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LATEX documents for the North-Holland seriesin Statistics and ProbabilityW.j. MaascElsevier Science Publishers B.V. All rights reserved 1Some Generalizations of CorrespondenceAnalysisJan de LeeuwDepartment of Mathematics UCLA, 405 Hilgard Avenue, Los Angeles, CA90024-1555AbstractCorrespondence analysis of a bivariate table has many di�erent opti-mality properties. For instance, the scores computed by correspondenceanalysis linearize both regressions, and maximize the correlation coe�-cient. We try to generalize both properties to the multivariate situation,using the concept of maximizing any aspect of the correlation matrix, andthe concept of simultaneously linearizing all bivariate regressions.1. IntroductionCorrespondence Analysis (CA) is a technique which has been reinventedmany times, in many countries, and in many disciplines. Historical reviewsare, for instance, in Nishisato [34], Tenenhaus and Young [38], Gi� [20], DeLeeuw [12], and Benz�ecri [2]. Some of the reasons for the multiple discoveryphenomenon are implicit in our �rst sentence. Until quite recently therewas not much communication between countries, and almost no commu-nication between disciplines. There is another reason, however, which ismore interesting from a scienti�c point of view. The equations de�ning CAcan be derived in many di�erent ways, from many di�erent starting points.We give a brief and sadly incomplete overview.In the French approach to CA, initiated by Benz�ecri around 1965, a dis-tance measure is de�ned on the rows and/or columns of a table, and thesedistances are approximated by Euclidean distances in a low-dimensionalrepresentation of the table. Excellent descriptions of this approach are inGreenacre [25] or Benz�ecri [3]. Thus CA is a form of metric multidimen-sional scaling. The Anglo approach to CA quanti�es the row and columncategories of a table in such a way that some optimality criterion is sat-is�ed. As we shall indicate below, early work on this approach was done



2 Jan de Leeuwby Pearson [35] and Hartley [27], but Fisher [17],[18] and Maung [32],[33]were the �rst to apply the technique to real data.In psychometrics, Guttman [26] invented multiple correpondence analy-sis (MCA) using the optimal scoring approach. MCA applies the optimalscoring approach to multivariate tables, generalizing (in some respects)principal component analysis (PCA). Guttman went on to generalize op-timal scoring to other forms of multivariate analysis (compare [10] for anoverview of his contributions). Guttman's approach to multivariate analy-sis was imported in Japan by Hayashi in the early 1950's, and rediscoveredby Burt in England around the same time. The optimal scoring approach,or optimal scaling approach, was systematized from a programmatic andcomputational point of view, �rst by De Leeuw [10], and on the basis ofthis by De Leeuw, Young, and Takane in a series of papers in Psychome-trika in the late 1970's. These ALSOS (Alternating Least Squares withOptimal Scaling) papers are summarized in Young [42], and eventuallylead to the book by Gi� [20]. In a parallel development, optimal scal-ing using smoothers was systematically applied by Breiman and Friedman[5] and their students, using the acronym ACE (Alternating ConditionalExpectations). Compare Buja [6] for a recent review. Finally, in anotherAnglo tradition, CA was rediscovered by Goodman and Haberman, whenthey were extending log-linear analysis to deal with tables having orderedcategories. Recent papers in this tradition are [21], [22], [23], [24],[40],[39].The classical work on CA, and the more recent work linking CA withlog-linear modelling, concentrate on the bivariate situation, in which wehave a single cross-table. In this paper, we shall talk mainly about themultivariate case, which is, in a sense, more challenging.The basic motivation for developing correspondence analysis techniquesfor multivariate data, according to Gi� [20], is that there is a wide gapin MVA between the multinomial and the multinormal. There are discretenumerical variables, ordinal variables, and non-normal numerical variables.In applied work in the social, behavioural and life sciences, discrete numer-ical and ordinal variables seem to be the rule rather than the exception.Yet most MVA techniques are designed for either purely normal data orpurely nominal data. The multinormal is obviously too strong a model formost applications, and the multinomial (log-linear) models are too weak forhigh-dimensional situations. Thus we need to develop a class of techniquesthat is in between the two. With the multinormal MVA tradition we havein common that we only use the bivariate marginals of the table, with themultinomial tradition we share the emphasis on nonparametric modeling.Given the French geometric approach to CA, and the Anglo optimalscaling approach, it is not surprising that MCA and its various general-izations have also been discussed in a number of essentially di�erent ways.



Correspondence Analysis 3Benz�ecri and Greenacre continue to use chi-square distances, de�ned on across table of indicator matrices. Since zero-one matrices are not frequen-cies, the chi-square metric is not very natural, and the approach more orless breaks down. Gi� [20] emphasizes the speci�c geometry of MCA, andthis geometry is even more central in [16]. In this paper we emphasize opti-mal scaling, which means at the same time that we stress the relationshipsbetween CA and other forms of MVA. This paper extends and summarizes[1], [11], [13],[14].2. FormalismWe give some notation and terminology �rst. Suppose we have m randomvariables xj; with �nite variances, all de�ned on the same probability space(X;B; P ): The (real, separable Hilbert) space of all �nite-variance randomvariables on this space is L: We de�ne Lj as the subspace of all measurabletransformations of xj with �nite variance. Suppose Kj is a subspace of Lj;of dimension p, and fgjsg is a basis for Kj: We assume xj 2 Kj:For ease of notation, we suppose all bases have the same dimension p; butthis is no real restriction. Also, for most results there is no reason to excludethe case p =1; because the in�nite sums replacing our matrix operationswill converge in mean square in L: By another slight, but inconsequential,misuse of matrix notation we use zj = Gj�j to describe transformations inKj; where the \matrix" Gj has dim(L) rows and p columns, and containsthe elements of the basis fgjsg as columns.We write Cj` = G0jG` for the cross products of the bases. Also, Djis short for Cjj: Observe that for orthogonal bases Dj is diagonal, for anorthonormal basis it is the identity. We can collect the Cj` in an mp�mpsupermatrix C; which is called the Tableau de Burt in the French CAliterature, after Burt [7].The cross product of any two transformations of the form zj = Gj�jand z` = G`�` can simply be written as �0jCj`�`: If Kj only has centeredrandom variables, then this is the covariance of zj and z`; if in addition�0jDj�j = �0̀C`�` = 1; then it de�nes the correlation.For illustrative purposes we mention two examples of the general frame-work. Ordinary contingency tables are usually dealt with by taking as abasis the indicator matrices or dummies coding the categories. This makesCj` equal to the cross-table of variables j and `: It makes Dj equal to thediagonal matrix with univariate marginals. If the joint distribution of thexj is a standardized multivariate normal, then the basis we use are thenormalized Hermite-Chebyshev polynomials. In that case the Cj` are di-agonal, with on the diagonal the successive powers of �j`; the correlationcoe�cient between variables j and ` in the multivariate normal.



4 Jan de LeeuwThis particular way of treating �nite contingency tables and continuousmultivariate distributions by basically the same formalism was �rst sug-gested in this context by Fisher (communication to Maung [32]). It hasbeen used succesfully by Lancaster [30],[31], and by the ACE group. Ofcourse it was already old hat in functional analysis by that time. Therehave been several interesting generalizations of the framework. Dauxoisand Pousse [9] allow for an in�nite number of variables, by using the con-tinuous direct sum of the subspaces of the underlying Hilbert space. Koster[29] extends the framework by replacing the subspaces by convex cones.Let us also de�ne linear regression in this context. We say that z 2 Lhas a linear regression on xj ; if the projection of z on xj is the same asthe projection of z on Lj: This means that we must have Pj(z) = �xj: Inmatrix form this is Gj(G0jGj)�1G0jz = �xj: Now suppose z = x` = G`�`;and xj = Gj�j: Then x` has linear regression on xj if Gj(G0jGj)�1G0jG` =�Gj�j; i.e. if Cj`�` = �Dj�j:For completeness we de�ne MCA. We solve the generalized eigenvalueproblem C� = �D�; or, in more detail,mX̀=1 Cj`�` = �Dj�j:If we compare this we the previous paragraph, we see that MCA �nds scoressuch that the \average regression" between the transformed variables islinear.3. Linearizing the regressionsIn 1906 Pearson published a paper [35] in which he proved the followingresult. At least we can interpret his paper as proving the following result.There are two categorical variables, with indicator bases G1 and G2:Assign scores to the rows and columns of their cross table C = G01G2; withmarginals in the diagonal matrices D and E: Suppose the scores a and bare in deviations from the mean, with unit variance. Thus the correlationinduced by the scores a and b is r(a; b) = a0Cb:Now perturb the scores, again with vectors in deviations from the mean�a and �b. Thenlim�!0r(a+ ��a; b+ ��b)� r(a; b)� == �0a(Cb� r(a; b)Da) + �0b(C 0a� r(a; b)Eb):The interpretation of this formula is quite simple. If both regressions arelinear, then the right-hand side is zero, i.e. if both regressions are linear



Correspondence Analysis 5the correlation coe�cient is relatively insensitive to small modi�cationsof the scoring. For score-changes of order O(�) the correlation-change isO(�2): It is clear why Pearson was interested in this result. We get roughlythe same value of the correlation coe�cient, even if we are not sure aboutthe scoring. Pearson was mainly interested in interchanging two columnsand/or rows, which was interpreted as an example of a small change. It isa somewhat unfortunate example, because of its discreteness, but it is nottoo complicated to �t it into the general result. The explicit version of theargument for general random variables is in [12].There are a number of ways in which we want to extend Pearson's re-sult. In the �rst place he starts with scores linearizing the regressions, andlooks in neighborhood of these scores. It is not entirely clear under whatcircumstances such linearizing scores actually exist. In the second placewe would like to generalize the result to more than two variables. And,�nally, there is no reason to restrict our attention to categorical variableswith indicator bases. The generalization to other examples is more or lessimmediate, using the notation from the previous section. In order to getat the existence question, we rewrite our result as@r@a = Cb� r(a; b)Da;@r@b = C 0a � r(a; b)Eb;and we take the next step in the history of CA.4. Maximizing the CorrelationIn 1935 Hirschfeld (who later changed his name to Hartley) published [27]in which he proved (quite explicitly) the following.Suppose we want to �nd scores that linearize the regressions in a crosstable C. Thus we want Cb = �Da;C0a = �Eb:This system always has p�1 non-trivial solutions, given by the generalizedsingular values and singular vectors of the triple (C;D;E): The vectorsof scores are mutually orthogonal, etc. Moreover (generalizing Pearson)these scores give maxima, and saddle points, and minima of the correlationcoe�cient. Hartley knew about the work of Hilbert and Schmidt on whatis e�ectively the singular value decomposition, and he could consequentlyprovide the existence theorem that had eluded Pearson. Also, the singular



6 Jan de Leeuwvalue decomposition provided an expansion of the bivariate distribution,which was a special case of the expansions studied by Schmidt and Mehler.Hartley's result for �nite tables was generalized to some extent by Fisherand Maung around 1940, and by Lancaster et al. since 1955, see [31], togeneral bivariate distributions. The idea of using the maximum of thecorrelation coe�cient over scores as a measure of association is due toGebelein [19], and it has been studied in detail by Renyi [36].Again, we would like to �nd out what happens if m > 2: Can we �ndscores which linearize all the bivariate regressions, or perhaps even all themultivariate regressions as well. And if we can't in general, under whatconditions do such scores exist.5. More than two variablesIt is clear that for m > 2 variables things are not so simple any more. Ingeneral, not all bivariate regressions (let alone all multivariate regressions)can be linearized by scoring (or, if you prefer, transformation). Let us calla multivariate distribution bi-linearizable if all bivariate regressions can belinearized by scoring. In obvious notation there exist m di�erent vectorsf�1; � � � ; �mg such that Cj`�` = �j`Dj�j:Although each of these equations can be solved easily, and has multiplesolutions, by Hartley's result, in general the solution for �j from equations(j; `) and (j; �) will be di�erent. We see that the condition means that thesingular value decompositions of the bivariate distributions are linked, inthe sense that decompositions with an index in common also have a singularvector in common. This can also be written by de�ning the matricesTjl = D�1j Cj`D�1` C`j:For each j the m matrices Tj` must have an eigenvector in common.We give some simple examples of bi-linearizable distributions.{ all variables are binary,{ there are only two variables,{ special cases, such as the multinormal (or elliptical),{ the strained multinormal in the sense of Yule.The �rst example is trivial. Obviously we can draw a line through twopoints. The second example is Hirschfeld's theorem. Regressions are linearin multinormal of elliptical distributions, so obviously they can be lin-earized. The strained multinormal will be discussed in more detail below.We see that assuming that the multivariate distribution is bi-linearizable is



Correspondence Analysis 7an important generalization from assuming it to be multinormal (or ellip-tical). Cuadras [8] shows that bi-linearizable distributions with arbitrarymarginals exist.Observe that we do not assume that all regressions can be linearized.Considering all multivariate regressions would take us into the realm ofhigher-dimensionsal tables again, and we would run into the empty-cellproblem (also known as the curse of dimensionality). We concentrate onproperties of the bivariate marginals, which will be reasonably well-�lledeven in high-dimensional situations.6. Strained MultinormalsThe notion of a strained multinormal is not very well known, so we describeit a bit more in detail.Suppose x = (x1; � � � ; xm) is multivariate normal. Now suppose �j arestrictly increasing, and de�ne y = (�1(x1); � � � ; �m(xm)): Then y is strainedmultinormal. Thus the marginal normality is destroyed by applying sep-arate transformations to all variables. Obviously we can unstrain y byapplying the inverse transformations ��1j : The notion is due to Yule, in hisdiscussion of Pearson's tetrachoric correlation coe�cient [43].We assume, then, not necessarily, that the correlation surface is nor-mal, but that it is \strained normal," as we may term it, and it is conceiv-able that \strained normal" may cover markedly skew correlation tables(l.c., page 141).We can write down expressions for the distribution and density of astrained multinormal quite easily. Use 	 and  for the standard multinor-mal distribution and density. The distribution isF (z1; � � � ; zm) = 	(��11 (z1); � � � ; ��1m (zm)):and thus the density is given byf(z1; � � � ; zm) = @mF@z1 � � �@zm =  (��11 (z1); � � � ; ��1m (zm)) mYj=1 @��1j@zj :This creates a fairly general family of multivariate distributions. In asense it generalizes the approach to transformations popularized by Boxand Cox [4]. In a strained multinormal we can of course linearize all re-gressions (not only the bivariate ones) by unstraining. Thus assumingstrained multinormality is stronger than assuming bi-linearizability.



8 Jan de LeeuwThere is, by the way, a condition logically in between strained normalityand bi-linearizability: suppose orthonormal systems f�j1; � � � ; �jpg existssuch that Cj`�`s = �j`sDj�js:This could be called bi-linearizable of order p. We have bi-linearizabilityof order p if the for each j the m matrices Tj` have a complete system ofeigenvectors in common, which happens if and only if they commute. Thestandardized multivariate normal is bi-linearizable of all orders, becausethe Hermite-Chebyshev polynomials can be chosen as the common eigen-system.7. Some questionsWe have de�ned bi-linearizable distributions, and we studied some specialcases. Immediately we are stuck with a number of questions about thelinearizing transformations.{ If they exist, how do we �nd them ? (estimation){ Do they exist ? (test of �t){ What do they do to the standard errors ? (precision){ How do they look ? Are they useful ? (data analysis)In the rest of this paper we shall try to answer the �rst three of these ques-tions. The fourth one can only be answered by looking at many examples,and for this we refer to the book by Gi� [20]. We have already discussedthe existence question above, algebraically, but we have not translated ourresults into a statistical test.8. LPV diagonalizationWe start with the question on how to �nd linearizing scores. There is astraightforward direct approach. We have cross-tables Cj` and univariatemarginals in diagonal matrices Dj : For standardized scores the correlationsare �j` = �0jCj`�`;and the correlation-ratios are�2j` = �0jCj`D�1` C`j�j:Obviously �2j` � �2j`;



Correspondence Analysis 9with equality if and only if the regression of variable ` on variable j islinear. This indicates one straightforward way of �nding the scores, if theyexist. Minimize � (�1; � � � ; �m) = mXj=1 mX̀=1(�2j` � �2j`):This loss function can be minimized quite easily by changing one set ofscores at the times, and cycling through the m sets iteratively. The sub-problem of �nding an optimal set of scores for variable j; with the otherm � 1 sets �xed at their current values, is a small generalized eigenvalueproblem.A more general approach, which can be used for bi-linearizability ofhigher orders, is taken in [1] and [11]. The approach gives us a lot of insightinto the MCA problem, and consequently it is not merely a computationaltool. We collect the Cj` in the mp � mp Burt table, and the Dj in thecorresponding diagonal matrix. Multiple correspondence analysis solvesthe generalized eigenvalue problem C� = �D�; which generally has mpsolutions. Or, to put it di�erently, we look for an orthonormal K of ordermp that diagonalizes H = D�1=2CD�1=2: We can compute K by the usualtechniques for solving the symmetric eigenvalue problem. But instead ofdoing that, we shall try to build up K from simpler components in threesteps.Start with m orthonormal Lj of order p such that allUj` = L0jD�1=2j Cj`D�1=2` L`are diagonal. Such Lj need not exist, but if they do, and we collect themin the direct sum L = L1�L2�� � ��  Lm; then U = L0HL has submatriceswhich are all diagonal. It is now possible to �nd a permutation matrix Psuch that P 0UP = R1 � R2 � � � � � Rp; where the Rj are of order m: We�nd R1 by selecting all the (1; 1) elements of the Uj`; R2 by selecting the(2; 2) elements, and so on. Now P 0UP = P 0L0HLP; and we have foundthe orthonormal matrix LP which transforms H to direct sum form. Butobviously there exist orthonormal Vr which diagonalize the Rr: If V is theirdirect sum, then LPV diagonalizes H:The computations in the previous paragraph can be carried out exactlyif and only if we can �nd orthonormal Lj such that Uj` are diagonal. Ingeneral, we cannot (because it would mean that the distributions are indeedbi-linearizable of order p). What we can do is minimize the sun of squaresof the o�-diagonal elements of the Uj`: A convenient and rapid way to dothis is by using Jacobi-like plane rotations to build up the Lj : In [1] two



10 Jan de Leeuwstrategies are discussed. The �rst one minimizes the sum of squares ofall o�-diagonal elements. The second one minimizes the sum of squaresof the elements in the �rst row and column of all Uj` only. It is easy tosee that we can make this particular sum of squares equal to zero if andonly if the distributions are bi-linearizable. Moreover, the sum of squaresis exactly equal to the sum of di�erences between the correlation ratios andthe squared correlation coe�cients � (�1; � � � ; �m) we used a few paragraphsago. If we are done, we �x the �rst row of the Lj; and start on the secondone. And so on.In any case, we have build up an orthonormal LPV which approximatelydiagonalizes H: And, of course, we also have an orthonormal K whichexactly diagonalizes H: The point made in [11] is that the LPV approachin many cases gives much more insight into the MCA problem. In order toillustrate this, think of MCA as a form of nonlinear component analysis.Each system of scores, i.e. each column of K; can be used to computean induced correlation matrix, and each induced correlation matrix can besubmitted to a regular PCA. But there are mp such correlation matrices,and we consequently �nd m2p principal components. Gi� calls this \dataproduction." Now suppose �j is a bi-linearizing set of scores. Let us lookat vectors of the form �j�j and substitute them in the MCA equations.They become mX̀=1 �j`�` = ��j :This has m solutions for �; the eigenvectors of R = f�j`g: Thus each bi-linearizing solution produces m solutions to the MCA equations, each withthe same induced correlation matrix. Less data production, consequently.Moreover suppose �js�j are the MCA solutions corresponding with thelinearizing scores, and suppose j are the scores for another MCA solu-tion. If the eigenvalue for scores j is di�erent from the eigenvalue of thecorrelation matrix induced by the �j; thenmXj=1 �js�0jj = 0for all s = 1; � � � ;m; which will generally be the case only if �0jj = 0 for allj = 1; � � � ;m: Thus all other MCA solutions are strongly orthogonal to the�j; in the sense that each piece is orthogonal. A single set of bi-linearizingscores already means that we can use L and P to transform H to the formR1 � R2; with R1 the correlation matrix induced by the scores, and withR2 the \residuals". Bi-linearizability of order p means that there are only



Correspondence Analysis 11p induced correlation matrices, with only mp principal components. LPVexactly diagonalizes H:If we want to compare the MCA solution to the approximate LPV solu-tion, then we can computeK 0LPV;which will have correlations between thetwo systems of solutions. There are examples in [11]. We �nd remarkableresults, which can be understood quite easily by keeping the standardizedmultinormal in the back of our minds. The �rst set of bi-linearizing scoresare the zero-degree Hermite polynomials. They give an induced correla-tion matrix with all elements equal to one (not really a correlation matrix,because the corresponding transformed variables are not centered). Thisbi-linearizing set occurs in any MCA, and gives one eigenvalue equal to mand m � 1 eigenvalues equal to zero. In the multinormal the second setof bi-linearizing scores are the �rst degree polynomials, i.e. the identitytransformation. The induced correlation matrix is the correlation matrixof the underlying multinormal, and we have m eigenvalues taken from thatcorrelation matrix. Then the second degree polynomials, correspondingwith quadratic transformations, induce the correlation matrix R(2); whichconsists of the squares of the correlation coe�cients. And so on.Empirically we �nd that the MCA solutions corresponding with thelargest eigenvalues, and those corresponding with the smallest eigenval-ues, are found by both eigen-analysis and LPV diagonalization. But LPVgives the eigenvalues in a natural order. First we get the m trivial ones,corresponding with the zero-degree polynomial. Then the m eigenvaluescorresponding with the �rst induced correlation matrix, and so on. In anordinary MCA we typically �nd that the largest nontrivial transformationcorresponds with the dominant eigenvalue of the �rst induced correlationmatrix, while the second largest eigenvalue is actually the largest eigenvalueof the second induced correlation matrix. If we plot the two transforma-tions, we see a quadratic structure, the famous horseshoe, or, in French,the e�ect de Guttman. Compare [41] for more information, and [37] fora nonparametric (ordinal) explanation of horseshoes. Horseshoes are notinevitable. There are multiunormal examples in which the �rst two eigen-values come from the same (linear) correlation matrix. If we mix twomultinormals with correlations that are opposite in sign, then the eigen-values corresponding with the odd powers of the correlation coe�cientsdisappear, and the dominant solutions can be both quadratic.9. Functions of Correlation Coe�cientsIn the bivariate case we could �nd the bi-linearizing scores by maximizingthe correlation coe�cient. In the case of m > 2 variables we can �nd thescores, if they exist, by making the correlation ratios equal to the squared



12 Jan de Leeuwcorrelation coe�cients, or by using the LPV plane rotations to eliminatethe appropriate o�-diagonal elements.But let us go back now to the situation in which we do not necessarilyassume bi-linearizability. It may still be interesting, for data analysis rea-sons, to �nd systems of scores with various optimal properties. We discussa general algorithm which can be used for this purpose. It is explained ingreater detail in [14].For given scores �j we can compute induced correlation coe�cients be-tween our m variables. Take any function � (�) of these correlation coe�-cients �k`; i.e. any function of the correlation matrix. In [14] this is calledan aspect of the correlation matrix. We de�ne optimal scaling techniquesby maximizing (or minimizing) aspects � (�) over the scores �j: Each aspectde�nes a di�erent technique, and each choice of the subspaces Kj de�nes adi�erent special case of a technique. The Kj can be de�ned by polynomi-als, or splines, or dummies, with varying degrees on various knot-sequences.Actually, let us make the easy generalization here to convex cones Kj:From the algorithmic point of view quite a few things can be said aboutthe problem of maximizing � (�): First let us suppose that the aspect isconvex as a function of R: Then, with  another set of scores,� (R(�)) � � (R()) + tr G()(R(�) � R());where G(�) is the matrix of partial derivatives (or an element of the sub-gradient) of � (�): Now let us maximize, in each step of the algorithm, theright hand side of this expression over �; taking  = �(s); our current bestguess of the scores. The maximizer is �(s+1): It follows that� (R(�(s+1))) � � (R(�(s))) + tr G(�(s))(R(�(s+1))� R(�(s)))� � (R(�(s))) + tr G(�(s))(R(�(s))� R(�(s))) = � (R(�(s))):Thus we increase the aspect, and we can use general results [15] to showthat this leads to a convergent algorithm.In each sub-step of the algorithm we have to maximize �0 ~C(s)�; where~C(s)j` = gj`(�(s))Cj`; over all � with �0jDj�j = 1; and perhaps cone-constraints of the form �j 2 Kj: We cycle over the �j; and update each inturn by �j  Pj(D�1j X̀6=j C(s)j` �`);where P(�) projects on the cone.Ways to speed up and simplify this basic algorithm are discussed in [14].Clearly it can be used on a very general class of aspects. We can show, for



Correspondence Analysis 13instance, that the sum of the p largest eigenvalues, the squared multiplecorrelation coe�cient of one variable with the rest, the log-determinant,and many other aspects are indeed convex functions of the correlation ma-trix.10. Consequences of bi-linearizabilityLet us forget about cone constraints for the time being, and generalizethe class of aspects to functions of both the correlation coe�cients andthe correlation ratios. The stationary equations for maximizing � (�) are(assuming di�erentiability)mX̀6=j @�@�j`Cj`�` + mX̀6=j @�@�2j`Cj`D�1` Clj�j = �jDj�j:The �j are Lagrange multipliers, taking care of the normalization of thescores. If the scores �j linearize the bivariate regressions, then they solvethe stationary equations with�j = mX̀6=j @�@�j` �j` + mX̀6=j @�@�2j`�2j`:This result is interesting, because it shows that bi-linearizing systems givestationary points, no matter what the aspect is (it does not even have tobe a convex function of the correlations). Or, to put it di�erently, if bi-linearizing scores exists, then optimizing any aspect will �nd them. Weneed some quali�cations here, because the stationary point may not be anactual maximum, but essentially this strong corollary of bi-linearizabilityguarantees a solution with is invariant over choice of aspect. There arealready many programs which maximize functions of the form � (�); suchas MCA, ACE, etc. If bi-linearizable scorings exist, they will �nd them.11. Model oriented approachThe correspondence analysis based techniques are primarily exploratory incharacter, at least if one believes in the distinction between exploratoryand con�rmatory [20]. Nevertheless, bi-linearizability and strained multi-normality are restrictive models, which can be good or bad descriptions ofan observed Burt matrix. It consequently makes sense to look at the �t ofthe model with the usual statistical large sample techniques.



14 Jan de LeeuwSuppose the �j linearize the bivariate regressions. Complete the scoresto matrices Aj = (�j j Aj ) ; such that A0jDjAj = I: ThenA0jCj`A` = � �jl 00 A0jCj`A`� :Solving the equations gives us the parametric model (for the joint bivariatemarginals) D�1j Cj`D�1` = Aj � �j` 00 �jl�A0̀ :This can be done by weighted least squares, applied directly to the bivariatemarginals. We �t the parameters Aj ; as well as the parameters �jl and �j`:For bi-linearizability of order p we can strengthen the model toD�1j Cj`D�1` = Aj�j`A0̀ ;with �j` a diagonal matrix. For strained multinormality we combine thiswith no higher-order interactions, and we can even use likelihood methods.Although these techniques are fairly straightforward in principle, they in-volve tedious delta-method type calculations, and they have not been im-plemented so far.12. Two-step techniquesThere is another way in which we can combine classical inference withoptimal scaling. A useful statistical procedure seems to be the two-steptechnique. First we scale the variables by trying to bi-linearize the re-gressions. Then we apply standard techniques to the induced correlationcoe�cients. Such standard technqiues can be multiple regression, principalcomponent analysis, LISREL, etc. But what about the asymptotic normaldistribution of the induced correlations ?The nice result, again generalizing Pearson [35], is that for linearizabledistributions the asymptotic normal distribution is the same as the one wewould derive if the scores had been known (�xed, not dependent on thedata). This is discussed in detail in [13]. The reason is simple. Let us lookat the discrete case. The Burt table is a function of the pro�le frequencies,i.e. of the cell entries in the multivariate table. Collect them in the vectorp: We compute our statistics on the basis of the correlation coe�cients,which depend on the scores, which depend on the p: Suppose statistic � (�)is di�erentiated with respect to p: We �nd@�@p = mXj=1 mX̀=1 @�@�j` @�j`@p :
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