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Abstract

Communicating Plans in Ad Hoc Multiagent Teams

by

Trevor Santarra

With the rising use of autonomous agents within robotic and software settings,

agents may be required to cooperate in teams while having little or no information

regarding the capabilities of their teammates. In these ad hoc settings, teams

must collaborate on the fly, having no prior opportunity for coordination. Prior

research in this area commonly either assumes that communication between agents

is impossible given their heterogeneous design or has left communication as an

open problem. Typically, to accurately predict a teammate’s behavior at a future

point in time, ad hoc agents leverage models learned from past experience and

attempt to infer a teammate’s intended strategy through observing its current

course of action. However, these approaches can fail to arrive at accurate policy

predictions, leaving the coordinating agent uncertain and unable to adapt to its

teammates’ plans. We introduce the problem of communicating minimal sets of

teammate policies in order to provide information for collaboration in such ad hoc

environments. We demonstrate how an agent may determine what information it

should solicit from its peers but further illustrate how optimal solutions to such a

problem have intractable computational requirements. Nonetheless, through the

characterization of this difficulty, we identify strategies that permit approximate

or heuristic approaches, allowing the practical application of this capacity in ad

hoc teams.
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Chapter 1

Introduction

In traditional multiagent systems (MAS) literature, teams of agents share an

identical design for reasoning, planning, and executing actions, allowing perfect

modeling of their teammates. Ad hoc teamwork [134] introduces the notion that

with the increasing utilization of autonomous agents and robots, agents of hetero-

geneous design may need to coordinate in real world settings. The authors cite

the ability of humans work together without prior coordination or prior knowledge

of one another as a capacity to be pursued by the multiagent systems commu-

nity. In these scenarios, teammates may have little to no experience cooperating

with their peers, putting the collaborators in a position where they must learn

the capabilities of their teammates during the act of coordination. As such, the

task of ad hoc teamwork can be conceptualized as the interplay of many concepts:

reasoning under uncertainty, agent modeling, plan recognition, machine learning,

and—as the primary interest of this work—communication.

Much of the existing ad hoc teamwork literature focuses on reinforcement

learning and decision-theoretic planning as the primary mechanisms for tackling

this challenge. Agents use models of known behavior to predict an ad hoc agent’s

actions, employing probabilistic reasoning to attempt coordination in instances

1



where the strategies of their teammates are uncertain [12, 14, 10, 11, 3, 5, 6, 7, 4,

31, 33]. These models can be refined, combined, or learned anew during execution

by observing teammate behavior, increasing the accuracy of the predictions over

time, which results in more consistent coordination. However, it is often the

case that despite leveraging both prior experience and inference from observed

behavior, an agent may be left uncertain as to intended actions of its teammates.

This is particularly true when coordinating with a teammate whose policy—the

conditional plan an agent follows—stands apart from any behavior previously

experienced by the agent.

Ad hoc teamwork possesses many similarities to other multiagent coordination

problems, particularly those in partially observable domains where agents must

make inferences regarding the state of the world they cannot observe directly. In

our case, agents cannot know the full plans of their collaborators. In such infor-

mation asymmetric domains, it is often necessary to share information between

agents, effectively syncing the team’s beliefs about the world and, as a result, the

individual policies of each member. This exchange of information can be a critical

aspect of coordination.

Communication within ad hoc teams has been an open problem within the

community since its inception. In many instances, where agents are designed

by different institutions or are built with unique technologies, communication

between teammates may be impossible, each possessing incompatible forms of in-

formation broadcasting and receiving. Despite this notion, many domains exist

in which heterogeneous agents coordinate while possessing the capacity for com-

munication. One compelling application is that of human-agent teams, whether

with virtual or physically embodied agents, where natural language or specialized

interfaces facilitate communication. What follows is a natural question: What

2



should members of an ad hoc team communicate?

Consider a scenario in which two rescue robots must search an environment

for trapped persons and then coordinate to remove debris and deliver supplies.

Naturally, the agents may need to split up to cover more ground. But what areas

should each agent search independently? If a trapped person is found, when and

how should the agent attempt to rendezvous with its teammate? Finally, once the

team has been notified, who should take on the responsibility of moving debris

or fetching needed supplies? These questions demonstrate the interdependence of

the individual agents’ plans. One robot can only be confident in its own actions

with some degree of certainty regarding the intentions of its teammates.

If one primary use of communication is the reduction of uncertainty in partially

observable domains, we propose that uncertain policies of teammates serve as a

natural target for explicit communication. In this regard, we treat teammates as

oracles for their own individual policies, having perfect knowledge of or at least

being capable of computing answers to queries regarding their policies. It is left to

an ad hoc agent, then, to decide what information it requires from its teammates

in order to improve the predictions of its teammates’ plans and adapt its own.

In contrast to traditional multiagent communication applications where com-

municative acts are few in number, agent reasoning over uncertain teammate poli-

cies may consider the entire space of decisions a teammate may make throughout

the collaborative effort. Furthermore, in choosing a sequence of decision points to

clarify, an agent must consider how the potential responses it may receive influ-

ence which policy piece of information it queries next. In this thesis, we formalize

this problem as a Markov decision process (MDP), providing a direct mechanism

for computing these conditioned communication policies but at the expense of

covering a state space exponentially larger than the original coordination domain.

3



This exponential increase in complexity motivates the exploration of approximate

or heuristic approaches, one of the primary focuses of this work. Accordingly, the

primary contributions of this thesis are

• A formal characterization of the decision problem of identifying elements of

teammate policies which should be explicitly communicated,

• A theoretical analysis of the problem, illustrating its complexity as well as

various characteristics which may be informative for developing practical

solution methods,

• An approximate, heuristic-based, decision-theoretic planning approach for

computing communication policies, and

• An empirical evaluation of the proposed technique in an ad hoc multiagent

teamwork domain.

This dissertation is organized as follows:

• Chapter 2 outlines the construction of the perspective of an ad hoc agent

operating within an multiagent team while uncertain of its teammates’ in-

dividual policies.

• Chapter 3 summarizes related work on coordination in ad hoc teams, with

a particular focus on approaches for managing beliefs, learning models of

teammate behavior, and sharing information through explicit communica-

tion. We situate the techniques evaluated in this thesis among the such

literature.

• Chapter 4 introduces the multiagent pursuit domain, of which we use a

two-agent version for empirical evaluation of approaches throughout the

document.

4



• Chapter 5 covers a non-communicative example of ad hoc teamwork. We

propose a belief revision approach over known models, under which a coor-

dinating agent can detect and adapt to changes in teammate behavior.

• Chapter 6 motivates the need for acquiring information beyond simply

observing the behavior of other agents. For this purpose, we propose explicit

communication.

• Chapter 7 formally defines the problem of communication in ad hoc teams

as an extension to the perspective outlined in Chapter 2.

• Chapter 8 characterizes the communication problem, providing both theo-

retical and qualitative analysis, most notably the substantial computational

needs for determining communication policies in practice.

• Chapter 9 attempts a greedy approach to the communication problem in

the two-agent pursuit domain.

• Chapter 10 proposes a set of measures to provide a heuristic ordering of

queries. We leverage this rough ordering to prune the space of potential

queries an agent considers while computing a communication policy.

• Chapter 11 evaluates the proposed heuristics and assesses the effects of

communication cost, agent experience, and domain choice on the success of

coordinating agents.

• Chapter 12 provides a retrospective on the work, discussing its initial

successes in establishing a practical approach to communicating in ad hoc

teams. Furthermore, we discuss a myriad of extensions and new directions

of the work.

5



Chapter 2

Background and Notation

Multiagent systems (MAS) is a field concerned with the interaction of intelli-

gent agents within an environment. In an interactive space, the actions of fellow

agents in pursuit of their individual goals may directly affect the shared world

state in which an agent is planning. For this reason, an agent is forced to consider

the actions of other agents as it plans its own course of actions, whereas in spaces

in which the actions of agents do not alter any shared resources, an agent may

adopt a single-agent perspective, effectively ignoring other agents.

The sizes of the domain state space, the potential set of potential interactions

between agents, and the simultaneous actions possible often characterizes such

multiagent problems as intractable to consider in their entirety, motivating the

division of labor across the agents. The successful resulting decentralized control

of a process is dependent on the capability of each individual agent to process

local information, reason about the actions of other agents, and adapt its plan

accordingly. If there is uncertainty regarding the potential behavior of another

agent, the planning process incurs the added difficulty of recursively modeling the

potential utility function, goals, beliefs, and other factors that inform an agent’s

decisions [54, 52, 21, 108, 42].
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One of the foremost hurdles for multiagent team decision problems is compu-

tational complexity required to compute a agent’s policy. Many MAS domains

can be represented by decentralized control of Markov decision processes, called

DEC-MDPs and DEC-POMDPs for the fully and partially observable versions,

respectively. The complexity of finding an optimal joint policy in these represen-

tations is known to be NEXP-complete in the finite horizon case and undecidable

in the infinite horizon case [21].

Fortunately, it is often possible to reduce the complexity to a degree by allow-

ing simplifying assumptions and accepting locally optimal solutions. For example,

Nair et al. [91] propose fixing teammate policies and searching for locally optimal

agent policies until an equilibrium is reached, resulting in a significant reduction

in computational time. In the vein of simplifying the problem directly, agents

who are designed with or gain perfect information regarding the state and deci-

sion process of other agents can then act as though controlled by a centralized

process [100]. For example, for DEC-POMDPs, providing an agent with other

agents’ action and observation histories—either via the domain itself or through

free communication between agents—allows the reduction of the decision problem

to an equivalent single-agent POMDP [109]. POMDP solvers have had consid-

erably more advances than their decentralized counterparts and are frequently

solved via dynamic programming [16] or sample-based techniques [129].

Within domains where such synchronization across agents is not possible,

Tambe [140] and Gmytrasiewicz and Durfee [52] stress the importance of recur-

sive agent modeling, estimating other agents’ beliefs over attributes of the world,

their beliefs regarding each other agent, as well as their beliefs over other agents’

beliefs and so on. Potentially, such recursive modeling can be infinitely deep,

though the assumption of bounded rationality [130] can often yield more human-
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like results [107]. Moreover, Mundhe and Sen [89] observed that modeling other

agents as being non-recursive and having fixed, probabilistic policies can still lead

to convergence to optimal policies in certain domains.

In this chapter, we construct the decision problem faced by an agent coordi-

nating in an ad hoc multiagent team. We begin with the model of a multiagent

MDP [25], providing the framework for a team decision problem. By extending the

model with uncertainty over the underlying policies of an agent’s teammates, we

illustrate how ad hoc agents define and revise beliefs regarding their collaborators’

plans.

2.1 Multiagent Markov Decision Processes

The control of a process by multiple coordinating agents is represented as a

Multiagent Markov Decision Process (MMDP) [25], which can be thought of as a

generalization of single-agent Markov Decision Processes (MDPs). Formally, an

MMDP for a team of n+ 1 agents is defined by the tuple 〈S, Ā, T, R, γ〉 where:

• S is a finite set of states, fully observable by all agents;

• Ā =×n

i=0Ai is the set of joint actions given by the Cartesian product over

the sets of individual agent actions, Ai;

• T : S×Ā×S 7−→ [0, 1] is a transition function which provides the likelihood

of a state transition given a joint action;

• R : S × Ā× S 7−→ R is a real-valued reward function;

• γ ∈ [0, 1) is a discount factor.

MMDPs provide a computational model for computing an optimal joint policy,

π̄ : S 7−→ Ā, maximizing the expected cumulative reward over a finite or infinite

8



horizon, E
[∑
t
γtRt

∣∣∣∣π̄]. The computation of an an optimal MMDP policy can

be performed either via a centralized process, which computes all of the agents’

individual policies, or in a decentralized fashion, in which each agent computes its

own policy as part of the greater joint policy. For now, we will discuss the former,

leaving the challenges of the decentralized version for Section 2.2.

For a centralized process, we formulate recursive value functions for the MMDP

in the same manner as typically used for single-agent MDPs. The recursive Bell-

man equation for the MMDP acting under joint policy, π̄, is given by

Vπ̄(s) =
∑
s′∈S

T (s, π̄(s), s′)
[
R(s, π̄(s), s′) + γVπ̄(s′)

]
A policy is considered optimal if and only if Vπ̄(s) ≥ Vπ̄′(s) ∀s ∈ S, ∀π̄′. It is

important to note that for a given MMDP, there may exist multiple optimal joint

policies, each of which induces the optimal value function V ∗(s) given by

V ∗(s) = max
ā∈Ā

∑
s′∈S

T (s, ā, s′)
[
R(s, ā, s′) + γV ∗(s′)

]
.

2.2 Challenges of Decentralized Teamwork

It is often the case that agents coordinating on a joint problem cannot utilize

a centralized process to compute and assign the individual policies that comprise

an optimal joint policy. In these situations, it is left up to each agent to decide

on an individual policy that coordinates successfully as a part of the larger joint

policy. However, this is a non-trivial step, as it can require the entire team of

agents to arrive at compatible policies. Consider the case where a clear joint plan

is established, but that the overall structure is divided into relatively independent
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roles for each of the agents fill. How are the roles assigned? If, due to some

inherent flaw in the decentralized assignment of roles, two agents attempt to fill

the same role, the joint plan may fail. This hurdle is compounded when multiple

optimal joint policies exist, as each agent must additionally identify which joint

policy to pursue before attempting to assign an individual policy. Furthermore,

in situations where the scale of the problem necessitates approximate solutions,

the space of potentially joint policies can grow dramatically.

As such, the issue of coordination in multiagent teams has been at the cen-

ter of much of the extensive work within the multiagent systems community.

Many techniques have been proposed, such as locker room agreements for role

assignment [137], explicit communication of observations in partially-observable

domains [108, 116], iterative advancement toward stable behaviors via machine

learning [32, 36], and even negotiating joint plans directly [57, 58]. As described

in [25], such techniques largely fall into three categories: imposed conventions,

learned coordination, and explicit communication.

Conventions, in this context, refer to established patterns of behavior, often

included by the designer of the system, in order to restrict the behavior of the

agents in order to achieve coordination. For example, in the event that multiple

optimal policies can be achieved, a lexicographic ordering could be imposed and

shared across all agents, under which each agent could arrive at consensus without

the requirement of explicit coordination acts. For the purposes of this work’s focus

on ad hoc teams, conventions are removed from consideration, as they are in

opposition to the assumption that each agent possesses minimal prior knowledge

regarding the decision processes of their teammates.

Learned coordination, however, is the most utilized approach for ad hoc team

domains. Given the inherent uncertainty regarding the intentions of new team-
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mates, it is useful to observe and identify patterns within the behaviors of the

team, in order to adapt accordingly. Much of the existing work focuses on at-

tempting to learn an accurate model of teammate behavior on-the-fly during the

act of coordination [13] or to generalize existing models of similar teammates to

construct a new, accurate model with only sparse observations [12]. We will re-

turn to these approaches in more detail in Chapter 3. Furthermore, while ad hoc

teamwork has historically focused on the ability of a single agent to learn to co-

ordinate within a new team, research from other areas of multiagent systems as

well as game theory have studied learned coordination from a group perspective,

allowing multiple agents to learn and adapt independently such that the team

settles into policies that represent Nash equilibria for the joint effort [36].

Finally, communication provides agents the capability to send and receive in-

formation necessary for coordination. Often, the particular form of communicative

acts relies on the domain-specific application, potentially containing observations,

commands, queries, physical signals, or messages encoding relevant information

regarding the world [51, 108, 116]. After a communicative act, one or more of the

agents may adapt its behavior, improving the overall likelihood of success. Within

many ad hoc teamwork domains, communication is assumed to be infeasible, due

to the costs involved or to incompatibilities in agents’ communication protocols.

This is not strictly true, as in the primary example of human ad hoc teamwork—

a pickup game of soccer—humans often attempt some form of gestures or other

signaling. The existence of even limited forms of communication can provide a

useful mechanism for coordination.
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2.3 Individual Agents in a Multiagent Team

From the perspective of a single agent within a decentralized multiagent team,

the problem of selecting an individual policy depends directly upon the individual

policies of its teammates. We will first examine how an agent decides is own policy

when it knows the policies of its teammates. The construction of this perspective

introduces this fixed knowledge by extending the state space, such that this fact

of the world is known to the agent. Let ASi be the space of mappings, S 7→ Ai,

and µi ∈ ASi (i = 0, 1, 2, . . . n) be the deterministic policy implemented by player

i. We can construct the single agent’s decision problem for agent i = 0 as an

MDP, 〈S̃, A0, T̃ , R̃, γ〉, such that

• S̃ = S×
(×n

i=1A
S
i

)
is the set of states, extended by possible assignments of

policies of the other agents;

• A0 is the set of actions for the individual agent (i = 0);

• The modified transition function is given by

T̃ (s̃, a0, s̃
′) = T̃

((
s,

n×
i=1

µi

)
, a0,

(
s′,

n×
i=1

µ′i

))

=


T
(
s,
(
a0,×n

i=1 µi(s)
)
, s′
)

if µi = µ′i ∀i

0 otherwise1

1We assume the policies of other agents do not change, and therefore assign T̃ (·, ·, ·) = 0
when µi 6= µ′i.
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• The modified reward function:

R̃(s̃, a0, s̃
′) = R̃

((
s,

n×
i=1

µi

)
, a0,

(
s′,

n×
i=1

µ′i

))

=


R
(
s,
(
a0,×n

i=1 µi(s)
)
, s′
)

if µi = µ′i ∀i

0 otherwise

As before, the optimal value function is given by

Ṽ ∗(s̃) = Ṽ ∗
((

s,
n×
i=1

µi

))

= max
a0∈A

∑
s̃′∈S̃

T̃ (s̃, a0, s̃
′)
(
R̃(s̃, a0, s̃

′) + γṼ ∗(s̃′)
)

= max
a0∈A

∑
s′∈S

T (s, ā, s′)
(
R (s, ā, s′) + γṼ ∗

((
s′,

n×
i=1

µi

)))
where ā = 〈a0, µ1(s), . . . , µn(s)〉.

However, in practice, an agent will not have full knowledge of the team’s poli-

cies. Within the context of ad hoc teamwork, it is necessary to consider how

such uncertainty plays a role in the selection of individual policies as well as how

learning and communication can aid in coordination. Agent 0 cannot observe the

policies (µ1, . . . , µn) of other agents. Instead, it must infer the individual policies

through observing the actions taken by other agents. In order to account for such

observation-based inference, we reformulate the perspective of the single agent

within an ad hoc multiagent team as a partially observable Markov Decision Pro-

cess (POMDP) [9]. POMDPs provide an establish framework for decision making

under uncertainty when aspects of the world cannot be directly observed. In the

ad hoc teamwork scenario, the underlying policies of the coordinating teammates

are only partially observable—that is, the agent must infer each policy through a
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stream of state-action observations which only reveal a subset of the entire policy.

This formulation of the ad hoc teamwork problem is common across much of the

existing work [7, 11, 14, 122] and demonstrates the heavy computation require-

ments of optimal decision making in such scenarios. Finding an optimal policy

in a POMDP has been shown to be PSPACE-complete [101] and has motivated

much work in approximate techniques and domain-specific optimizations. The

complexity arises from the uncertainty of the true underlying state. We introduce

such partial-observability by extending the single agent’s perspective as follows:

• From the previous model we retain the state space S̃, action space A0,

transition function T̃ , reward function R̃, and discount factor γ.

• In a given state, agent 0 observes the world state as well as the actions taken

by all other agents, as specified by the observation space, O = S×
(

n×
i=0

Ai

)
.

An observation is denoted o =
(
so,×n

i=1 a
o
i

)
.

• Furthermore, the observation probability function, Ω, is given by:

Ω(o | s̃, a0, s̃
′) = Ω

((
so,

n×
i=1

aoi

) ∣∣∣ (s, n×
i=1

µi

)
, a0,

(
s′,

n×
i=1

µi

))

=


n∏
i=1

Pr(aoi | s, µi) if so = s′

0 otherwise

For the purpose of reasoning over the team’s individual policies, the coordi-

nating agent maintains beliefs, bi : ASi 7→ [0, 1], each of which is a probability

distribution over ASi . Observations, if sufficiently informative, can help diminish

this uncertainty significantly. When observing agent i execute action ai ∈ Ai in

state s ∈ S, the agent revises its belief, b′i = B(bi, s, ai), where B is a belief up-

date function. Here, we assume this update applies Bayes’ theorem to achieve the
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posterior belief:

b′i(µi) = B(bi, s, ai) = Pr(µi|ai, s)

= Pr(ai|s, µi) Pr(s, µi)
Pr(ai)

= Pr(ai|s, µi)bi(µi)
Pr(ai)

where Pr(ai|s, µi) =


1 µi(s) = ai

0 otherwise

and Pr(ai) =
∑

µi∈AS
i

Pr(ai|s, µi)bi(µi)

As is common for POMDPs [73], we formulate this as an equivalent belief

MDP, where each state represents a particular state of of the agent’s beliefs, given

a sequence of observations and corresponding revision of prior beliefs. For this

belief MDP,

• The belief state space Sb : S̃ 7−→ [0, 1] is the belief space over S̃, covering

both the world state space, S, and the teammate policy space, ASi ∀i. Be-

cause the state component of s ∈ S is fully observable, the belief state space

can be denoted

Sb = S ×
(

n×
i=1

Bi

)

where Bi = P(ASi ) is the set of probability distributions over ASi . A generic

state is denoted b =
(
s,×n

i=1 bi
)
, where s ∈ S and bi ∈ Bi.
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• The belief transition probabilities are given by the formula

T(b, a0, b′) =
∑
o∈O

Pr
(

b′
∣∣∣ b, a0, o

)
Pr
(

o
∣∣∣ b, a0

)

where Pr
(

b′
∣∣∣ b, a0, o

)
= Pr

((
s′,

n×
i=1

b′i

) ∣∣∣ (s, n×
i=1

bi

)
, a0,

(
so,

n×
i=1

aoi

))

=


1 if B(bi, s, ai) = b′i ∀i and s′ = so

0 otherwise

and Pr
(

o
∣∣∣ b, a0

)
= Pr

((
so,

n×
i=1

aoi

) ∣∣∣ (s, n×
i=1

bi

)
, a0

)

= Pr
(
so
∣∣∣ s, n×

i=1
aoi , a0

)
Pr
(

n×
i=1

aoi
∣∣∣ s, n×

i=1
bi

)

= T

(
s,

(
a0,

n×
i=1

aoi

)
, so
)

n∏
i=1

Pr(ai
∣∣∣ s, bi)

• The reward can similarly be given by

R(b, a0, b′) = R
((

s,
n×
i=1

bi

)
, a0,

(
s′,

n×
i=1

b′i

))

= R

(
s,

(
a0,

n×
i=1

a∗i (s, b′i)†
)
, s′
)

In contrast to the single agent in a multiagent MDP representation, the agent’s

policy is no longer defined over the state space S; rather, it is a mapping of actions

to beliefs, π : B 7→ A, and the agent’s policy is computed by maximizing the value
†Given a state, s, and the posterior belief, b′i, we can deduce the action performed by player i

in s. By construction, b′i gives 0 probability to every policy µi such that µi(s) 6= ai. Let a∗i (s, b′i)
denote the unique action performed by agent i which has positive probability in s according to
b′i.
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function,

Vπ(b) =
∑

b′∈Sb

T(b, π(b), b′) (R(b, π(b), b′) + γVπ(b′)) . (2.1)

It is worth noting that the potential size of this belief space can be large, per-

haps intractably so, depending on the space of expected policies and the number

of teammates being modeled. A single teammate, for example, selects a policy

from |Ai||S| possible policies. If the coordinating agent is modeling n teammates

independently, it may—in the worst case—consider ∏n
i=1 |Ai||S| potential combina-

tions of individual teammate policies. While much existing research has considered

large state spaces, relatively little work has considered ad hoc coordination within

large scale multiagent teams. A typical instance of ad hoc teamwork considers

an agent coordinating with a single teammate or within a team of agents that

have a shared joint policy, allowing a coordinating agent to use observations of

individual agent actions to infer the policies across all of its peers [13, 12]. Larger

teams composed of many ad hoc agents remains an open topic for research, and

we encourage the reader to review results of the Robocup drop-in league for a

view of current initiatives in that area [47, 82].

2.4 Planning and Acting in Ad Hoc Teams

In this chapter, we have laid out the perspective of an agent coordinating in an

ad hoc team, providing a framework for managing beliefs over the policies of the

other team members and computing a coordination policy under such uncertainty.

Figure 2.1 depicts the process by which the agent incorporates observations of

teammate behavior into its beliefs, which in turn affects its individual policy.
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Figure 2.1: A diagram of ad hoc teamwork, in which a team of agents coordinates
to mutually affect the environment.
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Chapter 3

Related Work in Ad Hoc

Teamwork

Stone et al. [134] introduced the challenge of autonomous ad hoc teamwork,

citing the ability of humans work together without prior coordination or prior

knowledge of one another as a capacity to be pursued by the multiagent systems

community. Similar to the human example, ad hoc autonomous agent teams are

composed of two or more agents designed separately and with minimal shared

information. Specifically, the community was posed the following challenge:

To create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team members.

The task of as hoc teamwork can be conceptualized as the interplay of many

concepts: multiagent planning with heterogeneous agents, agent modeling, plan

recognition, reinforcement learning, and communication. In order to coordinate

effectively, an agent must consider the uncertainty of its teammates’ behavior,

construct a predictive model from observations, communicate asymmetric infor-

mation, and be able to adapt its own policy accordingly. To illustrate these broad
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capabilities, we survey techniques from existing research on ad hoc teamwork.

3.1 Managing Uncertainty

With the minimal assumptions of what constitutes ad hoc teamwork, it is a

natural consequence that the existing literature on the topic varies on many fronts,

including target application domain, setup of initial beliefs regarding other agents,

as well as techniques of managing the uncertainty throughout the collaborative

effort.

Consider, first, the initial beliefs an agent holds with regard to its teammates’

intended plans. In an ideal scenario, the prior belief would perfectly match the

distribution of teammate policies according to the relative likelihoods across the

true underlying population from which teammates are drawn. However, this re-

quires either possessing such information a priori or having sampled sufficiently

many attempts with teammates that a distribution over common policies can

be accurately estimated. In practice, such ideal circumstances may not occur;

furthermore, it is of interest to find coordination techniques that are robust to

inaccurate priors. Albrecht et. [8] compared baseline priors (uniform, random)

with priors constructed under functions over individual agent payoffs. For exam-

ple, a Utility prior weights teammate strategies proportionally to the payoff for

the coordinating agent, while a Stackelberg prior assigns probabilities proportional

to the payoff for the teammate. The authors observed that the best performing

prior depended significantly on both the true teammate type and the depth of

the coordinating agent’s lookahead. Priors are an understudied element of ad hoc

teamwork, as most existing work elects to use a uniform prior [3, 12, 10, 122, 120]

while some prefer an experience-based prior1 [14].
1The experiments in Chapter 11 construct a prior from past experience.
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As a counterpart to the selection of initial beliefs, revising beliefs through ob-

serving teammate behavior, i.e. calculating the posterior belief distribution, has

been a highlighted topic among much existing work [12, 14, 7, 122]. In typical

inference problems, Bayes’ rule (Pr(µi|ai) ∝ Pr(ai|µi) Pr(µi)) is used to compute

posterior distributions. However, consider an agent coordinating with a team-

mate acting under an entirely novel policy (µ∗) not covered by the agent’s belief

distribution, i.e. Pr(µ∗) = 0. It is possible that upon observing actions such that

Pr(ai|µi) = 0 ∀µi, each modeled teammate policy is assigned a posterior probabil-

ity of 0, causing a collapse of the belief distribution and leaving the agent unable

to use observations to make predictions. Two common approaches circumvent this

problem. First, choosing a prediction strategy such that Pr(ai|µi) > 0 ∀ai ensures

non-zero posteriors. Barrett et al. [12] manually overrides observations that drop

out teammate models, electing to keep the previous probability instead. In Chap-

ter 5, we use an exponentiated loss function, which is non-zero for mispredictions

yet favors correct predictions in the posterior.

A second and more common approach is to adopt an alternative posterior for-

mulation such that Pr(µi|ai) > 0 for any observation. Barrett et al. [14] motivated

the continued use of models of teammate behavior that only occasionally make

mispredictions, necessitating a more lenient posterior update. For this purpose,

the authors adopted a belief revision approach based on the polynomial weights

algorithm (PWA) [23], which computes a posterior as a weighted mixture of the

most current posterior, Prt(µi), and the previous posterior, Prt−1(µi). In a similar

manner, we adopt a procedure in Chapter 5 based on the mixing of past posteriors

[24], which can be viewed as a generalization of PWA in that any mixture of past

posteriors, Pr0(µi), . . . ,Prt−1(µi), can be used in the posterior update. Moreover,

Albrecht et al. [7] analyzed the conditions under which various posterior strate-
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gies are guaranteed to converge to a teammate’s correct type or type distribution,

should the teammate changes strategies. Perhaps most noteworthy, the authors

showed that under incorrect models, it is possible for a coordinating agent to

mistakenly believe its policy will successfully coordinate with a teammate, poten-

tially in an infinite cycle of incorrect decisions. The authors proposed adding the

capacity to learn a teammate’s true model in order to avoid this situation.

3.2 Learning

As one of the primary divergences from much of the traditional MAS liter-

ature, the assumption of heterogeneous team compositions manifests an appre-

ciably distinct context for multiagent learning (MAL)[29]. The conclusions from

the evaluation of MAL algorithms under typically homogeneous contexts may not

hold in ad hoc settings, as crucial assumptions may be violated, particularly if

teammates do not themselves learn or act according to an expected decision pro-

tocol. Despite this possibility, traditional MAL have been shown to be effective in

ad hoc settings [5], though none of the methods tested were shown to have demon-

strably superior performance than the others. Model-based techniques, in which

predictive behavior models are learned for individual teammates, can learn accu-

rate predictive models by adopting a classification perspective, using techniques

such as decision trees [12, 14] and nearest-neighbor approaches [11]. Furthermore,

transfer learning, the transfer of knowledge from a previously learned task to a

new task, holds promise for ad hoc settings where current teammates may behave

similarly to past collaborators for which an agent has previously learned models.

Barrett et al. [13] adopted a weighting approach for reusing episodes of past ex-

perience, bootstrapping current observations of a new teammate with data from

similar teammates when training a new behavior model.
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3.3 Communication

Communication in ad hoc teams has received relatively light treatment. Bar-

rett et al. [10] considered a communicative scenario wherein two agents participate

in a form of the multi-armed bandit problem, a well-studied example in sequential

decision making. It has been extended to ad hoc team settings to examine how

information can be conferred to a teammate via demonstration as well as explicit

communication. In the communicative, ad hoc version, an agent has the option

to broadcast its last observation, the mean of a given arm, as well as a sugges-

tion for which arm its teammate should pull. The communicative acts address

the partially observable information within the domain—i.e. the payoff distribu-

tions of the bandit arms—but do not consider or aid in the process of resolving

uncertainty in the teammate’s future behavior, aside from making suggestions.

The Standard Platform League of the RoboCup Soccer division has recently

featured a drop-in player competition [82, 47]. Teams of five members are drawn

from the set of submissions. This domain is unique in that it features cooperative

behavior with teammates and adversarial behavior against a separate team of

ad hoc agents. Players were allowed basic communication using a standard set

of messages regarding the positions of players and the ball, time since the ball

was last seen, and the agent’s intended role. However, not all teams utilized

this ability; some teams reported that their robots disregarded most or all of the

information received from teammates. In Chapter 6, we discuss existing work

in multiagent communication for traditional multiagent systems, from which we

motivate improved utilization of communication in ad hoc team settings.
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3.4 Summary

This chapter has provided an overview of ad hoc teamwork literature pertain-

ing to the core challenges faced by an ad hoc coordinating agent. As an overview

of how the individual works differ from one another and also from this thesis, we

have composed a comparison of techniques used in Table 3.1.
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Chapter 4

Multiagent Pursuit

Throughout this work, we will test various teamwork strategies using a vari-

ant of the multiagent pursuit problem, initially introduced in [19]. The multiagent

pursuit problem—often referred to as a pursuit-evasion problem—has become a

standard test domain for work in cooperative multiagent systems [148] and has

been represented in many forms, depending on choices such as discrete or con-

tinuous state and action space, full or partial observability observability, as well

as time constraints for making decisions [64, 145]. Regardless of these details,

the premise of the problem is singular: a team of pursuers must track down and

capture one or more evading agents.

Typically, applications to the multiagent pursuit problem have featured the

tradition approach to MAS, wherein all agents share identical decision-making

procedures. The problem, then, is one of sharing information and coordinating

the actions of decentralized, autonomous team members. For the latter purpose,

multiagent reinforcement learning has demonstrated the capacity for agents to

learn coordination strategies [65] over many trials. Barrett et al. [12, 13, 14]

extended this concept to ad hoc teamwork by demonstrating the ability for an

agent to learn models of new teammate behavior using transfer learning. Rather
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than learn one policy with a fixed team, an agent bootstraps learning with a new

team by reusing models of behavior from past experience. Similarly, in a two

pursuers/multiple evaders variant of the pursuit domain, Macindoe et al. [83]

used an approach similar to that outlined in Chapter 2, wherein the strategy of a

teammate is inferred from a set of modeled teammate types1. Both approaches to

pursuit with unknown teammate strategies illustrated the need for better modeling

of teammates, showing high success when the teammate follows a known strategy

but requiring mechanisms for handling novel strategies (learned models in [12,

13, 14]; noisy predictions in [83]). For this reason, we will examine modeling of

non-stationary behaviors (Chapter 5) as well as communication (Chapters 7-11)

within this domain.

In contrast to the work of Barrett et al. [12, 13] where a team of four agents

pursues a single evader, we will use the two-agent version from [83]. In this

variant, an agent must collaborate with one teammate to capture one of the

robbers, but there is uncertainty as to which is currently being pursued by the

teammate. In order for the agents to successfully complete the game, they must

simultaneously be present within the cell of an evader during a turn. If only one of

the agents enters the evader’s cell, the evader may slip by and flee. Furthermore,

as the evader flees from the nearest pursuing agent, the pursuers must coordinate

their approaches from distinct directions. Accurate predictions of the teammate’s

behavior, then, are key to successful coordination. Figure 4.1 shows five maze

configurations used in [83], differing in layout, the number of robbers, and the

inclusion of one-way doors, which can punish poor action selection by lengthening

paths to targets as well as by trapping agents.
1The distinction between inference over teammate policies and teammate types is commonly

that of quantity, where types implies a relatively small set [83, 13, 14, 116, 121] compared to
the full policy space, or of stochasticity, where types can modeled as probabilistically choosing
between policies [7, 122]
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Figure 4.1: Mazes for the two-agent pursuit domain, as used in [83].

The domain proves challenging for multiagent planning due to the size of its

state space. With two agents and two or three targets, this variant has a branching

factor in the range of 24 = 16 to 55 = 3, 125 each turn, depending on which cells

the pursuers and evaders are located. While the behavior of the evaders is known

to the pursuers, the individual policies of the pursuers are unknown. Given the

partial observability resulting from uncertainty of the teammate’s strategy, the

domain is large enough that optimal POMDP planning is intractable.

4.1 Setup

The discrete, two-agent, turn-based pursuit problem operates as follows:

• All pursuers and evaders begin in locations as designated on a given maze,
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for example, as shown Figure 4.1.

• States are given by the maze layout, positions of the pursuers and evaders,

as well as the current round number.

• At each turn, the pursuers select individual actions from {↑, ↓,←,→}. Avail-

able actions are constrained by the presence of walls and one-way doors, such

that agents may not select an action that would result in moving into a wall

or through a one-way door in an illegal direction.

• Evaders likewise select actions from {↑, ↓,←,→}. The policies of the evaders

select actions maximizing the minimum distance to a pursuer, i.e. πe(s) =

arg max
ae∈Ae

[
min
p
D(e, p, ae)

]
, where D is the distance between e and p after

taking action ae.

• The task ends when either a round limit is reached (specified by maze/appli-

cation) or when both pursuers have moved into a cell of one or more evaders,

i.e. ∃e ∈ E : loc(e) = loc(p1) = loc(p2).

• When a terminal state is reached, the team receives a reward determined

by the particular application. Typically this is a flat reward (R = 100) or

linear in the number of turns (R = 100− t).

29



Chapter 5

Case Study: Non-stationary

Strategy Approximation for

Unknown Teammates

Effective teamwork relies on the coordination of individual team members

which, in turn, requires the team to have formed a consensus on the task at hand.

In many settings, a consensus could be reached through communication, where

teammates could weigh in on goals, plans, and other relevant information. Com-

munication, however, may not always be guaranteed, particularly if two agents

were designed separately and without any shared information regarding one an-

other. Under these conditions, efficient teamwork depends not only on an agent’s

ability to infer but also its adaptability to change. Traditionally, ad hoc research

has assumed that the behavior of an unknown teammate is stationary, mean-

ing that a teammate will stick to a single individual policy. In this chapter, we

consider a broader case where an unknown teammate may change its behavior

The results of this chapter are presented in [121, 122].
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unexpectedly.

We introduce an approach, Responsive Action Planning with Intention De-

tection (RAPID), for updating beliefs over an agent’s policy with bounds on the

number of observations necessary to identify a change in teammate behavior. In

many domains, it may be inaccurate to assume a teammate will stick to a single

goal or strategy throughout a collaborative task, especially when provided with

an incentive to switch, whether it be an easier route to a goal or simply a more

appealing one. An ideal team agent should not only be able to assist its teammate

in achieving its goals but also be flexible in its capacity to account for changes in

teammate behavior. In ad hoc team settings, we must consider the potential for

a teammate to adapt an entirely novel policy from the observer’s perspective. To

account for this complexity yet retain a desirable degree of practical application,

we propose an adjustment to the belief revision process such that potential alter-

nate goals are kept at relevant minimum likelihoods. As a result, RAPID bounds

the number of observations required to identify a switch in a teammate’s pursued

goal at the expense of being sensitive to inconsistent or noisy behavior.

As in related work in ad hoc teamwork, [13, 14, 10], RAPID models the plan-

ning space as a partially observable Markov decision process (POMDP). However,

in contrast to the decision problem outlined in Chapter 2, this chapter proposes

an approach for scenarios in which a teammate’s behavior appears non-stationary

from the perspective of a coordinating ad hoc teammate. Over the course of many

observations, the agent’s beliefs may favor different models in different periods of

time. This provides a simplified representation of how an agent may adopt a

new plan on the fly according to an unmodeled, unknown, underlying preference.

However, when enough observed evidence indicates a switch change in behavior,

it is vital that a coordinating agent adapt its beliefs responsively.
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5.1 An Alternative Approach to Belief Revision

An important aspect of planning in a partially observable scenario is the ability

to refine a set of beliefs corresponding to the hidden information in the state space.

This is completed through inference after observing some aspect of the world or

action of an agent. As by definition, a POMDP is in part defined by a set of

probabilities for observations made in each potential state. Traditionally, beliefs

are revised using the observation history and Bayes’ theorem:

Pr(µi|ai) = Pr(ai|µi) Pr(µi)
Pr(ai)

(5.1)

This approach, however, requires assumptions that do not hold in ad hoc

teamwork. Primarily, it is assumed that the true model of a teammate is contained

within the set covered by the belief distribution, b. For this to be true, it may

require maintaining a belief distribution over an intractably large policy space.

However, maintaining beliefs on a relatively small set of teammate policies runs

the risk of ruling out each of the known models (Pr(ai|µi) = 0, ∀i), invalidating

the beliefs. Therefore, we are motivated by techniques which model the prediction

problem under similar constraints, wherein a weighted set of experts are used to

make predictions. As the concept of an agent with shifting priorities has natural

similarities to shifting experts/online-learning problems, we borrow the concept of

modifying the belief revision step by adding a mix of past posteriors, as described

in [24].

As a first step in this new belief revision construction, we make use of a simple
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binary loss function, L for model or policy µi given an observed action, ai:

L(µi) =


1 µi(s) = ai

0 otherwise

We then estimate the action likelihoods using

Pr(ai|µi) ∝ e−L(µi),

yielding a belief revision formulation of

Pr(µi|ai) ∝ e−L(µi) Pr(µi). (5.2)

Finally, we modify the revision step by adding in a weighted portion of the

agent’s initial belief distribution, as explored by [24].

Pr′t(µi|ai) = β Pr0(µi) + (1− β) Prt(µi|ai) (5.3)

This modified approach bears much resemblance to the polynomial weights

algorithm1 [23] as used previously in [13]. In the latter approach, using a polyno-

mial weight slows the belief convergence to a particular teammate model such that

no model is discarded prematurely; however, given a sufficiently long series of ob-

servations supporting one model, the probabilities can still diverge substantially,

such that switching to favor an alternate model can require a correspondingly

large number of observations. In contrast, by mixing the updated belief vector

with the initial belief vector, we are able to enforce upper and lower bounds on
1The polynomial weights algorithm is a specific form of the mixing of past posteriors method.

It takes the form Pr′t(µi|ai) = β Prt−1(µi) + (1 − β) Prt(µi|ai). Our method incorporates the
initial prior rather than the most recent posterior.
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the possible values of the agent’s belief probabilities.

The mixing parameter is constrained by 0 ≤ β ≤ 1. When β = 0, the updated

probability takes the form of Bayes’ theorem, while a value of β = 1 results in a

stationary probability equal to the initial probability assigned. In this context,

β is a domain-dependent hyperparameter, the selection of which may take into

account factors such as the relative consistency of teammate behavior or a desired

number of observations required to realign an agent’s beliefs.

5.2 Parameter Tuning

Choosing an appropriate value of β is crucial for responsively identifying hid-

den state changes. Under a traditional belief revision approach, identification of

hidden state transitions can require long sequences of observations. In fact, un-

der certain conditions, identification of a goal switch can be linearly dependent

on the number of observations supporting a previous model of behavior. This is

particularly undesirable for domains with significantly many observations before

a switch occurs.

Theorem 1. Let Prtm+tn(µi) and Prtm+tn(µj) be the probabilities of two teammate

policies after tm and tn observations supporting µi and µj respectively, using the

update procedure of Equation 5.2. Then,

Prtm+tn(µj) ≥ Prtm+tn(µi) =⇒ tn ≥ ln Pr0(µi)
Pr0(µj)

+ tm

Proof. The property is shown by performing the update for both states, resulting
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in

Prtm+tn(µi) = η Pr0(µi)e−tn

Prtm+tn(µj) = η Pr0(µj)e−tm

where η is a product of normalizing factors. The result follows directly.

The alteration proposed in Equation 5.3 does not have a closed form solution

for the number of steps required for a state switch to be identified. However,

empirically we observe that tuning of β creates an upper bound for the number

of steps required under ideal observations. Figure 5.1 depicts the effect of various

tested β values under thirty potential goals and observations which only support

a unique goal. Despite an increase in the steps a teammate pursues the first goal,

the required number of observations supporting a second goal to converge to the

appropriate belief is bounded.

Given that the modified belief revision approach can bound the number of

required observations to any arbitrary number, selecting a value for β has the

trade-off between responsiveness—quickly reweighting to a more correct model—

and susceptibility to noise, mistakenly favoring a model after only a few observa-

tions. A series of inaccurate observations or observations of actions by an agent

imperfect in its pursuit of a goal can lead belief convergence to the wrong target

goal. We will refer to these observations as noisy observations. In these cir-

cumstances, tuning β is dependent on the likelihood of such noise in the domain

tested.

We define noisy observations as those supporting any subset of goals not in-

cluding the true underlying goal currently being pursued by an agent. In the

worst case, observations support exactly one incorrect goal, i.e. ∃!µi L(µi) =
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Figure 5.1: Number of observations required for the belief distribution to align
with the corresponding goal as a function of the number of observations supporting
the prior goal. Lines denoted with N correspond to the normalized belief revision
approach. All remaining cases are not normalized.

0, and µi 6= µ∗ where µ∗ is the true policy. If multiple successive noisy observa-

tions occur supporting a single incorrect goal, the belief distribution can converge

to the incorrect state.

Consider the case where a domain has a noise rate r. The probability of a

number of successive noisy observations, K, forms a geometric distribution with

Pr(K = k) = rk(1− r). The expected length of a sequence of noisy observations,

then, is given by E[K] = 1
1−r . It is reasonable to constrain β such that the number

of required observations to identify a switch in underlying state to n ≥
⌈

1
1−r

⌉
.

Due to the normalization of probabilities Equation 5.3, choice of β depends on

the noise rate tolerance as well as the number of alternative goals, as normalization
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considers the probabilities of all possible goals involved. Such normalization is

necessary for decision-theoretic reasoning, as the sum of probabilities of underlying

states must sum to one. The non-normalized version, given by Equation 5.4, is

useful for approximation of the relative quantities of the normalized case. Figure

5.1 depicts a comparison of the two versions, with N denoting the normalized

cases.

Pr?t (µ) = β Pr0(µ) + (1− β) Pr?t−1(µ)e−Lt−1(µ) (5.4)

= β Pr0(µ) + β Pr0(µ)
t−1∑
i=1

(1− β)ie−
∑t−1

j=t−i
Lj(µ)

+ (1− β)t Pr0(µ)e−
∑t−1

k=0 Lk(µ) (5.5)

The expanded case, represented by Equation 5.5, allows for the direct calcu-

lation of the upper and lower bounds of these pseudo-probabilities. In the limit,

as t → ∞ and Lt = 1 ∀t, the result settles at Pr?∞(µ) ≥ βPr0(µ)
1−e−1(1−β) . Similarly,

expanding with loss Lt = 0 ∀t yields the upper bound Pr?∞(µ) ≤ Pr0(µ). With

these bounds established, we can compute the number of steps required for a

state with minimal probability to succeed one with maximal probability when

comparing the likelihoods of the two policies.

Lemma 1. Let µa, µb be drawn from an initially uniform distribution, such that

Pr0(µa) = Pr0(µb). At time t, let Pr?t (µa) < Pr?t (µb). In order to guarantee

Pr?t+n(µa) > Pr?t+n(µb), it must be that β > 1−
(

1
1+e−n

) 1
n .

Proof. By the bounds established earlier, observe that Pr?t (µa) ≥
βPr0(µa)

1−e−1(1−β) and

Pr?t (µb) ≤ Pr0(µb). The proof follows by expanding Equation 5.5 n steps beyond
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t for each policy.

Pr?t+n(µa) =β Pr0(µa) + β Pr0(µa)
n−1∑
i=0

(1− β)ie−
∑t+n−1

j=t+n−i
Lj(µa)

+ (1− β)n Pr?t (µa)e−
∑t+n−1

k=t
Lk(µa)

≥β Pr0(µa) + β Pr0(µa)
n−1∑
i=0

(1− β)ie−
∑t+n−1

j=t+n−i
Lj(µa)

+ (1− β)n β Pr0(µa)
1− e−1(1− β)e

−
∑t+n−1

k=t
Lk(µa)

Pr?t+n(µa) =β Pr0(µb) + β Pr0(µb)
n−1∑
i=0

(1− β)ie−
∑t+n−1

j=t+n−i
Lj(µb)

+ (1− β)n Pr?t (µb)e−
∑t+n−1

k=t
Lk(µb)

≤β Pr0(µb) + β Pr0(µb)
n−1∑
i=0

(1− β)ie−
∑t+n−1

j=t+n−i
Lj(µb)

+ (1− β)n Pr0(µb)e−
∑t+n−1

k=t
Lk(µb)

The observations supporting µi result in losses of L(µi) = 0 and L(µj) = 1.

Pr?t+n(µa) ≥β Pr0(µa) + β Pr0(µa)
n−1∑
i=0

(1− β)i + (1− β)n β Pr0(µa)
1− e−1(1− β)

Pr?t+n(µa) ≤β Pr0(µb) + β Pr0(µb)
n−1∑
i=0

(1− β)ie−i + (1− β)n Pr0(µb)e−n

As we are interested in Pr?t+n(µa) > Pr?t+n(µb), we can compare the lower

bound for the former with the upper bound for the latter.

β Pr0(µa) + β Pr0(µa)
n−1∑
i=0

(1− β)i + (1− β)n β Pr0(µa)
1− e−1(1− β)

≥ β Pr0(µb) + β Pr0(µb)
n−1∑
i=0

(1− β)ie−i + (1− β)n Pr0(µb)e−n
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Given that Pr0(µa) = Pr0(µb), we can divide out the common term. Further-

more, as (1− β) < 1 and e−1 < 1, the summations are finite geometric sums and

can be evaluated directly.

β
1− (1− β)n
1− (1− β) + (1− β)n β

1− e−1(1− β) ≥ β
1− (1− β)ne−n
1− (1− β)e−1 + (1− β)ne−n

Algebraic manipulation achieves the final result.

With a lower bound for β established, it remains only to choose an acceptable

n, which we have discussed previously. Experimental evaluation of two β values

for a set noise rate is described in the next section.

5.3 Evaluation

We evaluate the proposed belief revision modification in the two agent pursuit

domain outlined in the previous chapter. Two notable works exist in this and a

similar domain. Macindoe et al. [83] introduced Cops and Robbers as a domain

for testing sequential planning for assistive agents under partial-observability with

respect to a teammate’s goal; however, the teammate agent in the evaluation

chose a single target at the start and never switched for the duration of the

game. Nguyen et al. [96] used a similar game, Collaborative Ghostbuster, and

modeled the switching of targets with a simple, fixed probability. Conversely,

rather than compute a coordinating policy under the POMDP representation, the

authors propose dividing the task into individual worlds, one for each potential

evader. The agent maintains a belief and policy for each world, selecting its next

action as that maximizing the expectation over possible worlds. In contrast to the

POMDP approach, this technique does not account for future observations and

corresponding belief states; it merely maintains its current beliefs. A consequence
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of this strategy is that it can favor remaining near two less likely targets rather

than pursue the most likely target, as pointed out in [83]. In contrast to these

two works, our approach plans in belief space and does not explicitly model the

unobserved goal transitions, yet it can identify changes in behavior quickly if and

when they occur.

5.3.1 Agents

For our tests, we implemented three teammates whose goal remains uncertain

to the coordinating agent. The teammates behave as follows:

• A* - Pursues the closest evader at the start of the game and never switches

targets.

• Switch Once - Switches targets at a fixed point in the game, on the eighth

turn.

• Probabilistic - Switches targets to evader, ej ∈ E, with probability propor-

tional to its distance, D:

Pr(ei → ej) = 0.2|E| D(ej)∑
e∈E

D(e) (5.6)

All teammates move toward the selected target using A* path planning, with

10% noise in their actions. A noisy action is randomly selected from the set of

possible actions that would not pursue the active target.

For the ad hoc agent, we implement several Monte Carlo Tree Search (MCTS)

[34] agents using Upper Confidence Bounds applied to Trees (UCT) [75] as the

action selection strategy, varied by how they model the unknown teammate:
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• UCT - Performs multiagent planning with UCT. This agent assumes its

teammate will plan and behave in an identical manner to itself and arrive

at an identical joint policy.

• Bayes - Plans using UCT for its own actions but uses a belief distribution

over possible teammate goals. Updates beliefs according to Equation 5.2.

• RAPID - As above, but updates its belief distribution according to Equation

5.3.

• Limited Oracle - Plans with perfect knowledge of the teammate’s current

target. However, it cannot predict future goal changes.

5.3.2 Tests

Each pair of teammate and coordinating agent participate in one hundred

trials of each maze featured in Figure 5.2, repeated here for convenience. Steps

taken to complete the game, beliefs of applicable agents, and targets of the team-

mates are logged for analysis. We allow each UCT-based agent one hundred game

simulations per turn, with root parallelization [35] across four cores.

To emphasize the effect of tuning, we use two versions of our RAPID agent,

each with a different value for β. Given the 10% noise rate in our experiment and

the geometric distribution of expected successive noisy actions, we observe that

99.9% of groups of successive noisy actions are of length 2 or fewer. Choosing

n = 3, then, gives us a lower bound for choice of β = 0.016 from Lemma 1. For a

less conservative tuning, the remaining RAPID agent uses β = 0.85 for enhanced

responsiveness at the risk of susceptibility noise.
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Figure 5.2: Mazes for the two-agent pursuit domain, as used in [83]. The
coordinating agent is represented in blue, with the teammate in red.

5.4 Results

We compare the performance of the RAPID agent against the agent which

revises its beliefs with a traditional Bayes update. The plain UCT agent pro-

vides the base level of performance we would expect with any of the UCT-based

agents, while the limited oracle agent demonstrates the potential for further im-

provement. It should be noted that the results of the limited oracle agent could be

unattainable, as the agent has access to the teammate’s true target. Furthermore,

as the agent is still primarily a sampling-based agent and also lacks the foresight

of future target transitions, it should not be mistaken for an optimal ad hoc agent.

Three metrics serve to evaluate our proposed approach: the average number

of observations required to revise an agent’s beliefs to the appropriate target, the
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percentage of steps in our tests in which an agent has correctly identified the

target, and the average number of steps required to capture a target in the maze.

5.4.1 Belief Recovery

Table 5.1 reports the number of times in 100 trials the teammate switched

targets as well as the average steps required for the agents to identify the change.

The base UCT and limited oracle agents are omitted as they do not possess a

belief system. The A* teammate is similarly absent, as it never switched targets.

With respect to belief recovery time, the RAPID agent with the conservative

tuning of β only outperforms the Bayes agent in one of ten test cases (α = 0.01).

Between noisy actions and those supporting potentially two or more targets, the

RAPID (β = 0.016) agent could not utilize the bounded convergence time to

significant effect.

The second RAPID agent, however, outperforms the Bayes agent in six of the

ten relevant test cases, with comparable performance in the remaining four cases.

In the instances of improvement, the agent was able to detect a switch with fewer

observations on average than the Bayes agent, resulting in an average gain of

nearly seven turns in one test case.

5.4.2 Accuracy

With a shorter time to converge to a pursued goal, it is natural to expect an

increase in accuracy of the predicted goal. For this metric, steps where the correct

target probability is equal to that of another target are considered ambiguous and

are counted as an incorrect identification. This explains a portion of the observed

low accuracies, particularly as the first few steps in each game are not sufficient

to distinguish targets.
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Bayes β = 0.016 β = 0.85
Teammate n Average n Average p n Average p

a SwitchOnce 100 5.04 96 3.76 <0.001 100 1.00 <0.001
Probabilistic 269 4.42 400 5.14 0.096 363 2.78 <0.001

b SwitchOnce 99 18.04 92 18.40 0.457 92 23.30 0.079
Probabilistic 369 12.96 326 17.83 <0.001 472 11.72 0.145

c SwitchOnce 94 7.57 66 6.53 0.248 67 9.06 0.221
Probabilistic 454 12.92 502 14.25 0.128 356 8.10 <0.001

d SwitchOnce 100 15.87 100 14.55 0.347 100 11.75 0.085
Probabilistic 557 15.48 644 14.19 0.133 532 9.45 <0.001

e SwitchOnce 100 18.7 61 18.18 0.443 100 11.79 0.007
Probabilistic 506 8.85 356 7.86 0.132 396 6.09 <0.001

Table 5.1: Average actions observed before teammate’s true target is most likely
in agent’s belief distribution. Bold values indicate significant results over the
Bayes agent (α = 0.01).

Bayes β = 0.016 β = 0.85
Teammate n % Correct n % Correct p n % Correct p

a
A* 2188 17.69 2226 17.83 0.448 1617 23.69 <0.001

SwitchOnce 3201 71.88 3333 78.97 <0.001 2794 80.96 <0.001
Probabilistic 2159 57.94 2634 62.34 <0.001 2476 64.01 <0.001

b
A* 3792 26.85 3796 48.97 <0.001 4181 25.52 0.089

SwitchOnce 3771 39.30 4574 46.55 <0.001 5100 34.27 <0.001
Probabilistic 3712 33.14 4280 30.72 0.010 4029 38.07 <0.001

c
A* 2671 40.43 2406 22.94 <0.001 2522 33.51 <0.001

SwitchOnce 3472 60.77 2521 52.52 <0.001 2689 51.95 <0.001
Probabilistic 3533 42.37 3960 46.31 <0.001 2763 47.09 <0.001

d
A* 2516 14.63 2708 31.50 <0.001 2962 26.00 <0.001

SwitchOnce 6358 49.53 5223 57.15 <0.001 4927 48.81 0.227
Probabilistic 4412 45.42 5157 50.69 <0.001 5048 57.81 <0.001

e
A* 2527 14.88 1356 15.71 0.245 1939 13.67 0.125

SwitchOnce 4480 35.71 2420 32.73 0.006 3562 38.63 0.004
Probabilistic 3454 40.56 2536 42.59 0.058 2885 35.94 <0.001

Table 5.2: Percentage of steps with correct target identified by belief distribution.
Bold values indicate significant results over the Bayes agent (α = 0.01).
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Bayes β = 0.016 β = 0.85 UCT Ltd Oracle
Teammate steps steps p steps p steps steps

a
A* 21.88 22.26 0.323 16.17 <0.001 51.95 31.97

SwitchOnce 32.01 33.33 0.480 27.94 0.005 71.07 18.74
Probabilistic 21.59 26.34 0.063 24.76 0.006 64.89 25.91

b
A* 37.92 37.96 0.125 41.81 0.460 57.76 54.89

SwitchOnce 37.71 45.74 0.164 51.00 0.010 61.81 49.83
Probabilistic 37.12 42.8 0.171 40.29 0.378 56.6 41.48

c
A* 26.71 24.06 <0.001 25.22 0.004 58.11 28.74

SwitchOnce 34.72 25.21 <0.001 26.89 <0.001 67.58 35.88
Probabilistic 35.33 39.60 0.309 27.63 0.002 71.78 31.74

d
A* 25.16 27.08 0.174 29.62 0.068 69.65 39.94

SwitchOnce 63.58 52.23 0.010 49.27 0.001 84.08 75.97
Probabilistic 44.12 51.57 0.058 50.48 0.043 81.05 42.39

e
A* 25.27 13.56 <0.001 19.39 0.004 62.08 11.38

SwitchOnce 44.80 24.20 <0.001 35.62 <0.001 81.24 20.17
Probabilistic 34.54 25.36 <0.001 28.85 0.009 73.21 19.7

Table 5.3: Average steps taken by the team to capture a target. Bold values
indicate significant differences over the Bayes agent (α = 0.01).

With regard to overall accuracy, the RAPID agents were found to be correct

more frequently in the majority of scenarios. Both β levels had significant accuracy

improvements over Bayes in eight test cases each. The Bayes agent outperforms

the β = 0.016 agent in two instances and the β = 0.85 agent in four instances,

as seen in Table 5.2. This loss of accuracy in the higher β value, particularly in

cases shown to have significantly shorter belief recovery periods, demonstrates the

susceptibility to noise, as was expected in the tuning of β.

5.4.3 Steps Taken

Table 5.3 shows the average number of turns required to complete each test

case. The less responsive of the RAPID agents had significant improvements over

the Bayes agent in five of the fifteen test cases. Furthermore, it no test cases did

it perform significantly worse.

A higher β value, having reduced belief correction time and improved accuracy,
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resulted in coordination time improvements in nine test cases. The Bayes agent

only achieved a higher average score than the β = 0.85 agent in one case.

Additionally, results for the remaining tested agents are included for compar-

ison. The base UCT agent, which assumes identical planning on the part of its

teammate, demonstrates the benefit of accurate modeling, as it performed worse in

every scenario than any other tested agent. The limited oracle version illustrates

in a few test cases where there is still room for improvement. This is notably true

in Maze e, where the oracle agent outperforms both RAPID agents. It should also

be noted that in Maze b, knowing the correct target yet having no knowledge that

the target may change led to poor performance, as the agent was susceptible to

being trapped in the left corridor. A more comprehensive model of a teammate

would take into account the likelihood of a change and the potential risks of taking

actions toward the pursuit of the current target should a switch occur.

5.5 Discussion

Most existing work in ad hoc teamwork assumes a stationary behavior or

goal for teammates. This chapter introduced a variation of the pursuit domain

in order to evaluate approaches to working with a teammate whose goals and

corresponding behavior can change periodically. Planning under our proposed

changes to belief revisions allows an agent to quickly recognize and adapt to

altered behavior indicative of a goal switch. Faster belief convergence to the

correct goal boosts overall accuracy of the agent’s predictions, which are directly

leveraged in planning for better multiagent coordination. Tuning of the presented

approach is likely specific to the domain but has been proven effective the in the

various combinations of potential teammates and particular maps tested in this

chapter.
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Secondly, this initial empirical evidence suggests that reasoning quickly over a

set of independent models may provide an acceptable approximation to modeling

higher level reasoning of an unknown teammate, as long as its base behaviors are

represented in the set of models. An optimal decision-theoretic agent would be

capable of reasoning over teammate behavior as well as the likelihood of changes.

However, under such possibilities, the considered state space grows drastically. We

observe that a set of possible behaviors and a responsive belief revision approach

can approximate a full model well.

Human-agent teamwork is one potential application of using a set of basic

behavior models to approximate a high level decision process. Existing work for

modeling human cognition often utilizes theory of mind concepts [150] or relies

on learned or hand-authored models. If an agent is to assist a human in an envi-

ronment that has clear potential goals and corresponding behaviors, our approach

may prove advantageous. It is likely easier to design predictive models for simple

goals, compared to more complex cognitive models. Furthermore, more respon-

sive switching of tasks may be an acceptable response to the high-level decision

making of the human teammate. It forgoes much computation on the larger body

of tasks to be completed in favor of coordinating reactively. Naturally, this puts

the agent in a supporting role while a human takes the lead in prioritizing goals.
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Chapter 6

Motivation for Communicating

Plans

As a brief recap, we are primarily interested in the performance of an ad hoc

agent coordinating with one or more unknown teammates given an amount of prior

experience1 coordinating with other teams on a given task. At its core, the ad hoc

teamwork problem is one of information deficiency, as policies of teammates can

be varied among a population of potential teammates, and such policies are only

indirectly observable during the act of coordination. This deficiency is addressed

primarily through two means: leveraging past experience to inform a prior over

teammate policies at the beginning of each trial and utilizing observed actions

to narrow the space of likely policies through inference. Often, the diversity of

teammate policies is directly related to the quantity of observations required to

correctly and exactly infer a teammate’s policy. However, ad hoc teamwork is

not posed as a problem of exact classification but rather one of reward or utility

maximization. It is often sufficient to narrow the space of policies to those which
1Or, alternatively, a prior distribution formed over teammate policies by other means, such

as manual specification.
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agree on a subset of the state space, for example those along the trajectory between

the current state and some future goal state. If a set of potential policies align

over these states, they are considered behaviorally equivalent [106]. In contrast, it

may be that a teammate can choose between multiple policies that each achieve

the team’s goal regardless of the coordinating agent’s individual policy, leaving

the agent indifferent to the uncertainty of the choice. In this way, inference is

a mechanism by which an ad hoc agent may improve its ability to coordinate,

yet the necessity and effectiveness of inference on the success of coordination is

ultimately a domain-dependent factor.

In Chapter 1, we proposed explicit communication of policy information as a

potential solution for coordination under uncertainty of teammate policies. Here,

we discuss the conditions under which non-communicative approaches struggle to

achieve success.

6.1 Difficulties for Observation-based Inference

6.1.1 Imperfect Beliefs

Consider, as an example, the problem of possessing a prior over teammate

policies that does not include the current observed policy, i.e. encountering a

teammate whose strategy is novel to the agent. At the heart of this scenario is

the problem of prior experience, as the agent has either never coordinated with

such an agent or has never considered such a strategy probable. One such example

of this is the non-stationary policy problem of Chapter 5, wherein a teammate that

switches at some time from one policy to another, both of which are known but

neither of which individually predicts the complete observed policy. Modifying the

posterior belief update allows an agent to identify when a change in policy occurs;
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however, such an approach does not consider the prediction of policy changes

but instead relies on adapting to the new policy once a switch is detected. The

implicit assumption of such approaches is that partially accurate models may

retain useful predictive power despite occasionally making incorrect predictions.

As discussed in [7], the ability for an incorrect belief distribution to succeed in this

manner is dependent on the relation between the set of approximate models and

the true teammate type space. The authors prove that under certain conditions

in stochastic Bayesian Games, such approximations can still guarantee successful

coordination. Nonetheless, there also exist conditions under which the modeling

agent believes it is selecting a policy which coordinates correctly, while in truth,

the agent’s adapted policy repeatedly fails. The authors propose incorporating a

means of learning a correct teammate policy in order to eventually counteract the

conditions causing coordination failures.

6.1.2 Learning

The process of learning a teammate behavior model has been used across

various work within the ad hoc teamwork community. Barrett et al. [12] employed

decision trees in order to learn representations of teammate policies during the act

of coordination. The authors reported successful predictive models learned using

relatively few observations within the multiagent pursuit domain. This likely is in

part due to the relatively small action space (per agent) as well as the consistent

trajectories taken by agents, allowing for many similar states to map to the same

action. The notion of grouping states according to their similarity is further

discussed in [6], where conceptual types are introduced as methods of abstracting

policy decisions over similar states in an effort to generalize observed behavior

to predict actions in unobserved states. In domains in which states do not fall
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into clear groupings or where policies are not consistent within such groupings, an

agent may need to rely on significantly more observations—perhaps over repeated

episodes of coordination—in order to learn a correct model. Such a requirement,

however, may prove difficult in instances of teamwork with time constraints or

limited observability.

One approach to supplementing small numbers of observations is to reuse data

from past instances of coordination, as proposed in [14]. Adapting a concept from

transfer learning, the authors proposed a method of learning a classifier by aggre-

gating data from past experience with other teammates along with observations

of the current teammates. As certain episodes of past experience may be more

similar to the current coordinated effort than others, the proposed algorithm at-

tempted a form of greedy weighting, tuning the weights of episodes to minimize

the error of the classifier over observations of the current teammate. While the

empirical tests demonstrated the effectiveness of the transfer learning approach,

the quantity of observations of the current teammate played a large effect on

the overall performance of the learned model. Only for observation set sizes of

1, 000 or 10, 000 were the results near optimal, with sets on the order of 10 or 100

performing significantly worse.

6.1.3 The Informativeness of Observations

In the approaches outlined thus far, we have discussed effectiveness in rela-

tion to the quantity of observations; however, in truth, the ability to successfully

deduce a teammate’s policy is dependent on the informativeness of observations

available to the agent. It is necessary to observe divergences in policies among

models of behavior in order to rule out models which will incorrectly predict fu-

ture actions of the team. As discussed in [7], models with high overlap can cause
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convergence to an incorrect type distribution under certain posterior update func-

tions. Furthermore, consider a scenario where models each predict an identical

series of teammate actions until some time t, upon which they diverge at a critical

juncture where the ad hoc agent must select an important coordinating action.

As the previous t−1 observations have not provided sufficient information to infer

the appropriate course of action, the coordinating agent is left with uncertainty

despite the potentially arbitrarily large number of observations it has witnessed.

A similar situation develops in domains where agents may have limited or no

observability with regard to their teammates actions, such as when working in

separate locales, as in rescue robotics or unmanned aerial vehicle domains. Per-

haps surprisingly, little attention has been given to the quality of observations in

ad hoc teamwork, as the informativeness of observations is a domain-dependent

factor. Yet, the constraints on the availability of information is a key factor in

the coordination. This is a primary motivation for analyzing communication as a

means of information transfer when observations alone are not adequate.

6.1.4 Novel States

As a final consideration, while the bulk of work in coordinating with an un-

known teammate has assumed the possession of defined teammate types or rele-

vant past experience, little attention has been given to scenarios where the agent

lacks significant prior knowledge. This is a plausible concern in two immediate

cases. When an agent is first operating in a domain, if it has not been given

human-authored teammate models, it may have difficulty identifying even the

most common of team strategies. Such scenarios are related to the problem of

exploration in reinforcement learning, wherein an agent must gather information

before it may accurately model the population of teammate strategies within a

52



domain.

Secondly, whether it be through rare stochastic transitions or through inac-

curate teammate predictions, the actions of the team may transition the world

state to one that has not been encountered before, reducing the effectiveness of

leveraging past experience. Barrett et al. [12] touch on this topic briefly when

discussing the ability of their approach to accurately predict team behavior after

relatively few observations. The authors note that due to the static initial condi-

tions as well as the consistency in behavior across teams, only a relatively small

number of states are reached. Violations of such domain properties can leave the

team in novel areas of the state space, in which one or more agent has little ex-

perience coordinating as a team. In such circumstances, it is necessary to either

select a “safe” strategy [31] or use an alternate mechanism to observation-based

approaches for coordination.

6.2 Coordination through Sharing Information

At its heart, the uncertainty between agents in a multiagent system is a result

of the asymmetry of information. This can be information regarding the state

of the world in which a task is being completed, the current nature of the task

itself, and the individual tasks or plans of the other agents operating with the

shared space. Coordination specifically requires a degree of shared information

such that the agents can accurately model and plan around the uncertainties

in a cohesive manner. This is the underlying concept of shared mental models

[85, 118, 98]. Once agents have distributed the necessary information, it is possible

to reach consensus on a joint plan of action, often an interleaving of actions from

individual plans. On the contrary, if a vital piece of information is not shared

among agents, individuals may improperly account for the intended actions of
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their peers, resulting in unexpected outcomes. Here, we discuss the concepts of

shared information and intentions in teamwork, motivating communication as a

means of information-gathering in ad hoc team settings.

6.2.1 Intentions

The theory of intentions for a single agent was presented as an extension of

the belief-desire model, having failed to describe the whole of rational behavior

[27]. Intentions can be used to describe the commitment of an agent to a course

of action, as a product of its beliefs and desires. Yet, in doing so, we must

consider their transient nature, as intentions are subject to change, such as when

an agent believes the intention has been fulfilled or has become impossible to fulfill.

The act of planning, then, can be taken as the formation of and commitment to

intentions, as guided by the particular beliefs an agent has regarding the world as

well as its current desires. Cohen and Levesque [37] discuss this line of reasoning

applied to agents without the specification of a particular agent architecture, as the

terms broadly describe the execution of any rational agent. If goals (alternatively,

desires in belief-desire-intention models [49]) motivate an agent’s to act and beliefs

constitute the requisite knowledge an agent possesses, intentions represent the

course of action, grounded in beliefs, toward achieving such ends.

Under such characterization, intentions are inherently individual, based in in-

dependent perspectives and experiences. Coordination, then, requires some degree

of alignment in intentions, one which motivates communication as a necessary con-

sequence [38]. Cohen and Levesque [79, 38] note that individual perspectives are

prone to cases of confusion when one or more agents diverge from a mutual plan.

With such an observation, an agent may attempt to reason about why another

diverged, assigning a cause and updating its beliefs. However, the possible reasons
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for such deviation—e.g. hidden information, a failed attempt, conclusion that the

plan is impossible—may cause the observing agent to reach an incorrect conclu-

sion. Furthermore, in the initial formation of individual intentions toward a joint

effort, conflicting beliefs of the agents can result in correspondingly conflicting

intentions. To prevent this outcome, joint intentions were proposed [68, 38].

In essence, a joint intention requires the mutual belief that all members intend

for the collective action to occur and, furthermore, that the team members retain

mutual belief of that act while coordinating. If the goal is accomplished, consid-

ered impossible, or deemed irrelevant, one or more agents may adopt new goals

and, consequently, new intentions individually. However, under the framework of

joint intentions, the agents must establish both the mutual belief of the state of

the old pursuit (succeeded, failed, or otherwise) and facilitate the adoption of a

new joint intention by all members [68].

In contrast, for SharedPlans, Grosz and Kraus [57] do not strictly require joint

intention or an exit protocol in the event that a subtask of a larger goal fails. Indi-

vidual intentions are shown to be sufficient in collaborative action, though mutual

belief of the task and its possible completion remain as an initial requirement. In

the event an agent observes a part of the plan fail, it is left up to the agent as

to whether communication to the other members is required for continual pursuit

of a goal. If the agent can adjust its participation in the joint action such that

the original goal can still be realized without requiring the alteration of the other

agents’ beliefs and intentions, communication is unnecessary.

The discussion of intentions—individual or shared—and mutual information

is of interest to the ad hoc community, due to the uncertainty of a teammate’s

role in the team as well as its commitment to a particular course of action. A

common assumption in ad hoc domains is that of non-recursive agent teammates
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[46, 14, 10], i.e. teammates that do not model or reason over the intentions of

the ad hoc agent. This results in rather asymmetric beliefs and intentions, as the

ad hoc agent may consider its plan within the context of the team. The ad hoc

agent’s attempt at coordination, then, is not strictly to pursue the given goal but

potentially to manipulate the individual courses of the teammates for the pur-

suit of the mutual goal. Moreover, by definition, the team cannot hold a joint

intention or mutual belief, potentially resulting in the divergence of mental states,

as the non-recursive teammates are not motivated or required to inform the ad

hoc agent when their intentions change, as occurs in the case of changing team-

mate strategies discussed in Chapter 5. The apparent conflict between the ad hoc

assumption—agents possessing minimal information regarding the decision pro-

cesses of their teammates—and necessity of mutual beliefs in other coordination

frameworks (SharedPlans, joint intentions) remains an open topic of discussion.

6.2.2 Shared Mental Models

During their description of teamwork, Cohen and Levesque [38] mentioned

the concept of a shared mental state, “the glue that binds teammates together.”

This concept is mirrored across related team research as shared mental models

[85, 118, 98]. A shared mental model represents a collection of joint information

regarding the world state, expected transitions, potential tasks, knowledge among

teammates, and the behavior or roles of the team members. The theory, stemming

from work in psychology, suggests that team members who possess information

regarding both the task and the role of each member can better anticipate the

needs and requisite actions of their collaborators. This shared model of the process

permits the team to coordinate effectively, often with reduced communication [98].

In recent years, the concept of shared mental models has been applied to
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multiagent decision systems. Yen et al. [152, 153] proposed CAST—Collaborative

Agents for Simulating Teamwork—as a model for teamwork among distributed,

heterogeneous agents. The CAST architecture makes decisions according to the

interplay of the individual and shared mental models, proactively communicating

when the expected utility of sharing information exceeds that of not sharing. The

explicit concept of a shared mental model was later formalized for use by agent

systems [71].

6.2.3 Assigning a Value to Information

Similar to the belief-desire-intention model for multiagent interaction, the con-

cept of shared mental models is often implicitly present in a system. In the com-

municative multiagent team decision problem (COM-MTDP) [108], the empirical

evaluation featured an escort agent tasked with destroying an enemy radar so

that a transport agent could safely pass to the goal. If the transport is too far

from the radar when it is destroyed, it does not observe the event and proceeds

cautiously. The escort must consider the possibility of communicating the radar’s

destruction, introducing the knowledge to the teammate by bringing about a mu-

tual belief. Likewise, in the multi-armed bandit scenario [136, 10], teaching agents

must consider the trade-off between introducing more information to the team via

demonstration or allowing teammates to take potentially sub-optimal actions.

Such reasoning over the potential but perhaps uncertain benefit of exchanging

information is posed as a decision-theoretic task [55, 53, 51, 108, 10, 152]. Due

to the assumption that communication has associated resource costs, agents must

often consider the potential result of a communicative act and judge whether the

benefit exceeds the cost, assessing what is called the value of information [63], a

topic we will return to in Chapter 7. Gmytrasiewicz et al. [55] illustrated this
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concept in team domains with two types of messages, those of intentions and those

containing world information. Further work extended the types of communication

to questions, proposals and threats, imperatives, and statements of knowledge and

beliefs [53]. Naturally, the capability to reason over the exchange of information

brings as an additional consideration the potential for misinformation, should a

teammate supply intentionally misleading or incorrect information [51].

6.2.4 Communicating State Information

In partially observable environments, sharing information allows agents to es-

tablish mutual beliefs. Due to the homogeneity of agents in many MAS appli-

cations, it is common for agents to assume perfect knowledge about the decision

processes of their teammates with the sole exception being the current state of

beliefs regarding the world state [108, 116]. As the set of possible observations

and their associated probabilities is mutually known, the agents can broadcast

their individual observation histories, then perform belief revision identically to

update their teammate models as well as sync each agents’ current estimation of

the world state.

In domains of asymmetric information gathering, an agents may query in-

formation from others [117] for its own planning purposes or share information

proactively, influencing the behaviors of their collaborators [136, 10]. For example,

teaching agents in the multi-armed bandit scenario in [136, 10] possess perfect in-

formation and reason about what information to communicate to agents learning

the partially-observable payout distributions of the bandits. Decisions to share

information, then, depend on the factors of timing in content, corresponding to

the two questionsWhen should an agent communicate? andWhat should an agent

communicate? posed by Maayan Roth et al. [116, 115].
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6.2.5 Communicating Plans

A key element of planning in a multiagent domain is the accurate projection

of the actions of other agents. While this can be learned over time [14, 13], it is

often more direct to communicate regarding the expected behavior of coordinat-

ing agents. Stone and Veloso [137] discuss the communication of roles, setplays,

and formations for coordination in robotic soccer. Tan [144] demonstrated the

enhanced performance of agent teams when learned policies are shared.

SharedPlans [57] provides the most well-specified theory of communication

and negotiation of plans in a multiagent setting. SharedPlans are constructed as

hierarchical abstractions of actions required to complete a task. High level task

are divided into lower level task, which are eventually decomposed into primitive

actions. A task is assigned to an agent or group of agents if the team mutually

believes the assigned party can complete the task. Through the communicated

assignment of agents to single and multiagent subtasks, a full plan is realized.

6.3 Active Learning and Inference

With the observation that most ad hoc teamwork research primarily focuses

on learning models of behavior or inferring teammate policies, we are motivated

to seek out uses of communication that aid in the learning process, whether it be

through informing a model directly or providing support to a model which does

not have sufficient information to make accurate predictions.

In contrast to learning approaches that attempt to construct a model over a

given set of labeled examples (supervised learning) or a sequence of incoming data

points (online learning), active learning considers an approach in which the learn-

ing algorithm decides which of a set of unlabeled data points should be labeled
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and incorporated into the model [125]. This process is motivated by the observa-

tion that certain data points may have a larger impact on the model once labeled,

allowing a more accurate model to be trained from a comparatively small portion

of the data. In tasks where labeling incurs a cost, it is beneficial to strategically

decide which points are selected for labeling, minimizing the overall cost while

maximizing the inferential or predictive power of the model. However, the exact

computation of a set of optimal points to label is intractable for large problems

due to the exponential space of subsets to evaluate. Consequently, many ap-

proaches select data to be labeled according to proxy measures, such as selecting

data points with maximal uncertainty under the current model or points which

are expected to most reduce the model’s variance [125]. Inspired by this direc-

tion, we introduce similarly motivated heuristics in Chapter 10, though designed

specifically for ad hoc team settings.

Judah et al. [72] applied active learning to imitation learning problems for

MDPs, where a learning agent attempts to imitate a teacher’s policy. The goal of

the agent is to desired policy it should follow, and it is allowed to query the teacher

for the action that should be taken at a given state. At a high level, this application

of active learning shares many qualities with that of this work, specifically an agent

trying to learn a policy known by another, with communication as the mechanism

for acquiring necessary information.

In a similar vein, active inference considers the problem of obtaining informa-

tion for the process of inferring a result given a trained model [22, 111]. This

research direction has not received much attention and primarily has been used

for collective classification tasks, in which data are represented in a graph struc-

ture, the links of which indicate a form of relationship between the data which

may be used to infer labels of yet unlabeled data. For example, movies that
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share a director are naturally related and may hold key information for use by

recommendation systems [22]. Again, while the ad hoc teamwork problem has

unique properties that set it apart from these works, we are nonetheless similarly

motivated in acquiring information to improve inference of teammate policies.

6.4 Summary

We have provided an overview of conditions under which purely observation-

based approaches can leave an ad hoc agent uncertain as to the policies of its

teammates. These include but are not limited to observing novel teammate poli-

cies, coordinating in time-constrained scenarios with few observations, observing

non-discriminative behaviors, and collaborating in states where little prior expe-

rience can be leveraged. As teammate policy uncertainty is at the root of each

of these conditions, we propose communication as a mechanism for acquiring vi-

tal information for the coordinated effort. To this end, the remainder of this

document will consider the role of communication with the purpose of resolving

behavioral uncertainty, employing information- and decision-theoretic reasoning

to elicit the minimal amount of policy information necessary for an ad hoc agent

to successfully coordinate with unknown teammates.
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Chapter 7

Communicating Policies

We are interested in analyzing the exchange of policy information via explicit

communication as motivated in the previous chapter. In an effort to do so, we

characterize the position of the uncertain agent, its policy, as well as the set

of information it possesses as an MDP over the space of potential policies or

strategies a teammate may be pursuing. Constructing this problem as an MDP

allows us to describe many of the properties and challenges of the problem as

well as to provide a formal model under which an agent may compute optimal or

approximately-optimal communication policies.

Across many communicative multiagent frameworks, such as the COM-MTDP

model [109] and STEAM [141], communication is constrained to the sharing of

observations or direct state information [10, 117]. As the policies of teammates are

the source of uncertainty in ad hoc teamwork, it follows that policy information is

a promising target for communicative acts. Sharing information between agents

aids in establishing a shared set of beliefs, reducing the likelihood that agents

diverge in their beliefs with respect to the joint plan. Analogously, the reduction

in uncertainty regarding a teammate’s policy consequently permits a coordinating

agent’s ability to align its own policy to that of its peers.
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Figure 7.1: Communication analysis for revising plans. (a) Given a finite-horizon
policy graph, the communication process identifies a point of uncertainty, µ(s),
(b) considers potential outcomes from a teammate’s decision, as predicted by b(µ),
(c) recomputes the agent policy π for each case, and (d) initiates communication if
the potential change in expected policy value exceeds the cost of communication,
(e) resulting in a revised policy, π′.

As policies are naturally divided into discrete elements—state-action assignments—

we propose using these individual decision points as targets for exchanging infor-

mation regarding teammate policies1. From these state-action pairs, two types of

communicative acts are immediately obvious: instructive commands, instructing

a teammate to perform a specific action when a state is encountered, and policy

queries, requesting what action the teammate intends to perform at the given

state. As we are primarily interested in inferring the policies of teammates, we

will focus on policy queries as an application of active inference in ad hoc team

domains. Figure 7.1 depicts a high-level overview of the communication process

in which an agent reasons about the value of querying a teammate for policy in-

formation subject to a cost associated with the communicative act. This chapter
1In many cases, communicating higher level coordination information, such as roles, goals,

or subtasks, may be more appropriate. However, such content is domain-specific, and we are
primarily motivated by a domain-independent perspective of ad hoc teamwork.
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defines the process in detail.

7.1 Assumptions

In order to address the problem of policy communication in ad hoc teams, we

make the following assumptions regarding the capabilities of the team members:

• The team is coordinating on a task with finite, discrete state and action

spaces.

• Team members share a state and action representation that can be commu-

nicated.

• All team members are capable of communication, though the exact form of

which is left to the domain or application.

• The team members other than the ad hoc coordinating agent follow station-

ary policies. We leave extensions to non-stationary policies for future work

(Section 12.3.2).

• All team members answer policy queries honestly.

Each of these assumptions can, in practice, be altered, but such an application

may necessitate considerations not covered in this research. For example, the

assumption of a finite, discrete state space naturally forms a set of queryable

policy information; in contrast, under an infinite, possibly continuous state space,

it is necessary to sample or otherwise construct a finite set of policy information

from which to query.
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7.2 States of Information

For the purpose of providing a clear vision of how communicating policies lever-

ages and improves information obtained from observations of teammate behavior,

we must outline what is meant by an information state in this context. Here, we

use the term information as a notion of some observation or obtained piece of data

that potentially impacts the uncertainty an agent has with respect to its situation.

With respect to POMDPs, information is embodied by the observations an agent

receives, which allows the revision of a belief distribution over partially-observable

states. In general, an information state is a collection of discrete pieces of infor-

mation obtained up to a point in time, t. For our application, we define an infor-

mation state, It to be the collection of partial policy information gathered from

observations as well as from communicated policy information. For the purely

observation-based perspective of the ad hoc teamwork problem, as covered in

Chapter 2, an information state can be defined simply by the observation history,

It = Ot = {o1, o2, . . . , ot} = {(s1,×n

i=1 ai,1), (s2,×n

i=1 ai,2), . . . , (st,×n

i=1 ai,t)}.

Without any loss of generality, we will focus on the observations and infor-

mation state specific to a single teammate, such that Ot = {o1, o2, . . . , ot} =

{(s1, a1), (s2, a2), . . . , (st, at)}.

For the communicative case, the information state further incorporates infor-

mation gathered through policy exchanges, i.e. It = Ot ∪ Qt, where Qt is the

set of policy information queried among a subset of teammate policies. Here

we distinguish the contributions of observations and queries, which may occur in

varying quantities. For example, while the agent receives an observation per step,

resulting in t observations at t actions, we allow for more flexible quantities of

policy information queries, as we will explain in further detail in Section 7.5.

Given an information state, It, |It| = m, and a belief prior, b, we can compute
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the resulting belief, b′, by the following:

b′(µ) = Pr (It | µ) b(µ)

= Pr ((s1, a1) ∩ (s2, a2) ∩ · · · ∩ (sm, am) | µ) b(µ)

=
m∏
k=1

Pr
(sk, ak)

∣∣∣ k−1⋂
j=1

(sj, aj), µ
 b(µ) (Chain Rule)

This amounts to iteratively applying the belief revision function, B, incorporat-

ing each observation and communicated policy action. As the fully observable

world state remains unchanged, the revised belief state becomes b′ =
(
s,×n

i=1 b
′
i

)
where s is the current state. In this way, we use information states to general-

ize accumulated information from varied sources but for the unified purpose of

revising beliefs. As each information state is associated with a belief state2, we

may begin to analyze how changes in the information state correspond to changes

in the expected utility of an agent’s individual policy under the remaining un-

certainty over teammate policies. Recall from Chapter 2 the value function over

beliefs, V (b). Given the correspondence between information states and belief

states, we can similarly express the value function in terms of information state,

i.e. V (I). For the purely observation-based version, the value equation formula-

tion follows directly from V (b). However, under the possibility of querying further

policy information directly, we must consider multiple new aspects of the problem,

specifically

• How does querying policy information affect the agent’s expected reward?

• Similarly, how does the new information affect the agent’s individual policy?

• How does an agent select which policy information to query from a team-
2With this connection between information states and belief states establish, we note that

from here forward, we will use VoI(I) = VoI(b′) interchangeably.
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mate?

7.3 The Value of Information

The utility of a set of new information impacts the expected value of an agent’s

individual policy in two manners. First, it reduces uncertainty over the predic-

tions of teammate actions, reducing the variance of possible outcomes. Consider

an agent with current information I, policy π, and expected value Vπ(b). By ob-

taining new information, the agent moves to a new information state, I ′, and a

new corresponding expected value, Vπ(b′). This change does not always improve

the expected value of an agent’s current policy, however; in the case that the

agent is overestimating the likelihood of an optimistic outcome, discovering the

discrepancy can decrease the projected cumulative reward.

Secondly, new information allows the agent an opportunity to change its policy.

There are two broad conditions under which this occurs: when the value of the

agent’s current policy trajectory drops below that of an alternative policy or when

the expected value of an alternative trajectory raises above that of the current

trajectory. In either case, as Vπ′(b′) > Vπ(b′), the agent is incentivized to alter its

policy in pursuit of maximizing its expected payoff. This gain in expected utility

is called the value of information, and is given by

VoI(b′) = max
π′

Vπ′(b′)− Vπ(b′) (7.1)

In estimating this value before the information is received, it is useful to con-

ceptualize the expected value of information,

Eµ(s) [VoI(b′)] = Eµ(s)

[
max
π′

Vπ′(b′)− Vπ(b′)
]

= Eµ(s)

[
max
π′

Vπ′(b′)
]
− Vπ(b). (7.2)
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This expectation allows us to reason about the expected gain of utility across each

of the potential responses to a policy query, as weighted by the relative likelihood

of each. Furthermore, it allows us to reason about the potential value of new

information before knowing precisely what the response will be. As the objective

of an agent selecting a coordinating policy is to maximize the expected reward,

the act of soliciting further information is an opportunity to refine a coordination

policy toward this end.

7.4 The Policy Communication Decision Prob-

lem

We formalize the problem of communicating policy information as a decision

problem across information states with queries as potential actions. We pose this

decision problem as a Markov decision process (MDP) such that we can employ

existing solution techniques and reason about methods of approximating optimal

communication policies. The next few sections establish the components of the

problem.

As we alluded to before, we are motivated by the need to resolve uncertainty

for one or more teammates’ policies. It is not as simple as evaluating all subsets of

a policy we could query, however, as the response may influence the which parts

of the teammate policy should be resolved next. This process, then, is interactive,

forming a graph of question-response events, of which any query begets one of a

set of possible responses, and the result of which conditions future queries.

The Policy Communication Decision Problem (COMMDP) is represented as

an MDP of the form 〈I,Q,M,U , λ〉, wherein I is the set of information states, Q

is the set of possible policy queries, R : I×Q×I 7−→ R is the value of transitioning
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between information states given a query and response, M : I × Q× I 7−→ [0, 1]

is the likelihood function of an information state transition given a query, and

λ ∈ [0, 1]3 is the discount factor for the COMMDP. For this work, we will use a

discount factor of λ = 1 and omit it from the analysis for clarity and conciseness.

7.4.1 Information States

An information state, I ∈ I, represents a specific set of knowledge regarding

the policies of an agent’s teammates. Formally,

I =
⋃

P∈P(S×{1,...,n})
AP ∪ {Istop}

is the space of information states, where P(X) is the power set of X and {Istop} is

a terminal information state. Elements P are collections of state and agent index

pairs, with AP being mappings of the pairs to actions. Elements I ∈ I \ {Istop},

then, are subsets of agent policy information known, as outlined earlier in the

chapter. In practice, the information states reached by a coordinating agent are

relatively sparse in coverage of the underlying policy space, particularly in large,

heavily-branching state spaces. Given a finite state and action space, the number

of unique information states is on the order of (|A|+ 1)n|S| where n is the number

of teammates with which the agent is coordinating.

7.4.2 Query Actions

Each query action resolves a single state-action pair of a single teammate’s

policy. Furthermore, for this work, we assume both that the teammate policies
3As the COMMDP is defined over a finite information state space, in which agents may obtain

but never lose information, communication is guaranteed to terminate, forming a finite-horizon
decision problem. This observation permits λ = 1.
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are stationary and that the teammates relay accurate policy information; we leave

extensions of non-stationary policies and noisy communication for future work.

Here, Q = (S × {1, . . . , n})∪{qstop} is the set of policy queries to an agent, where

qstop is an action halting the line of queries, transitioning to Istop.

7.4.3 Information State Transitions

Once queried, a teammate will respond with the appropriate policy informa-

tion. From the ad hoc agent’s perspective, the possible results are stochastic, with

probabilities of each potential policy action given by

M (I, q, I ′) =M
((

s0,
n×
i=1

bi

)
, (st, j),

(
s0,

n×
i=1

b′i

))

=



0 if I = Istop

1 if q = qstop and I ′ = Istop

1 if I = I ′ and ∃!a (st, j, a) ∈ I
∑
µ 1µj

((st, a))bj(µj) if |I ′ \ I| = 1 and I ′ \ I = {(st, j, a)}

0 otherwise

7.4.4 The Reward of Communicating

Given an information state It, a query action q, and its resulting information

state It+1, we can calculate the payoff from communicating as the difference in

expected utility of the corresponding policies associated with each information

state. In many domains, it is assumed that the act of communicating is associated

with a fixed cost, reflecting the resources—such as time or energy—required to

exchange information. In these instances, the payoff function can additionally

incorporate the cost, C : Q 7−→ R≥0. Therefore we formulate the reward function
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as

U(I, q, I ′) =


VoI(I ′)− VoI(I)− C(q) if q 6= qstop

0 otherwise

It is important to note a distinction between this view of evaluating commu-

nication and that described in Section 7.3. In the earlier formulation of the value

of a communicative act, the evaluation implicitly considers each act in isolation.

This approach is correct in instances where there is no added benefit to initiating

more than a single act of communication or where agents are restricted to com-

municating only a single item. As our domain necessitates the exchange of sets of

information, similar to that in [116], we consider as the reward the change in the

value of information for the set of information in each information state. In other

words, the reward function is the change in the value of information from adding

a query-response pair to an information state less the cost of the query.

7.4.5 Termination Criteria

The precise portion of a policy necessary to clarify is not of a fixed size but

is dependent on the current uncertainty, risk involved across future horizons, and

also what information the agent receives as it begins its line of queries. Unlike

other multiagent communication decision problems [106, 116], we do not limit the

agent to a single exchange of information at each step of coordination but rather

allow the decision process to decide whether or not further information should be

queried. This need is in part due to the interactivity of the process, as the need

for further information is conditioned on the queried teammate’s response, which

is inherently unpredictable. Naturally, this raises the question: When should the

communication process terminate? It is obvious that in finite-horizon coordination
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domains, only |S| policy states can be queried per teammate. In practice this never

occurs, as state spaces of the domain are typically too large to exhaustively query.

Alternatively, the value of information crucially yields some ending criteria for the

communication process.

Recall that the set of query actions contains an action for qstop. When this

action is the optimal communication policy action, the communication exchange

terminates. As this action has a cost, C(qstop) = 0, it will only be the optimal

communication policy action when all alternative lines of queries each have a

negative cumulative expected value, i.e. when the cost of communication exceeds

the value of the information exchanged.

Alternatively, we can establish an upper bound for the maximum cumulative

expected value of information. When this upper bound is less than the cost of

a query, it is clear that no line of querying could exceed the incurred cost. We

discuss an initial bound for this value in Section 8.2 as well as how cost constrains

the maximum quantity of queries in Section 11.2.4 .

7.5 Planning, Communicating, and Acting

With a method in place for eliciting necessary policy information from team-

mates, an ad hoc agent can now utilize all possible sources of information while

attempting coordination. The model of a communicating ad hoc agent is de-

picted in Figure 7.2. At the beginning of an instance of coordination, an agent

possesses a distribution over potential teammate policies, either constructed from

past experience or generated by another process. In the first stage, the agent

computes a policy maximizing its expected payoff over some finite horizon. With

a policy in hand, it considers the communication problem, as we have just out-

lined. It computes a policy in the information space, then executes a series of
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Figure 7.2: A model of an ad hoc agent capable of observing and soliciting policy
information from teammates.

communicative acts between it and its teammates, querying for policy informa-

tion, receiving responses, and updating its internal information state. Once the

communicative policy specifies the qstop action, the agent ceases communication,

updates its domain-level policy (π → π′) by revising its beliefs from the gathered

information from the communicative process, and selects its next policy action

accordingly. Once the team’s joint action is performed, the agent records the

observation, updates the model of each of its teammates via the calculating a

posterior distribution over possible policies, and repeats the process.
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Chapter 8

Theoretical Characterization

Computing a communication policy over an information state space that is ex-

ponentially larger than the underlying domain state space is clearly intractable for

problems of sufficient scale. It may be, however, that properties of its specific con-

struction may be exploited to provide more computationally feasible, optimal so-

lutions or near-optimal, heuristic techniques. In this chapter, we examine various

properties of the communication decision problem in order to better understand

how we may design algorithms for overcoming its computational requirements.

8.1 The Information State Space

The information state space underlying the communicative decision process,

as we have constructed it, possesses a rather orderly structure. For clarity, we will

illustrate the size and shape of the state space given an initial information state, I.

This state encodes policy information for some k state-action pairs out of a maxi-

mum set of n|S| policy actions for n teammates. Consider the space of queries the

coordinating could send to its teammates. First, we observe that querying policy

information that is already known cannot improve the agent’s policy. Given this
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observation, we remove from consideration any query of policy information from

a teammate that is already covered by the information state, leaving only queries

that grow the information state. There are, then, n|S| − |I| queries available.

Each query can result in one of |A| responses, yielding |A| (n|S| − |I|) new infor-

mation states, each corresponding to a unique partial view of the team’s overall

joint policy. Due to this additive nature of the information state constructions,

the state space takes the form of a directed acyclic graph.

It is useful to consider the information states reachable given a fixed number of

queries. We will refer to these sets of information states as horizons of information,

e.g. the first horizon represents the set of information states reachable given an

initial information state I and all possible query response pairs for a single query.

Clearly, due to the finite space of potential queries, there are at maximum h∗ =

n|S| − |I| horizons. Furthermore, each horizon, h, contains
(
h∗

h

)
|A|h information

states, totalling ∑h∗

h=0

(
h∗

h

)
|A|h = (|A|+1)h∗ information states across all horizons.

This state space represents all of the partial information sets the agent could

possess through querying from its current information state. Notably, this space

is exponential in both the size of the team and the size of the domain state space.

Similarly, we can enumerate all possible trajectories from a given information

state, I, to states of complete information, i.e. information states include the

entire policies of each teammate. At each horizon, h, there are h∗ − h queries

available per information state, each with |A| potential responses. The number of

unique query trajectories is, then, ∏h∗−1
h=0 (h∗ − h) |A| = (h∗)!|A|h∗ in total. Fortu-

nately, as we are operating on unordered sets of information, trajectories various

orderings of the same set of query-response pairs result in identical information

states, allowing us to employ dynamic programming to avoid the evaluation of

trajectories individually but rather focus computational effort on coverage of the
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information state space.

8.1.1 A Note on Submodularity

We observe that the value of information is a set function over subsets of policy

information, as established in our construction of information states. The decision

problem of finding an optimal communication policy is simply the maximization of

the set function subject to a cost per item of the set. In many respects, this mirrors

the process of what is called submodular maximization [94], a well-studied class

of maximization problems wherein the goal is to find a subset S ⊆ N maximizing

z(S) where z is a submodular function. Submodularity is related to the concept of

diminishing returns, and a function is considered submodular if for S ⊆ T ⊆ N ,

z(S ∪ {x}) − z(S) ≥ z(T ∪ {x}) − z(T ) ∀ S, T ⊆ N, ∀x ∈ N \ T . In other

words, the marginal benefit of adding {x} to S is at least as much as adding

it to T . Such maximization problems admit greedy approximation algorithms

whose solutions are within a factor of 1− 1/e of the optimal value when z is also

monotone. Unfortunately, while the expected value of information is monotone,

it is not submodular, which we will illustrate by counterexample.

Consider a simple scenario of three states, {s1, s2, s3}, and two agents, {α1, α2}.

In s1, α1 may choose to end the scenario with an immediate payoff of 8 or begin

a game of coordination with α2. If the agent attempts the coordination game,

the game transitions to s2. In s2, both agents must attempt to coordinate their

individual actions, ai ∈ {a1, a2}, such that both agents select the same action, e.g.

ā = 〈a2, a2〉. If this occurs, the game transitions to s3; otherwise, the game ends

with 0 payout. For s3, the agents must again attempt to coordinate their actions,

ai ∈ {a1, a2}. However, upon a success, the game terminates with a payout of

10. Furthermore, α1 models α2 with a uniform distribution over the four possible
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successful joint policies that achieve the maximum payout. As we can see in

Table 8.1, it is clear that adding a second state-action pair to the information

state in this example is of greater value than adding the first in every case, e.g.

VoI({(s2, a1)} ∪ {(s3, a1)} − VoI({(s2, a1)}) > VoI({} ∪ {(s3, a1)})− VoI({}).

I Vπ′(s1) Vπ(s1) VoI(I)
{} 8 8 0

{(s2, a1)} 8 8 0
{(s2, a2)} 8 8 0
{(s3, a1)} 8 8 0
{(s3, a2)} 8 8 0

{(s2, a1), (s3, a1)} 10 8 2
{(s2, a1), (s3, a2)} 10 8 2
{(s2, a2), (s3, a1)} 10 8 2
{(s2, a2), (s3, a2)} 10 8 2

Table 8.1: Value of information for each information state.

The consequence of non-submodularity is in the difficulty of evaluating inter-

mediate information states between the initial information state and some future

state where enough information has been gathered to improve the agent’s policy.

In this example, it is only upon querying the entire policy of α2 that α1 adapts

its policy, yet the intermediate steps of querying only a subset of the policy of

α2 provide no value in isolation. As the required set of information could be ar-

bitrarily large in a given coordination domain, the corresponding search through

the information state space may be one of sparse rewards over large horizons.

8.2 Bounds on the Value of Information

For the purpose of exploring informed solution approaches to the problem of

communication, we are motivated to establish bounds on the value of information

and, correspondingly, the expected value of information.
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Given a an agent with current information state, I, consider a new information

state I ′ such that I ⊆ I ′. We note that I ′ induces a new belief state, b′. By

definition, the value of information is calculated as VoI(b′) = maxπ′ Vπ′(b′)−Vπ(b′).

Observing that max
π′

Vπ′(b′) ≥ Vπ(b′) ∀π, we can see that the value of information

and, consequently, the expected value of information must be non-negative.

The computation of an upper bound for the value of information is more

involved. Consider the policy information contained in an information state

I ′, again corresponding to b′. The known policy decisions form a set of con-

straints on the policy space of each teammate. Let π̄∗ = arg max
π̄

Vπ̄(s) subject to

µi(st) = ai ∀(st, i, ai) ∈ I ′. Then, π̄∗ is the optimistic joint policy maximizing the

MMDP under the constraints of the known policy information of the team. By

construction, Vπ̄∗(s) ≥ V (b′) where b′ =
(
s,×n

i=1 b
′
i

)
. Therefore,

VoI(b′) = max
π′0

Vπ′0(b′)− Vπ0(b) ≤ Vπ̄∗(s)− Vπ0(b), and

E [VoI(b′)] = E
[
max
π′0

Vπ′0(b′)
]
− Vπ0(b) ≤ Vπ̄∗(s)− Vπ0(b).

Note that in the event the agent’s current belief state and policy match the

value of the optimistic joint policy, the value of information becomes zero. This

intuitively makes sense, as the beliefs hold that in every possible assignment of

teammate policies, the agent’s policy achieves the same degree of success as the

optimistic result. This mirrors the case in SharedPlans [58] when a team member

is assigned a task to complete, but the rest of the team is indifferent to how the

task is completed. What matters is the mutual belief that the teammate can

complete the task.

Furthermore, this upper bound can be used to form an admissible heuristic,

though it tends to grossly overestimate the utility to be gained and, therefore, is
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not particularly informative. In many cases, it is more practical to have an approx-

imately accurate inadmissible heuristic than an inaccurate admissible heuristic,

particularly as it may not be tractable to compute optimal communication policies

in large domains.

8.3 The Impact of Cost on Communication

Under free communication, i.e. C(q) = 0 ∀q ∈ Q, it is straightforward to show

that the expected value of perfect information incentivizes communication policies

which elicit the entire policies of all teammates. As the value is non-negative, it

follows that the policy resulting from communicating the entire policies of all

teammates must provide at least as much utility as any policy π constructed

under partial information.

Typically, acts of communication are associated with a cost, such as time,

energy, or some other exhaustible resource. For this work, we assume that each

query has an associated cost, C(q) ≥ 0, as it is rarely the case that an act of

communication has an associated positive reward. Rather, the benefits of com-

munication are from the implicit effect on the belief state and revised agent policy,

a common observation in related literature [108].

The value of information is a measure of how much the agent’s expected utility

will change given new information. Earlier, we established an upper bound on this

value, given by Vπ̄∗(s)− Vπ0(b). As a rational agent chooses to communicate only

when the expected utility of communicating exceeds the cost, we can use the

upper bound to compute the maximum number of queries an agent has available

before the total cost exceeds the potential benefit of further exchanges. Let cmin =

minq∈QC(q). Then, bc−1
min (Vπ̄∗(s)− Vπ0(b))c is the maximum number of queries

before the total communication cost exceeds the maximum value to be gained.
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In many practical applications, the cost of communication constrains the

amount information that can be queried. In such scenarios, agents may not be

able to prune the space of potential teammate policies to the precise policies being

followed; rather, they will retain some degree of uncertainty during the act of co-

ordination. However, uncertainty is not inherently problematic for coordination,

as in certain circumstances, the agent may be indifferent to the policy choices of

its team. This is particularly true where agents in a team work independently on

individual tasks, which requires less direct coordination.

8.4 Summary

In this chapter, we have provided an initial characterization of the Policy Com-

munication Decision Problem, describing the exponential size of the information

state space, as well as the monotonic, finite accumulation of information that re-

sults from querying policy information. While the problem bears resemblance to

submodular set maximization, the value of information is not submodular and,

consequently, the communication decision problem currently provides no guaran-

tees on greedy or approximate approaches. However, we are able to establish a

bound on the total future expected value of information in a given information or

belief state. Similarly, we can bound the maximum number of queries an agent

can utilize before the cost exceeds the benefit of communication. Together, these

two properties can inform communication policy algorithms, for example bound-

ing the lookahead of a local search or providing criteria for early termination.

Due to the complexity of this problem, we will focus primarily on approximate

techniques for the remainder of this thesis.
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Chapter 9

Greedy, Approximate

Communication

The framework outlined in Chapter 7 outlines a decision problem of intractable

size for any but the smallest of underlying coordination problems. We are moti-

vated, then, to pursue approximate solutions that may substantially reduce the

computational requirements of finding a communication policy. This chapter pro-

poses and evaluates a initial, greedy approach to the policy communication prob-

lem.

9.1 Sidestepping Complexity

Recall from Chapter 7 the correspondence between information states in the

communication decision problem and belief states in the coordination decision

problem. Transitioning from one information state to another shifts the belief

state, resulting in new predictions of teammate behavior as well as a potentially

The results of this chapter are presented in [120].
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new individual policy for the coordinating agent. Practically, consider an agent

whose coordination policy covers reachable belief states up to a finite horizon, h,

forming a policy tree or policy graph the size of which is on the order of |Ā|h.

With a new query-response added to the agent’s information state, each belief

distribution at each belief state in the policy graph would need to be revised.

Furthermore, a complete solution to the communication decision problem would

necessitate evaluation of many information state transitions, requiring complete

reevaluation of the policy graph for each reachable information state1. Under

such considerations, we identify the following targets for reducing computation

complexity:

• Recomputing beliefs over an agent’s policy.

• Recomputing the agent’s policy, given new beliefs.

• Evaluating successive information state transitions to form a communication

policy.

9.1.1 Approximating the Value of Information by Fixing

Beliefs

Recomputing belief distributions for each belief state throughout an agent’s

finite-horizon policy effectively necessitates the recomputation of the entire policy.

We observe that in many domains, differing agent policies beget transitions to

correspondingly different regions of the underlying state space. For example, in the

maze-based version of multiagent pursuit, an agent choosing one of two directions

at a fork will rarely lead to the same state once the divergence is encountered. In

such situations, the actions of an agent across the two choices—as represented by
1Section 8.1 details the size of the information state space and quantity of query trajectories.
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two separate branches of a policy graph—are rarely correlated, and, consequently,

knowing the policy of the agent in a state in one branch often does not impact

the believed likelihoods of actions in another.

Furthermore, recall that successive beliefs in an agent’s policy incorporate new

information from the predicted observations. In our case, the observations are the

very actions which are being queried by the agent to be incorporated into the

agent’s beliefs through communication. However, we treat these two methods of

integrating new policy information identically. Therefore, belief states occurring

after a state being queried already possess the policy information queried by an

agent and, as a result, need not be updated by the communication process.

Given these two observations, we propose an approximate recalculation of

an agent’s expected utility under new information which only updates predicted

teammate actions along trajectories from the agent’s current belief state, b0, and

the belief state, bt, corresponding to the queried state, st. The process for approx-

imating the expected value of information a query using this approach is given in

Algorithm 1.

9.1.2 Greedy Queries

While the true value of information is calculated over a series of successive

queries, such a process is expensive to compute, particularly as the set of potential

query actions at a given information state is on the order of the entire coordination

state space. For this reason, we take a greedy approach to evaluating E[VoI(I)],

considering only a one-step lookahead return on querying each potential state in

the teammate’s policy. If maxq∈Q E [VoI(I) | q] − C(q) > 0, the agent queries its

teammate and evaluates the next set of queries under revised beliefs. The success

of a greedy strategy largely depends on the informativeness of individual queries,
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Algorithm 1 Procedure for computing the approximate expected value of infor-
mation of a given policy query to agent i for µi(st).
1: function ApproximateExpectedVoI(V , b0, bt, st, i)
2: U ← 0
3: for ai ∈ Ai do
4: V ′(b0)← PropagateValue(V, b0, bt, st, ai)
5: U ← U + Pr(µi(st) = ai | b0) V ′(b0)
6: end for
7: return U − V (b0)
8: end function
1: function PropagateValue(V , b0, bt, st, ai)
2: h← t
3: V ′ ← V
4: B← {bt}
5: while h ≥ 0 do
6: B

′ ← ∅
7: for bh ∈ B do
8: b′h ← B(bh, st, ai)

9: V ′(bh)← max
a0∈A0

E
[ ∑

bh+1

T(bh, ā, bh+1)[R(bh, ā, bh+1) + γV ′(bh+1)] | b′h
]

10: B
′ ← B

′ ∪ {bh−1 | ∃ā T(bh−1, ā, bh) > 0}
11: end for
12: h← h− 1
13: B← B

′

14: end while
15: return V ′(b0)
16: end function
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Figure 9.1: The maze used for the pursuit experiments. The coordinating agent
is represented in blue, with the teammate in red. The fleeing evaders are repre-
sented by the four yellow cells.

as a myopic evaluation can fail to find sets of queries that hold greater value than

the sum of the individual evaluations, as discussed in Section 8.1.1. We evaluate

non-greedy communication in Chapter 11.

9.1.3 Empirical Evaluation

We test the greedy, communicating ad hoc agent in a maze shown in Figure

9.1, which depicts the initial configuration of the team and the fleeing evaders.

While simple, 5.15×1010 unique placements of the agents and evaders are possible

within the maze, with 5.54 × 107 potential capture states. As such, the domain

is large enough to be intractable to solve exhaustively yet small enough for online

planning without the necessity of domain-engineered considerations, which may

confound the evaluation of our approach.

9.1.4 The Coordinating Agent

We test the proposed greedy, approximate communication approach with two

variants of a coordinating ad hoc agent. For decision-theoretic planning, the agent

uses Upper Confidence Bounds for Trees (UCT) [75], a version of Monte-Carlo

tree search (MCTS) [34] balancing exploration of novel policies and exploitation
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of well-performing policies. Moreover, we implement two methods of modeling

teammates, the first of which we will refer to as the No Priors agent, referring

to a complete lack of experience coordinating with other agents in the domain.

This model initially predicts the actions of its teammate uniformly; over time, the

model predicts actions proportional to frequency of observations of the action,

n(ai, s), as shown in Equation 9.1. We add a constant smoothing factor of 1 to

ensure every action has non-zero probability. For the evaluation, we are interested

in how the need and use of communication changes over repeated trials with a

teammate, as the agent learns to predict the teammate’s policy more accurately.

Pr(ai | s) ∝ n(ai, s) + 1 (9.1)

Additionally, we demonstrate the approach with a second type of coordinating

agent, which we will call With Priors, utilizing a set of known policies, one for

predicting pursuit along the shortest path to each potential target. This approach

mirrors that of existing work [14, 122] as well as the approach used in Chapter 5.

The agent updates a belief distribution, initially uniform, over policies, according

to Bayes rule using an exponentiated loss function, shown below:

Prt(µi | ai) ∝ Pr(ai | µi) Prt−1(µi)

∝ e−L(µi) Prt−1(µi)

where L is a binary loss function with a value of 1 if the model incorrectly predicts

the observed action and 0 otherwise. We do not test this agent over successive

trials, as it has no means of learning a teammate’s policy over time. As the

model only evaluates the likelihood of the teammate’s current target, the belief

distribution is reset at the start of each trial.
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Types of Teammates

In order to ensure a degree of uncertainty in the paired teammate’s behavior,

we test the coordinating ad hoc agents with a teammates sampled randomly from

a set varying in degrees of consistency of behavior, as follows:

1. Deterministic - This teammate consistently selects its target across trials

and pursues it in an identical, deterministic manner every round.

2. Random Target - Here, the teammate begins each trial by uniformly sam-

pling which target it will pursue.

3. Inconsistent - During 90% of the turns, this teammate will pursue its current

target while it will select a random action with 10% probability. Further-

more, while the initial target is sampled uniformly, with each step, the team-

mate may switch targets to evader, ej ∈ E, with probability proportional to

its distance, D, given by Pr(ei → ej) ∝ 0.2D(ej).

The agent does not know the true behavior of the teammate with which it is

cooperating; rather, it must learn, infer, or query the teammate’s intended actions

in order to develop a successful coordinating policy.

9.1.5 Information Over Repeated Trials

Communicating policy information is proposed to handle cases when an agent

is uncertain which action a teammate will take. There are two main sources of

this uncertainty for the No Priors agent:

1. Inconsistency in behavior - Across many observations of a state, a teammate

has taken multiple actions.

87



Figure 9.2: Number of unique states observed over successive trials.

2. Lack of information in the model - Typically this occurs when an agent

has not observed a particular state frequently enough to learn a teammate’s

behavior.

In the former case, the coordinating agent is uncertain which previously ob-

served policy the teammate is currently following. As an example, consider the

teammate beginning in the lower right corner of the maze. Across multiple tri-

als, the collaborating agent observes its teammate either proceed north to pursue

the evader in the top right corner or proceed west in pursuit of the bottom left

evader. After many trials, the coordinating agent expects the teammate to choose

either of these two strategies, and depending on the decision-theoretic value, it

may query its teammate to determine in which direction it will proceed.

In the latter case, the agent simply does not possess enough information to

accurately predict the actions of its teammate. This frequently occurs when ini-

tially coordinating with a new teammate or when the system enters into a part

of the domain’s state space that has not been explored with the teammate and,

therefore, lacks observations. In this context, we would expect more communica-

tive acts in unfamiliar territory. Figure 9.2 presents the average number of unique
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Figure 9.3: Number of queries by the No Priors agent over successive trials.

Teammate Spearman’s ρ p
Deterministic -0.627 <0.001
Random Target -0.295 0.003
Inconsistent -0.130 0.196

Table 9.1: Monotonicity of communicative frequency.

states visited across twenty runs of one hundred successive trials, wherein the No

Priors agent retains its observations between trials. At each step, the agent selects

all queries with positive utility, leaving uncertain any states where communica-

tion has no immediate value, given the finite horizon plan. The propensity for the

less consistent agents to transition the scenario into new areas of the state space

leaves the coordinating agent uncertain, as reflected in the increased frequency of

communicative acts, as shown in Figure 9.3.

Over time, as the agent adjusts its model to fit the teammate’s behavior, the

agent has less uncertainty regarding the eventual actions it will observe, result-

ing in diminished communication. This is reflected in the theory of shared mental

models [98], where synced team expectations regarding the status of a task and the

individual responsibilities of team members results in lessened conflict and infre-
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Figure 9.4: Progression of agent’s expected utility during Round 1 over succes-
sive queries, under various communication costs

quent communication. Table 9.1 contains Spearman’s ρ coefficients for the trends

displayed in Figure 9.3, indicating the monotonicity of the data. Within the one

hundred successive trials, the overall average trends for communicative frequency

have significant negative relationships for the Deterministic and Random Target

teammate types. However, one hundred trials under the varied performance of

the inconsistent teammate appears insufficient for a statistically significant trend.

9.1.6 Cost-restricted Communication

We model the impact of a fixed cost for all communicative acts, though other

schemes of assigning costs are possible. Figure 9.4 illustrates the effect of cost

on the communication process over successive queries during the first round of

coordination. For each tested cost of communication, the agent is allowed to

query its teammate for policy information as long as each query’s utility exceeds

the cost of communication. The results are averaged over one hundred trials

for each cost. In a contrast of the two modeling approaches, the With Priors

agent communicates more infrequently, as queries adjust the likelihood of entire
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teammate policies, reducing uncertainty for future predictions across all states.

As expected, we observe that increased costs diminish the utilization of com-

munication. In high cost scenarios, agents may only communicate rarely, relying

instead on planning under uncertainty with respect to a teammate’s behavior.

With lower communicative costs, agents exchange information more readily, al-

lowing for reduced uncertainty and increased expected utility.

Table 9.2 displays the success rates for capturing a prey within the time limit

as well as statistics for the average reward, as evaluated under varying costs of

communication. We observe that the greedy approaches tested in this Chap-

ter were unable to significantly improve the success rates of capture over baseline

non-communicating agents. Furthermore, we note significantly worse performance

with respect to the cumulative reward, suggesting that agents overutilized com-

munication, likely from overestimating the value of information.

Reward
Heuristic Cost Trials Successes psuccess Avg. Std. putil

With Priors — 100 89 0.589 45.31 34.01 1.000

With Priors 0 100 80 0.975 27.38 27.11 0.000
With Priors 1 100 87 0.743 4.78 35.88 0.000
With Priors 2 100 85 0.853 -2.09 38.44 0.000
With Priors 4 100 83 0.924 -3.82 39.40 0.000
With Priors 8 100 87 0.743 27.43 40.58 0.001
With Priors 16 100 90 0.500 48.03 34.12 0.573

No Priors — 100 56 0.557 30.53 35.00 1.000

No Priors 0 100 44 0.967 19.09 30.14 0.014
No Priors 1 100 42 0.983 -38.98 52.08 0.000
No Priors 2 100 54 0.665 -52.89 42.92 0.000
No Priors 4 100 61 0.283 -12.30 38.73 0.000
No Priors 8 100 49 0.871 22.04 32.69 0.078
No Priors 16 100 61 0.283 28.55 34.89 0.689

Table 9.2: Performance of tested agents under varying costs of communication.
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Figure 9.5: Heatmaps for the queries chosen by the agent when coordinating with
an unknown teammate. The first row represents the frequencies, f , of the potential
teammate locations in the states queried, while the second row depicts where
the agent’s policy is changed as a result of the queries. Due to the exponential
drop-off in query frequencies radiating out from the initial state, the log of the
query frequencies is also shown. Finally, all locations except the local maxima
are removed in order to identify common, highly valued queries across the state
space, notably occurring at branchpoints.

9.1.7 Queried States and Policy Changes

When evaluating a potential state query, three elements factor into the value

of the communicative act. First, large variance in utility at stake corresponds

to increased risk of an uncertain prediction, incentivizing communication. In the

tested domain, this primarily occurs at the cusp of a capture. Both teammates

must enter the evader’s cell to capture it. If the teammate switches targets or

performs a random action, it may miss the window for capture, allowing the

evader to slip by flee into the maze, forcing the team to pursue it until they

can surround it once more and attempt capture. This can occur in nearly every

location within the maze.

A second consideration in the evaluation of a query is the target state’s depth

within the planning horizon. As the sequence of actions required to transition

to a given state accumulates action probabilities 0 ≤ Pr(ā | s) ≤ 1 as well as

transition probabilities (in stochastic domains) 0 ≤ T (s, ā, s′) ≤ 1, the value of a
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query is biased toward states temporally nearer to the current state. Furthermore,

as all trials tested begin at the same state but may play out uniquely, we expect

common queries across trials earlier, before playouts diverge into unique sections

of the state space. This is reflected in Figure 9.5 which depicts heatmaps of

the teammate’s location across queries as well as changes in the agent’s policy

resulting from the communicative acts.

Finally, the uncertainty within a learned model of a teammate is a prominent

factor. Consider the progression of the No Priors agent. Initially, all action

predictions are uniform, providing the maximum uncertainty while planning. Over

time, the agent observes consistency in the teammate’s behavior within certain

states. For example, the teammate rarely doubles back in a hallway. Rather, it

maintains momentum in its movement. However, despite potentially numerous

observations, branch points may retain their uncertainty to a degree, particularly

if the agent has taken each branch with equal frequency. We observe that the local

maxima within the queried states (shown as well in Figure 9.5) occur primarily at

branching points within the maze. Moreover, the local maxima for policy changes

also occur at such points, emphasizing the importance of such decision points.

Query states for the With Priors agent are also presented in Figure 9.5. We

observe two apparent points of comparison. First, the With Priors agent commu-

nicates less frequently, as discussed in the previous section. However, the local

maxima for queried states appear in locations in common with those of the No

Priors agent. This reflects the effect of domain structure independent of the

underlying teammate modeling approach used.
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9.2 Summary

In this chapter, we proposed several approximation methodologies inspired by

the need to reduce the computational requirements of choosing a communication

policy. In many respects, the results presented in this initial evaluation demon-

strated characteristics of communication policies we would expect, such as the

monotonicity of communication with gained information, the impact of cost on

the frequency of queries, and the ability to identify decision points which differ-

entiate teammate strategies. Nonetheless, the proposed method failed to improve

the performance of the team, perhaps due to the overestimation of the value of

information.

The immediate extension to this work, which we introduce in the next two

chapters, considers the communication of multiple state-action pairs in succes-

sion. Given that it is possible for two states to have no utility for communication

individually but have non-zero utility when considered together, many domains

may require non-myopic communication policies. This opens up a combinatorial

space of potential policy information sets that could be communicated, similar to

problem of picking a subset of observations to share within a team, as explored by

Roth et al. [116], in which the authors successfully employed heuristic techniques

to construct sets of observations to share between teammates. Such a technique

will not transfer directly to our problem, as we must condition future queries on

the teammate responses; however, we similarly explore heuristics in constraining

the space of query policies.
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Chapter 10

Heuristic Query Evaluators for

Search in Information Space

While the full formulation of the communicative process allows for an exhaus-

tive search within the information state space, such an approach is infeasible for

domains with moderately large state spaces. The approach of the previous chapter

sought to establish a greedy, one-step lookahead as the basis of selecting queries,

and it evaluated a query for each state represented in the agent’s finite-horizon

policy. As we are motivated to consider non-greedy approaches, such as local

search, it is natural to consider pruning the space of queries to evaluate, mak-

ing a trade-off between the breadth and depth of such a search. Under certain

conditions, it is possible to provably eliminate queries from consideration, such

as when an agent’s beliefs are certain on a particular teammate’s policy decision.

However, such conditions are often rare, providing an insignificant reduction in

the space of queries to evaluate. This motivates additional mechanisms by which

we can narrow the search space. As such, we outline criteria of desirable heuristic

query evaluators for use in the communicative search process and propose a set

of candidate heuristics to be evaluated in Chapter 11.
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In an effort to avoid confusion over terminology, it is important to stress the

distinction between heuristic query evaluators—the topic of this chapter—and

the information state heuristic evaluation, as discussed in Section 8.2, where we

defined an admissible heuristic for evaluating the future potential value of in-

formation of a given information state. Heuristic query evaluators reduce the

branching factor of the search through the information state space, acting as a

pruning mechanism in general search problems. The purpose of such evaluators

is to remove from consideration many areas of the state space, as deemed irrel-

evant by the heuristic. In practice, this allows for the search process to probe

to deeper horizons of information given a fixed amount of computation, which in

our scenario may be necessary for complex coordination efforts that require many

policy queries. This is in contrast to heuristic state evaluators, which provide an

informed estimate of the future potential utility to be gained from a given state

onward. State evaluators provide estimations of the potential future value of states

yet explored, while query evaluators remove from consideration less useful areas

for exploration currently within reach of the search process. The two techniques

are commonly used together and have had many powerful results, particularly in

the case of AlphaGo Zero [128], which employed a neural network for both state

evaluation and policy evaluation, the latter of which functioned as a pseudo-action

pruning mechanism by assigning probabilities to actions to bias the search away

from actions with small likelihoods of being optimal.

10.1 Desired Characteristics

As the goal of employing heuristics is to eliminate much of the computational

burden required to find a good communication policy, it is evident that heuristic

query evaluators must both identify a substantially smaller subset of the state
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space for analysis and make such a reduction without requiring untenable com-

putational needs in order to identify the subset. As a useful example, a heuristic

that requires recomputing the agent’s entire policy for each possible query it eval-

uates may require computation, in the worst case, on the order of |S||A| for every

information state evaluated. Given that we’re evaluating up to |S| queries and

potentially |A| responses at each information state, it is desirable to find a heuris-

tic that selects candidate queries with computation on the order of |S||A| or, in

other words, a single pass of the states and actions currently covered in the agent’s

policy.

10.2 Considerations for Designing Heuristics

A useful strategy for pruning large action spaces is to provide an ordering un-

der some evaluative function, then select only the top k actions. For the purpose

assigning approximate ranks to possible policy queries, it is necessary to under-

stand the information available as well as how the information relates to task

of computing a successful coordination policy. Consider a scenario in which an

agent, currently with beliefs b0 at a state s0 evaluates a potential policy query of a

state st given that it will reach st at a future time when it have made one or more

observations and arrived at a new a new belief state, bt. Many useful questions

arise from just this subset of information, even if it omits consideration for the

remaining reachable world and belief states. How uncertain will the agent be at

bt regarding predictions for st? How much utility is at risk of a misprediction?

How does knowing µi(st) impact the agent’s uncertainty over teammate policies

with respect to the decision at bt? Similarly, how is risk or the expected utility at

bt affected? Moreover, many of these lines of inquiry apply to the agent’s current

decision at b0. For example, knowing µi(st) can impact the likelihoods µi(s0),
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which may in turn induce a policy change for the agent at b0. In short, the agent

considers how the potential for new information changes its policy both in the

future and at the present. Consequently, to discuss the characteristics and appli-

cations of various heuristic query evaluators, we establish broad categorizations

of such heuristics.

Information-Theoretic // Decision-Theoretic

The core problem of communicative ad hoc teamwork is two-fold: How does

an ad hoc agent make decisions under the uncertainty of teammate policies? How

does an agent acquire and utilize information to reduce uncertainty in order to im-

prove its decision-making? From the latter perspective, we look to metrics from

information theory [127] relating to uncertainty, such as entropy, joint-entropy,

and mutual information. Many such metrics have been used in active learning pur-

suits to select highly-informative data points for labeling [125], much in the same

way we desire to use them. Of course, in contrast to much of the classification-

based research in active learning, accurate predictions of teammate policies is a

secondary goal to that of maximizing the agent’s expected utility. It may be the

case that certain mispredictions of a teammate’s policy in corresponding states

may be acceptable, risking relatively little utility, while other states carry a higher

variance in the expected payoffs. Consider two agents trapping an evader. While

far from the evaders, little utility may be at risk for any single decision along the

path(s) toward an evader. However, once in close proximity to the evader, the

agents must more closely coordinate their movements to avoid the evader slipping

past one of the agents 1, costing the agents the near-term reward of capturing the

evader. With this observation, it follows that risk and other evaluations of utility

at stake at a given state may be indicators of useful policy queries. We categorize
1Recall that it takes both pursuers in the cell with the evader to capture it.
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heuristics concerned solely with the uncertainty of predicting teammate behav-

ior as information-theoretic while measures incorporating notions of the utility at

stake as decision-theoretic.

Immediate // Future

Ultimately, an agent querying its teammate for policy information is primarily

concerned with its most immediate decision (at b0/s0), particularly when it is free

to resolve future uncertainties with later communication. It is natural, then, for an

agent seek information impacting its current decision, potentially allowing for an

opportunity for the agent to change its intended action or confirming its decision

by reducing the risk of miscoordination. This implies a relationship between the

information gained by querying st and the factors of the decision being made at s0.

As such, we refer to metrics proposed on this relationship as immediate metrics.

Conversely, as we consider potential query states under the context of a fu-

ture belief states bt, given a series of policy observations from s0 through st−1, we

can construct metrics that take into account factors such as uncertainty and risk

despite possessing more information at time t. Often, this indicates that such in-

termediate observations have not been sufficiently informative to make a confident

policy decision at bt. While it may be feasible to clarify a teammate’s intentions

regarding st at a later opportunity, doing so in advance can influence the agent’s

policy at many intermediate states (b0, . . . , bt−1), affecting the likelihood of vis-

iting st. Of course, it is undesirable to recalculate the agent’s policy in order to

compute such effects, but we can provide estimates of such impacts. Regardless,

we refer to metrics relating to information surrounding the decision to be made

at st under bt as future metrics, though as the majority of the proposed heuristics

fall into this category, we will omit this label for conciseness.
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10.2.1 State Likelihood Weighting

As Barrett et al. [12] observed, ad hoc agents can often collaborate effectively

when only observing the behavior of an unknown team in a comparatively small

section of the domain’s state space. This is particularly true in cases where the

team attempts repeated trials with static initial conditions, as much of the state

space can be considered unreachable under the policies of the agent coordinating,

effectively pruning off much of the state space. Aside from this consideration,

domains may features dynamics of the world wherein actions of the agents have

nondeterministic outcomes, e.g. in many robot navigation tasks, it is assumed

that with some small probability a robot moving in one direction may actually

move in another. In situations where such rare events have low immediate risk, the

decisions of the coordinating actions beyond such a transition may not contribute

substantially to the agent’s policy prior to the transition occurring. It is evident

that some degree of likelihood may play a role in query selection, as extremely

unlikely or even unreachable states may have little importance on the agent’s

policy decisions relative to more likely outcomes. In order to account for the

likelihood of entering a state, we supplement the set of the proposed heuristics

with variants for the non-immediate heuristics, incorporating a state likelihood

weighting component, w(bt, b0) = Pr(bt | b0), where we can recursively compute

Pr(bt) by

Pr(bt) =
∑

bt−1∈Sb

∑
a0∈A0

T(bt−1, a0, bt) Pr(a0 | bt−1) Pr(bt−1) (10.1)

Unlike other analysis of state trajectory likelihoods in MDPs, our usage has a

unique consideration that plays into our estimation of a state likelihood. Specif-

ically, the agent’s policy is not fixed at the stage of communication. In fact, the
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purpose of communication is to potentially change the agent’s policy. Resolving

uncertainty outside of the trajectories resulting from the agent’s current policy

can incentivize the agent to alter its policy toward trajectories in which the risk

has been reduced. It is desirable, then, to adopt a probabilistic policy for the

purpose of estimating state likelihoods, as to avoid pruning out state trajectories

prematurely. For this, we assign action likelihoods to the coordinating agent’s

policy as

Pr(a0 | bt−1) ∝ eQ(bt−1,a0)

where Q(bt−1, a0) =
∑

bt∈Sb

T(bt, a0, b′t)
R(bt, a0, b′t) + arg max

a′0∈A0

γQ(b′t, a′0)
 .

10.3 Candidate Heuristics

With the heuristic terminology established, we outline the set of heuristic

query evaluators we empirically evaluate in Chapter 11. In order to compare the

effectiveness of the heuristics, we establish three initial baseline heuristics.

State Likelihood Each query is assigned its likelihood, according to Equation

10.1.

H(bt, b0) = Pr (bt | b0)

Random Evaluation Each query is assigned a random value, 0 ≤ x ≤ 1.

H(bt, b0) = x, x ∼ [0, 1]

Weighted Random Each query is assigned a random value, but is further
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weighted by its likelihood.

H(bt, b0) = Pr (bt | b0) · x, x ∼ [0, 1]

10.3.1 Information-theoretic Heuristics

From the field of information theory, we employ the concept of information en-

tropy, formulated as E(Y ) = −∑
y∈Y

Pr(y) log Pr(y) for some potential set of events,

Y . Information entropy is a measure of the quantity of information contained in a

probability distribution, where the uncertainty of an outcome is directly related to

the informativeness of witnessing the outcome. Conversely, the more an outcome

is certain, the less informative it is to be observed. Within the context of ad hoc

teamwork, consider an agent whose belief distribution covers some large number,

n, of potential policies for a teammate. If the policies are evenly divided over

which of two actions will be taken in a particular state, querying the teammate’s

policy for the state will rule out one half of the potential policies. Likewise, if all

but one potential policy agree on an action, the informativeness of querying the

policy for this state is comparatively low, as we would expect in n−1
n

cases that

the majority consensus action would be the responses, which in turn rules out

only a single policy. Even though in the 1
n
instances the rare response occurs, the

agent gains much information, the likelihood of this result is small enough such

that the total expected information is low.

For the purpose of designing heuristics, we observe two sets of information from

which we can reason about potential information gain. First, the agent maintains

a distribution over the policies a teammate. Secondly, from the distribution of

policies, we construct distributions of action likelihood given a state.
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Action Information Entropy The information entropy for the uncertainty re-

garding a teammate’s actions in a state, st, given the beliefs, bt, it holds when it

reaches the state.

H(bt, b0) = E (ai | bt) = −
∑
ai∈Ai

Pr(ai | bt) log Pr(ai | bt)

Weighted Action Information Entropy As above, but weighted with the state

likelihood. bt, it may hold when it reaches the state.

H(bt, b0) = Pr (bt | b0)E (ai | bt)

∆ Policy Entropy The expected change in entropy over potential policies if the

teammate policy at st with belief bt were to be queried.

H(bt, b0) = E (µi | bt)− E [E (µi | b′t) | µi(st)]

Weighted ∆ Policy Entropy As above, but weighted by the state likelihood.

H(bt, b0) = Pr (bt | b0) [E (µi | bt)− E [E (µi | b′t) | µi(st)]]

Immediate ∆ Policy Entropy As opposed to the previous heuristics, we con-

sider how resolving uncertainty at st impacts the uncertainty at s0.

H(bt, b0) = E (µi | b0)− E [E (µi | b′0) | µi(st)]

10.3.2 Decision-theoretic Metrics

As we discussed earlier, under certain conditions, uncertainty is acceptable,

and utility should be taken into account in order to evaluate the risk of mispre-
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dictions. Toward this end, we adopt two perspectives: how much utility is at risk

due mispredicting teammate policies—the potential error due to uncertainty—and

how much utility is to be gained by knowing the truth, i.e. the value of informa-

tion.

Mean Absolute Error The expected error of a prediction made at st given bt.

H(bt, b0) = Eµ(st)

[ ∣∣∣V (b′t)− V (bt)
∣∣∣ ]

Weighted Mean Absolute Error As above, but weighted by the state likeli-

hood.

H(bt, b0) = Pr (bt | b0)Eµ(st)

[ ∣∣∣V (b′t)− V (bt)
∣∣∣ ]

Mean Squared Error The expected squared error of a prediction made at st

given bt.

H(bt, b0) = Eµ(st)
[

(V (b′t)− V (bt))2 ]

Weighted Mean Squared Error As above, but weighted by the state likelihood.

H(bt, b0) = Pr (bt | b0)Eµ(st)
[

(V (b′t)− V (bt))2 ]

While the true value of information requires recomputing the agent’s beliefs

and policy for all future states, we can create an approximate to this value by

only examining how the beliefs and policy would change at the decision around

bt, holding all other beliefs and policy choices constant. With this approximation,

we construct the following heuristic evaluation functions:
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Approximate Value of Information The approximate value of information for

knowing a teammate’s policy at st.

H(bt, b0) = E
[
max
a0∈A

Q(bt, a0) | µ(st)
]
− V (bt)

Weighted Approximate Value of Information As above, but weighted by

the state likelihood.

H(bt, b0) = Pr (bt | b0)E
[
max
a0∈A

Q(bt, a0) | µ(st)
]
− V (bt)

Immediate Approximate Value of Information The approximate value of

information the agent at the current decision at s0.

H(bt, b0) = E
[
max
a0∈A

Q(b0, a0) | µ(st)
]
− V (b0)

10.4 Summary

In this chapter, we have described a few motivating criteria for evaluating

the quality of a query. While we have proposed a number of heuristics designed

with these criteria in mind, there is much potential for further investigation in

this direction. The heuristics proposed here have been based only on informa-

tion present within a generalized model of the Policy Communication Decision

Problem and were intended for applications to general domains. For practical

applications, domain-specific heuristics can potentially improve the ability to se-

lect crucial queries for coordination. As an example, we see in the query results

from the two agent pursuit problem that branches in a maze are common queries.
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Clearly, this is a result of patterns in optimal policies where for states with the

teammate is in a corridor have similar behavior, i.e. the teammate continues along

the corridor at each turn. In contrast, forks of the maze represent states where

groups of policies have divergent decisions. It is possible to design heuristics that

identify these obvious decision points without needing to evaluate much of the

state space. An advantage an agent with much experience operating with ad hoc

teams in a domain is that it learns the distribution of team policies in practice,

then identifies common policy divergences from this experience.

Furthermore, it may be possible to create a learned heuristic. One could

employ reinforcement learning to attempt to converge to the correct the value of

a query in an given information state over time. Furthermore, one could attempt

to classify states as good candidates for policy queries directly from the state

description. In domains are represented by a vector of values, such as the vector of

pixel values used for many of the Atari domains [17], there is a potential to identify

patterns in the data which are features correlating with high informativeness.

With an initial set of heuristics, we move to the empirical analysis of the Policy

Communication Decision Problem in the multiagent pursuit domain. We will

show how heuristics, together with a local search approach, can provide improved

coordination while retaining a tractable degree of computation.
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Chapter 11

Empirical Evaluation of Heuristic

Query Evaluators

In the previous chapter, we proposed a set of heuristic query evaluators with

the purpose of pruning the space of queries state to a manageable set, the par-

ticular cardinality of which is left up to the application or domain-specific opti-

mization. For our purposes, we will demonstrate the effects of adjusting various

algorithm and domain hyperparameters, with the goal of showing how the choice

of each impacts an agent’s ability to identify policy information worth query-

ing. We keep such algorithmic considerations as domain-independent as possible,

though application to other domains may necessitate further tuning. We discuss

general trends and lessons learned both here and in Chapter 12. With this in

mind, we address the following research questions with this evaluation:

• How do each of the heuristic query evaluators perform under various pa-

rameterizations of the search branching factor and overall search budget?

(Section 11.2.1)

• How do each of the heuristics perform with varying levels of agent experi-
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ence? (Section 11.2.2)

• How does the variety of teammate policies affect the utilization of communi-

cation, due to the difficulty of learning priors for the teammate population?

(Section 11.2.3)

• How does the cost of communication impact the use and effectiveness of

communication? (Section 11.2.4)

• How does the structure of a domain create need for explicit information-

gathering? (Section 11.2.5)

11.1 Experimental Setup

As before, we will use the two-agent pursuit domain as our target application

domain. For this evaluation, we use the maze in Figure 11.1, with a team reward of

100 if an evader is caught and 0 otherwise. We cap the maximum number of turns

to 7. In contrast to the experimental setups of in Chapters 5 and 9, this constraint

puts pressure on the team to coordinate precisely, with low tolerance for mistakes.

Moreover, the shortened time constraint limits the reachable state space, allowing

us to sample from the complete space of optimal teammate policies, of which there

are 361 individual policies which achieve the joint goal, and also to measure the

effect of variance among sampled teammate policies, which will discuss in Section

11.2.3.

Furthermore, for reach trial, the agent attempts collaboration with a newly

sampled teammate. While repeated trials with the same teammate are useful for

demonstrating the capability of models to be learned from observation, initial tri-

als typically exhibit the highest rate of failure, due to small number of observations
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Figure 11.1: Maze used for communication search evaluation. The coordinating
agent is represented in blue, with the teammate in red.

a coordinating agent possesses. As such, initial attempts at coordination with a

new teammate have the highest potential for improvement due to communication.

11.1.1 Sampling Teammate Policies

As we are working with a scenario in which we can fully compute the space

of teammate policies, we can sample new policies according to any distribution

we impose over the policy space. As a default, we will sample policies uniformly

from the set of policies which achieve the optimal value function, i.e. Vµ(s) =

V ∗(s) s ∈ S. In Section 11.2.3, we will vary the space of policies from which

teammate strategies are sampled, showing the effect of coordinating with both

large and small varieties of teammates.

11.1.2 Beliefs Over Teammate Policies

With a teammate policy generation mechanism in place, we can simulate the

experience of an agent by sampling from this set. To simulate an agent’s past expe-

rience coordinating with teammates, we sample one teammate policy per episode

of experience. We quantify an agent’s total past experience by the total episodes

of past experience. Notably, as we sample policies with replacement, policies may
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be sampled more than once, forming a distribution over the relative frequencies

of the policies seen. As one of the primary initiatives of ad hoc teamwork centers

around coordinating with novel teammate strategies, we are interested in scenar-

ios where the agent’s experience has not covered the entire space of policies or has

not sampled sufficiently many times such that it has perfectly learned the rela-

tive frequencies of each policy. For this reason, we will primarily use sets of past

experience smaller than the set of all possible optimal teammate policies (here,

361). As a result, the initial belief distribution of the agent is incomplete, not

possessing any experience coordinating with certain teammate policies.

Rather than assuming a uniform prior over teammate policies or constructing

a prior by other measures as in [8], we employ priors generated from a Chinese

Restaurant Process [103]. Through sampling, a Chinese Restaurant Process (from

here, CRP) is a discrete-time stochastic process capable of approximating a prob-

ability distribution over discrete items in a potentially infinite set. Given a count,

c(µi), for each policy observed previously and a concentration parameter1, α ≥ 0,

we estimate the probability of a policy by

Pr(µi) = c(µi)
α +∑

j c(µj)

and the probability of encountering a novel policy by

Pr(µ?) = α

α +∑
j c(µj)

.

With sufficiently many samples, this estimation approximates the true un-

derlying distribution of policies. By reserving probability for the space of yet

encountered policies, the distribution eschews the need of alternative belief revi-
1We discuss the computation of α in Appendix A.
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sion strategies. Rather, the posterior assigns a probability of 0 is assigned to any

policy that does not agree with the observation of the teammate policy and 1 oth-

erwise. In situations where an agent has ruled out every known policy, Pr(µ?) = 1,

concluding the currently observed policy is from the set of unknown policies. For

this possibility, we predict actions uniformly from the set of all teammate actions,

even if the action is not part of any optimal joint policy for the team. This permits

the consideration that a teammate performs sub-optimal actions. In practice, the

default uniform prediction can be replaced with any distribution, such that every

action has a non-zero likelihood. With a default prediction scheme in place, given

a belief distribution over policies, we compute the cumulative action likelihoods

as

Pr(ai | s) = |Ai|−1 Pr(µ?) +
∑

µi∈AS
i

µi(s)=ai

Pr(µi).

Under this construction, every teammate policy and every teammate action

prediction has a non-zero probability. However, with many observations consistent

with a known policy, theses likelihoods can become arbitrarily small as the agent

becomes more confident in the predictions of a policy.

11.1.3 Computing a Policy

Using the POMDP framework outlined in Chapter 2, the agent computes an

individual policy through solving the belief MDP using a prior over policies from

the CRP outlined previously. To solve the MDP, we use an implementation of

Trial-based Heuristic Tree Search (THTS) [74], a heuristic, sample-based search

algorithm which generalizes a family of similar search algorithms, such as Monte

Carlo Tree Search [34] and LAO∗ [60]. As with MCTS, the algorithm uses Upper
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Confidence Bounds for Trees (UCT) [75] to guide the search. As this search ap-

proach is sample-based, we will refer to the number of samples as the iterations

of the algorithm executed. The state value estimates and resulting policy asymp-

totically converge to the optimal values and policy, respectively, with the increase

of search iterations. THTS possesses two primary advantages over the MCTS

implementations from Chapters 5 and 9. First, it utilizes dynamic programming

due to the Markov assumption of the MDPs; this changes the structure of the

search from a tree search to a graph search, wherein multiple trajectories may

converge to an identical state. In domains where convergence occurs, the search

process more efficiently covers the state space by avoiding duplicate computation.

Secondly, the algorithm computes value estimates using full Bellman backups (see

Equation 2.1) rather than simple sample-based averages, yielding more accurate

policy values.

Once a coordination policy has been computed, the policy is fed into a separate

instance of the same solver in order to compute a communication policy, using

the MDP construction of the problem from Chapter 7. While both policies are

computed with the same solver, the parameterization of each search process differs,

which we will outline within the set of all hyperparameters of the evaluation.

11.1.4 Overview of Hyperparameters

For the body of experiments in this chapter, there are several test hyperpa-

rameters, a portion of which will remain fixed, as they do not address the research

questions outlined earlier. The fixed parameters are assigned as follows:

• Planning Iterations (Coordination Policy) - The number of iterations per

planning step. [default=500]

• Coordination policy search heuristic - The state evaluation heuristic for the
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coordination policy, computed as a function of agent location, a, teammate

location, s, evader locations, r ∈ R, the current turn, t, and the Manhattan

distance function, M .

hS(s) =


100 ∃r ∈ R, M(a, r) < 7− t andM(s, r) < 7− t

0 otherwise

• Communication Policy Search Heuristic - The state evaluation heuristic for

the communication policy. Here, hI(I) = 0.

Additionally, we adjust and measure the effects of the following experimental

variables:

• Heuristic Query Evaluators - The set of query evaluators proposed in Chap-

ter 10. All experiments evaluate each heuristic.

• Communication Branching Factor - After heuristically evaluating each po-

tential query, the search process will select the top k queries. [default=5]

• Planning Iterations (Communication) - The number of iterations per plan-

ning step while computing the communication policy. [default=10]

• Experience - The total number of policies the agent has observed from past

experience. [default=100]

• Maximum Unique Teammate Policies - An upper bound on the number of

unique teammate policies the agent may encounter. [default=∞]

• Cost of Communication - A flat cost assigned to each query. [default=5]
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11.2 Empirical Results

11.2.1 Communication Search Parameters

Due to the exponentially large search space for the communication decision

problem, we limit the branching factor of the search by selecting only the top k

queries at each information state in the communication policy. Under the con-

straint of a search budget—here the number of iterations of the sample-based

search—this pruning allows the search to probe deeper into larger information sets

than in a non-pruned search. Furthermore, as the evaluation of each information

state requires the recomputation of the agent’s beliefs and policy, it is beneficial to

minimize the search iterations. In effect, the communication partial policies that

result are substantially smaller than the search policies recomputed. Complete

results for each heuristic query evaluator with search parameters k ∈ {1, 3, 5} and

Iter ∈ {1, 10, 20} are presented in Appendix B.

We compare the performance of the various parameterizations by two metrics:

success rate for coordinating and the average reward earned by the team. It is

useful to distinguish between these metrics, as a team may be highly successful but

overutilize communication, resulting in a lower overall reward. The results report

p values for both metrics across each heuristic, as compared to a baseline agent

with identical experience and coordination planning iterations but without the

ability to communicate. We note that the random query evaluator did not result

in significant improvement in either metric compared to the non-communicating

baseline.

A selection of the full results are presented here. Table 11.1 provides results

from the most constrained search parameterization2, i.e. Iter = 1, k = 1. Addi-
2We discuss the comparison of these pruned, greedy results with respect to the results of

Chapter 9 in Section 11.3.2.
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tionally, Table 11.2 contains results for the default values of the branching factor

(k = 5) and search iterations (Iter = 10), as used in the remaining experiments.

From the results, we observe several apparent trends:

• The local, entropy-based heuristics—local action information entropy and

local policy information entropy—never significantly outperform the non-

communicating baseline.

• The local, error-based heuristics—local absolute error and local mean squared

error—have somewhat mixed results, able to achieve significant improve-

ments on success rate but often unable to improve on the team’s average

reward. This suggests the communication policy is able to obtain enough

information to coordinate but queries its teammate to such an extent that

the cost from queries offset the gains in success.

• The local value of information improved on the baseline performance in

every configuration.

• With the exception of the weighted random heuristic, the set of weighted

heuristics achieved significant improvements for both success and average

reward

• The weighted random heuristic was unable to communicate adequately with

a branching factor, k = 1, yet it mirrored the improvements of the weighted

heuristics for k ∈ {3, 5}. This demonstrates risk of pruning the queries too

aggressively, as the randomness of the heuristic often failed to find informa-

tive queries as its top pick, yet it performed well with the best 3 explored.

• Both immediate heuristics, immediate policy entropy and immediate value

of information, similarly outperformed the baseline, emphasizing the impact
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Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 25 1.000 50.00 50.51 0.001

Mean Absolute Error 50 36 0.923 68.30 46.47 0.113
Mean Squared Error 50 28 0.999 52.50 51.34 0.002

∆ Policy Entropy 50 30 0.996 60.00 49.49 0.015
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 96.40 2.27 0.012∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.40 2.52 0.007∗
Weighted Mean Sq. Error 50 50 0.001∗ 93.30 4.59 0.046∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 97.20 2.51 0.008∗
Weighted Approx. VoI 50 50 0.001∗ 97.10 2.49 0.008∗

Immediate Policy Ent. 50 50 0.001∗ 96.80 2.42 0.010∗
Immediate Value of Info. 50 50 0.001∗ 96.80 2.42 0.010∗

Uniform Random 50 33 0.980 66.00 47.85 0.069
State Likelihood 50 50 0.001∗ 96.40 2.27 0.012∗

Weighted Uniform Random 50 41 0.602 80.00 37.93 0.795

Table 11.1: Heuristics evaluation with communication branch factor of 1 and 1
iteration(s) per search step. ∗ denotes significant improvement over the baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 30 0.996 60.00 49.49 0.015

Mean Absolute Error 50 49 0.008∗ 92.60 14.92 0.076
Mean Squared Error 50 49 0.008∗ 92.40 14.99 0.082

∆ Policy Entropy 50 32 0.988 64.00 48.49 0.043
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 96.70 2.39 0.010∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.10 2.49 0.008∗
Weighted Mean Sq. Error 50 50 0.001∗ 96.90 2.45 0.009∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 94.10 4.81 0.033∗
Weighted Approx. VoI 50 50 0.001∗ 96.90 2.45 0.009∗

Immediate Policy Ent. 50 50 0.001∗ 96.60 2.36 0.011∗
Immediate Value of Info. 50 50 0.001∗ 93.70 4.72 0.039∗

Uniform Random 50 39 0.773 77.50 42.33 0.581
State Likelihood 50 50 0.001∗ 97.00 2.47 0.009∗

Weighted Uniform Random 100 100 0.000∗ 96.10 3.14 0.013∗

Table 11.2: Heuristics evaluation with communication branch factor of 5 and 10
iteration(s) per search step. ∗ denotes significant improvement over baseline.
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knowing a teammate’s policy at a future state has on the agent’s decision

at the current state.

11.2.2 Past Experience

In contrast to manually specified model-based approaches, the agents tested

here instead learn a distribution of the population of teammate policies. The

accuracy of this learned prior is predicated on the past experience of the agent

and impacts the ability for an agent to correctly predict inferred actions of its

teammates.

Recall that for the tested maze, we sample teammate policies from the set of

361 individual policies that form part of an optimal joint policy. We test the agent

under four levels of experience, exp ∈ {0, 10, 100, 1000}, and present results for 0

episodes and 10 episodes of past experience in Tables 11.3 and 11.4, respectively.

The remaining results are found in Appendix B.

The two experience levels included here illustrate an important result for com-

municating agents. With relative inexperience, agents that communicate can co-

ordinate more effectively than non-communicating agents. This is not true in the

tested case with 0 episodes of experience, however. Yet, we observe that the non-

communicating baseline does not improve in success or average reward with the

first 10 episodes of coordination. The communication process better leverages the

small set of experience, bootstrapping collaboration despite the inaccurate prior.

At higher experience levels (Appendix B), the non-communicating baseline

significantly improves its performance over its low experience counterparts. Nev-

ertheless, the communicating agents achieve better success rates and average re-

wards, despite the baseline possessing increasingly accurate learned priors. This

continued advantage demonstrates the capability of communication to improve
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Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 0 50 28 — 56.00 50.14 —
Action Entropy 0 100 63 0.257 63.00 48.52 0.417

Mean Absolute Error 0 50 30 0.420 60.00 49.49 0.689
Mean Squared Error 0 50 33 0.206 66.00 47.85 0.310

∆ Policy Entropy 0 50 27 0.656 54.00 50.35 0.843
Approx. Value of Info. 0 50 28 0.580 56.00 50.14 1.000

Weighted Action Entropy 0 50 35 0.107 70.00 46.29 0.150
Weighted Mean Abs. Error 0 50 29 0.500 58.00 49.86 0.842
Weighted Mean Sq. Error 0 50 36 0.072 72.00 45.36 0.097
Weighted ∆ Policy Ent. 0 50 37 0.046∗ 74.00 44.31 0.060
Weighted Approx. VoI 0 50 30 0.420 60.00 49.49 0.689

Immediate Policy Ent. 0 50 31 0.342 62.00 49.03 0.547
Immediate Value of Info. 0 50 31 0.342 62.00 49.03 0.547

Uniform Random 0 50 31 0.342 62.00 49.03 0.547
State Likelihood 0 50 31 0.342 62.00 49.03 0.547

Weighted Uniform Random 0 100 70 0.065 70.00 46.06 0.101

Table 11.3: Agent coordinating with 0 episodes of past experience. ∗ denotes
significant improvement over baseline.

Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 10 50 29 — 58.00 49.86 —
Action Entropy 10 100 67 0.183 66.70 47.71 0.309

Mean Absolute Error 10 50 50 0.000∗ 92.20 5.64 0.000∗
Mean Squared Error 10 50 49 0.000∗ 90.80 14.33 0.000∗

∆ Policy Entropy 10 50 34 0.204 67.70 47.15 0.320
Approx. Value of Info. 10 50 50 0.000∗ 90.60 6.67 0.000∗

Weighted Action Entropy 10 50 49 0.000∗ 92.90 13.71 0.000∗
Weighted Mean Abs. Error 10 50 50 0.000∗ 93.30 5.31 0.000∗
Weighted Mean Sq. Error 10 50 50 0.000∗ 89.30 9.26 0.000∗
Weighted ∆ Policy Ent. 10 50 45 0.000∗ 84.80 30.44 0.002∗
Weighted Approx. VoI 10 50 50 0.000∗ 90.70 6.47 0.000∗

Immediate Policy Ent. 10 50 41 0.008∗ 76.00 39.03 0.047∗
Immediate Value of Info. 10 50 50 0.000∗ 91.80 5.87 0.000∗

Uniform Random 10 50 40 0.015∗ 75.00 43.69 0.073
State Likelihood 10 50 49 0.000∗ 86.20 15.24 0.000∗

Weighted Uniform Random 10 100 93 0.000∗ 85.45 25.44 0.001∗

Table 11.4: Agent coordinating with 10 episodes of past experience. ∗ denotes
significant improvement over baseline.
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coordination when the agent has learned the space of teammate policies well.

11.2.3 Population of Teammates

As noted previously, for each trial, a teammate is sampled from the set of 361

individual policies, which directly relates to the uncertainty inherent to the prior

an agent learns over the population of teammates. We are interested in the effect

of such variance over policies, as agents coordinating with teammates drawn from

a smaller set require fewer samples to estimate the distribution of policies in a

population. To measure this effect, we institute a cap on the number of unique

policies in an underlying teammate population, though this information is not

provided to the agent. We test the population caps of 5, 25, and 125 under agent

experience levels, 10, 100, and 1000.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 87 — 87.00 33.80 —
Action Entropy 150 133 0.418 88.10 31.80 0.797

Mean Absolute Error 50 50 0.004 94.80 7.28 0.029∗
Mean Squared Error 50 50 0.004 92.00 10.64 0.179

∆ Policy Entropy 50 45 0.404 87.60 30.54 0.913
Approx. Value of Info. 50 50 0.004 91.90 13.09 0.206

Weighted Action Entropy 50 46 0.267 86.90 29.84 0.985
Weighted Mean Abs. Error 50 50 0.004 92.30 10.46 0.153
Weighted Mean Sq. Error 50 50 0.004 91.50 11.35 0.231
Weighted ∆ Policy Ent. 100 96 0.020∗ 91.90 20.25 0.215
Weighted Approx. VoI 50 50 0.004 94.30 5.98 0.038∗

Immediate Policy Ent. 88 88 0.000∗ 83.24 29.07 0.413
Immediate Value of Info. 50 50 0.004 94.50 12.75 0.052

Uniform Random 50 48 0.069 89.50 22.75 0.593
State Likelihood 50 50 0.004 91.70 11.50 0.212

Weighted Uniform Random 100 98 0.003∗ 93.10 14.72 0.100

Table 11.5: Agent coordinating with 10 experience with 5 maximum unique
teammate policies. ∗ denotes significant improvement over baseline.

The results shown in Table 11.5 indicate that coordinating with teammates
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Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 73 — 73.00 44.62 —
Action Entropy 150 108 0.623 71.40 45.41 0.783

Mean Absolute Error 50 50 0.000 90.60 7.60 0.000∗
Mean Squared Error 50 50 0.000 91.90 7.42 0.000∗

∆ Policy Entropy 50 35 0.721 68.50 47.62 0.579
Approx. Value of Info. 50 49 0.000 89.50 15.66 0.001∗

Weighted Action Entropy 50 49 0.000 92.40 13.71 0.000∗
Weighted Mean Abs. Error 50 50 0.000 82.10 16.94 0.074
Weighted Mean Sq. Error 50 50 0.000 88.00 14.07 0.003∗
Weighted ∆ Policy Ent. 50 46 0.004 87.80 26.27 0.012∗
Weighted Approx. VoI 50 50 0.000 90.90 5.41 0.000∗

Immediate Policy Ent. 50 37 0.530 66.80 44.02 0.420
Immediate Value of Info. 50 50 0.000 90.30 7.59 0.000∗

Uniform Random 50 42 0.096 78.40 37.57 0.438
State Likelihood 50 50 0.000 88.40 6.88 0.001∗

Weighted Uniform Random 100 96 0.000∗ 89.55 20.21 0.001∗

Table 11.6: Agent coordinating with 10 experience with 125 maximum unique
teammate policies. ∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 74 — 74.00 44.08 —
Action Entropy 150 107 0.727 71.27 45.33 0.635

Mean Absolute Error 50 50 0.000 80.70 11.43 0.156
Mean Squared Error 100 100 0.000∗ 82.85 9.78 0.053

∆ Policy Entropy 50 36 0.679 71.90 45.52 0.788
Approx. Value of Info. 50 50 0.000 92.80 3.52 0.000∗

Weighted Action Entropy 100 89 0.005∗ 86.15 30.74 0.025∗
Weighted Mean Abs. Error 100 100 0.000∗ 83.45 11.07 0.040∗
Weighted Mean Sq. Error 50 50 0.000 82.70 10.98 0.065
Weighted ∆ Policy Ent. 50 44 0.036 85.90 32.76 0.065
Weighted Approx. VoI 50 50 0.000 91.80 5.23 0.000∗

Immediate Policy Ent. 100 92 0.001∗ 81.05 27.20 0.175
Immediate Value of Info. 50 50 0.000 95.00 0.00 0.000∗

Uniform Random 100 79 0.252 65.70 42.23 0.176
State Likelihood 50 50 0.000 91.40 4.74 0.000∗

Weighted Uniform Random 50 49 0.000 84.50 16.48 0.037∗

Table 11.7: Agent coordinating with 1000 experience with 125 maximum unique
teammate policies. ∗ denotes significant improvement over baseline.
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sampled from a small population substantially reduces the failure rate and average

reward, as compared to the results with more varied teammate populations. As a

consequence, we do not observe many instances in which communication provides

an advantage over the non-communicating baseline, which on its own achieves a

high degree of success. As a point of comparison, consider the results in Tables 11.6

and 11.7, in which communicative agents surpass the baseline across a majority of

the heuristics tested. Aggregating the results here and in Appendix B, we observe

that under population caps of 5, 25, and 125, communicative agents surpass the

baseline in 4, 25, and 29 instances (of 45 total heuristic/experience combinations),

respectively. This illustrates the advantage of utilizing communication to reduce

increasing uncertainty from the underlying population.

Less apparent is the significance of experience, as under each population cap,

correlations of experience and success are weak or nonexistent. However, we

observe that, in aggregate, significant improvements from communicative agents

occur more frequently with low agent experience. In scenarios in which the agent

have sampled 10 episodes of experience, communication proved beneficial in 23

of 45 configurations (15 heuristics, 3 population caps), as opposed to 16 and 14

instances for 100 and 1000 episodes, respectively.

11.2.4 Cost of Communication

As with much existing work in decision-theoretic communication [108, 10], we

are interested in the impact of cost on the use and effectiveness of communication.

Here, we test four costs, C ∈ {1, 5, 10, 99}. Unsurprisingly, under the highest cost,

the agents do not elect to communicate. Moreover, mirroring the mixed results

in Section 11.2.1, the unweighted error-based heuristics do not achieve signifi-

cant results once C ≥ 10, failing to find short sequences of queries whose value
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Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 100 61 0.962 61.00 49.02 0.105

Mean Absolute Error 50 50 0.000∗ 92.00 4.04 0.006∗
Mean Squared Error 50 50 0.000∗ 92.00 5.15 0.006∗

∆ Policy Entropy 50 36 0.674 72.00 45.36 0.824
Approx. Value of Info. 50 50 0.000∗ 96.40 2.27 0.001∗

Weighted Action Entropy 50 50 0.000∗ 93.80 4.58 0.003∗
Weighted Mean Abs. Error 50 50 0.000∗ 96.60 2.36 0.001∗
Weighted Mean Sq. Error 50 50 0.000∗ 97.00 2.47 0.001∗
Weighted ∆ Policy Ent. 50 50 0.000∗ 95.00 4.95 0.002∗
Weighted Approx. VoI 50 50 0.000∗ 96.30 2.22 0.001∗

Immediate Policy Ent. 50 50 0.000∗ 96.50 2.31 0.001∗
Immediate Value of Info. 50 50 0.000∗ 94.80 4.84 0.002∗

Uniform Random 50 34 0.811 66.90 46.85 0.438
State Likelihood 50 50 0.000∗ 96.80 2.42 0.001∗

Weighted Uniform Random 50 50 0.000∗ 95.30 4.09 0.001∗

Table 11.8: Agent coordinating with communication cost C(q) = 5. ∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 50 33 0.862 66.00 47.85 0.388

Mean Absolute Error 50 34 0.811 64.80 45.46 0.308
Mean Squared Error 50 30 0.956 59.20 48.98 0.116

∆ Policy Entropy 50 30 0.956 60.00 49.49 0.139
Approx. Value of Info. 50 50 0.000∗ 94.00 4.95 0.003∗

Weighted Action Entropy 50 50 0.000∗ 93.60 4.85 0.003∗
Weighted Mean Abs. Error 50 50 0.000∗ 94.00 4.95 0.003∗
Weighted Mean Sq. Error 100 99 0.000∗ 92.90 10.66 0.004∗
Weighted ∆ Policy Ent. 50 50 0.000∗ 93.80 4.90 0.003∗
Weighted Approx. VoI 50 50 0.000∗ 92.80 4.54 0.004∗

Immediate Policy Ent. 100 100 0.000∗ 93.20 4.69 0.004∗
Immediate Value of Info. 50 50 0.000∗ 94.20 4.99 0.002∗

Uniform Random 50 33 0.862 66.00 47.85 0.388
State Likelihood 50 50 0.000∗ 93.40 4.79 0.003∗

Weighted Uniform Random 50 47 0.006∗ 89.20 23.37 0.035∗

Table 11.9: Agent coordinating with communication cost C(q) = 10. ∗ denotes
significant improvement over baseline.
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exceeds the moderate cost. The remaining heuristics achieve results mirroring

those in Section 11.2.1, with significant improvement by weighted and immediate

heuristics.

Figure 11.2: Maze structured such that communication is unnecessary. The
coordinating agent is represented in blue, with the teammate in red.

11.2.5 Structure of Domain

Finally, while we have thus far shown the effectiveness of communication in

the tested domain, it is worthwhile to provide an example where communication

is unnecessary. For this purpose, we further tested the heuristics across varying

degrees of past experience on the maze presented in Figure 11.2. This maze was

specifically designed to force the teammate to make important decisions prior

to the corresponding decisions of the coordinating agent. In this manner, the

agent is always guaranteed to have observed these crucial policy decisions. We

further observe that communicating and non-communicating agents alike are able

to coordinate with high success, even with no past experience, as shown in Table

11.10. This demonstrates a correspondence between the structure of the domain

and the need for communication, which has been a topic largely omitted from

existing work.
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Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 48 — 96.00 19.79 —
Action Entropy 150 144 0.638 95.60 19.64 0.902

Mean Absolute Error 50 43 0.985 84.30 35.08 0.043
Mean Squared Error 50 45 0.944 88.60 30.61 0.155

∆ Policy Entropy 100 89 0.967 88.05 31.21 0.060
Approx. Value of Info. 50 48 0.691 94.90 19.86 0.782

Weighted Action Entropy 50 48 0.691 95.00 19.92 0.802
Weighted Mean Abs. Error 100 94 0.812 91.90 23.67 0.266
Weighted Mean Sq. Error 50 44 0.970 85.80 32.31 0.061
Weighted ∆ Policy Ent. 50 46 0.898 89.60 27.10 0.181
Weighted Approx. VoI 50 48 0.691 94.20 20.11 0.653

Immediate Policy Ent. 50 47 0.819 93.50 23.93 0.571
Immediate Value of Info. 50 45 0.944 87.20 29.92 0.086

Uniform Random 50 46 0.898 91.40 27.29 0.337
State Likelihood 50 47 0.819 91.10 23.95 0.268

Weighted Uniform Random 100 87 0.985 85.60 33.50 0.019

Table 11.10: Results from tests with the maze depicted in Figure 11.2. Each
agent tested was initialized with 0 episodes of past experience. ∗ denotes significant
improvement over baseline.

11.3 Summary

In this chapter, we have empirically evaluated the proposed heuristic-based

approach to computing communication policies for the communicative ad hoc

teamwork problem. From these results, we observe the effectiveness of such an

approach under varying factors, such as cost, computational limitations, and agent

experience. Of course, each of these factors will ultimately be constrained by the

domain in which the approach is employed. For example, when cost is sufficiently

high, agents elect not to communicate, coinciding with the suggestion that in

many cases, communication is simply too difficult for ad hoc agents. However,

under more favorable conditions, we characterize the considerations under which

this style of approach may prove to be a vital mechanism for coordination.
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11.3.1 Heuristic Design

Weighted Heuristics

The motivation for weighting heuristics by an approximate state likelihood was

to limit the ability for queries at distant future states to supersede states closer to

the agent’s current decision. From this evaluation, we can see that the weighting

of heuristics in many cases significantly improved the performance of the base

heuristic, for example as in the case of the local policy entropy heuristic. As a

perhaps unexpected result, the weighted random heuristic, while achieving fewer

gains than all other weighted heuristics, was nevertheless able to obtain significant

results over the baseline. In this tested domain, it is likely that temporally close

decisions are more likely to impact one another.

That said, we can imagine a scenario in which such weighting is disadvanta-

geous. Consider a domain in which the agent’s current decision depends on the

teammate’s decision at some arbitrarily distant state. Practically, the heuristic

may prune the necessary state from consideration. With this observation, we

suggest that the use of a weighting strategy should consider the structure of the

domain foremost.

Decision-theoretic vs Information-theoretic

While weighting boosted the overall improvements of information-theoretic

heuristics, decision-theoretic heuristics more frequently outperformed the baseline.

This is certainly due to omission of utility from consideration in the information-

theoretic heuristics, a choice in opposition of the goal of the agent: to maximize its

expected utility. However, one information-theoretic heuristic—immediate policy

entropy—performed as well as the decision-theoretic heuristics. This is likely due

to the high impact of policy uncertainty on the agent’s current decision. We
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note that the immediate approximate value of information performs equally well

and takes into account both uncertainty over teammate policies and the utility

associated with each outcome. As it provides a more comprehensive view of the

agent’s immediate decision, we expect it could match or exceed the immediate

policy entropy heuristic in many situations.

Within the set of decision-theoretic heuristics, we distinguish the value of in-

formation heuristics from the error-based heuristics, of which the latter achieved

fewer significant results. It is worth noting that while similarly related to utility,

the two approaches focus on distinct metrics. The error-based heuristics provide

a metric related to the variance of utility at stake, i.e. the amount by which the

current estimate may be off from the true value. In contrast, the value of infor-

mation measures the potential for improvement. It is possible for a prediction to

result in a high error but a low value of information. As such, the value of infor-

mation heuristics likely capture more relevant information for the communication

process.

11.3.2 Planning Considerations

Greedy Approaches

As in Chapter 9, we are interested in the effectiveness of greedy approaches, as

such strategies drastically reduce the computational requirements of a communica-

tive agent. In this evaluation, we observed substantially improved coordination

despite small search budgets. This improves upon the results of Chapter 9, though

we note substantial differences in the setup. For these experiments, we did not

approximate the belief update and policy recomputation. Furthermore, rather

than using a rather simplistic learning approach or a manually-authored model-

based prior, the agents learned a distribution over teammate policies through past
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experience, under the assumption that the agent can perfectly recall every policy

it has coordinated with in past episodes. While more accurate, such a capability

may not always hold in practice. Additionarlly, while the more accurate compu-

tation of the value of information may have been sufficient to boost the success

of the greedy approach, we further note substantial domain disparity, as different

mazes and populations of teammates were used.

Nevertheless, while greedy approaches may work under certain conditions,

consider situations such as the example used in Section 8.1.1 discussing submod-

ularlity. Clearly, the success of the agent can depend on its ability to reason over

sets of policy information, necessitating non-greedy search. As common in these

considerations, this is a domain-dependent factor.

Search Parameters

Factors such as the cost of communication as well as the accuracy of heuristics

in evaluating queries play a significant role in the choice of search parameters.

Consider the weighted random evaluator; it performed poorly when only evalu-

ating the heuristic’s top choice. However, by increasing the branching factor of

the search, the agent’s success rate improved substantially. Similarly, with larger

sets of information required to coordinate, more iterations will need to be allotted

to the search process. In a worst case scenario, successful communication may

require a large branching factor and a deep search horizon, in which case this

approach may necessitate too much computation to be practically applied.
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11.3.3 Domain Considerations

Teammate Policy Variance and Agent Experience

Section 11.2.3 measured the effect of the underlying variance of the popula-

tion from which teammates are sampled. To our knowledge, no such analysis has

been attempted in previous literature3. As expected, large variety of teammate

populations were correlated with the increase in performance of communicative

agents, as agents require further means of reducing uncertainty when observations

cannot distinguish policies. Moreover, when relatively inexperienced, communi-

cation can compensate for inaccurate priors. Likewise, in scenarios with small

populations of teammate strategies, agents require less experience and may not

require communication to correctly identify teammate policies.

Domain Structure

In the final experiment of this chapter, we provided an example of how the

characteristics of a coordination domain can impact both the need for communi-

cation as well as the need for accurately modeling the population of teammate

policies. In the maze tested, the coordinating agent was able to coordinate to

a high degree of success while possessing no prior experience and not utilizing

communication to any significant advantage. To the author’s knowledge, analysis

of domains has not yet received considerable attention within the context of ad

hoc teamwork, though it has been a subject of prior work in coordinated poli-

cies in homogeneous multiagent teams [87, 76, 59]. The relationship between the

structure of a domain and the need for information poses meaningful problems in

the design of coordinating agents as well as of the domains of application.
3Albrecht et al. [8] measured the effect of various prior constructions, but focused on the

weights of teammate types more so than variance of the population tested.
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For example, in an established domain, such as the drop-in robot soccer league

[82, 47], the robots are allowed to communicate and have established protocols

regarding the message structure and content, typically on the topics of agent

locations or agent roles. Currently, these forms of messages are not utilized to

any significant benefit, and it is unclear how well teams can and will be able

to predict teammate strategies based on such limited information. Ultimately, an

analysis of uncertainty in the domain may highlight more granular policy decisions

which need to be communicated.

Furthermore, consider the perspective of a someone designing a domain for

ad hoc teamwork, potentially a game mixing teams of humans and computer

agents. Choices in the design will affect how much information the coordinating

agents have access to when working with their human peers. With the results

of this chapter in mind, it is clear that such considerations can help reduce the

uncertainty over player intentions, reducing the need for explicit communication

when observation-based inference is sufficient.
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Chapter 12

Discussion

Explicit communication of agent policies is a consideration not to be over-

looked in ad hoc teamwork research. Past work often dismisses the possibility of

communication, citing the lack of a shared communication protocol. Moreover,

in domains where communication is permitted, it is commonly added as a small

number of high-level, domain-specific messages (such as the agent’s intended role

in RoboCup [47]), or it is restricted to sharing only hidden state information not

specific to the individual plans of the team members (e.g. bandit information in

[10]). This work establishes a communicative strategy for eliciting minimal sets

of policy information from teammates, allowing the agent to reason over its own

information needs in a well-defined decision problem framework. The advantage

of a more granular approach such as ours over broad role communication is the

capability to adaptively query varying amounts of policy information as necessary.

This permits control over the exactness of beliefs regarding the overall joint plan.

When cooperating with unknown teammates, such communicative agents can

act in a proactive manner, acquiring valuable team behavior information early

enough that they may adjust their individual plans to further the coordinated

effort. Agents learning purely through observation require that observations be
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informative in order for the agent to correctly infer teammate policies, a property

that may not hold in every application. Communication of policy information

complements learning agents, as such communicative behavior analyzes the un-

certainty within an existing teammate model and advances the information an

agent possesses about its teammates, providing an additional means of coordina-

tion when learning falls short.

12.1 Contributions

Here, we review the major contributions of this work.

• In Chapter 2, we outlined the decision problem faced by a coordinating

agent operating in an ad hoc multiagent team. Notably, this problem is rep-

resented as a POMDP, wherein a coordinating agent must use observations

of a teammate actions to infer its policy.

• As an example demonstrating the difficulty of ad hoc teamwork, Chapter

5 introduced a modified belief revision approach for the approximation of

novel teammate behavior. While the modification achieves significant im-

provement in the agent’s ability to coordinate, it is ultimately an approach

that relies on reacting to a teammate’s behavior, as opposed proactively

eliciting information.

• Chapter 6 provided further motivation for policy communication in ad hoc

settings. Specifically, we described four conditions under which agents may

be uncertain. First, when an agent has yet to learn an accurate distribu-

tion over the space of teammate policies, it may omit or underestimate the

likelihood of some policies, hindering inference. Second, an agent initially

coordinating with teammate my not have gathered enough information to
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infer the teammate’s policy or to learn a predictive model. As a separate but

related consideration, the agent has little control over the informativeness

of observations, as they are typically governed by the domain’s structure,

which may have unavoidable sequences of non-discriminative observations.

Finally, when operating in novel coordination problems or new configura-

tions of a coordination state space, policies learned in other settings may

not generalize to the constraints of the new environment.

• In Chapter 7, we reexamined the position of a coordinating agent, focusing

particularly on an information-centric representation of the agent’s beliefs.

We described how observations and policy queries combine to form discrete

sets of information, over which an agent may evaluate the expected util-

ity gained from transitioning between sets (the value of information). We

compose these properties into the Policy Communication Decision Prob-

lem, presenting a framework for decision-making when an agent is given the

ability to query portions of a teammate’s policy. Such a problem is not triv-

ially solved, however, as the information state space is exponentially larger

than the state space for the underlying coordination domain. We establish

theoretical characteristics of this problem, particularly with regard to its

complexity.

• As an initial attempt at tractably computing communication policies, we

introduced an approximate, greedy query selection algorithm in Chapter 9.

The approach sacrifices accuracy of the predicted value of information and

the ability to reason over sequences of queries in exchange for significant

computational savings. The results demonstrate the potential for such an

approach to identify important decision points to query, yet it was not able

to achieve a significant gain in the agent’s ability to coordinate.
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• To further explore the potential for reducing the evaluation of queries, we

proposed pruning the set of queries to be evaluated at each information

state. For this purpose, we introduced many heuristic measures to provide

pseudo-evaluations, from which we can order queries from most promising

to least. With a method of significantly reducing the set of queries, we em-

ploy a pruned, sample-based search approach for computing communication

policies. We then evaluated the approach, measuring the impacts of search

parameterizations, agent experience (accuracy of the initial beliefs), cost

of communication, domain structure, and, of course, the choice of heuris-

tic query evaluation. Our results establish the first successful demonstra-

tion of agent coordination through policy communication, providing well-

characterized evidence for the potential for such approaches.

12.2 Recommendations for Application

Throughout this research, we have overcome many of the technical challenges

of reasoning over large sets of information, which has provided many insights

regarding the application of heuristics and the considerations involved in making

trade-offs between accuracy and computational feasibility. We summarize these

lessons as a series of considerations to be made when developing communicative

agents for an ad hoc team domains.

• Analyze the domain of application, assessing the need for com-

munication. Situations in which an agent observes clear indications of a

teammate’s intended behavior may not benefit from communication. Fur-

thermore, if the cost of miscoordination is sufficiently low, communication

may not be worth the resources involved.
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• Anticipate the variance in teammate policies. In many cases, a simple

domain analysis can gauge the space of teammate policies an agent may

encounter. Moreover, if one can predict the relative likelihood of the policies,

a hand-crafted prior can often improve an agent’s performance before it

manages to obtain enough samples to learn a more accurate prior.

• Identify sets of decisions that must be coordinated together. Recall

that the value of information may not become significant until a set of

multiple of decisions is clarified1. When the sets are small, greedy approaches

may be sufficient. For longer sequences of coordinated policies, a search-

based approach may be necessary. This information directly impacts the

parameterization of the approach used, e.g. the maximum branching factor

and search iterations of a sample-based planner, as evaluated in Chapter 11.

• Use domain knowledge when selecting or designing a heuristic to

evaluate queries. If coordinated decisions tend to be temporally close, a

weighted heuristic may provide an advantage over its unweighted counter-

part. Conversely, if an agent’s decision depends on a distant choice by a

teammate, an unweighted heuristic is better suited for evaluating queries.

Utilizing domain knowledge in this way can save substantial computation

time by informing the search over communication policies.

12.3 Recommendations for Future Work

In this thesis, we have demonstrated an effective communication procedure

that fits the common assumptions of ad hoc teamwork scenario. However, we

envision related applications that must operate under alternate conditions, many
1Discussed in Section 8.1.1.
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of which motivate direct extensions to this work.

12.3.1 Alternative Teammate Policy Representations

Throughout the experiments presented here, we have assumed a teammate’s

policy is specified over the state space of the coordination problem. In prac-

tice, this may not hold, as the teammate may be attempting to reason about its

teammates’ policies, necessitating a policy over some form of belief representa-

tion, much the same way we structure the policy of a coordinating agent. This

ultimately results in a much larger space of policy queries to evaluate. Yet, it is

not apparent what form the policy should take. The beliefs, as constructed here,

are merely probability distributions over potential individual policies. However,

other representations can be mapped to such a belief, including past histories of

interaction or the information states described in Chapter 7.

12.3.2 Non-stationary Teammate Policies

While the results of this work on communicating policies assumes teammates

follow a single policy through the collaborative effort, the work of Chapter 5 as

well as [4, 122] motivate considerations for teammates with non-stationary poli-

cies. This can occur in two manners. First, if a team is collaborating through

multiple successive trials, a teammate may switch policies between trials. Sec-

ondly, teammates may switch policies within a trial, deciding to change plans on

the fly. In the first case, it is necessary to learn a prior over the possible policies

a teammate may choose from. The latter case, however, may entail responsive

detection of strategy changes, as used in Chapter 5, and will necessarily require

some notion of the assessing the validity of communicated policy information over

time.
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12.3.3 Other Forms of Policy-Oriented Communication

In order to develop and reason about the implications of communication over

policy information, our approach operated on queries of individual state-action

pairs. In practice, many other forms of communication can elicit policy informa-

tion in varying degrees policy coverage. Consider the plan representation used

in SharedPlans [57, 58], i.e. a hierarchical task network (HTN). As opposed to

a policy, HTNs decompose high-level tasks into smaller tasks, and SharedPlans

uses this hierarchical structure when reasoning over the individual intentions of

the agents involved. For example, an agent may believe its collaborator can fulfill

a task yet the agent may leave uncertain the particular details of how the task

is carried out; what matters most is the belief that the task will be successfully

completed as part of the larger joint effort. To a degree, our approach can use

information from a small number of observations or queries to infer actions across

many other states; however, in the absence of correlated actions that permit such

inference, it will be helpful to be able to query a teammate for policy informa-

tion over a subset of states. We note two potential directions for this research,

state variable elimination [70], which aims to create abstractions over states by

eliminating information that makes unnecessary distinctions between states, and

hierarchical solutions to MDPs [62], which focuses on developing macro-actions—

local policies defined over a subset of the state space—to solve MDPs.

12.3.4 Learning Communication Strategies

Finally, while we proposed a search-based approach to computing a commu-

nication policy, the MDP structure of the decision problem would permit the

application of reinforcement learning. It may be possible to use modern deep

reinforcement learning techniques, such as [88], though it would require a repre-
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sentation of beliefs, states, and actions which can be embedded as inputs to the

system, the feasibility of which is domain-specific.

Alternatively, learning can be utilized in more intermediate forms. For the

search over information states, we propose heuristics for pruning the space of

query actions. This mirrors a similar strategy in AlphaGo Zero [128], a hybrid

deep learning, policy search approach, in which a policy network provides a policy

distribution Pr(a | s) and a value network proves value estimates, V̂ (s). The

policy distribution is used to bias the search to explore actions that have, in the

past, been successful. When the action probabilities are low, they are effectively

pruned from consideration. In a similar manner, we can imagine an approach

where a heuristic query evaluator is learned, providing Pr(q | I). Furthermore,

while we discussed in Chapter 8 the existence of an admissible search heuristic for

the communication problem, we noted that such a heuristic often overestimates

the value of information, and as a result, we opted to provide the search with no

heuristic estimate. Consequently, learning a value estimate for information states

is a particularly promising direction for future work.

12.4 The Need for Communicating Ad Hoc Teams

Research

In the seminal paper introducing ad hoc teamwork [134], the authors cite the

ever-increasing utilization of agents in our world as a motivation for analyzing

how agents can learn to interact with others, particularly within collaborative

efforts. As such, most existing work focuses on the problem of learning teammate

policies and relying on decision-theoretic planning to handle uncertain decisions.

Though the work of Albrecht et al. [7] demonstrated the existence of situations
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in which observation-based inference can fail, to our knowledge, no other existing

work has prescribed alternative mechanisms for coordination in these scenarios.

Building on the motivation of [134], we cite the advances in fields such as natural

language processing, and human-computer interaction among others that suggest

the challenges of communication between heterogeneous agents may not be as

impractical as is commonly assumed. In many applications of ad hoc agents, such

as the Robocup league or human-computer interaction in the form of a game,

restricted forms of communication are frequently used. We believe communication

to be an effective—and often necessary—means of coordination, supplementing

existing approaches, as we have demonstrated in this thesis. Toward this end, we

hope to engage the community in this new research effort!
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Appendix A

Selection of α for a Chinese

Restaurant Process

The concentration parameter, α ∈ N = {1, 2, . . . }, of a Chinese Restaurant

Process [103] is related to the expected likelihood of witnessing a novel observation.

Large values of α correspond to high likelihoods of novel observations. Moreover,

as the parameter establishes the likelihood of the data observed, we can estimate

the parameter using the set of previous observations. Given a set of n observations

of teammate policies, µ1, µ2, . . . , µn, the posterior for α is given by

Pr(µ1:n | α) = Pr(µ1 | α)
n−1∏
i=1

Pr(µi+1 | µ1:i, α)

∝ αmΓ(α)
Γ(α + n)

where m is the number of unique observations and Γ is the gamma function.

This posterior allows us to use Bayes theorem when combined with a suitable

prior over the hyperparameter. For simplicity, we are interested in choosing α̂

as the maximum likelihood estimator of the parameter. To do so, we choose a
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non-conjugate prior, Pr(α) = (1 +α)−2 and, then, estimate the posterior over the

parameter as

Pr(α | µ1:n) = Pr(µ1:n | α) Pr(α)

≈ αmΓ(α)
Γ(α + n)(1 + α)2 .

The resulting distribution is unimodal. We utilize hill climbing to find

α̂ = arg max
α

Pr(α | µ1:n).
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Appendix B

Extended Results for Chapter 11
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B.1 Communication Search Parameters

Table B.1: Heuristics evaluation with communication branch factor of 1 and 1
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 25 1.000 50.00 50.51 0.001

Mean Absolute Error 50 36 0.923 68.30 46.47 0.113
Mean Squared Error 50 28 0.999 52.50 51.34 0.002

∆ Policy Entropy 50 30 0.996 60.00 49.49 0.015
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 96.40 2.27 0.012∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.40 2.52 0.007∗
Weighted Mean Sq. Error 50 50 0.001∗ 93.30 4.59 0.046∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 97.20 2.51 0.008∗
Weighted Approx. VoI 50 50 0.001∗ 97.10 2.49 0.008∗

Immediate Policy Ent. 50 50 0.001∗ 96.80 2.42 0.010∗
Immediate Value of Info. 50 50 0.001∗ 96.80 2.42 0.010∗

Uniform Random 50 33 0.980 66.00 47.85 0.069
State Likelihood 50 50 0.001∗ 96.40 2.27 0.012∗

Weighted Uniform Random 50 41 0.602 80.00 37.93 0.795
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Table B.2: Heuristics evaluation with communication branch factor of 3 and 1
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 34 0.968 68.00 47.12 0.108

Mean Absolute Error 50 43 0.393 80.60 35.19 0.851
Mean Squared Error 50 33 0.980 62.30 48.90 0.028

∆ Policy Entropy 50 30 0.996 60.00 49.49 0.015
Approx. Value of Info. 50 50 0.001∗ 96.70 2.39 0.010∗

Weighted Action Entropy 50 50 0.001∗ 96.40 2.27 0.012∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.20 2.51 0.008∗
Weighted Mean Sq. Error 50 50 0.001∗ 96.60 2.36 0.011∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 96.50 2.31 0.011∗
Weighted Approx. VoI 50 50 0.001∗ 96.80 2.42 0.010∗

Immediate Policy Ent. 50 50 0.001∗ 96.10 2.09 0.013∗
Immediate Value of Info. 50 50 0.001∗ 96.10 2.09 0.013∗

Uniform Random 50 30 0.996 59.90 49.62 0.015
State Likelihood 50 50 0.001∗ 96.50 2.31 0.011∗

Weighted Uniform Random 100 99 0.000∗ 96.30 10.12 0.013∗

Table B.3: Heuristics evaluation with communication branch factor of 5 and 1
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 35 0.950 70.00 46.29 0.163

Mean Absolute Error 50 49 0.008∗ 90.60 14.45 0.147
Mean Squared Error 50 44 0.288 83.10 33.36 0.880

∆ Policy Entropy 50 31 0.993 62.00 49.03 0.026
Approx. Value of Info. 50 50 0.001∗ 96.00 2.02 0.014∗

Weighted Action Entropy 50 50 0.001∗ 96.80 2.42 0.010∗
Weighted Mean Abs. Error 50 50 0.001∗ 96.70 2.39 0.010∗
Weighted Mean Sq. Error 50 50 0.001∗ 96.80 2.99 0.010∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 96.80 2.42 0.010∗
Weighted Approx. VoI 50 50 0.001∗ 96.30 2.22 0.012∗

Immediate Policy Ent. 50 50 0.001∗ 96.30 2.22 0.012∗
Immediate Value of Info. 50 50 0.001∗ 96.70 2.39 0.010∗

Uniform Random 50 34 0.968 67.50 46.80 0.095
State Likelihood 50 50 0.001∗ 96.80 2.42 0.010∗

Weighted Uniform Random 100 97 0.003∗ 93.95 16.78 0.042∗
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Table B.4: Heuristics evaluation with communication branch factor of 1 and 10
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 35 0.950 70.00 46.29 0.163

Mean Absolute Error 50 36 0.923 68.50 46.59 0.119
Mean Squared Error 50 34 0.968 64.90 48.48 0.055

∆ Policy Entropy 50 37 0.886 74.00 44.31 0.339
Approx. Value of Info. 50 50 0.001∗ 97.30 2.52 0.008∗

Weighted Action Entropy 50 50 0.001∗ 96.60 2.36 0.011∗
Weighted Mean Abs. Error 50 50 0.001∗ 96.40 2.27 0.012∗
Weighted Mean Sq. Error 50 50 0.001∗ 94.00 4.95 0.035∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 96.90 2.45 0.009∗
Weighted Approx. VoI 50 50 0.001∗ 97.50 2.53 0.007∗

Immediate Policy Ent. 50 50 0.001∗ 96.60 2.36 0.011∗
Immediate Value of Info. 50 50 0.001∗ 96.40 2.27 0.012∗

Uniform Random 50 35 0.950 69.70 46.33 0.153
State Likelihood 50 50 0.001∗ 93.80 4.80 0.038∗

Weighted Uniform Random 50 44 0.288 84.10 32.62 0.770

Table B.5: Heuristics evaluation with communication branch factor of 3 and 10
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 27 0.999 54.00 50.35 0.002

Mean Absolute Error 50 48 0.026∗ 89.90 19.68 0.203
Mean Squared Error 50 48 0.026∗ 90.10 20.14 0.194

∆ Policy Entropy 50 29 0.998 58.00 49.86 0.009
Approx. Value of Info. 50 50 0.001∗ 96.80 2.42 0.010∗

Weighted Action Entropy 50 50 0.001∗ 96.70 3.13 0.010∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.20 2.51 0.008∗
Weighted Mean Sq. Error 50 50 0.001∗ 97.10 2.49 0.008∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 97.20 2.51 0.008∗
Weighted Approx. VoI 50 50 0.001∗ 96.40 2.27 0.012∗

Immediate Policy Ent. 50 50 0.001∗ 96.60 2.36 0.011∗
Immediate Value of Info. 50 50 0.001∗ 97.00 2.47 0.009∗

Uniform Random 50 36 0.923 71.70 45.18 0.224
State Likelihood 50 50 0.001∗ 96.00 2.02 0.014∗

Weighted Uniform Random 100 100 0.000∗ 96.30 3.80 0.012∗
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Table B.6: Heuristics evaluation with communication branch factor of 5 and 10
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 30 0.996 60.00 49.49 0.015

Mean Absolute Error 50 49 0.008∗ 92.60 14.92 0.076
Mean Squared Error 50 49 0.008∗ 92.40 14.99 0.082

∆ Policy Entropy 50 32 0.988 64.00 48.49 0.043
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 96.70 2.39 0.010∗
Weighted Mean Abs. Error 50 50 0.001∗ 97.10 2.49 0.008∗
Weighted Mean Sq. Error 50 50 0.001∗ 96.90 2.45 0.009∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 94.10 4.81 0.033∗
Weighted Approx. VoI 50 50 0.001∗ 96.90 2.45 0.009∗

Immediate Policy Ent. 50 50 0.001∗ 96.60 2.36 0.011∗
Immediate Value of Info. 50 50 0.001∗ 93.70 4.72 0.039∗

Uniform Random 50 39 0.773 77.50 42.33 0.581
State Likelihood 50 50 0.001∗ 97.00 2.47 0.009∗

Weighted Uniform Random 100 100 0.000∗ 96.10 3.14 0.013∗

Table B.7: Heuristics evaluation with communication branch factor of 1 and 20
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 37 0.886 74.00 44.31 0.339

Mean Absolute Error 50 33 0.980 63.30 49.36 0.038
Mean Squared Error 50 32 0.988 61.00 49.64 0.021

∆ Policy Entropy 50 35 0.950 70.00 46.29 0.163
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 96.90 2.45 0.009∗
Weighted Mean Abs. Error 50 50 0.001∗ 94.60 5.03 0.027∗
Weighted Mean Sq. Error 50 50 0.001∗ 95.80 2.74 0.015∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 96.80 2.42 0.010∗
Weighted Approx. VoI 50 50 0.001∗ 96.60 2.36 0.011∗

Immediate Policy Ent. 50 50 0.001∗ 97.30 2.52 0.008∗
Immediate Value of Info. 50 50 0.001∗ 96.40 2.27 0.012∗

Uniform Random 50 37 0.886 73.80 44.66 0.330
State Likelihood 50 50 0.001∗ 92.60 4.07 0.060

Weighted Uniform Random 50 49 0.008∗ 93.80 14.87 0.049∗
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Table B.8: Heuristics evaluation with communication branch factor of 3 and 20
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 36 0.923 72.00 45.36 0.239

Mean Absolute Error 50 49 0.008∗ 90.70 13.96 0.141
Mean Squared Error 50 41 0.602 77.10 38.85 0.530

∆ Policy Entropy 50 31 0.993 62.00 49.03 0.026
Approx. Value of Info. 50 50 0.001∗ 96.30 2.22 0.012∗

Weighted Action Entropy 50 50 0.001∗ 97.40 2.52 0.007∗
Weighted Mean Abs. Error 50 50 0.001∗ 96.70 2.39 0.010∗
Weighted Mean Sq. Error 50 50 0.001∗ 95.90 2.19 0.015∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 96.30 2.22 0.012∗
Weighted Approx. VoI 50 50 0.001∗ 96.80 2.42 0.010∗

Immediate Policy Ent. 50 50 0.001∗ 96.70 2.39 0.010∗
Immediate Value of Info. 50 50 0.001∗ 93.00 4.52 0.052

Uniform Random 50 36 0.923 71.60 45.35 0.221
State Likelihood 50 50 0.001∗ 97.00 2.47 0.009∗

Weighted Uniform Random 100 100 0.000∗ 96.00 3.26 0.014∗

Table B.9: Heuristics evaluation with communication branch factor of 5 and 20
iteration(s) per search step.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 41 — 82.00 38.81 —
Action Entropy 50 29 0.998 58.00 49.86 0.009

Mean Absolute Error 50 50 0.001∗ 93.40 4.79 0.044∗
Mean Squared Error 100 100 0.000∗ 92.15 5.04 0.071

∆ Policy Entropy 100 68 0.980 68.00 46.88 0.055
Approx. Value of Info. 50 50 0.001∗ 96.60 2.36 0.011∗

Weighted Action Entropy 50 50 0.001∗ 93.60 4.52 0.041∗
Weighted Mean Abs. Error 50 50 0.001∗ 96.50 2.31 0.011∗
Weighted Mean Sq. Error 50 50 0.001∗ 96.70 2.39 0.010∗
Weighted ∆ Policy Ent. 50 50 0.001∗ 94.50 4.76 0.028∗
Weighted Approx. VoI 50 50 0.001∗ 97.00 2.47 0.009∗

Immediate Policy Ent. 50 50 0.001∗ 96.60 2.36 0.011∗
Immediate Value of Info. 50 50 0.001∗ 93.90 4.44 0.036∗

Uniform Random 100 72 0.941 71.40 45.35 0.139
State Likelihood 50 50 0.001∗ 95.90 1.94 0.015∗

Weighted Uniform Random 100 100 0.000∗ 95.75 3.36 0.016∗
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B.2 Past Experience

Table B.10: Agent coordinating with 0 episodes of past experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 0 50 28 — 56.00 50.14 —
Action Entropy 0 100 63 0.257 63.00 48.52 0.417

Mean Absolute Error 0 50 30 0.420 60.00 49.49 0.689
Mean Squared Error 0 50 33 0.206 66.00 47.85 0.310

∆ Policy Entropy 0 50 27 0.656 54.00 50.35 0.843
Approx. Value of Info. 0 50 28 0.580 56.00 50.14 1.000

Weighted Action Entropy 0 50 35 0.107 70.00 46.29 0.150
Weighted Mean Abs. Error 0 50 29 0.500 58.00 49.86 0.842
Weighted Mean Sq. Error 0 50 36 0.072 72.00 45.36 0.097
Weighted ∆ Policy Ent. 0 50 37 0.046∗ 74.00 44.31 0.060
Weighted Approx. VoI 0 50 30 0.420 60.00 49.49 0.689

Immediate Policy Ent. 0 50 31 0.342 62.00 49.03 0.547
Immediate Value of Info. 0 50 31 0.342 62.00 49.03 0.547

Uniform Random 0 50 31 0.342 62.00 49.03 0.547
State Likelihood 0 50 31 0.342 62.00 49.03 0.547

Weighted Uniform Random 0 100 70 0.065 70.00 46.06 0.101
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Table B.11: Agent coordinating with 10 episodes of past experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 10 50 29 — 58.00 49.86 —
Action Entropy 10 100 67 0.183 66.70 47.71 0.309

Mean Absolute Error 10 50 50 0.000∗ 92.20 5.64 0.000∗
Mean Squared Error 10 50 49 0.000∗ 90.80 14.33 0.000∗

∆ Policy Entropy 10 50 34 0.204 67.70 47.15 0.320
Approx. Value of Info. 10 50 50 0.000∗ 90.60 6.67 0.000∗

Weighted Action Entropy 10 50 49 0.000∗ 92.90 13.71 0.000∗
Weighted Mean Abs. Error 10 50 50 0.000∗ 93.30 5.31 0.000∗
Weighted Mean Sq. Error 10 50 50 0.000∗ 89.30 9.26 0.000∗
Weighted ∆ Policy Ent. 10 50 45 0.000∗ 84.80 30.44 0.002∗
Weighted Approx. VoI 10 50 50 0.000∗ 90.70 6.47 0.000∗

Immediate Policy Ent. 10 50 41 0.008∗ 76.00 39.03 0.047∗
Immediate Value of Info. 10 50 50 0.000∗ 91.80 5.87 0.000∗

Uniform Random 10 50 40 0.015∗ 75.00 43.69 0.073
State Likelihood 10 50 49 0.000∗ 86.20 15.24 0.000∗

Weighted Uniform Random 10 100 93 0.000∗ 85.45 25.44 0.001∗

Table B.12: Agent coordinating with 100 episodes of past experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 100 50 40 — 80.00 40.41 —
Action Entropy 100 100 74 0.845 74.00 44.08 0.408

Mean Absolute Error 100 50 50 0.001∗ 94.20 4.99 0.017∗
Mean Squared Error 100 50 50 0.001∗ 92.90 5.35 0.030∗

∆ Policy Entropy 100 50 32 0.978 64.00 48.49 0.076
Approx. Value of Info. 100 50 50 0.001∗ 96.80 2.42 0.005∗

Weighted Action Entropy 100 50 50 0.001∗ 96.90 2.45 0.005∗
Weighted Mean Abs. Error 100 50 50 0.001∗ 96.60 2.36 0.006∗
Weighted Mean Sq. Error 100 50 50 0.001∗ 97.00 2.47 0.005∗
Weighted ∆ Policy Ent. 100 50 50 0.001∗ 96.70 2.39 0.005∗
Weighted Approx. VoI 100 50 50 0.001∗ 96.70 2.39 0.005∗

Immediate Policy Ent. 100 50 50 0.001∗ 96.80 2.42 0.005∗
Immediate Value of Info. 100 50 50 0.001∗ 94.70 4.45 0.014∗

Uniform Random 100 50 32 0.978 62.70 48.44 0.055
State Likelihood 100 50 50 0.001∗ 96.80 2.42 0.005∗

Weighted Uniform Random 100 100 100 0.000∗ 96.40 3.18 0.006∗
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Table B.13: Agent coordinating with 1000 episodes of past experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Experience Trials Successes psuccess Avg. Std. putil

No Comm. 1000 50 34 — 68.00 47.12 —
Action Entropy 1000 100 71 0.422 71.00 45.60 0.711

Mean Absolute Error 1000 50 34 0.585 68.00 47.12 1.000
Mean Squared Error 1000 50 31 0.799 62.00 49.03 0.534

∆ Policy Entropy 1000 100 69 0.522 69.00 46.48 0.902
Approx. Value of Info. 1000 50 50 0.000∗ 96.40 2.27 0.000∗

Weighted Action Entropy 1000 50 50 0.000∗ 96.60 2.36 0.000∗
Weighted Mean Abs. Error 1000 50 50 0.000∗ 96.50 2.31 0.000∗
Weighted Mean Sq. Error 1000 50 32 0.737 64.00 48.49 0.677
Weighted ∆ Policy Ent. 1000 50 50 0.000∗ 96.50 2.31 0.000∗
Weighted Approx. VoI 1000 50 50 0.000∗ 96.60 2.36 0.000∗

Immediate Policy Ent. 1000 50 50 0.000∗ 96.70 2.39 0.000∗
Immediate Value of Info. 1000 50 50 0.000∗ 96.50 2.31 0.000∗

Uniform Random 1000 50 33 0.665 66.00 47.85 0.834
State Likelihood 1000 50 50 0.000∗ 96.70 2.39 0.000∗

Weighted Uniform Random 1000 50 48 0.000∗ 93.70 19.48 0.001∗

149



B.3 Population Dynamics

Table B.14: Agent coordinating with 10 experience with 5 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 87 — 87.00 33.80 —
Action Entropy 150 133 0.418 88.10 31.80 0.797

Mean Absolute Error 50 50 0.004 94.80 7.28 0.029∗
Mean Squared Error 50 50 0.004 92.00 10.64 0.179

∆ Policy Entropy 50 45 0.404 87.60 30.54 0.913
Approx. Value of Info. 50 50 0.004 91.90 13.09 0.206

Weighted Action Entropy 50 46 0.267 86.90 29.84 0.985
Weighted Mean Abs. Error 50 50 0.004 92.30 10.46 0.153
Weighted Mean Sq. Error 50 50 0.004 91.50 11.35 0.231
Weighted ∆ Policy Ent. 100 96 0.020∗ 91.90 20.25 0.215
Weighted Approx. VoI 50 50 0.004 94.30 5.98 0.038∗

Immediate Policy Ent. 88 88 0.000∗ 83.24 29.07 0.413
Immediate Value of Info. 50 50 0.004 94.50 12.75 0.052

Uniform Random 50 48 0.069 89.50 22.75 0.593
State Likelihood 50 50 0.004 91.70 11.50 0.212

Weighted Uniform Random 100 98 0.003∗ 93.10 14.72 0.100
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Table B.15: Agent coordinating with 100 experience with 5 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 91 — 91.00 28.76 —
Action Entropy 150 140 0.327 92.10 25.16 0.756

Mean Absolute Error 50 50 0.023 94.70 6.42 0.222
Mean Squared Error 50 49 0.096 90.90 15.90 0.978

∆ Policy Entropy 50 46 0.552 90.80 27.56 0.967
Approx. Value of Info. 50 50 0.023 90.60 14.94 0.911

Weighted Action Entropy 100 96 0.125 92.60 20.36 0.650
Weighted Mean Abs. Error 50 50 0.023 90.90 13.16 0.977
Weighted Mean Sq. Error 50 50 0.023 87.30 15.88 0.312
Weighted ∆ Policy Ent. 50 45 0.697 87.50 31.25 0.509
Weighted Approx. VoI 50 50 0.023 88.80 18.37 0.571

Immediate Policy Ent. 50 50 0.023 79.60 30.60 0.031
Immediate Value of Info. 50 50 0.023 89.70 18.94 0.741

Uniform Random 100 93 0.398 79.95 34.39 0.015
State Likelihood 50 50 0.023 91.10 7.58 0.974

Weighted Uniform Random 100 99 0.009∗ 89.45 15.21 0.634

Table B.16: Agent coordinating with 1000 experience with 5 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 88 — 88.00 32.66 —
Action Entropy 150 135 0.382 89.27 30.28 0.757

Mean Absolute Error 50 50 0.006 95.00 5.25 0.039∗
Mean Squared Error 50 50 0.006 96.10 3.82 0.016∗

∆ Policy Entropy 50 45 0.473 89.20 30.09 0.823
Approx. Value of Info. 50 50 0.006 88.70 15.81 0.860

Weighted Action Entropy 50 45 0.473 86.60 30.65 0.797
Weighted Mean Abs. Error 50 50 0.006 93.50 7.91 0.114
Weighted Mean Sq. Error 50 50 0.006 88.60 13.44 0.874
Weighted ∆ Policy Ent. 100 98 0.005∗ 93.85 16.05 0.110
Weighted Approx. VoI 50 50 0.006 93.40 9.87 0.131

Immediate Policy Ent. 50 50 0.006 85.40 23.30 0.576
Immediate Value of Info. 50 50 0.006 85.20 22.38 0.539

Uniform Random 50 49 0.033 85.40 23.86 0.581
State Likelihood 50 50 0.006 92.60 6.72 0.179

Weighted Uniform Random 100 98 0.005∗ 91.30 18.54 0.381
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Table B.17: Agent coordinating with 10 experience with 25 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 68 — 68.00 46.88 —
Action Entropy 150 104 0.465 68.93 46.17 0.877

Mean Absolute Error 50 50 0.000 92.60 4.43 0.000∗
Mean Squared Error 50 50 0.000 92.20 6.79 0.000∗

∆ Policy Entropy 50 34 0.576 67.20 47.25 0.922
Approx. Value of Info. 50 49 0.000 89.90 14.12 0.000∗

Weighted Action Entropy 50 47 0.000 88.10 23.05 0.001∗
Weighted Mean Abs. Error 50 50 0.000 87.30 15.29 0.000∗
Weighted Mean Sq. Error 50 49 0.000 84.90 18.53 0.002∗
Weighted ∆ Policy Ent. 50 49 0.000 92.70 13.75 0.000∗
Weighted Approx. VoI 50 49 0.000 89.20 14.01 0.000∗

Immediate Policy Ent. 50 42 0.027 77.60 37.20 0.176
Immediate Value of Info. 50 50 0.000 89.50 8.41 0.000∗

Uniform Random 100 68 0.560 63.35 48.11 0.490
State Likelihood 50 50 0.000 85.80 8.65 0.000∗

Weighted Uniform Random 100 93 0.000∗ 86.45 25.75 0.001∗

Table B.18: Agent coordinating with 100 experience with 25 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 78 — 78.00 41.63 —
Action Entropy 150 115 0.654 76.57 42.39 0.791

Mean Absolute Error 50 50 0.000 81.70 14.34 0.426
Mean Squared Error 50 50 0.000 83.10 12.33 0.261

∆ Policy Entropy 50 38 0.689 74.30 45.04 0.628
Approx. Value of Info. 100 100 0.000∗ 90.15 7.26 0.005∗

Weighted Action Entropy 50 48 0.003 92.00 19.69 0.006∗
Weighted Mean Abs. Error 50 50 0.000 82.60 14.08 0.321
Weighted Mean Sq. Error 50 50 0.000 82.80 13.22 0.295
Weighted ∆ Policy Ent. 50 48 0.003 92.90 19.82 0.003∗
Weighted Approx. VoI 50 50 0.000 91.20 5.30 0.002∗

Immediate Policy Ent. 110 106 0.000∗ 82.23 20.89 0.361
Immediate Value of Info. 50 50 0.000 92.30 7.71 0.001∗

Uniform Random 60 48 0.464 65.00 47.10 0.080
State Likelihood 50 50 0.000 90.80 6.01 0.003∗

Weighted Uniform Random 100 96 0.000∗ 85.10 22.28 0.135
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Table B.19: Agent coordinating with 1000 experience with 25 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 78 — 78.00 41.63 —
Action Entropy 150 119 0.460 78.60 40.79 0.911

Mean Absolute Error 50 50 0.000 83.90 10.61 0.185
Mean Squared Error 50 50 0.000 85.30 8.89 0.096

∆ Policy Entropy 50 40 0.477 78.40 40.70 0.955
Approx. Value of Info. 50 50 0.000 88.40 9.82 0.019∗

Weighted Action Entropy 50 46 0.024 87.30 27.35 0.104
Weighted Mean Abs. Error 50 50 0.000 82.40 13.06 0.336
Weighted Mean Sq. Error 50 50 0.000 87.50 8.28 0.030∗
Weighted ∆ Policy Ent. 50 45 0.054 88.00 29.73 0.093
Weighted Approx. VoI 50 50 0.000 91.30 5.70 0.002∗

Immediate Policy Ent. 50 50 0.000 82.20 14.11 0.365
Immediate Value of Info. 50 50 0.000 93.70 3.16 0.000∗

Uniform Random 60 50 0.273 68.75 44.14 0.192
State Likelihood 50 50 0.000 89.40 7.05 0.009∗

Weighted Uniform Random 150 149 0.000∗ 84.50 15.00 0.137

Table B.20: Agent coordinating with 10 experience with 125 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 73 — 73.00 44.62 —
Action Entropy 150 108 0.623 71.40 45.41 0.783

Mean Absolute Error 50 50 0.000 90.60 7.60 0.000∗
Mean Squared Error 50 50 0.000 91.90 7.42 0.000∗

∆ Policy Entropy 50 35 0.721 68.50 47.62 0.579
Approx. Value of Info. 50 49 0.000 89.50 15.66 0.001∗

Weighted Action Entropy 50 49 0.000 92.40 13.71 0.000∗
Weighted Mean Abs. Error 50 50 0.000 82.10 16.94 0.074
Weighted Mean Sq. Error 50 50 0.000 88.00 14.07 0.003∗
Weighted ∆ Policy Ent. 50 46 0.004 87.80 26.27 0.012∗
Weighted Approx. VoI 50 50 0.000 90.90 5.41 0.000∗

Immediate Policy Ent. 50 37 0.530 66.80 44.02 0.420
Immediate Value of Info. 50 50 0.000 90.30 7.59 0.000∗

Uniform Random 50 42 0.096 78.40 37.57 0.438
State Likelihood 50 50 0.000 88.40 6.88 0.001∗

Weighted Uniform Random 100 96 0.000∗ 89.55 20.21 0.001∗
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Table B.21: Agent coordinating with 100 experience with 125 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 56 — 56.00 49.89 —
Action Entropy 150 85 0.510 56.67 49.72 0.918

Mean Absolute Error 50 50 0.000 93.30 4.70 0.000∗
Mean Squared Error 50 50 0.000 92.50 5.46 0.000∗

∆ Policy Entropy 50 34 0.107 68.00 47.12 0.152
Approx. Value of Info. 50 50 0.000 96.40 2.27 0.000∗

Weighted Action Entropy 50 50 0.000 94.20 4.78 0.000∗
Weighted Mean Abs. Error 50 50 0.000 96.30 2.22 0.000∗
Weighted Mean Sq. Error 50 50 0.000 97.20 2.51 0.000∗
Weighted ∆ Policy Ent. 50 50 0.000 96.80 2.42 0.000∗
Weighted Approx. VoI 50 50 0.000 96.00 2.02 0.000∗

Immediate Policy Ent. 50 50 0.000 96.40 2.27 0.000∗
Immediate Value of Info. 50 50 0.000 94.30 4.74 0.000∗

Uniform Random 50 35 0.069 69.10 46.41 0.115
State Likelihood 50 50 0.000 96.30 2.22 0.000∗

Weighted Uniform Random 100 100 0.000∗ 95.20 3.69 0.000∗

Table B.22: Agent coordinating with 1000 experience with 125 maximum unique
teammate policies.∗ denotes significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 100 74 — 74.00 44.08 —
Action Entropy 150 107 0.727 71.27 45.33 0.635

Mean Absolute Error 50 50 0.000 80.70 11.43 0.156
Mean Squared Error 100 100 0.000∗ 82.85 9.78 0.053

∆ Policy Entropy 50 36 0.679 71.90 45.52 0.788
Approx. Value of Info. 50 50 0.000 92.80 3.52 0.000∗

Weighted Action Entropy 100 89 0.005∗ 86.15 30.74 0.025∗
Weighted Mean Abs. Error 100 100 0.000∗ 83.45 11.07 0.040∗
Weighted Mean Sq. Error 50 50 0.000 82.70 10.98 0.065
Weighted ∆ Policy Ent. 50 44 0.036 85.90 32.76 0.065
Weighted Approx. VoI 50 50 0.000 91.80 5.23 0.000∗

Immediate Policy Ent. 100 92 0.001∗ 81.05 27.20 0.175
Immediate Value of Info. 50 50 0.000 95.00 0.00 0.000∗

Uniform Random 100 79 0.252 65.70 42.23 0.176
State Likelihood 50 50 0.000 91.40 4.74 0.000∗

Weighted Uniform Random 50 49 0.000 84.50 16.48 0.037∗

154



B.4 Communication Cost

Table B.23: Agent coordinating with communication cost C(q) = 1.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 50 30 0.956 60.00 49.49 0.139

Mean Absolute Error 50 50 0.000∗ 98.66 1.04 0.000∗
Mean Squared Error 50 50 0.000∗ 98.72 1.29 0.000∗

∆ Policy Entropy 50 33 0.862 66.00 47.85 0.388
Approx. Value of Info. 50 50 0.000∗ 96.90 1.74 0.001∗

Weighted Action Entropy 50 50 0.000∗ 98.98 0.14 0.000∗
Weighted Mean Abs. Error 100 100 0.000∗ 97.04 2.21 0.001∗
Weighted Mean Sq. Error 50 50 0.000∗ 98.58 1.05 0.000∗
Weighted ∆ Policy Ent. 50 50 0.000∗ 98.14 0.35 0.000∗
Weighted Approx. VoI 50 50 0.000∗ 95.90 1.88 0.001∗

Immediate Policy Ent. 50 50 0.000∗ 99.36 0.48 0.000∗
Immediate Value of Info. 50 50 0.000∗ 93.44 4.34 0.003∗

Uniform Random 50 39 0.408 76.54 41.97 0.769
State Likelihood 50 50 0.000∗ 97.38 1.43 0.000∗

Weighted Uniform Random 50 50 0.000∗ 97.74 1.77 0.000∗
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Table B.24: Agent coordinating with communication cost C(q) = 5.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 100 61 0.962 61.00 49.02 0.105

Mean Absolute Error 50 50 0.000∗ 92.00 4.04 0.006∗
Mean Squared Error 50 50 0.000∗ 92.00 5.15 0.006∗

∆ Policy Entropy 50 36 0.674 72.00 45.36 0.824
Approx. Value of Info. 50 50 0.000∗ 96.40 2.27 0.001∗

Weighted Action Entropy 50 50 0.000∗ 93.80 4.58 0.003∗
Weighted Mean Abs. Error 50 50 0.000∗ 96.60 2.36 0.001∗
Weighted Mean Sq. Error 50 50 0.000∗ 97.00 2.47 0.001∗
Weighted ∆ Policy Ent. 50 50 0.000∗ 95.00 4.95 0.002∗
Weighted Approx. VoI 50 50 0.000∗ 96.30 2.22 0.001∗

Immediate Policy Ent. 50 50 0.000∗ 96.50 2.31 0.001∗
Immediate Value of Info. 50 50 0.000∗ 94.80 4.84 0.002∗

Uniform Random 50 34 0.811 66.90 46.85 0.438
State Likelihood 50 50 0.000∗ 96.80 2.42 0.001∗

Weighted Uniform Random 50 50 0.000∗ 95.30 4.09 0.001∗

Table B.25: Agent coordinating with communication cost C(q) = 10.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 50 33 0.862 66.00 47.85 0.388

Mean Absolute Error 50 34 0.811 64.80 45.46 0.308
Mean Squared Error 50 30 0.956 59.20 48.98 0.116

∆ Policy Entropy 50 30 0.956 60.00 49.49 0.139
Approx. Value of Info. 50 50 0.000∗ 94.00 4.95 0.003∗

Weighted Action Entropy 50 50 0.000∗ 93.60 4.85 0.003∗
Weighted Mean Abs. Error 50 50 0.000∗ 94.00 4.95 0.003∗
Weighted Mean Sq. Error 100 99 0.000∗ 92.90 10.66 0.004∗
Weighted ∆ Policy Ent. 50 50 0.000∗ 93.80 4.90 0.003∗
Weighted Approx. VoI 50 50 0.000∗ 92.80 4.54 0.004∗

Immediate Policy Ent. 100 100 0.000∗ 93.20 4.69 0.004∗
Immediate Value of Info. 50 50 0.000∗ 94.20 4.99 0.002∗

Uniform Random 50 33 0.862 66.00 47.85 0.388
State Likelihood 50 50 0.000∗ 93.40 4.79 0.003∗

Weighted Uniform Random 50 47 0.006∗ 89.20 23.37 0.035∗
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Table B.26: Agent coordinating with communication cost C(q) = 99.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 37 — 74.00 44.31 —
Action Entropy 50 39 0.408 78.00 41.85 0.644

Mean Absolute Error 50 35 0.748 70.00 46.29 0.660
Mean Squared Error 50 33 0.862 66.00 47.85 0.388

∆ Policy Entropy 50 39 0.408 78.00 41.85 0.644
Approx. Value of Info. 50 33 0.862 66.00 47.85 0.388

Weighted Action Entropy 50 29 0.972 58.00 49.86 0.093
Weighted Mean Abs. Error 50 35 0.748 70.00 46.29 0.660
Weighted Mean Sq. Error 50 36 0.674 72.00 45.36 0.824
Weighted ∆ Policy Ent. 50 35 0.748 70.00 46.29 0.660
Weighted Approx. VoI 50 30 0.956 60.00 49.49 0.139

Immediate Policy Ent. 50 34 0.811 68.00 47.12 0.513
Immediate Value of Info. 50 30 0.956 60.00 49.49 0.139

Uniform Random 50 31 0.934 62.00 49.03 0.202
State Likelihood 50 32 0.903 64.00 48.49 0.284

Weighted Uniform Random 100 73 0.624 73.00 44.62 0.897
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B.5 Domain Structure

Table B.27: Agent coordinating with 0 past episodes of experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 48 — 96.00 19.79 —
Action Entropy 150 144 0.638 95.60 19.64 0.902

Mean Absolute Error 50 43 0.985 84.30 35.08 0.043
Mean Squared Error 50 45 0.944 88.60 30.61 0.155

∆ Policy Entropy 100 89 0.967 88.05 31.21 0.060
Approx. Value of Info. 50 48 0.691 94.90 19.86 0.782

Weighted Action Entropy 50 48 0.691 95.00 19.92 0.802
Weighted Mean Abs. Error 100 94 0.812 91.90 23.67 0.266
Weighted Mean Sq. Error 50 44 0.970 85.80 32.31 0.061
Weighted ∆ Policy Ent. 50 46 0.898 89.60 27.10 0.181
Weighted Approx. VoI 50 48 0.691 94.20 20.11 0.653

Immediate Policy Ent. 50 47 0.819 93.50 23.93 0.571
Immediate Value of Info. 50 45 0.944 87.20 29.92 0.086

Uniform Random 50 46 0.898 91.40 27.29 0.337
State Likelihood 50 47 0.819 91.10 23.95 0.268

Weighted Uniform Random 100 87 0.985 85.60 33.50 0.019
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Table B.28: Agent coordinating with 10 past episodes of experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 46 — 92.00 27.40 —
Action Entropy 100 91 0.687 90.45 28.66 0.748

Mean Absolute Error 50 42 0.939 82.40 36.98 0.144
Mean Squared Error 50 45 0.757 88.80 30.35 0.581

∆ Policy Entropy 50 45 0.757 88.10 30.59 0.504
Approx. Value of Info. 50 47 0.500 90.40 23.62 0.755

Weighted Action Entropy 50 49 0.181 94.50 14.99 0.573
Weighted Mean Abs. Error 50 47 0.500 90.60 24.17 0.787
Weighted Mean Sq. Error 100 95 0.347 91.45 22.31 0.902
Weighted ∆ Policy Ent. 50 46 0.643 88.00 28.03 0.472
Weighted Approx. VoI 100 95 0.347 88.45 23.78 0.437

Immediate Policy Ent. 50 47 0.500 91.30 24.53 0.893
Immediate Value of Info. 50 47 0.500 80.60 26.10 0.036

Uniform Random 50 47 0.500 91.70 23.79 0.954
State Likelihood 50 48 0.339 65.90 24.92 0.000

Weighted Uniform Random 100 93 0.531 89.70 25.54 0.621

Table B.29: Agent coordinating with 100 past episodes of experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 47 — 94.00 23.99 —
Action Entropy 100 91 0.830 90.25 28.59 0.400

Mean Absolute Error 50 48 0.500 89.90 19.68 0.353
Mean Squared Error 50 49 0.309 90.00 14.95 0.320

∆ Policy Entropy 50 44 0.920 85.40 32.46 0.135
Approx. Value of Info. 50 48 0.500 88.30 19.45 0.195

Weighted Action Entropy 50 46 0.782 87.20 27.16 0.188
Weighted Mean Abs. Error 50 47 0.661 81.60 24.46 0.012
Weighted Mean Sq. Error 50 43 0.954 76.80 34.07 0.004
Weighted ∆ Policy Ent. 50 48 0.500 89.80 19.82 0.342
Weighted Approx. VoI 50 50 0.121 90.10 7.18 0.275

Immediate Policy Ent. 50 46 0.782 89.70 27.00 0.402
Immediate Value of Info. 50 50 0.121 84.60 11.33 0.015

Uniform Random 50 45 0.866 83.90 31.16 0.073
State Likelihood 50 48 0.500 85.40 19.79 0.053

Weighted Uniform Random 100 96 0.429 89.85 20.08 0.296
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Table B.30: Agent coordinating with 1000 past episodes of experience.∗ denotes
significant improvement over baseline.

Reward
Heuristic Trials Successes psuccess Avg. Std. putil

No Comm. 50 45 — 90.00 30.30 —
Action Entropy 100 86 0.829 85.15 34.92 0.382

Mean Absolute Error 100 91 0.528 87.70 28.05 0.654
Mean Squared Error 100 91 0.528 87.35 27.89 0.606

∆ Policy Entropy 50 45 0.630 87.00 30.77 0.624
Approx. Value of Info. 100 92 0.448 87.05 26.25 0.559

Weighted Action Entropy 50 45 0.630 82.20 29.59 0.196
Weighted Mean Abs. Error 50 46 0.500 76.20 26.43 0.017
Weighted Mean Sq. Error 100 95 0.206 85.00 21.81 0.302
Weighted ∆ Policy Ent. 50 47 0.357 90.50 24.44 0.928
Weighted Approx. VoI 50 48 0.218 89.70 19.81 0.953

Immediate Policy Ent. 50 45 0.630 87.40 30.64 0.671
Immediate Value of Info. 50 47 0.357 87.60 23.78 0.661

Uniform Random 50 48 0.218 92.70 21.67 0.610
State Likelihood 50 48 0.218 93.20 19.94 0.534

Weighted Uniform Random 100 90 0.604 83.25 30.37 0.202
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