locations with complete 3D graphic models [18]. Instead,

a 2D map representation of the environment is utilized. A map provides surrounding environ-

mental context which assists comprehension of spatial relationships between objects, increasing

situational awareness [33]. The user display is built using the Google Maps API because it is a

familiar interface (often used for directions) and its wide coverage makes it applicable to most

outdoor locations. The environment context is available through different modalities such as

aerial imagery or through geographical information system (GIS) type layers depicting struc-

tures and areas of interest. The API also supports user interaction with the use of draggable

markers and other line drawing tools.

6.6.2 Geo-Registration

Proper analysis visualization requires proper output alignment with the map coordinates.

Sensor coordinates must be transformed into GPS latitude and longitude coordinates in a process

called geo-registration. Geo-registration requires calibration between the sensor space and the

map space. Simple spot sensor, such as inductive loops, only acquire measurements from a single

location which makes the calibration straight forward. The sensor output can be overlayed on

the GPS coordinate of the sensor location. It is more difficult to calibrate spatial sensors because

of their coverage area. In this case, it is necessary to transform all points in the sensor FOV into

a corresponding map location.

In order to geo-register a camera, the locations of objects in the image plane and the

corresponding latitudes and longitudes on the map need to be known. This is a multi view

registration problem. One view of the scene is generated by the camera and the second view is

the map (satellite image). Typically, the epipolar constraint can be used to determine the relative

pose between the two camera and solve for the transformation between views. But, since the map

is only a 2D representation of the world, full three dimensional mappings are not required. The

transformation between the map GPS coordinates and image coordinates reduces to a mapping

between 2D planes. This calibration is learned a homography transformation, H, mapping the

image pixel locations on the ground plane (e.g . the road) xim to its corresponding latitude and

longitude coordinates on the map Xgps.

Xgps = Hxim (6.1)
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(a) (b)

Figure 6.4: Geo-registration calibration with GPS coordinates obtained using an iPhone. (a)

Image locations of ground plane calibration points. (b) Google maps satellite image with GPS

location of calibration points.

The homography can be found for a camera by using a GPS receiver to collect the GPS coor-

dinates of specific image location. H can be estimated in a least squares sense using at least 4

corresponding coordinates by singular value decomposition using the four-point algorithm.[75].

Corresponding points between the map and video were obtained by walking on the street

an iPhone as a GPS receiver while being recorded by the camera. GPS coordinates were extracted

at specific points by remaining still until the GPS reading stabilized. The corresponding image

point was manually marked at the point of contact between road and feet. Fig. 6.4a shows

the camera view of Matthews Lane on campus and a satellite image map with pins for the

corresponding latitude and longitude points is in Fig. 6.4b. The GPS coordinates obtained from

the iPhone do not exactly match the Google road map and only cover a small strip of the map

image. The coarse resolution of the GPS receiver coupled with this narrow view cause some

numerical instability during the mapping from image to map coordinates. The raw GPS values,

when streamed, provide another source of trajectory data.

6.6.3 Customization

Another design principle of the Visualization module is to present information to a

user only when needed. Complex environments are filled with activities and events that may

be outside of relevance for most users. User specific information is provided in order to answer

the most relevant questions. An example of this type of design is personalized traffic reports to

generate travel estimates given a user specific commute route [24].

The design paradigm called for a simple interface that would abstract the database

connection and communication from a user. The display customization is available through
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buttons which overlay results onto the map. In this way the appropriate SQL commands are

generated by the webpage rather than by the operator, removing need for training.

The user interface presents clickable controls to select camera feeds, change environ-

mental context (map layer in Fig. 6.3a or aerial imagery in Fig. 6.3b), and display analysis

results.

There are 2 major user customization/selection modalities: video feed selection and map

layers. Video feed selection is used to initialize raw video streams from up to 2 live feeds. The

map layers provide the common map based visualization of results. Map scale and navigation is

controlled through the Google Map API and computational layers are created for the analysis

modules (traffic flow, classification results, and trajectory analysis). A layer is created for each

analysis type and camera pair. Figure 6.3 shows two different classification layers. A classification

layer denoting pedestrians and vehicles on campus is shown in Fig. 6.3a while Fig. 6.3b shows

vehicle tracking.

Further customization is possible with advanced users who design specialized compu-

tational layers. Similar to GIS software, a user would define the queries necessary to extract

pertinent information as well as define any visualization layers. An example is a zone alert to

monitor a sensitive region. The advanced user would specify an polygon in the image and search

the tracks database for objects within this region.

6.6.4 Online/Mobile Access

The final goal of the Visualization block is to provide access to information wherever

it is needed through remote access. This allows more convenient monitoring because it does not

have to occur on site. The visualization was built on web technology to be platform independent

and portable relieving the need to design or compile different versions of the code for specific

platforms.

Besides remote availability, design in web based technologies make it possible to realize

mobile/portable access and help fulfill the promise of a a ubiquitous age where the rapid devel-

opments in mobile handset and network technologies can bring customized management services

to all people [103]. The increasing popularity of mobile applications on cellular phones indicates

the desire for instant connectivity and functionality.

6.7 Wide Area Activity Analysis

By exploring the environment with the map-based representation, activities can be un-

derstood within a larger spatial context. The relationships between cameras and monitored

objects are contained in a single view to abstract the particulars of a specific location. CANVAS

can be used to provide information within its sensor coverage. In Fig. 6.5a, a campus road is
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(a) (b)

Figure 6.5: (a) A driver’s awareness is limited to what can be seen in front and behind the

vehicle. (b) Using infrastructure, situational awareness can be transferred to the driver. The car

is warned of the occluded pedestrian tying his shoe on the left side of the road

Figure 6.6: A GPS enabled mobile device can be detected through visual occlusion for relay-

ing appropriate safety warnings. The infrastructure knows of the impeding crosswalk situation

between the car and pedestrian and messages can be sent to both the driver and mobile device.

shown as seen from within a vehicle. The driver view is limited to the front and rear windows

but with help from infrastructure cameras, the pedestrian behind the vehicle is detected and a

warning (yellow bounding box) can be relayed to the driver upon approach (Fig. 6.5b).

The integration of GPS into mobile devices provides a medium for understanding behav-

ior. Using GPS enabled phones, a new stream of trajectory information can be acquired which

supplements infrastructure. A pedestrian is tracked through occlusion in Fig. 6.6 and an alert is

sent to the phone warning of the oncoming vehicle. The mobile devices provide a level coverage

not feasible using infrastructure. Fig. 6.7 shows the route of a probe vehicle. The vehicle enables

coverage well beyond the extent of the campus network, yet still can be seamlessly integrated

through the map interface. The trajectories obtained from mobile devices and automobiles help

complete the environment behavior and activity picture [3]. Combining visual cues along with

GPS devices can improve tracking [70] and provide a better understanding of the monitoring

situation.
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Figure 6.7: GPS enabled vehicles and devices are seamlessly integrated into the map. A recorded

route taken by a GPS equipped vehicle is overlayed on the map. The route is color coded based

on the speed of the automobile with respect to speed limits.

6.8 Future Directions

CANVAS provides a unified framework for improved site monitoring. It presents exciting

opportunities to study large areas for re-identification and handoff between sensor coverage zones.

Research into infrastructure-device communication for safety will greatly benefit from this type

of platform since it will be possible to “see” what the infrastructure knowns and where the

device resides. This will enable augmented surround awareness with traffic safety messages and

information from infrastructure.

6.9 Concluding Remarks

This chapter presents a management system for monitoring complex environments. The

focus is on building an upgradeable framework for simple user interaction through an accessible

visualization. Rather than present just raw sensor data from the physical world, visualization

layers are introduced to abstract the internals of monitoring algorithms and provide a clean
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consumable computational output. Advanced algorithms for understanding scene activity can

be designed and integrated into the visualization system to help highlight object or events of

interest. This ultimately improves the effectiveness of the monitoring by focusing attention and

presenting only the most relevant information. By building the visualization with web technology,

the information is available to monitor the environmental situation anywhere at anytime.
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Chapter 7

Automobile Surround Maneuvers

In contrast with VECTOR and CANVAS, this chapter examines activity not from an

infrastructure mounted camera but a completely different domain, a moving platform. A sensor

equipped automobile, designed for intelligent driver support, observes the behaviors of surround-

ing drivers to learn cues that signal impending maneuvers. With early prediction of the maneu-

vers of surrounding vehicles, a driver is able to contextualize the driving environment and better

prepare for dangerous situations.

7.1 Motivation

The automobile is ubiquitous in modern society but the access and mobility it grants

comes at a staggering price. According to the 2009 World Health Organization’s Global Status

Report on Road Safety [128], road crashes cause over 1.27 million fatalities a year and between

20 and 50 million non-fatal injuries. It is estimated that this will increase to 2.4 million fatalities

a year by 2030, ranking road traffic injuries as the fifth leading cause of death. While not as bad

as less developed countries, there were still 2.5 million injury accidents and 41 thousand motor

vehicle related fatalities in the United States in 2008 [117]. These alarming statistics highlight

the critical need for advanced vehicle safety systems.

The US National Highway Traffic Safety Administration (NHTSA) report Traffic Safety

Facts 2006 [121] found in passenger car crashes that the initial point of impact was the front

49.6%, either the right or left side 27.8% (left 14.2, right 13.6), or in the rear 21.2% of the time

(see Fig. 7.1a). Therefore, heightened surround awareness can directly affect safe driving and

maneuvering of an automobile. Successful systems currently in vehicles are active cruise control

(ACC), which adapts vehicle speed to maintain a safe following distance, and lane assist, which

can keep a vehicle in a lane or warn a driver when drifting. Unfortunately, such advanced systems

exist only in the front of vehicles. The rest of the surround is usually covered by more basic

89
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detectors such as back-up cameras, sonar parking assist, and radar/vision blind spot warnings

which just give an indication or an impeding object. This work seeks to aid the development

of more advanced surround based safety systems which can give advance warning of impending

situations. By predicting the behavior of surrounding vehicles, a driver is able to prepare earlier

to ensure safer conditions.

7.1.1 Questions to Address

Examining activity from a moving platform with real safety implications raises the fol-

lowing important questions:

• Is it possible to predict the driving maneuvers of surrounding vehicles without explicit

motion models?

• Can meaningful driving behaviors be automatically extracted through trajectory pattern

observation?

• How can the interactions between vehicles and the environment be incorporated into the

learning procedure for better prediction?

7.1.2 Chapter Summary

Utilizing the same trajectory analysis framework initially designed for video monitoring

with static infrastructure cameras, the driving patterns of vehicles surrounding an automobile

were automatically extracted. This introductory exploration into unsupervised trajectory anal-

ysis for driver applications answered the following:

• It is possible to predict maneuvers even without considering complex motion models and

parameter measurement by learning the typical patterns a driver would encounter during

natural driving.

• Analysis of a vehicle trajectories demonstrated that meaningful patterns can be extracted

from data in an unsupervised fashion. Actions corresponding to passing were found as well

as an estimate of typical following distance. But, unlike for infrastructure monitoring, high

variability between maneuvers created many uninterpretable patterns.

• Currently, no interactions between vehicles in considered when analyzing maneuvers. This

limits predictive power because, in addition to driver intentions and style, it is clear that

the road geometry and traffic configuration play a vital role in driver decision making.

In this framework, maneuvers are tied to specific spatial regions. Instead, a technique to

provide predictions for every surround vehicle regardless of location is preferred.
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This chapter presents the first attempt to observe surrounding driving patterns to au-

tomatically build maneuver models rather than fit motion to complex dynamical models. The

results indicate that the learned models correspond to real driver behavior and could be used for

intent inferencing.

7.2 Related Work

Given the dangerous nature of driving, researchers have been searching for ways to make

the driving experience safer, provide greater situational awareness, and promote overall enjoyment

and comfort. On-board vehicular safety systems have fallen into two separate categories: passive

and active. Passive safety systems act once collision is inevitable to mitigate severity. Successful

examples of passive safety examples are seat belts and airbags which engage during impact to

alleviate injuries. Current research has trended toward active safety, which aims to prevent

accidents (e.g . anti-lock breaks). While accident prevention is obviously preferable to mere

mitigation, the design of active safety systems is much more challenging because it requires

accurate, reliable, and prompt identification of conditions that would lead to an accident in

advance to allow time for corrective measures [114].

An active safety system has three major components. The first is a sensing subsystem

that is able to extract information about the vehicle, the driver, and the surrounding environment

to provide a description of the local dynamic state of the vehicle space. The second subsystem,

the contextual processing module, uses the measured dynamic state to infer the criticality of

the driving situation and safety state. When safety falls below an acceptable threshold, the

final active-safety control subsystem is activated to perform corrective actions to prevent the

impending accident.

Environment sensing is a mature area that relies on a number of sensing modalities.

RADAR can detect reflections of electromagnetic waves off of surrounding vehicles in a variety

of conditions making it a favorite sensor of car manufacturers. Other sensors such as LIDAR,

LASER scanners, and ultrasonic sensors are commonly utilized in the research community for

surround awareness. Video cameras have gained enormous popularity do to their rich contextual

content delivered over a wide field of view, the decrease in high quality optics, the increase in

computational power of modern processors which have enabled real-time application, and the

active computer vision research community interested in automotive applications. The enormous

interest is highlighted by a number of recent survey papers on video based vehicle detection

[61, 112, 37] which demonstrate a number of differing methods to accurately sense the surrounding

obstacles from moving vehicles. The survey by Kastrinaki et al . in 2003 describes video processing

techniques for traffic applications and in 2006, Sun et al . presented a review of vision based

detection [112] for front looking cameras and techniques for top mounted 360◦ omni-directional

cameras was presented by Gandhi and Trivedi [37].
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Figure 7.1: (a) Initial impact points of collision according to the 2006 Traffic Safety Facts report

conducted by NHTSA. Half of all accidents occur in the surrounding regions that are not normally

observed during driving (sides and rear). (b) Sensor configuration and coverage typically available

in commercial vehicles today. The ACC system uses a narrow but long-range radar, LDW uses

a camera, and SWA uses either cameras or radars. Notice the blind spot (in red) is significantly

reduced with the SWA system.

Many current advanced driver assistance systems (ADAS) rely on understanding the

intentions of the driver. By understanding what a driver wants to do, the vehicle can be better

prepared to make corrective actions when there is deviation from intent. Systems in successful

deployment today include active cruise control (ACC), which regulates the time gap (following

distance) from a lead vehicle, and lane departure warning (LDW) systems, which use a camera

to detect the lanes of the road and identify when the automobile is drifting out of the current

lane. In 1997, Liu and Petland [73] proposed a method to infer driver maneuvers based on

preparatory control actions including steering and acceleration in a simulator environment. Later

researches used explicit modeling of surrounding vehicles [96] to provide a better picture of

the driving situation and make threat assessments. Trivedi et al . [114] proposed a looking-in

and looking-out (LILO) framework to investigate intent prediction. The framework provides

a complete understanding of driving context by simultaneously capturing the outside surround

environment of the vehicle, the vehicle control and dynamic state through on-board sensors, and

finally the internal activities and state of the driver and other cockpit occupants. Integrating all

the driving measurements and using machine learning techniques, a driver’s intent to brake [77],
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turn [23, 105], or change lanes [104, 78, 29, 32, 30] can be assessed seconds in advance.

In contrast to the ego-vehicle intent prediction problem, little surround intention work

has been done outside of the autonomous driving field. This same type of prediction used for

ego-manuevers must be done for surrounding vehicles to understand what actions they might

perform in the near future as well. An active surround safety system could then use the surround

predictions to warn a driver of possible dangerous situations for increased awareness. Unfor-

tunately, the LILO framework is not applicable because a driver can only observe a surround

vehicle from the outside and does not have any internal indicators for intent. In order to assess

dangerous situations, the motion of surrounding vehicles is examined to determine whether a

collision is imminent. Common to these surround systems is the use of an explicit motion model

to predict future movement [96, 15, 71, 34, 4]. This work intends to learn surround patterns

automatically in order to extract typical highway behaviors observed during natural driving.

Rather than manually specifying expected behaviors of interest or motion models that govern

behavior, a data-driven approach is utilized to learn patterns in an unsupervised fashion from

the surround trajectories of detected objects.

7.3 Vehicle Detection

Intelligent driver support systems rely on a number of different sensors to to observe the

vehicle surround. Typical sensors in use by manufacturers are RADAR (ACC, SWA), LASER

(ACC), and video (SWA). Stereo cameras have recently become very popular because of active

research by the vision community. Specialized research vehicles utilize more exotic, very high

resolution, sensors such as LIDAR or the Velodyne’s 360◦ scanning laser because price is not an

issue. Ultrasonic sensors are used for parking assist technologies but are limited to very short

range and low speeds and therefore not applicable during normal driving. While each particular

sensor has its own strengths and unique set of requirements for effective use, the end goal is the

same, to detect obstacles. Once vehicles are detected they can be tracked to maintain a history

of motion.

7.3.1 LISA

The Laboratory for Intelligent and Safe Automobiles (LISA) is a mobile computing

platform capable of monitoring the vehicle surround, inside the cockpit, and the state of the

vehicle itself. The different test environments provide adaptable experimental testbeds for the

evaluation of different sensor combinations and associated safety algorithms. A LISA vehicle is

able to synchronously capture and process data from all sensor systems. Data from manufacturer

installed onboard sensors is recorded by tapping into the controller area network (CAN) bus,

cameras are mounted inside the vehicle to view driver behavior using face, hands, and feet
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Figure 7.2: LISA video collection
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cameras, and the surround is monitored with an array of sensors including monocular cameras,

omnidirectional cameras, stereo camera pairs, and radars. Fig. 7.2 provides example video

images obtained with the LISA testbeds in different configurations. The ability to reconfigure

the sensor coverage enables focus on particular regions around the vehicle. This allows new

detection algorithms to be developed which take advantage of the unique properties encountered

when looking either in the front, sides, or rear of the vehicle.

7.3.2 Data Collection

Rather than develop new vision based detection and tracking techniques, this work uti-

lizes sensors that are currently available on production level vehicles. Given the threat level of

the different regions of a vehicle (Fig. 7.1a), a LISA vehicle was equipped with a front looking

RADAR for ACC, a front looking camera for LDW, and rear RADAR to protect the sides and

rear of the vehicle for SWA. The sensor coverage is visualized in Fig. 7.1b. The camera system

is used to detect lanes only while the RADAR systems track surrounding vehicles. The narrow

field of view of the ACC system creates a large gap with the SWA sensors which leaves the front

right and front left of the vehicle uncovered.

Vehicles are detected to generate position and velocity estimates relative to the ego-

vehicle. Fig. 7.3 visualizes the trajectory data obtained from the production-level sensors. On the

right side of the a subfigure is the obstacle map view which provides a top-down bird’s-eye-view

of the vehicle surround. At the center of the display, at coordinates (0,0), is an icon indicating

the ego-vehicle. Obstacles are inserted around the vehicle in a wide field-of-view which extents

laterally 25 meters on each side (ensuring at least 2 adjacent lanes are visible on either side) and

longitudinally forward 200 meters and 100 meters in the rear. The locations recorded over last

2 seconds are displayed to show partial vehicle trajectories. The speed of the surround vehicles

can be inferred based on the length of the trajectory tail. On the right side of the subfigure, the

guide view provides the same top-down view of the surround but at higher resolution. Because

of the closer view, the surrounding trajectories are much more detailed making it possible to

resolve fine motion variations.

The example in Fig. 7.3 is of a lane change. It is possible to to see the relative motion

between the surround vehicles and the ego-vehicle. The common lateral motion to the right of

the surround tracks occurs because of the ego-vehicle moving left. Collecting the trajectories

extracted through RADAR tracking results in the data shown in Fig. 7.4.

7.4 Trajectory Learning

As described in Chapter 4, the main inputs for the learning engine are motion trajectories

(Fig. 7.4). A trajectory F = {f1, . . . , fT } compactly represents object motion during the time
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Figure 7.3: Lane change maneuver. Notice the turn indicator before the lane change and the

lane line as the change occurs.
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Figure 7.4: Trajectories collected using the front ACC system and the rear SWA system.

T it is observed. The flow vector ft represents tracked parameters at time t. In this work,

ft = [x, y, u, v]T represents the xy position and uv velocity in either direction.

7.4.1 Special Considerations for Vehicle Surround

Although the trajectory learning framework was designed to be flexible and generalizable

to a variety of scenes, there are a number of characteristics of vehicle surround analysis which

differentiates it from infrastructure monitoring. Some of the key differences are expanded below:

• Non-stationary camera - motion is with respect to moving location.

• Potentially long tracks - detection can occur for long periods of time.

• Behavior in segments - may not spatially tied to specific locations.

• Limited surround coverage - do not see everything.

• Limited driver knowledge - need to infer intention without knowing the driver state.

• Time critical - safety concerns.

7.4.2 Learning Modifications

Before applying the trajectory learning machinery, the aforementioned differences be-

tween vehicle and infrastructure monitoring needs to be addressed.

• Non-stationary camera
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Rather than develop camera based detection schemes, production level RADAR is used for de-

tection. The trajectories use relative motion to relate to the ego-vehicle. Driving maneuvers are

defined with respect the the ego-vehicle in a moving reference frame.

• Potentially long tracks

Trajectories are resampled to a fixed length for computational ease and to remove non-informative

stationary points. Therefore, tracks correspond to the end-to-end maneuvers of vehicles while in

view of the ego-automobile.

Each trajectory F has its velocity information ignored and is spatially resampled to a

fixed length L. By resampling, each trajectory has the same number of points allowing straight-

forward Euclidean distance comparison. Rather than simply subsampling [48] or interpolating

points, the resampled representation F̄ = {f̄1, . . . , f̄L} seeks to evenly distribute points along the

trajectory, ensuring the distance between consecutive points is equal

d(f̄l, f̄l+1) ∼ 1
L− 1

T−1∑
t=1

d(ft, ft+1) (7.1)

d(fi, fj) =
√

(xi − xj)2 + (yi − yj)2 (7.2)

to completely remove dynamic information (as hidden in the sampling rate). This prevents

regions of higher sample density from contributing bunches of points in a single area as could occur

when there is car-following. Finally, a trajectory vector F = [x1, y1, . . . , xL, yL], representing a

point in the R2L route space, is constructed for each of the N training trajectories. Since

trajectories are now fixed-length vectors, clustering is performed using a weighted FCM procedure

where the weights incorporate the lateral importance of lanes.

• Behavior in segments

This is not addressed and is left for future work.

• Limited surround coverage

Trajectories are examined only within a sensor field of view. This is equivalent to learning for

separate cameras.

• Limited driver knowledge

The learning framework infers activity from coarse motion only, no deeper understanding is

needed.

• Time critical

By construction, the activity analysis is fast making it acceptable for time critical applications.
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In the vehicle domain, trajectories are extracted using RADAR and post-processed by

resampling to a fixed length suitable for input into the framework outlined in Chapter 4. The

activity models that are eventually learned will correspond to typical driving maneuvers a driver

would encounter while driving.

7.5 Experimental Studies

The activity learning scheme is tested on driving data collected from an instrumented

vehicle. Vehicles are tracked with respect to the moving platform and represent differential

motion. This work only considers natural driving patterns along a highway.

7.5.1 Examining Rear Trajectories

The behavior learning framework was tested on trajectories obtained from the rear of a

car. Monitoring of this area is much less prevalent than the front or blind spots event though

a high percentage of accidents have the rear as a point of contact. The trajectories do not

correspond to a fixed world location but are measured with respect to the instrumented vehicle.

Because both the surrounding vehicles and the instrumented vehicle can move independently,

the trajectories are the sum of two motion components.

The 331 trajectories collected looking out the rear of the car over 100 minutes of natural

driving are shown in Fig 7.5a. These trajectories correspond to vehicles that were tracked for a

minimum of 5 seconds (5 ∗ 30 fps = 150 samples) along highway segments. Notice some of the

trajectories appear to move horizontally. This occurs when the ego-vehicle changes lanes. This

added motion is not explicitly modeled or compensated for during the learning process but most

of these trajectories are removed with POI filtering because they do not have much support.

The results from activity learning for the moving platform are shown in Fig. 7.5. The

location of the lane markers is presented in the figures for scale and interpretation. The set

of trajectories used for learning is presented in Fig. 7.5a. The tracks clearly follow the lane

markings although there seems to be some bending as further from the ego-vehicle. The scene

goals can be viewed in Fig. 7.5b. The regions where tracking begin (Enter) are marked with

green, the locations when tracking ends (Exit) is marked with red, and locations where vehicles

remain for an extended time (Stop) are marked with yellow. Although there seems to be a

large number of randomly distributed points, the resulting zones are pleasing because they show

surround vehicles appearing and disappearing either in the rear or on the passenger side of the

ego-vehicle. In addition, there is a stop zone directly behind the ego-vehicle at approximately 18

meters. This following distance corresponds to approximately 0.6 second time gap at a typical

highway speed of 70 mph. (This is closer than is generally considered safe).

Fig. 7.5c displays the 15 dominant routes automatically learned from the trajectory
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Figure 7.5: (a) Trajectories seen from behind a vehicle collected over 100 minutes of natural

driving. (b) Entry/Exit/Stop zones: notice the stop zone behind the vehicle at -18 meters which

is only a 0.6 second time gap. (c) Initial set of spatial routes. (d) Remaining routes after merge

estimation. Notice the activities on the driver side (−x axis) correspond to faster cars passing

the ego-vehicle while the passenger side (+x axis) shows the ego-vehicle passing a slower vehicle.
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training set. The refined routes are shown in Fig. 7.5d after three similar activities are removed

during the merge procedure. The routes seem to indicate mostly passing maneuvers e.g . Route

2, Route 3, or Route 11 in Fig. 7.5d. During an ego-pass (Route 3) vehicle tend to appear in the

rear (green circle) and travel alongside the ego-vehicle in the adjacent lane before exiting sensor

view on the driver side (red x). Conversely, during an pass (Route 2), vehicles appear on the

passenger side and move further away until disappearing far behind the ego-vehicle indicating

passing of a slow moving vehicle. This corresponds with typical driving conventions where the

faster lanes are toward the inside of the highway on the driver side (left) while slower vehicles

tend to travel on the passenger side. This generally results in a fast moving vehicle passing on

the left side of a slow moving vehicle in the right-hand lane.

7.5.2 Examining Front Trajectories

The next experiment examined trajectories from the front of the vehicle as extracted

from the ACC RADAR system. The ACC dataset consisted of 480 trajectories. As in the SWA

experiment, the trajectories were obtained during natural highway driving and correspond to

vehicles that were observed for a minimum of 5 seconds. In contrast with the SWA system,

the front RADAR has a very narrow sensing cone because it is designed to detect only vehicles

directly ahead. The narrow field of view results in trajectories that are typically much further

away than in the rear case. Vehicles in the adjacent lanes are not detected until they further

than almost 50 meters.

The ACC track learning results are summarized in Fig. 7.6. The trajectories, seen in

Fig. 7.6a, mostly remain in the ego-lane or the directly adjacent lanes in contrast to SWA which

seemed to detect 2 lanes over. In addition, there tends to be much more horizontal maneuvering

between adjacent lanes. The zones in Fig. 7.6b suggests two different following distances for the

driver. A close, and unsafe, distance of 25 meters which is approximately a 0.8 second time gap

and another further gap of 2.5 seconds, or 80 meters. The final learned routes in Fig. 7.6d follow

a similar pattern as for the rear. On the driver side, there are ego-passes (Route 4 and 11) and

on the passenger side there are plain passes (Routes 1, 7, and 12). What is different than in the

rear case is exemplified by Route 5. In this case, there is an ego-overtake. A vehicle on the driver

side passes the ego-vehicle on the left and then merges to the right into the ego-lane to complete

an overtake maneuver. This type of behavior could be potentially dangerous if it occurred close

to the ego vehicle (here it occurs 65 meters ahead). Predicting this pattern early could greatly

improve safety if a driver were alerted.
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Figure 7.6: (a) Trajectories extracted by the ACC system in the front of the vehicle. (b) En-

try/Exit/Stop zones: There are two typical following distances, 25 m and 85 m. (c) Initial set

of spatial routes. (d) Remaining routes after merge estimation. The activities on the passenger

side (+x axis) correspond to the ego-vehicle passing slower vehicles.
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7.6 Future Work

Preliminary analysis shows it is possible to use naturalistic driving and extract mean-

ingful surround behaviors. Further research will need to account for the instrumented vehicle

and environment when analyzing trajectories. The instrumented vehicle’s ego-motion should be

compensated when analyzing surrounding trajectories to model solely surround behavior. When

the LISA vehicle changes lanes, the surround tracks all appear to change lanes when there is no

ego-motion compensation. In addition, the shape of the road may play a key road in predicting

behaviors as people will behave differently during curves and straight segments. The trajectories

of similar actions may look quite different depending on road curvature. A true surround safety

system will need to examine the sides in conjunction with the front and rear. A key research task

will need to determine if each section of the vehicle should be considered separately or if tracks

(and hence behaviors) need to be connected between the sensors in these regions.

More data needs to be collected with a front sensor with a wider FOV. The limited

aperture of the ACC radar is designed only for looking straight ahead in the current lane. To

provide real safety recommendations, the surround coverage needs to actively monitor close to

the vehicle as this is where dangerous situations occur. It is also clear from the ACC experiment

that maneuvers can occur anywhere. Learning needs to decouple the spatial location which will

allow detection of the overtake maneuver closer to the vehicle where it counts for safety.

7.7 Concluding Remarks

This work presents the first attempt to automatically learn behaviors of surround vehicles

based on natural observation during driving. The unsupervised learning framework introduced

in Chapter 4 is applied after small modifications to the trajectory representation emphasizing its

generality. Trajectories of surrounding obstacles obtained from both the rear and front of an in-

strumented vehicle are examined and key behaviors which correspond to observable phenomenon,

passing and overtake, are automatically discovered demonstrating the value of this data driven

approach.
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Chapter 8

Concluding Remarks

In this dissertation, a critical exploration into automatic activity understanding through

learning trajectory patterns is undertaken. A number of practical implementation issues were

considered for real world implementation of such an unsupervised activity learning system. First,

a representation for an activity was needed that was expressive enough to answer interesting

monitoring questions while flexible enough to describe the activities encountered in a wide range

of environments and applications. The activity definition had to be independent of the analysis

domain for unsupervised learning. Second, activity analysis could not be an offline, post-mortum,

analysis but must occur in real-time on live data for maximal utility. The analysis needed to

describe the current activity state of the observed world in order to provide timely notification

and alert for appropriate response.

In Chapter 4 a practical approach is presented for understanding activities. A multi-level

learning framework is introduced which is able to automatically learn activity models, a sequence

of actions, without a priori domain knowledge. Activities are inferred by the observation of trajec-

tory patterns resulting from object motion. In an unsupervised manner, the trajectory patterns

are extracted through clustering to form probabilistic activities models which enable analysis of

live video. Key contributions to the trajectory learning field were the development of methods to

learn activities in the presence of imperfect tracking providing robustness. A thorough compara-

tive evaluation of trajectory specific similarity measures highlighted the importance of techniques

to handle the variable lengths of trajectories with optimal alignment but also found that typical

applications are insulated from the particular alignment algorithm choice. Finally, by providing a

probabilistic definition of an activity, analysis results had an intuitive interpretation and activity

models could be adapted to better reflect current conditions for long-term monitoring. Extensive

evaluation of the framework, not seen in the trajectory learning literature, was performed to

accurately characterize the quality of predication and abnormality detection in an online fashion

which provides a benchmark for future research.
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Chapter 5 introduces the VEhicle Classifier and Traffic flOw analyzer (VECTOR) sys-

tem to provide video based analysis of highways. Utilizing the trajectory learning framework,

wide coverage of a highway link in both directions of travel are covered by a single camera. The

system provides, with a single sensor, the critical traffic management measures currently deliv-

ered by many intrusive inductive loops. In addition, VECTOR utilizes the rich informational

content available in video to extend the traffic measurements to include a classification of the

types of vehicles on the road. This real-time fleet composition is a currently missing component

of advanced traffic management and modeling. Through trajectory analysis, the safety of the

highway link is characterized based on daily speed profiles rather than posted speed limits, the

location and rate of lane changing (needed for congestion analysis) is measured, and abnormal

driving patterns which could signify an incident are detected.

The single camera methods of the previous chapters are extended in Chapter 6 with the

development of the Contextual Activity Notification Visualization Analysis System (CANVAS).

CANVAS provides wide-area coverage and contextual awareness to multiple different sensors in

a unified interface. Activity analysis is provided over larger areas through a transformation of

sensor coordinates into the latitude and longitude of a map for an intuitive monitoring interface.

Finally, in Chapter 7 the trajectory learning and analysis framework is pushed to its

limits by examining the activities viewed from within a moving automobile. Rather than try to

fit lavish dynamic motion models to the vehicles detected in the local surround, the maneuvers of

detected surround vehicles are inferred based on experience. The trajectory learning framework

was able to extract meaningful driving maneuvers, corresponding to passing and overtaking

without explicitly defining these as patterns of interest. This type of trajectory analysis is of

great importance to the intelligent vehicle community because early notification of the intents of

surrounding vehicles gives a driver extra time to plan and prepare which in turn ensures safer

driving conditions.

This dissertation highlights the importance of trajectory learning and analysis for unsu-

pervised activity understanding. It provides rich descriptions of a wide range of environments

and applications. The utility of these techniques will only grow more important as video cameras

find there way into more parts of our daily lives and present the challenge of what to do with all

that is being observed.



Appendix A

Dataset Description

A.1 Datasets

Experiments are conducted using six datasets with varying properties. They include

several simulated scenes as well as surveillance scenes where trajectories are extracted using a

background based object tracker. Figure A.1 illustrates each scene with true clusters and Table

A.1 summarizes the datasets using the metrics defined in Appendix A. Each set is characterized

by the number of trajectories N , the number of cluster labels K, speed deviation σV , length

deviation σT , shape complexity ξ [136],

ξ =
dE(fT , f1)∑
i dE(fi+1, fi)

(A.1)

and separability ∆c/∆ and ∆c/∆m. The average separability is

∆ =
1

NK

N∑
n=1

K∑
c=1

dnc (A.2)

and the cluster tightness ∆c and minimum cluster separability ∆m are defined as

∆c =
1
N

N∑
n=1
gn=c

dnc (A.3)

∆m = min
n

[
min
c

dnc

]
, c 6= gn (A.4)

where gn is the ground truth label for track n and

dnc =
1
Nc

∑
gj=gc

dE(Fn, Fj) (A.5)

with Nc the number of trajectories with label gc.
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Figure A.1: Trajectory Clustering Datasets (a) I5SIM (b) I5 (c) CROSS (d) LABOMNI

A.1.1 I5SIM

The I5SIM datasets simulate trajectories obtained on a 4 lane highway with traffic in

both directions (8 total lanes). The trajectory points are in real world coordinates. The first set

contains only free flow traffic with a Gaussian speed distribution of 70 mph with a 5 mph standard

deviation. The second and third sets contain the free flow traffic as well as trajectories during

congestion (25 mph). These were designed to compare performance of different clustering goals.

The trajectories in the I5SIM2 dataset are labeled by lane number (just spatial coordinates).

Those in I5SIM3 were labeled by lane and flow type, differentiating trajectories in the same

lane but traveling at different speeds, resulting in 16 labels (8 lanes at free flow and 8 during

congestion).



108

Table A.1: Experimental Dataset Characterization

N K σV σT ξ ∆c/∆ ∆c/∆m

i5sim 800 8 0.19 1.29 0.99 0.07 0.27

i5sim2 1600 8 0.81 18.78 0.95 0.08 0.31

i5sim3 1600 16 0.81 18.78 0.95 0.08 1.39

i5 806 8 2.38 4.10 1.00 0.16 1.30

cross 1900 19 5.07 4.27 0.85 0.07 0.97

labomni 209 15 0.31 142.26 0.71 0.22 1.44

A.1.2 I5

The I5 dataset contains trajectories obtained by visual tracking of vehicles from a high-

way mounted camera overlooking a busy interstate. The track labels correspond to one of 8

lane numbers as in the I5SIM sets. The raw tracker output was automatically filtered to remove

clearly erroneous trajectories which occur because of occlusions.

A.1.3 CROSS

The CROSS dataset depicts a four way traffic intersection. These provide more complex

trajectory shapes than in the highway datasets. The 19 acceptable intersection maneuvers include

turns and even a u-turn.

A.1.4 LABOMNI

The final dataset examines humans rather than vehicles. An omni-directional camera

was placed in the middle of a lab to observe trajectories from a less constrained environment

than encountered by vehicle traffic. The participants were not aware of the data collection to

ensure naturally occurring motion patterns. The trajectories have a long time duration and tend

to have a large degree of overlap in the image plane.



Appendix B

Comparison of Trajectory

Clustering Techniques

A major research area in computer vision is the study of activities and behavior. Re-

cently there has been high interest in automatic activity and behavior understanding. Using

unsupervised methods, researchers try to observe a scene, learn prototypical activities, and use

the prototypes for analysis. This paradigm has been of particular interest for surveillance [110, 76]

and traffic monitoring [95, 5, 89] where methods to categorize observed behavior, detect abnor-

mal actions for quick response, and even predict future occurrences is desired. Because of the

large number of cameras in use for these applications there is a constant stream of large amounts

of data making it difficult to manually analyze each individually which necessitates the use of

unsupervised methods. In these cases, activity is characterized by motion and can be succinctly

represented with a trajectory. It is possible to collect trajectories over sufficient time and learn

typical behaviors through clustering. Unfortunately, even with much work in the area it is un-

clear what are the best methods for clustering. There are a wide number of similarity functions

for trajectories and researchers continue their design as well as little agreement of how clustering

should be performed. A recent survey by Morris and Trivedi [90] presented the wide variety of

procedures for trajectory learning and modeling. The following examines a number of popular

trajectory clustering procedures to find their strengths and weakness with the intention of de-

termining which might be the best for trajectory learning. The evaluation has three separate

components which include comparison of trajectory distance measures (Table B.1), comparison

of different clustering methods (Table B.2), and analysis on a variety of dataset with varying

characteristics (Table A.1).
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Table B.1: Trajectory Distance Measures

Technique Publication

HU Hu 2007 [50]

PCA Bashir 2007[8]

DTW Keogh 2000 [63]

LCSS Buzan 2004 [17]

PF Piciarelli 2006 [95]

MODH Atev 2006 [5]

B.1 Distance Measures

Previous work by Zhang et al . [136] compared the use of a few popular distance mea-

sures at the time, the Hausdorff distance, a HMM-based distance, Euclidean distance, Euclidean

distance in a PCA subspace, dynamic time warping (DTW), and longest common subsequence

(LCSS). We expand the comparison by including new similarity measures that have been de-

signed specifically for trajectories while ignoring both Hausdorff and HMM which were shown

to have poor performance. Table B.1 lists the distance measures adopted in recent literature

which are assessed in this work. The examination includes fixed length measures, Hu Euclidean

and PCA, as well as time-normalized distances, DTW, LCSS, Piciarelli and Foresti (PF), and

modified Hausdorff (MODH).

B.1.1 Notation

A trajectory

F = {f1, . . . , ft, . . . , fT } (B.1)

is a collection of flow vectors ft representing the spatio-temporal characteristics of moving objects

at each time t of the total track life T . A flow vector generally indicates location and dynamics,

ft = [x, y, ẋ, ẏ, ẍ, ÿ], but in this work we restrict ourselves to just spatial location, f = [x, y].

This is a common practice as it results in a natural interpretation of spatial proximity given the

Euclidean the distance between flow points

dE(ft, fτ ) =
√

(xt − xτ )2 + (yt − yτ )2. (B.2)

Some of the following distance measures must use fixed length data and can not be used

on raw trajectory data because they typically have varying length. Instead, a resampled version

of a track is used and the trajectory notation is overloaded

F = {f1, . . . , fk, . . . , fL}. (B.3)
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A resampled trajectory is referenced by an index k rather than time t and has a fixed length

L. The resampling implementation used in this paper interpolates points to have equal distance

between flow vectors [87].

B.1.2 HU

The HU distance is computed as the average Euclidean distance between points on two

trajectories [50].

DHU (Fi, Fj) =
1
L

L∑
k=1

dE(fi,k, fj,k), (B.4)

This distance function relies on similar trajectories having the same point distribution with

consecutive points in corresponding tracks in spatial proximity.

B.1.3 PCA

Instead of working in the trajectory coordinate space, PCA is used to transform the

trajectories into a lower dimensionality subspace. The x and y coordinates of a trajectory are

concatenated into a one dimensional vector and projected onto the subspace by PCA decom-

position The PCA distance is computed as the Euclidean distance between PCA coefficients,

al,

DPCA(Fi, Fj) =
1
Nλ

Nλ∑
l=1

dE(ai,l, aj,l). (B.5)

Only Nλ << 2L coefficients are retained to limit the size of the space. Nλ is chosen by examining

eigenvalues λk to retain 95% of the dataset variation [8]. The PCA distance is similar to Hu but

works in a lower dimensional space for reduced computation and robustness through the PCA

shape decomposition. Note trajectories must be of equal length for PCA decomposition.

B.1.4 DTW

The above distance measures require fixed length trajectories which do not normally

occur because observation duration is variable. DTW is used to compare unequal length signals

by finding a time warping that minimizes the total distance between matching points [99].

DDTW (Fi, Fj) =
(dDTW (Fi, Fj) + dDTW (Fi, Fj))

2

dDTW (Fi, Fj) =
1
Ti

Ti∑
t=1

dE(φi,t, φj,t) mt/Mφ (B.6)

where φi and φj are the time warping functions that minimize the distance between aligned

points, mt is a path weighting coefficient, and Mφ is a path normalization factor. The warping

path φ is efficiently found using dynamic programming.
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B.1.5 LCSS

LCSS is another alignment tool for unequal length data but is more robust to noise and

outliers than DTW because not all points need to be matched. Instead of a one-to-one mapping

between points, a point with no good match can be ignored to prevent unfair biasing. The LCSS

distance suggested by [123] is defined as

DLCSS(Fi, Fj) = 1− LCSS(Fi, Fj)
min(Ti, Tj)

, (B.7)

where the

LCSS(Fi, Fj) =


0 Ti = 0 | Tj = 0

1 + LCSS(FTi−1
i , F

Tj−1
j )

dE(fi,Ti , fj,Tj ) < ε

& |Ti − Tj | < δ

max (LCSS(FTi−1
i , F

Tj
j ), LCSS(FTii , F

Tj−1
j )) otherwise

(B.8)

value specifies the number of matching points between two trajectories. F t = {f1, . . . , ft} denotes

all the flow vectors in trajectory F up to time t. The LCSS, like DTW, can also be efficiently

computed using dynamic programming.

B.1.6 PF

In a similar spirit to DTW and LCSS, Piciarelli and Foresti [95] defined another distance

measure to deal with time drift. They observed that matching tracks would generally agree

early (consistent starting points) but over time matched points had a tendency to drift further

away because of speed differences. Accordingly, their trajectory distance measure finds matching

points within a time window that grows larger at each time

DPF (Fi, Fj) =
1
Ti

Ti∑
t=1

dPF (fi,t, Fj) (B.9)

where

dPF (fi,t, Fj) = min
τ

(
dE(fi,t, fj,τ )

Zτ

)
, (B.10)

τ ∈ {b(1− δ)tc . . . d(1 + δ)te}.

Zτ is a normalization constant that measures the variance of point τ . The definition is noteworthy

because it allows comparison with incomplete trajectories (developing tracks) making it well

suited for online clustering unlike DTW or LCSS.

In this work, Zτ = 1 in order to compare two trajectories rather than a trajectory

and a cluster as originally designed. The temporal window is also slightly modified to grow

logarithmically with trajectory length τ ∈ {bt − δ log tc . . . dt + δ log te} to prevent very large

windows for long trajectories.
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Table B.2: Clustering Techniques

Technique Publication

Direct Morris 2008 [86]

Divisive (rb,rbr) Billotti 2005 [11]

Agglomerative Buzan 2004 [17]

Hybrid (cham) Karypris 1999 [60]

Graph Li 2006 [69]

Spectral Hu 2007 [50]

B.1.7 Modified Hausdorff

The Hausdorff distance has been commonly used to compare two unequal size sets but

is not well suited for trajectories because it does not account for ordering [136]. The modified

Hausdorff distance DMODH(Fi, Fj) [5] was designed to respect the time-ordering of points and

reduce sensitivity to outliers by allowing slack when matching.

DMODH(Fi, Fj) =
α

ord
fi,t∈Fi

h(fi,t, Fj)

h(fi,k, Fj) = min
fj,τ∈N (C(fi,t))

dE(fi,k, fj,τ ) (B.11)

where N () is a neighborhood window, C(fi,t) is the point in Fj that correspond to point fi,t in Fi,

and ord α
fi,t∈Fi h(fi,t, Fj) denotes the value of h(fi,t, Fj) that is larger than α percent of all other

h values over Fi. The distance between trajectories is thus a prototypical distance chosen from

among the best matching points. The trajectory alignment is controlled by the correspondence

function C(.) which assumes that corresponding points occur at the same fraction of total track

length. This convention accounts for speed variation within similar spatial patterns.

B.2 Clustering Algorithms

Besides examining the effects of different trajectory distance measure, the quality of

clusters returned by different types of clustering methods is explored to determine if certain

techniques are better suited for trajectories. The classes of clustering algorithms we consider are

direct methods, hierarchical agglomerative and divisive procedures, hybrid divisive-agglomerative

techniques, graph cuts, as well as spectral methods. A summary of recent research utilizing these

different clustering techniques is shown in Table B.2.

For ease of clustering, a similarity matrix S = {sij}, which represents a fully connected

graph, is constructed from the trajectory distances using a Gaussian kernel function

sij = e−D
2(Fi,Fj)/2σ

2
∈ [0, 1]. (B.12)
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where D represents one of the distance measure defined previously and the parameter σ describes

the trajectory neighborhood. Large values of σ cause further apart trajectories to have a higher

similarity score while small values lead to a more sparse similarity matrix (more entries will be

very small). The S matrix along with the desired number of clusters are used as input into the

differing clustering algorithms which are discussed below.

B.2.1 Direct

The direct clustering methods find the K clusters simultaneously. A initial guess of

clusters is iteratively optimized by adjusting each cluster component in unison to find a globally

satisfying solution

Popular direct optimization solvers in the Euclidean space are k-means and the soft

assignment version fuzzy c means (FCM). These are used as the baseline clustering techniques

for comparison.

B.2.2 Agglomerative

Agglomerative clustering is a bottom-up strategy that initially treats each trajectory as

an individual cluster and merges similar clusters hierarchically in a tree-like structure, stopping

when only K clusters remain. At each merge step, a hard decision on cluster membership is

made limiting the algorithms ability to adjust at a higher tree level.

B.2.3 Divisive

Divisive clustering is the top-down dual to agglomerative clustering where the entire

trajectory training set is considered a single cluster. The K clusters are obtained by performing

K − 1 repeated bisections where each bisecting cluster split results an optimal 2-way division

of the similarity matrix. In addition to ensuring local optimality at the bisections, a global

optimization step can be used to optimize the solution across all bisections.

B.2.4 Hybrid

Hybrid clustering solutions combine both divisive and agglomerative techniques. By us-

ing different criterion functions during the partitioning and agglomeration phases, more complex

(non-globular) clusters can be discovered. The dataset is first clustered into M > K clusters

using one of the partition methods and the final K clusters are obtained by merging some of the

M clusters.
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Table B.3: Best CCR Performance (Average over 5 runs)

kmeans fcm hu pca dtw lcss pf modh

i5sim 0.8162 0.8900 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

i5sim2 0.7250 0.8154 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

i5sim3 0.4901 0.4984 0.5735 0.5574 0.9994 1.0000 0.9944 0.7725

i5 0.6397 0.8000 0.9107 0.7655 0.9722 0.9975 0.9613 0.9975

cross 0.6937 0.7163 0.9963 0.9947 0.9958 0.9869 0.9947 0.9916

labomni 0.7952 0.7923 0.8900 0.9091 0.8383 0.9091 0.8325 0.8325

B.2.5 Graph

Similar to the divisive clustering method, graph methods seek to divide the full dataset

into individual clusters [107]. Instead of operating directly on the similarity matrix, a nearest

neighbor graph is constructed where a trajectory is a vertex. Each vertex is connected by

a weighted edge to its most similar trajectories. The K clusters are found using a min-cut

partitioning algorithm which finds a division of the graph with minimal loss of edge weights.

B.2.6 Spectral

Spectral clustering has become popular recently because it can be efficiently computed

and improved performance over more traditional clustering algorithms such as k-means. Spectral

methods do not make any assumptions on the distribution of data points and instead relies on

eigen decomposition of the similarity matrix which approximates an optimal graph partition

[91]. We compare compare 4 flavors of spectral algorithms by selecting to decompose either the

Laplacian of Shi and Malik [107] or Ng et al . [91] followed by a final clustering of eigenvectors

with either k-means or FCM.

B.3 Clustering Evaluation

The following section presents clustering results for a number of different experiments.

The best classification results are displayed in Table B.3. These results are the average per-

formance over 5 runs for each dataset and similarity type using 48 different clustering method

variations. The average results versus cluster method, distance measure, and dataset are pre-

sented in Fig. B.2.
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Figure B.1: Clustering quality for different σ values for (a) HU and (b) DTW averaged across all

datasets. As σ increases the performance improves resulting in higher CCR and lower variance.

B.3.1 Evaluation Criteria

Since the labels returned by a clustering run was arbitrary, the accuracy of a clustering

was evaluated by finding the one-to-one mapping between the ground truth and clustering labels

which maximized the number of matches. The assignment problem can be solved using the

Hungarian algorithm [66] when recast to minimize the number of mismatched labels. Given the

label mapping, the cluster quality is measured by the correct clustering rate (CCR) [136]

CCR =
1
N

K∑
c=1

pc (B.13)

where N is the total number of trajectories and pc denotes the total number of trajectories

matched to the c-th cluster.

B.3.2 Procedure

The CLUTO [1] software package is used for agglomerative, divisive, hybrid (CHAMELEON

[60]), and graph based clustering. The software provides a number of options and optimization

criteria for each cluster method which results in a total of 44 different cluster variants. An ad-

ditional 4 spectral cluster variants were implemented in Matlab for a total of 48 cluster variants

applied for each similarity measure to each dataset. Every clustering combination was run 5

times with random initialization to better represent expected performance.

The experimental evaluation consisted of three main parts. The effect of the neighbor-

hood parameter σ was investigated, a sweep was done through all distance measure parameters

to ensure near optimal values, and finally the clustering evaluation was performed by varying the

distance measure, cluster method, and dataset.
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B.3.3 Gaussian Kernel Evaluation

The effect of trajectory neighborhood on clustering was examined by varying the param-

eter σ in (4.6). Fig. B.1 shows improved performance as σ increases. The average CCR not only

increases but the variance decreases. Although the quality appears to saturate at a particular

σ choice, larger values than this cause little performance degradation. An average similarity
1
N2

∑
i

∑
j sij = 0.1 was used to produce good results.

B.3.4 Clustering Method Evaluation

The plot in Fig. B.2a shows that on average the choice of clustering method has little

effect on the quality of the results. It is noteworthy to mention that the soft membership of

FCM improves performance 6% over k-means making it a clear winner between the baseline

approaches. All cluster methods perform significantly better than the baseline except for the

direct method which is the same category both k-mean and FCM fall into. Although the graph

results were only 5% lower, graph based clustering was significantly more difficult as results were

very sensitive to the graph neighborhood definition.

B.3.5 Distance Measure Evaluation

The average CCR results as a function of distance measure is shown in Fig. B.2b. This

shows the effort in designing measures that allow the use of raw variable length trajectories is not

wasted since the sampled measures, HU and PCA, perform almost 10% worse. Unfortunately, the

newer trajectory specific distances, PF and MODH, have comparable performance with DTW

and LCSS.

Further insight can be found by examining the columns of Table B.3. The performance of

HU, PCA, and MODH all degrade for the I5SIM3 dataset where there are different speeds in the

same lane. The speed information is thrown out during resampling when using HU and PCA and

it is also ignored by the modified Hausdorff distance because the corresponding points are mapped

based on total trajectory length. While LCSS performs uniformly well, it is surprising that both

DTW and PF which do not have outlier robustness exhibit corresponding performance. The need

for outlier suppression is lessened for trajectory data because of the smoothing inherent in the

tracker (e.g . Kalman or particle filter). Unless the tracker makes a gross mistake it is unlikely

for a trajectory to contain outlier points that would greatly influence warping match distance.

B.3.6 Dataset Evaluation

The preceding sections implied little difference in effectiveness when using different clus-

tering methods or different time aligned distances but inspection of Fig. B.2c clearly differenti-

ates performance between datasets. The CCR results are quite high for the more simple I5SIM,
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Figure B.2: Average CCR performance plotted against experimental variables. (a) Clustering

algorithm (b) Distance measure (c) Dataset
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Figure B.3: Average performance for the different similarity measures for each dataset.

I5SIM2, and CROSS datasets. With ∆c/∆m < 1, these sets have tight clusters well separated

from one another.

The bar graph in Fig B.3 indicates a performance distribution across distance functions

for each dataset which is lost in the averaged plot. Fig. B.4 shows a detailed view of I5SIM2

and I5SIM3. These sets had 8 highway lanes with trajectories collected from 2 different speed

profiles, free flow and congestion, but only I5SIM3 required differentiation based on speed as well

as lane number. All distance methods performed very well in the I5SIM2 set, Fig. B.4a, except

LCSS which actually did worse than FCM. There was a large variation in performance given

the clustering method and though perfect clustering was possible (see Table B.3) the direct and

divisive solutions lowered the average performance. Fig. B.4b shows the dramatic improvements

possible with the right distance choice. The DTW, LCSS, and PF distances were able to resolve

both position and speed differences with a high degree of accuracy.

Viewing Table B.3 we see the LABOMNI dataset performance was similar across all the

distance types, even the baseline k-means and FCM. HU and PCA which reduce dimensionality

and focus on shape performed better than all the time alignment techniques, except LCSS,

because the long length of trajectories which allow ample opportunity for misalignment..

Another interesting result from Table B.3 is the significant CCR loss for PCA in the

I5 dataset. ξ = 1 and high ∆c/∆m score indicates straight overlapping lanes due to camera

perspective which causes the northbound lanes furthest from the camera to appear very close

in the image plane. Unlike the LABOMNI set which has a lower ξ value, trajectories cannot

be distinguished well by intermediate points and the PCA decomposition filters out the fine

differences.
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Figure B.4: (a) Average CCR for I5SIM2. The direct and divisive methods perform poorly for

LCSS. (b) Average CCR for I5SIM3. The time alignment measures {DTW, LCSS, PF} perform

significantly better.

B.4 Concluding Remarks

This work evaluated the performance of a number of clustering procedures for the trajec-

tory clustering task. The evaluation consisted of a comparison of 6 trajectory distance measures,

7 clustering methods, and 6 varied datasets. Without prior knowledge, the choice of cluster-

ing method and distance measure was not important as long as it operated on full unsampled

tracks, though LCSS was consistently a top performer. Performance was actually dictated by

the trajectory properties encountered in a dataset. When trajectories were very long the data

reduction techniques worked well by focusing on coarse shape and position and when dynamics

were considered an important separating factor the time-normalized distances dominated.
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