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Abstract 

Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the 

potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying 

degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to 

their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we 

discovered that there is a significant association between diseases studied genetically and their relevant tissues.  

This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, 

thereby highlighting these tissue types for further post-GWAS functional studies. 

 

Introduction 

Genome wide association studies (GWAS) of common complex or multifactorial diseases have proliferated 

enormously over the last few years.  They have also been successful in identifying a large number of loci at 

extraordinary levels of significance.  However, this success has presented a new challenge: translating these findings 

into a full understanding of how the loci affect complex disease traits.  Most of the reported variants do not affect 

protein function in an obvious manner and indeed a large number lie in introns or intergenic regions, indicating that 

they may function through more subtle regulation of gene expression.  This is compatible with the hypothesis that 

such genetic variants, commonly known as expression quantitative trait loci (eQTL), are an important factor in 

disease susceptibility (1).   

eQTLs are discovered when samples are simultaneously studied using genotyping tools, yielding information on 

DNA variants, and expression measurement tools, yielding information on RNA levels.  Each SNP can be 

represented by its alleles or genotypes, and statistically associated across samples with RNA levels.  As a 

hypothetical example of one eQTL (Figure 1), as genotypes vary from CC, CT, TT at SNP rs7188573 in gene 

MMP25, expression levels of this gene decrease in monocytes.  Note that the SNP may be within a certain distance 

from the gene, in which case the SNP is termed a cis eSNP, or might be distant, termed a trans eSNP.  The degree of 

association is typically estimated statistically, using ANOVA or equivalent tests, controlled for multiple hypothesis 

testing.  Nicolae, et al., recently demonstrated that SNPs associated with human traits are in general enriched for 

eQTLs (2).  Other studies have shown that eQTLs calculated in the tissue of interest in a disease are enriched for 

disease-associated SNPs (3,4).  These insights have been applied to use eQTLs to provide another layer of meaning 

to SNPs and prioritize GWAS results (5,6).   
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Figure 1. Hypothetical example of the different expression values of MMP25 observed in monocytes with various 

genotypes at eSNP rs7188573.  

 

Since gene expression profiles vary in different tissues, it is only to be expected that some eQTLs are tissue specific, 

and it has been reported that 33-69% of eQTLs, depending on the analysis method and the tissue type, are not 

discovered in other tissues (3,7,8), suggesting that the differences in eQTLs across tissues may provide additional 

functional information.  This prompted us to investigate the correlation between the statistical significance of eQTLs 

calculated in different tissues (blood monocytes, liver, and adipose tissue) and their odds ratios in diseases studied 

by the Wellcome Trust Case Control Consortium (WTCCC) (9).  Our results reveal the potential for this type of 

correlation analysis to be used to determine the tissue of interest for a disease, ultimately providing information that 

narrows the research focus or opening up novel avenues of inquiry.  

 

Methods 

The overall experimental design in shown in Figure 2. We obtained publicly-available eQTL data generated from 3 

different tissue types in healthy Caucasians: peripheral blood monocytes (8), liver, and adipose tissue (10).  The first 

data set specifically involved monocytes isolated from the blood of 1490 healthy individuals recruited in the 

Gutenberg Heart Study. The eQTLs were mapped using analysis of variance (ANOVA), with a p-value cutoff of 

5.78E-12, corresponding to a family-wise error rate of 0.05.   This study reported 37,403 associations, comprising 

29,912 SNPs and 2,745 expression traits.  The liver and adipose datasets involved samples obtained from 1008 

morbidly obese individuals at the time of gastric bypass surgery.  Association was determined using the Kruskal-

Wallis test, and results were reported at a 10% false discovery rate (FDR) based on permutations of the SNP 

genotypes and gene expression levels, for a total of 24,513 eSNPs associated with 15,241 transcripts or 9931 distinct 

genes.   

To compare against these, we used the results of the genome wide association studies reported by the Wellcome 

Trust Case Control Consortium for 7 different diseases: bipolar disorder (BD), coronary artery disease (CAD), 

Crohn’s disease (CD), hypertension (HTN), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes 

(T2D).   

We will refer to the p-value of eQTL association for an eSNP as peqtl, and the p-value of disease association for a 

given SNP as pgwas.  For each of the three tissue types for which we had eQTL relationships, we studied the 

relationship of minimum eSNP p-value (peqtl) to odds ratio against any of the seven diseases.  For each disease 

studied by the WTCCC, we selected eSNPs in each tissue that were in very strong linkage disequilibrium (LD, R
2
 = 

1) with any SNP having uncorrected pgwas < 0.01 for that disease.  Because testing multiple SNPs in LD with each 

other could result in spurious correlation, we selected one SNP with the minimum peqtl from each LD block and 

performed Kendall rank correlation analysis of -log(peqtl) and the absolute value of log(disease odds ratio) using the 

cor.test function in R (11).  The resulting p-values of 21 statistical tests were provided as input to the qvalue 

package in R to calculate corresponding q-values (12).  
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Figure 2. Experimental design.   

 

Results 

Our goal was to determine whether one can computationally assign a functional tissue to a disease, given only the 

genetic architecture found through GWAS, using tissue-specific eQTL data sets.  As shown in Figure 2, we 

intersected two sets of variants, one from each disease studied by the WTCCC and the other from eSNPs reported in 

each tissue type.     

The total numbers of eSNPs reported to be significant in each tissue, and the number that were associated with each 

disease at p < 0.01, are shown in Table 1.  For the eSNPs listed in this table, we investigated the correlation between 

peqtl and disease odds ratio.  For example, Figure 3 shows the rank of log(odds ratio) plotted against log(peqtl) for 

monocyte eSNPs and type 1 diabetes.  The log of Kendall rank correlation p-value for each disease is shown in 

Figure 4.   

 

Table 1. Number of eSNPs for each tissue type that are associated with each disease at p < 0.01. 

Tissue type Monocytes Liver Adipose 

Total # of eSNPs 30,898 7380 15970 

Disease Number of eSNPs with p < 0.01 for disease 

Bipolar disorder 213 70 113 

Coronary artery disease 183 57 108 

Crohn’s disease 211 66 128 

Hypertension 182 49 117 

Rheumatoid arthritis 328 84 139 

Type 1 diabetes 481 113 206 

Type 2 diabetes 178 72 119 
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Figure 3.  Plot of rank of absolute log(odds ratio) vs. -log(peqtl) for monocyte eSNPs and type 1 diabetes. 

 

For SNPs reported to be associated with gene expression in monocytes, we found that the correlation was significant 

at p < 0.05 in three diseases, Crohn’s disease, rheumatoid arthritis, and type 1 diabetes.  These are all autoimmune 

diseases in which macrophages play various roles.  For example, there are recent reports that Crohn’s disease may 

be a primary immunodeficiency of macrophages (13), and these cells are also involved in the pathogenesis of type 1 

diabetes (14,15). Monocytes are also of central importance in rheumatoid arthritis (16).  Closer inspection revealed 

several SNPs in the vicinity of -- but not within -- CARD9 that were strongly associated with the expression of this 

gene.  CARD9 has previously been implicated in Crohn’s disease, although the association was not replicated in the 

WTCCC study (17).  

In liver tissue, we found that the correlation was significant for type 2 diabetes, and borderline for coronary artery 

disease.  The liver is of course intimately involved in the metabolism of glucose and lipids, and liver pathology, such 

as nonalcoholic fatty liver disease seen in metabolic syndrome, is linked to coronary artery disease (18) and type 2 

diabetes (19).  We did not find any significant correlations in adipose tissue.  The Kendall rank correlation statistics 

and q-values are summarized in Table 2.  For the significant correlations, the q-values ranged from 0.025 to 0.205. 

 

38



  

 
Figure 4.  Correlation statistics for eSNP p-value and disease odds ratio.  The red line represents a cutoff of p = 

0.05.  

 

 

Table 2. Summary of Kendall rank correlation statistics and q-values.  Bold text indicates significant correlations. 

Tissue type Monocytes Liver Adipose 

Correlation τ P q τ P q τ P q 

Disease          

Bipolar disorder -0.038 0.406 0.747 0.140 0.088 0.250 -0.067 0.294 0.594 

Coronary artery disease -0.023 0.651 0.902 0.178 0.0505 0.205 -0.010 0.882 0.902 

Crohn’s disease 0.106 0.022 0.148 0.051 0.546 0.892 0.020 0.737 0.902 

Hypertension 0.028 0.573 0.892 -0.022 0.830 0.902 -0.009 0.891 0.902 

Rheumatoid arthritis 0.085 0.022 0.148 0.133 0.073 0.246 0.094 0.099 0.250 

Type 1 diabetes 0.099 0.001 0.025 -0.013 0.839 0.902 0.003 0.948 0.914 

Type 2 diabetes 0.061 0.230 0.516 0.171 0.033 0.168 0.013 0.831 0.902 

 

Discussion 

We systematically investigated the correlation between the statistical significance of eQTLs calculated in different 

tissues and their odds ratios for different diseases studied by the WTCCC.  Although several groups have used these 

‘tissue eQTLs’ as an indicator of functional significance in interpreting GWAS results, to our knowledge, this is the 

first time the correlation of tissues to diseases has been systematically evaluated.  If we consider eQTLs to be a 

marker of the functional significance of SNPs, our analysis reveals that in tissues that play a role in the disease this 

significance correlates with the disease odds ratio.  These results suggest that the reverse may be true as well: tissues 
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in which there is a correlation between functional significance and odds ratio are more likely to play a role in that 

disease.  While the statistical associations are not very strong, the false discovery rates of 0.025 to 0.205 indicate 

that the majority of them are not spurious.  We plan to validate these findings by performing the analysis on 

additional eQTL and GWAS datasets.  Ultimately, eSNP-gene relationships in the tissue of interest may reveal novel 

candidate disease SNPs, providing additional clues to the pathogenesis of the disease.  For example, rs7698608, a 

SNP with p = 0.0005 for type 2 diabetes, is associated with the expression of CISD2 in the liver.  CISD2 is a 

causative gene for Wolfram syndrome type 2, and a glucose intolerance phenotype has been observed in CISD2-/- 

C57BL/6 mice (20).   

In conclusion, analyzing the correlation between tissue eQTL significance and disease odds ratio may provide 

another layer of tissue-specific information that can be used to decipher GWAS results.  In order to facilitate this, 

more studies of tissue specific eQTLs must be performed and the data shared with the scientific community.  Many 

researchers have been generous with their data, however the trend so far is to share mainly the p-values for the 

SNPs, and most of the datasets have not been collected in a centralized location.  Providing the information 

equivalent to odds ratio in GWAS (the direction and magnitude of effect on gene expression) and submitting to a 

centralized database such as the GTEx (Genotype-Tissue Expression) eQTL Browser 

(http://www.ncbi.nlm.nih.gov/gtex/test/GTEX2/gtex.cgi) will help other investigators fully leverage the power of 

this data. 
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