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Lithium ion batteries are widely used in the world. The impedance of lithium ion 

batteries can potentially give informative insights of battery’s life and health if the 

interpretation of impedance is reliable enough. In this work, the impedance of 

Panasonic NCA 18650B battery was investigated through electrochemical 

impedance spectroscopy (EIS) and was modeled using artificial neural network. EIS 

study shows that under different cycling conditions, such as overcharge and 

overdischarge, the impedance change of electrolyte, electrode/electrolyte interface of 

the battery exhibit different behavior. Artificial neural network modeling gives an 

accurate prediction of battery future impedance for different sections such as 

equivalent series resistance (ESR), solid electrolyte interface (SEI) and charge 

transfer resistance, which can be used in battery state of health (SOH) estimation 

and prediction. Lastly, a design of impedance analysis circuit is given which make it 
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possible to conduct real time impedance measurement on battery management 

systems (BMS).  

 

Keywords: 

Lithium ion battery, electrochemical impedance spectroscopy, artificial neural 

network, state of health, battery management systems.  
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Chapter 1  

 

Introduction and background  
 

1.1 Global environment and market overview  

Through the centuries, the world and the society has been going through fast 

development continuously, driving by everyday industrial revolutions and the 

advancements of technologies. With the fast advancements and large consumptions, 

the 21st century leaves human being with big global environmental problems to 

solve. Such as energy depletion cause by large fossil fuel consumption, global 

warming caused by excessive carbon dioxide emission and so on.  

Energy depletion by definition means that the consumption of energy is faster than 

the reproduce of energy. Energy can be classified by renewable energy and 

unrenewable energy. In a certain point, both two types of energy can be faced with 

depletion.  

The energy source of fossil fuels is the one facing depletion, which is one of the 

biggest problems for human beings in the 21st century. By BP Statistical Review of 

World Energy [1], the year of fossil fuels left is showing in the following chat. 
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Figure 1. 1 Years of fossil fuel reserves left on earth 

Finding energy alternatives for fossil fuel is a necessary and urgent step for human 

being. Among all solutions, electricity is considered a good alternative renewable 

energy source. To fully utilize the good of electricity. Improve the performance of 

energy storage system is a good solution.  

Therefore, finding better performance Lithium ion batteries and related studies are 

being regarded a critical solution for human to face our energy challenges.  

1.2 CO2 emission and global warming  

Burning of fossil fuels brings carbon dioxide and other greenhouse gases. Excessive 

greenhouse gasses in the atmosphere causes global warming and climate change, 

which have so many effects for the whole natural environments. For example, ice 

melting worldwide, invasive species dying out, sea level goes up, predictable diseases 

spreading and animals changing immigration destination and so on [2]. In 
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California, global warming will bring more droughts and wildfires, native fishes 

dying out, costal dangers, and spreading diseases [3].  

According to IPCC [4], the trend of global carbon emission from fossil fuels from 

1900 to 2014 is shown in the figure 1.2. As we can see from the figure, carbon 

emission increases nearly 20 times through 20th century. Therefore, it is a necessary 

for human to find a solution for excessive carbon emission.  

 

Figure 1. 2 Global carbon emissions from fossil fuels, 1900 - 2014 

Low carbon actions are the way of leading us to a solution of the environmental 

challenges. According to the union of concerned scientists [5], there are two ways of 

solutions people need to follow. One is reducing emissions, and the other one is 

preparing for impacts. While reduce emissions solves problem existing from 

beginning which is a more radical way for this problem. Turning renewable energy 

like solar energy into electricity is considered a cleaner way in the regard of zero 
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emission. The solution is that rather than burning gasses, coals or other fossil fuels, 

the production of electricity should be replaced by solar panel, windmills or 

hydropower. However, to successfully fulfill the process, a reliable energy storage 

system is very important to perform this mission. Therefore, better performed 

lithium ion batteries and battery management systems are being considered good 

solutions to this. 

Putting our focus on market level, the growing market of electrical vehicles is being 

a strong push power for thousands of scientists and engineers to develop a better 

battery and battery management system. The electric buses sales in China has 

hugely spiked up from the year of 2014 as shown in the figure 1.3 below, nearly by 

100 times [6].  

 

 

Figure 1. 3 China electric bus sales 2011 - 2017 
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Moreover, the EV industry worldwide is also growing through the recent years [7].  

Therefore, a better performed Battery management system (BMS) is critical to face 

the challenge of a sustainable energy storage system in EVs. 

In summary, considering all of these current situations, the study of lithium ion 

batteries and lithium ion battery management systems is a necessary route to take 

to solve these problems.  

1.3 Lithium ion battery problems – comprehensive state 

of health (CSOH) prediction 

Lithium-ion battery (LIB) system is one of the most important energy storage systems 

because of its high energy density and easily convertible chemical energy [8-12]. As 

impactful developments in LIB capacities and power densities have been made in the 

recent years, advanced sensing and monitoring technologies are needed in order to 

predict the battery state of health (SOH) and control the battery operations in advance to 

avoid any potential safety issues. The internal electrochemical processes of the batteries 

determine their performances and these electrochemical processes are very difficult to 

observe since they depend not only on the design and usage of the batteries but also the 

changes in the ambient environment. Therefore, a comprehensive understanding of the 

battery characteristics for SOH estimation is crucial in battery management systems 

(BMS), since this has a big impact on applications such as portable electronics and 

electric/hybrid vehicles [13,14].  

In this regard, researchers have attempted to develop various methods for battery SOH 

estimation by creating electrochemical models that could enable them to simulate the 
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behavior of lithium ion batteries. These methods comprise the physical-model approach, 

which includes the Thevenin model [15], run-time based electrical model [16], and 

combined electrical model [16,17]. All of these methods provide significant information 

under nominal conditions and they build a good fundamental understanding of the 

electrochemical processes. However, unpredictability of the battery internal 

characteristics due to complex environment conditions makes these models impractical, 

moreover, most of these models are limited since they treat state of charge (SOC) as the 

only indicator of SOH by ignoring the effect of degradation inside the cells which could 

be originating from the interactions between the internal components. SOC is the amount 

of capacity remaining in a battery compared to its fully charged state. SOH is a notion 

that serves to compare the performance and health condition of a used battery with a 

brand new one. However, SOH has not reached a standard definition yet. Researchers and 

manufacturers use their own definitions for the battery SOH [18 - 22]. Among all of the 

SOH definitions, there are two kinds that are commonly adopted in the literature. First 

one is based on the specific capacity values of the batteries. It is defined as 
𝐶𝑎𝑐𝑡−𝐶𝐸𝑂𝐿

𝐶𝑛𝑜𝑚−𝐶𝐸𝑂𝐿
∗

100%. 𝐶𝑎𝑐𝑡 is the current capacity of a used battery, 𝐶𝐸𝑂𝐿 is end of life capacity (usually 

80% of 𝐶𝑛𝑜𝑚) of the representative battery, and 𝐶𝑛𝑜𝑚is the capacity of a brand-new 

battery [18]. A battery may have a large capacity remaining even though its internal 

resistance is high, which would in turn degrade the performance of the battery. In this 

case, battery SOH that is based on the capacity will not be accurate. The second group of 

definition is more comprehensive, which consists of multiple parameters that could reveal 

a more detailed picture of battery SOH. A. Eddahech et al. used a combination of aging 
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and usage conditions to estimate SOH, where these parameters are used to investigate 

their related adverse effects on the battery life [19]. Meanwhile, J. Remmlinger et al. used 

the internal resistances as the representative indicators of battery SOH [20]. This second 

definition of SOH is usually called comprehensive SOH (CSOH). Compared with battery 

SOH, battery CSOH can give information about battery safety risk, heat generation and 

other important details [19,20]. 

Unlike the physical-model approach, another approach focuses on the utilization of the 

battery data to predict the battery behavior. The so-called data-driven approach includes 

methods like support vector machine [23], fuzzy logic [24] and neural network [25]. 

Kalman filtering is also an accepted method which uses the experimental input and 

output data to find the minimum mean squared error of the true state [26,13]. Data-driven 

methods are much more flexible than the physical-models since they learn from the 

history of the system and they are able to predict the future of the system using the 

historical data. The data-driven methods have been used before, however, the 

investigation of battery CSOH combined with these methods is relatively rare. 

Combining the power of data-driven approaches with CSOH analysis could give a much 

more accurate estimation for the battery behavior. Therefore, using the data-driven 

methods for battery CSOH estimation is very important. Another benefit of the data-

driven methods is their independence from the chemical modeling of the battery, which 

allows this method to learn the behavior of any type of battery based on the historical 

data. Gregory L. Plett and his group used Kalman filtering to provide a quantitative 

estimate of SOH in pack level [27]; Pritpal Singh, et al. developed a fuzzy logic-based 
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model combined with impedance data to estimate the SOH of the batteries in portable 

defibrillators, it showed relatively accurate estimation of number of pulses the battery 

pack could deliver and the remaining cycle life [28]; Githin K. Prasad targeted on two 

critical indicators, cell resistance and solid phase diffusion time of Li+, that could 

determine SOH of the batteries, and then linear least squares algorithms were 

implemented to produce these parameters for fresh and aged batteries [29].  

Among all of the data-driven methods neural network stands out since it can be easily 

matched with other techniques and it does not need for the detection of model parameters 

or coefficients since it is performed automatically by training. It is a branch of artificial 

intelligence that has the capability to deal with a gigantic amount of data. Other 

significant advantages of neural network include noise tolerance, the ability to deal with 

incomplete data and non-linear problems. Neural network has also been proven to be a 

very reliable technique in various practical areas, including medicine, business, 

renewable energy systems, etc. [30-32]. Using neural network for lithium ion battery 

applications is particularly advantageous because it is possible to learn battery 

degradation patterns through impedance behavior from analyzing several batteries and as 

a result, predictions about future battery behavior can be created.  

Electrochemical Impedance Spectroscopy (EIS) is one of the best candidates for CSOH 

estimation. EIS is an electrochemical characterization technique that can be used for the 

diagnosis of a wide range of electrochemical systems in order to understand their 

electrochemical behavior [33,34]. Specifically, EIS can provide detailed information 

about the interfacial resistances that are experienced within the components of a battery, 
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namely equivalent series resistance, charge-transfer resistance and solid-electrolyte 

interphase resistance. The evaluation of the overall impedance, as well as the interfacial 

resistances of different components in the battery both serve as a guide for any 

modifications in engineering battery systems to improve their overall electrochemical 

performance [35]. Besides, EIS is considered to be a technique that can give detailed 

information of the battery systems without giving any damage to the battery [36]. 

Another advantage of using impedance as a CSOH indicator is that EIS can be measured 

in real time within very short time intervals [37,38].  

1.4 Basics of Lithium ion Batteries  

In this section, the basics and mechanisms of Lithium Ion Battery will be described 

and demonstrated, which is summarized in the following five sections: definition, 

configuration, electrochemistry and characterization.  

1.4.1 Definition of Lithium Ion Battery  

Lithium ion battery is a type of rechargeable battery, also known as secondary 

battery, in which lithium ions moves between electrode and within electrolyte 

during charge and discharge process. Lithium ion battery provide outside circuit 

with electricity during discharge process. 

1.4.2 Configuration of Lithium Ion Battery 

Within a Lithium Ion Battery cell, anode is usually graphite or prose silicon. 

Cathode are usually lithium with transition metal oxide. Electrode are usually 

organic solvent with Lithium ion salt. 

During charge process, electrons move from positive electrode to negative electrode 
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in the outside circuit, and Lithium ions move from cathode to anode within the cell. 

Process reverses during discharge process. As shown in Fig. 1.4 [39]. 

 

Figure 1. 4 Working Principle of Lithium Ion Battery 

Electrochemistry of Lithium Ion Battery  

Using LiCoO2 cathode Lithium Ion Battery as an example, chemical reactions of the 

cell is as following:  

Cathode:  

Anode side:  

Overall：  

The overall reaction has its limits. Over discharge supersaturates lithium cobalt 

oxide, leading to the production of lithium oxide, [40] possibly by the following 

irreversible reaction:  

Overcharge up to 5.2 volts leads to the synthesis of cobalt (IV) oxide, as evidenced 

https://en.wikipedia.org/wiki/Lithium_cobalt_oxide
https://en.wikipedia.org/wiki/Lithium_cobalt_oxide
https://en.wikipedia.org/wiki/Lithium_oxide
https://en.wikipedia.org/wiki/Volts
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by x-ray diffraction [41]:  

1.4.3 Characterizations of Lithium Ion Battery 
 

There are a lot of characterization methods for lithium ion battery, which can be 

generally classified into two categories: material characterization and device 

characterization.  

For material characterization, SEM (Scanning Electron Microscopy), EDS (Energy 

Dispersive Spectrum), TEM (Transmission Electron Microscopy), Raman 

spectroscopy, XRD (X- ray Diffraction) are commonly used methods.  

For device characterization, EIS (Electrochemical Impedance Spectroscopy), GITT 

(Galvanostatic Intermittent Titration Technique), CV (Cyclic Voltammetry) are 

generally commonly used methods.  

1.5 Overview of this work  

The topic of this thesis will fall into the area of investigation of Lithium ion 

batteries. The battery will be talked about most is the commercial NCR 18650 

battery. 

This work is mainly focusing on testing and characterizations of lithium ion 

batteries via electrochemical impedance spectroscopy (EIS). As well as battery 

management systems and machine learning algorithm for battery control.  

The problems this work is solving falls on how to improve battery performance 

through cycling without changing battery chemistries.  

In this study we applied a neural network model by using the EIS data, and since 

the data obtained is plentiful and extensive, this allowed us to make accurate 

https://en.wikipedia.org/wiki/X-ray_diffraction
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predictions about the future behavior of the commercial lithium ion batteries. EIS 

analysis of the lithium ion batteries was performed under several cycling conditions 

(different SOC, overcharge and overdischarge) to determine CSOH indicators and 

analyze the impact of different charging profiles on the internal chemical reactions 

within the cell. Three important CSOH indicators were discussed and the prediction 

of the future values of these indicators are achieved via a neural network model. 
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Chapter 2 

 

Electrochemical impedance spectroscopy 
(EIS) investigations and analyses on lithium 
ion batteries from different perspectives    
 

2.1 Basics of electrochemical impedance spectroscopy  

Mechanisms of electrochemical impedance spectroscopy (EIS) will be mainly 

introduced in this section for basic understanding and further discussion.  

Generally speaking, EIS is an impedance measurement technique for 

electrochemistry systems. During the testing, EIS employ a sinusoidal function of 

different frequency form mill hertz to kilo hertz in the form of voltage (or current) to 

the electrochemistry system, and receive the response which is also an sinusoidal 

wave in the form of current (or voltage). There will be a phase difference between 

the input signal and the response, which indicate the electrochemistry system is not 

a pure resistor. And then the impedance of the electrochemistry can be calculated 

using the equation below:  

 

 

𝑍(𝜔) =
�̃�

𝐼
= 𝑍𝑟 + 𝑗𝑍𝐽  
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The impedance contains real part and imaginary part, which is usually be used as X 

and Y axis in impedance graphs that we most commonly see. As shown in Fig. 2.1. 

 

Figure 2. 1 EIS Nyquist Plot 

For different electrochemistry systems, the interpretation of semicircles in the 

impedance diagrams are different, depending on properties of the electrochemistry 

system.  

2.2 Literature research of EIS studies on lithium ion 

batteries 

Electrochemical impedance spectroscopy has been a powerful tool for 

characterization for different electrochemical systems. In the field of lithium ion 

battery, EIS is also a powerful tool to investigate the kinetics and aging mechanisms 

for battery in recent years and the trend is keep going. In 2002, A Hejelm et al [42] 

give out an EIS analysis of LiMn2O4 cathodes, revealed that the impedance 
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response is strongly dependent on the current collector used. In 2006, J Jorcin et al 

[43] gave out CPE (Constant Phase Element) analysis using local EIS, which gives 

out an fundamental analysis method surface reactivity, surface inhomogeneity, 

roughness and fractal geometry. In 2008, D Dees et al [44] using EIS to analysis the 

positive electrode of lithium ion battery, the composition of the electrode is layered 

nickel oxide (LiNi0.8Co0.15Al0.05O2). The paper also gives out model for the 

description of oxide – electrolyte interface. In 2011, J Guo et al [45] studied silicon 

carbon composite anode for lithium ion battery using EIS. This paper gives out an 

EIS behavior explanation of silicon battery anode in different cycles. In 2013, Z Deng 

et al [46] analyzed capacity fading of lithium/sulfur battery using EIS. This paper 

pointed out that charge-transfer resistance is the key factor contribution to the 

capacity fading of Li/S battery. In 2015, S Erol [47], who is instructed by Dr. Mark 

Orazem, published thesis paper investigating lithium cobalt oxide/carbon batteries 

using EIS. This paper gives out a comprehensive analysis of the battery chemistry in 

different battery condition, such as overcharge, over discharge, different state of 

charge and temperature.   

However, EIS is not a standing alone technique, which means that to conduct a 

successful EIS analysis, one must be aid with other structural or electrochemical 

information of the system. 

2.3Electrochemistry interpretation 

2.3.1 Explanation of the electrochemical analysis through EIS 
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Electrochemical analysis in this work was based on the basic electrochemical theory 

explained in this section. Figure 2.2 is a simple scheme of Nyquist plot. It usually 

consists of all or parts of an inductance tail, one or multiple semi circles, and a 

diffusion tail that depends on the complexity of the electrochemical systems. 

Roughly, each part represents a different electrochemistry component that would 

contribute to the overall impedance of a cell. The details of each electrochemistry 

component are given in Table 2.1. Such approach has been used to analyze EIS 

results in various researches on lithium-ion batteries, which was summarized by D. 

Andre et al [48].  The reason that these parameters can be distinguished into 

different parts in the Nyquist plot is the significant variation of their time constants 

[49]. Equivalent series resistance (ESR), charge-transfer resistance (Rct) and solid-

electrolyte interphase resistance (Rsei) are all important elements that reflect battery 

health condition under different aging situations. ESR is mainly associated with 

resistance of the electrolyte and it can reflect the electrolyte consumption, which is 

related to the degree of irreversible capacity loss of the cell [50,51]. The electrical 

conductivity of the additives within the electrodes is also contributed to ESR as well 

[52]. Rct represents the redox reactions happening at the interfaces between the 

electrolyte and the electrodes during lithiation and delithiation processes [53]. This 

rate-limiting element is a very sensitive and reliable indicator for surface 

degradation, especially for ternary cathode materials, including NCA, NMC, LFP, 

etc. The change of Rct provides significant information about phase transition at the 

interfaces [54, 55]. Rsei is the resistance of the solid-electrolyte interphase (SEI) 

layer. A stable SEI secures a good capacity of a cell, even though it usually leads to 
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initial irreversible capacity loss during the wetting and formation cycles [56]. Safety, 

cycle life and high C-rate performance are directly related to the morphology and 

quality of the SEI layer, which makes Rsei a very significant parameter to be used as 

an indicator of battery CSOH [57,58]. The exact value of these parameters can be 

obtained through a fitting procedure introduced in the next section. Since, ESR, Rct 

and Rsei are all important factors that provide useful information on battery health, 

they are the three indicators we used for CSOH estimation in this work. 

 

Figure 2. 2 Electrochemistry interpretation of Nyquist plot 
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Table 2. 1 Electrochemical interpretation of Nyquist plot 

 

2.3.2 Equivalent circuit used for the fitting of EIS data 
 
The fitting of the EIS data was conducted using the embedded software in Bio-Logic 

BT LAB named ZFit. Fig. 2.3 shows the equivalent circuit (EC) model used to fit the 

dataset.  

 

Figure 2. 3 Equivalent circuit (EC) used for Nyquist plot fitting 

Based on the basic theory of Nyquist plots [59] and previous works reported by our 

group [60-62], Equivalent Circuit (EC) shown in Figure 2.3 was selected to fit the 

Part 1 Inductance  Inductance induced by current collector, 

wires outside battery 

Part 2 Ohmic resistance  Represent as equivalent series resistance  

Part 3 SEI resistance and 

capacitance  

Resistance and capacitance of SEI layer  

Part 4 Charge transfer 

resistance and 

double layer 

capacitance  

Resistance of charge transfer and 

capacitance of double layer within the 

cell 

Part 5 Diffusion tail Diffusion process within the cell at low 

frequencies 
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data. This is summarized as follows: Multiple regions related with different 

components were observed from the Nyquist plots from the EIS measurements of 

the batteries used in this work. Firstly, at high frequency region, an inductance tail 

was observed below x axis, thus an inductor was added to the equivalent circuit. 

Secondly, from all results, two semicircles were observed. In theory, one-time 

constant result in a perfect semicircle in Nyquist plot [59]. Thus, two time-constant 

elements were added to the equivalent circuit. Thirdly, the intersect of Nyquist plot 

with x axis is not zero, which means a resistor has to be connected in series with the 

whole circuit. Lastly, a tail was observed in the last part of Nyquist plot, which 

means a capacitor need to be connected with the circuit.  

 

2.4 Study 1 – EIS at different State of Charge of NCR 

18650B batteries 

2.4.1 NCR 18650B battery and testing conditions 
 
All batteries tested within this paper are 3.7V 3400mAh NCR 18650B lithium-ion 

batteries from Panasonic company, Japan, as shown in figure 2.4. The chemistry 

information from the product information sheets is shown in Table 1. 

 

Figure 2. 4 NCR18650 Battery  
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Table 2. 2 Chemical components of NCR 18650B battery 

 
*CAS (Chemical Abstract Service) 

All batteries were tested by the Bio-Logic Science Instruments Battery Cycler, BCS 

815. Cycling data was collected through BT-Lab software that comes with the 

instrument. The tests were performed under the ambient temperature of the 

laboratory and the batteries were not kept in any temperature chamber. Thus, 

temperature fluctuations between day and night are expected.  

2.4.2 Testing procedure 
 
Table 3 displays the testing procedure of EIS analysis under different SOCs. Firstly, 

the capacity check was performed to determine the true capacity of the batteries 

prior to cycling. This was accomplished with a CC-CV (Constant Current-Constant 

Voltage) charging and a CC (Constant Current) discharging run for 3 cycles where 

the average capacity was determined to serve as the real capacity of the battery. 
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After the capacity check, the batteries were charged with a constant current until 

they reached a fully charged state at 4.2 V. Afterwards, a constant voltage of 4.2 V 

was applied to the battery as the reference voltage until the current became equal to 

or lower than 50 mA. After this point, the batteries were discharged at 320 mA for 1 

hour and then they were set to rest for 1 hour. It was during this resting period that 

the open circuit voltage was recorded, and then EIS measurements were conducted. 

Lastly, the batteries were discharged at 320 mA for 1 hour again. This entire process 

was repeated 9 more times till the battery is fully discharged. For the EIS 

measurements, a voltage with an amplitude of 5 mV was applied between a 

frequency range of 10 mHz - 10 kHz. 

Table 2. 3 Experimental setting testing profile 

 

2.4.3 Nyquist plots and discussions 
 
Figure 2.5 displays the Nyquist plots for discharge and charge at SOCs of 10%, 60% 

and 100%. For both discharge and charge processes, it can be seen that at both 10% 
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and 100% SOC, plots display two semi-circles, while at 60% SOC, there is only one 

semi-circle. Number of the semicircles along with various parameters were obtained 

from the Nyquist plots at different states of discharge and charge and they are listed 

in Table 4. It was seen from the Nyquist plots that for the discharging process, two 

semicircles formed up at 100% SOC. However, from 90% SOC to 30% SOC, only one 

semi-circle was observed and at 20% SOC the two semicircles appeared again and 

continued showing up until the battery was fully discharged at 0% SOC. The 

charging process has a similar trend. Two semicircles were observed from 0% SOC to 

20% SOC. At 30% SOC, the semicircle merging phenomenon was observed, and a 

single semicircle was seen from 40% SOC to 80% SOC. At 90%, the semicircle 

merging phenomenon was presented again and lastly 2 semicircles were observed 

when the battery was fully charged at 100% SOC. A similar phenomenon was also 

observed in other studies on the same type of battery [48]. This phenomenon could 

be explained by the increase in charge-transfer resistance near terminal SOCs. The 

semicircles showing up at terminal SOCs represent the charge-transfer resistance, 

while the semi-circles showing up during the whole SOC sweep is SEI resistance. 

When the battery is near fully charged or discharged states, compared with more 

neutral SOC cases, the lithium ions experience a greater “resistance” to migrate into 

electrode when applied voltage since there is already a high lithium ion 

concentration presence at the electrode near terminal SOCs.  
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Figure 2. 5 Nyquist plot for (a) discharging and (b) charging process at 10%, 60% and 

100% SOC respectively. (a) and (b) are with same scale.  
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Table 2. 4 Values of SOC (state of charge), and its corresponding OCV (open circuit 

voltage), battery charge and number of observable semicircles on Nyquist plot for 

discharging and charging processes 

 

* number of semi-circles on Nyquist plot here means semi-circle observable by 

human eyes on Nyquist plot of each SOC. 

2.4.4 Fitting results and discussions 
 
After data fitting, the values of ESR, Rsei and Rct were determined as shown in 

Figure 2.6 ESR is the resistor component shown as R1 in the EC model. Similarly, 
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Rsei is the resistor component shown as R2 and Rct is the resistor component shown 

as R3 in the EC model. Rsei is more stable through different SOCs, while Rct values 

have a “dent” behavior within the whole SOC sweep. During discharge, the charge-

transfer resistance does not change much until 40 % SOC, then it gradually 

increases after the battery is drained to a SOC of 30%. The reason of the increase in 

charge-transfer resistance near the terminal voltage was explained in the previous 

section (3.1.2). This behavior is observed solely for discharging and is absent during 

charging, because the terminal voltage for discharging is smaller compared to the 

terminal voltage for charging, resulting in a larger charge-transfer resistance near 

0% SOC during the discharge process compared to the charge process. ESR is stable 

during both discharge and recharge, as its value remains almost constant at 

different SOCs. This means that the resistance of the electrolyte does not 

significantly change within one cycle, indicating the absence of any electrolyte 

consumption within that cycle. Rsei first decreases when the battery starts 

discharging and it reaches a minimum when the SOC is ~80%, then it keeps 

increasing until the battery is fully discharged. During charging, a similar trend is 

observed. Rsei decreases to its minimum when the SOC is ~40%, then it keeps 

increasing until the battery is fully charged. This behavior could be explained as 

follows. During discharge, the SEI layer first decomposes on anode, and then it 

forms on the cathode. During charge, the SEI layer first decomposes on the cathode 

and then it forms on the anode [56]. The result that Rsei reaches its minimum at 80% 

SOC during discharge, while it reaches its minimum at 40% SOC during recharge 

indicates that the formation of SEI is slower than the decomposition of SEI. Based 
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on the tests under different SOCs, we can reach to the conclusion that EIS behavior 

is most distinct under fully charged and fully discharged states. Therefore, the EIS 

measurement is performed at fully charged states for the following experiments. 

 

Figure 2. 6 Equivalent circuit fitted results of (a) discharging and (b) charging testing 

results. (ESR – equivelant series resistance, Rsei – solid electrolyte interface resistance and 

Rct – charge transfer resistance) 

2.5 Study 2 – EIS analysis under overcharge and 

overdischarge of NCR 18650B batteries 

2.5.1 Testing procedure 
 
Same battery as in study 1 was used in this study for testing. 

Since the variation of impedance for commercial lithium ion battery is not very 

significant during standard cycling, overcharge and over discharge tests were 

designed to find out the CSOH indicators through impedance analysis. The testing 

procedure can be found in Table 5. Four groups of measurements were performed, 

where all four groups underwent 3 cycles of slow rate cycling (680mA) and 6 cycles of 

fast rate cycling (6800mA), followed by repeating the test from the beginning for 6-
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10 times. EIS measurements were recorded at fully charged states of every cycle. 

The fully charged terminal voltages were raised from 4.2V to 4.3V for overcharge 

testing and fully discharged terminal voltages were lowered from 2.5V to 2.3V for 

overdischarge testing. For the EIS measurements, a voltage with an amplitude of 10 

mV was applied between a frequency range of 10 mHz - 10 kHz.  

Table 2. 5 Cycling Profile for Four Groups of Studies 

 Normal charge 

normal 

discharge  

Normal charge  

Overdischarge 

Overcharge 

Normal 

discharge 

Overcharge  

Overdischarge 

Step 1 slow 

cycling for 3 

cycles  

CC charge to 

4.2V 680mA 

EIS  

CC discharge to 

2.5V 680mA 

CC charge to 

4.2V 680mA  

EIS 

CC discharge to 

2.3V 680mA 

CC charge to 

4.3V 680mA  

EIS  

CC discharge 

to 2.5V 

680mA 

CC charge to 

4.3V 680mA  

EIS  

CC discharge to 

2.3V 680mA 

Step 2 fast 

cycling for 6 

cycles  

CC charge to 

4.2V 6800mA 

CC discharge to 

2.5V 6800mA 

CC charge to 

4.2V 6800mA 

CC discharge to 

2.3V 6800mA 

CC charge to 

4.3V 6800mA 

CC discharge 

to 2.5V 

6800mA 

CC charge to 

4.3V 6800mA 

CC discharge to 

2.3V 6800mA 

Loop  Loop to step 1 and repeat tests 
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2.5.2 Nyquist plots 
 
Figure 2.7 shows the Nyquist plots for four different groups of tests. At the first 

glance, it can be seen that the overall impedance values tend to increase gradually 

with the cycle number. As the cycle number increases, Nyquist plots are shifting 

right much faster in Figure 2.7(b) compared to those in Figure 2.7(a). The shifting 

phenomenon is even greater in Figures 2.7(c) and (d) compared to the shifts in 

Figures 2.7(a) and (b). This is due to the increase of ESR since the right shift of the 

Nyquist plots originates from the increase of the real part of the impedance. The 

reason of this increase will be explained in the next section after data fitting. 

Comparing Figures 2.7(a),(b) with Figures 2.7(c),(d), it can also be seen that the 

second semi-circles are larger in Figures 2.7(c) and 5(d), which is partially due to the 

fact that EIS measurement voltage for Figures 2.7(c),(d) is 4.3V, whereas it is 4.2V 

for Figures 2.7(a),(b). Besides, for the groups in Figures 2.7(a) and (b), we observe a 

larger impedance in the 0th cycle compared to the 18th cycle. This is commonly seen 

in lithium ion battery systems and it is caused by various reasons such as oxygen 

vacancy formation and activation in the electrochemistry system during the first 

cycle [63]. 
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Figure 2. 7 Nyquist plot of electrochemical impedance spectroscopy measurement at fully 

charged state of four group of tests (a) normal charge normal discharge (b) normal charge 

overdischarge (c) overcharge normal discharge (d) overcharge overdischarge, respectively. 

Four plots are using same scale. 

2.5.3 Fitting results 
 
Figure 2.8 shows the fitted results for the four different groups of tests. From Figure 

2.8, it can be seen that different battery cycling profiles will lead ESR, Rct and Rsei 

change differently through cycling. ESR remains stable for normal charge/normal 

recharge group as seen in Figure 2.8(a), but it slowly increases for normal 

charge/overdischarge group as seen in Figure 2.8(b). However, the increase of ESR 

throughout cycling is much more rapid for overcharge/normal discharge group 

(Figure 2.8c) and overcharge/overdischarge group (Figure 2.8d). This indicates that 
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the negative effect of overcharging process on the electrolyte resistance is more 

pronounced than that of overdischarging. This may be due to the cobalt dissolution 

from the cathode into the electrolyte with higher cut-off voltages, which has been 

reported in studies with similar cobalt oxide-based cathodes [50,51]. Rsei is stable in 

Figures 2.8(a) and (b). For Figures 2.8(c) and (d), Rsei does not change much at the 

beginning but it increases after ~50 cycles. This could mean that SEI layer is stable 

for the groups in Figures 2.8(a) and 2.8(b) and it starts to grow thicker after several 

cycles for the groups in Figures 2.8(c) and 2.8(d). Rct increases very slowly for the 

groups in Figures 2.8(a) and 2.8(b) and it increases much faster for the groups in 

Figures 2.8(c) and 2.8(d) as the cycle number increases. In general, the increase of 

Rct during cycling is due to the degradation of the holding structures (frame) of both 

the cathode and the anode resulting from the changes in the microstructure of 

electrode materials caused by the intercalation/deintercalation of lithium ions. This 

effect is very common since more reaction sites will be passivated with the increase 

of cycle number and the continuous formation of SEI layers due to side reactions will 

also decrease the redox reaction rate.  
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Figure 2. 8 Equivalent circuit fitted results of Nyquist plots of four group of tests (a) normal 

charge normal discharge (b) normal charge overdischarge (c) overcharge normal discharge 

(d) overcharge overdischarge, respectively. (ESR – equivelant series resistance, Rsei – solid 

electrolyte interface resistance and Rct – charge transfer resistance) 

2.6 Study 3 – EIS under Different cycling profiles of NCR 

18650B batteries 

Herein, we investigated the performance of Panasonic NCR18650B battery in 

regular cycling, fast charging, rest in charge state and shelf life testing using an 

optimized equivalent circuit model in EIS fitting. NCR 18650B battery, already 

commercially used in TESLA EV and many other portable electronics, still lack of 

global understanding of aging in real time. We employ electrochemical impedance 
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spectroscopy (EIS) as a primary technique. With the choosing of highly accurate 

equivalent circuit in fitting, and better key factor and indicator in aging, we are 

allowed to observe the electrochemical phenomena within the cell dynamically and 

much more in detail. 

Testing of EIS of Panasonic NCR18650 Battery in different cycling 

conditions/profiles: regular cycling, fast charging, rest in charge state, rest at 

nominal voltage. 

Find a suitable and accurate equivalent circuit to fit EIS data (Nyquist plot) and get 

the evolution of resistance and capacitance in different parts of battery. 

Find out the dominance changing factor(s) in different battery cycling process and 

make comment on how battery cycling methods influence the performances of 

battery. 

2.6.1 Testing procedure  

Same battery as in study 1 was used in this study for testing. 

Four groups of tests were run, and it is shown as below: 

C/10 cycling: C/10 charge and discharge; 

C/5.84: C/5.84 for charge; C/10 for discharge; 

Rest in high voltage: Rest for two hours between C/10 cycling for charge and 

discharge; 

Shelf life (Store battery): Rest at nominal voltage. 
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2.6.2 Fitted Results 
 

 
 

Figure 2. 9 EIS Fitted Results for C/10 cycling, 5.84/C charge, rest in high voltage, and store 

battery  
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Figure 2. 10 EIS Fitted Results for ESR, Rsei and Rct 
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Figure 2. 11 EIS Fitted Results for SEI capacitance, double layer capacitance and diffusion 

capacitance  

 

2.7 Study 4 – Silicon anode aging with different 

conditioning study using EIS 

2.7.1 Introduction of silicon anode lithium ion battery 

Among the substitution of graphite for anode materials, Silicon has been regarded as 

a promising material which has a high theoretical specific capacity. Many works 

have done with Silicon anode LIB through the years [64]. However, the mechanism 

of the formation of SEI layer in Silicon anode is still unclear in the field of research. 
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Usually, during the first few cycles of charging and discharging of LIBs, SEI layer 

forms on the anode of battery. The formation of a stable SEI layer during the first 

few cycles of a lithium-ion cell is critical to the cell’s lifetime, performance, and 

safety. A stable SEI isolates the electrode surface from the electrolyte, which would 

otherwise undergo irreversible and parasitic side-reactions under the existing 

difference in potential between the two phases. The investigation of SEI formation 

in variety of battery systems has attracted a lot of interest. M. B. Pinson et al came 

up with a theoretical model to describe the formation process of SEI [65]. However, 

more experimental data is still needed to further explain and describe the process 

and to validate existing theories. Recently, EIS has become a popular technique to 

investigate battery systems [66-68], which has the ability to scope different 

chemistry parts within battery. Different frequency region represents different 

chemistry inside of battery. Herein, we employ EIS as a primary technique to 

i6nvestigate the formation of this interphase on lithium-ion anode in half-cell 

configuration. EIS allows us to observe the impedance and associated time constant 

of the SEI layer in-situ in isolation from other electrochemical phenomena within 

the cell. 

2.7.2 Experimental  

For the purpose of this investigation, we used half-cells assembled in coin cell form. 

Silicon was chosen as working electrode and Li metal chips were used as the counter 

electrode. 1M solution of lithium hexafluorophosphate (LiPF6) in 1:1 volume ratio of 

FEC:PC solvent was used as electrolyte. 

Testing was employed by Bio-logic BCS (Battery Cycling System) - 810. We divide 
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the tests into two groups. Group 1 and group 2. Both groups are in constant current 

profile. Group 1 cycles at a rate of C/50 meanwhile group 2 cycles at a rate of C/100. 

After 3 cycles of slow charging/discharging to ensure the formation of a stable SEI 

layer, cycling currents are switched to faster charging/discharging at a rate of C/10. 

EIS data was collected every five hours during the initial slow cycling stage and was 

later collected at the beginning of every subsequent normal cycle. 

To analyze the experimental EIS data, we used equivalent circuit shown in figure 

2.12 as model to fit the data. The circuit consists of resistors and constant phase 

elements (CPEs). The latter represent spatially non-uniform capacitances and have 

an associated ideality factor. We export experimental data into an excel file which 

has the model built in and fitted the data by hand. 

 

Figure 2. 12 Equivalent circuit used for silicon anode lithium ion battery modeling 

Here in the equivalent circuit, RS represents electrolyte resistance, RINT represents 

internal electronic resistance of conductive network within electrode material, 

CPEINT represents associated capacitance arising from finite conductivity of 

electrode material. RSEI represents the resistance of SEI layer. CPESEI represents 

the capacitance of SEI layer. RCT determines the reaction rate for the 

lithiation/delithiation processes. CPEDL represents the capacitance of the double 

layer formed at the electrode-electrolyte interface. CPEW2 represents the 
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capacitance associated with concentration gradient built up during diffusion of 

lithium ions in the electrolyte near the electrode surface. CPEW1 represents the 

capacitance associated with diffusion within the solid electrode matrix. 

2.7.3 Results 

EIS plots 

 

Figure 2. 13 EIS plot of group 1 in 50h, 110h and 150h 
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Figure 2. 14 EIS plot of group 2 in 50h, 100h and 150h 
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Resistance data draw from fitting 

 

Figure 2. 15 Resistance (Rsei, Rint and Rct) through the time of group 1 
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Figure 2. 16 Resistance (Rsei, Rint and Rct) through the time of group 2 

2.7.4 Discussions and Conclusions 

EIS data has been collected with C/50 and C/100 profile in the initial cycles of Si 

anode battery. A suitable and practical equivalent circuit has been proposed to fit 

the impedance data.  

Results shows that in a lower C rate, the SEI layer forms slower. During the slow 
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cycling of battery, the resistance of SEI also varies with the charge and discharge. 

Based on that, we can control the speed of SEI formation by employ a lower C rate. 

Besides, the resistance of SEI is much larger than the resistance of contact part and 

internal resistance. Further trends show that group 2 have better results. Based on 

that we can compare Si anode Li-ion battery with other Li-ion batteries. However, 

results is done by hand fitting, the precision is still need to be improved. Besides, 

more normal cycles will be fitted in the future to see which slow 

charging/discharging profile is more suitable to form a stable SEI layer.  

In a long run, considering the safety of battery, reduce impedance is the direction of 

effort. The small the impedance, the better the data. In that aspect, group 2 is more 

promising to make a battery. 
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Chapter 3 

 

Battery state of health prediction using 
neural network model 
 

3.1 Introduction of neural network  

3.1.1 Neural network modeling and the algorithm 
 
Neural networks (NN), or artificial neural networks (ANN), are series of algorithms 

or models which imitate the computational process that occurs within the human 

brain to process the data obtained from computer. Neural networks are the attempts 

of humans to recreate natural neural networks found in living organisms. They work 

by taking in large amounts of raw data and then recognizing the patterns that lie 

within the data, clustering data with similarities together. To do this, the user 

defines sets of known inputs and outputs, typically in the form of arrays of numbers. 

It searches for patterns between the inputs and outputs, and uses the information 

acquired to make predictions on future outputs. The larger the data set available to 

train the neural network, the more accurate the predictions become. ANN have 

become the center of deep learning and today they are being used for tasks such as 
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classifying images, speech recognition, objection detections, etc. [69]. The reason 

that we used neural network as the method for battery SOH prediction is because it 

yields out the highest accuracy compared with different adaptive methods for SOH 

estimation, such as Kalman filter and fuzzy logic. [13]. ANN used in this paper is a 

supervised learning process. Fig. 3.1 demonstrates how this training process works. 

A weight function is assigned between inputs and output. Usually, outputs are a 

weight sum of inputs. Output is compared with the ground data and an offset is 

obtained. Weights are updated every time using the offset and the back-propagation 

method. Weights will be updated during the training loop until the error/offset is 

small enough. 

 

Figure 3. 1 Block diagram explaining neural network training algorithm 

3.1.2 Activation functions 
 
Activation function is a critical part of the neural network. It determines whether 

the output Y produced from the raw data inputted into the neural network is a 
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viable output. If the output falls within the range, then it is considered relatively 

accurate and is used in its predictions. Otherwise, it is rejected by the network, or 

“not activated.” There are different activation functions that can be used to 

accomplish this goal, each having their own unique properties [70].  

In this work, three different activation functions were used (Sigmoid, Tanh and 

ReLu). Mathematics format of the activation functions are described in the following 

paragraphs. 

Table 3. 1 Activation function and corresponding mathematical expression 

Activation 

function 

Mathematical expression 

Sigmoid 
𝐴(𝑥) =

1

1 + 𝑒−𝑥
 

 

Tanh 
𝐴(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =

2

1 + 𝑒−2𝑥
− 1 

 

ReLu 𝐴(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

 

Sigmoid functions are one of the most commonly used activation functions in neural 

network. It produces a smooth, nonlinear function that is bounded in range (0,1). Its 

gradient is steepest at the center and flattens out at both ends of the curve. Its 

nonlinear property allows the user to stack layers, it allows non-binary inputs as 

well. It also tends to become steeper towards the center of the model, meaning that 

the function will tend to assign Y values towards either end of the graph, making it 
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good at creating distinctions in its predictions. The biggest issue with the sigmoid 

function is that on either end of the graph, the gradient becomes increasingly small 

until it nearly disappears. This is an issue as at this point, the network’s learning 

process slows down drastically until it seems that is has stopped altogether.  

The tanh function is similar to the sigmoid function in both size and shape. It is 

nonlinear and has a smooth curve whose gradient flattens out at either of the end 

points. The only difference is the scaling is different, where unlike the sigmoid 

function, the tanh function has a range (-1,1). Due to this difference in scaling, the 

tanh curve has a much steeper gradient than the sigmoid curve. It also shares the 

issue of the decreasing gradient at both ends of the graph.  

The ReLu is a nonlinear function only gives an output of x when x is positive, 

otherwise it outputs 0. It has a range [0, inf), which leads to an issue of not having a 

defined bound. This could lead to blowing up the activations as your data outputs 

are no longer within a bounded setting. A benefit for using ReLu is that it filters out 

any negative numbers produced, allowing the activations to be more efficient and 

the network to be lighter. However, because ReLu assigns negative numbers to 

output 0, it leads to the option that occasionally the gradient will go to 0. Once this 

happens, these points will no longer be affected by any changes in input and output, 

leading to inaccurate predictions.  

3.1.3 Backpropagation method  
 
Backpropagation method is normally used in ANN to determine the updates of 

weights [69]. The network produces a set of coefficients, or “weights”, that is used to 

determine the amount of influence a certain input has in relation to the output. The 
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sum of these weights is passed through an activation function, which checks 

whether the calculated output is valid and can be used. In other words, the 

activation function determines whether connections made by the network can be 

“activated”. With each iteration, the error is calculated between the predicted output 

and the actual output. The calculated error is used to make weight adjustments. The 

general steps of back propagation work in a following way. Firstly, a random weight 

to each input is assigned. Secondly, the weight is updated by the equation (10). 

Thirdly, updating will continue until the error reaches its lowest achievable value. 

The derivation of equation (10) is provided via the partial equations below (equation 

(1) to (10)). 

 

Figure 3. 2 Neural network model in this work 

In this work, single layer neural network was used. Fig. 3.2 explains the notation of 

this explanation.  
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The subscript j denotes the input layer. The subscript k denotes the output layer.  As 

mentioned before, the core idea of training of ANN in this study is by assigning an 

arbitrary number to the weight and updating and adjusting the weight. The 

adjustment of the weight follows the equation, 

∆𝑊 ∝ −
𝜕𝐸

𝜕𝑊
    (1) 

where E(x) is called loss function and it is defined as, 

𝐸 =
1

2
∑ (𝑡𝑘 − 𝑎𝑘)2

𝑘     (2) 

where 𝑡𝑘 is the target value for output, 𝑎𝑘 is the calculated output based on weight 

sum of inputs and activation function. 

The weight change is then written as: 

∆𝑤𝑗𝑘 ∝  −
𝜕𝐸

𝜕𝑤𝑗𝑘
    (3) 

It can be rewritten into, 

∆𝑤𝑗𝑘 = −ℇ 
𝜕𝐸

𝜕𝑤𝑗𝑘
    (4) 

where ℇ is an assigned constant. Here we call it as step distance. 

Using chain rule, we can get that: 

∆𝑤𝑗𝑘 = −ℇ 
𝜕𝐸

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
    (5) 

Now let’s take a look at the three partial derivatives respectively.  

Substituting equation (2) into equation (5) we can get: 

𝜕𝐸

𝜕𝑎𝑘
=

𝜕(
1

2
(𝑡𝑘−𝑎𝑘)2)

𝜕𝑎𝑘
= −(𝑡𝑘 − 𝑎𝑘)    (6） 

Activation function is used to normalize weight sum of inputs, and with that we can 

get: 
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𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
=

𝑑𝐴(𝑛𝑒𝑡𝑘)

𝑑𝑛𝑒𝑡𝑘
= 𝐴′(𝑛𝑒𝑡𝑘)    (7) 

A(x) is the activation function.  

For example, if we use sigmoid as activation function, equation (7) will turn into:  

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
=

𝑑𝐴(𝑛𝑒𝑡𝑘)

𝑑𝑛𝑒𝑡𝑘
= 𝐴′(𝑛𝑒𝑡𝑘) = 𝑎𝑘(1 − 𝑎𝑘)    (8) 

Lastly,  

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
=

𝜕(𝑤𝑘𝑗𝑎𝑗)

𝜕𝑤𝑘𝑗
= 𝑎𝑗    (9) 

where 𝑎𝑗 is the output from the previous calculation.  

With that, the weight update can be written into: 

∆𝑤𝑘𝑗 = 𝜀(𝑡𝑘 − 𝑎𝑘)𝐴′(𝑛𝑒𝑡𝑘)𝑎𝑗    (10) 

Equation (10) is directly used in algorithm codes to update weights.  

3.2 Experimental  

In this work, algorithms were coded using python language. Source codes can be 

found in appendix. The data used to train the model are fitted impedance of 

overcharge and overdischarge from this research (included in appendix).  Values of 

R1, R2, and R3 for each fitted cycle serve as input that are ultimately used to predict 

R1, R2, and R3 of future cycles (output). R1, R2, R3 represents ESR, Rct and Rsei, 

respectively. The data of cycle 1 was used to predict the data of cycle 2, the data of 

cycle 2 is used to predict the data of cycle 3, and so on. The data is inputted in as an 

array containing the 3 elements. The training process is repeated over 50 million 

times of iterations. The accuracy of the predictions increases as the iterations the 

data was run through increases. 
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3.3 Results and discussions 

Figure 3.3 shows the results of neural network prediction of R1 R2 and R3 using 

sigmoid method for normal charge and normal discharge data. (for the cycle 56th) 

Percent error is defined as the following equation: 

Percent Error =
|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒|

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100% 

As we can see from the results, the more times of training, the more accurate is the 

prediction. Specifically, the prediction of R1 and R3 does not change too much after 

first several iterations. In contrast, the prediction of R2 gradually changes with 

training time. All percent errors stabilize after around 50 million times of training. 

Besides, the percent error of R1 and R2 can be mostly minimized at 10% while R3 

can be minimized at 15%. 
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Figure 3. 3 Estimation results using Sigmoid as activation function (a) R1 (b) R2 (c) R3 

prediction results and experiment results of 56th cycle normal charge and normal discharge 

and (d) percent error of three estimation in (a) (b) and (c) (x axis are iteration times that the 

model is trained) 

Different activation functions were tried, and a better prediction was achieved using 

same group of data. Figure 3.4 shows the results of percent error using tanh and 

ReLu for normal charge and normal discharge at 56th cycles. 

As we can see from the results, the percent error of tanh is 5%, 1.5% and 1% for R1, 

R2 and R3, respectively. The percent error curve using ReLu and Tanh are same 

under this case. The percent error of tanh method and ReLu is much smaller than 

Sigmoid. Overall, tanh and Relu give better predictions as in lower percent error 

than sigmoid.  With that, we can draw a conclusion that different activation function 
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affects the predictions significantly.  

 

Figure 3. 4 Percent error using different activation function and same sets of data (a) 

percent error using Tanh activation function (b) percent error using ReLu as activation 

function for normal charge and normal discharge at 56th cycle 

Lastly, all eight group of tests were run for the neural network training and a bigger 

percent error was found in some datasets. Figure 3.5 is a typical representative. 

Comparing Figure 3.5 with previous Sigmoid method, we can get the conclusion that 

with same activation function, the accuracy of prediction is also influenced by the 

input data.  
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Figure 3. 5 Percent error of normal charge overdischarge cycle# using sigmoid as activation 

function 

We propose that the followings are the factors that affect the accuracy of predictions 

using ANN for this experiment: 1. Choice of activation function; 2. Times of training; 

3. Amount of training data; 4. Layers of neurons. For the first two factors, it has 

been proven from this work that they affect the accuracy of the prediction. The rest 

two factors (factor 3 and factor 4) are well known from previous work [69]. 

To help future development and improve the accuracy of the training, the following 

actions can be taken considering the factors above: 1) Gather more training data. 

Neural network prediction has a nature of the more data you put in, the more 

accuracy of percent error you get. Another way to improve the accuracy in future is 

to gather more training data of the battery. 2) Spend effort choosing a suitable 

activation function. Our results show that using different activation function will 

affect the results in a very dramatic way. Thus, a selection of different activation 

function for prediction will be a meaningful direction to look at for future researches. 

3) Adding more layer of neurons. This work is a single layer of input and output with 

no hidden layers. If more data is provided, adding multiple layers will be able to 

improve the prediction and better imitating human thinking process. 
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Chapter 4 

 

Embedded impedance analyze circuit within 
battery management systems  
 

4.1 Basics of Battery Management Systems (BMS) 

Battery Management System, by name, refers to that any electrical or mechanical 

systems which performs the function of managing battery cells or battery packs.  

Generally, a battery management system including the functions of monitoring, 

protecting, balancing and controlling of the battery. Fig. 4.1 [71] gives a more 

specific function list for battery management system.  

 

Figure 4. 1 Battery Management System Function Table 
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BMS is always in the presence of a circuit broad. Here are some pictures of the 

battery management system [72], [73], see Fig. 4.2 and Fig. 4.3.  

 

Figure 4. 2 Example of Battery Management System in Single Cell 

 

Figure 4. 3 Example of Battery Management System for Battery Module 
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4.2 Literature research of battery management systems (BMS)   

Battery management system (BMS) doesn’t have a strict definition. Basically, any 

system performs the function of managing the battery is supposed to be called 

battery management system. By field of study, BMS can be classified into electrical 

and mechanical part.  

There are continuously works and researches on BMS through the years. Looking 

into researches on BMS, fours columns of studies focusing on four main functions of 

BMS is widely published. Which is State of Charge (SOC) estimation [74-77], State 

of Health (SOH) estimation [78-82], battery balancing and equalization [83] and 

thermal management [84 - 87].  Usually, battery Management System (BMS) varies 

from simple circuit chip to large systematic board based on the functions in need in 

different electronic devices applications.  Generally speaking, a basic BMS performs 

functions of measurement, monitoring, protecting and balancing for the 

corresponding batteries. In the case of EV/HEV (Electric Vehicles/ Hybrid Electric 

Vehicles) BMS, in addition to performing the functions above, a successful BMS also 

requires a higher performance in monitoring and controlling of the state of health 

(SOH). This requires better understanding of SOH of the battery pack in use.  

Besides, battery pack management architecture design and power control is also 

needed for the successful performing of large battery packs. 

The increasing demand for high mileage and safety in EV/HEVs, a BMS in real-time 

with more accuracy, more intelligence, more interactive and more functionality is 

necessary, which drives us to develop a new generation of smart BMS to fulfill the 

need. 
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4.3 Architecture and High-Level Design (Joint work) 

Acknowledgment: this section is based on a joint work. Yige was collaborating with 

an undergrad senior design team: Jack Gu, Jack Gatfield and Joseph Gozum, and 

they were instructed by Dr. Roman Chomko. Writing contributed by undergrads has 

their name attached after the paragraph.  

4.3.1 System Architecture and Design 

HARDWARE: 

Variable frequency Sine and Square wave generation: The variable frequency 

sine/square wave generation component is used primarily to power the current 

generation component of our project. The ability to easily switch frequencies with 

the desired range (𝑓 ∈ [1 𝐻𝑧, 1 𝐾𝐻𝑧]) serves a crucial part in our project as that is 

what allows us to achieve the goal of our project in the first place (Measuring 

impedance of the test battery at various frequencies). (Jack Gu) 

Current generation and injection: The current injection is what we use to induce a 

response within the battery. It is this response that is picked up by the differential 

reading component of our circuit, allowing us to collect data on the impedance of the 

battery at the selected frequency. (Jack Gu) 

Differential reading: Differential probes are placed in specific parts of the test circuit 

in order to measure the appropriate raw data for testing. In our case, we use the 

differential reading component to gather data on battery voltage as well as the value 

of the injected current via the voltage of a small load resistor in series. These voltage 

readings are then processed in order to obtain data. (Jack Gu) 
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Power distribution and voltage level division: Power is taken from a 12-volt DC 

power adapter and is then placed into the circuit. This provides a 12-volt line that 

powers the function chip and a line that we can manipulate to get the voltage levels 

the other components of the system require. A 5-volt voltage regulator was used to 

produce a 5-volt voltage line for the microcontroller, biasing circuitry, and digital 

potentiometer. A 10-volt regulator was used to produce a 10-volt voltage line for the 

differential amplifiers and the voltage inverter which was also used to power the op 

amp. This power was off course needed in order for the circuit to operate. (Jack 

Gatfield) 

Microcontroller: The microcontroller is the primary data acquisition device. Its built-

in 10-bit ADC is used to read the output of the differential op-amps and quantize it 

and it’s USART capability is used to transmit the acquired data to the PC for further 

processing. (Joseph Gozum) 

SOFTWARE: 

Serial Communication: The microcontroller reads the ADC data and builds an array 

of the values. It then sends the array via USART to a terminal and is captured on 

the processing computer. (Joseph Gozum) 

Data formatting: The data sent by the microcontroller and captured through the 

terminal cannot be understood correctly by MATLAB. We had to format the file 

using a python and a visual basic macro. The code converts that data into a voltage 

value that can used by MATLAB to determine the actual impedance. (Jack Gatfield 

and Joseph Gozum) 
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Cell Impedance Calculation: The rest of the system is meant to provide data for the 

MATLAB code to use to actually calculate the battery impedance. The code has to 

take out the nominal voltage of the battery, correct the data to account for the 

differential amplifier gains, and then it takes the data and averages the trials to 

reduce noise’s influence on the results. Once the average voltage over the battery 

array and the current through the battery array is built the actual impedance 

calculations can begin. It first creates a sinusoidal approximation of the voltage 

array in order to calculate the phase shift the battery causes. Then after this 

calculation is performed it calculates the magnitude of the impedance and uses the 

phase shift to find the real and imaginary parts of the impedance. After all the 

calculations it outputs a graph of the data at the different frequencies for the user to 

see. (Jack Gatfield) 
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4.3.2 Hardware Architecture 

 

Figure 4. 4 Block diagram for project circuity 

The hardware of this project consists of circuity, a microcontroller, and a computer. 

The circuity is meant to produce the data that is eventually collected and sent to the 

computer for processing. The microcontroller is meant to capture the analog data 

and transmit it to the computer while also taking user information from the 

computer and in turn setting the proper parameters in the circuity. The computer is 

meant to take the data and process it in order to obtain the wanted information but 

it also meant to take in user information and send it to the microcontroller to allow 

for the variables to be set. Above is a general block diagram of the system and below 

is a through board and PCB version of the circuit. (Jack Gatfield) 



61  

Figure 4. 5 Through Hole version of the circuity 
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Figure 4. 6 PCB version of the circuity in Eagle PCB software 

 

Figure 4. 7 PCB version of the circuity printed and assembled 

Initially the plan was to go from the breadboard version of the circuit straight to the 

PCB version but due to several unexpected design changes the PCB version was 

forced to be pushed to a later date and made even later due to the printing time. To 
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compensate for this delay, the through hole version was developed to provide a clean 

and easy to view circuit that could be used for demonstration while also providing a 

solid circuit to stabilize data acquisition. (Jack Gatfield) 

4.3.3 Software Architecture  

 

Figure 4. 8 State machine for computer processing 
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Figure 4. 9 State machine for microcontroller processing 

For software our project used a microcontroller (Atmega1284P) and a computer. 

Figure 4.8 shows the state machine for the computer when processing the data. The 

computer is presented the data by the terminal, formats it so MATLAB can 

understand it, then processes it in order to obtain the needed values. It does this for 

the full frequency test range and then output the information in a figure. The 
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microcontroller has a much more complex state diagram shown in figure 4.9. The 

microcontroller has to communicate with the computer in order to transfer the data 

and take in the user specifications. It also has to communicate with the circuit 

elements (Digital potentiometers) to set the frequency of the function generator 

signal the user wants to test. On top of this it has to convert the data and store it. 

(Jack Gatfield) 

4.3.4 Rationale and Alternatives 

The reasoning for the hardware architecture is simply because it is the most 

direct approach that allows us to acquire the most pertinent data in order to 

calculate impedance. To consider other architectures or approaches would be 

unnecessary unless we are looking for some other functionality to include on the 

device. (Joseph Gozum) 

A Finite-State Machine representation was chosen for the software 

architecture because our device is only in one specific state of operation at any given 

time and changes based on external inputs in a predefined sequence. A Finite-State 

Machine made a perfect fit for this type of device given how we intend for it to 

operate. This form of architecture is also not computationally intensive nor is it non-

deterministic, this is perfect for implementation on the microcontroller utilized in 

our device which executes non-intensive commands sequentially. This architecture 

is also heavily event-driven which is required for our case because we need certain 

things to act based on certain external event/stimuli. Due to a lack of understanding 
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of different software architectures, no others were considered especially since a 

Finite-State Machine works perfectly fine for our use case. (Joseph Gozum) 

The main rationale for our project was optimizing our system to be able to 

easy and efficient to implement while still getting accurate data effectively. For the 

hardware we took the most straightforward and efficient circuitry to allow for the 

data acquisition. For the software we took the path that was compatible on different 

operating systems and could still interact with the microcontroller. In the future a 

more complex system could be built using the design principles and implementation 

of our project. (Jack Gatfield) 
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Chapter 5 

 

Conclusions 
 

5.1 Conclusions and summaries 

In summary, EIS analysis of NCR 18650B batteries were conducted to investigate 

the interactions among the internal components of the batteries.  

First, the batteries were tested at different states of charges (SOC) under normal 

charging/discharging conditions. Then they were tested at fully charged states under 

different charging/discharging conditions with increased/lowered cut-off voltages. 

The values of equivalent series resistance (ESR), solid-electrolyte interphase layer 

resistance (Rsei) and charge-transfer resistance (Rct) were determined from the EIS 

fitting using an equivalent circuit. For the batteries at different SOCs under normal 

charging/discharging conditions, there are fluctuations in Rsei and Rct values during 

SOC sweeps because of the changes in the microstructure of the electrodes upon 

intercalation and deintercalation of lithium. However, the amplitude of those 

fluctuations are generally small and values of Rsei and Rct does not change very much 
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since they depend strongly on the cycle number or aging of the batteries. For the 

batteries that were cycled longer with different cut-off voltages, ESR increases faster 

under overcharging, indicating a possible cobalt dissolution from the cathode. 

Furthermore, overcharging and overdischarging can cause the increase of Rct due to 

the degradation of the interface between the electrode and the electrolyte. Besides, 

EIS fitting results of battery under different real-life usage scenarios are given. 

In neural network modeling and prediction of battery SOH, ESR, Rsei and Rct were 

used as the three indicators of comprehensive state of health (CSOH) of the 

batteries. Artificial neural network model was provided to predict the future values 

of these CSOH indicators by using the data from regular charging/discharging. By 

using ReLu or Tanh as the activation function percent errors of 5%, 1.5% and 1% for 

ESR, Rsei and Rct were achieved, respectively. It was also seen that choice of the 

activation function will affect the accuracy of prediction. Although this work has a 

single layer of input and output with no hidden layers in the provided neural 

network model, it still provides acceptably accurate predictions. In order to improve 

the accuracy of the prediction, more data with multiple layers need to be introduced 

to the model. The training algorithm and the results of this work can be used as a 

simple and effective approach to help researchers develop new models for 

comprehensive state of health prediction of lithium ion batteries.  

Lastly, a design of impedance analysis circuit is given which make it possible to 

conduct real time impedance measurement on battery management systems (BMS). 
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5.2 Contributions  

In this work, three main tasks were achieved: 

1) In-depth understanding battery degradation mechanism under different 

cycling conditions through the analysis of side reactions was achieved;  

2) Innovative design of new functionality of BMS to enable battery safety 

warning and real time SOH diagnoses on board; 

3) Neural network training algorithm that preform accurate battery 

comprehensive SOH estimation and prediction.   

This work has two main contributions to the field of research: 

1) EIS studies helps researchers better understand aging mechanism of 

commercial lithium ion battery, this might help them with other battery 

analysis using different characterization methods such as CV, GITT, XRD, 

SEM etc; 

2) The neural network training algorithm from this work can be also used as a 

simple and efficient model to aid researchers to validate their electrochemical 

analysis.  

This work has three main contributions to the field of industry: 

1) EIS studies helps the industry better understanding aging mechanism of 

commercial lithium ion battery, this might help them with updating battery 

cycling protocol to improve battery efficiency and lifetime in any NCA battery 

applications.  

2) The Innovative design of new functionality of BMS to enable battery safety 

warning and real time SOH diagnoses on board, this helps to improve the 
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safety in electric vehicles, energy storage systems, and electricity grid;  

3) Neural network training algorithm that preform accurate battery 

comprehensive SOH estimation and prediction, this can be used for battery 

life span estimation for battery maintenance and price per year calculation.  
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Appendix  
 

 

Appendix A. EIS fitted data (Ground data) used in neural 

network modeling  

Table a. 1 Raw data of equivalent circuit fitted results for four group of tests 

 

 

 

 

Normal Charge Normal Discharge 

cycle # L1 (H) R1 

(Ohm) 

Q1 (F.s^(a 

- 1)) 

R2 

(Ohm) 

Q2 

(F.s^(a - 

1)) 

R3 

(Ohm) 

Q3 (F.s^(a 

- 1)) 

Q4 (F.s^(a 

- 1)) 

1 4.64E-07 0.03412 6.51551 0.00268 1.64896 0.01598 936.1857 869.8691 

10 4.75E-07 0.03193 1.401 0.00268 4.28749 0.01523 1842.979 1064.335 

19 4.80E-07 0.0316 3.94695 0.00268 4.24895 0.01547 1864.113 1082.873 

28 4.83E-07 0.03176 1253.81 0.00269 4.24287 0.0165 1886.104 1101.21 

37 4.83E-07 0.03197 2534.758 0.00264 4.22326 0.01646 1941.523 1149.944 

46 4.82E-07 0.03224 1257.847 0.00263 4.1843 0.01713 1952.941 1159.023 

55 4.80E-07 0.03226 1126.93 0.00262 4.16843 0.01754 1961.392 1165.467 

64 4.74E-07 0.03347 271.699 0.00262 4.16834 0.01753 1963.05 1166.784 
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Normal Charge Overdischarge 

cycle # L1 (H) R1 

(Ohm) 

Q2 

(F.s^(a - 

1)) 

R2 

(Ohm) 

Q3 

(F.s^(a - 

1)) 

R3 

(Ohm) 

Q4 (F.s^(a 

- 1)) 

Q5 (F.s^(a 

- 1)) 

1 4.77E-07 0.03308 0.08589 0.00465 2.10084 0.01201 451.9195 2.45E+21 

10 5.21E-07 0.0304 0.00504 0.00557 2.11686 0.01256 457.8241 2.45E+21 

19 5.09E-07 0.03207 0.01101 0.00553 2.15878 0.01321 459.4898 2.45E+21 

28 4.95E-07 0.03082 0.00173 0.00548 2.16494 0.01267 470.5727 2.45E+21 

37 5.18E-07 0.03303 0.00533 0.00548 2.16696 0.01276 471.4635 2.45E+21 

46 5.13E-07 0.0336 0.00451 0.00549 2.18257 0.01309 474.2017 2.45E+21 

55 5.11E-07 0.03405 0.00688 0.00549 2.18955 0.01326 475.0127 2.45E+21 

64 4.94E-07 0.03522 0.01265 0.00551 2.20235 0.01365 476.916 2.45E+21 

73 4.97E-07 0.03545 0.00873 0.00552 2.2735 0.01502 486.1134 2.45E+21 

82 4.95E-07 0.0365 0.01458 0.00554 2.28941 0.01548 489.093 2.45E+21 

91 4.71E-07 0.03826 0.01981 0.00546 2.34427 0.01581 501.4659 2.45E+21 
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Overcharge Normal Discharge 

cycle # L1 (H) R1 

(Ohm) 

Q1 

(F.s^(a - 

1)) 

R2 

(Ohm) 

Q2 

(F.s^(a - 

1)) 

R3 

(Ohm) 

Q3 (F.s^(a 

- 1)) 

Q4 

(F.s^(a - 

1)) 

1 4.30E-07 0.03282 0.43458 0.01055 5.47752 0.01239 377.5634 1.75E+07 

10 4.32E-07 0.03409 0.49911 0.0094 6.4607 0.02118 344.9509 1.41E+17 

19 4.36E-07 0.03467 0.54279 0.00796 6.77392 0.02121 210.3087 9722.858 

28 4.39E-07 0.03549 0.96153 0.00796 8.21065 0.01998 191.8766 3712.63 

37 4.36E-07 0.03705 0.71108 0.00801 8.60637 0.02511 196.3077 13187.54 

46 4.36E-07 0.03814 0.6211 0.00798 8.96716 0.02754 178.6775 2.38E+91 

55 4.38E-07 0.03894 0.64798 0.00777 9.2474 0.02802 174.6451 579893.1 

64 4.44E-07 0.04007 1.04315 0.01003 9.34235 0.03176 157.3622 2.13E+29 

73 4.38E-07 0.04292 0.96834 0.01367 8.08059 0.03224 146.5375 1.94E+20 

82 4.38E-07 0.0431 1.01694 0.01318 8.54129 0.03015 140.0291 1.14E+18 

91 4.31E-07 0.04469 1.00711 0.0143 7.70633 0.02605 145.4989 2.52E+16 

100 4.32E-07 0.04643 0.63448 0.01541 8.22441 0.03112 139.3362 707.2279 
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Overcharge Overdischarge 

cycle # L1 (H) R1 

(Ohm) 

Q1 (F.s^(a 

- 1)) 

R2 

(Ohm) 

Q2 (F.s^(a 

- 1)) 

R3 

(Ohm) 

Q3 (F.s^(a 

- 1)) 

Q4 (F.s^(a 

- 1)) 

1 4.49E-07 0.03174 5.97087 0.01111 0.90485 0.01557 2.08E+23 373.8614 

10 4.49E-07 0.03329 6.52856 0.0184 0.85453 0.0111 11523.34 324.4806 

19 4.49E-07 0.03423 6.93791 0.02313 0.95974 0.00998 375552.5 243.1884 

28 4.49E-07 0.03519 8.01721 0.02029 0.88105 0.00895 50039.46 186.3018 

37 4.49E-07 0.03613 8.46619 0.02409 0.76512 0.00975 6.45E+17 184.2484 

46 4.49E-07 0.03697 8.83581 0.02641 0.74915 0.01017 1.83E+59 162.6207 

55 4.49E-07 0.03846 9.10805 0.02756 0.6667 0.00989 3.37E+39 154.0203 

64 4.49E-07 0.04276 7.98188 0.02645 0.85095 0.01714 -- 144.5542 

73 4.49E-07 0.04632 7.40239 0.03051 0.47746 0.01504 -- 163.1724 

 

 

Appendix B. Neural network codes in python language  

Code template acknowledgement:  

https://www.kdnuggets.com/2018/10/simple-neural-network-python.html 

 
from numpy import * 

import numpy as np 

import pandas as pd 

import tkinter as tk 

from tkinter import filedialog 

import matplotlib.pyplot as plt 

root= tk.Tk() 

rawa = [] 

rawb = [] 

rawc = [] 
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tempInputs=[] 

tempOutputs=[] 

a = [] 

b = [] 

c = [] 

d = [] 

canvas1 = tk.Canvas(root, width = 300, height = 300, bg = 'lightsteelblue2', relief = 'raised') 

canvas1.pack() 

headers = ['R1 (Ohm)','R2 (Ohm)','R3 (Ohm)'] 

aPercent=[] 

bPercent=[] 

cPercent=[] 

aReal=[] 

bReal=[] 

cReal=[] 

''' 

 

''' 

def getCSV (): 

    ''' 

    NeuralNet Function Class 

    Includes all Neural network util 

    Main Function is defined as NeuralNet 

    ''' 

    class NeuralNet(object): 

        def __init__(self): 
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            random.seed(1) 

            self.synaptic_weights = 2 * random.random((3, 3)) - 1 

            # print(self.synaptic_weights) 

 

        def __sigmoid(self, x): 

            # return 1 / (1 + exp(-x)) 

            return tanh(x) 

            # return np.where(x < 0, 0, x) 

 

        def __sigmoid_derivative(self, x): 

            # return x * (1 - x) 

            return 1.0 - tanh(x) ** 2 

            # return np.where(x < 0, 0, 1) 

 

        # Train the neural network and adjust the weights each time. 

        def train(self, inputs, outputs, training_iterations): 

            for iteration in range(training_iterations): 

                # Pass the training set through the network. 

                output = self.learn(inputs) 

                error = outputs - output 

                # Adjust the weights by a factor 

                factor = dot(inputs.T, error * self.__sigmoid_derivative(output)) 

                self.synaptic_weights += factor 

 

        def learn(self, inputs): 

            return self.__sigmoid(dot(inputs, self.synaptic_weights)) 
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    neural_network = NeuralNet() 

    global df 

    import_file_path = filedialog.askopenfilename() 

    firstin = pd.read_csv(import_file_path) 

    element = pd.DataFrame(firstin,columns=headers) 

    products_list = element.values.tolist() 

    #print(products_list) 

    for dataset in products_list: 

        rawa.append(dataset[0]) 

        rawb.append(dataset[1]) 

        rawc.append(dataset[2]) 

    for i in range(4): 

        rawa.pop() 

        rawb.pop() 

        rawc.pop() 

 

    rawelem = [list(x) for x in zip(rawa,rawb,rawc)] 

    #print(rawelem) 

    realData = rawelem.pop() 

    #print(realData) 

    testcase = rawelem.pop() 

    #print(testcase) 

    if len(rawelem)%3!=0: 

        if (len(rawelem) % 3 == 1): 

            rawelem.pop() 
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        if (len(rawelem) % 3 == 2): 

            rawelem.pop() 

            rawelem.pop() 

    print(len(rawelem)) 

    counter = 0 

    for i in range(len(rawelem)): 

        if(counter == 0): 

            tempInputs.append(rawelem[i]) 

            counter +=1 

        elif(counter ==1): 

            tempInputs.append(rawelem[i]) 

            tempOutputs.append(rawelem[i]) 

            counter +=1 

        elif(counter ==2): 

            tempOutputs.append(rawelem[i]) 

            counter = 0 

    inputs = array(tempInputs) 

    outputs = array(tempOutputs) 

 

    # We use first 3 inputs to predict the next 3 inputs. 

    # We are using NCND files for input 

    # numpy has variable array 

    c.append(0) 

    b.append(0) 

    a.append(0) 

    d.append(0) 
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    listcontainer = [] 

    for i in range(50): 

        neural_network.train(inputs, outputs, 1000000) 

        listcontainer.append(neural_network.learn(testcase).tolist()) 

        c.append(listcontainer[0].pop()) 

        b.append(listcontainer[0].pop()) 

        a.append(listcontainer[0].pop()) 

        listcontainer = [] 

        d.append(i + 1) 

        print("After " + str(i + 1) + " million times training....") 

 

    aPercent.append(0) 

    bPercent.append(0) 

    cPercent.append(0) 

 

    for elem in a: 

        if elem != 0: 

            aPercent.append(abs((elem - realData[0])) / elem * 100) 

    for elem in b: 

        if elem != 0: 

            bPercent.append(abs((elem - realData[1])) / elem * 100) 

    for elem in c: 

        if elem != 0: 

            cPercent.append(abs((elem - realData[2])) / elem * 100) 

 

    aReal.append(0) 
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    bReal.append(0) 

    cReal.append(0) 

    for i in range(len(d) - 1): 

        aReal.append(realData[0]) 

        bReal.append(realData[1]) 

        cReal.append(realData[2]) 

    # print(aPercent) 

    # print(bPercent) 

    # print(cPercent) 

    lines = [a, b, c] 

    colors = ['r', 'g', 'b'] 

    labels = ['R1-predicted', 'R2-predicted', 'R3-predicted'] 

    for i, g, l in zip(lines, colors, labels): 

        plt.plot(d, i, g, label='l') 

        plt.legend(labels) 

        plt.ylabel('Resistance (Ohm)') 

        plt.xlabel('Times (Millions)') 

        plt.title("Predictions Vs Times") 

    plt.show() 

 

    lines = [aPercent, bPercent, cPercent] 

    colors = ['r', 'g', 'b'] 

    labels = ['R1-percent-error', 'R2-percent-error', 'R3-percent-error'] 

    for i, g, l in zip(lines, colors, labels): 

        plt.plot(d, i, g, label='l') 

        plt.legend(labels) 
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        plt.ylabel('Machine Learning percent error (%)') 

        plt.xlabel('Times (Millions)') 

        plt.title("Percent error Vs Times") 

    plt.show() 

 

    lines = [a, aReal] 

    colors = ['r', 'g'] 

    labels = ['R1-predicted', 'R1-experimental'] 

    for i, g, l in zip(lines, colors, labels): 

        plt.plot(d, i, g, label='l') 

        plt.legend(labels) 

        plt.ylabel('Resistance (Ohm)') 

        plt.xlabel('Times (Millions)') 

        plt.title("R1 prediction Vs Times") 

    plt.show() 

 

    lines = [b, bReal] 

    colors = ['r', 'g'] 

    labels = ['R2-predicted', 'R2-experimental'] 

    for i, g, l in zip(lines, colors, labels): 

        plt.plot(d, i, g, label='l') 

        plt.legend(labels) 

        plt.ylabel('Resistance (Ohm)') 

        plt.xlabel('Times (Million)') 

        plt.title("R2 prediction Vs Times") 

    plt.show() 
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    lines = [c, cReal] 

    colors = ['r', 'g'] 

    labels = ['R3-predicted', 'R3-experimental'] 

    for i, g, l in zip(lines, colors, labels): 

        plt.plot(d, i, g, label='l') 

        plt.legend(labels) 

        plt.ylabel('Resistance (Ohm)') 

        plt.xlabel('Times (Million)') 

        plt.title("R3 prediction Vs Times") 

    plt.show() 

browseButton_CSV = tk.Button(text="Import CSV File", command=getCSV, bg='green', fg='white', 

font=('helvetica', 12, 'bold')) 

canvas1.create_window(150, 150, window=browseButton_CSV) 

root.mainloop() 

#if __name__ == "__main__": 

    # Initialize main function. Or redefine the main function to NeuralNet 

 

 

Appendix C. Results for all four groups of tests using 

three activation functions 
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1. Normal charge normal discharge; 

 
Sigmoid 

 
 

Tanh 
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ReLu 

 

2. Normal charge over discharge; 

 

 
Sigmoid 
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3. Over charge normal discharge; 

 
 

Sigmoid 

 
Tanh 
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ReLu 

 

4. Overcharge overdischarge. 

 
Sigmoid 
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ReLu 

 

 

 




