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Purpose: To evaluate different non-Gaussian representations for the diffusion-
weighted imaging (DWI) signal in the b-value range 200 to 3000 s/mm2 in benign 
and malignant breast lesions.
Methods: Forty-three patients diagnosed with benign (n = 18) or malignant (n = 25)  
tumors of the breast underwent DWI (b-values 200, 600, 1200, 1800, 2400, and 
3000 s/mm2). Six different representations were fit to the average signal from re-
gions of interest (ROIs) at different b-value ranges. Quality of fit was assessed by the 
corrected Akaike information criterion (AICc), and the Friedman test was used for 
assessing representation ranks. The area under the curve (AUC) of receiver operat-
ing characteristic curves were used to evaluate the power of derived parameters to 
differentiate between malignant and benign lesions. The lesion ROI was divided in 
central and peripheral parts to assess potential effect of heterogeneity. Sensitivity to 
noise-floor correction was also evaluated.
Results: The Padé exponent was ranked as the best based on AICc, whereas 3 mod-
els (kurtosis, fractional, and biexponential) achieved the highest AUC = 0.99 for 
lesion differentiation. The monoexponential model at bmax = 600 s/mm2 already pro-
vides AUC = 0.96, with considerably shorter acquisition time and simpler analysis. 
Significant differences between central and peripheral parts of lesions were found 
in malignant lesions. The mono- and biexponential models were most stable against 
varying degrees of noise-floor correction.
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1 |  INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DWI)1 is 
sensitive to the random motion of water molecules. In the case 
of Gaussian, or free diffusion, the DWI signal can be mod-
eled as a monoexponential decay, as a function of the degree 
of applied diffusion weighting (b-value) and the underlying 
diffusion coefficient. In biological tissue, the self-diffusion 
of water is known to be more complicated, but the monoex-
ponential model is still commonly applied to fit data arising 
from the application of ≥2 low and medium b-values, in the 
range 0 to 1000 s/mm2, providing an apparent diffusion coef-
ficient (ADC). Given that the true b-value dependence is not 
monoexponential, the measured ADC will not only depend 
on the tissue diffusion properties, but it is also influenced 
by the chosen number and magnitude of the b-values in the 
acquisition,2 as well as other acquisition parameters such as 
the TE and diffusion time (Δ).3

Given the complexity of DWI signal decay in vivo, it is use-
ful to separate discussion of diffusion in terms of the b-value 
range involved. At low b-values, typically in the range 0 to 
200 s/mm2, a faster decay of DWI signal is commonly ob-
served compared to that at higher b-values (b > 200 s/mm2). 
The intravoxel incoherent motion (IVIM) model attempts to 
capture this effect through an additional exponential b-value 
dependence4 that is attributed to incoherent blood flow (per-
fusion) in a randomly oriented capillary network, manifesting 
as a faster, pseudo-diffusion process. In the b-value range of 
200 to 1000 s/mm2, b-value dependence is difficult to dis-
tinguish from monoexponential, and for the typical signal-
to-noise ratios (SNRs) available in clinical DWI protocols, 
significant deviation from this model is usually not detected. 
When this b-value range is extended, for example up to 2000 
to 3000 s/mm2, it is well documented that a monoexponential 
function ceases to be a good approximator for the observed 
data.5 This effect has attracted considerable attention over the 
years, particularly in the brain,6-11 where it was shown that 
a biexponential representation, without the pseudo-diffusion 
interpretation of the IVIM model, in the higher b-value re-
gime provided good fits to the diffusion data.12-14 Early ef-
forts to link this 2-compartment representation to biophysical 
compartments in the brain were not successful,12,14,15 and 
it was later shown that other mathematical representations, 

without clear biophysical interpretation, could fit the data 
equally well or even better using fewer parameters.7,8

Many mathematical functions have been proposed to de-
scribe the DWI signal decay: the diffusion kurtosis (DKI) rep-
resentation,9 Padé exponent (PE) representation,8 stretched 
exponential model,11 statistical model,16 fractional order cal-
culus model,17 and biexponential model.18 Some functions 
attempt to describe the signal as a function of variables re-
lated to physical properties of the system, and as such are true 
models (e.g., the biexponential model). Others are based on 
mathematical approximations and may be useful in a clinical 
context, but lack a biophysical foundation (e.g., DKI). Such 
functions are merely signal interpolations and are inherently 
unsuitable for extrapolation of signal curves, given that their 
parameters are not verifiable by other techniques. The impor-
tance of distinguishing between these two concepts is dis-
cussed by Novikov et al19 and is highly relevant for model 
validation; accordingly, we use the word “representation” for 
both of these categories and reserve the word “model” ex-
clusively for the first category of functions, which represent 
actual models of a physical system.

There is currently strong interest in using DWI to better 
characterize the microstructure of breast cancer tissue,20-22 
with a commensurate need to study and evaluate candidate 
biophysical models. One necessary, though not sufficient, 
condition for model validation is to assess its quality of fit 
compared to other representations.23 In addition, aside from 
the question of biophysical interpretation, different diffusion 
representations should be considered on an organ-specific 
basis, particularly in relation to robustness and clinical value 
of the extracted parameters.

The aim of the current study was to evaluate the quality 
of fit for a chosen set of mathematical representations (with 
or without a corresponding biophysical model) and to deter-
mine the representation that best fits DWI of the breast in an 
available b-value range up to 3000 s/mm2 in a high-SNR sit-
uation using region of interest (ROI) mean signal intensities. 
Furthermore, the power of the obtained diffusion parameters 
to differentiate between benign and malignant breast lesions 
was evaluated. We also separated the ROI into a peripheral 
and central region to see whether heterogeneity related to 
proximity to tumor edge influenced the models’ parameter 
estimates and their ability to fit the signal decay. The effect of 

Conclusion: Non-Gaussian representations are required for fitting of the DWI curve 
at high b-values in breast lesions. However, the added clinical value from the high 
b-value data for differentiation of benign and malignant lesions is not clear.

K E Y W O R D S

biexponential model, breast MR, diffusion-weighted MRI, DKI, fractional order calculus, Padé exponent, 
statistical diffusion model, stretched exponential
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varying the degree of noise-floor correction was examined for 
the different signal representations. Finally, all models were 
fitted to individual single voxels to evaluate the classification 
accuracy for this approach compared to the ROI-mean case.

2 |  METHODS

2.1 | Patient cohort

The study was approved by the regional committee for 
medical and health research ethics (REK Central Norway, 
2011/568). All patients gave written informed consent before 
enrollment. The recruitment of patients for this study began 
in August 2014 and ended in August 2016. Patients with re-
cently diagnosed malignant or benign tumors in our institu-
tion were able to volunteer for an additional MR examination. 
Only patients potentially eligible for primary surgical treat-
ment were recruited, and no patients receiving neoadjuvant 
chemotherapy were included. Exclusion criteria were general 
contraindications for MRI (pacemaker, aneurysm clips, any 
form of metal in the body, or severe claustrophobia) and im-
paired renal function defined as estimated glomerular filtra-
tion rate <30 mL/min/1.73 m2.

Following MR examination, patients with malignant tu-
mors underwent surgery and histopathological analysis was 
performed on the resected mass. Categorization of benign 
tumors was done by histopathological analysis on core nee-
dle biopsies or resected tissue, if the tumor was surgically 
removed. For benign lesions where a biopsy was not re-
quested by the radiologist, diagnosis was based on patient 
history, which included either radiographical mammography, 
ultrasonography, or a previous clinical MR examination with 
at least 6 months’ follow-up from the time of recruitment. 
Forty-seven patients were recruited. The cohort included in 
this study is a subgroup of the cohort previously reported on 
in a study by Vidic et al, where a machine-learning approach 
was used to analyze parameter histograms derived from a 
separate IVIM DWI protocol.24

2.2 | MRI protocol

Patients were imaged with a 3T clinical MR scanner (Skyra; 
Siemens Healthcare, Erlangen, Germany), equipped with a 
16-channel breast coil (16-channel AI Breast Coil; Siemens 
Healthcare).

Fat-suppressed (n = 24 using “FatSat” and n = 23 using 
spectral attenuated inversion recovery [SPAIR]) unilateral 
sagittal DWI was acquired using a Stejskal–Tanner spin-
echo echo-planar imaging sequence with: TR 10,600 (n = 24)  
or 11,800 ms (n = 23), TE 88 ms, diffusion gradient duration 
δ = 31.1 ms, diffusion time Δ = 40.7 ms, 90 × 90 matrix, 

2 × 2 mm in-plane resolution, slice thickness 2.5 mm,  
60 slices, generalized autocalibrating partially parallel ac-
quisition factor 2, number of excitations = 1, b-values: 0, 
200, 600, 1200, 1800, 2400, and 3000 s/mm2 in 6 directions, 
total scan time 7 minutes 46 seconds (FatSat) and 8 minutes 
39 seconds (SPAIR). The protocol included 1 additional, 
geometry-matched, non-diffusion-weighted (b = 0 s/mm2) 
series with reversed phase-encoding direction for imple-
mentation of distortion correction arising from susceptibil-
ity boundaries.25

Patients also underwent dynamic contrast-enhanced 
(DCE) MRI. DCE scans consisted of 3D, T1-weighted, non-
fat-suppressed, gradient echo sequence (TR/TE 5.82/2.18 ms, 
flip angle 15°, 256 × 256 matrix, in-plane resolution 0.7 ×  
0.7 mm, slice thickness 2.5 mm) acquisitions, collected pre-
contrast, and at 7 consecutive time points (with temporal res-
olution of 1 minute) after administration of contrast agent. 
DCE MR images were used for guidance of ROI selection in 
the DWI data.

2.3 | Data analysis

DWI images were visually inspected for the presence of arte-
facts. All DWI data were corrected for eddy current artefacts, 
motion,6 geometrical distortion,25,26 and noise-floor. Noise-
floor correction was done by applying a similar scheme as in 
a previous work.27 A corrected and normalized signal inten-
sity Sc was calculated by Equation 1:

where NF is the noise-floor correction factor and given by  
NF2 = k · BK2, where k is a scaling factor and BK is the back-
ground intensity defined as the mean intensity inside a ROI 
covering the whole breast at b = 3000 s/mm2 in each patient. 
Normalization by dividing with NF was done in order to re-
move the effect of different image intensity scaling between 
FatSat and SPAIR protocols. Sc was set to 0 if Sm < NF. The 
effect of varying the noise-floor correction scaling factor was 
included in the first step of the analysis by evaluating the qual-
ity of fit for diffusion representations that included the lowest  
signal-to-noise-floor images (b = 3000 s/mm2) at increasing 
value of k, and the resulting empirical value of k = 1 was used 
for all subsequent analysis.

Where multiple lesions were present in the same breast, 
the largest was selected for analysis. Lesions were outlined 
by 3D ROIs in the b = 600 s/mm2 trace image, guided by 
reference to a postcontrast DCE image to locate the lesion, by 
a scientist (I.V.) with 3 years’ research experience in breast 
cancer MRI, supervised and validated by an experienced ra-
diologist (20 years’ experience in breast radiology). In the 

(1)Sc =

√

S2
m
−NF2∕NF
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presence of non-mass-like lesions, only the mass part was 
included in ROI. Mean ROI signal for each b-value and diffu-
sion direction was calculated and used for the main analysis, 
which included both quality of fit and classification accu-
racy. In addition, classification accuracy was also assessed 
for pooled single voxels.

ROIs for the lesion center were automatically computed 
from the full ROI by applying a 2D erosion filter on the orig-
inal ROI using a disk with a radius of 1 voxel in each slice. 
Complementary ROIs for the lesion periphery were created by 
subtracting the central ROIs from the corresponding full ROIs.

The single voxel signal standard deviation (STD) was cal-
culated from a difference image between two b = 0 s/mm2 
acquisitions for each patient, where the STD was calculated 
across the ROI voxels in the difference image and divided by 
√

2. Mean noise-floor-to-STD ratio across all patients was 
then calculated.

The additional single voxel analysis was performed by 
first collecting all voxels from the benign and malignant le-
sions into 2 separate matrices. The 18 benign lesions counted 
in total 17,293 voxels, whereas the 25 malignant lesions 
counted 6278 voxels. After fitting each diffusion representa-
tion to each voxel individually, receiver operating character-
istic (ROC) analysis was performed.

2.4 | Diffusion representations

To avoid possible influence from perfusion, the b = 0 s/mm2 
ROI signal was excluded from the fitting, and all b-values 
from b = 200 s/mm2 up to a maximum b-value (bmax) were 
included in the fit. Three different values of bmax were used: 
bmax = 600 s/mm2, similar to a standard clinical DWI proto-
col, bmax = 1800 s/mm2, representing a medium-range non-
Gaussian protocol, and bmax = 3000 s/mm2, representing a 
wide-range non-Gaussian protocol. Different diffusion repre-
sentations were applied in these 3 different b-value ranges as 
specified in more detail below. All representations were fitted 
to the DWI signal using Matlab’s (2016b; The MathWorks, 
Inc., Natick, MA) in-built nonlinear least squares solver with 
Trust region optimizer.

The following diffusion signal representations were used:
Monoexponential representation calculated by fitting the 

equation (Equation 2)1:

where ADC is the apparent diffusion coefficient. The monoex-
ponential model was only used at the lower end of the b-value 
range, with bmax = 600 s/mm2.

DKI representation (Equation 3)9:

where Dk measures diffusivity while K, the apparent kurtosis 
excess, is a measure of peakiness of the diffusion displacement 
probability distribution. DKI is derived from the cumulant ex-
pansion, truncated after the quadratic term, and is only valid 
within the convergence radius of the function,7,8 beyond which 
DKI does not perform well. As a consequence, the DKI model 
was only applied in the medium b-value range with bmax =  
1800 s/mm2.

PE representation (Equation 4)8:

where δP quantifies non-Gaussianity and DP diffusivity. Note, 
that when δP = 0, the decay is monoexponential. Given that 
the PE is a polynomial approximation, the PE representation 
does not suffer from the convergence issues as DKI.8 The PE 
representation was applied with bmax = 1800 and 3000 s/mm2.

It is important to note that both the DKI and Padé approx-
imation are mathematical series expansions that can be used 
for approximating any analytical function. This also means 
that both are purely mathematical representations that do not 
include biophysical modeling or require any assumptions 
about tissue microstructure.

Stretched exponential representation (Equation 5)8:

where DDC represents the distributed diffusion coefficient and 
α the heterogeneity index, which varies between 0 and 1. The 
limiting value α = 1 corresponds to monoexponential diffu-
sion. This representation attempts to capture anomalous diffu-
sion28 and assumes that the medium is scale invariant (fractal).  
The stretched exponential representation was applied with  
bmax = 1800 and 3000 s/mm2.

Statistical representation (Equation 6)16:

which assumes a Gaussian distribution of diffusion coefficients 
where ADCpeak represents the peak of the distribution, σ is the 
width of the distribution, and Φ is the error function. bmax = 
1800 and 3000 s/mm2.

Fractional calculus representation in the case of Stejskal–
Tanner gradients (Equation 7)17:

which has the same mathematical form as the stretched ex-
ponential representation, but with the following definitions 
(Equations 8 and 9):

(2)Sb =S0 ⋅e
−b⋅ADC

(3)Sb =S0 ⋅e
−b⋅Dk+

1

6
b2
⋅D2

k
⋅K

(4)Sb =S0 ⋅e
−DP ⋅b

1+�P ⋅b

(5)Sb =S0 ⋅e
−(b⋅DDC)�

(6)Sb =S0 ⋅

1+Φ
�

ADCpeak

�
√

2
−

b�
√

2

�

1+Φ
�

ADCpeak

�
√

2

� e
−b⋅ADCpeak+

1

2
b2�2

(7)Sb =S0 ⋅e
−(b∗⋅D∗)�
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where Gd is the diffusion gradient amplitude, δ and Δ are the 
diffusion gradient pulse lobe duration and separation, and D is 
the diffusion coefficient. β is the fractional order derivative in 
space, and µ is a spatial parameter (in units of µm). bmax = 1800 
and 3000 s/mm2.

Biexponential representation (Equation 10)18:

where, if interpreted as a 2-component model, the signal frac-
tion f corresponds to the fraction of “fast” diffusion compo-
nent with the apparent diffusion coefficient D1, while (1 – f) 
and D2 represents the fraction and apparent diffusion coeffi-
cient of the “slow” component29 (D1 > D2). The biexponen-
tial model presented here is mathematically identical to the 
IVIM model. However, a different b-value range is involved 
and therefore also a different biophysical model. bmax = 1800 
and 3000 s/mm2.

2.5 | Statistical analysis

The corrected Akaike information criterion (AICc) was used 
to assess the curve fitting performance of the selected dif-
fusion representations. AICc is a statistical information cri-
terion to assess the quality of fit of a representation to the 
observed data (Equation 11):

where n is the number of data points, RSS the sum-of-squares 
residuals, and k the number of variables. AICc represents a 
trade-off between the goodness of fit and complexity of the 
representation. For a given set of candidate representations for 
the same data points, the preferred representation is the one 
with the minimum AICc value. Only the relative value of AICc 
is meaningful, and for this reason all results are reported in 
terms of ΔAICc = AICc – AICcmin, where AICcmin is the AICc 
value of the representation with the lowest AICc in the given 
comparison. Compared to the standard AIC, AICc includes a 
correction for small sample sizes. Calculation of AICc and all 
the image analysis and statistical testing was done in Matlab 
(2016b; The MathWorks).

The Friedman test was used to test whether the ranks of 
the AICc values from different representations differed sig-
nificantly. The AUC of the ROC curves were used to assess 

the power of extracted parameters to differentiate between 
malignant and benign tumors. A signed-rank test was used to 
compare parameter values for data within central ROI versus 
peripheral ROI.

3 |  RESULTS

From the 47 patients recruited, DWI data were successfully 
collected in 43 patients. Four data sets were excluded from 
analysis because of Nyquist ghosting artefacts. Among the 
43 lesions included in the analysis, 18 lesions were benign 
and 25 malignant (clinical data are reported in Table 1). One 
example breast diffusion –weighted image with central and 
peripheral ROIs is illustrated in Figure 1.

(8)b∗ =
(

�Gd�
)2

(

Δ−
2�−1

2�+1
�

)

(9)D∗ =D
1

� �
2
(

1−
1

�

)
(

Δ−
2�−1

2�+1
�

)
1

�
−1

(10)Sb =S0

(

f ⋅e−b⋅D1 +(1− f ) ⋅e−b⋅D2

)

(11)AICc=
2 ⋅k ⋅n

n−k−1
+n ⋅ ln

RSS

n

T A B L E  1  Patient cohort

Characteristics Result

Malignant  

No. of lesions 25

Mean patient age, years (range) 53.3 (29–75)

Mean tumor volume, cm3 (range) 2.5 (0.5–5.8)

Histological type  

Invasive ductal carcinoma 9

Invasive ductal carcinoma with ductal 
carcinoma in situ

10

Medullary carcinoma with ductal 
carcinoma in situ

2

Invasive lobular carcinoma 2

Mucinous carcinoma with ductal 
carcinoma in situ

1

Papillary carcinoma 1

Histological grade  

1 5

2 7

3 8

2/3 1

Not analyzed 4

Benign  

No. of lesions 18

Mean patient age, years (range) 27.2 (20–48)

Mean tumor volume, cm3 (range) 9.6 (0.5–88.4)

Histological type  

Fibroadenoma 12

Phyllodes 2

Fibroadenomatosis 1

Adenosis 1

No histological analysis available 2



1016 |   VIDIĆ et al.

Signal decays for 1 benign and 1 malignant lesion are 
shown in Figure 2.

The results from varying the noise-floor correction factor 
NF are shown in Figure 3 for bmax = 3000 s/mm2. A sys-
tematic variation in the quality of fit as measured by AICc 
can be seen; for the biexponential model, the AICc is mono-
tonically increasing with the scaling factor k, indicating a re-
duced quality of fit with increasing NF. For several models, a 
minimum AICc is found for k = 1. Already at k = 0.5, a few 
measurement points are found to be below NF, and at k = 1 
this amounts to almost 5% of the measurement points.

The median noise-floor-to-STD was 1.41. This means that 
the single voxel SNR at b = 0 s/mm2 for this DWI protocol 
was around 20 for a typical benign lesion and 10 for a ma-
lignant lesion, based on the noise-floor–normalized S0 val-
ues fitted for the monoexponential model reported in Table 2 
(14.28 and 7.15, respectively).

Median values and interquartile ranges (IQRs) in be-
nign and malignant lesions for all fitted parameters are 
reported in Table 2. Friedman test mean rankings of the 
different representations regarding the quality of fit as 
measured with AICc are reported in Table 3. The Padé 
representation had the best overall mean ranks of 2.02 for 
bmax = 3000 s/mm2 and 1.93 for or bmax = 1800 s/mm2. 
Mean ΔAICc for the different models and bmax-values are 
shown in Table 4, with lower ΔAICc scores indicating a 
better quality of fit.

Plots of the average residuals as a function of b-value 
(Figure 4) illustrate that the PE representation best fitted the 
mean ROI signal as a function of b-value, but also systematic 
residuals from other representations.

AUC for all model parameters to differentiate between 
malignant and benign lesions at different values of bmax are 
shown in Table 5. All representations reached AUC > 0.9 for 
at least 1 parameter. In 3 cases, AUC = 0.99 was reached; 
for the K parameter in the kurtosis representation at bmax = 
1800 s/mm2, and for D in the fractional calculus model and f 
in the biexponential model at bmax = 3000 s/mm2.

There were significant differences between central and pe-
ripheral ROIs in terms of S0 in both malignant and benign le-
sions while only in malignant lesions for the diffusion related 
parameters (see Supporting Information Tables S1 and S2).

The results from the additional single voxel analysis are 
summarized in Supporting Information Table S4. Highest 

F I G U R E  1  Example of DCE and b = 600s/mm2 DWI image 
with ROI, showing peripheral (red) and central parts (blue) of ROI 
constituting complete ROI (patient aged 62 years diagnosed with 
invasive ductal carcinoma)

F I G U R E  2  Median corrected signal-to-noise-floor (Sc) for  
1 example benign and malignant lesion as a function of b-value. Error 
bars indicate IQR∕

√

n. Note that to avoid any perfusion influence, the 
b = 0 s/mm2 signal was not included in the fit
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classification accuracy was observed for the fractional model, 
with an AUC of 0.95. Also, the statistical model provided a 
higher AUC (0.94) than the monoexponential model (0.92). 
The other non-Gaussian representations provided lower AUC 
than the monoexponential model.

4 |  DISCUSSION

The motivation behind this study was twofold; to investi-
gate how different non-Gaussian diffusion representations fit 
the b-value dependence of the DWI signal in breast lesions  

F I G U R E  3  (A) Effect of different choices of noise-floor correction factor (NF) on the mean AICc for the models applied at the full range of 
b-values. (B) Percentage number of measurements with intensity lower than NF. NF2 = k·BK2, where BK is the mean intensity inside the breast at  
b = 3000 s/mm2. For the nominal scaling factor of k = 1, the different models have similar AICc, and approximately 95% of voxels are included. 
BE, biexponential; FC, fractional calculus; PE, Padé exponent; SE, stretched exponential; ST, statistical
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and to investigate the possible added clinical value of a high 
b-value protocol.

Regarding the first motivation, the results are interesting 
and, in some cases, also somewhat surprising. In the noise-
floor–corrected case, the kurtosis and Padé representations, 
both purely mathematically motivated representations, are 
ranked with the best quality of fit determined by AICc for 
bmax = 1800 s/mm2 (see Table 3). For bmax = 3000 s/mm2,  
the Padé and stretched exponential representations are 
ranked as best. The representations with 4 free parameters, 
the biexponential and the fractional calculus, did not per-
form well in terms of AICcs. The fractional calculus rep-
resentation had the lowest quality of fit for both values of 
bmax, whereas the biexponential was ranked as third for the 
higher bmax. Higher AICc values for these representations 
were expected as a consequence of the introduced pen-
alty for the number of parameters in the AICc calculation. 

The fractional calculus representation, while having more 
parameters, also had larger residuals than the Padé and 
stretched exponential representations (Figure 4); so the 
higher AICc was unsurprising also from that point of view. 
Conversely, residuals for the biexponential model were the 
second lowest (after Padé; Figure 4).

Given the relatively low signal-to-noise-floor at the 
highest b-values, it is important to handle the noise-floor 
correctly, or at least to know how the results are influenced 
by incorrect noise-floor correction. Commonly, the noise-
floor (NF) value is estimated based on image SNR from 
repeated measurements. However, for multielement coils 
combined with parallel imaging methods, the relationship 
between NF and SNR is nontrivial. In this article, we chose 
to estimate NF directly from the b = 3000 s/mm2, assuming 
effectively no real signal from the breast at that b-value 
and that the small number of lesion voxels that retain 

T A B L E  2  Parameter values, median with IQR for different values of bmax

 

bmax = 600 s/mm2

       

Malignant Benign

Median IQR Median IQR

Monoexp. S0 [S/NF] 7,15 3,54 14,28 10,66        

  ADC [µm2/ms] 0,97 0,23 1,82 0,28        

 

bmax = 1800 s/mm2 bmax = 3000 s/mm2

Malignant Benign Malignant Benign

Median IQR Median IQR Median IQR Median IQR

Kurtosis S0 [S/NF] 7,36 3,72 14,82 11,47        

  K 1,01 0,29 0,39 0,2        

  Dk [µm2/ms] 1,14 0,27 1,92 0,38        

Padé S0 [S/NF] 7,61 3,88 15,03 11,48 7,76 3,76 15,34 11,39

  δP 0,41 0,15 0,19 0,13 0,37 0,11 0,21 0,23

  Dp [µm2/ms] 1,36 0,35 2,06 0,42 1,29 0,30 2,11 0,53

Stretched exp. S0 [S/NF] 10,18 5,52 17,99 14,62 10,96 5,40 23,54 17,75

  α 0,57 0,11 0,78 0,13 0,51 0,10 0,72 0,23

  DDC [µm2/ms] 1,36 0,70 2,23 0,90 1,57 0,74 2,51 1,02

Statistical S0 [S/NF] 7,30 3,44 14,89 11,31 7,17 3,30 14,71 11,21

  σ 1,00 0,00 0,77 0,28 1,00 0,01 0,77 0,57

  ADCpeak [µm2/ms] 0,70 0,56 1,93 0,42 0,69 0,62 1,93 0,39

Fractional S0 [S/NF] 10,18 5,52 17,99 14,62 10,96 5,40 23,54 17,75

  µ [µm] 4,84 0,15 5 0,46 4,66 0,18 4,84 0,39

  β 0,57 0,11 0,78 0,13 0,51 0,10 0,72 0,23

  D [µm2/ms] 0,8 0,2 1,62 0,23 0,78 0,2 1,57 0,28

Biexp. S0 [S/NF] 7,51 3,65 14,52 10,95 7,38 3,70 14,39 10,91

  f 0,61 0,23 0,92 0,09 0,56 0,16 0,95 0,09

  D1 [µm2/ms] 2,01 0,67 2,02 0,33 1,89 0,40 1,90 0,28

  D2 [µm2/ms] 0,38 0,27 0,49 0,15 0,33 0,22 0,49 0,43
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appreciable signal do not strongly affect the overall median 
signal. To examine the validity of this approach, we ex-
tended our analysis to include differential levels of noise-
floor correction applied during the fitting. The resulting 
changes in AICc are, in reality, only comparing the resid-
uals, given that all other parameters of AICc are kept con-
stant; we interpret the fact that the AICc values “converge” 
to similar values for all models at the nominal noise-floor 
correction value (scaling factor k = 1) as an indication that 
our method for noise-floor correction is sound. One can 
see, however, that accuracy of the noise-floor correction 
will affect conclusions regarding which representations 
have the best AICc, and this should be borne in mind when 
making such comparisons.

The second aim of this study was to assess the perfor-
mance of diffusion signal representations in breast lesion clas-
sification, and noise-floor correction is important here also. 
In terms of the stability of fitted parameters without noise-
floor correction, the results also vary: Among the 11 fitted 
parameters with AUC > 0.9 in Table 5, the ADC from the 
monoexponential representation and f from the biexponential 
representation stand out as the most stable, with only small 
and systematic changes for benign and malignant lesions (see 
Supporting Information Table S3). For the monoexponential 

model, this is unsurprising given that at b = 600 s/mm2 the 
signal-to-noise-floor ratio is still high (Figure 3). For the 
other representations, the fitted parameters are quite sensitive 
to lack of noise-floor correction, in particular the stretched 
exponential and fractional calculus representations, which 
both overestimate S0 compared to all other representations, 
including compared to the measured S0, and even more so 
when not using noise- floor correction. This suggests that fit-
ting these two representations would benefit from including 
more data points at low b-values. The relatively high AUC 
from S0 is, in itself, notable and suggests that the role of pro-
ton density and T2 has perhaps been underexplored. S0 values 
will also be influenced by exact details of scanner and proto-
col used and so are challenging in multiscanner studies unless 
normalized.

The results from the stretched exponential and fractional 
calculus representations are also interesting from another 
point of view. As illustrated in Figure 4, these representations 
had almost identical residuals, indicating very similar curve 
shapes. This comes as no surprise given that these mathe-
matical representations are very similar. However, in terms 
of classification accuracy, they performed differently, with D 
from the fractional calculus giving higher AUC than α and 
DDC from the stretched exponential. This indicates that the 
information carried by the signal curves is transferred into the 
fitted parameters in different ways by these 2 representations, 
and that the fractional calculus representation more efficiently 
transfers information related to differentiating between benign 
from malignant lesions in a single parameter (D).

In general, the classification accuracy of DWI for this 
cohort of breast lesions was extremely high. Although 
this does not necessarily extrapolate to wider cohorts, it 
is nonetheless suggestive of the value of DWI in providing 
discriminatory power. The conventional ADC alone from 
the monoexponential fit for b = 200 and 600 s/mm2 reached 
AUC = 0.96. The performance of ADC is improved to a 
very high AUC of 0.99, using some of the non-Gaussian 
representations. However, it is difficult to properly evaluate 
whether the increased scan time and analysis complexity 
for the high b-value protocol is warranted from a purely 
clinical point of view for differentiation of benign and ma-
lignant lesions compared to the simple ADC. A standard 
trace-weighted diffusion protocol with 2 b-values can be 
performed in 1 to 3 minutes, whereas the protocol used in 
this study had a substantially longer scan time of 7:46 (for 
all b-values up to 3000 s/mm2). It would be interesting to 
evaluate the clinical value of high b-value protocol in the 
setting of, for example, prediction of treatment response in 
neoadjuvant therapy.

When looking at the two aims combined, one interesting 
feature is that there is no direct agreement between the qual-
ity of fit and classification accuracy. To illustrate, the PE and 
stretched exponential (SE) representations are ranked highly 

T A B L E  3  Mean ranks, regarding the quality of fit as measured 
with AICc, obtained from Friedman test for benign and malignant 
cases in complete, central, and peripheral part of ROI

  DKI PE SE ST FC BE

All (bmax = 1800 s/mm2) 2.26 1.93 2.74 3.70 5.63 4.74

All (bmax = 3000 s/mm2)   2.02 2.04 3.77 3.95 3.26

Benign (bmax = 1800 s/mm2) 2.37 1.88 2.72 3.55 5.51 4.91

Benign (bmax = 3000 s/mm2)   2.07 2.16 3.34 4.11 3.30

Malignant (bmax = 1800 s/mm2) 2.05 2.14 2.79 3.60 5.60 4.81

Malignant (bmax = 3000 s/mm2)   1.91 1.98 3.93 3.79 3.40

Mean ranks across all models differ with high significance (P < .001).
Abbreviations: BE, biexponential; FC, fractional calculus; ST, statistical.

T A B L E  4  Mean ΔAICc for the different models at the 2 
different choices of bmax

ΔAICc

bmax [s/mm2]

1800 3000

Kurtosis 0.7  

Padé 0.9 3.4

Stretched exp. 1.2 4.5

Statistical 2.6 7.8

Fractional 4.6 7.8

Biexp. 3.6 4.7

The Kurtosis model is not included for bmax = 3000 s/mm2.
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in terms of overall quality of fit for both bmax conditions, but 
produce the lowest AUC (0.92 and 0.94 for PE and SE), and 
notably both perform worse than the ADC alone (AUC of 
0.96).

We also report on the actual fitted values for the parameters 
of the different diffusion representations. To our knowledge, 
this represents the most comprehensive overview of observed 

diffusion parameters in breast lesions across different models 
in the same data set. A study by Iima et al30 reports mean  
K = 0.82 in malignant and K = 0.55 in benign lesions, whereas 
our study provides K = 1.01 and 0.39, respectively. For Dk, 
the values were 1.05 and 1.73 µm2/ms in Iima et al30 versus 
1.14 and 1.92 µm2/ms in our study. For both parameters, the 
mean values in Iima et al30 are within the IQR of the values 

F I G U R E  4  Mean residuals in units of signal-to-noise-floor at each b-value for each signal representation for the 2 different choices of bmax. 
BE, biexponential; DKI, diffusion kurtosis imaging; FC, fractional calculus; PE, Padé exponent; SE, stretched exponential; ST, statistical
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in our study. It should be noted that the DWI protocols of the  
2 studies are not identical.

To account for lesion heterogeneity, we have investigated 
possible differences in model parameters between the central 
and peripheral parts of the tumor (Supporting Information 
Tables S1 and S2). In particular, S0 was systematically lower 
in the peripheral parts of the lesion, both for malignant and 
benign cases. This could originate from genuine differences 
in tissue property, like varying T2, but also from the voxel 
composition (i.e., partial volume effects) and image acquisi-
tion process, like coil sensitivity profiles. In addition, for the 
malignant lesions, some diffusion coefficients were signifi-
cantly higher in the periphery compared to the central parts 
of the ROI. This is also in agreement with a partial volume 
effect interpretation, where the central parts of the tumor 
have higher density of cancer cells with both lower diffusion 
coefficients and longer T2. Further studies comparing DWI 
with histology are required to determine this.

The single voxel classification accuracy was evaluated 
(Supporting Information Table S4). The ranking of the various 

non-Gaussian diffusion representations differed from the ROI 
mean analysis, indicating that sensitivity to measurement 
noise may vary among representations. One of the 4-parameter  
representations, the fractional calculus model, achieved the 
highest AUC. This is somewhat surprising, given that repre-
sentations with higher degrees of freedom can be expected to 
have more local minima and thus be less robust in a low SNR 
situation. The relative increase of AUC from the monoexpo-
nential model to the best of the non-Gaussian representations 
are approximately the same as for the ROI mean analysis. 
Overall, the results indicate that the single voxel SNR in the 
reported acquisition protocol is sufficiently high to obtain ro-
bust fitting to non-Gaussian diffusion representations in the 
200- to 3000-s/mm2 range.

Similar analyses of different diffusion representations 
applied to brain tissue have concluded that the PE represen-
tation gave the best fit to brain data,8 that the biexponential 
model was not appropriate for all parts of the brain, and that 
the signal can be described equally well with fewer parame-
ters7 using DKI. Our results for breast lesions are along the 
same lines. Regarding lesion differentiation using the biexpo-
nential representation, our study gives a different conclusion 
from Tamura et al, wherein no biexponential parameter was 
found to be a significant differentiator between malignant and 
benign lesions. On the contrary, we were able to extract a 
highly significant differentiator, the signal fraction f. Results 
in our study were comparable to DKI parameters and lesion 
differentiation accuracy obtained in Sun et al.21 Furthermore, 
similar results to our study have been reported before by Iima 
et al,30 where they observed perfect classification of breast 
lesions in a cohort of 26 patients using the kurtosis model in 
combination with IVIM. Note that in our study, we excluded 
b = 0 s/mm2 from fitting; thus, these results might imply ro-
bustness of the DKI approach to the choice of the b-values.

A limiting factor is the available SNR in DWI. In the 
main part of this study, we averaged signal intensity across 
all voxels within the ROI before fitting to the different rep-
resentations. This was done to improve the SNR of the data 
to enable differentiation between the quality of fit for the dif-
ferent representations. There is significant heterogeneity in 
tumors on the length scale relevant for MRI,31 and this aver-
aging procedure could potentially introduce additional par-
tial volume effects not present on a single voxel level. This 
should be further investigated by comparing fitting results by 
averaging an increasing number of voxels. The comparison 
between central and peripheral ROI, as done in our study, is 
partially toward this end and shows some systematic differ-
ences, as already discussed. Another limitation of the study is 
that only single-parameter AUC was calculated, and not the 
combination (by logistic regression) of derived parameters 
within the model for evaluating the clinical potential of each 
model as a whole. Finally, a differently designed MR protocol 
could potentially result in different conclusions. For example, 

T A B L E  5  AUC values for classification of malignant/benign 
tumors for all of the extracted diffusion parameters, at different values 
of bmax

AUC of ROC

bmax [s/mm2]

600 1800 3000

Monoexp. S0 0.858    

ADC 0.962    

Kurtosis S0   0.851  

K   0.993  

Dk   0.942  

Padé S0   0.849 0.851

δP   0.920 0.798

Dp   0.918 0.920

Stretched exp. S0   0.776 0.776

α   0.938 0.853

DDC   0.838 0.76

Statistical S0   0.858 0.86

σ   0.909 0.791

ADCpeak   0.973 0.967

Fractional S0   0.776 0.78

µ   0.687 0.733

β   0.938 0.853

D   0.984 0.989

Biexp. S0   0.847 0.851

f   0.989 0.998

D1   0.511 0.511

D2   0.707 0.583

The highest parameter within all models are shown in bold.
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acquiring 12 b-values in 3 directions instead of 6 b-values in 
6 directions yields the same overall scan time, but if trace-
weighted images are used for analysis, the degrees of freedom 
between these protocols are different and this would affect the 
AICc calculation. Choosing to use the raw images for each 
diffusion direction, as in our analysis, avoids this pitfall, and 
we thus believe our results to be less dependent on the spe-
cific combination of b-values versus directions, and should 
hold for other protocols with similar total scan time.

5 |  CONCLUSION

In conclusion, the quality of fit for 6 diffusion signal 
representations were compared for the b-value range 200 
to 3000 s/mm2 for malignant and benign breast lesions. For 
noise-floor–corrected data, the PE representation gave the 
best fit overall (lowest residuals and AICc) with only 3 fitted 
parameters. All the models provided parameters with high 
AUC (>0.9) for the classification of benign and malignant 
lesions, with the highest AUC of 0.99 achieved by f (biexpo-
nential), K (kurtosis), and 0.989 for D (fractional calculus). 
The noise-floor correction level is affecting the fitting and the 
estimated parameters, and should thus be treated carefully. 
Finally, the supporting single voxel analysis showed that the 
SNR in this protocol, in the range of 10 to 20 at b = 0 s/mm2, 
was sufficient to provide high classification accuracy for the 
statistical and fractional calculus diffusion representations, 
whereas the other non-Gaussian representations gave lower 
classification accuracy than the monoexponential model.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

TABLE S1 Central ROI parameter values, median with  
inter-quartile region (IQR) for different values of bmax.  
S/NF = Signal-to-noise-floor
TABLE S2 Peripheral ROI parameter values, median with 
inter-quartile region (IQR) for different values of bmax. 
*Significant difference compared to Central ROI (P < .05). 
**Strongly significant difference compared to Central ROI 
(P < .001)
TABLE S3 Percentage difference in median values of fit-
ted parameters between non-corrected and noise corrected 
data. Negative numbers mean lower parameter value in non- 
corrected data
TABLE S4 Single-voxel classification results. AUC of ROC 
values for classification of malignant and benign voxels 
pooled across all lesions. Values above 0.9 are shown in bold
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