UCLA
Department of Statistics Papers

Title
Multivariate Analysis with Linearizable Regressions

Permalink
https://escholarship.org/uc/item/9sq8r4dxn

Author
Jan de Leeuw

Publication Date
2011-10-25

eScholarship.org Powered by the California Diqital Library

University of California



https://escholarship.org/uc/item/9sg8r4xn
https://escholarship.org
http://www.cdlib.org/

IATEX documents for the North-Holland series

in Statistics and Probability 1
W.j. Maas

©Elsevier Science Publishers B.V. All rights reserved

Some Generalizations of Correspondence
Analysis

Jan de Leeuw

Department of Mathematics UCLA, 405 Hilgard Avenue, Los Angeles, CA
90024-1555

Abstract

Correspondence analysis of a bivariate table has many different opti-
mality properties. For instance, the scores computed by correspondence
analysis linearize both regressions, and maximize the correlation coeffi-
cient. We try to generalize both properties to the multivariate situation,
using the concept of maximizing any aspect of the correlation matrix, and
the concept of simultaneously linearizing all bivariate regressions.

1. Introduction

Correspondence Analysis (CA) is a technique which has been reinvented
many times, in many countries, and in many disciplines. Historical reviews
are, for instance, in Nishisato [34], Tenenhaus and Young [38], Gifi [20], De
Leeuw [12], and Benzécri [2]. Some of the reasons for the multiple discovery
phenomenon are implicit in our first sentence. Until quite recently there
was not much communication between countries, and almost no commu-
nication between disciplines. There is another reason, however, which is
more interesting from a scientific point of view. The equations defining CA
can be derived in many different ways, from many different starting points.
We give a brief and sadly incomplete overview.

In the French approach to CA, initiated by Benzécri around 1965, a dis-
tance measure is defined on the rows and/or columns of a table, and these
distances are approximated by Euclidean distances in a low-dimensional
representation of the table. Excellent descriptions of this approach are in
Greenacre [25] or Benzéceri [3]. Thus CA is a form of metric multidimen-
stonal scaling. The Anglo approach to CA quantifies the row and column
categories of a table in such a way that some optimality criterion is sat-
isfied. As we shall indicate below, early work on this approach was done
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by Pearson [35] and Hartley [27], but Fisher [17],[18] and Maung [32],[33]
were the first to apply the technique to real data.

In psychometrics, Guttman [26] invented muliiple correpondence analy-
sts (MCA) using the optimal scoring approach. MCA applies the optimal
scoring approach to multivariate tables, generalizing (in some respects)
principal component analysis (PCA). Guttman went on to generalize op-
timal scoring to other forms of multivariate analysis (compare [10] for an
overview of his contributions). Guttman’s approach to multivariate analy-
sis was imported in Japan by Hayashi in the early 1950’s, and rediscovered
by Burt in England around the same time. The optimal scoring approach,
or optimal scaling approach, was systematized from a programmatic and
computational point of view, first by De Leeuw [10], and on the basis of
this by De Leeuw, Young, and Takane in a series of papers in Psychome-
trika in the late 1970°s. These ALSOS (Alternating Least Squares with
Optimal Scaling) papers are summarized in Young [42], and eventually
lead to the book by Gifi [20]. In a parallel development, optimal scal-
ing using smoothers was systematically applied by Breiman and Friedman
[5] and their students, using the acronym ACE (Alternating Conditional
Expectations). Compare Buja [6] for a recent review. Finally, in another
Anglo tradition, CA was rediscovered by Goodman and Haberman, when
they were extending log-linear analysis to deal with tables having ordered
categories. Recent papers in this tradition are [21], [22], [23], [24],[40],[39].

The classical work on CA, and the more recent work linking CA with
log-linear modelling, concentrate on the bivariate situation, in which we
have a single cross-table. In this paper, we shall talk mainly about the
multivariate case, which is, in a sense, more challenging.

The basic motivation for developing correspondence analysis techniques
for multivariate data, according to Gifi [20], is that there is a wide gap
in MVA between the multinomial and the multinormal. There are discrete
numerical variables, ordinal variables, and non-normal numerical variables.
In applied work in the social, behavioural and life sciences, discrete numer-
ical and ordinal variables seem to be the rule rather than the exception.
Yet most MVA techniques are designed for either purely normal data or
purely nominal data. The multinormal is obviously too strong a model for
most applications, and the multinomial (log-linear) models are too weak for
high-dimensional situations. Thus we need to develop a class of techniques
that is in between the two. With the multinormal MVA tradition we have
in common that we only use the bivariate marginals of the table, with the
multinomial tradition we share the emphasis on nonparametric modeling.

Given the French geometric approach to CA, and the Anglo optimal
scaling approach, it is not surprising that MCA and its various general-
1zations have also been discussed in a number of essentially different ways.
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Benzécri and Greenacre continue to use chi-square distances, defined on a
cross table of indicator matrices. Since zero-one matrices are not frequen-
cies, the chi-square metric is not very natural, and the approach more or
less breaks down. Gifi [20] emphasizes the specific geometry of MCA, and
this geometry is even more central in [16]. In this paper we emphasize opti-
mal scaling, which means at the same time that we stress the relationships
between CA and other forms of MVA. This paper extends and summarizes

[1], [11], [13],[14].
2. Formalism

We give some notation and terminology first. Suppose we have m random
variables z;, with finite variances, all defined on the same probability space
(X, B, P). The (real, separable Hilbert) space of all finite-variance random
variables on this space is £. We define £; as the subspace of all measurable
transformations of z; with finite variance. Suppose K; is a subspace of £;,
of dimension p, and {g;,} is a basis for ;. We assume z; €K;.

For ease of notation, we suppose all bases have the same dimension p, but
this is no real restriction. Also, for most results there is no reason to exclude
the case p = 0o, because the infinite sums replacing our matrix operations
will converge in mean square in £. By another slight, but inconsequential,
misuse of matrix notation we use z; = G« to describe transformations in
K;, where the “matrix” G; has dim(£) rows and p columns, and contains
the elements of the basis {g;,} as columns.

We write Cj; = G;GZ for the cross products of the bases. Also, D;
is short for ;. Observe that for orthogonal bases D; is diagonal, for an
orthonormal basis it is the identity. We can collect the Cj¢ in an mp x mp
supermatrix C, which is called the Tableau de Burt in the French CA
literature, after Burt [7].

The cross product of any two transformations of the form z; = Gja;
and z; = Gyay can simply be written as ozé»C'ﬂaZ. If K; only has centered
random variables, then this is the covariance of z; and z, if in addition
oiD;a; = ayCya, = 1, then it defines the correlation.

For illustrative purposes we mention two examples of the general frame-
work. Ordinary contingency tables are usually dealt with by taking as a
basis the indicator matrices or dummies coding the categories. This makes
C;¢ equal to the cross-table of variables j and £. It makes D; equal to the
diagonal matrix with univariate marginals. If the joint distribution of the
z; 1s a standardized multivariate normal, then the basis we use are the
normalized Hermite-Chebyshev polynomials. In that case the Cj, are di-
agonal, with on the diagonal the successive powers of p;¢, the correlation
coefficient between variables j and ¢ in the multivariate normal.
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This particular way of treating finite contingency tables and continuous
multivariate distributions by basically the same formalism was first sug-
gested in this context by Fisher (communication to Maung [32]). Tt has
been used succesfully by Lancaster [30],[31], and by the ACE group. Of
course 1t was already old hat in functional analysis by that time. There
have been several interesting generalizations of the framework. Dauxois
and Pousse [9] allow for an infinite number of variables, by using the con-
tinuous direct sum of the subspaces of the underlying Hilbert space. Koster
[29] extends the framework by replacing the subspaces by convex cones.

Let us also define linear regression in this context. We say that z € £
has a linear regression on z;, if the projection of z on z; is the same as
the projection of z on £;. This means that we must have P;(z) = /\gj. In
matrix form this is G]»(G}Gj)_lG}z = Az;. Now suppose z = z, = Groy,
Gy, Le. if Cjear = ADja;.

For completeness we define MCA. We solve the generalized eigenvalue
problem C'a = ADa«, or, in more detail,

and z; = Gja;. Then z, has linear regression on z; if Gj(G§Gj)_1G§Gz =

Z C'Mozz = /\D]'Oz]'.
=1

If we compare this we the previous paragraph, we see that MCA finds scores
such that the “average regression” between the transformed variables is
linear.

3. Linearizing the regressions

In 1906 Pearson published a paper [35] in which he proved the following
result. At least we can interpret his paper as proving the following result.
There are two categorical variables, with indicator bases (G; and Gf.
Assign scores to the rows and columns of their cross table C' = G| G, with
marginals in the diagonal matrices D and E. Suppose the scores a and b
are in deviations from the mean, with unit variance. Thus the correlation
induced by the scores a and b is r(a,b) = o'Cb.
Now perturb the scores, again with vectors in deviations from the mean
6, and 6,. Then
gi_{%r(a + €y, b +€€6b) —r(a,b) _

=6 (Cb—r(a,b)Da)+ 6,(C'a —r(a,b)ED).

The interpretation of this formula is quite simple. If both regressions are
linear, then the right-hand side is zero, i.e. if both regressions are linear



Correspondence Analysis 5

the correlation coefficient is relatively insensitive to small modifications
of the scoring. For score-changes of order O(e) the correlation-change is
O(€?). 1t is clear why Pearson was interested in this result. We get roughly
the same value of the correlation coefficient, even if we are not sure about
the scoring. Pearson was mainly interested in interchanging two columns
and/or rows, which was interpreted as an example of a small change. Tt is
a somewhat unfortunate example, because of its discreteness, but it is not
too complicated to fit it into the general result. The explicit version of the
argument for general random variables is in [12].

There are a number of ways in which we want to extend Pearson’s re-
sult. In the first place he starts with scores linearizing the regressions, and
looks in neighborhood of these scores. It is not entirely clear under what
circumstances such linearizing scores actually exist. In the second place
we would like to generalize the result to more than two variables. And,
finally, there is no reason to restrict our attention to categorical variables
with indicator bases. The generalization to other examples is more or less
immediate, using the notation from the previous section. In order to get
at the existence question, we rewrite our result as

or

30 Cb—r(a,b)Da,
or

5= C'a —r(a,b)Eb,

and we take the next step in the history of CA.

4. Maximizing the Correlation

In 1935 Hirschfeld (who later changed his name to Hartley) published [27]
in which he proved (quite explicitly) the following.
Suppose we want to find scores that linearize the regressions in a cross
table C'. Thus we want
Cb = pDa,
C'a = pEb.

This system always has p— 1 non-trivial solutions, given by the generalized
singular values and singular vectors of the triple (C, D, E). The vectors
of scores are mutually orthogonal, etc. Moreover (generalizing Pearson)
these scores give maxima, and saddle points, and minima of the correlation
coefficient. Hartley knew about the work of Hilbert and Schmidt on what
is effectively the singular value decomposition, and he could consequently
provide the existence theorem that had eluded Pearson. Also, the singular
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value decomposition provided an expansion of the bivariate distribution,
which was a special case of the expansions studied by Schmidt and Mehler.

Hartley’s result for finite tables was generalized to some extent by Fisher
and Maung around 1940, and by Lancaster et al. since 1955, see [31], to
general bivariate distributions. The idea of using the maximum of the
correlation coefficient over scores as a measure of association is due to
Gebelein [19], and it has been studied in detail by Renyi [36].

Again, we would like to find out what happens if m > 2. Can we find
scores which linearize all the bivariate regressions, or perhaps even all the
multivariate regressions as well. And if we can’t in general, under what
conditions do such scores exist.

5. More than two variables

It is clear that for m > 2 variables things are not so simple any more. In
general, not all bivariate regressions (let alone all multivariate regressions)
can be linearized by scoring (or, if you prefer, transformation). Let us call
a multivariate distribution bi-linearizable if all bivariate regressions can be
linearized by scoring. In obvious notation there exist m different vectors
{aq, -+, amy} such that

C]'zozz = p]'zD]'Oz]'.

Although each of these equations can be solved easily, and has multiple
solutions, by Hartley’s result, in general the solution for «; from equations
(4, 0) and (j,v) will be different. We see that the condition means that the
singular value decompositions of the bivariate distributions are linked, in
the sense that decompositions with an index in common also have a singular
vector in common. This can also be written by defining the matrices

Ty = Dj_lCﬂD;lCM.

For each j the m matrices T, must have an eigenvector in common.
We give some simple examples of bi-linearizable distributions.

— all variables are binary,

— there are only two variables,

— special cases, such as the multinormal (or elliptical),
— the straimed multinormal in the sense of Yule.

The first example is trivial. Obviously we can draw a line through two
points. The second example is Hirschfeld’s theorem. Regressions are linear
in multinormal of elliptical distributions, so obviously they can be lin-
earized. The strained multinormal will be discussed in more detail below.
We see that assuming that the multivariate distribution is bi-linearizable is
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an important generalization from assuming it to be multinormal (or ellip-
tical). Cuadras [8] shows that bi-linearizable distributions with arbitrary
marginals exist.

Observe that we do not assume that all regressions can be linearized.
Considering all multivariate regressions would take us into the realm of
higher-dimensionsal tables again, and we would run into the empty-cell
problem (also known as the curse of dimensionality). We concentrate on
properties of the bivariate marginals, which will be reasonably well-filled
even in high-dimensional situations.

6. Strained Multinormals

The notion of a strained multinormal is not very well known, so we describe
it a bit more in detail.

Suppose & = (z;, -, Z,,,) is multivariate normal. Now suppose ¢; are
strictly increasing, and define y = (¢1(21), - -, ¢m(2,,)). Then y is strained
multinormal. Thus the marginal normality is destroyed by applying sep-
arate transformations to all variables. Obviously we can wunstrain y by
applying the inverse transformations qu_l The notion 1s due to Yule, in his
discussion of Pearson’s tetrachoric correlation coefficient [43].

We assume, then, not necessarily, that the correlation surface is nor-
mal, but that it is “strained normal,” as we may term it, and it is conceiv-
able that “strained normal” may cover markedly skew correlation tables
(Lc., page 141).

We can write down expressions for the distribution and density of a
strained multinormal quite easily. Use ¥ and ¢ for the standard multinor-
mal distribution and density. The distribution is

F(Zla T Zm) = \IJ(¢)1_1(21), T ¢7711(Zm))
and thus the density is given by

omF
621 . 8zm

f(zla"'azm): 8,2
J

= (67 (21), -, 05 (2m))

=1

This creates a fairly general family of multivariate distributions. In a
sense 1t generalizes the approach to transformations popularized by Box
and Cox [4]. In a strained multinormal we can of course linearize all re-
gressions (not only the bivariate ones) by unstraining. Thus assuming
strained multinormality is stronger than assuming bi-linearizability.
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There is, by the way, a condition logically in between strained normality
and bi-linearizability: suppose orthonormal systems {c;q,- -, jp} exists
such that

Ciettgs = pjes Doy,

This could be called bi-linearizable of order p. We have bi-linearizability
of order p if the for each j the m matrices T}, have a complete system of
eigenvectors in common, which happens if and only if they commute. The
standardized multivariate normal is bi-linearizable of all orders, because
the Hermite-Chebyshev polynomials can be chosen as the common eigen-
system.

7. Some questions

We have defined bi-linearizable distributions, and we studied some special
cases. Immediately we are stuck with a number of questions about the
linearizing transformations.

— If they exist, how do we find them 7 (estimation)

— Do they exist 7 (test of fit)

What do they do to the standard errors 7 (precision)
— How do they look 7 Are they useful 7 (data analysis)

In the rest of this paper we shall try to answer the first three of these ques-
tions. The fourth one can only be answered by looking at many examples,
and for this we refer to the book by Gifi [20]. We have already discussed
the existence question above, algebraically, but we have not translated our
results into a statistical test.

8. LPYV diagonalization

We start with the question on how to find linearizing scores. There is a
straightforward direct approach. We have cross-tables C}, and univariate
marginals in diagonal matrices [J;. For standardized scores the correlations
are

o
pie = a;Cjeay,
and the correlation-ratios are

2 _ e =l
77]»Z_oz]»C']gDZ Cojaj.

Obviously
2 2
Pie < Mjes
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with equality if and only if the regression of variable ¢ on variable j is
linear. This indicates one straightforward way of finding the scores, if they
exist. Minimize

m

m
T(al’ Ty Z 77]2 p]Z

j=1e=1

This loss function can be minimized quite easily by changing one set of
scores at the times, and cycling through the m sets iteratively. The sub-
problem of finding an optimal set of scores for variable j, with the other
m — 1 sets fixed at their current values, is a small generalized eigenvalue
problem.

A more general approach, which can be used for bi-linearizability of
higher orders, is taken in [1] and [11]. The approach gives us a lot of insight
into the MCA problem, and consequently it is not merely a computational
tool. We collect the Cj, in the mp x mp Burt table, and the D; in the
corresponding diagonal matrix. Multiple correspondence analysis solves
the generalized eigenvalue problem C'a = AD«, which generally has mp
solutions. Or, to put it differently, we look for an orthonormal K of order
mp that diagonalizes H = D~1/2C D~1/2. We can compute K by the usual
techniques for solving the symmetric eigenvalue problem. But instead of
doing that, we shall try to build up K from simpler components in three
steps.

Start with m orthonormal L; of order p such that all
-1/2

—1/2
Uje = Ly D7 ¢

Dy 7L

are diagonal. Such I; need not exist, but if they do, and we collect them
in the direct sum L = L1 ® Lo @ - - -® Ly, then U = L' H L has submatrices
which are all diagonal. It is now possible to find a permutation matrix P
such that PPUP = R1 & Ry & --- @ Rp, where the R; are of order m. We
find Ry by selecting all the (1,1) elements of the U;e, Ry by selecting the
(2,2) elements, and so on. Now P'UP = P'IL'HLP, and we have found
the orthonormal matrix LP which transforms H to direct sum form. But
obviously there exist orthonormal V,, which diagonalize the R,.. If V is their
direct sum, then LPV diagonalizes H.

The computations in the previous paragraph can be carried out exactly
if and only if we can find orthonormal L; such that U;, are diagonal. In
general, we cannot (because it would mean that the distributions are indeed
bi-linearizable of order p). What we can do is minimize the sun of squares
of the off-diagonal elements of the U;,. A convenient and rapid way to do
this is by using Jacobi-like plane rotations to build up the L;. In [1] two
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strategies are discussed. The first one minimizes the sum of squares of
all off-diagonal elements. The second one minimizes the sum of squares
of the elements in the first row and column of all U;, only. It is easy to
see that we can make this particular sum of squares equal to zero if and
only if the distributions are bi-linearizable. Moreover, the sum of squares
1s exactly equal to the sum of differences between the correlation ratios and
the squared correlation coefficients 7(aq, - - -, apy ) we used a few paragraphs
ago. If we are done, we fix the first row of the L;, and start on the second
one. And so on.

In any case, we have build up an orthonormal L PV which approximately
diagonalizes H. And, of course, we also have an orthonormal K which
exactly diagonalizes H. The point made in [11] is that the LPV approach
in many cases gives much more insight into the MCA problem. In order to
illustrate this, think of MCA as a form of nonlinear component analysis.
Each system of scores, i.e. each column of K, can be used to compute
an induced correlation matriz, and each induced correlation matrix can be
submitted to a regular PCA. But there are mp such correlation matrices,
and we consequently find m?p principal components. Gifi calls this “data
production.” Now suppose «; is a bi-linearizing set of scores. Let us look
at vectors of the form #;; and substitute them in the MCA equations.
They become

Z pjzgz = /\9]
=1

This has m solutions for 4, the eigenvectors of R = {p;¢}. Thus each bi-
linearizing solution produces m solutions to the MCA equations, each with
the same induced correlation matrix. Less data production, consequently.

Moreover suppose 0;,a; are the MCA solutions corresponding with the
linearizing scores, and suppose 7; are the scores for another MCA solu-
tion. If the eigenvalue for scores 7; is different from the eigenvalue of the
correlation matrix induced by the a;, then

m
Y 05y =0
j=1

for all s = 1,---,m, which will generally be the case only if ozé»'yj = 0 for all
j=1,---,m. Thus all other MCA solutions are strongly orthogonal to the
«;, in the sense that each piece is orthogonal. A single set of bi-linearizing
scores already means that we can use L and P to transform H to the form
Ry & R», with Ry the correlation matrix induced by the scores, and with
Ro the “residuals”. Bi-linearizability of order p means that there are only
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p induced correlation matrices, with only mp principal components. LPV
exactly diagonalizes H.

If we want to compare the MCA solution to the approximate LPV solu-
tion, then we can compute K’ L PV, which will have correlations between the
two systems of solutions. There are examples in [11]. We find remarkable
results, which can be understood quite easily by keeping the standardized
multinormal in the back of our minds. The first set of bi-linearizing scores
are the zero-degree Hermite polynomials. They give an induced correla-
tion matrix with all elements equal to one (not really a correlation matrix,
because the corresponding transformed variables are not centered). This
bi-linearizing set occurs in any MCA, and gives one eigenvalue equal to m
and m — 1 eigenvalues equal to zero. In the multinormal the second set
of bi-linearizing scores are the first degree polynomials, i.e. the identity
transformation. The induced correlation matrix is the correlation matrix
of the underlying multinormal, and we have m eigenvalues taken from that
correlation matrix. Then the second degree polynomials, corresponding
with quadratic transformations, induce the correlation matrix R(?), which
consists of the squares of the correlation coefficients. And so on.

Empirically we find that the MCA solutions corresponding with the
largest eigenvalues, and those corresponding with the smallest eigenval-
ues, are found by both eigen-analysis and LPV diagonalization. But LPV
gives the eigenvalues in a natural order. First we get the m trivial ones,
corresponding with the zero-degree polynomial. Then the m eigenvalues
corresponding with the first induced correlation matrix, and so on. In an
ordinary MCA we typically find that the largest nontrivial transformation
corresponds with the dominant eigenvalue of the first induced correlation
matrix, while the second largest eigenvalue is actually the largest eigenvalue
of the second induced correlation matrix. If we plot the two transforma-
tions, we see a quadratic structure, the famous horseshoe, or, in French,
the effect de Guitman. Compare [41] for more information, and [37] for
a nonparametric (ordinal) explanation of horseshoes. Horseshoes are not
inevitable. There are multiunormal examples in which the first two eigen-
values come from the same (linear) correlation matrix. If we mix two
multinormals with correlations that are opposite in sign, then the eigen-
values corresponding with the odd powers of the correlation coefficients
disappear, and the dominant solutions can be both quadratic.

9. Functions of Correlation Coefficients
In the bivariate case we could find the bi-linearizing scores by maximizing

the correlation coefficient. In the case of m > 2 variables we can find the
scores, if they exist, by making the correlation ratios equal to the squared
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correlation coefficients, or by using the L PV plane rotations to eliminate
the appropriate off-diagonal elements.

But let us go back now to the situation in which we do not necessarily
assume bi-linearizability. It may still be interesting, for data analysis rea-
sons, to find systems of scores with various optimal properties. We discuss
a general algorithm which can be used for this purpose. It is explained in
greater detail in [14].

For given scores a; we can compute induced correlation coefficients be-
tween our m variables. Take any function 7(e) of these correlation coeffi-
cients pge, i.e. any function of the correlation matrix. In [14] this is called
an aspect of the correlation matrix. We define optimal scaling techniques
by maximizing (or minimizing) aspects 7(e) over the scores «;. Each aspect
defines a different technique, and each choice of the subspaces K; defines a
different special case of a technique. The K; can be defined by polynomi-
als, or splines, or dummies, with varying degrees on various knot-sequences.
Actually, let us make the easy generalization here to convex cones K;.

From the algorithmic point of view quite a few things can be said about
the problem of maximizing 7(e). First let us suppose that the aspect is
convex as a function of R. Then, with v another set of scores,

T(R(a)) 2 T(R(7)) + tr G(7)(R(e) = R(7)),

where ((e) is the matrix of partial derivatives (or an element of the sub-
gradient) of 7(e). Now let us maximize, in each step of the algorithm, the
right hand side of this expression over «, taking ¥ = &(*), our current best
guess of the scores. The maximizer is a*+1)_ It follows that

T(R(@UT)) > r(R(a'))) + tr G(a!)(R(a"T)) = R(a")))
(R(al)) + tr G(a)(R('*) — R(al*))) = 7(R(a'*))).

v

Thus we increase the aspect, and we can use general results [15] to show
that this leads to a convergent algorithm. R

In each sub-step of the algorithm we have to maximize o/ C(*)er, where
C](z) = gﬂ(a(s))C’ﬂ, over all o with a;Dja; = 1, and perhaps cone-
constraints of the form o; € K;. We cycle over the «;, and update each in

turn by
aj — Pi(D7 Y Cay),
L#§
where P(e) projects on the cone.

Ways to speed up and simplify this basic algorithm are discussed in [14].
Clearly 1t can be used on a very general class of aspects. We can show, for
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instance, that the sum of the p largest eigenvalues, the squared multiple
correlation coefficient of one variable with the rest, the log-determinant,
and many other aspects are indeed convex functions of the correlation ma-
trix.

10. Consequences of bi-linearizability

Let us forget about cone constraints for the time being, and generalize
the class of aspects to functions of both the correlation coefficients and
the correlation ratios. The stationary equations for maximizing r(e) are
(assuming differentiability)

" or " or _
> o, it t > 577 CitDe Cljaj = A Djay.
25 Pt 25 Ot

The A; are Lagrange multipliers, taking care of the normalization of the
scores. If the scores «; linearize the bivariate regressions, then they solve
the stationary equations with

2 o7 =oor
Aj=) g —piet > oz Pit
s Pt g i

This result is interesting, because it shows that bi-linearizing systems give
stationary points, no matter what the aspect is (it does not even have to
be a convex function of the correlations). Or, to put it differently, if bi-
linearizing scores exists, then optimizing any aspect will find them. We
need some qualifications here, because the stationary point may not be an
actual maximum, but essentially this strong corollary of bi-linearizability
guarantees a solution with is invariant over choice of aspect. There are
already many programs which maximize functions of the form 7(e), such
as MCA, ACE, etc. If bi-linearizable scorings exist, they will find them.

11. Model oriented approach

The correspondence analysis based techniques are primarily exploratory in
character, at least if one believes in the distinction between exploratory
and confirmatory [20]. Nevertheless, bi-linearizability and strained multi-
normality are restrictive models; which can be good or bad descriptions of
an observed Burt matrix. It consequently makes sense to look at the fit of
the model with the usual statistical large sample techniques.
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Suppose the «; linearize the bivariate regressions. Complete the scores

to matrices A; = (a; | Aj),such that A;D;A; = I. Then

Pl 0
ALCiAy = )
A (0 A}CMAZ)

Solving the equations gives us the parametric model (for the joint bivariate
marginals)

Dy'CyDyt = 44 (pé" S ) Al
This can be done by weighted least squares, applied directly to the bivariate
marginals. We fit the parameters A4;, as well as the parameters p;; and 7 j,.
For bi-linearizability of order p we can strengthen the model to

Dy CiDyt = AjAji Ay,

with A;, a diagonal matrix. For strained multinormality we combine this
with no higher-order interactions, and we can even use likelihood methods.
Although these techniques are fairly straightforward in principle, they in-
volve tedious delta-method type calculations, and they have not been im-
plemented so far.

12. Two-step techniques

There 1s another way in which we can combine classical inference with
optimal scaling. A useful statistical procedure seems to be the two-step
technique. First we scale the variables by trying to bi-linearize the re-
gressions. Then we apply standard techniques to the induced correlation
coefficients. Such standard technqiues can be multiple regression, principal
component analysis, LISREL, etc. But what about the asymptotic normal
distribution of the induced correlations 7

The nice result, again generalizing Pearson [35], is that for linearizable
distributions the asymptotic normal distribution is the same as the one we
would derive if the scores had been known (fixed, not dependent on the
data). This is discussed in detail in [13]. The reason is simple. Let us look
at the discrete case. The Burt table is a function of the profile frequencies,
i.e. of the cell entries in the multivariate table. Collect them in the vector
p. We compute our statistics on the basis of the correlation coefficients,
which depend on the scores, which depend on the p. Suppose statistic 7(e)
is differentiated with respect to p. We find

m m

or ot Opje
o = 22 gy 0p

j=11=1
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Now
dpje _ Opjedaj | Opje oy | Opje OC5e

op  Ba; Op  day dp  9Cj Ip
If the scores bi-linearize the regressions, then the first two terms on th right
hand side disappear, and the last expression becomes simply

Opje aC},
—a]]) IO[} 6; Qg

But this means that the partials of the scores with respect to p do not
enter the delta-method calculations, and thus we can treat (for statistical
purposes) the scores as fixed and known. We know since Isserlis [28] how to
compute the asymptotic distribution of correlation coefficients. This means
that standard error calculations from ordinary regression, factor analysis,
and LISREL programs are still (first-order) correct.

So let us consider any method which consists of scaling the variables
first, using any technique which optimizes an aspect of the correlation coef-
ficients and correlation ratios, followed by a classical multivariate analysis
technique on the scaled variables. Such a two-step method gives unbi-
ased estimates of the structural parameters under the assumption of bi-
linearizability, while the usual methods to compute standard errors are
still asymptotically valid. Moreover they give the same result as if we had
fixed and know scores. If we compare this with assuming multivariate nor-
mality, we gain a lot in terms of bias, and we do not seem to lose anything
in terms of precision. There is a (first-order) free lunch here. Tt will be in-
teresting to find out in how far these results are borne out by small-sample
comparisons.
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