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Abstract

Theoretical Analysis and Efficient Algorithms for Crowdsourcing

by

Hongwei Li

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

Crowdsourcing has become an effective and popular tool for human-powered computation
to label large datasets. Since the workers can be unreliable, it is common in crowdsourcing
to assign multiple workers to one task, and to aggregate the labels in order to obtain results
of high quality. This thesis is dedicated to analyze the process of crowdsourced labeling and
propose algorithms to improve the efficiency of this process.

In Chapter 1, we give an overview of crowdsourcing and its applications. Meanwhile,
we address the challenges of labeling by crowdsourcing and present the organization of the
thesis.

In Chapter 2, we provide finite-sample exponential bounds on the error rate (in probabil-
ity and in expectation) of general aggregation rules under the Dawid-Skene crowdsourcing
model. The bounds are derived for multi-class labeling, and can be used to analyze many
aggregation methods, including majority voting, weighted majority voting and the oracle
Maximum A Posteriori (MAP) rule. We show that the oracle MAP rule approximately
optimizes the upper bound on the mean error rate of weighted majority voting in certain
setting.

In Chapter 3, we propose an iterative weighted majority voting (IWMV) method that
optimizes the error rate bound and approximates the oracle MAP rule. Its one step version
has a provable theoretical guarantee of the error rate. The IWMV method is intuitive and
computationally simple. Compared to the traditional EM approach, IWMV is more robust
to the noise of estimating workers’ reliabilities and model misspecification. Experimental
results on both simulation and real data show that IWMV performs at least on par with the
state-of-the-art methods, and it has low computation cost (around one hundred times faster
than the state-of-the-art methods).

In Chapter 4, we study the problem of selecting subsets of workers from a given worker
pool to maximize the accuracy under a budget constraint. One natural question is whether we
should hire as many workers as the budget allows, or restrict on a small number of top-quality
workers. By theoretically analyzing the error rate of a typical setting in crowdsourcing, we
frame the worker selection problem into a combinatorial optimization problem and propose
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an algorithm to solve it efficiently. Empirical results on both simulated and real-world
datasets show that our algorithm is able to select a small number of high-quality workers,
and performs as good as, sometimes even better than, the much larger crowds as the budget
allows.

In practice, worker quality (for some tasks) can be associated with some explicit charac-
teristics of the worker, such as education level, major and age; although it is also possible
that in some other tasks none of the attributes matter. In Chapter 5, we propose a general
crowd targeting framework that can automatically discover, for a given task, if any group of
workers based on their attributes have higher quality on average, and target these groups,
if they exist, for future work of the same task. This framework is complementary to tra-
ditional worker quality estimation approaches and is more budget efficient because we are
able to target potentially good workers before they actually do the task. Experiments on
real datasets show that the accuracy of final prediction can be improved significantly for the
same budget or even less budget in some cases. Our framework is very practical and can be
easily integrated in current crowdsourcing platforms.
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Chapter 1

Overview

In modern big data era, the development of computer science and technology has advanced
many areas in the direction of artificial intelligence and automatics. Examples include self-
driving car, speech recognition and image understanding, to name a few. However, there are
still many tasks that can be easily carried out by people but tend to be hard for comput-
ers, e.g., image annotation, visual design and video event classification. When these tasks
are extensive, outsourcing them to experts or well-trained people may be too expensive.
Crowdsourcing has recently emerged as a powerful alternative.

1.1 What is crowdsourcing?

Wikipedia1 gives the following definition of Crowdsourcing:

“Crowdsourcing is the process of obtaining needed services, ideas, or content
by soliciting contributions from a large group of people, and especially from an
online community, rather than from traditional employees or suppliers.”

From the definition above, the core components of crowdsourcing are the usage of open call
format and a large network of potential laborers. In fact, Wikipedia itself is a product of
crowdsourcing: Instead of creating an encyclopedia by hiring writers and editors, Wikipedia
gives the people on the Internet the ability to create the information on their own with
moderators. This leads to the most comprehensive encyclopedia that the world has ever
seen.

The term “crowdsourcing” is coined by Jeff Howe in his Wired magazine article “The
Rise of Crowdsourcing” (Howe, 2006). He defined crowdsourcing as “an idea of outsourcing
a task that is traditionally performed by an employee to a large group of people in the form
of an open call”. Howe’s definition pins down the essence of crowdsourcing to be distributive
and related to “open call”. For convenience of discussion, the entity that distributes the

1https://en.wikipedia.org/wiki/Crowdsourcing

https://en.wikipedia.org/wiki/Crowdsourcing
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tasks is referred to as task owner or requester. People who provide the answers or finish the
tasks are referred to crowds or crowd workers.

The traditional outsourcing strategy that hires professionals or well-trained people is
reliable but expensive. When the scale of the task is huge, e.g., labeling a large volume of
images, outsourcing might be unaffordable and not scalable. On the contrary, crowdsourcing
can provide a scalable workforce in a budget-efficient way. This is why crowdsourcing has
recently been evolving as a distributed problem solving solution in general and as a business
production model (Yuen et al., 2011).

A normal process of crowdsourcing is as follows: after crowdsourcing the tasks, the task
owner collects the submitted answers from the crowds. Usually, the crowd workers are
compensated monetarily, with prizes or recognition. In some cases, they are just rewarded
with kudos and self-satisfaction.

The downside of crowdsourcing is that the performance of all individual crowd workers
can be unreliable. To overcome this, task owner usually hires multiple workers to work on
each task. By using certain aggregation rule, the noisy inputs can be integrated into a result
of high quality. The aggregation of crowdsourced results is the strategy of using the wisdom
of crowd to solve problems.

A famous historical example of exploring the wisdom of crowd dates back to Sir Francis
Galton, a British statistician. In the summer of 1906, Galton was at a livestock fair and
proposed a weight-judging competition. An ox was selected and placed on display, and
the people in the crowd were invited to guess the weight of the ox after it was slaughtered
and dressed. There were 787 people in total who participated in this competition. After
collecting all the guesses, Galton computed the median of the data. Compare to the true
weight of the ox, which was 1,198 pounds, the median was 1,207 pounds (Galton, 1907b),
which was within 0.8% of the true weight. Soon afterwards, Galton acknowledged that the
mean was 1,197 pounds, which was even more accurate (Galton, 1907a). This vivid example
shows a simple but powerful fact: under certain circumstances, crowds are outstandingly
intelligent when their opinions are appropriately aggregated (Surowiecki, 2005).

With the rise of crowdsourcing, there are more and more examples of it emerge and
demonstrate its power. In the next section, we will present some selected examples to
show how crowdsourcing is used in our society to advance the development of science and
technology.

1.2 Examples of crowdsourcing

The most famous crowdsourcing platform is Amazon Mechanical Turk (or briefly, MTurk)2.
It enables requesters to use human intelligence to perform tasks that are challenging for
computers. The requesters can first decompose their demands into microtasks called Human
Intelligence Tasks (HITs), and then post these HITs to the online marketplace on MTurk.

2http://www.mturk.com

http://www.mturk.com
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For example, some typical microtasks are identifying objects in images or videos, performing
data de-duplication, transcribing recording or researching data details. The large and global
population of crowd workers will finish these microtasks and get rewards, which is usually
around several cents per task. MTurk enables individuals and businesses to achieve their
goals in a time-efficient and budget-efficient manner. Ever since its distribution on November
2005, MTurk kept growing. In January 2011, there were reportedly over 500,000 workers
from 190 countries3.

MTurk is a typical win-win business model. From the perspective of requesters, they
can get their tasks done in a relatively short time and save money. From the perspective
of crowd workers, they can earn money with flexible work time and location. MTurk pro-
vides many job opportunities to hundreds of thousands of people around the world. At the
same time, Amazon takes a small proportion of the rewards paid by requesters to maintain
its crowdsourcing platform. The three parties – requesters, crowd workers and Amazon –
combine together to form an ecosystem of crowdsourcing marketplace.

Of course MTurk is not the only crowdsourcing marketplace in the world, there are
many other companies that focus on crowdsourcing business as well, such as clickworker4,
CrowdFlower5 and Taskcn6. Interested readers can check a list of crowdsourcing sites in the
directory of crowdsourcing sites at http://www.crowdsourcing.org/directory.

In addition to the crowdsourcing marketplaces and platforms mentioned above, there is
another form of crowdsourcing system – information sharing system, which collects infor-
mation from the crowd and share the information among the crowd. A typical example is
Wikipedia7 that mentioned early. It is a free-access and free content Internet-based ency-
clopedia, launched in 2001. Anyone who access the site can edit any of its articles as long
as they follow the rules of Wikipedia. According to Alexa website ranking, Wikipedia is the
seventh-most popular website and the most general reference work on the Internet8. People
around the world contributed over 4.7 million articles as of 2014. Without any monetary
rewards, these contributors participated for intellectual satisfaction and pure altruistic pur-
pose. Five years after Wikipedia’s launch, a similar knowledge sharing system in Chinese –
Baidu Baike9 was launched. As of January 2015, it had over 5 million registered users who
had contributed over 10 million Chinese articles. These encyclopedia crowdsourcing-based
systems benefit people all over the world every day.

There are also many other information sharing systems launched on the Internet such

3According to http://en.wikipedia.org/wiki/Amazon_Mechanical_Turk
4http://www.clickworker.com/
5http://www.crowdflower.com/
6http://www.taskcn.com/
7http://www.wikipedia.org/
8http://www.alexa.com/siteinfo/wikipedia.org
9http://baike.baidu.com

http://www.crowdsourcing.org/directory
http://en.wikipedia.org/wiki/Amazon_Mechanical_Turk
http://www.clickworker.com/
http://www.crowdflower.com/
http://www.taskcn.com/
http://www.wikipedia.org/
http://www.alexa.com/siteinfo/wikipedia.org
http://baike.baidu.com
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as the Q&A sites Yahoo! Answers10, Baidu Zhidao 11, Quora12 and Zhihu13 among many
others. Registered users can post any question they want to ask on these platforms, and
other people who know the answers can provide solutions. Since some answers are noisy,
most of such systems adopt the user voting strategy to rank the quality of answers, and
show the answers in the order of their voted scores. Other people who are interested in
the same questions can browse the answers on the Internet. Both the requesters who post
questions and the answer providers are not rewarded with money but with recognition or
virtual scores.

As an interesting paradigm of crowdsourcing, the Game with a purpose, pioneered by
Von Ahn (2006), utilizes people’s desire to be entertained to solve problems efficiently by
online game players. For example, the ESP game (Von Ahn and Dabbish, 2004) is an online
image labeling game that collects labels for images on web. Another similar game created
by Russell et al. (2008) is named LabelMe14. Users of LabelMe play the game of labeling
objects in the images to gain scores and compete for fun. These game-based tools produced
labeled image dataset that are important to research in computer vision community, and
they are crucial to the development of image searching systems.

Even with advanced technologies, creative work is mostly done by humans and rarely by
machines. Therefore, some business models harness the power of crowdsourcing to perform
creative work to reduce production costs. Threadless15 is a good example and it is a platform
for collecting graphic T-shirt designs submitted by users. The collected designs are then
voted by the community. The designer of the top voted design will get paid with good
amount of money (usually thousands of dollars). The company picks up the most popular
designs, screens out copyright violations and obscenities, and then produces T-shirts with
these designs out for sale. This practice not only ensures that the company has enough
original designs to produce but also maintains enough attraction to customers in the market.

Another example of using crowdsourcing in a creative way is reCAPTCHA (Von Ahn
et al., 2008). It is an upgraded version of CAPTCHA (Von Ahn et al., 2003), which is
an acronym for “Completely Automated Public Turing test to tell Computers and Humans
Apart”. Essentially, reCAPTCHA is a type of challenge-response test used in computing
to identify whether a user is a human or a computer program. At the same time, it solves
some hard problems that challenge optical character recognition (OCR) community for a
long time, such as recognizing highly distorted text images. The idea of reCAPTCHA is
to present two words in distorted images to users, and asks the users to type the words to
demonstrate that they are not automatic computer program. One of the two shown words
is known and used as control example (identifying if this user is computer program or not),
another word is supplied by the image that OCR software has been unable to recognize.

10http://answers.yahoo.com/
11http://zhidao.baidu.com
12http://www.quora.com
13http://www.zhihu.com
14http://labelme.csail.mit.edu
15https://www.threadless.com/

http://answers.yahoo.com/
http://zhidao.baidu.com
http://www.quora.com
http://www.zhihu.com
http://labelme.csail.mit.edu
https://www.threadless.com/
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The results are sent to digitization projects such as Google Books. The reCAPTCHA not
only contributes to identifying users but also uses the wisdom of users (crowds) in OCR for
digitizing scanned books. Due to its importance in web services, it is acquired by Google
Inc. in 2009.

Crowdsourcing is also applied in scientific research. An example is Foldit16, which is
an online video game on protein folding (Cooper et al., 2010). Its objective is to use the
wisdom of crowd to fold the structure of selected proteins as well as possible. The solutions
submitted by players are scored by the game. Then the top scored solutions are analyzed
by researchers to determine whether or not there is a native structural configuration that
can be applied to the relevant proteins. Scientists can use good solutions to solve real world
problems and create biological innovations. In computer vision community, crowdsourcing is
used to label images for creating benchmark dataset such as ImageNet17. ImageNet contains
14 million annotated images from Amazon Mechanical Turk, and now is used widely to train
and test computer vision algorithms and systems. In natural language processing (NLP),
many datasets (Snow et al., 2008) are collected by crowdsourcing to serve the NLP research
community.

In the future, crowdsourcing will continue to incubate more innovations and provide
power to both academic and industrial communities.

1.3 Challenges of labeling by crowdsourcing

Among many applications of crowdsourcing, labeling (or multiple choice questions) is a
common and important application. Nowadays there are more and more data available on
the web, but labeled data are far less than unlabeled data. It usually requires huge volume
of well annotated data to train machine learning systems to build a predictive model. With
crowdsourcing services such as Amazon Mechanical Turk, it becomes easy and inexpensive
to obtain labeled data in a short time (Sheng et al., 2008, Snow et al., 2008, Raykar and Yu,
2012).

The success of the ImageNet dataset has confirmed that crowdsourcing can be an ef-
fective approach for labeling tasks. For illustration, image labeling tasks can be done by
crowdsourcing as follows: a crowd worker is presented with an image and is asked to provide
a label for this image. The label should indicate which class the presented image belongs
to according to the worker’s judgement, such as an image is about a cat or a dog, or a face
image is about a male or a female. Therefore, the labeling problem is similar to multiple
choice questions. Usually, the candidate labels form a pool of choices that the workers can
select.

One major concern in crowdsourcing is quality control over crowd workers and their
inputs. There are many practical questions to be addressed when the practitioners apply
crowdsourcing. For example, how many workers one should hire to ensure the quality of

16http://fold.it/portal
17http://www.image-net.org

http://fold.it/portal
http://www.image-net.org
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the final results? What kind of workers one should hire to save budget and improve result
quality? To study quality control in crowdsourcing, labeling problem is an ideal example to
explore. The process of crowdsourced labeling is relatively straightforward to model. Since
labeling is similar to classification, there are existing models that can be directly applied,
such as the famous Dawid-Skene model (Dawid and Skene, 1979). Moreover, labeling is
intuitive and it is easy to measure the quality of final results and performance of workers.
Many efforts have been devoted to analyzing crowdsourced labeling, such as (Snow et al.,
2008, Karger et al., 2011a, Raykar et al., 2010, Liu et al., 2012) and references therein.

In this thesis, we focus on both theoretical analysis and algorithms design for crowd-
sourced labeling. First, by deriving the error rate bounds under the general crowdsourcing
models, we study how the underlying factors, such as aggregation rules, number of workers,
number of tasks, worker reliabilities and task assignments, affect the quality of the final
results. Second, based on the error rate bounds, we propose iterative weighted majority
voting algorithm to effectively infer the ground truth labels. Third, we study the problem of
selecting good workers with some exam questions. We formulate this problem into a combi-
natorial optimization problem and propose an efficient algorithm to obtain its global optimal
solution. In the end, we also study the problem of identifying good worker group based on
their characteristics and develop a crowd-targeting framework to discover good groups of
workers for improving data quality and saving budget.

1.4 Organization of this thesis

The rest of the thesis is organized as follows.
In Chapter 2, we present error rate analysis of crowdsourcing models. For the multiclass

labeling problem, we derive error rate bounds (both in high probability and in expectation) of
the general prediction rule under the Dawid-Skene model. Then we illustrate its application
to some scenarios that of common interest in the community. Simulations are conducted to
demonstrate how both the error rate and its bounds are affected by different factors in the
crowdsourcing system.

Based on the bounds derived in Chapter 2, we design in Chapter 3 a method called
iterative weighted majority voting (IWMV) algorithm, to infer the ground truth labels effec-
tively. Meanwhile, EM algorithms (Dempster et al., 1977) under the different crowdsourcing
models are derived in this chapter. Furthermore, we provide theoretical guarantee for one-
step IWMV. Experiments on both simulated and real data are conducted to compare the
effectiveness of the EM algorithm, IWMV and other state-of-the-art methods.

Chapter 4 is motivated by the worker selection problem: given a set of workers and some
initial estimates of their reliabilities, how we can adaptively choose a subset of workers within
a budget constraint to perform the tasks to save budget and maintain high performance. We
formulate this problem into a combinatorial optimization problem based on an error rate
bound obtained with a similar technique as in Chapter 2. Then we propose a straightforward
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solution to this optimization problem and experimentally test its effectiveness in the real
crowdsourcing applications.

In Chapter 5, we develop a general framework, called Crowd Targeting, to discover and
target at a good group of workers based on their worker characteristics. This is inspired by
“the wisdom of minority”: we hypotheses that given a task, there are certain subgroups in
the crowd population who are more suitable on this task than the general population. We
propose a general crowd targeting framework that can automatically discover, for a given
task, if any groups of workers based on their attributes have higher quality on average,
and target on these groups, if they exist, for future work of the same task. This crowd
targeting framework is complementary to traditional worker quality estimation approaches.
One additional advantage of our framework is that it is more budget efficient because we are
able to target on potentially good workers before they actually do the task. Experiments on
real datasets show that the accuracy of final prediction can be improved significantly for the
same budget or even less budget in some cases.

Note that all the long proofs in each chapter are deferred to the appendix.
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Chapter 2

Error rate analysis of crowdsourcing
models

2.1 Introduction

As being mentioned in the previous chapter, the idea of crowdsourcing is to outsource tasks
to a distributed group of people (called workers) who might be inexperienced in these tasks.
The downside of it is that the input from crowds might be very noisy due to various reasons,
such as low pay or lack of experience etc. However, if we can appropriately aggregate the
outputs from a crowd, the yielded results could be as good as the ones by experts (Smyth
et al., 1995, Snow et al., 2008, Whitehill et al., 2009, Raykar et al., 2010, Welinder et al.,
2010, Yan et al., 2010, Liu et al., 2012, Zhou et al., 2012).

The flaws of crowdsourcing are apparent. Each worker is paid purely based on how many
tasks that he/she has completed (for example, one cent for labeling one image). No ground
truth is available to evaluate how well he/she has performed on the tasks. So some workers
may randomly submit answers independent of the questions when the tasks assigned to them
are beyond their expertise. Moreover, workers are usually not persistent. Some workers may
complete many tasks, while the others may finish only very few tasks.

In spite of these drawbacks, is it still possible to get reliable answers in a crowdsourcing
system? The answer is yes. In fact, majority voting (MV) has been able to generate fairly
reasonable results (Snow et al., 2008). However, majority voting treats each worker’s result
as equal in quality. It does not distinguish a spammer from a diligent worker. Thus majority
voting can be significantly improved upon (Karger et al., 2011a).

The first improvement over majority voting dates back at least to (Dawid and Skene,
1979). They assumed that each worker is associated with an unknown confusion matrix,
whose rows are discrete conditional distributions of input from workers given ground truth.
Each off-diagonal element represents misclassification rate from one class to the other, while
the diagonal elements represent the accuracy in each class. Based on the observed labels
by the workers, the maximum likelihood principle is applied to jointly estimate unobserved
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true labels and worker confusion matrices. Although the likelihood function is non-convex,
a local optimum can be obtained by using the Expectation-Maximization (EM) algorithm,
which can be initialized by majority voting.

Dawid and Skene’s model (Dawid and Skene, 1979) can be extended by assuming true
labels are generated from a logistic model (Raykar et al., 2010), or putting a prior over worker
confusion matrices (Liu et al., 2012), or taking the task difficulties into account (Bachrach
et al., 2012). One may simplify the assumption made by (Dawid and Skene, 1979) to consider
a confusion matrix with only a single parameter (Karger et al., 2011a, Liu et al., 2012), which
we call the Homogenous Dawid-Skene model (Section 2.2).

Recently, significant progress has been made for inferring the true labels of the items.
(Raykar et al., 2010) presented a maximum likelihood estimator (via EM algorithm) that
infers worker reliabilities and true labels. (Welinder et al., 2010) endowed each item (i.e.,
image in their work) with features, which could represent concepts or topics, and workers
have different areas of expertise of matching these topics. (Liu et al., 2012) transformed
label inference in crowdsourcing into a standard inference problem in graphical models, and
applied approximate variational methods. (Zhou et al., 2012) inferred the true labels by
applying a minimax entropy principle to the distribution which jointly model the workers,
items and labels. Some work also considers the problem of adaptively assigning the tasks to
workers for budget efficiency (Ho et al., 2013, Chen et al., 2013).

All the previous work we mentioned above focused on applying or extending Dawid-Skene
model, and inferring the true labels based on that. However, to understand the behavior and
consequences of the crowdsourcing system, it is of great intention to investigate the error rate
of various aggregation rules. To theoretically analyze specific algorithm, Karger et al. (2011a)
provided asymptotic error bounds for their iterative algorithm and also majority voting. It
seems difficult to generalize their results to other aggregation rules in crowdsourcing or
apply to finite sample scenario. Very recently, Gao and Zhou (2014) studied the minimax
convergence rate of the global maximizer of a lower bound of the marginal-likelihood function
under a simplified Dawid-Skene model (i.e., one coin model in binary labeling). Their results
are on clustering error rate, which is different from the ordinary error rate, i.e., proportion
of mistakes in final labeling. They focused on the mathematical properties of the global
optimizer of a specific function for sufficiently large number of workers and items, and not
on the behavior of rules/algorithms which find the optimizer or aggregate the results.

In this chapter, we focus on providing finite sample bounds on the error rate of some
general aggregation rules under crowdsourcing models of which the effectiveness on real data
has been evaluated in (Dawid and Skene, 1979, Raykar et al., 2010, Liu et al., 2012, Zhou
et al., 2012), and motivating efficient algorithms.

To the best of our knowledge, this is the first work which focuses on the finite sample
error rate analysis on general aggregation rules under the practical Dawid-Skene model for
crowdsourcing. The results we obtained can be used for analyzing error rate and sample
complexity of algorithms. It is also worth mentioning that most of the previous work done
only focused on binary crowdsourcing labeling, while our results are based on multi-class
labeling, which naturally apply to the binary case. Meanwhile, we did not make any as-
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sumptions on the number of workers and items in the crowdsourcing, thus the results can
be directly applied to the setting of real crowdsourcing data.

2.2 Background and formulation

As an example of crowdsourcing, we assume that a set of workers are assigned to perform
labeling tasks, such as judging whether an image of an animal is that of a cat, a dog or a
sheep, or evaluating if a video event is abnormal or not.

Throughout this chapter, we assume there are M workers and N items for a labeling
task with L label classes. We denote the set of workers [M ] = {1, 2, · · · ,M}, the set of
items [N ] = {1, 2, · · · , N}, and the set of labels [L] = {1, 2, · · · , L} (called label set). The
extended label set is defined as [L] = [L]∪{0} = {0, 1, 2, · · · , L}, where 0 represents the label
is missing. However, in the case of L = 2, we follow the common convention by denoting
label set as {−1,+1} and extended label set as {0,−1,+1}.

In what follows, we use yj as the true label for the j-th item, and ŷj as the predicted
label for the j-th item by an algorithm.1 Let πk = P(yj = k) denotes the prevalence of label
“k” in the true labels of the items for any j ∈ [N ] and k ∈ [L].

The observed data matrix is denoted by Z ∈ [L]
M×N

, where Zij is the label given by the
i-th worker to the j-th item, and it will be 0 if the corresponding label is missing (the i-th
worker did not label the jth item). We introduce the indicator matrix T = (Tij)M×N , where
Tij = 1 indicates that entry (i, j) is observed, and Tij = 0 indicates entry (i, j) is unobserved.
Note that T and Z are observed together.

W
o
rk

e
rs

 

Items 

Data matrix Z : 1 Unlabeled Labeled 2 3 

Figure 2.1: Illustration of the input data matrix. Entry (i, j) is the label of j-th item given
by i-th worker. The set of labels is [L] = {1, 2, 3}.

The process of matching workers with tasks (i.e., labeling items) can be modeled by
a probability matrix Q = (qij)M×N , where qij = P(Tij = 1) is the probability that the

1In this chapter, any parameter with a hat ˆ is an estimate for this parameter.
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j-th item was assigned to the ith worker (i.e., gets labeled). We call Q as assignment
probability matrix. Unlike the fixed assignment configuration in (Karger et al., 2011a), the
assignment probability matrix is more flexible, and it does not require each worker label the
same number of items, nor each item gets labeled by same number of workers. Hence, the
assignment probability matrix covers the most general form of assigning items to workers,
and there are special cases commonly adopted in literature, such as a worker has the same
chance to label all items (Karger et al., 2011a, Liu et al., 2012). More specifically, when qij =
qi ∈ (0, 1],∀i ∈ [M ], j ∈ [N ], we call it the assignment probability vector ~q = (q1, · · · , qM).
If qij = q ∈ (0, 1],∀i ∈ [M ], j ∈ [N ], then we call it constant assignment probability q. The
three assignment configurations above are referred to as the task assignment 2 is based on
probability matrix Q, probability vector ~q and constant probability q , respectively.

Generally, we use π, p, q as probabilities, and they might have indices according to the
context. We denote A and C as shorthand notations which depend on other given variables,
and a as either a general constant or a vector depending on context. η denotes likelihood
probabilities in the context. Θ denotes a set of parameters. ε and δ are constants in
(0, 1), where ε is used for bounding the error rate, and δ is used for denoting a positive
probability. He(ε) denotes the natural entropy of Bernoulli random variable with parameter
ε, i.e., He(ε) = −ε ln ε − (1 − ε) ln(1 − ε). Operators ∧ and ∨ denote the min operator and
the max operator between two numbers, respectively. Meanwhile, throughout the chapter,
we will locally define each notation in the context before using them.

2.2.1 Dawid-Skene models

We discuss three models covering all the cases that are widely used for modeling the quality
of the workers (Dawid and Skene, 1979, Raykar et al., 2010, Karger et al., 2011a, Liu et al.,
2012, Zhou et al., 2012). The first one, which is also the most general one, was originally
proposed by (Dawid and Skene, 1979):

General Dawid-Skene model. In this model, the reliability of worker i is modeled

as a confusion matrix P (i) =
(
p

(i)
kl

)
L×L
∈ [0, 1]L×L , which is in a matrix form and represents

a conditional probability table such that

p
(i)
kl

.
= P (Zij = l|yj = k, Tij = 1) , ∀k, l ∈ [L], ∀i ∈ [M ]. (2.1)

2 The term task assignment seems to imply that workers are passive of labeling items — they will surely
label an item whenever they are assigned to. This might not match the reality in the crowdsourcing platform.
When a task owner distributed tasks to the crowd, it is likely that most of the workers will label a set of
items and they can stop whenever they want to (Snow et al., 2008), unless they are required (by the owner)
to complete a specific set of tasks for getting paid. Thus the process of matching tasks with workers might
be determined by either workers (subjectively) or task owners (by enforcement), which depends on how the
owners design and distribute tasks. If the workers have choice to select which item to label, it might be more
proper to call the task-worker matching as task selection, instead of task assignment. However, both of the
cases can be modeled by the probability matrix Q (or probability vector ~q, or constant probability q). In
what follows, we use the term task assignment to represent the task-worker matching without introducing
ambiguity.
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Note that p
(i)
kk denotes the accuracy of worker i on labeling an item with true label k correctly,

and p
(i)
kl , k 6= l represents the error probability of labeling an item with true label k as

l mistakenly. The number of free parameters of modeling the reliability of a worker are
L(L− 1) under the General Dawid-Skene model.

Figure 2.2: The graphical model of the General Dawid-Skene model. Note that P (i) is the
confusion matrix of worker i and if we change P (i) to wi, the graph will become the graphical
model for the Homogenous Dawid-Skene model.

Since the General Dawid-Skene model has L(L − 1) degree of freedom to model each
worker, it is flexible, but often leads to overfitting on small datasets. As a further regu-
larization of the worker models, we consider another two models which are special cases of
General Dawid-Skene model via imposing constraints on the worker confusion matrices.

� Class-Conditional Dawid-Skene model. In this model, the error probabilities of labeling
an item with true label k as label l mistakenly for each worker are the same across
different l. Formally, we have{

p
(i)
kk = P (Zij = k|yj = k, Tij = 1) , ∀k ∈ [L],∀i ∈ [M ],

p
(i)
kl =

1−p(i)kk
L−1

, ∀k, l ∈ [L], l 6= k,∀i ∈ [M ].
(2.2)

This model simplifies the error probabilities of a worker to be the same given the true
label of an item. Thus, the off-diagonal elements of each row of the confusion matrix
P (i) will be the same. The number of free parameters to model the reliability of each
worker under the Class-Conditional Dawid-Skene model is L.

� Homogenous Dawid-Skene model. Each worker is assumed to have the same accuracy
on each class of items, and have the same error probabilities as well. Formally, worker
i labels an item correctly with a fixed probability wi and mistakenly with another fixed
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probability 1−wi
L−1

, i.e.,{
p

(i)
kk = wi, ∀k ∈ [L],∀i ∈ [M ],

p
(i)
kl = 1−wi

L−1
, ∀k, l ∈ [L], k 6= l,∀i ∈ [M ].

(2.3)

In this case, the worker labels an item with the same accuracy, independent of which
label this item actually is. The number of parameters of modeling the reliability of
each worker is 1 under the Homogenous Dawid-Skene model.
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Figure 2.3: Toy examples of confusion matrices of different worker reliability models. We
assume L = 3 thus confusion matrices ∈ [0, 1]3×3. (a) General Dawid-Skene model. (b)
Class-Conditional Dawid-Skene model. (c) Homogenous Dawid-Skene model. Vertical axis
is actual classes, and horizontal axis is predicted classes. Different color corresponds to
different conditional probability, and the diagonal elements are the accuracy of labeling the
corresponding class of items correctly.

The parameter set under all the three models can be denoted as Θ =
{{
P (i)

}M
i=1

, Q, π
}

.

Specifically, the parameter set of the Homogenous Dawid-Skene model can be denoted as

Θ =
{
{wi}Mi=1 , Q, π

}
.

It is worth mentioning that when L = 2, the Class-Conditional Dawid-Skene model and
the General Dawid-Skene model are the same, which are referred to as the two-coin model,
and the Homogenous Dawid-Skene model is referred to as the one-coin model in the literature
(Raykar et al., 2010, Liu et al., 2012). In signal processing, the Homogenous Dawid-Skene
model is equivalent to the random classification noise model (Angluin and Laird, 1988), and
the Class-Conditional Dawid-Skene model is also referred to as the class-conditional noise
model (Natarajan et al., 2013). We do not adopt these terms because the error comes from
the limitations of workers’ ability to label items correctly, not from noise which is in the
context of signal processing.

Binary labeling is the special case (L = 2), and it is the major focus of the previous
research in crowdsourcing (Raykar et al., 2010, Karger et al., 2011a, Liu et al., 2012). As
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a convention, we assume the set of labels is {±1} instead of {1, 2} when L = 2. For
notation convenience, we define the worker confusion matrix in a different way as follows:
for i = 1, 2, · · · ,M {

p
(i)
+ = P(Zij = 1|yj = 1, Tij = 1),

p
(i)
− = P(Zij = −1|yj = −1, Tij = 1).

(2.4)

Then the parameter set will be Θ =

{{
p

(i)
+ , p

(i)
−

}M
i=1

, Q, π

}
under this model. When we

present the result of binary labeling, we will use p
(i)
+ and p

(i)
− without introducing any ambi-

guity.
Under the models above, the posterior probability of the true label of item j to be k is

defined as:

ρ
(j)
k = P(yj = k|Z, T,Θ), ∀j ∈ [N ]. (2.5)

For binary labeling, the posterior probability of the true label of item j to be k is defined
as:

ρ
(j)
+ = P(yj = 1|Z, T,Θ), ∀j ∈ [N ]. (2.6)

2.2.2 Aggregation rules

After collecting the crowdsourced labels, the task owner could use an arbitrary rule to
aggregate the multiple noisy labels of an item to a “refined” label for that item. The quality
of final predicted labels depends not only on the input from the workers but also on the
aggregation rule. It is hence of great importance to design a good aggregation rule.

A natural aggregation rule is majority voting (Snow et al., 2008, Karger et al., 2011a).
For multiple labeling, majority voting can be written formally as

ŷj = argmax
k∈[L]

M∑
i=1

I (Zij = k) , (2.7)

which gives the jth item the majority label among all workers.
Since workers have different reliabilities, it is inefficient to treat the labels from differ-

ent workers with the same weight as in majority voting (Karger et al., 2011a). A natural
extension of majority voting is weighted majority voting (WMV), which weighs the labels
differently. Formally, weighted majority voting rule can be written as

ŷj = argmax
k∈[L]

M∑
i=1

νiI (Zij = k) , (2.8)

where νi ∈ R is the weight associated with the ith worker.
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The idea behind weighted majority voting can be generalized in this way: given an item
and the labels input from workers, the item can be potentially predicted to be any label class
in [L]. Suppose each class has a score which is computed based on the worker inputs, and
we call it the aggregated score for potential class 3 , then the aggregated label can be chosen
as the class that obtains the highest score.

Based on the ideas above, we consider a general form of aggregation rule which is based on
maximizing aggregated scores. The aggregated score of each label class can be decomposed
into the sum of bounded prediction functions associated with workers, plus a shift constant.
We refer this type of aggregation rule to decomposable aggregation rule, which has the form

ŷj = argmax
k∈[L]

s
(j)
k and s

(j)
k

.
=

M∑
i=1

fi(k, Zij) + ak, (2.9)

where s
(j)
k is the aggregated score for potential class k on item j, ak ∈ R and fi : [L]×[L]→ R

∀i ∈M is finite, i.e., |fi(k, h)| <∞, ∀k ∈ [L], h ∈ [L]. Given k and h, fi(k, h) is a constant.
Intuitively, fi(k, h) is the score gained for the kth potential label class when the ith worker
labels an item with label h. It is reasonable to assume that Zij = 0 contributes no information
to predict the true label of jth item, thus, we further assume that fi(k, 0) = constant, ∀i ∈
[M ], k ∈ [L]. Without ambiguity, we will refer to {f1, f2, · · · , fM} as score functions in
what follows. Note that score functions are usually designed by the task owners when they
aggregate the noisy inputs into final predicted results.

For illustration, majority voting is a special case of decomposable aggregation rule with
ak = 0, fi(k, Zij) = 1 if Zij = k, and 0 if Zij 6= k. For weighted majority voting, fi(k, Zij) =
νi if Zij = k, and 0 otherwise. Later, we will see more aggregation rules which can be
expressed or approximated in this form (Section 2.4.2).

2.2.3 Performance metric

Given an estimation or an aggregation rule, suppose that its predicted label for item j is ŷj,
then our objective is to minimize the error rate

ER =
1

N

N∑
j=1

I (ŷj 6= yj) . (2.10)

Since the error rate is random, we are also interested in its expected value (i.e., the mean
error rate). Formally, the mean error rate is:

E[ER] =
1

N

N∑
j=1

P(ŷj 6= yj). (2.11)

3Since we do not know the true label of an item, we use the term potential class based on the fact that
all the label class can potentially be the true label of this item.
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The rest of the chapter is organized as follows. In Section 2.3, we present finite-sample
bounds on the error rate of the decomposable aggregation rule both in probability and
in expectation under the General Dawid-Skene model. Section 2.4 contains the error rate
bounds of some special cases, which the crowdsourcing community is widely concerned with.
Experimental results on simulated dataset are presented in section 2.5. Note that the proofs
are deferred to the supplementary materials.

2.3 Error rate bounds

In this section, finite sample bounds are provided for error rates (in high probability and in
expectation) of the decomposable aggregation rule under the Dawid-Skene model.

Our main results will be focused on the setting which is as general as possible. We define
the general setting as follows:

� Worker modeling. We focus on the General Dawid-Skene model, and then the results
can be specialized for the Class-Conditional Dawid-Skene model and the Homogenous
Dawid-Skene model straightforwardly.

� Task assignment. We consider the data matrix that is observed based on assignment
probability matrix Q = (qij)M×N ,where qij = P(Tij = 1). The results can be easily
simplified to the scenarios where task assignment is based on probability vector ~q or
constant probability q according to the practical assignment process.

� Aggregation rule. Our main results will be presented based on the decomposable ag-
gregation rule (2.9).

2.3.1 Some quantities of interest

One important question we want to address is that how the error rate is bounded with high
probability, and what quantities have impact on the bounds. Before deriving the error rate
bound, we introduce some quantities of interest under the general setting in this section.
We shall bear in mind that all the quantities defined here serve the purpose of defining two
measures t1 and t2, which play a central role in bounding the error rate.

The first quantity Γ is associated with the score functions {f1, f2, · · · , fM}:

Γ
.
=

√√√√ M∑
i=1

(
max

k,l,h∈[L],k 6=l
|fi(k, h)− fi(l, h)|

)2

. (2.12)

It measures the overall variation of the fi’s on their first argument (i.e., when the potential la-
bel class changes). Take weigthed majority voting (2.8) as an example, fi(k, h) = νiI (h = k),

then Γ =
√∑M

i=1 ν
2
i = ||ν||2. For majority voting, Γ =

√∑M
i=1 1 =

√
M . Note that Γ is
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invariant to a translation of score functions, and is linear to scale of score functions. That
is to say, if we design new score functions as f ′i = mfi + b for constant m and b, and for all
i ∈ [M ], then the corresponding quantity Γ′ = mΓ. Later on, we will see that it plays a role
in normalization.

Another quantity Λ
(j)
kl is defined as the expected gap of the aggregated scores between two

potential label classes k and l, when the true label is k. Formally,

Λ
(j)
kl

.
= E

[
s

(j)
k − s

(j)
l |yj = k

]
=

M∑
i=1

L∑
h=1

qij (fi(k, h)− fi(l, h)) p
(i)
kh + (ak − al) . (2.13)

The larger this quantity is, the easier the aggregation rule identifies the true label as k
instead of l (i.e., correctly predicted the label). Like Γ, Λ

(j)
kl is also invariant to translation of

score functions, and linear to scale of score functions. Take weighted majority voting (2.8)
for illustration, the gap of aggregated scores under the Homogenous Dawid-Skene model
is Λ

(j)
kl =

∑M
i=1

∑L
h=1

(
qijνiwi − qijνi 1−wi

L−1

)
= 1

L−1

∑M
i=1 qijνi(Lwi − 1), because fi(k, h) =

νiI (h = k) and p
(i)
kh = wi if h = k, otherwise 1−wi

L−1
.

The following two quantities serve as the lower bound and the upper bound of the nor-
malized gap of aggregated scores for the jth item (i.e., the ratio of Λ

(j)
kl and Γ).

τj,min
.
= min

k,l∈[L],k 6=l

Λ
(j)
kl

Γ
and τj,max

.
= max

k,l∈[L],k 6=l

Λ
(j)
kl

Γ
, (2.14)

Both τj,min and τj,max are invariant to translation and scale of the score functions.
Now, we introduce the two most important quantities of interest — t1 and t2, which are

respectively the lower bound and the upper bound of the normalized gap of aggregated scores
across all items. In our main results, t1 is used to provide a sufficient condition for an upper
bound on the error rate of crowdsourced labeling under the general setting. Meanwhile, t2
is used to provide a sufficient condition for a lower bound of the error rate.

t1
.
= min

j∈[N ]
τj,min and t2

.
= max

j∈[N ]
τj,max, (2.15)

Both t1 and t2 are invariant to translation and scale of the score functions {f1, f2, · · · , fM}.
t1 and t2 are related to how good a group of workers are, how the tasks are assigned and
how well the aggregation rule is with respect to this type of labeling tasks.

Besides the quantities of interest above, we further introduce two notations which can
capture the fluctuation of the score functions and the gap of aggregated scores. These two
quantities will be used to bound the mean error rate of crowdsourced labeling.

A quantity c measures the maximum change amongst all the score functions when the
potential label class changes from one label to another, and it is defined as

c =
1

Γ
· max
i∈[M ],k,l,h∈[L],k 6=l

|fi(k, h)− fi(l, h)|. (2.16)
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For weighted majority voting (2.8), c =
maxi∈[M ] |νi|
||ν||2 = ‖ν‖∞

||ν||2 . And for majority voting (2.7),

c = 1√
M

. Another quantity σ2 relate to the variation of the gap of aggregated scores, and

σ2 =
1

Γ2
· max
j∈[N ],k,l∈[L],k 6=l

M∑
i=1

L∑
h=1

qij (fi(k, h)− fi(l, h))2 p
(i)
kh . (2.17)

Note that 0 < c ≤ 1, and 0 < σ2 ≤ maxi∈[M ],j∈[N ] qij. Both c and σ2 are translation and
scale invariant of the score functions {f1, f2, · · · , fM}.

In the next section, with t1 and t2, we will derive the bounds on the error rate of crowd-
sourced labeling with high probability, and together with c and σ2, we will derive the bounds
on the mean error rate under the general setting.

2.3.2 Main results

In this section, we start with a main theorem to provide finite-sample error rate bounds for
decomposable aggregation rules under the General Dawid-Skene model (2.1).

To lighten the notation, we define two functions as follows:

φ(x) = e−
x2

2 x ∈ R, (2.18)

D(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

∀x, y ∈ (0, 1). (2.19)

φ(·) is the unnormalized standard Gaussian density function. D(x||y) is the Kullback-Leibler
divergence of two Bernoulli distributions with parameters x and y respectively.

The following theorem provides sufficient conditions and the corresponding high proba-
bility bounds on the error rate under the general setting as described in Section 2.3.

Theorem 2.1. (Bounding error rate with high probability) Under the General Dawid-
Skene model as in (2.1), with the prediction function for each item as in (2.9), and suppose
the task assignment is based on probability matrix Q = (qij)M×N where qij is the probability
that the worker i labels item j.

For ∀ε ∈ (0, 1), with notations defined from (2.12) to (2.19), we have:

(1) If t1 ≥
√

2 ln L−1
ε
, then

1

N

N∑
j=1

I (ŷj 6= yj) ≤ ε with probability at least 1− e−ND(ε||(L−1)φ(t1)). (2.20)

(2) If t2 ≤ −
√

2 ln 1
1−ε , then

1

N

N∑
j=1

I (ŷj 6= yj) ≥ ε with probability at least 1− e−ND(ε||1−φ(t2)). (2.21)
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Remark: The high probability bounds on error rate require conditions on t1 and t2,
which are related to the normalized gap of aggregated scores (Section 2.3.1). Basically, if the
scores of predicting an item as its true label (predicted correctly) are larger than the scores
of predicting as a wrong label, then it is more likely that the error rate will be small, thus it
is bounded from above with high probability. The interpretation of the lower bound and its
condition is similar to the upper bound.

To ensure the probability of bounding the error rate to be at least 1 − δ, we have to
solve the equation D(ε||(L − 1)φ(t1)) = 1

N
ln 1

δ
, which cannot be solved analytically. Thus,

we need to figure out the minimum t1 for bounding the error rate with probability at least
1 − δ. The following theorem serves this purpose by slightly relaxing the conditions on t1
and t2 in Theorem 2.1.

Before presenting the next theorem, we define a notation C , which depends on parameters
ε, δ ∈ (0, 1), for lightening notations in the theorem.

C(ε, δ) = 1 + exp

(
1

ε

[
He(ε) +

1

N
ln

1

δ

])
, (2.22)

where He(ε) = −ε ln ε− (1− ε) ln(1− ε), which is the natural entropy of a Bernoulli random
variable with parameter ε.

Theorem 2.2. With the same notation as in Theorem 2.1, for ∀ε, δ ∈ (0, 1), we have:
(1) if t1 ≥

√
2 ln [(L− 1)C(ε, δ)], then 1

N

∑N
j=1 I (ŷj 6= yj) ≤ ε with probability at least

1− δ,
(2) if t2 ≤ −

√
2 lnG, then 1

N

∑N
j=1 I (ŷj 6= yj) ≥ ε with probability at least 1− δ.

Remark: For any scenarios that can be formulated into the general setting as in 2.3, with
t1 and t2 computed as in Section 2.3.1, both Theorem 2.1 and Theorem 2.2 can be applied.
Therefore, in the rest of the chapter, for any special case (Section 2.4) of the general setting
, we will only present one of Theorem 2.1 and Theorem 2.2, and omit the other for clarity.

In practice, the mean error rate might be a better measure of performance because of
its non-random nature. The method of evaluating the accuracy of a certain algorithm is
often conducted by taking an empirical average of its performance in each trial, which is a
consistent estimator of the mean error rate. Thus it will be of general interest to bound the
mean error rate.

For the next theorem, we present the mean error rate bound under the general setting
used in Theorem 2.1.

Theorem 2.3. (Bounding the mean error rate.) Under the same setting as in Theorem
2.1, with c and σ2 defined as in (2.16) and (2.17) respectively,

(1) if t1 ≥ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≤ (L−1) ·min

{
exp

(
− t21

2

)
, exp

(
− t21

2(σ2+ct1/3)

)}
,

(2) if t2 ≤ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≥ 1−min

{
exp

(
− t22

2

)
, exp

(
− t22

2(σ2−ct2/3)

)}
.
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Remark: The results above are composed of two exponential bounds, and neither is
generally dominant over the other. Thus each component inside the min operator can be
served as an individual bound for the mean error rate. Take the upper bound in (1) as an
example, when t1 is small (recall that both σ2 and c are bounded above by 1), the second
component will be tighter than the first one. Thus the error rate bound behaves like e−t1 .
Otherwise, the first component will be tighter, and the mean error rate behaves like e−t

2
1 .

All the proofs of the results in this section are deferred to Appendix A. In the following
section, we demonstrate how the main results here can be applied to various settings of
labeling by crowdsourcing, and provide theoretical bounds for the error rate correspondingly.

2.4 Apply error rate bounds to some typical scenarios

In this section, we apply the general results in Section 2.3 to some common settings such as
binary labeling, and aggregation rules such as majority voting and weighted majority voting.
Specifically, we consider the following scenarios:

� Worker modeling: Recall that the General Dawid-Skene model is the same as the
Class-Conditional Dawid-Skene model when L = 2. We will cover the binary case with
a certain aggregation rule under the General Dawid-Skene model. For L > 2, we focus
on multiclass labeling under the Homogenous Dawid-Skene model.

� Task assignment: We consider the scenario that the task assignment is based on prob-
ability vector ~q = (q1, q2, · · · , qM) or a constant probability q.

� Aggregation rule: We focus on weighted majority voting (WMV) rule and majority
voting (MV) since they are intuitive and of common interest. In the case of binary
labeling, we consider a general hyperplane rule. Later, we present results for Maximum
A Posteriori rule.

2.4.1 Error rate bounds for hyperplane rule, WMV and MV

It turns out that in practice, many prediction methods for binary labeling (yj ∈ {±1}) can
be formulated as a sign function of a hyperplane, such as majority voting, weighted majority
voting and the oracle MAP rule (Section 2.4.2). In this section, we are going to apply
our results in Section 2.3 to discuss the error rate of the aggregation rule, whose decision
boundary is a hyperplane in a high dimensional space that the label vector of each item (i.e.,
all the labels from the workers for this item) lies in. Formally, the aggregation rule is

ŷj = sign

(
M∑
i=1

νiZij + a

)
(2.23)
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This is called the general hyperplane rule with unnormalized weights ν = (ν1, · · · , νM) and
shift constant a. For binary labeling, majority voting is a special case with νi = 1,∀i ∈ [M ]
and a = 0.

Theorem 2.1, Theorem 2.2 and Theorem 2.3 can be directly applied to derive the error
rate bounds of general hyperplane rule in the following corollary.

When task assignment is based on probability vector ~q, the corresponding quantities of
interest for the hyperplane rule (as in Section 2.3.1) are defined as follows:

t1 =
1

||ν||2

[(
M∑
i=1

qiνi(2p
(i)
+ − 1) + a

)
∧

(
M∑
i=1

qiνi(2p
(i)
− − 1)− a

)]
(2.24)

t2 =
1

||ν||2

[(
M∑
i=1

qiνi(2p
(i)
+ − 1) + a

)
∨

(
M∑
i=1

qiνi(2p
(i)
− − 1)− a

)]
(2.25)

c =
||ν||∞
||ν||2

and σ2 =
1

||ν||22

M∑
i=1

qiν
2
i , (2.26)

where ∧ and ∨ are min and max operators respectively, ||ν||∞
.
= maxi∈[M ] |νi|, and functions

φ(x) and D(x||y) are defined in (2.18) and (2.19).

Corollary 2.4. (Hyperplane rule in binary labeling) Consider binary labeling under the

General Dawid-Skene model, i.e., yj ∈ {±1}, p(i)
+ and p

(i)
− are defined as in (2.4). Suppose the

task assignment is based on probability vector ~q = (q1, q2, · · · , qM) where qi is the probability
that worker i labels an item, aggregation rule is general hyperplane rule as in (2.23), and the
quantities of interest are defined in (2.24)-(2.26), for ∀ε ∈ (0, 1):

(1) If t1 ≥ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≤ min

{
exp

(
− t21

2

)
, exp

(
− t21

2(σ2+ct1/3)

)}
.

Furthermore, if t1 ≥
√

2 ln 1
ε
, then P

(
1
N

∑N
j=1 I (ŷj 6= yj) ≤ ε

)
≥ 1− e−ND(ε||φ(t1)).

(2) If t2 ≤ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≥ 1−min

{
exp

(
− t22

2

)
, exp

(
− t22

2(σ2−ct2/3)

)}
.

Furthermore, if t2 ≤ −
√

2 ln 1
1−ε , then P

(
1
N

∑N
j=1 I (ŷj 6= yj) ≥ ε

)
≥ 1−e−ND(ε||1−φ(t2)).

Proof. The aggregation rule can be expressed as ŷj = argmaxk∈{±1}
∑M

i=1 νiI (Zij = k) + ak,
where a+ = a and a− = 0. Directly apply Theorem 2.1 and Theorem 2.3, with fi(k, k) = νi
for k ∈ {±1}, fi(k, l) = 0 for k 6= l, and denote p

(i)
kl in terms of p

(i)
+ and p

(i)
− , qij = qi,∀j ∈ [N ],

we can obtain the desired result immediately.

Remark: From this corollary, we know that if t1 is big enough, then the error rate will
be upper bounded by ε with high probability. This means when the workers’ reliabilities are
generally good, it is very likely that we will have high quality aggregated results. Note that
usually we can freely choose q, ν and a, so the most important factors are worker reliabilities
on positive samples (p

(i)
+ ) and negative samples (p

(i)
− ).
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If one needs to know, given ε and δ, what are the results under the setting above corre-
sponding to Theorem 2.2, we can simply compute t1 and t2 as listed in Corollary 2.4, then
the conditions and bounds in Theorem 2.2 hold.

As mentioned in the beginning of this section, weighted majority voting (WMV) is an
important special case covered by our results in Section 2.3. For the next several results,
we focus on the mean error rate bound of WMV and MV under Homogenous Dawid-Skene
model.

For simplicity, we consider the case where task assignment is based on constant proba-
bility q. Therefore, in the following corollary, the label of any entry (i, j) is assumed to be
revealed with constant probability q, and weighted majority voting (2.8) is applied to obtain
the aggregated labels in the end.

Corollary 2.5. (Weighted majority voting under Homogenous Dawid-Skene model) For
weighted majority voting, whose prediction rule is ŷj = argmaxk∈[L]

∑M
i=1 νiI (Zij = k) with

ν = (ν1, ν2, · · · , νM). Assume the task assignment is based on constant probability q ∈
(0, 1], and assume the worker reliability model is the Homogenous Dawid-Skene model with
parameter {wi}Mi=1, then with

t =
q

(L− 1)||ν||2

M∑
i=1

νi(Lwi − 1), c =
||ν||∞
||ν||2

and σ2 = q (2.27)

(1) if t ≥ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≤ (L− 1) min

{
exp

(
− t2

2

)
, exp

(
− t2

2(σ2+ct/3)

)}
(2) if t ≤ 0, then 1

N

∑N
j=1 P (ŷj 6= yj) ≥ 1−min

{
exp

(
− t2

2

)
, exp

(
− t2

2(σ2−ct/3)

)}
Proof. Under this setting, we have p

(i)
kk = wi and p

(i)
kl = 1−wi

L−1
when k 6= l. Meanwhile,

fi(k, k) = νi for any k ∈ [L] and fi(k, l) = 0 for k, l ∈ [L], k 6= l. Then Γ = ||ν||2. By
plugging these above into the definitions of t1, t2, c and σ2 in Section 2.3, we can then obtain
the results.

Remark: Note that t1 = t2 = t under the setting of this corollary. By replacing t1 and
t2 with t, the high probability bound on the error rate as in Theorem 2.1 and Theorem 2.2
will hold as well. It is worth mentioning that the measure t is of critical importance for the
quality of the final aggregated results. It depends not only on the workers’ reliability, but
also on the weight vector ν, which can be chosen by us. This leaves room for us to study the
best possible weight based on the bound we derived here. In Section 3.5.1, we will investigate
the optimal weight in detail.

As a further special case of weighted majority voting and a commonly used prediction rule
in crowdsourcing, the majority voting (MV) rule uses the same weight for each worker. It
can be formally expressed as ŷj = argmaxk∈[L]

∑M
i=1 I (Zij = k). We can then directly obtain

the error rate bounds of MV under the Homogenous Dawid-Skene model.
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Corollary 2.6. (Majority voting under Homogenous Dawid-Skene model) For majority vot-
ing with task assignment being based on a constant probability q ∈ (0, 1], and w̄ = 1

M

∑M
i=1wi,

if w̄ > 1
L

, then

1

N

N∑
j=1

P (ŷj 6= yj) ≤ (L− 1) · exp

{
−1

2

(
L

L− 1

)2

Mq2

(
w̄ − 1

L

)2
}
. (2.28)

Meanwhile, we have

1

N

N∑
j=1

P (ŷj 6= yj) ≤ (L− 1) · exp

{
−

1
2

(
L
L−1

)2
Mq

(
w̄ − 1

L

)2

1 + L
3(L−1)

(w̄ − 1
L

)

}
. (2.29)

When q < 3
4
, the second upper bound (2.29) is tighter than the first one (2.28).

Proof. For obtaining the upper bounds, we directly apply Corollary 2.5 by letting νi = 1,
then ||ν||2 =

√
M and note that

∑M
i=1(Lwi − 1) = LM(w̄ − 1

L
). By direct simplification,

we get the desired result. The only difference in the two bounds is that the exponent in the
second one is equal to the first one dividing by the factor α = q(1 + L

3(L−1)
(w̄ − 1

L
)). Since

w̄ ≤ 1, then L
3(L−1)

(w̄ − 1
L

) ≤ 1
3
, and α < 1 when q < 3

4
. Therefore, q < 3

4
implies that the

second bound is tighter than the first one.

Remark: 1. In real crowdsourcing applications, it is common that q will be small enough
due to the reasonable size of the available crowd (Snow et al., 2008). Thus the second bound
will likely be tighter than the first one in practice. 2. The lower bound and its conditions
can be easily derived similarly, so we omit them here since we are more interested in the
“possibilities” of controlling the error rate to be small.

Due to the importance of majority voting in the crowdsourcing community, we are also
interested in asymptotic properties of the bound. The following corollary discusses the case
when M →∞, that is, when the number of workers who label items tends to infinity.

Corollary 2.7. (Majority voting in the asymptotic scenario) For the Homogenous Dawid-
Skene model with task assignment based on constant probability q ∈ (0, 1], and let ŷj be the
predicted label for the jth item via majority voting rule (2.7), for any N ≥ 1,

(1) if limM→∞ w̄ > 1
L

, then 1
N

∑N
j=1 I (ŷj 6= yj)→ 0 in probability as M →∞;

(2) if limM→∞ w̄ < 1
L

, then 1
N

∑N
j=1 I (ŷj 6= yj)→ 1 in probability as M →∞;

(3) if limM→∞ w̄ > 1
L

, then ŷj → yj in probablitliy as M → ∞, ∀j ∈ [N ], i.e.,
majority voting is consistent.

Proof. The setting of this corollary is the same as in Corollary 2.6, and t1 = Lq
L−1

√
M(w̄− 1

L
).

When limM→∞ w̄ > 1
L

, there exists η > 0 such that η = limM→∞ w̄ − 1
L

, which implies

limM→∞ t1 = +∞, which further implies 1
N

∑N
j=1 P (ŷj 6= yj) = 0 for any N ≥ 1 by Corollary

2.6. This is to say that limM→∞ P(ŷj 6= yj) = limM→∞ P(I (ŷj 6= yj) = 1) = 0, which
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further implies that limM→∞ P(I (ŷj 6= yj) = 0) = 1. Note that for arbitrary ε > 0, we
have P(I (ŷj 6= yj) < ε) ≥ P(I (ŷj 6= yj) = 0), then limM→∞ P(I (ŷj 6= yj) ≥ ε) = 0, i.e.,
I (ŷj 6= yj)→ 0, ∀j ∈ [N ] in probability when M →∞ . By the properties of convergence in

probability, 1
N

∑N
j=1 I (ŷj 6= yj)→ 0 in probability when M →∞. With the same argument,

one can prove (2) as well. To prove (3), note that P(ŷj − yj = 0) = P(I (ŷj 6= yj) = 0) → 0
as M →∞, which implies ŷj → yj in probability as M →∞.

Remark: This corollary tells us that, if the average quality of the workers (i.e. the
accuracy of labeling items) in the worker population, is better than random guess, then all
the items can be labeled correctly with arbitrarily high probability when there are enough
workers available. The consistency property of majority voting for finite number of items
ensures us that as long as there are enough reliable workers (better than random guess) avail-
able, we can achieve arbitrary accuracy even by a simple aggregating approach — majority
voting.

The examples we covered in this section do not require the estimation of parameters such
as worker reliabilities. In the next section, we discuss the maximizing likelihood methods for
inferring the parameters in crowdsourcing models, such as the celebrated EM (Expectation-
Maximization) algorithm. Then we illustrate how our main results can be applied to analyze
an underlining method that the ML methods approximate.

2.4.2 Error rate bounds for the Maximum A Posteriori rule

If we know the label posterior distribution of each item defined in (2.5), then the Bayes
classifier is

ŷj = argmax
k∈[L]

ρ
(j)
k , (2.30)

which is well known to be the optimal classifier (Duda et al., 2012).
In reality, we do not know the true parameters of the model, thus the true posterior

remains unknown. One natural way is to estimate the parameters of the model by Maximum
Likelihood methods, further estimate the posterior of each label class for each item, and then
build a classifier based on that. This is usually called the Maximum A Posteriori (MAP)
approach (Duda et al., 2012). After the EM algorithm estimating parameters, the Maximum
A Posteriori (MAP) rule, which predicts the label of an item as the one that has the largest
estimated posterior, can be applied. The prediction function of such a rule is

ŷj = argmax
k∈[L]

ρ̂
(j)
k , (2.31)

where ρ̂
(j)
k is the estimated posterior. If the MAP rule is applied after the parameters are

learned by the EM algorithm, then we call this method the EM-MAP rule, and sometimes
simply refer it to EM without introducing any ambiguity in the context.
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However, the EM algorithm cannot guarantee convergence to the global optimum. Thus,
the estimated parameters might be biased from the true parameters and the estimated poste-
rior might be far away from the true one if it starts from a “bad” initialization. Moreover, it
is generally hard to study the solution of the EM algorithm, and thus it is relatively difficult
for us to obtain the error rate for the EM-MAP rule.

We consider the oracle MAP rule, which assumes there is an oracle who knows the true
parameters and uses the true posterior to predict labels. Hence the oracle MAP rule is the
Bayes classifier (2.30), and recall that its prediction function is ŷj = argmaxk∈[L] ρ

(j)
k , where

ρ
(j)
k is the true posterior of yj = k. Based on our empirical observations, the EM-MAP rule

approximates the oracle MAP rule well in performance when most of the workers are good
(better than random guess). In the next, we provide an error rate bound for the oracle MAP
rule, which hopefully will help us understand the EM-MAP rule better.

The following result is about the error rate bounds on the oracle MAP rule, and it can
be straightforwardly derived from the main results in Section 2.3 since the oracle MAP rule
is a decomposable rule as in (2.9).

Corollary 2.8. (Error rate bounds of the oracle MAP rule under the General Dawid-Skene

model) Suppose there is an oracle that knows the true parameters Θ =
{{
P (i)

}
i∈[M ]

, Q, π
}

where P (i) =
(
p

(i)
kh

)
k,h∈[L]

∈ (0, 1]L×L. The prediction function of the oracle MAP rule is

ŷj = argmaxk∈[L] ρ
(j)
k , where ρ

(j)
k is the true posterior. All the error rate bounds in Theorem

2.1, 2.2 and 2.3 hold for the oracle MAP rule with fi(k, h)
.
= log p

(i)
kh, ∀k, h ∈ [L].

The results in the section above help us understand more about the practice of inferring
the ground truth labels via maximum likelihood methods. The prominent EM-MAP rule
approximates the oracle MAP rule by estimating the parameters of crowdsourcing model
and thus estimates the posterior distribution (2.5), then applies the MAP rule to predict the
labels of items. A further study on the error rate bounds of the oracle MAP rule might be
good for designing better algorithms with performance on par with the EM-MAP rule. This
is the focus of the next section.

2.5 Simulation

In this section, we compare the theoretical error rate bound with the error rate of the
oracle MAP rule via simulation. All results are averaged over 100 random trials. All our
experiments are implemented in Matlab 2012a, and run on a PC with Windows 7 operation
system, Intel Core i7-3740QM (2.70GHz) CPU and 8GB memory.

The error rate of a crowdsourcing system is affected by variations of different parameters
such as number of workers M , number of items N and worker reliabilities {wi}i∈[M ] etc.
To study how the error rate bound reflects the change of error rate when a parameter of
the system changes, we conduct numerical experiments on simulated data for comparing the
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Figure 2.4: Comparing the oracle MAP rule with its theoretical error rate bound by
simulation. These simulations are done under the Homogenous Dawid-Skene model with
L = 3 and q = 0.3. Vary the average accuracy of workers and fix M = 31 and N = 200.
Note that all of figures in this section are in log scale and all the results are averaged across
100 repetitions.

oracle MAP rule with its error rate bound (Corollary 3.2). We also measure the performance
of the IWMV algorithm and compare it with the performance of oracle MAP rule.

The simulations are run under the Homogenous Dawid-Skene model. Each worker has
q =30% chance to label any item which belongs to one of three classes (L = 3). The ground
truth labels of items are uniformly generated. The accuracies of workers (i.e., {wi}) are
sampled from a beta distribution Beta(a, b) with b = 2. Given an expected average worker
accuracy w̄, we choose the parameter a = 2w̄

1−w̄ so that the expected value for worker accura-
cies under distribution Beta(a, 2) matches with w̄. In each random trial in the simulation,
we keep sampling M workers from this Beta distribution until the average worker accuracy
is within ±0.01 range from the expected w̄. This is to maintain the average worker accuracy
at the same level for each trial.

First of all, we fix M = 31 and N = 200, then control the expected accuracy of the
workers varies from 0.38 (slightly larger than random guess 1/L) to 1 with a step size 0.05.
The averaged error rates are displayed in Figure 2.4. Note that the error rate of the oracle
MAP rule is bounded by its mean error rate bound tightly (see Figure 2.4). The bound
follows the same trend of the true error rate of the oracle MAP rule. The performance of
IWMV converges to that of the oracle MAP rule quickly as w̄ increases.

By fixing a = 2.3 and q = 0.3, we then vary one of the two parameters— number of items
N (default as 200) and number of workers M (default as 31) — with the other parameters
maintained as the default. The corresponding results are presented in Figure 2.5 and 2.6,
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Figure 2.5: Comparing the oracle MAP rule with its theoretical error rate bound by sim-
ulation by varying M . These simulations are done under the Homogenous Dawid-Skene
model with L = 3, q = 0.3 and N = 200. The reliabilities of workers are sampled based on
wi ∼Beta(2.3, 2), ∀i ∈ [M ].

respectively. According to the results of simulation, the error rate bound of the oracle MAP
rule and its upper bound do not change when the number of tasks N increases (Figure 2.6),
but they change log linearly when the number of workers M increases (Figure 2.5). The
upper bound on the oracle MAP rule varies between log linearly and log quadratically when
the probability of task assignment q increases (Figure 2.7).

2.6 Discussion and conclusions

In practice, if we want to obtain the error rate bounds for certain aggregation rules that
fall in the form of decomposable aggregation rule (2.9), what we can do should be similar
to what we did in Section 2.4: (1) for the specific model and task assignment, compute
the measure of t1 and t2 (and also c and σ2 if interested in bounds on the mean error
rate) according to the descriptions in Section 2.3.1. (2) Compute the corresponding error
rate bounds according to the theorems in Section 2.3. The quantities t1 and t2 can tell us
if we can obtain upper bound or lower bound on the error rate both in probability and in
expectation. Note that though the mean error rate bounds (Theorem 2.3) are in a composite
form of two exponential bounds, we can choose one of the two to use if the convenience of
theoretical analysis is concerned.

In this chapter, we have provided bounds on error rate of general decomposable rules un-
der the Dawid-Skene crowdsourcing model that includes both the Class-Conditional Dawid-
Skene and Homogenous Dawid-Skene model as special cases. Our bounds are in probability
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Figure 2.6: Comparing the oracle MAP rule with its theoretical error rate bound by
simulation by varying N . These simulations are done under the Homogenous Dawid-Skene
model with L = 3, q = 0.3 and M = 31. The reliabilities of workers are sampled based on
wi ∼Beta(2.3, 2), ∀i ∈ [M ].
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Figure 2.7: Comparing the oracle MAP rule with its theoretical error rate bound by
simulation by varying q. These simulations are done under the Homogenous Dawid-Skene
model with L = 3, M = 31 and N = 200. The reliabilities of workers are sampled based on
wi ∼Beta(2.3, 2), ∀i ∈ [M ].

and in expectation, and they hold for finite numbers of workers and items.
To the best of our knowledge, this is the first extensive work on error rate bounds for gen-
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eral aggregation rules under the practical Dawid-Skene model for multi-class crowdsourced
labeling. Our bounds are useful for explaining the effectiveness of different aggregation rules
and also motivating us to design the iterative weighted majority voting method, which will
be presented in the next chapter.

As a future direction for research, it is worth investigating finite sample error rate bounds
for the aggregation rules with random score functions, which depend on the data in a com-
plicated manner. For example, the EM-MAP rule can be formulated as a weighted majority
voting under the Homogenous Dawid-Skene model. However, the weights are estimated by
the EM algorithm (Raykar et al., 2010) and depend on the data complicatedly. Hence the
analysis of the EM algorithm is rather difficult, but it will be very useful if we can make any
progress on understanding the behavior of the EM algorithm and improving the inference
methods in crowdsourcing in general.



30

Chapter 3

Iterative weighted majority voting
method for crowdsourcing

3.1 Motivation

The previous chapter discusses the error rate of general aggregation rules under the General
Dawid-Skene model. In this chapter, we demonstrate how the bounds in Chapter 2 can be
used to design an iterative weighted majority voting algorithm for inferring the underlying
true labels of items.

A crucial problem in crowdsourcing is to design aggregation method so that the quality
of the yielded results is as good as possible. As a commonly used method (Smyth et al.,
1995, Snow et al., 2008, Sheng et al., 2008), majority voting (MV) simply adopts the most
common label from the inputs of the workers. However, majority voting treats the input
from all workers equally, and it is well-known to be error-prone and inefficient (Karger et al.,
2011a). In principle, efficient aggregation approaches should take the reliabilities of different
workers into account.

Beyond majority voting, significant efforts have been made to investigate advanced ag-
gregation methods which jointly estimate the reliabilities of workers and labels of items
without ground truth (Dawid and Skene, 1979, Whitehill et al., 2009, Raykar et al., 2010,
Karger et al., 2011a, Liu et al., 2012, Zhou et al., 2012). The basic paradigm is to model
the reliabilities of workers and labels, and then to infer the true labels with EM algorithm
(Dawid and Skene, 1979, Raykar et al., 2010) or other inference techniques(Karger et al.,
2011a, Liu et al., 2012, Zhou et al., 2012). However, as a natural and intuitive extension to
majority voting, the underlining power and limitation of weighted majority voting (WMV),
which assigns different weights to workers and chooses the label with the highest accumu-
lated weight, have not been well studied to the best of our knowledge. It is still unknown
how we could possibly choose the weight based on the worker inputs, and achieve the best
performance one can get.

In this chapter, we investigate the weighted majority voting method for multi-class la-
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beling tasks in crowdsourcing. The contributions of this chapter are: (1) We obtain finite
sample bounds on the expected error rate of weighted majority voting based on the main
results from previous chapter. (2) We show that the oracle Maximum A Posteriori (MAP)
rule is a weighted majority voting, and it approximately minimizes the error rate bound
of weighted majority voting. (3) We propose an intuitive and easy-to-implement algorithm
called iterative weighted majority voting (IWMV) to optimize the error rate bound of WMV.
Experimental results on both simulation and real data show that IWMV performs at least
on par with the state-of-the-art methods, while it has lower computation cost than the
state-of-the-art methods.

The rest of the chapter is organized as follows. In Section 3.2, we address the notations
and crowdsourcing model used in this chapter. In Section 3.4, we present the error rate
bound of WMV. We derive the bound optimal rule in Section 3.5.1, and propose IWMV
algorithm in Section 3.5. In Section 3.6, we show the experimental results on both synthetic
and real-world data. We conclude this chapter in Section 3.7.

3.2 Background

We follow the nations in Section 2.2 in Chapter 2. Recall that there are M workers and
N items for labeling, and each item belongs to one of the L classes. For convenience, we
denote the set of workers [M ], the set of items [N ], and the set of label classes [L], where [M ]
represents the first M integers. yj denotes the true label for j-th item, and ŷj the predicted
label for the j-th item by an algorithm. Let πk = P(yj = k) denote the prevalence of label
“k” in the true labels of the items for any j ∈ [N ] and k ∈ [L]. When task j (i.e., labeling the
jth item) is assigned to worker i, a possibly noise label Zij is collected, otherwise we denote

Zij = 0, which means unobserved/missing. Hence, a data matrix Z ∈ [L]
M×N

is formed after

collecting all the data from workers, where [L] = [L]∪{0}. The task assignments are denoted
by an indicator matrix T = (Tij)M×N , where Tij = 1 indicates the i-th worker has labeled
the j-th item, otherwise Zij is unobserved. We further assume that the task assignment is
random, formally, P(Tij = 1) = q ∈ (0, 1].1

We adopt a commonly used model in (Raykar et al., 2010, Karger et al., 2011a, Liu
et al., 2012) to capture the diversity of worker reliabilities: the Homogenous Dawid-Skene
model (Section 2.2). This model assumes the reliability of worker i is measured by a single
parameter wi such that

P(Zij = l|yj = k) =

{
wi if l = k
1−wi
L−1

if l 6= k.
(3.1)

Therefore wi is the probability of that worker i labeling an item correctly. The parameters of

1If we further relax our assumption about task assignment to full generality as P(Tij = 1) = qij ∈ (0, 1],
our analysis in this chapter can also be applied. For clarity, we adopt this simple assumption.
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the crowdsourcing models we describes above is Θ
.
=
{
{πk}k∈[L] , {wi}i∈[M ]

}
and the posterior

distribution of true labels is ρ
(j)
k

.
= P (yj = k|Z,Θ) ,∀j ∈ [N ], k ∈ [L].

Following the same performance measure from Chapter 2: given an aggregation rule,
suppose that its predicted label for item j is ŷj, a common used performance measure is the

error rate ER = 1
N

∑N
j=1 I (ŷj 6= yj) , where I (·) is the indicator function. Due to the random

nature of the error rate, we are usually interested in its expected value, i.e., the mean error
rate. Formally, the mean error rate is:

MER =
1

N

N∑
j=1

P(ŷj 6= yj). (3.2)

A core problem in crowdsourcing is to design effective algorithms for inferring the under-
lying true labels based on the noisy inputs from crowds. The major objective of designing
such inference algorithms is to reduce the error rate with high probability or the mean error
rate. In next section, we present the Maximizing Likelihood method to infer the groundtruth
labels.

3.3 Learning crowdsourcing models via Maximum

Likelihood method

Recall that if we know the posterior distribution of the label of each item defined as in (2.5),
then the Bayesian classifier is

ŷj = argmax
k∈[L]

ρ
(j)
k

One natural way to approach it is to use Maximum Likelihood methods to estimate the
parameters of the model, and then further compute the posterior of the label of each time.

3.3.1 Estimating parameters by Expectation Maximization

The maximum likelihood method is a commonly used method for inference parameters in
graphical models. However, when there is hidden variables, the maximum likelihood estimate
(MLE) is general intractable to derive. A widely used alternative is applying Expectation
Maximization (EM) algorithm (Dempster et al., 1977), which is an iterative method for
optimizing a lower bound of the likelihood. Under our setting, the objective function of EM
algorithm (Bilmes, 1998) will be

Q(Θ,Θ
′
) = EY |Z,T,Θ′ [logP(Z, T, Y |Θ)],

where Y = (y1, y2, · · · , yN) as the true labels of all the N items and Θ
′
the current estimated

parameters. Q(Θ,Θ
′
) can be further factorized by the conditional independences in the
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graphical model. Let’s use Z?j = (Z1j, Z2j, · · · , ZMj)
T denote all the labels associate with

the item j,

Q(Θ,Θ
′
) = EY |Z,T,Θ′ [logP(Z, Y |T,Θ)] + logP(T |Θ)

=
N∑
j=1

L∑
k=1

ρ
(j)
k ·

[
log πk +

M∑
i=1

L∑
l=1

I (Zij = l) log(p
(i)
kl )

]

+
M∑
i=1

N∑
j=1

[I (Zij 6= 0) log(qij) + I (Zij = 0) log(1− qij)] (3.3)

The EM algorithm iteratively executes two steps to compute posterior and estimate
parameters of interest for General Dawid-Skene model as follows:

(E-step): compute posterior distrubtion based on the current estimated parameters
by

ρ
(j)
k =

πkη
(j)
k∑L

l=1 πlη
(j)
l

, ∀j ∈ [N ], k ∈ [L], (3.4)

where η
(j)
k is the likelihood of Z?j,

η
(j)
k = P(Z?j|yj = k, T,Θ) =

M∏
i=1

L∏
l=1

(
p

(i)
kl

)I(Zij=l)

. (3.5)

(M-step): estimate parameters of interest by optimize

max
Θ

Q(Θ,Θ
′
) subject to

L∑
k=1

πk = 1. (3.6)

This leads to the parameter update as

p
(i)
kl =

∑N
j=1 ρ

(j)
k I (Zij = l)∑N
j=1 ρ

(j)
k Tij

∀i ∈ [M ], k, l ∈ [L], (3.7)

πk =
1

N

N∑
j=1

ρ
(j)
k ∀k ∈ [L]. (3.8)

The E-step in EM algorithm for Class-Conditional Dawid-Skene model and Homogenous
Dawid-Skene model are the same as for General Dawid-Skene model — replace p

(i)
kl , l 6= k

with
1−p(i)kk
L−1

for Class-Conditional Dawid-Skene model, and replace p
(i)
kk with wi, and p

(i)
kl , l 6= k

with 1−wi
L−1

for Homogenous Dawid-Skene model.
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Algorithm 1 EM algorithm under Homogenous Dawid-Skene model for crowdsourcing.

Input: Number of workers= M; Number of items= N; label matrix: Z ∈ [L]
M×N

;
Output: the predicted labels {ŷ1, ŷ2, ..., ŷN}
Initialization: Tij ← I (Zij 6= 0) ,∀i ∈ [M ],∀j ∈ [N ]; Intialize {ŵi}i∈[M ] and {π̂k}k∈[L]

with the result from majority voting.
repeat

——————————————– E-Step: ————————————–
for j = 1, · · · , N , the posterior updates: do

η̂
(j)
k =

(
M∏
i=1

(ŵi)
I(Zij=k)

(
1− ŵi
L− 1

)I(Zij 6=k,0)
)
, ∀k ∈ [L];

ρ̂
(j)
k =

π̂kη̂
(j)
k∑L

l=1 π̂lη̂
(j)
l

, ∀k ∈ [L].

end for
——————————————– M-Step: ————————————–
for i = 1, · · · ,M , the parameters updates: do

ŵi =

∑N
j=1

∑L
k=1 ρ̂

(j)
k I (Zij = k)∑N

j=1 Tij
.

end for

π̂k =
1

N

N∑
j=1

ρ̂
(j)
k , k ∈ [L].

until reaches certain number of iterations.
Output the prediction: ∀j ∈ [N ], output ŷj = argmaxk∈[L] ρ̂

(j)
k .

The M-step are slightly different from the General Dawid-Skene model for updating
worker quality parameter, which is listed as follows.
M-step under Class-Conditional Dawid-Skene model:

p
(i)
kk =

∑N
j=1 ρ

(j)
k I (Zij = k)∑N
j=1 Tij

and p
(i)
kl =

1− p(i)
kk

L− 1
, ∀i ∈ [M ], l, k ∈ [L]. (3.9)
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M-step under Homogenous Dawid-Skene model:

wi =

∑N
j=1

∑L
k=1 ρ

(j)
k I (Zij = k)∑N

j=1 Tij
, ∀i ∈ [M ]. (3.10)

Note that for all three models, the update for πk in M-step are the same.
As an illustration, the detailed EM algorithm of Homogenous Dawid-Skene model is listed

in Alg.1. The algorithm framework can be slightly modified for both General Dawid-Skene
and Class-Conditional Dawid-Skene model.

3.3.2 Maximum a posteriori rule

We can apply EM algorithm to estimate the parameters, but after that, we need a rule to
decide the item should be labeled with which label. One popular rule for classification is the
maximum a posteriori (MAP) rule, which assigned the item to the label that has the largest
estimated posterior.

The prediction function for a MAP rule is

ŷj = argmax
k∈[L]

ρ̂
(j)
k (3.11)

, where ρ̂
(j)
k is the estimated posterior. In Alg.1, we have applied the MAP rule with the

estimated posterior. If the parameters are learned by EM algorithm and then the MAP rule
is applied to predict the labels of items, then we called it the EM-MAP rule.

However, EM algorithm can not guarantee to converge to the global optimum. Thus, the
estimated parameters might be biased from the true parameters and the estimated posterior
might be far away from the true one if it starts from a “bad” initialization.

Now, we consider about the oracle MAP rule, which assume there is an oracle who
knows the true parameters and thus use the true posterior in MAP rule to label items. The
prediction function of the oracle MAP rule is

ŷj = argmax
k∈[L]

ρ
(j)
k ,

where ρ
(j)
k is the true posterior of yj = k.

In next section, we show that the oracle MAP rule is a weighted majority voting rule.
We provide a bound on the mean error rate of weighted majority voting, therefore we obtain
the error rate bound on the oracle MAP rule.

3.4 Finite sample error rate bound of weighted

majority voting

In weighted majority voting, each worker is assigned with a weight, and the aggregation
label will be the one with most accumulated weight. Formally, the aggregation rule of WMV
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is

ŷj = argmax
k∈[L]

M∑
i=1

νiI (Zij = k) , (3.12)

where νi ∈ R is the weight associated with the ith worker. Majority voting is a special case
of WMV when all the workers have the same positive weight such as νi = 1 for all i.

Corollary 3.1. (Error rate bound of weighted majory voting) For weighted majority voting
(2.8) with weights of workers ν = (ν1, ν2, · · · , νM). Assume the task assignment between
workers and items is based on probability q ∈ (0, 1], and assume the workers are modeled
with parameter {wi}Mi=1, then with

t =
q

(L− 1)||ν||2

M∑
i=1

νi(Lwi − 1), (3.13)

(i) if t ≥ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≤ e−

t2

2
+ln(L−1),

(ii) if t ≤ 0, then 1
N

∑N
j=1 P (ŷj 6= yj) ≥ 1− e− t

2

2 .

Proof. This result is implied by Corollary 2.5 directly.

Remark: The quantity t is crucial to bound the error rate of WMV and it depends
on w, ν and q — how reliable the workers are for this type of tasks, how the task owner
assigns weight to workers, and how many task assignments are done (i.e., the proportion of
the observed entries in data matrix). Based on t, we can judge whether an upper bound or
a lower bound on the error rate can be obtained.

If we let νi = 1 for all i, with the measure t = q

(L−1)
√
M

∑M
i=1(Lwi − 1), the bounds in

Corollary 3.1 (i) and (ii) apply to majority voting.
The result above leads to the next corollary, which shows that the oracle MAP rule is a

weighted majority voting rule, and gives its mean error rate bound.

Corollary 3.2. (Error rate bound of the oracle MAP rule) Suppose the task assignment is
based on probability q ∈ (0, 1] and true labels are class-balanced (i.e.,πk = 1/L,∀k ∈ [L]),
and assume wi ∈ (0, 1),∀i ∈ [M ] , then the oracle MAP rule is a weighted majority voting

rule with weight ν ′i = ln (L−1)wi
1−wi for worker i. Let t1 = q

(L−1)‖ν′‖
∑M

i=1 ν
′
i(Lwi − 1), the mean

error rate of the oralce MAP rule always has an upper bound as 1
N

∑N
j=1 P

(
ŷomapj 6= yj

)
≤

e−
t21
2

+ln(L−1).

Proof. Based on the model of worker reliabilities, we have P(Zij = k|yj = k) = wi and
P(Zij = h|yj = k) = 1−wi

L−1
for all k, h ∈ [L], k 6= h.

The posterior distribution is
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ρ
(j)
k =

πkη
(j)
k∑L

l=1 πlη
(j)
l

, ∀j ∈ [N ], k ∈ [L],

where

η
(j)
k =

M∏
i=1

(wi)
I(Zij=k)

(
1− wi
L− 1

)I(Zij 6=k,0)

.

For the oracle MAP rule, we have

ŷoracle
j = argmax

k∈[L]

ρ
(j)
k

= argmax
k∈[L]

πkη
(j)
k

= argmax
k∈[L]

log(η
(j)
k ) + log πk

= argmax
k∈[L]

M∑
i=1

(
I (Zij = k) logwi + (I (Zij 6= 0)− I (Zij = k)) log

1− wi
L− 1

)
+ log

1

L

= argmax
k∈[L]

M∑
i=1

(
I (Zij = k) logwi + I (Zij 6= k, 0) log

1− wi
L− 1

)

= argmax
k∈[L]

M∑
i=1

(
I (Zij = k) logwi + (I (Zij 6= 0)− I (Zij = k)) log

1− wi
L− 1

)

= argmax
k∈[L]

[
M∑
i=1

I (Zij = k) log
(L− 1)wi

1− wi
+

M∑
i=1

I (Zij 6= 0) log
1− wi
L− 1

]

= argmax
k∈[L]

M∑
i=1

(
log

(L− 1)wi
1− wi

)
I (Zij = k)

= argmax
k∈[L]

M∑
i=1

ν ′iI (Zij = k) ,

where ν ′i = log (L−1)wi
1−wi . Therefore the oracle MAP rule is a weigthed majoirity rule. Thus

the results from Corollary 3.1 can be directly applied here. i.e., with

t1 =
q

(L− 1)||ν ′||2
M∑
i=1

ν ′i(Lwi − 1),

if t1 ≥ 0, then

1

N

N∑
j=1

P (ŷj 6= yj) ≤ (L− 1) exp

(
−t

2
1

2

)
.
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Now all we need to show is that t1 is always non-negative. We can see that if wi ≥ 1
L

, then

(Lwi − 1) ≥ 0 and νi = (L−1)wi
1−wi ≥ 0 for all i ∈ [M ], then t1 ≥ 0 in this case. wi <

1
L

, then

(Lwi − 1) < 0 and (L−1)wi
1−wi < 0, thus t1 > 0 in this case as well. All in all, t1 ≥ 0 is always

true for the oralce MAP rule.

Remark: There are two messages the corollary above implies: (1) The oracle MAP
rule is a weighted majority voting. (2) Since t1 ≥ 0 always holds, the mean error rate of
the oracle MAP rule is always upper bounded. That is different from Corollary 3.1 because
the oracle MAP rule wisely chooses the weight for each worker so that the t1 will be always
non-negative.

3.5 Iterative weighted majority voting algorithm

In this section, we first study the mean error rate bound of weighted majority voting, then we
minimize the bound to get the oracle bound-optimal rule. Finally, we present its connection
to the oracle MAP rule. Based on the oracle bound-optimal rule, we propose an iterative
weighted majority voting method with performance guarantee on its one-step version.

3.5.1 The oracle bound-optimal rule and the oracle MAP rule

We explore the relationship between the oracle MAP rule and the error rate bound of
WMV. Note that the error rate bound of WMV in Corollary 3.1 implies that if t ≥ 0,

then 1
N

∑N
j=1 P (ŷj 6= yj) ≤ e−

t2

2
+ln(L−1), where the bound e−

t2

2
+ln(L−1) are monotonely de-

creasing w.r.t. t ∈ [0,∞). The mean error rate is upper bounded with the condition t ≥ 0,
thus maximizing t will increase the chance of t ≥ 0 being satisfied and reduce the error
bound. With this observation, the bound-optimal weights of workers in weighted majority
voting is

ν? = argmin
ν∈RM

e−
t2

2
+ln(L−1) = argmax

ν∈RM
t = argmax

ν∈RM

q

L− 1

M∑
i=1

νi
||ν||2

(Lwi − 1)

=⇒ The oracle bound-optimal rule: WMV with ν?i ∝ Lwi − 1. (3.14)

Therefore a bound-optimal strategy is to choose the weights for WMV according to (3.14).
Since this rule requires the information of the true parameters {wi}i∈[M ], we call it as the
oracle bound-optimal rule. In practice, we can estimate the parameters, and plugin them to
the oracle bound-optimal rule, which we refer to as the bound-optimal rule.

By Corollary 3.2, the oracle MAP rule under the Homogenous Dawid-Skene model is a
weighted majority voting rule with weight

ν ′i = log
(L− 1)wi

1− wi
≈ L

L− 1
(Lwi − 1).
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The approximation is due to the Taylor expansion around x = 1
L

,

ln
(L− 1)x

1− x
=

L

L− 1
(Lx− 1) +O

((
x− 1

L

)2
)
. (3.15)

Thus, the weight of the oracle bound-optimal rule is the first order Taylor expansion of the
weight in the oracle MAP rule. Similar result and conclusion hold for the Class-Conditional
Dawid-Skene model as well, but we omit them here for clarity.

By observing that the oracle MAP rule is very close to the oracle bound-optimal rule, the
oracle MAP rule approximately optimizes the upper bound of the mean error rate. This fact
also indicates that our bound is meaningful since the oracle MAP rule is the oracle Bayes
classifier.

3.5.2 Iterative weighted majority voting with performance
guarantee

Based on Section 3.5.1, the oracle bound-optimal rule of choosing weights is νi ∝ Lwi − 1.
With this strategy, if we have an estimated wi, we can put more weights to the “better”
workers and downplay the “spammers” (those workers with accuracy close to random guess).
This strategy can potentially improve the performance of majority voting and result in a
better estimate for wi, which further improves the quality of the weights, and iterate. This
inspires us to design an iterative weighted majority voting (IWMV) method as in Algorithm
2.

Algorithm 2 The iterative weighted majority voting algorithm (IWMV)

Input: Number of workers= M; Number of items= N; data matrix: Z ∈ [L]
M×N

;
Output: the predicted labels {ŷ1, ŷ2, ..., ŷN}
Initialization: νi = 1, ∀i ∈ [M ]; Tij = I (Zij 6= 0) ,∀i ∈ [M ],∀j ∈ [N ].
repeat

ŷj ← argmax
k∈[L]

M∑
i=1

νiI (Zij = k) , ∀j ∈ [N ].

ŵi ←
∑N

j=1 I (Zij = ŷj)∑N
j=1 Tij

, ∀i ∈ [M ].

νi ← Lŵi − 1, ∀i ∈ [M ].

until converges or reaches S iterations.
Output the predictions {ŷj}j∈[N ] by ŷj = argmaxk∈[L]

∑M
i=1 νiI (Zij = k).

The time complexity of this algorithm is O((M + L)NS), where S is the number of
iterations in the algorithm. Empirically, the IWMV method converges fast. But it also
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suffers from the local optimal trap as EM does, and is generally hard to analyze its error
rate. However, we are able to obtain the error rate bound in the next theorem for a “naive”
version of it – one-step WMV (osWMV), which executes (Step 1) to (Step 3) only once
as follows:

(Step 1) Use majority voting to estimate labels, which are treated as the “golden
standard”, i.e. ŷMV

j = argmaxk∈[L]

∑M
i=1 I (Zij = k).

(Step 2) Use the current “golden standard” to estimate the worker accuracy ŵi =∑N
j=1 I(Zij=ŷMV

j )∑M
i=1 I(Zij 6=0)

for all i and set νi = Lŵi − 1 for all i.

(Step 3) Use the current weight v in WMV to estimate an updated “gold standard”,
i.e., ŷj = argmaxk∈[L]

∑M
i=1 νiI (Zij = k).

For the succinctness of the result, we focus on the case where L = 2 and q = 1, but the
techniques used can be applied to the general case of L and q as well.

Theorem 3.3. (Mean error rate bound of one step WMV for binary labeling)
Under the Homogenous Dawid-Skene model, with label sampling probability q = 1 and L = 2,

let ŷwmvj be the label predicted by one-step WMV for the jth item, if w̄ ≥ 1
2

+ 1
M

+
√

(M−1) ln 2
2M2 ,

the mean error rate of one-step WMV

1

N

N∑
j=1

P
(
ŷwmvj 6= yj

)
≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
, (3.16)

where σ̃ =
√

1
M

∑M
i=1(wi − 1

2
)2 and η = 2 exp

(
−2M2(w̄− 1

2
− 1
M

)2

M−1

)
The proof of this theorem is deferred to Appendix B. It is non-trivial to prove this theorem

since the dependency among the weights and labels makes it hard to apply the concentration
approach used in proving the previous results. Instead, a martingale-difference concentration
bound has to be used.

Remarks:
(1) In the exponent of the bound, there are several important factors: σ̃ represents how

far away the accuracies of workers are from random guess, and it is a constant smaller than
1; η will be close to 0 given a reasonable M .

(2) The condition on w̄ requires that w̄ − 1
2

is Ω(M−0.5), which is easier to satisfy with
M large if the average accuracy in the crowd population is better than random guess. This
condition ensures that majority voting approximates the true labels. Thus with more items
labeled, we can get a better estimate of the workers’ accuracies. The performance of the
one-step WMV will then be improved with better weights.

(3) We address how M and N affect the bound: First, when both M and N increase
but M

N
= r is a constant or decreases, the error rate bound decreases. This makes sense

because with the number of items labeled per worker increasing, ŵi will be more accurate.
The weights will be closer to the oracle bound-optimal rule. Second, when M is fixed and
N increases, i.e., the number of items labeled increases, the upper bound on the error rate
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decreases. Third, when N is fixed and M increases, the bound decreases when M <
√
N

and then increases when M is beyond
√
N . Intuitively, when M is larger than N and M

increases, the fluctuation of score functions, where ŵi is the estimated accuracy of the ith
worker, will be large. This increases the chance of making more prediction errors. When M
is reasonably small (compared with N) but is increasing, i.e., more people label each item,
the accuracy of majority voting will be improved according to Corollary 3.2, then the gain
on the accuracy of estimating ŵi results in the weights of the one-step WMV to be closer to
the oracle bound-optimal rule.

As an alternative way of assigning weights to workers in each iteration (Alg.2), we can
also choose the weight of worker i by plugging ŵi into the weight in the oracle MAP rule.
That is, ν ′i = log (L−1)ŵi

1−ŵi . We refer this variant of IWMV to the IWMV.log algorithm. From
the practical point of view, however, ν ′i is unbounded and too large (or too small) if estimator
ŵi is close to 1 (or 0). Therefore IWMV.log uses an aggressive way to weigh the workers,
and it might be too risky when the estimates {ŵi}i∈[M ] are noisy. Recall that given an
estimate ŵi of the reliability of worker i, the way that the IWMV algorithm chooses the
weight is νi = Lŵi − 1. As a linearized version of ν ′i (3.15), νi is more stable to the noise in
the estimate ŵi. Furthermore, IWMV is more convenient for theoretical analysis than the
IWMV.log algorithm. In the next section, we will show some comparisons between IWMV
and IWMV.log by experiments.

3.6 Experiments

In this section, we first compare IWMV with EM and IWMV.log on synthetic data. We
then experimentally test IWMV and compare it with the state-of-art algorithms on real-
world data. We show that overall IWMV is robust to model-misspecification. It achieves
the best performance (or sometimes as good as the methods with best performance) while
uses much less computational time than the other state-of-the-art methods.

We implement majority voting, EM algorithm (Raykar et al., 2010) with MAP rule
(also referred as the EM-MAP rule in the experiments), and use public available code 2 —
the iterative algorithm in (Karger et al., 2011a) is referred to as KOS, and the variational
inference algorithm from (Liu et al., 2012) is referred to as LPI. All results are averaged over
100 random trials. All our experiments are implemented in Matlab 2012a, and run on a PC
with Windows 7 operation system, Intel Core i7-3740QM (2.70GHz) CPU and 8GB memory.

3.6.1 Simulation

Our first simulation (Figure 3.1) shows that IWMV, its variant IWMV.log and the EM algo-
rithm achieve the same final prediction accuracy, while IWMV has the lowest computational
cost. Specifically, we vary the number of tasks N , and compare the final accuracy with one

2 http://www.ics.uci.edu/∼qliu1/codes/crowd tool.zip



42

standard deviation error bar imposed (Figure 3.1(a)), the convergence time (Figure 3.1(b)),
the number of iterations (i.e. steps) to converge (Figure 3.1(c)) and the total run time for
50 iterations (Figure 3.1(d)). With almost the same accuracies, IWMV converges faster
and takes fewer steps to converge than EM and IWMV.log, and the run time of IWMV is
prominently lower than EM. Similar conclusions can be also confirmed when changing M , q
and L, thus we omit the similar results here.
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Figure 3.1: Comparison between IWMV, IWMV.log and the EM-MAP rule, with the number
of items varying from 1000 to 11000. Simulation is performed with L = 3,M = 31, q = 0.3
under the Homogenous Dawid-Skene model. The reliabilities of workers are sampled based
on wi ∼Beta(2.3, 2), i ∈ [M ]. All the results are averaged across 100 repetitions. (a) Final
accuracy with error bar imposed. (b) The time until convergence, and we need to know
the ground truth for measuring it. (c) Number of steps to converge. (d) Total run time is
computed based on finishing 50 iterations.

The experiments above are strictly simulated based on the Homogenous Dawid-Skene
worker model for its simplicity. To compare IWMV with EM when the worker model is
violated, we simulate toy data. See Figure 3.2(a) for the setup: suppose there are two
group of workers G1 and G2, and two sets of items S1 and S2. The true labels of items are
generated uniformly from {±1}. The data matrix is generated as follows: P(Zij = yj) = 0.9
if i ∈ G1, j ∈ S1; P(Zij = yj) = 0.6 if i ∈ G1, j ∈ S2; P(Zij = yj) = 0.5 if i ∈ G2, j ∈ S1;
P(Zij = yj) = 0.7 if i ∈ G2, j ∈ S2. We use q = 0.3. The error rate (with one standard
deviation) of MV, EM, IWMV.log and IWMV are shown in Figure 3.2 (b), which shows that
IWMV achieves lower error rate than EM and IWMV.log do in this model misspecification
example. The results in Figure 3.2 shows that IWMV are more robust than EM under
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Figure 3.2: (a) Setting of model misspecification. (b) Performance comparison under model
misspecification setting in (a).

model misspecification to some extent. Similar results can be obtained under other different
configurations (as in Figure 3.2), and we omit them here.

3.6.2 Real data

To compare our proposed iterative weighted majority voting with the state-of-the-art meth-
ods (Raykar et al., 2010, Karger et al., 2011a, Liu et al., 2012), we conducted several exper-
iments on real data (most of them are publicly available). We sampled the collected labels
in the real data independently with probability q̃ which varies from 0.1 to 1, and see how
the error rate and run time change accordingly. For clarity of the figures produced in this
section, we omit the results of IWMV.log since its performance is usually worse than IWMV
in terms of both accuracy and computational time. Our focus will be the comparisons among
IWMV, EM, KOS and LPI.

Table 3.1: The summary of datasets used in the real data experiments. w̄ is the average
worker accuracy.

Dataset L classes M workers N items #labels w̄

Duchenne 2 17 159 1221 65.0%
RTE 2 164 800 8000 83.7%
Temporal 2 76 462 4620 84.1%
Web search 5 177 2665 15539 37.1%
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Duchenne dataset. The first dataset is from (Whitehill et al., 2009) on identifying
Duchenne smile from non-Duchenne smile based on face images. In this data, 159 images are
labeled with {Duchenne, non-Duchenne} labels by 17 different Mechanical Turk3 workers. In
total, there are 1,221 labels, thus 1221/(17×159)= 45.2% of the potential task assignments
are done (i.e., 45.2% of the entries in the data matrix are observed). The ground truth la-
bels are obtained from two certified experts and 58 out of the 159 images contain Duchenne
smiles. The Duchenne images are hard to identify (the average accuracy of workers on this
task is only 65%).
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Figure 3.3: Duchenne smile dataset (Whitehill et al., 2009). (a) Error rate of different
algorithms when the number of labels available increases. (b) Run time comparison. (c)
A visualization with both run time and error rate when 40.7% of the task assignments are
done.

We conducted the experiments by sampling the labels independently with probability
q̃ varying from 0.1 to 1. Thus the proportion of non-zero labels in the data matrix will
vary from 0.6% to 45.2%. Note that based on our setting, the task assignment probability
corresponding to q̃ is q = q̃ × 45.2%. After sampling the data matrix from the original
Duchenne dataset with a given q̃, we then run IWMV, majority voting, the EM algorithm
(Raykar et al., 2010) , KOS (the iterative algorithm in (Karger et al., 2011a)), and LPI (the
variational inference algorithm from (Liu et al., 2012)). The entire process will be repeated
100 times, and the results will be averaged. The comparison is shown in Figure 3.3(a).

From Figure 3.3(a), we can see that when the available labels are very few, the perfor-
mance of IWMV is as good as LPI, and these two generally dominate the other algorithms.
With more labels available, the error rate of IWMV is around 2% lower than LPI (Figure
3.3(a)). At the same time, we compared the run time of each algorithm (Figure 3.3(b)).
With more labels, the run time of LPI increases fast (non-linearly), while the IWMV main-
tains a lower run time than EM, KOS and LPI. For a better visualization of comparing run

3https://www.mturk.com
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time and error rate, we compared the run time of IWMV, EM, KOS and LPI by a bar plot
with their error rates imposed on top. Figure 3.3(c) shows the comparison when 40.7% of the
labels are available (q̃ = 0.9). IWMV is more than 100 times faster than LPI, and achieves
the lowest error rate among these algorithms.

An interesting phenomenon in Figure 3.3(a) is that EM performs poorly — it is even
worse than MV. The major reason for this is that the workers reliabilities form a pattern
similar to our model misspecification example in Figure 3.2(a): some workers are good at
a set of images but bad at the complementary set of images, while the other workers are
reversed. This is a real-data example of model misspecification, and IWMV is more robust
to the model misspecification on this data than EM.
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Figure 3.4: RTE dataset (Snow et al., 2008). (a) Error rate of different algorithms. (b) Run
time when the percentage of the task assignments done increases. (c) Run time comparison
when 4.9% of the task assignments is done. The error rates of each method are imposed on
the top of the bar.

RTE dataset. The RTE data is a language processing dataset from (Snow et al., 2008).
The dataset was collected by asking workers to perform recognizing textual entailment (RTE)
tasks, i.e., for each question the worker is presented with two sentences and given a binary
choice of whether the second sentence can be inferred from the first.

Temporal event dataset. This dataset is also a natural language processing dataset from
(Snow et al., 2008). The task is to provide a label from {strictly before, strictly after} for
event-pairs that represents the temporal relation between them.

We conducted similar experiments on the RTE dataset and the temporal event dataset
as the one on the Duchenne dataset. The results on the RTE dataset are shown in Figure
3.4. Figure 3.4(a) is the performance curves of different algorithms when the percentage
of task assignments done increases. Figure 3.4(b) is the run time of these algorithms, and
it confirms the same observations as the results on the Duchenne dataset: the IWMV runs
much faster than the other algorithms except majority voting, and it has similar performance
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Figure 3.5: (a) Results on Temp dataset from (Snow et al., 2008). (b) Results on Web search
dataset (Zhou et al., 2012).

to LPI which is the state-of-art method (Figure 3.4(c)). For clarity, we show the performance
comparison on temporal event dataset in Figure 3.5(a) and omit the run time comparison.

Web search dataset. In this dataset (Zhou et al., 2012), workers were asked to rate
query-URL pairs on a relevance rating scale from 1 to 5. Each pair was labeled by around
6 workers, and around 3.3% of the entries in the data matrix is observed. The ground truth
labels were collected via consensus from 9 experts. We treat the task as a multi-class labeling
problem, thus L = 5. We conduct the experiment in a similar setting to the experiment on
the Duchenne dataset — sampling the labels with probability q̃ and varied it to plot the
performance curve (Figure 3.5(b)). Since LPI and KOS is constrained to binary labeling so
far, we only compared IWMV with the EM-MAP rule and majority voting. The performance
of IWMV generally outperforms the EM-MAP rule and majority voting by at least 4%.

3.7 Conclusions

In this chapter, based on a finite sample error rate bound on the mean error rate of weighted
majority voting, a data-driven iterative weighted majority voting algorithm is proposed to
efficiently infer the true labels of items. This algorithm approximates the oracle MAP with
a theoretical guarantee on the error rate of its one-step version.

Through simulations under the Homogenous Dawid-Skene model (for simplicity) and
tests on real data, we have the following findings.

1. The iterative weighted majority voting method (IWMV) performs as well as the EM-
MAP rule with much lower computational cost in simulation, and IWMV is more
robust to model-misspecification than EM.



47

2. On real data, IWMV achieved performance as good as or even better than that of the
state-of-the-art methods with much less computational time.

For the future work, an appealing direction is to study the error rate of the IWMV algo-
rithm after certain number of iterations. It will be of great of interest to the crowdsourcing
community because the IWMV algorithm shares similarities with the famous EM algorithm,
but differs from it with different steps on updating the weights of workers. Hence, any in-
sightful results we get from studying the error rate of the IWMV algorithm will contribute
directly to understand the behavior of the EM algorithm on crowdsourcing problems.
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Chapter 4

Worker selection with a few control
examples

4.1 Introduction

Besides studying inference algorithms in crowdsourcing as in Chapter 3, there is another
important problem — how to choose good workers based on their performance on some
initial test questions. In this chapter, we focus on the problem of selecting a small group of
good workers under the constraint that we cannot hire more than K workers because of the
limited budget.

Since the crowd workers often have different reliabilities due to their diverse backgrounds,
it is important to weight their answers properly when aggregating their answers. A large
body of work has been proposed to deal with the uncertainty and diversity on the workers’
reliabilities; these methods often have a form of weighted majority voting where the answers
of the majority of the workers are selected, with a weighting scheme that accounts the
importance of the different workers according to their reliabilities. The workers’ reliabilities
can be estimated either using gold standard questions with known answers (e.g., Von Ahn
et al., 2008, Liu et al., 2013), or by statistical methods such as Expectation-Maximization
(EM) (see, e.g., Dawid and Skene, 1979, Whitehill et al., 2009, Karger et al., 2011a, Liu
et al., 2012, Zhou et al., 2012).

The work in this chapter is motivated by a natural question: do more crowd workers
necessarily yield better aggregated results than less workers? The idea of wisdom of crowds
seems to suggest a confirmative answer, since “larger crowds should be wiser”. From a
Bayesian perspective, this would be true if we had perfect knowledge about the workers’
prediction model, and we were able to use an oracle aggregation procedure that performs
exact Bayesian inference. However, in practice, because the workers’ prediction model and
reliabilities are never known perfectly, we run the risk of adding noisy information as we
increase the number of workers. In the extreme, there may exist a large number of “spam-
mers”, who submit completely random answers rather than good-faith attempts to label;



49

adding these spammers would certainly deteriorate the results, unless we are able to identify
them perfectly, and assign them with zero-weights in the label aggregation algorithm. Even
if there is no extreme spammers, the median-level workers may still decrease the overall
accuracy if they dominate over the small number of high-quality workers. In fact, a recent
empirical study (Mannes et al., 2014) shows that the aggregated results of a small number
of (3 to 6) high-quality workers are often more accurate than those of much larger crowds.

In this chapter, we study this phenomenon by formulating a worker selection problem
under a budget constraint. Assume we have a pool of workers whose reliabilities have been
tested by a small number of gold standard questions; under certain label aggregation algo-
rithm, we want to select a subset of workers that maximizes the accuracy, with a budget
constraint that the number of workers assigned per task is no more than K. A näıve and
commonly used procedure is to simply select the top K workers that have the highest relia-
bilities. However, due to the noisy nature of the label aggregation algorithms (e.g., majority
voting or EM), selecting all the K workers does not necessarily give the best accuracy, and
may cause a waste of the resource. We study this problem under a simple label aggregation
algorithm based on weighted majority voting, and propose a worker selection method that
is able to select fewer (≤ K) top-ranked workers, while achieve almost the same, or even
better aggregated solutions than the näıve method that uses more (all the top K) workers.

Our method is derived by framing the problem into a combinatorial optimization problem
that minimizes an upper bound of the error rate, and deriving a globally optimal algorithm
that selects a group of top-ranked workers that optimize the upper bound of the error rate.
We demonstrate the efficiency of our algorithm by comprehensive experiments on a number
of real-world datasets.

There are many previous works on estimating the workers’ reliabilities and eliminating
the spammers based on a predefined threshold (Raykar and Yu, 2012, Joglekar et al., 2013).
Our work instead focuses on selecting a minimum number of highest-ranked workers while
discarding the others (which are not necessarily spammers). Note that our method has the
advantage of requiring no pre-specified threshold parameters.

Our work is orthogonal with another line of research on online assignment for crowdsourc-
ing (e.g., Chen et al., 2013, Ho et al., 2013, Tran-Thanh et al., 2013, Karger et al., 2014),
which focus on dynamically route tasks to workers; this is distinguish with our work which
focuses on an one-shot selection of the worker pool before distributing tasks to workers.
Although online assignment generally allows more flexible and efficient budget allocation,
they require much more implementation overhead in practice, especially considering the lack
of good real time online assignment interfaces in most current crowdsourcing systems. Our
approach is much easier (almost free) to implement in practice, and can be followed with a
full online assignment process when implementation is possible.

The rest of the chapter is organized as follows. We introduce the background and the
problem setting in Section 4.2. We then formulate the worker selection problem into a
combinatorial optimization problem and derive our algorithm in Section 4.3. The numerical
experiments are presented in Section 4.4. We give further discussions in Section 4.5 and
conclude the chapter in Section 4.6.
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4.2 Problem setup

Following the notations in Chapter 2, we assume there are M crowd workers and N items
(or questions) each with labels from L classes. The set of workers is denoted by Ω = [M ];
the set of items is denoted by [N ] and the set of label classes by [L], where we use [M ] to
denote the set of first M integers. We assume each item j is associated with an unknown
true label yj ∈ [L], j ∈ [N ]. We also assume that we have n control (or gold standard)
questions whose true labels y′j ∈ [L], j ∈ [n] are known.

When item j is assigned to worker i for labeling, we get a possibly inaccuracy answer from
the worker, which we denote by Zij ∈ [L]. The workers often have different expertise and at-
titude, and hence have different reliabilities. We assume i-th worker labels the items correctly
with probability wi, that is, wi = P(Zij = yj). In addition, assume we have an estimation of
the workers’ reliability ŵi, which can be estimated either based on the workers’ performance
on the control items, or by probabilistic inference algorithms like expectation-maximization
(EM). With a known reliability estimation ŵi, most label aggregation algorithms, including
the näıve majority voting and EM, can be written into a form of weighted majority voting,

ŷj = argmax
k∈[L]

∑
i∈S

f(ŵi) · I (Zij = k) , (4.1)

where f(ŵi) is a monotonic weighting function that decides how much the answers of worker
i contribute to the voting according to the reliability ŵi, and I (·) is the indicate function.
For majority voting, we have fmv(ŵi) = 1, which ignores the diversity of the workers and
may performance badly in practice. In contrast, a log-odds weighting function flog(ŵi) =

logit(ŵi)−logit(1/L), where logit(ŵi)
def
= log( ŵi

1−ŵi ), can be derived using Bayesian rule under
a simple model that assumes uniform error across classes; here 1/L is the probability of
random guessing among L classes. However, in practice, the log-odds may be over confident
(growing to infinite) when ŵi is close to 1 or 0. A linearized version flinear(ŵi) = ŵi − 1/L
has better stability, and is simpler for theoretical analysis (Li et al., 2013b).

Note that both of flog and flinear have properties that are desirable for general weighting
functions: Both are monotonic increasing functions of ŵi, and take zero value if ŵi = 1/L
(to exclude the labels from random guessers); they are both positive if ŵi > 1/L (better
than random guessers), and are both negative if ŵi < 1/L (worse than random guessers).
These common properties make flinear and flog work similarly in practice. But since flinear is
more stable and simpler for theoretical analysis, we will focus on the linear weighted function
flinear for our further development on the worker selection problem, that is, the labels are
aggregated via (referred as WMV-linear),

ŷj = argmax
k∈[L]

∑
i∈S

(Lŵi − 1) · I (Zij = k) . (4.2)

In the next section, we study the worker selection problem and propose an efficient algorithm
based on the analysis of the WMV-linear aggregation method.
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4.3 Worker selection by combinatorial optimization

The problem of selecting an optimal set of workers requires predicting the error rate with a
given worker set, which is unfortunately intractable in general. However, it is convenient to
obtain an upper bound of the error rate for the linear weighted majority voting.

Theorem 4.1. Given a set S of workers, using the weighted majority voting in (4.2)
with linear weights flinear and an unbiased estimator of the reliabilities {ŵi}i∈S that satis-
fies E[ŵi] = wi. If the workers’ labels are generated independently according the following
probability

P(Zij = l|yj = k) =

{
wi if l = k,
1−wi
L−1

if l 6= k.
(4.3)

Then we have

1

N

N∑
j=1

P(ŷj 6= yj) ≤ exp

[
− 2F (S)2

L2(L− 1)2
+ ln(L− 1)

]
, (4.4)

where F (S) =
1√
|S|

∑
i∈S

(Lwi − 1)2. (4.5)

Remarks:
(1) Note that the above upper bound depends on the worker set S and their reliabilities

wi only through the term F (S). In fact, according to the proof in the supplementary, the
term F (S) corresponds to the expected gap between the voting score of the true label yi (i.e.∑

i∈S flinear(ŵi)I (Zij = yi)) and that of the wrong labels, and hence reflects the confidence
of the weighted majority voting. Therefore, F (S) represents a score function for the worker
set S: if F (S) is large, the weighted majority voting is more likely to give correct prediction.

(2) The assumption (4.3) used in Theorem 4.1 implies a “one-coin” model on the workers
labels, where the labels are correct with probability wi, and otherwise make mistakes uni-
formly among the remaining classes. This is a common assumption to make, especially in
theoretical works (see e.g., (Karger et al., 2011a, Ghosh et al., 2011, Joglekar et al., 2013)).
It is possible to relax (4.3) to a more general “two-coin” model with arbitrary probability
P(Zij = l|yj = k), which, however, may lead more complex upper bounds. In our empirical
study on various real-world datasets, we find that F (S) remains to be an efficient score
function for worker section even when the one-coin assumption does not seem to hold.

Based on (4.5), it is natural to select the workers by maximizing the term F (S), that is,

argmax
S⊆Ω

F (S), s.t. |S| ≤ K, (4.6)

Unfortunately, F (S) depends on the workers’ true reliabilities wi, which is often unknown.
We instead estimate F (S) based on ŵi. The following theorem provides an unbiased esti-
mator.
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Lemma 4.2. Assume ŵi is an unbiased estimator of wi that satisfies E[ŵi] = wi, and v̂ar(ŵi)
is an unbiased estimator of the variance of ŵi. Consider

F̂ (S) =
1√
|S|

∑
i∈S

G(ŵi), (4.7)

where

G(ŵi) = (Lŵi − 1)2 − L2v̂ar(ŵi), (4.8)

then F̂ (S) is an unbiased estimate of F (S).

Remarks:
(1) The first term (Lŵi− 1)2 in (4.8) shows that the workers with ŵi close to either 1 or

0 should be encouraged; these workers tend to answer the questions either all correctly or
all wrongly, and hence are “strongly informative” in terms of the predicting the true labels.
Note that these workers with ŵi = 0 are strongly informative in that they eliminate one
possible value (their answer) for the true labels. On the other side, more workers also means
more noise, so there is a term

√
|S| for balancing the signal-noise ratio — to encourage hiring

“strong” workers instead of only hiring more workers.
(2) A simpler estimation of F (S) is to directly plug ŵi as wi into (4.5), that is,

F̂plug(S) =
1√
|S|

∑
i∈S

(Lŵi − 1)2. (4.9)

However, this obviously leads to a biased estimator of F (S) because of the missing of the
variance term in (4.8). The existence of the variance term is of critical importance: The
workers with large uncertainty on the reliabilities should be less favorable compared with
these with a more confident estimation.

Since Lemma 4.2 does not specify ŵi and v̂ar(ŵi), the next theorem provides a concrete
example of F̂ (S), based on which a symmetric confidence interval of F (S) can be constructed.

Theorem 4.3. Assume a group of workers are tested with n control questions, and let ci
be the number of correct answers given by worker i on the n control questions. Then an
unbiased estimator ŵi, with an unbiased estimator of var(ŵi) can be obtained by

ŵi =
ci
n

and v̂ar(ŵi) =
ci(n− ci)
n2(n− 1)

. (4.10)

With such ŵi and v̂ar(ŵi), the corresponding F̂ (S) in (4.7) is unbiased and the interval

[F̂ (S) − n(L−1)2

n−1
α, F̂ (S) + n(L−1)2

n−1
α] covers F (S) with probability at least 1 − 2e−2α2

for any
α > 0.
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Remark: A discussion about the advantage of the unbiasness of F̂ (S) and the symmetric
confidence interval is deferred to Section 4.5.

Based on the estimation of F (S) in Theorem 4.3, the optimization problem is rewritten
into

argmax
S⊆Ω

F̂ (S), s.t. |S| ≤ K, (4.11)

where F̂ (S) is defined in (4.7). Although this combinatorial problem is neither sub-modular
nor super-modular, we show it can be exactly solved with a linearithmic time algorithm
shown in Algorithm 3.

Algorithm 3 Worker selection algorithm

1: Input: Worker pool Ω = {1, 2, . . . ,M} and estimated reliabilities {ŵi}i∈Ω from n control
questions; Number of label classes L; Cardinality constraint: no more than K workers
per item.

2: xi ← G(ŵi), ∀i ∈ Ω as in (4.8), and sort {xi}i∈Ω in descending order so that xσ(1) ≥
xσ(2) ≥ . . . ≥ xσ(M), where σ is a permutation of {1, 2, · · · ,M}.

3: B ← min(K,M), g1 ← xσ(1) and F1 ← g1.
4: for k from 2 to B do
5: gk ← gk−1 + xσ(k) and Fk ←

gk√
k
.

6: end for

7: k∗ ← min

{
argmax
1≤k≤B

Fk

}
.

8: Output: The selected subset of workers S? ← {σ(1), σ(2), · · · , σ(k∗)}.

Algorithm 3 progresses by ranking the workers according to G(ŵi) in a decreasing order,
and sequentially evaluates the groups of the top-ranked workers, and then finds the smallest
group that has the maximal score F̂ (S). The time complexity of Algorithm 3 is O(|Ω| log |Ω|)
and the space complexity is O(|Ω|), where Ω is the whole set of workers.

The following theorem shows that Algorithm 3 achieves the global optimality of (4.11).

Theorem 4.4. For any fixed {ŵi}i∈Ω. The set S? given by Algorithm 3 is a global optimum

of Problem (4.11), that is, we have F̂ (S?) ≥ F̂ (S) for ∀S ∈ Ω that satisfies |S| ≤ K.

Remark: As a generalization, consider the following multiple-objective optimization
problem,

argmax
S⊆Ω

(F̂ (S), − |S|), s.t. |S| ≤ K,

which simultaneously maximizes the score F̂ (S) and minimizes the number |S| of workers
actually deployed. We can show that S? is in fact a Pareto optimal solution in the sense
that there exist no other feasible S that improves over F̂ (S) in terms of both F̂ (S) and |S|
(details in supplementary).
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4.4 Experimental results

We demonstrate our algorithm using empirical experiments based on both simulated and
real-world datasets. The empirical results confirm our intuition: Selecting a small number
of top-ranked workers may perform as good as, or even better than using all the available
workers. In particular, we show that our worker selection algorithm significantly outperforms
the naive procedure that uses the entire top K workers. We find that our algorithm tends
to select a very small number of workers (less than 10 in all our experiments), which is very
close to the optimal number of the top-ranked workers in practice.
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Figure 4.1: Performance of different worker selection methods on simulated data. WMV-
linear aggregation is used in all the cases. We simulated 31 workers and 1000 items with
binary labels, and use 10 control questions. The workers’ reliabilities are drawn indepen-
dently from Beta(2.3, 2). (a) The accuracies when the budget K varies. (b) The actual
number of workers used by different worker selection methods when K increases.

To be specific, we consider the following practical scenario in the experiments: (i) Assume
there is a worker pool Ω where each worker has completed a “qualify exam” with n control
questions, which is required by either the platform or a particular task owner. (ii) The
task owner selects a subset of workers from Ω using a worker selection algorithm such as
Algorithm 3 based on their performance on the qualify exam. (iii) The selected workers are
distributed to answer the N questions of the main interest. (iv) Label aggregation algorithms
such as WMV-linear or EM are applied to predict the final labels of these N items.

Even though our worker selection algorithm is derived when using WMV-linear, we can
still use other label aggregation algorithms such as EM, once the worker set is selected.
This gives the following possible combinations of the algorithms that we test: WMV-linear
on the top K workers (WMV top K), WMV-linear on the worker set S? selected by Algo-
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rithm 3 (WMV-lin selected), and WMV with log ratio weights on the selected worker set
S? (WMV-log selected), the EM algorithm on randomly selected K workers (referred as
EM random K), EM on the top K workers ranked (EM top K) and EM on the worker set
S? selected (EM selected). We also implement the worker selection algorithm based on
the plugin estimator in (4.9) (which is the same as Algorithm 3, except replacing G(ŵi)
with (Lŵi − 1)2), followed with a WMV-linear aggregation algorithm (referred as WMV-lin

plugin). Since the majority voting tends to perform much worse all the other algorithms,
we omit it in the plots for clarity.

In each trial of the algorithms on both the simulated and real-world datasets, 10 items are
randomly picked from the collected data as the control items, and the workers’ reliabilities
{ŵi}i∈Ω are estimated based on the accuracy on the control items as (4.10). In each trial, the
number of workers selected by Algorithm 3 was stored and the average number of workers
was computed for each budget K. We terminate all the iterative algorithms at a maximum
of 100 iterations. All results are averaged over 100 random trials.

4.4.1 Simulated data

We generate the simulated data by drawing 31 workers with reliability wi from Beta(2.3, 2),
and we randomly generated 1000 items with true labels uniformly distributed on {±1}. The
budget K varies from 3 to 31. Figure 4.1(a) shows the accuracy of WMV-linear with different
worker selection strategies as the budget K changes. We can see that WMV-lin selected

dominates the other methods. Figure 4.1(b) shows the actual number of workers selected by
worker selection algorithm (Algorithm3). WMV-linear based on our selected workers uses
a relatively small number of (always < 10) workers (the red curve in Figure 4.1(b)), and
achieve even better performance than WMV-lin top K that uses the entire available budge
(the blue line in Figure 4.1(b)). We find that the worker selection algorithm based on the
plugin estimator F̂plug(S) tends to select slightly more workers, but achieves slightly worse

performance than Algorithm 3 based on the bias-corrected estimator F̂ (S) (see WMV-lin

select vs. WMV-lin plugin in Figure 4.1(a)). This implies the importance of the variance
term in (4.8), which penalizes the workers with noisy reliability estimation.

The number of control questions n controls the variance of the reliability estimation ŵi,
and hence influences the results of the worker selection algorithms. Figure 4.2(a) shows
the results when we vary n from 3 to 45, with the budget fixed at K = 20. We see that
the performance of all the algorithms increases when n increases, because we know more
accurate information about the workers’ true reliabilities, and can make better decision on
both choosing the top K workers and selecting workers by Algorithm3. In addition, when
n increases, the variance of ŵi decreases and the difference between WMV-linear selected

and WMV-linear plugin decreases.
Figure 4.2(b) shows the results when when we vary the prior parameter a where wi ∼

Beta(a, 2), fixed K = 20 and n = 10. Larger a means the workers are more likely to have
high reliabilities (i.e., close to 1). We see from Figure 4.2(b) that WMV-lin top K increases
as a increases, due to the overall improvement of the reliabilities of the top K workers. The
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Figure 4.2: Performance of different worker selection methods, (a) when changing the num-
ber of control questions n, and (b) when changing the parameter a in the reliability prior
Beta(a, 2). The budget K is fixed at 20. We use the WMV-linear aggregation method in all
the cases.

performances of WMV-lin selected and WMV-lin plugin improves only slightly, probably
because they only select several top workers which is not heavily affected by a.

4.4.2 Real data

We test the different worker selection methods on three real-world datasets: two collected by
ourselves from the crowdsourcing platform Clickworkers 1, and one by Welinder et al. (2010)
from Amazon Mechanical Turk.

Crowd-test dataset: In this dataset, 31 workers are asked to answer 75 knowledge-based
questions from allthetests.com, which cover topics such as science, math, common knowledge,
sports, geography, U.S. history and politics and India. All these questions have 4 options,
and we know the all the ground truth beforehand. We required each worker to finish all the
questions. A typical example of the knowledge-test question is as follows:

(Question): In what year was the Internet created?
(Options): A. 1951; B. 1969; C. 1985; D. 1993.

Figure 4.3(a) shows the performance of the different methods as the budget K changes.
Since EM is widely used in practice, we include the results when using it as the label
aggregation algorithm after the workers are selected. We find that the performance of EM

Top K first increases when K is small and then decreases when K is large enough (≥ 10 in

1http://www.clickworker.com/en
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Figure 4.3: Crowd-test data. 10 items were randomly selected as control. (a) Performance
curve of algorithms with K increasing. (b) Number of workers the algorithms actually used
for each K.

this case). Our worker selection algorithm selects much smaller number of workers, while
much better performance, compared to the top K and random selection methods.

Disambiguation dataset: The task here is to identify which Wikipedia page (within 4
possible options) a given highlighted entity in a sentence actually refers to. We collected 50
such questions in the technology domain with ground truth available, and hire 35 workers
through Clickworkers, each of which is required to complete all the questions. A typical
example is as follows:

(Question): “The Microsoft .Net Framework 4 redistributable package install the .NET
Framework runtime and associated files that are required to run and develop applications
to target the .NET Framework 4”. Which Wiki page does “runtime” refer to?
(Options):

A. http://en.wikipedia.org/wiki/Run-time system
B. http://en.wikipedia.org/wiki/Runtime library
C. http://en.wikipedia.org/wiki/Run time (program lifecycle phase)
D. http://en.wikipedia.org/wiki/Run Time Infrastructure (simulation)

Bluebird dataset: It is collected by Welinder et al. (2010) and is publicly available. In this
dataset, 39 workers are asked if a presented image contains Indigo Bunting or Blue GroBeak.
There are 108 images in total.

Figure 4.4 and Figure 4.5 show the performance of the different algorithms on the bluebird
and the disambiguation dataset, respectively. The results are similar to the one in Figure
4.3. For the disambiguation dataset, the number of workers selected is usually no more than
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Figure 4.4: The disambiguation dataset: 35 workers and 50 questions in total. The settings
are the same as that of Figure 4.3. (a) Performance curve of algorithms with K increasing.
(b) Number of workers the algorithms actually used for each K.

6, and the corresponding number for bluebird dataset is 9.
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Figure 4.5: The bluebird dataset: 39 workers and 108 questions in total. The settings are
the same as that of Figure 4.3. (a) Performance curve of algorithms with K increasing. (b)
Number of workers the algorithms actually used for each K.

Note that WMV-lin selected, WMV-log selected and EM selected are based on the
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workers selected by Algorithm 3. They achieve better performance than EM based on the
top K or the random selected workers when K is large. This shows that aggregation based
on inputs from selected workers not only saves budget but also maintains good performance.

4.5 Discussion

What is the advantage of ensuring that F̂ (S) is an unbiased estimate of F (S)? The true ob-
jective function F (S) is unknown, and we can only optimize over a random estimation F̂ (S).
If F̂ (S) is a biased estimator and the bias depends on {ŵi}i∈Ω, then the optimum solution
may be very different from the underlying true solution. With the unbiased estimator and
the symmetric confidence interval gurantee shown in Lemma 4.2 and 4.3, optimizing F̂ (S)
is equivalent to optimizing a proper confidence bound, because the margin in the confidence
interval often does not depend on the workers’ reliabilities. The results in Figure 4.1 confirm
that with the unbiased estimator F̂ (S), the performance of WMV on the selected workers is
better than that with the biased plugin estimator F̂plug(S).

Why does WMV-linear perform better than WMV with flog? In some of our empirical
results (e.g., Figure 4.4), we find that WMV with log ratio weight is not as good as the one
with the linear weight. It is mainly because there is a high chance that some workers get
estimated reliability ŵ close to 0 or 1 when the number of control questions is small (e.g.,
n = 10). Even if we do truncation to prevent a weight flog(ŵi) from going to ∞, the large
weights of some workers may still lead to unstable aggregations. However, the performance
of WMV with flog improves when we use larger n or heavier truncation on ŵi.

Why does EM with top-K workers perform poorly as K increases? Within the given pool
of workers, we add increasingly less reliable workers (compared with the workers already
selected) as K increases; these less reliable workers may confuse the EM algorithm, causing
worse reliability estimation as well as final prediction accuracy. This intuition matches
with our empirical results in Figure 4.3, Figure 4.4 and Figure 4.5: the performance of EM
generally first increases when K is small (with increasingly more top-quality workers), but
then decreases when K is large (as more less reliable workers are added).

4.6 Conclusions

In this chapter, we studied the problem of selecting a set of crowd workers to achieve the
best accuracy for crowdsourcing labeling tasks. We demonstrated that our worker selection
algorithm can simultaneously minimize the number of selected workers and minimize the
prediction error rate, achieving the best in terms of both cost and efficiency. For future di-
rections, we are interested in developing better selection algorithms based on more advanced
label aggregation algorithms such as EM, or more complex probabilistic models.
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Chapter 5

Crowd Targeting: discovering and
targeting the right group of workers

5.1 Motivation

The worker selection problem in Chapter 4 assumes that the selected group of workers from
the crowd who take the test are willing to perform further tasks (i.e., the selected group will
be sure to perform the assigned tasks in the future). Therefore, it is a pure subgroup selection
problem. However, this assumption holds only when crowdsourcing platforms support real
time decision of hiring workers (a task owner makes real time selection and then hire the
selected group of workers immediately to perform the future tasks). Most of the current
crowdsourcing platforms do not support that so far, but it is an important feature that
might be supported in the near future. On the contrary, the work in this chapter overcomes
the issue above by discovering that good workers can be identified with certain characteristic
information. Therefore, even if we cannot hire the same selected people for future tasks, we
can hire the workers who have similar backgrounds with them. This ensures that the strategy
in this chapter be practical to all the current crowdsourcing platforms and can be directly
deployed if necessary.

To aggregate the responses from multiple workers, the simplest approach would be to treat
the response from each worker equally and take the majority. This majority voting approach
could be reasonably effective but it is very often sub-optimal. Intuitively, some workers are
better than others and those higher quality workers are not necessarily the majority, as
philosopher Soren Kierkegaard once said, “Truth always rests with the minority, and the
minority is always stronger than the majority, because the minority is generally formed by
those who really have an opinion”. Soren’s claim might be too strong, but it is true in many
cases.

Therefore, how to find the “minority” in the crowd that truly have wisdom is a very
important problem. There are quite a few previous works that try to solve this problem
(Dawid and Skene, 1979, Karger et al., 2011a, Liu et al., 2012, Raykar et al., 2010, Zhou
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et al., 2012). The general approach is that the quality of each worker and the true answer of
each task are modeled as latent variables that depend on each other, and the values of these
variables can be jointly estimated by optimizing certain objective functions. It is shown
those methods can almost always outperform simple majority voting for deciding the final
output.

In practice, previous worker quality estimation approaches still have some limitations.
First, those approaches mainly utilize signals from the distribution of workers’ responses,
but in practice, there could be many factors that are related to worker quality. Among
those factors, various characteristics of the worker, such as demographics information and
educational background, can be very indicative of worker quality on some tasks, as shown in
some recent empirical studies (Ipeirotis, 2010b, Kazai et al., 2012, 2013). Intuitively, for a
given task, if some characteristics of workers are indeed related to their quality, they should
be taken into worker quality estimation. On the other hand, it is also possible that none of
the available worker attributes are related to quality in some tasks, and in such cases, they
should not play a role in quality estimation.

The second limitation of previous approaches is that they can only estimate the quality
of each worker after he/she performs the task, which means it is difficult to improve budget
efficiency for future tasks of the same kind. There are still some ways, for example, we can
certainly identify spammers and refuse to pay them and even ban them from doing the task
in the future. However, for identified high quality workers, it could be difficult to reach them
and have them do the task when needed, since they may not be available or willing do the
task with the same price.

In contrast, if we are able to discover that certain groups of workers, based on their
characteristics, have better quality in average on a task, we can easily target on getting new
workers from the crowd that are in the same groups and the responses from the targeted
worker groups will have higher quality in expectation than responses from the entire crowd.

In fact, most crowdsourcing platforms already provide some quality control mechanisms
such as qualification test that allows task owners to select workers that meet certain criteria.
For example, task owners may have some prior knowledge on which groups of workers might
perform better, or use some sample questions with known ground truth to test workers.
The only problem is that it is not guaranteed the qualification tests designed based on task
owners’ prior knowledge can effectively select high quality workers due to many potential
issues: the better groups could be different for different tasks; the designated criteria might
be too strict or too loose, etc. Therefore, it will be more effective if the selection criteria can
be automatically learned from real data.

To solve this problem, in this chapter, we propose a general crowd targeting framework,
that can automatically discover if any specific groups of workers based on their characteristics
have higher quality on average for a given task, and target those groups, if they exist, for
future work of the same task to improve data quality and budget efficiency. The general
idea is to send a small part of the task to the entire crowd at the beginning, and learn the
selection criteria from the data and use those criteria to target workers for the remaining
and future work. Since the targeting criteria are automatically learned from the data, its
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effectiveness is more stable. Note that the definition of worker characteristics can be very
general, e.g., workers’ available profile information, or their responses to any questions we
put in the task.

To the best of our knowledge, we are the first to propose such a crowd targeting frame-
work. Our experiments on real world tasks and crowdsourcing systems show that our method
can significantly improve the accuracy of final output with the same or even less budget.
The automatic worker group discovery method requires very few data with ground truth,
and can also perform well when there is no ground truth at all. In addition, this framework
can be easily implemented on top of most of the current crowdsourcing platforms by utilizing
their existing quality control mechanisms.

In the rest of this chapter, Section 5.2 introduces the crowd targeting framework. Section
5.3 presents notations and setup for the crowd targeting problem, and derives a new worker
effect measure reflecting the quality of a worker. Section 5.3 discusses how we measure the
quality of workers. Section 5.4 focuses on the details of two algorithms for implementing the
crowd-targeting framework. Section 5.5 contains experimental results on two real datasets
that we have collected and a publicly available dataset to verify the framework, and Section
5.6 discusses the most related work to this chapter.

5.2 Crowd Targeting framework

(Probing stage)   
Send part of the task 
to the entire crowd. 

(Discovery stage) 
Analyze results and 
find the right group. 

(Targeting stage) 
Collect more data 

from the right group. 

Figure 5.1: The crowd targeting framework.

In this section, we describe our crowd targeting framework in details. Figure 5.1 illustrates
the three main stages of the framework: probing stage, discovery stage and the targeting
stage.

5.2.1 Probing stage

At this stage, we distribute a part of the task to the entire crowd population by simple
random sampling and allow everyone to perform the task. This way we will get a unbiased
sample of workers for the next stage.

In the meantime, we will need to gather characteristics of workers at this stage. On some
crowdsourcing platforms, basic information is available in workers’ profiles, such as gender
and location. Otherwise, we can do the same as in (Kazai et al., 2012, 2013) and simply
add survey questions as part of the task. We can require workers to answer these survey
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questions by utilizing the screening mechanism provided by most crowdsourcing platforms
or some other techniques like JavaScript.

The notion of worker characteristics is very general. The default questions would be
demographics (major, education level, age, language, etc.) or questions that capture per-
sonality traits (Kazai et al., 2012, 2013). And task owners can customize and choose any
questions that they think might be relevant except for those that violate laws or invade
privacy of workers, such as asking for their social security numbers.

Figure 5.2 illustrates part of our design for collecting worker characteristic information.
Note that we assure the workers that we protect their privacy and make clear that we will
not identify any individual worker based on the information.

Figure 5.2: A screen shot of part of the design for collecting worker information.

5.2.2 Discovery stage

After collecting labeled data and worker characteristics at the probing stage, we then focus
on discovering if there exist any groups of workers from the unbiased sample of the entire
population who are performing significantly better than other workers.

Quality is the most important criteria for worker group discovery: the target groups have
to be better than other workers based on some measures. There are some standard measures
that can be used to judge how good or useful a worker is, and in our framework we propose
a new measure that can perform better in practice. Further discussions on measures are in
Section 5.3.

Availability or the population ratio of the target groups is another important criterion
for discovery. We cannot target groups which are too rare in the crowd such that we have
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a small chance of immediately getting new workers from these groups for future tasks. This
is even more important for tasks that are preferred to be finished within a short time. We
are utilizing a population threshold in the group discovery algorithms, which can be tuned
by task owners based on the urgency of their tasks.

5.2.3 Targeting stage

At this stage, we distribute the remainder of the task and future tasks of the same type only
to the discovered groups output by the previous stage. We can utilize the quality control
mechanisms provided by most crowdsourcing platforms to enforce the group selection.

The targeting can improve data quality and budget efficiency. With a given budget, we
can get the same number of workers from groups that are more likely to provide higher
quality responses. This is usually equivalent to that given a certain quality goal, we are able
to hire less workers by targeting at better worker groups. In cases when the method works
really well, we can even get higher quality results with fewer budgets.

5.3 Worker effects

Before analyzing the association between worker characteristics and reliability, we first need
to formally define some measures for worker reliability, which can be treated as the effect on
workers caused by certain factors (their characteristics). We will first setup the crowdsourcing
scenario we focus on in this chapter, and then introduce three effects that can be used in
the analysis.

5.3.1 Setup of the crowdsourcing scenario

There are many possible formats of crowdsourcing tasks, without loss of generality, in this
chapter we will focus on tasks that are in the format of multiple choice problems, and our
framework can be easily generalized to other types of tasks where the worker reliability can
be quantitatively measured.

In the multiple choice scenario, given a question and several possible answers, the task
for each worker is to choose the best answer. This is a very common scenario and a lot of
labeling tasks are in such format. Assuming there are M workers, N questions and each
question has L options. Throughout this chapter, we index workers by i and questions by
j. For simplicity, we define [n]

.
= {1, 2, · · · , n} , ∀n ∈ N, so the pool of workers is denoted

by [M ], the pool of questions [N ], and the pool of options [L]. Let Z be the label matrix
where Zij denotes the answer worker i provides for question j, then Zij ∈ [L]∪ {0}, where 0
represents the answer is missing (worker i does not perform task j). Let yj ∈ [L] denote the
true answer for task j.

We use a succinct model (Karger et al., 2011a, Raykar et al., 2010) to model the relation
between worker reliability and true answers by assuming that worker i is characterized by
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accuracy wi ∈ [0, 1], i.e. how often her answer is correct. And when she makes mistakes, her
answer is uniformly distributed among all the wrong answers. Formally,

P(Zij = k|yj = k) = wi, ∀k ∈ [L] (5.1)

P(Zij = l|yj = k) =
1− wi
L− 1

, ∀l, k ∈ [L], l 6= k. (5.2)

The posterior probability for the k-th answer to be true in task j given the collected
answers, i.e. P(yj = k|Z, {wi}Mi=1), and the accuracy of each worker i, i.e. wi, are unknown
at the beginning, but they can be estimated iteratively by the EM algorithm (Dempster
et al., 1977, Raykar et al., 2010). In literature, this method is referred to as the maximum
likelihood method on the Class-Conditional Dawid-Skene model or one-coin model (Karger
et al., 2011a, Raykar et al., 2010, Li et al., 2013a,b), which is a special case of the full
Dawid-Skene model (Dawid and Skene, 1979). We use this method due to its simplicity and
effectiveness in many scenarios, and our crowd targeting framework can be easily generalized
when other methods are applied for estimating worker accuracy and predicting true answers.

5.3.2 Effects

Now, we will introduce several measures for worker reliability that can be treated as effects
on the worker. These measures should effectively reflect how good or how useful a worker’s
answers are for the final prediction of true answers. So intuitively, the measure should be a
function of the worker’s accuracy. Formally the effect of the i-th worker is τi = f(wi).

The simplest measure would be directly using the accuracy, or its logit form as follows,
Accuracy: f(wi) = wi ∈ [0, 1].
Logit Accuracy: f(wi) = ln wi

1−wi ∈ (−∞,+∞).
The motivation behind the above two measures is that workers with higher accuracy will

provide more accurate answers, which should improve the final prediction in principle.
If we use simple methods such as majority voting for the final prediction, the only hope

we can have is to get more workers with high accuracy. However, in practice EM methods
described can almost always outperform majority voting in final prediction, which motivates
us to explore if there are other measures for a worker’s contribution that suits better with
the EM methods.

Based on the analysis of the EM algorithm on Dawid-Skene models (Li et al., 2013a,b),
we can know that if we can correctly estimate each worker’s accuracy wi, then we will give
higher positive weights to answers provided by more accurate workers; on the other hand,
for workers who have accuracy worse than random guessing, we can effectively give their
answers negative weights, which can help filter out potential wrong answers. In another
word, a less accurate worker, if her accuracy can be effectively estimated, could still make
positive contribution for the final prediction.

Then the question is what should be the measure that can capture a worker’s actual
contribution or usefulness for predicting true answers using the EM method.



66

The EM algorithm tries to maximize the expected complete data log-likelihood given

unknown parameters Θ =
{
{wi}Mi=1

}
and current estimated posterior ρjk = P(yj = k|Z,Θ′):

Q
(

Θ,Θ
′
)

= EY |Z,Θ′ [lnP (Y, Z|Θ)]

=
M∑
i=1

N∑
j=1

L∑
k=1

ρjk

[
I(Zij = k) lnwi + I(Zij /∈ {0, k}) ln

1− wi
L− 1

]
+ constant,

where constant is indepdent of wi.
So the data likelihood contributed by worker i is essentially:

Ci = Si lnwi + (ni − Si) ln
1− wi
L− 1

, (5.3)

where Si =
∑N

j=1

∑L
k=1 P(yj = k|Z,Θ′)I(Zij = k), i.e. the expected number of questions

correctly answered by worker i; and ni =
∑N

j=1 I(Zij 6= 0), i.e. the total number of questions
worker i has answered.

The optimal wi that maximizes Ci is: ŵi = Si/ni, so the maximum value of Ci can be
written as:

Ĉi = ni

(
ŵi ln ŵi + (1− ŵi) ln

1− ŵi
L− 1

)
= −ni · Entropy

({
ŵi,

1− ŵi
L− 1

, · · · , 1− ŵi
L− 1

})
. (5.4)

Notice that if ŵi can freely take values from [0, 1], then Ĉi is maximized when ŵi = 1,
i.e. worker i is a perfect worker; and Ĉi is minimized when ŵi = 1/L, which is equivalent to
the accuracy of a worker who randomly guesses the answer. This reveals the fact that if EM
is used for finding the true answer, a random guesser is the most helpless worker comparing
with workers with higher or even lower accuracy. Note that lnL is the entropy of the answer
distribution of a random guesser. Therefore, (5.4) is equivalent to the information gain from
the answers of worker i compared to a random guesser, up to a constant ni lnL.

By normalizing based on ni to get a worker’s average contribution on each task she takes,
and adding a constant lnL to make the value in a proper range, we formally define the third
measure Information Gain:

f(wi) = lnL+ wi lnwi + (1− wi) ln
1− wi
L− 1

, (5.5)

where f(wi) ∈ [0, lnL].
As we have explained, this measure is well justified by information theory and has strong

connection with the EM algorithm.
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5.4 Worker group discovery algorithms

In this section, we discuss the core algorithms in the discovery stage of the crowd targeting
framework.

As we have mentioned in Section 5.2, the problem is to automatically find groups of
workers that are more helpful on the task, which is measured by the effects proposed in
the previous section. To compute effects, we need to estimate worker accuracy wi from the
data we gathered in the probing stage. We could either leverage some ground truth data to
directly compute it, or estimate it using the EM algorithm if there is no ground truth.

In general, the goal is to partition the entire crowd into two sets of characteristic-based
worker groups and one set of groups should be better at the task than the other set. There are
two natural ways to do it, (1) Bottom-up approach: the entire crowd can be seen as having
already been partitioned into small subgroups by different levels of worker characteristics.
Then what needs to be done is to merge the small subgroups that contain good workers
into a larger target group, and therefore we call it the bottom-up approach. (2) Top-down
approach: the entire crowd can be looked as a whole at the beginning, and we need to
gradually pick different characteristics to split the crowd into subgroups, choose the best
subgroup and try to split further. In the end, we can stop and get a target group that
contains good workers.

Based on the ideas above, we designed two algorithms: the Bottom-up Discovery Algo-
rithm and the Top-down Discovery Algorithm as follows.

5.4.1 Bottom-up Discovery Algorithm

Formally, let us assume that there are M workers and their worker effects are {τ1, · · · , τM},
and there is a feature pool which contains t features (i.e., worker characteristics), denoted by
F = {F1, · · · , Ft}. For example, F could be {Education, Major, Gender}. The feature vector

of worker i is denoted as Xi = (X
(1)
i , · · · , X(t)

i ), for example it could be {College, Science,
Female}.

For analyzing the association between the worker features and the worker effect, intu-
itively we can apply the the fixed effect model (Mickey et al., 2004):

τi ∼ β0 + β1X
(1)
i + · · ·+ βtX

(t)
i + ε, ∀i ∈ [M ], (5.6)

where β = (β0, β1, · · · , βt) are coefficients and ε ∼ N (0, σ2), i.e., Gaussian noise with mean
0. Note that Xi could be categorical variables, and coded as a vector via dummy coding
(Mickey et al., 2004). In that case βi will be a vector and each element of it will be an fixed
effect coeffecient of a level of Fi.

The Bottom-up Discovery Algorithm is described in Algorithm 4. The fixed effect model
as in (5.6) is easy to fit by multiple regression after dummy coding, and many packages are
available in public software such as R1 and Matlab2. After fitting this fixed effect model

1http://www.ats.ucla.edu/stat/r/modules/dummy vars.htm
2http://www.mathworks.com/help/stats/linearmodel.fit.html
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Algorithm 4 Bottom-up Discovery Algorithm

Input: Feature pool: F = {F1, · · · , Ft}; M workers with worker effect {τ1, · · · , τM} and

their feature vectors {X1, · · · , XM} where Xi = (X
(1)
i , · · · , X(t)

i ); Accessibility parameter:
λ ∈ (0, 1);

1: Fit the fixed effect model (5.6) to learn the model parameters (β̂0, β̂1, · · · , β̂t).
2: Obtain the fitted value for each workers by
τ̂i ← β̂0 + β̂1X

(1)
i + · · ·+ β̂tX

(t)
i , ∀i ∈ [M ]

3: Rank fitted effect {τ̂i} in descending order: τ̂σ(1) ≥ τ̂σ(2) ≥ · · · ≥ τ̂σ(M), where σ is a
permutation of worker index {1, 2, · · · ,M}.

4: The threshold τ0 ← min
{
τ̂σ(i)

∣∣i ∈ [M ] and i
M
≥ λ

}
.

Output: The learned model parameter (β̂0, β̂1, · · · , β̂t) and the effect threshold τ0.

to data gathered during the probing stage, we will learn the coefficients β̂ and a threshold
τ0 on predict effect for a worker to be in the target group. For a worker with features
(X1, X2, · · · , Xt) in the targeting stage, we evaluate the effect of the subgroup he/she belongs
to with τ̂ ← β̂0 +

∑t
k=1 β̂kXk. The worker will be qualified for the task if τ̂ > τ0.

Note that the accessibility parameter λ reflects roughly how many worker in the crowd
satisfy the criterion — with predicted effect greater than τ0. It thus controls how accessible
the target group will be. For example, if λ is close to 0, then τ0 will be close to 1, thus there
might be only very few qualifying workers. In contrast, if λ is close to 1, τ0 will be small,
and most workers will qualify.

5.4.2 Top-down Discovery Algorithm

The Bottom-up Discovery Algorithm is directly solving the problem of predicting effect values
for each worker group. However, it does not consider whether each feature is significant
enough to affect worker reliability, so the fitted model may not reveal the true association
between worker features and effects. For example, if in the probing stage, there is one
attribute that only very few workers have e.g., {Education=PhD}, the bottom up approach
will still try to connect such feature to the effect, which may not be stable. Therefore,
we want to find a method that can generate more stable and interpretable results. The
Top-down Discovery Algorithm described in this section is one of such approaches.

The general idea is we should choose subgroups based on features that are significantly
associated with worker effects. ANOVA (ANalysis Of VAriance) (Stahle and Wold, 1989)
based on the fixed effect model (5.6) is an appropriate tool for testing feature significance.

One remaining issue is that when there are multiple features in F, and each feature have
multiple levels (multiple possible values), the number of workers that have the same features
might be too small, especially when M is already very small (typically 100 or 200 in real
crowd-sourcing settings). The multiple-way ANOVA will be unstable in such case. More
importantly, for achieving interpretability and reducing the risks of over-fitting, we also hope
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that output worker subgroups are not too many.
Based on the intuitions above, we propose to do one-way ANOVA sequentially on each

feature and obtain the p-value pk for Fk based on the fixed effect model:

τi ∼ β0 + β1X
(k)
i + ε, ∀i ∈ [M ], Fk ∈ F. (5.7)

Since not every feature will be strongly associated with the worker effect, we have to use a
significance threshold psig to control the significance of each test, i.e. p-value. It is common
to choose 0.10 or 0.05 as the significance threshold, and we use psig = 0.10 as default in our
method.

Similar to the Bottom-up Discovery Algorithm, we need to have a accessibility parameter
λ to ensure that the size of the target group is more than 100λ% of the crowd.

Algorithm 5 Top-down Discovery Algorithm

Input: Feature pool: F = {F1, · · · , Ft}; M workers with effect {τ1, · · · , τM} and feature

vectors {X1, · · · , XM} where Xi = (X
(1)
i , · · · , X(t)

i ); Accessibility parameter: λ ∈ (0, 1);
Significant level: psig with default value 0.1.

1: Initialization: Current feature pool Fcurrent ← F and current crowd Scurrent ← [M ];
Fout ← ∅ and Lout ← ∅.

2: repeat
3: for feature Fk in Fcurrent do
4: Computing one-way ANOVA on feature Fk with τi ∼ β0 + β1X

(k)
i + ε, and obtain

the p-value pk.
5: end for
6: k? ← arg min {pk|Fk ∈ Fcurrent}.
7: Suppose Fk? has n levels

{
L(k?)

1 , · · · ,L(k?)
n

}
, which partitions the Scurrent to

{S1, · · · , Sn}. Then ∀l ∈ [n], compute the average effect: El ← 1
|Sl|
∑

i∈Sl τi.

8: l∗ ← argmaxl∈[n] {El}, Scurrent ←
{
i
∣∣X(k)

i = L(k?)
l∗

}
.

9: if |Scurrent|
M

> λ or pk? ≤ psig then

10: Fout ← Fout ∪ {Fk?} and Lout ← Lout ∪
{
{L(k?)

l∗ }
}

.
11: Fcurrent ← Fcurrent\ {Fk?}.
12: else
13: Stop and return Fout and Lout.
14: end if
15: until Fcurrent = ∅
Output: Target feature pool Fout and feature levels Lout.

Algorithm 5 is the detailed description of the Top-down Discovery Algorithm. The gen-
eral steps include: (1) sequentially testing if features are significantly associated with worker
effects, (2) splitting the crowd using the most significant features, and (3) picking the sub-
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Sample  of crowd 

100 
1.02 

Major 
ANOVA  
P-val=0.056 

Science 
8 

1.15 

Arts 

42 
0.94 

Sample  of crowd 

100 
1.02 

Gender 
ANOVA 
P-val=0.078 

Female 
46 

1.15 

Male 

54 
0.99 Gender 

ANOVA 
P-val= 0.091 

Female 
22 

1.23 

Male 

36 
0.98 

Figure 5.3: Illustration of group discovery algorithm by a running example: suppose we have
100 workers and then only have features “Gender” and “Major”. Each circle represents a
group of workers, the integer in each circle is the number of workers in the group and the
real value is the average worker effect. Since the feature “Major” has smaller p-value than
“Gender” (more significant), the algorithm splits the crowd on “Major” and chooses the
worker group with the highest average effect: “Science”. Then it continues with the rest of
the features. In the end, the algorithm outputs Major = Science and Gender = female as
the target group.

group with highest average effect, and go to (1) to check if the group should be further
partitioned.

As an illustration, Figure 5.3 shows a running example of this algorithm. Suppose we
have hired 100 workers in the probing stage, and the feature pool we choose to run the
Top-down Discovery Algorithm is F ={Major, Gender}, and the feature “Major” has two
levels {“Science”, “Arts”}. We choose the accessibility parameter λ = 0.20 and the default
significance threshold psig = 0.10. We first conduct one-way ANOVA test on both of the
features, and find that “Major” has the lower p-value 0.056, which is significant. Then we
choose the level “Science” to be the current target crowd. By testing feature “Gender”
again, we find it is still significant, then we further split the target crowd and reach {Major
= Science, Gender = Female}. If the size of this target group is larger than 100 · λ = 20,
then we directly output the group. Otherwise, we just output the parent group {Major =
Science}.

Feature merging step

One practical issue in the Top-down Discovery Algorithm is that for some characteristics
of workers, such as major or nationality, there might be too many levels. Therefore, the
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number of workers in each level could be too small, which could be a serious issue for the
Top-down Discovery Algorithm since the algorithm may potentially partition the crowd into
too small sets, which will easily violate the accessibility criterion (controlled by parameter λ
in Algorithm 5).

To solve this problem, in this section we propose an algorithm called the feature merging
algorithm, which tries to merge multilevel features into bi-level for maintaining accessibility
and high reliability of workers.

Algorithm 6 Feature Merging

Input: Feature F which has K levels {L1,L2, · · · ,LK}; M hired workers with worker effect
{τ1, · · · , τM} and their feature values {X1, · · · , XM} ⊂ F ;

1: if K ≤ 2 then
2: F ∗ ← F and no need to merge its levels.
3: else
4: for k from 1 to K do
5: Sk ←

{
i ∈ [M ]

∣∣Xi = Lk
}

6: Ek ← 1
|Sk|
∑

i∈Sk τi
7: end for
8: Ranking {Ek} to obtain the order σ such that Eσ(1) ≥ Eσ(2) ≥ · · · ≥ Eσ(K).
9: k∗ ← max

{
k
∣∣∑

1≤i≤k−1 Sσ(i) <
M
2
,
∑

1≤i≤k Sσ(i) ≥ M
2

}
.

10: k∗ ← min {k∗, K − 1} for avoiding combine all levels.
11: L′1 ← Lσ(1) ∪ · · · ∪ Lσ(k∗), L′2 ← F\L′1, and F ∗ ← {L′1,L′2}.
12: end if

Output: Feature F ∗ which has at most two levels {L′1,L′2}

Algorithm 6 presents the details for merging multi-level features. The major idea of this
algorithm is that: (1) Partitioning the M workers from the probing stage into subgroups by
feature F . (2) Ranking the mean effect of subgroups in descending order. (3) Combining
the levels in the sorted order into one target level until the size of the combined group is
larger than half, i.e. M

2
.

Figure 5.4 illustrate the idea of Algorithm 6 with a running example. Suppose we have 100
workers in the probing stage and the feature “Major” has 4 levels {Art, Business, Science,
Engineering}. We first compute the average worker effect of the workers in each major,
then rank them from high to low. After combing major levels from the higher effect to the
lower one until the number of workers in the group is above 50 (i.e., half of the crowd),
“Science/Engineering” is a new level, and “Business/Arts” is another new level.

Note that in practice, we will apply feature merging first before applying the Top-down
Discovery Algorithm.
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Art. Bus. Sci. Eng. 

Effect 0.9 1.0 1.2 1.1 

Popul. 25 17 30 28 

Sci. Eng. Bus. Art. 

Effect 1.2 1.1 1.0 0.9 

Popul. 30 28 17 25 

Science/Engineering Business/Arts 

Effect 1.15 0.94 

Popul. 58 42 

(1) 

(2) 

(3) 

Figure 5.4: A running example of the feature merging algorithm: (1) suppose we have
100 workers, and the feature “Major” contains 4 levels. “Popul.” represents the number of
workers in each major. (2) Combing majors with higher average effect until the number of
workers in the combined group is above 50 (half of the crowd). (3) “Science/Engineering”
is a new level, and “Business/Arts” is another new level.

5.5 Experiments

5.5.1 Setup

We performed our experiments on Microsoft Universal Human Relevance (UHRS) system,
which is the default crowdsourcing platform in Microsoft that handles numerous labeling
tasks from various teams. Workers on UHRS are mainly from external vendor crowdsourcing
companies, and task owners can choose vendors for their tasks. In our experiments, we used
ClickWorker.com.

Knowledge test data

In the first experiment, we would like to test on a domain where we think worker reliability is
very likely to be related to worker demographics, and verify if the crowd-targeting framework
is effective on such domain. This dataset consists of 75 knowledge based questions from
allthetests.com with ground truth. All these questions have 4 options, and workers on the
crowdsourcing platform are asked to answer each question by choosing one of the options
based on the best of their knowledge. Topics among the questions cover science, math,
common knowledge, sports, geography, U.S. history and politics and India, etc.

A typical example of knowledge test question could be as follows: (Question) In what year
was the Internet created? (Options) A. 1951; B. 1969; C. 1985; D. 1993. Apparently, this
question will be easier if the worker knows the answer, or has certain background knowledge
or logical inference skills to exclude some obviously wrong options.

Normally, aggregating the answers from 10 to 20 workers for a question is good enough
empirically (Snow et al., 2008). However, we want to investigate how the performance of
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aggregation algorithms such as majority voting or EM increases w.r.t. the number of answers
provided for each question. Therefore, we required each worker to finish all the questions.
We distributed the tasks on UHRS and set the number of workers needed to 100, and the
price was $1.5 for finishing all the questions.

It is worth mentioning that on this data, where every question is labeled by all the
workers, majority voting achieves accuracy 80%, and EM algorithm achieves 81.33%.

Disambiguation data

In the second experiment, we deployed a real world labeling task, which is needed for gath-
ering training data for actual product development. The task is that given a highlighted
entity in a sentence, the workers should identify which Wikipedia page the entity actually
refers to.

Figure 5.5 shows a typical example of this task. The word “runtime” has different mean-
ings in different contexts. In this question, the correct answer is the second option.

Figure 5.5: A typical example of disambiguation questions. The word “runtime” has different
meanings, and the task is to identify which Wikipedia page it actually refers to in this
sentence. The correct answer is the second option.

We collected 50 of such questions in the technology domain with ground truth available,
and each question has 4 options. Then we randomly partitioned them into two even sets,
which we call disambiguation data part 1 and part 2.

The two parts of the questions were distributed to the crowdsourcing platform in different
time to simulate the probing stage and the targeting stage, since the participating workers
will not be the same. In the experiments, we will try to discover good worker groups on
one part and apply targeting on the other to test the effectiveness of the crowd targeting
framework.

Brief statistics on the disambiguation data is presented in Figure 5.6. Part one has 144
workers and part two has 133. We can compute the “true” accuracy of each worker using the
ground truth: the average worker accuracy is 55.9% on part 1 and 57.2% on part 2, which is
fairly low meaning the task is quite difficult. Majority voting and EM have reasonably good
accuracy, but note that it is achieved by running against all the labels in each dataset.
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Crowd Statistics Dataset 1 Dataset 2 

Crowd size 144 133 

Average accuracy 0.559 0.572 

Majority voting acc. 84% 80% 

EM accuracy on all 88% 84% 

Figure 5.6: A brief summary statistics of the disambiguation dataset. The performance of
both MV and EM are based on all the labels in each dataset.
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Figure 5.7: Knowledge test data. (a) Comparing majority voting, EM without targeting, and
EM with Bottom-up Discovery Algorithm and Top-down Discovery Algorithm respectively.
(b) Plotting the frequency of significant features output by Top-down Discovery Algorithm.
(c) The frequency plot of top features in “Major”.

Recognizing textual entailment data

This data is sampled from the well known public crowdsourcing dataset by Snow et al. (Snow
et al., 2008). For each question, a worker is presented with two sentences and a binary choice
of whether the second sentence can be inferred from the first. As a typical example given in
(Snow et al., 2008), the sentence “Oil prices drop” would constitute a true entailment from
the text “Crude Oil Prices Slump”, but a false entailment from “The government announced
last week that it plans to raise oil prices”.

From the original RTE dataset, we randomly select 60 questions when the majority
answered wrong or there is a tie. Meanwhile, we randomly choose 20 questions from the
ones that the majority answer correctly. By randomly dividing these 80 questions into two
even parts, we have RTE dataset part 1 and part 2. The two parts are posted on UHRS in
different time and we asked workers to finish all the questions and paid them $1.5.
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5.5.2 Experimental results

In the experiments, the estimated worker accuracy is transformed into the worker effect
based on Information Gain defined in (5.5). Worker characteristic information is collected
before the worker answers any regular questions. We investigated which group will be more
suitable for the task by Top-down Discovery Algorithm after merging the multi-level features
to bi-level by Algorithm 6. We also apply the Bottom-up Discovery Algorithm to learn the
fixed effect model and effect threshold τ0 without merging the feature.

Results on knowledge test data

In this experiment, we randomly sample 5 out of 75 questions as the questions used in
the probing stage. We estimate the worker accuracy by comparing the answers of these 5
questions from each worker against the ground truth, and then run worker group discovery
to get the targeted worker groups.

For the rest of the questions (excluding the 5 exam questions), we basically simulate the
targeting stage by randomly sampling k workers from the targeted groups for each question,
and then we run the EM algorithm on the answers provided by the selected workers. We
call this EM with targeting.

As a comparison, we also run EM and MV on the entire crowd (without targeting at any
specific group of workers) by random sampling k answers for each question from the entire
data.

Figure 5.7(a) shows the comparison. We can see generally the performance of EM with
targeting is dominating the results of EM and MV without targeting. This indicates that the
data quality is significantly improved by our crowd-targeting framework since we compare
exactly the same EM algorithm on the data collected from two different ways — one is only
from the targeted group discovered in the probing stage, another is from the general crowd.

Another question we are also interested in is that what features (i.e., worker character-
istics) are the most important ones that distinguish the “good” group of workers from the
general crowd. To address this question, we plot the frequency of each feature selected by
the Top-down Discovery Algorithm. We can get the frequency since we repeat all our ex-
periments for multiple times and the reported results are the ones averaged across multiple
runs.

Figure 5.7 (b) and (c) visualized the frequencies of the features selected for identifying
targeted groups. Apparently, “Major” is the most important feature, and “Other majors”
and “Science” are the two top majors. Note that “Other major” represent all majors except
“Science”, “Engineering”, “Literature” and “Arts”.

Results on Disambiguation data

In this experiment, we randomly divided the question set into to two parts, which we called
Disambiguation dataset part 1 and part 2 respectively as we have discribed in Section 5.5.1.
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Figure 5.8: Disambiguation dataset. (a) Comparing majority voting, EM without targeting,
and EM with targeting. We randomly sample 5 questions as “Exam” questions to workers,
and tested on the rest questions in this part of data. (b) The top two targeted features and
their frequency of been targeted. (c) The top two levels of the feature “Major” and their
frequencies.

First, we conducted experiments on the same part of the disambiguation data. For each k,
which is the number of labels (or workers) sampled for each question, we randomly sample
5 questions and used them as “exam” questions in the probing stage. We estimated the
worker reliability wi by comparing the sampled labels from worker i to the answers of the
5 questions which we know the ground truth. After that, we applied the crowd targeting
framework by running Bottom-up Discovery Algorithm or Top-down Discovery Algorithm.

Figure 5.8(a) shows the comparison of different methods on the Disambiguation dataset
1. We get similar results on part 2, so we omit them due to limited space.

In the results, we refer the “Top-down Discovery” as running EM with targeting crowd
learned from Top-down Discovery Algorithm, and “Bottom-up Discovery’ as from Bottom-
up Discovery Algorithm. “EM general” is running EM without targeting any specific groups,
and majority voting is also running on general crowd.

“Subset labels” refers the subset of labels used in “EM general”. It is selected in this
way: after sampling k workers from the general crowd for each question, we have a fixed
label matrix Z which is used in “EM general”, then we subset the rows of Z corresponding
to the workers in the targeted crowd from Top-down Discovery Algorithm. This will lead to
a label matrix Zsub. The curve corresponding to the results we run EM on Zsub.

The “Crowd qualified” refers to the scenario where we use the 5 questions with ground
truth as qualification tests and only allow workers who achieve a certain accuracy to perform
the task. No worker characteristics are being used for targeting.

What we can observe from Figure 5.8(a) is that the performance of “EM general” is
better than that of majority voting, but worse than that of “Crowd qualified”. And EM
on the targeted crowd from both Top-down Discovery and Bottom-up Discovery performs
better than all the others. One interesting phenomenon we can see from the figure is about
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Figure 5.9: (a),(b) and (c) is on Disambiguation data, and (d) is on RTE data: comparing
EM on general crowd and target crowd with majority voting. Use Disambiguation data part
1 for learning in probing stage, and tested on data part 2. (a) With ground truth labels:
evaluate workers by comparing with the ground truth labels of 5 randomly drawn “exam”
questions (b) Without ground truth labels: draw k items in dataset part 1 and inference the
worker effect without ground truth labels. Discover groups based estimated worker effects.
(c) Compare three effect types by running Top-down Discovery Algorithm without ground
truth labels on Disambiguation dataset. (d) RTE dataset, learning without ground truth
and using same setting as (b).

comparing “EM general” with “Subset labels”. Since both of them are running the same
algorithm – EM, but the latter use only a subset data of the previous one. When k is small,
the subset data will contains much less “useful” information than the data used by “EM
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general”, so the performance of EM on “Subset labels” is much less than “EM general”.
However, when k increases to a certain level, using the subset data will even be better than
using more data. This could be due to the Signal-Noise-Ratio is much higher in the data
provided by targeted crowd than that by general crowd. This is the essential philosophy of
“the wisdom of the minority”.

Figure 5.8(b)&(c) shows the frequency plot as explained in Figure 5.7. For the disam-
biguation dataset, the most important feature is major, and the target group concentrated
on the workers who majored in “Science” and “Engineering”.

Since having seen promising results of utilizing crowd-targeting with the “Exam” ques-
tions and testing on the rest of the questions from the same dataset, we want to know if the
similar results hold when we do crowd-targeting on one crowd and question set, then test on a
different crowd and question set. Figure 5.9(a) shows the results when we randomly choose 5
questions which we know the ground truth from dataset part 1, conduct the crowd-targeting,
and then test on the dataset part 2 which is collected form a different crowd and question
pool. The EM algorithm with both Bottom-up Discovery and Top-down Discovery perform
better than that with data collected from the general crowd. The frequency plot based on
the output from Top-down Discovery Algorithm are very similar to Figure 5.8 (b)&(c). We
omit them here for saving space.

Next, what should we do if there is no ground truth answers available? Can the crowd-
targeting framework still be applied? In the next experiment, we randomly sample k workers
for each question in Disambiguation dataset 1, then infer the true labels and the worker
accuracy by EM algorithm without any ground truth labels. After obtaining the estimated
worker accuracy, we apply the both Bottom-up Discovery Algorithm and Top-down Discovery
Algorithm to the workers in dataset part 1. On the test stage, we also randomly sampled k
workers for each question in dataset part 2 from the target group, run EM algorithm, and
then compare with running EM on the data sampled from general crowd. The results are
shown in figure 5.9(b). What we can see from these two figures is basically the same with
the previous results (targeting crowd with several ground truth labels). The only difference
is that the performance of the EM algorithm drop slightly. The features selected by the
Top-down Discovery Algorithm is almost the same as what is shown in Figure 5.8(b)&(c).

In the last experiments on this dataset, we compare the different effects — Information
Gain, accuracy and logistic as discussed in Section 5.3. The results is shown in Figure 5.9(c).
The likelihood contribution performs the best but not significantly better than the other two.
This is because when a workers is better than random guessing, this three effect measures
will be highly correlated.

Results on RTE data

We repeated the similar experiments on RTE dataset and obtained similar results — the
performance of the EM algorithm on the data collected from the target group, discovered
by both Top-down Discovery Algorithm and Bottom-up Discovery Algorithm, are better
than the EM algorithm on the data collected without crowd targeting. Note that in RTE
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data L = 2 and crowd size are smaller than the previous two datasets. We run worker
group discovery algorithms on RTE dataset 1 without ground truth labels as the same as
5.9(b), and test on RTE dataset 2. The Top-down Discovery Algorithm performs better
than Bottom-up Discovery Algorithm t from the experimental results on the RTE data.

5.6 Related work

In recent years, many works have been done on improving data quality for crowdsourcing.
A lot of them focused on the joint inference of true labels of items and worker reliability
after data are collected (Dawid and Skene, 1979, Whitehill et al., 2009, Ipeirotis et al., 2010,
Raykar et al., 2010, Welinder et al., 2010, Karger et al., 2011a, Bachrach et al., 2012, Liu
et al., 2012, Zhou et al., 2012). These methods are generally post-processing methods, so
they cannot be easily used during task assignment to improve data quality. Our proposed
crowd targeting framework is complementary with these methods, and they can be used in
our framework to estimate worker quality when ground truth is not available, as shown in
the experiments.

Some recent work started to investigate quality and budget optimization techniques that
can be more tightly integrated with task assignment (Yan et al., 2011, Ertekin et al., 2012,
Karger et al., 2011b, Pfeiffer et al., 2012, Chen et al., 2013, Ho et al., 2013). However, these
methods often implicitly assume that task owners have full control of the crowdsourcing
system so that when they need a specific worker to label an item, this worker will be available
and willing to complete the task, which may not be a very practical assumption in most of
the current crowdsourcing platforms. In our crowd targeting framework, we only target on
high quality worker groups instead of individual workers, and therefore the availability of
workers is more likely to be guaranteed.

Quite a few works focused on worker characteristics in crowdsourcing. (Ipeirotis, 2010a,
Ross et al., 2010) provided detailed analysis of demographic distribution of workers on Ama-
zon Mechanic Turk. (Schmidt, 2010) proposed to collected demographic information for
human subject research so that researchers can know better who are participating in the
studies. Recently, Kazai et al. (Kazai et al., 2012, 2013) performed some empirical stud-
ies on how worker reliability fluctuates cross different worker demographic groups for some
relevance assessment tasks.

To the best of our knowledge, there are no previous works that try to utilize worker
characteristics to improve data quality and budget efficiency for crowdsourcing, which is the
main contribution of this chapter.

5.7 Discussion

The Crowd Targeting framework can be applied to many tasks as long as we can measure the
worker effect. It is also useful in practice since it can be implemented in the current crowd-



80

sourcing platform without too much effort. However, there might be some concerns that task
owners might have, such as the question — what should we do if some characteristics are too
sensitive to us? For example, the task owners might do not want to identify gender for this
task. What he/she could do is simply not include the feature in the candidate feature pool,
thus the algorithms will not take this feature into account. Note that even the Top-down
Discovery Algorithm outputs “gender as female as an important feature of workers to be in
the target group, this does not imply that for all type of tasks, female workers in the crowd
will be suitable. The target crowd is very much task-dependent. Therefore, this framework
has no bias to any worker groups in general.

5.8 Conclusions

As a summary for this chapter, we proposed a Crowd Targeting framework for automatically
discovering and targeting the specific sub-crowd to improve data quality in the data collection
process. The targeted crowd is defined by the worker characteristics such as nationality,
education level, gender and major etc., or even personality test score and any other screening
measures. Meanwhile, we proposed a new measure, named Information Gain, to be the
worker effect, which reflects how “strong” a worker is. With fixed effect model, we can study
what kind of worker characteristics are associated with the good quality of the data collected
from the workers with these characteristics.

For demonstrating the effectiveness of the framework, we designed two major algorithms
– Bottom-up Discovery Algorithm and Top-down Discovery Algorithm– to learn a target
crowd with the worker characteristics in the probing stage. Experimental results on the real
data have confirmed that by deploying this framework, the performance of the prediction
by the same algorithm such as the EM algorithm, which is prominent and widely used in
crowdsourcing community, is significantly improved.

As a future direction, one can explore the optimal strategy of implementing Crowd Tar-
geting framework such as figuring it out the optimal number of ground truth answers in
the probing stage, and consider this problem under the budget constraint setting. An-
other problem is that without any ground truth but with finite budget and finite number of
tasks/questions, how we can divide the task/question set into two parts, put one of them in
probing stage and another one in the test stage, for achieving the best possible performance.
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Appendix A

Proofs for Chapter 2

Since the proof of Theorem 2.1 requires other theorems in this paper, we will not present the
proofs in the same order as in the paper. The order of our proofs will be: Proposition A.1,
Theorem 2.3, Theorem 2.1 and then Theorem 2.2. After proving the first four main results,
we also prove Corollary 2.8.

Before presenting the proofs, we would like to propose some notations for simplicity and
clarity.

We simplify fi(k, h) to

µ
(i)
kh

.
= fi(k, h), ∀k ∈ [L], h ∈ [L], (A.1)

then each worker is associated with a vote matrix µ(i) = (µ
(i)
kh), k ∈ [L], h ∈ [L], where µ

(i)
kh is

the voting score when worker i labels item j whose true label is k, as class h if h 6= 0. Then
the aggregation rule (2.9) is equivalent to

ŷj = argmax
k∈[L]

(
M∑
i=1

L∑
h=1

µ
(i)
khI (Zij = h) + ak

)
, (A.2)

Note that

s
(j)
k =

M∑
i=1

L∑
h=1

µ
(i)
khI (Zij = h) + ak, ∀k ∈ [L], j ∈ [N ] (A.3)

is the aggregated score of label class k on the jth item, and the general aggregation rule is

ŷj = argmax
k∈[L]

s
(j)
k . (A.4)

We will frequently discuss conditional probability, expectation and variance conditioned
on the event {yj = k}. For simplicity of notations, we define:

Pk ( · )
.
= P( · |yj = k) (A.5)

Ek [ · ]
.
= E[ · |yj = k] (A.6)

Vark ( · )
.
= Var( · |yj = k). (A.7)
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Note that

Ek
[
s

(j)
l

]
=

M∑
i=1

L∑
h=1

qijµ
(i)
lh p

(i)
kh + al, ∀l, k ∈ [L]. (A.8)

A.1 Proposition A.1 and its proof

Proposition A.1. (Bounding the mean error rate of labeling each item) Following
the setting of Theorem 2.1, and with τj,min and τj,max defined as in (2.14) , we have ∀j ∈ [N ],

(1) if τj,min ≥ 0, then P(ŷj 6= yj) ≤ (L− 1) ·min
{

exp
(
− τ2j,min

2

)
, exp

(
− τ2j,min

2(σ2+cτj,min/3)

)}
;

(2) if τj,max ≤ 0, then P(ŷj 6= yj) ≥ 1−min
{

exp
(
− τ2j,max

2

)
, exp

(
− τ2j,max

2(σ2−cτj,max/3)

)}
.

Remark: Proposition A.1 provides the mean error rate bounds of labeling any specific

item, and the bounds depend on the minimum and maximum values of
{

Λ
(j)
kl

}
k,l∈[L]

. Note

that the subscript j only comes from the assignment distribution qij. If a specific worker has
the same assignment probability to label all items, say qi, then we can drop the subscript
j from τj,min and τj,max, which means the error rate bounds of each item are eventually the
same under that task assignment.

Proof. First of all, we expand the error probability of labeling the j-th item wrong in terms
of the conditional probabilities:

P(ŷj 6= yj) =
∑
k∈[L]

P(yj = k)P(ŷj 6= k|yj = k) =
∑
k∈[L]

πkPk (ŷj 6= k) . (A.9)

Our major focus in this proof is to bound the term Pk (ŷj 6= k). Our approach will be
based on the following events relations:⋃

l∈[L],l 6=k

{
s

(j)
l > s

(j)
k

}
⊆ {ŷj 6= k} ⊆

⋃
l∈[L],l 6=k

{
s

(j)
l ≥ s

(j)
k

}
. (A.10)

(1). Assuming τj,min ≥ 0, we want to show the lower bound for P(ŷj 6= yj). Note that

Pk (ŷj 6= k) ≤ Pk

 ⋃
l∈[L],l 6=k

{
s

(j)
l ≥ s

(j)
k

} ≤ ∑
l∈[L],l 6=k

Pk
(
s

(j)
l ≥ s

(j)
k

)
. (A.11)

With s
(j)
l defined as in (A.3), Λ

(j)
kl defined as in (2.13) and

ξ
(i)
kl

.
=

L∑
h=1

(µ
(i)
lh − µ

(i)
kh)I (Zij = h) , (A.12)

Ek
[
ξ

(i)
kl

]
=

L∑
h=1

qij

(
µ

(i)
lh − µ

(i)
kh

)
p

(i)
kh, (A.13)
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we have

Pk
(
s

(j)
l ≥ s

(j)
k

)
= Pk

(
M∑
i=1

L∑
h=1

(
µ

(i)
lh − µ

(i)
kh

)
I (Zij = h) ≥ ak − al

)

= Pk

(
M∑
i=1

ξ
(i)
kl ≥ ak − al

)

= Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ (ak − al)−

M∑
i=1

Ek
[
ξ

(i)
kl

])
,

= Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ Λ

(j)
kl

)
(A.14)

Note that
{
ξ

(i)
kl

}
i∈[M ]

are conditionally independent when given {yj = k}, and they are

bounded given the voting weights
{
µ

(i)
kh

}
are bounded. Therefore, we can apply the Hoeffding

concentration inequality (Hoeffding, 1956) to further bound Pk
(
s

(j)
l ≥ s

(j)
k

)
.

We have that minl,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}
≤ ξ

(i)
kl ≤ maxl,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}
, and

M∑
i=1

[
max

l,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}
− min

l,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}]2

≤
M∑
i=1

(
2 max
l,k,h∈[L],k 6=l

|µ(i)
lh − µ

(i)
kh|
)2

= 4Γ2

When Λ
(j)
kl ≥ τj,min · Γ ≥ 0, by applying the Hoeffding inequality to (A.14), we have

Pk
(
s

(j)
l ≥ s

(j)
k

)
≤ Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ Λ

(j)
kl

)

≤ exp

− 2Λ
(j)
kl

2

∑M
i=1

[
maxl,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}
−minl,k,h∈[L],k 6=l

{
µ

(i)
lh − µ

(i)
kh

}]2


≤ exp

(
−Λ

(j)
kl

2

2Γ2

)
(because of (A.15))

≤ exp

(
−
τ 2
j,min

2

)
. (based on the definition of τj,min))

The right hand side of the last inequality does not depend on k, l or i, then

Pk (ŷj 6= k) ≤
∑

l∈[L],l 6=k

Pk
(
s

(j)
l ≥ s

(j)
k

)
≤ (L− 1) exp

(
−
τ 2
j,min

2

)
. (A.15)
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Because the RHS does not depend on k, we have

P(ŷj 6= yj) =
∑
k∈[L]

πkPk (ŷj 6= k)

≤ (L− 1) exp

(
−
τ 2
j,min

2

)∑
k∈[L]

πk


= (L− 1) exp

(
−
τ 2
j,min

2

)
(A.16)

The Hoeffding inequality does not take the variance information of the independent random
variables into account, thus a “stronger” concentration inequality can be applied when the
fluctuation of ξ

(i)
kl is available.

Note the definition of c and σ2 are defined as

c =
1

Γ
· max
i∈[M ],k,l,h∈[L],k 6=l

|µ(i)
kh − µ

(i)
lh |,

σ2 =
1

Γ2
·max
j∈[N ]

max
k,l∈[L],k 6=l

M∑
i=1

L∑
h=1

qij

(
µ

(i)
kh − µ

(i)
lh

)2

p
(i)
kh.

The sum of the second moment of ξ
(i)
kl can be bounded as

M∑
i=1

Ek
[(
ξ

(i)
kl

)2
]

=
M∑
i=1

Ek

( L∑
h=1

(µ
(i)
lh − µ

(i)
kh)I (Zij = h)

)2
 =

M∑
i=1

L∑
h=1

qij

(
µ

(i)
kh − µ

(i)
lh

)2

p
(i)
kh ≤ σ2Γ2.

ξ
(i)
kl can be bounded as |ξ(i)

kl | ≤ maxi∈[M ],h∈[L] |µ(i)
lh − µ

(i)
kh| = cΓ.

By applying the Bernstein-type concentration inequality (Chung and Lu, 2010), Theorem

2.8) with that Λ
(j)
kl ≥ τj,minΓ ≥ 0,

Pk
(
s

(j)
l ≥ s

(j)
k

)
≤ Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ Λ

(j)
kl

)

≤ exp

− Λ
(j)
kl

2

2
(
σ2 + cΓΛ

(j)
kl /3

)
 ,

≤ exp

(
−

τ 2
j,min

2 (σ2 + cτj,min/3)

)
(because

Λ
(j)
kl

Γ
≥ τj,min ≥ 0), (A.17)

where the RHS does not depend on k, l. Then, we have

Pk (ŷj 6= k) ≤ (L− 1) exp

(
−

τ 2
j,min

2 (σ2 + cτj,min/3)

)
.
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Furthermore,

P(ŷj 6= yj) =
∑
k∈[L]

πkPk (ŷj 6= k) ≤ (L− 1) exp

(
−

τ 2
j,min

2 (σ2 + cτj,min/3)

)
. (A.18)

Combining inequalities (A.16) and (A.18) together, we can get the desired result in
Proposition A.1.(1).

(2). Assuming that τj,max ≤ 0, we want to show the upper bound for P(ŷj 6= yj).
Using the same argument as in (1), we provide a lower bound for Pk (ŷj 6= k).

Pk (ŷj 6= k) ≥ Pk

 ⋃
l∈[L],l 6=k

{
s

(j)
l > s

(j)
k

} ≥ max
l∈[L],l 6=k

Pk
(
s

(j)
l > s

(j)
k

)
= 1− min

l∈[L],l 6=k
Pk
(
s

(j)
l ≤ s

(j)
k

)
Given Λ

(j)
kl ≤ τj,max · Γ ≤ 0, by applying the Hoeffding and the Bernstein inequality as in

(1), we can obtain Pk
(
s

(j)
l ≤ s

(j)
k

)
≤ exp

(
−Λ

(j)
kl

2

2Γ2

)
≤ exp

(
− τ2j,max

2

)
, and Pk

(
s

(j)
l ≤ s

(j)
k

)
≤

exp

(
− Λ

(j)
kl

2

2(σ2Γ2−cΓΛ
(j)
kl )

)
≤ exp

(
− τ2j,max

2(σ2−cτj,max)

)
. Since the RHS of the two inequalities do not

depend on k or l, Pk (ŷj 6= k) ≥ 1−min
{

exp
(
− τ2j,max

2

)
, exp

(
− τ2j,max

2(σ2−cτj,max)

)}
.

With (A.9), we have P (ŷj 6= yj) ≥ 1−min
{

exp
(
− τ2j,max

2

)
, exp

(
− τ2j,max

2(σ2−cτj,max)

)}
.

A.2 Proof of Theorem 2.3

Proof. Given σ2 ≥ 0 and c > 0, both functions exp
(
− t2

2

)
and exp

(
− t2

2(σ2+ct/3)

)
are

monotonely increasing on t ∈ [0,∞). On the other hand, both functions exp
(
− t2

2

)
and

exp
(
− t2

2(σ2−ct/3)

)
are monotonely decreasing on t ∈ (−∞, 0].

Given t1 ≥ 0, then τj,min ≥ t1 ≥ 0. By Proposition A.1,

1

N

N∑
j=1

P (ŷj 6= yj) ≤
1

N

N∑
j=1

(L− 1) min

{
exp

(
−
τ 2
j,min

2

)
, exp

(
−

τ 2
j,min

2 (σ2 + cτj,min/3)

)}

≤ L− 1

N

N∑
j=1

min

{
exp

(
−t

2
1

2

)
, exp

(
− t21

2 (σ2 + t1/3)

)}
= (L− 1) min

{
exp

(
−t

2
1

2

)
, exp

(
− t21

2 (σ2 + t1/3)

)}
.
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Thus, we have proved Theorem 2.3.(1).
With the same argument, we can straightforwardly prove Theorem 2.3.(2).

A.3 Proof of Theorem 2.1

So far, we have bounded the mean error rate, but we still need more tools for bounding the
error rate in the practical case with high probability. The following lemma is another form
of the Bernstein-Chernoff-Hoeffding theorem (Ngo, 2011).

Lemma A.2. (Bernstein-Chernoff-Hoeffding) Let ξi ∈ [0, 1] be independent random
variables where Eξi = pi, i ∈ [n]. Let ξ̄ = 1

n

∑n
i=1 ξi and p̄ = 1

n

∑n
i=1 pi. Then,

(1) for any m such that p̄ ≤ m
n
< 1, P

(
ξ̄ > m/n

)
≤ e−nD(m/n||p̄),

(2) for any m such that 0 < m
n
≤ p̄, P

(
ξ̄ < m/n

)
≤ e−nD(m/n||p̄).

The proof of Theorem 2.1 is as follows:

Proof. (Theorem 2.1)
Proof of Theorem 2.1 (1) Let µ = 1

N

∑N
j=1 P (ŷj 6= yj). By Theorem 2.3.(1), we

have that µ ≤ (L − 1)e−t
2
1/2 = (L − 1)φ(t1). Assume t1 ≥

√
2 ln L−1

ε
, then we can get

(L− 1)φ(t1) ≤ ε, which gives us 0 ≤ µ ≤ (L− 1)φ(t1) ≤ ε. Then by the Bernstein-Chernoff-

Hoeffding Theorem, i.e. Lemma A.2, we get P
(

1
N

∑N
j=1 I (ŷj 6= yj) > ε

)
≤ e−ND(ε||µ) ≤

e−ND(ε||(L−1)φ(t1)). Therefore, we have

P

(
1

N

N∑
j=1

I (ŷj 6= yj) ≤ ε

)
≥ 1− e−ND(ε||(L−1)φ(t1)).

Proof of Theorem 2.1 (2) With the same argument as above, assuming t2 ≤
−
√

2 ln 1
1−ε , then 1 ≥ µ ≥ 1− φ(t2) ≥ ε, which gives us

P

(
1

N

N∑
j=1

I (ŷj 6= yj) ≥ ε

)
≥ 1− e−ND(ε||1−φ(t2)).

Thus, we have proved Theorem 2.1.

A.4 Proof of Theorem 2.2

Before proving Theorem 2.2, we are going to prove an important lemma for bounding the
average of a group of independent Bernoulli random variables. The proof of this lemma relies
on Hoeffding bounds and the Bernstein-Chernoff-Hoeffding theorem (Ngo, 2011).
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Lemma A.3. Suppose ∀j ∈ [N ], ξj ∼ Bernoulli(pj) with pj ∈ (0, 1), and ξj’s are independent

of each other. Let ξ̄ = 1
N

∑N
j=1 ξj and p̄ = Eξ̄ = 1

N

∑N
j=1 pj Given any ε, δ ∈ (0, 1):

(1) If 0 < p̄ ≤ 1

1+exp( 1
ε [He(ε)+

1
N

ln 1
δ ])
, then P(ξ̄ ≤ ε) ≥ 1− δ.

(2) If 1

1+exp(− 1
1−ε(He(ε)+

1
N

ln 1
δ ))
≤ p̄ < 1, then P(ξ̄ ≤ ε) < δ.

Proof. For simplicity let’s define A =
(
He(ε) + 1

N
ln 1

δ

)
The proof of Lemma A.3.(1): We will finish the proof in several steps:

Assume 0 < p̄ ≤ 1

1+exp( 1
ε [He(ε)+

1
N

ln 1
δ ])

.

Step 1. we want to show p̄ < ε :

exp

(
A

ε

)
= exp

(
ε ln 1

ε
+ (1− ε) ln 1

1−ε + 1
N

ln 1
δ

ε

)

= exp

(
ln

1

ε
+

1− ε
ε

ln
1

1− ε
+

1

Nε
ln

1

δ

)
> exp

(
ln

1

ε

)
(because ε, δ ∈ (0, 1), N > 0)

=
1

ε

=⇒ 1 + exp
(
A
ε

)
> 1

ε
=⇒ 1

1+exp(Aε )
< ε .

Since 0 < p̄ ≤ 1
1+exp(A/ε)

, then we have p̄ < ε .

Step 2. We want to show P
(
ξ̄ ≤ ε

)
≥ 1− e−N ·D(ε||p̄) :

This is obtained by the Bernstein-Chernoff-Hoeffding Theorem ((Ngo, 2011, McDiarmid,
1998)), which leads to:

If 0 < p̄ ≤ ε, then P(ξ̄ ≤ ε) ≤ 1− e−ND(ε||p̄) (A.19)

If ε ≤ p̄ < 1, then P(ξ̄ ≤ ε) ≤ e−ND(ε||p̄) (A.20)

Since we have shown in step 1 that p̄ < ε, then we can get the desired result in this step
easily.

Step 3. We want to show e−ND(ε||p̄) ≤ δ :
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Note:

e−ND(ε||p̄) ≤ δ

⇐⇒ D(ε||p̄) ≥ 1

N
ln

1

δ

⇐⇒ ln
εε(1− ε)1−ε

p̄ε(1− p̄)1−ε ≥ ln

(
1

δ

) 1
N

⇐⇒ p̄ε(1− p̄)1−ε ≤ exp

(
−
(
He(ε) +

1

N
ln

1

δ

))
= e−A (A.21)

From the condition we have,

p̄ ≤ 1

1 + exp(A/ε)
=⇒

(
p̄

1− p̄

)ε
≤ e−A

Note that p̄ε(1− p̄)1−ε =
(

p̄
1−p̄

)ε
(1− p̄) <

(
p̄

1−p̄

)ε
(because 1− p̄ < 1)

=⇒ Inequality (A.21) holds: p̄ε(1− p̄)1−ε ≤ e−A =⇒ e−ND(ε||p̄) ≤ δ
By step 2 and step 3, we can easily get that if p̄ ≤ 1

1+eA/ε
, then P(ξ̄ ≤ ε) ≥ 1− δ, which

is the results we want.

The proof of Lemma A.3.(2): We will also finish the proof in several steps:
Assume

1

1 + exp
(
− 1

1−ε

(
He(ε) + 1

N
ln 1

δ

)) ≤ p̄ < 1

Step 1. We want to show p̄ > ε
We show it by proving as follows:

1

1 + exp
(
− 1

1−ε

(
He(ε) + 1

N
ln 1

δ

)) > ε

⇐⇒ 1 + exp

(
− 1

1− ε

(
He(ε) +

1

N
ln

1

δ

))
<

1

ε

⇐⇒
(
He(ε) +

1

N
ln

1

δ

)
> (1− ε) ln

ε

1− ε

⇐⇒ ε ln
1

ε
+ (1− ε) ln

1

1− ε
+

1

N
ln

1

δ
> (1− ε) ln

1

1− ε
− (1− ε) ln

1

ε

⇐⇒ ln
1

ε
+

1

N
ln

1

δ
> 0

which is of course true since ε, δ ∈ (0, 1). Therefore, we have proved p̄ > ε.
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Step 2. We want to show P(ξ̄ ≤ ε) ≤ e−ND(ε||p̄)

By the Bernstein-Chernoff-Hoeffding Theorem, since ε < p̄ = Eξ̄ and ξj ∼ Bernoulli(pj)
independently, we can directly prove this step.

Step 3. we want to show e−ND(ε||p̄) < δ
Note that

e−ND(ε||p̄) < δ ⇐⇒ D(ε||p̄) > 1

N
ln

1

δ

⇐⇒ p̄ε(1− p̄)1−ε < exp

(
−
(
He(ε) +

1

N
ln

1

δ

))
= e−A (A.22)

From the condition we have

p̄ ≥ 1

1 + exp− A
1−ε

=⇒ 1− p̄
p̄
≤ e−

A
1−ε

=⇒
(

1− p̄
p̄

)1−ε

≤ exp

(
−
(
He(ε) +

1

N
ln

1

δ

))
(A.23)

And note that

p̄ε(1− p̄)1−ε =

(
1− p̄
p̄

)1−ε

· p̄ <
(

1− p̄
p̄

)1−ε

(∵ p̄ < 1) (A.24)

By combining inequalities (A.23) and (A.24), we can prove inequality (A.22). Thus we
obtained e−ND(ε||p̄) < δ. Finally, by step 2 and 3, we get : if p̄ ≥ 1

1+exp(− 1
1−ε(He(ε)+

1
N

ln 1
δ ))

,

then P
(
ξ̄ ≤ ε

)
< δ

Now, we are going to prove Theorem 2.2 with the results we obtained in Lemma A.3

Proof. of Theorem 2.2
Let ζj = I (ŷj 6= yj) ∼ Bernoulli(1− θj) and let p̄ = Eζ̄ = 1

N

∑N
j=1 Eζj = 1− θ̄.

The proof of Theorem 2.2.(1):
Assume that t1 ≥

√
2 ln [(L− 1)C(ε, δ)], where C(ε, δ) = 1 + exp

(
1
ε

[
He(ε) + 1

N
ln 1

δ

])
,

then t1 ≥ 0.
By Theorem 2.3, we have

θ̄ = 1− 1

N

N∑
j=1

P (ŷj 6= yj) ≥ 1− (L− 1)e−
t21
2 (A.25)
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Let A =
(
He(ε) + 1

N
ln 1

δ

)
, then

t1 ≥
√

2 ln [(L− 1)C(ε, δ)] =
√

2 ln [(L− 1)(1 + exp(A/ε))]

=⇒ (L− 1) exp

(
−t

2
1

2

)
≤ 1

1 + exp
(
A
ε

)
=⇒ θ̄ ≥ 1− (L− 1) exp

(
−t

2
1

2

)
≥ 1− 1

1 + exp
(
A
ε

) (∵ (A.25))

=⇒ 1− θ̄ ≤ 1

1 + exp
(
A
ε

) . (A.26)

By inequality (A.26) and by Lemma A.3, we have

P(ζ̄ ≤ ε) ≥ 1− δ

which is to say,

P

(
1

N

N∑
j=1

I (ŷj 6= yj) ≤ ε

)
≥ 1− δ

Therefore, we have proved (1).

The proof of Theorem 2.2.(2):

Assume t2 ≤ −
√

2 lnG ≤ 0 , where G = 1+exp
(

1
1−ε

(
He(ε) + 1

N
ln 1

δ

))
. Then by Theorem

2.3.(2), we have

θ̄ =
1

N

N∑
j=1

P(ŷj = yj) ≤ exp

(
−t

2
2

2

)
(A.27)

From the conditions in (2)

t2 ≤ −

√
2 ln

(
1 + exp

(
1

1− ε

[
He(ε) +

1

N
ln

1

δ

]))
=⇒ exp

(
−t

2
2

2

)
≤ 1

1 + exp
(
A

1−ε

)
=⇒ 1− θ̄ ≥ 1− exp

(
−t

2
2

2

)
≥ 1− 1

1 + exp
(
A

1−ε

) =
1

1 + exp
(
− A

1−ε

)
By Lemma A.3.(2), we have P(ζ̄ ≤ ε) < δ which implies the desired result.
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Appendix B

Proofs for Chapter 3

B.1 Preparations before proving Theorem 3.3

In the proof of this result, we focus on P(Tij = 1) = q = 1,∀i ∈ [M ], j ∈ [N ], i.e., every
worker labels any item with probability q. Meanwhile, we assume L = 2, and the label set
[L]

.
= {±1}. It’s not hard to generalize our results to q ∈ (0, 1] and general L case, which is

more practical, but the bound will be much more complicated. We omit it here for clarity.
The prediction of the one-step Weighted Majority Voting for the jth item is

ŷwmvj = sign

(
M∑
i=1

(2ŵi − 1)Zij

)
, (B.1)

where ŵi is the estimated worker accuracy by taking the output from majority voting as
“true” labels. That is to say,

ŵi =
1

N

N∑
j=1

I
(
Zij = ŷmvj

)
, where ŷmvj = sign

(
M∑
i=1

Zij

)
. (B.2)

Note that the average accuracy of workers is w̄ = 1
M

∑M
i=1wi.

In fact, Theorem 3.3 is a direct implication by the following result.

Proposition B.1. If w̄ ≥ 1
2
+ 1

M
+
√

(M−1) ln 2
2M2 , then the mean error rate of one-step Weighted

Majority Voting for the jth item will be:

P
(
ŷwmvj 6= yj

)
≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
, (B.3)

where σ̃ and η is as defined in Theorem 3.3 .

In the next section, we will focus on proving this result first, and then Theorem 3.3 can
be obtained directly.
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Before we present our proof for Proposition B.1, we need to prove several useful results
which we can use later.

With the same notations as we have used for proving Theorem 1, we simplified some
notations as follows for convenience and clearance:

P(j)
+ ( · )

.
= P( · |yj = +1) and P(j)

− ( · )
.
= P( · |yj = −1), (B.4)

E(j)
+ [ · ]

.
= E[ · |yj = +1] and E(j)

− [ · ]
.
= E[ · |yj = −1], (B.5)

where “ · ” denotes any event belonging to the σ-algebra generated by Z.
The following lemma enable us to bound the probability of where the majority vote of

the jth item agrees with the label given by the ith worker given the true label and Zij.

Lemma B.2. ∀j ∈ [N ] and ∀i ∈ [M ], we have
(1) if w̄ > 1

2
, then

P
(
ŷmvj = +1|yj = +1, Zij = +1

)
≥ 1− exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)
, (B.6)

and the same bound holds for P
(
ŷmvj = −1|yj = −1, Zij = −1

)
.

(2) if w̄ ≥ 1
2

+ 1
M

, then

P
(
ŷmvj = −1|yj = +1, Zij = −1

)
≤ exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
, (B.7)

and the same bound holds for P
(
ŷmvj = +1|yj = −1, Zij = +1

)
.

Proof. (1) Notice that for any i ∈ [M ] and j ∈ [N ], given yj, Zij is independent of {Zlj}l 6=i,
E(j)

+ Zlj = 2wl − 1 and E(j)
− Zlj = −(2wl − 1), then∑

l 6=i

E(j)
+ Zlj + 1 =

∑
l 6=i

(2wl − 1) + 1 = 2M

(
w̄ − 1

2
+

1− wi
M

)
> 0, (B.8)

since w̄ − 1
2

+ 1−wi
M

> w̄ − 1
2
> 0. Therefore, we can apply the Hoeffding inequality to get:

P
(
ŷmvj = +1|yj = +1, Zij = +1

)
= P(j)

+

(
ŷmvj = +1|Zij = +1

)
= P(j)

+

(
M∑
l=1

Zlj > 0

∣∣∣∣Zij = +1

)

= P(j)
+

(∑
l 6=i

Zlj −
∑
l 6=i

E(j)
+ Zlj > −(

∑
l 6=i

E(j)
+ Zlj + 1)

)

≥ 1− exp

(
−

[
∑

l 6=i E
(j)
+ Zlj + 1]2

2(M − 1)

)
(by Hoeffding)

= 1− exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)
(by (B.8))
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Note that with the same argument,

P(ŷmvj = −1|yj = −1, Zij = −1) = P(j)
−

(
M∑
l=1

Zlj < 0|Zij = −1

)

= P(j)
−

(∑
l 6=i

Zlj −
∑
l 6=i

E(j)
− Zlj < −

∑
l 6=i

E(j)
− Zlj + 1

)

≥ 1− exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)
,

provided that −
∑

l 6=i E
(j)
− Zlj + 1 = 2M

(
w̄ − 1

2
+ 1−wi

M

)
> 0, which is satisfied by the as-

sumption w̄ > 1
2
.

(2) With the same argument as above, notice that
∑

l 6=i E
(j)
+ Zlj−1 = 2M

(
w̄ − 1

2
− wi

M

)
≥

0 because w̄ ≥ 1
2

+ 1
M

.
By applying the Hoeffding inequality:

P
(
ŷmvj = −1|yj = +1, Zij = −1

)
= P(j)

+ (
∑
l 6=i

Zlj < 0|Zij = −1)

= P(j)
+

(∑
l 6=i

Zlj −
∑
l 6=i

E(j)
+ Zlj < −(

∑
l 6=i

E(j)
+ Zlj − 1)

)

≤ exp

(
−

[
∑

l 6=i E
(j)
+ Zlj − 1]2

2(M − 1)

)

= exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
Following the same argument, we can show that the same bound holds for

P
(
ŷmvj = +1|yj = −1, Zij = +1

)
.

Our next lemma will bound the probability that the label of item j given by worker i
agrees with majority voting.

Lemma B.3. Given w̄ ≥ 1
2

+ 1
M

, then ∀j ∈ [N ], we have

wi − ξ(1)
i ≤ P(Zij = ŷmvj | yj) ≤ wi + ξ

(2)
i , (B.9)

where ξ
(1)
i = wi exp

(
−2M2(w̄− 1

2
+

1−wi
M

)2

M−1

)
and ξ

(2)
i = (1 − wi) exp

(
−2M2(w̄− 1

2
−wi
M

)2

M−1

)
Further-

more, we have

wi − ξ(1)
i ≤ P(Zij = ŷmvj ) ≤ wi + ξ

(2)
i , (B.10)
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Remark: This result implies that under mild conditions, the probability that the label
of the jth item given by the ith worker matches the majority vote will be close to wi, i.e.,
the accuracy of this worker. As the number of workers increase, it will be closer and closer.
Intuitively, this makes sense since if M is large, majority voting will be close to the true
label if w̄ > 0.5.

Proof.

P(Zij = ŷmvj ) = πP(j)
+ (Zij = ŷmvj ) + (1− π)P(j)

− (Zij = ŷmvj ). (B.11)

P(j)
+ (Zij = ŷmvj ) = wiP(j)

+ (ŷmvj = +1|Zij = +1) + (1− wi)P(j)
+ (ŷmvj = +1|Zij = −1).

Applying P(j)
+ (ŷmvj = +1|Zij = +1) ≥ 1− exp

(
−2M2(w̄− 1

2
+

1−wi
M

)2

M−1

)
from Lemma B.2.(1) and

(1− π)P(j)
− (Zij = ŷmvj ) ≥ 0 we can get

P(j)
+ (Zij = ŷmvj ) ≥ wi − wi exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)
. (B.12)

By applying P(j)
+ (ŷmvj = +1|Zij = +1) ≤ 1 and P(j)

− (Zij = ŷmvj ) ≤ exp
(
−2M2(w̄− 1

2
−wi
M

)2

M−1

)
from

Lemma B.2.(2), we can get

P(j)
+ (Zij = ŷmvj ) ≤ wi + (1− wi) exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
. (B.13)

Similarly, we can obtain the same bounds for P(j)
− (Zij = ŷmvj ), i.e.,

P(j)
− (Zij = ŷmvj ) ≥ wi − wi exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)
, (B.14)

P(j)
− (Zij = ŷmvj ) ≤ wi + (1− wi) exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
(B.15)

Since P(j)
+ (Zij = ŷmvj ) and P(j)

− (Zij = ŷmvj ) have the same bounds, and

P(Zij = ŷmvj | yj) = I (yj = 1)P(j)
+ (Zij = ŷmvj ) + I (yj = −1)P(j)

− (Zij = ŷmvj ),

then (B.9) holds. Furthermore, since

P(Zij = ŷmvj ) = πP(j)
+ (Zij = ŷmvj ) + (1− π)P(j)

− (Zij = ŷmvj ),

then (B.12) to (B.15) implies (B.10) .
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The next lemma will be crucial for applying concentration measure results to bound
P(ŷwmvj 6= yj | {yk}Nk=1).

For measuring the fluctuation of a function gj : {0,±1}M×N → R if we change one entry
of the data matrix, we define a quantity as follows:

d
(j)
i?j?

.
= inf {d : |gj(Z)− gj(Z ′)| ≤ d,where Z and Z ′ only differ on (i?, j?)} . (B.16)

The constraints Z and Z ′ only differ on (i?, j?), which means that Z ′i?j? is a independent
copy of Zi?j? , and Zij = Z ′ij for (i, j) 6= (i?, j?).

Lemma B.4. Let gj(Z)
.
=
∑M

i=1(2ŵi − 1)Zij, ∀j ∈ [N ], where Z is the data matrix and ŵi
is as defined in (B.2), with d

(j)
i?j? defined in (B.16), we have

(1)if j? 6= j, then d
(j)
i?j? ≤

2(M−1)
N

;

(2)if j? = j, then d
(j)
i?j? ≤

2(M−1)
N

+ 2 .

Proof. Since Z ′i?j? is an independent copy of Zi?j? , Z
′
i?j? = Zi?j? or Z ′i?j? = −Zi?j? . When

Z ′i?j? = Zi?j? , Z
′ = Z, then of course |gj(Z) − gj(Z

′)| = 0, which satisfies the inequality
trivially.

Next, we focus on the non-trivial case Z ′i?j? = −Zi?j? .
Note that Zij = Z ′ij when (i, j) 6= (i?, j?). Let ŷmvj be the majority voting of the jth

column of Z, and ŷmv
′

j be the majority voting by the jth column of Z ′.

Recall that |gj(Z)− gj(Z ′)| = |
∑M

i=1(2ŵi − 1)Zij −
∑M

i=1(2ŵ′i − 1)Z ′ij|.
If j? 6= j, then Zij = Z ′ij, ∀i ∈ [M ], so,

|gj(Z)− gj(Z ′)| = |
M∑
i=1

(2ŵi − 2ŵ′i)Zij| ≤ 2
M∑
i=1

|(ŵi − ŵ′i)Zij| = 2
M∑
i=1

|ŵi − ŵ′i|. (B.17)

If j? = j, we have Zij? = Z ′ij? for i 6= i?, and Zi?j? = −Z ′i?j? , then,

|gj(Z)− gj(Z ′)| = |
∑
i 6=i?

2(ŵi − ŵ′i)Zij + 2(p̂i? + p̂′i? − 1)Zi?j?|

≤ 2
∑
i 6=i?
|ŵi − ŵ′i|+ 2|p̂i? + p̂′i? − 1| (B.18)

We can see that the difference gj(Z) − gj(Z
′) depends heavily on the two quantities

|ŵi − ŵ′i| and |p̂i? + p̂′i? − 1|.
Next we bound |ŵi − ŵ′i|:

|ŵi − ŵ′i| = | 1
N

M∑
i=1

(
I (Zik = ŷmvk )− I

(
Z ′ik = ŷmv

′

k

))
| = 1

N
|I
(
Zij? = ŷmvj?

)
− I
(
Z ′ij? = ŷmv

′

j?

)
|,

because Zik = Z ′ik and ŷmvk = ŷmv
′

k if k 6= j?.
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(a). If ŷmvj? = ŷmv
′

j? , then by (B.19)

|ŵi − ŵ′i| =

{
0 if i 6= i?,
1
N

if i = i?.

In this case,

M∑
i=1

|ŵi − ŵ′i| =
1

N
, and

∑
i 6=i?
|ŵi − ŵ′i| = 0. (B.19)

(b). If ŷmvj? 6= ŷmv
′

j? , then by (B.19)

|ŵi − ŵ′i| =

{
1
N

if i 6= i?,

0 if i = i?.

In this case,

M∑
i=1

|ŵi − ŵ′i| =
M − 1

N
, and

∑
i 6=i?
|ŵi − ŵ′i| =

M − 1

N
. (B.20)

Now, we are going to bound |p̂i? + p̂′i? − 1|:

|p̂i? + p̂′i? − 1| =
1

N
|
L∑
k=1

(
I (Zi?k = ŷmvk ) + I

(
Z ′i?k = ŷmv

′

k

)
− 1
)
|

≤ 1

N

L∑
k=1

|I (Zi?k = ŷmvk ) + I
(
Z ′i?k = ŷmv

′

k

)
− 1|. (B.21)

(c). If ŷmvj? = ŷmv
′

j? , then

|I (Zi?k = ŷmvk ) + I
(
Z ′i?k = ŷmv

′

k

)
− 1| =

{
1 if k 6= j?,

0 if k = j?.

So in this case, |p̂i? + p̂′i? − 1| = N−1
N
.

(d). If ŷmvj? 6= ŷmv
′

j? , then

|I (Zi?k = ŷmvk ) + I
(
Z ′i?k = ŷmv

′

k

)
− 1| =

{
1 if k 6= j?,

1 if k = j?.

So in this case, |p̂i? + p̂′i? − 1| = 1. Putting together all the results above, if Zi?j? 6= Z ′i?j? ,
then we have,
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(1’) If ŷmvj? = ŷmv
′

j? ,

|gj(Z)− gj(Z ′)| ≤

{
2
N

if j? 6= j,
2(N−1)
N

if j? = j.

(2’) If ŷmvj? 6= ŷmv
′

j? ,

|gj(Z)− gj(Z ′)| ≤

{
2(M−1)

N
if j? 6= j,

2(N−1)
N

+ 2 if j? = j.

The upper bound in the case when ŷmvj 6= ŷmv
′

j is also an upper bound for the case when

ŷmvj = ŷmv
′

j . By the definition of d
(j)
i?j? and noting that Z can only take a finite number of

values, we have

d
(j)
i?j? ≤

{
2(M−1)

N
if j? 6= j,

2(N−1)
N

+ 2 if j? = j.

Remark: d
(j)
i?j? is the smallest upper bound on the difference between gj(Z) and gj(Z

′).
From the proof, we can see that the bound we get is achievable, thus the bounds are tight.
This result basically says that if we change only one entry of the data matrix, the fluctuation
of the prediction score function of one-step Weighted Majority Voting, i.e., gj(Z), will be
large if M increases and will decrease if N increases.

B.2 Proofs of Proposition B.1 and Theorem 3.3

In this section, we will use the lemmas we obtained in the last section to prove Proposition
B.1 and then easily derive the bounds on the expected error rate of one-step WMV from it.

Proof. of Proposition B.1

P(ŷwmvj 6= yj) =
∑

y1,··· ,yN

P
(
ŷwmvj 6= yj | y1, · · · , yN

)
· P(y1, · · · , yN)

If we can get an unified upper bound on P
(
ŷwmvj = yj | y1, · · · , yN

)
, say B, which is

independent of {yk}Nk=1, then this bound will also be an upper bound of P(ŷwmvj 6= yj) since∑
y1,··· ,yN

P
(
ŷwmvj 6= yj | y1, · · · , yN

)
· P(y1, · · · , yN) ≤

∑
y1,··· ,yN

B · P(y1, · · · , yN) = B.
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Note that the Zij’s are not independent of each other unless conditioned on all the true
labels of y1, · · · , yN . For convenience of notation, we define the conditional probability and
conditional expectation as follows:

P̃(j)
+ ( · )

.
= P

(
· | yj = +1, {yk}k 6=j

)
, (B.22)

P̃(j)
− ( · )

.
= P

(
· | yj = −1, {yk}k 6=j

)
, (B.23)

Ẽ(j)
+ [ · ]

.
= E

[
· | yj = +1, {yk}k 6=j

]
, (B.24)

Ẽ(j)
− [ · ]

.
= E

[
· | yj = −1, {yk}k 6=j

]
, (B.25)

where “·” denotes any event with respect to the σ-algebra generated by Z and {yj}Nj=1. Note
that in these conditional notations, all true labels of item k, k 6= j remain unknown but are
conditioned on, e.g., Ẽ(j)

+ [yk] = yk for k 6= j.
Notice that

P
(
ŷwmvj = yj | y1, · · · , yN

)
= I (yj = +1) · P

(
ŷwmvj = −1 | yj = +1, {yk}k 6=j

)
+I (yj = −1) · P

(
ŷwmvj = +1 | yj = −1, {yk}k 6=j

)
= I (yj = +1) · P̃(j)

+

(
ŷwmvj = −1

)
+I (yj = −1) · P̃(j)

−
(
ŷwmvj = +1

)
= I (yj = +1) · P̃(j)

+ (gj(Z) < 0)

+I (yj = −1) · P̃(j)
− (gj(Z) > 0) ,

where gj(Z) =
∑M

i=1(2ŵi − 1)Zij and ŵi is defined as (B.2).

We want to provide the upper bound on both P̃(j)
+

(
ŷwmvj = −1

)
= P̃(j)

+ (gj(Z) < 0) and

P̃(j)
−
(
ŷwmvj = +1

)
= P̃(j)

+ (gj(Z) > 0).
We complete our proof in several steps.
Step 1. Providing an upper bound on P̃(j)

+ (gj(Z) < 0)

Once we condition on {yk}Nk=1, all the entries in Z will be independent of each other, and

then we can apply McDiarmid Inequality (McDiarmid, 1998) to the probability P̃(j)
+ (gj(Z) < 0).

From Lemma B.4, we get that if Z and Z ′ only differ on entry (i?, j?), Z ′i?j? is an inde-
pendent copy of Zi?j? , and so

|gj(Z)− gj(Z ′)| ≤ d
(j)
i?j? .
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Combining this with the results from Lemma B.4 we have

M∑
i?=1

N∑
j?=1

(
d

(j)
i?j?

)2

≤ M(N − 1)

(
2(M − 1)

N

)2

+M

(
2 +

2(M − 1)

N

)2

≤ MN

(
2M

N

)2

+M

(
2 +

2M

N

)2

≤ 4M

N2

[
M2N + (M +N)2

]
(B.26)

Applying the McDiamid Inequality, we get

P̃(j)
+ (gj(Z) < 0) = P̃(j)

+

(
gj(Z)− Ẽ(j)

+ [gj(Z)] < −Ẽ(j)
+ [gj(Z)]

)
≤ exp

− 2
(
Ẽ(j)

+ [gj(Z)]
)2

∑M
i?=1

∑N
j?=1

(
d

(j)
i?j?

)2


≤ exp

− N2
(
Ẽ(j)

+ [gj(Z)]
)2

2M [M2N + (M +N)2]

 , (B.27)

provided Ẽ(j)
+ gj(Z) ≤ 0.

Now, if we can provide a lower bound of Ẽ(j)
+ [gj(Z)], then by replacing Ẽ(j)

+ [gj(Z)] with

that lower bound in the last inequality, we can further bound P̃(j)
+ (gj(Z) < 0) from above.

Next, we aim at deriving a good lower bound of Ẽ(j)
+ [gj(Z)].

We can expand gj(Z) so that

Ẽ(j)
+ [gj(Z)] = Ẽ(j)

+

[
M∑
i=1

(2ŵi − 1)Zij

]
= 2

M∑
i=1

Ẽ(j)
+ [ŵiZij]−

M∑
i=1

Ẽ(j)
+ Zij

= 2
M∑
i=1

Ẽ(j)
+ [ŵiZij]−

M∑
i=1

(2wi − 1),

since Ẽ(j)
+ Zij = E

[
Zij | yj = +1, {yk}k 6=j

]
= E[Zij|yj = +1] = 2wi − 1.

Note that for any i ∈ [M ] and j ∈ [N ], given yj, {Zij}Mi=1 will be independent of {Zlk}k 6=j
and {yk}k 6=j. We will use this property for dropping all the irrelevant conditioned yk’s.

Ẽ(j)
+ [ŵiZij] = Ẽ(j)

+

[
Zij ·

1

N

L∑
k=1

I (Zik = ŷmvk )

]
=

1

N

L∑
k=1

Ẽ(j)
+ [ZijI (Zik = ŷmvk )]

=
1

N

[∑
k 6=j

Ẽ(j)
+ [ZijI (Zik = ŷmvk )] + Ẽ(j)

+

[
ZijI

(
Zij = ŷmvj

)]]
(B.28)
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When k 6= j, Zik and ŷmvk are independent of Zij given yj.

Ẽ(j)
+ [ZijI (Zik = ŷmvk )] = Ẽ(j)

+ Zij · Ẽ(j)
+ I (Zik = ŷmvk )

= (2wi − 1)P(Zik = ŷmvk | yk)

≥ I (2wi − 1 ≥ 0) · (2wi − 1)wi

[
1− exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)]
+I (2wi − 1 < 0) · (2wi − 1)wi

[
1 +

1− wi
wi

exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)]
(By Lemma B.3)

≥ (2wi − 1)wi

[
I

(
wi ≥

1

2

)
− I

(
wi ≥

1

2

)
exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)]
+(2wi − 1)wi

[
I

(
wi <

1

2

)
+ I

(
wi <

1

2

)(
1− wi
wi

)
exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)]
= (2wi − 1)wi

[
1 +

1− 2wi
wi

exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)]
(Because w̄ >

1

2
+

1

M
)

= (2wi − 1)wi

[
1 +

1− 2wi
2wi

ηi

]
,

where ηi = 2 exp
(
−2M2(w̄− 1

2
−wi
M

)2

M−1

)
.

Furthermore,

Ẽ(j)
+

[
ZijI

(
Zij = ŷmvj

)]
= E(j)

+

[
ZijẼ(j)

+

[
I
(
Zij = ŷmvj | Zij

)]]
= wiP(ŷmvj = +1 | yj = +1, Zij = +1)− (1− wi)P(ŷmvj = −1 | yj = +1, Zij = −1)

= wi

[
1− exp

(
−

2M2(w̄ − 1
2

+ 1−wi
M

)2

M − 1

)]
− (1− wi) exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
(By Lemma B.2)

≥ wi

[
1− exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)]
− (1− wi) exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
(As w̄ >

1

2
+

1

M
)

= wi − exp

(
−

2M2(w̄ − 1
2
− wi

M
)2

M − 1

)
≥ wi − ηi/2
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Combining the two bounds above, we obtained

Ẽ(j)
+ [ŵiZij] =

1

N

[∑
k 6=j

Ẽ(j)
+ [ZijI (Zik = ŷmvk )] + Ẽ(j)

+

[
ZijI

(
Zij = ŷmvj

)]]

≥ 1

N

[
(N − 1)(2wi − 1)wi(1 +

1− 2wi
2wi

ηi) + wi −
ηi
2

]
=

1

2N

[(
(N − 1)(2wi − 1)2 + 1

)
(1− ηi) +N(2wi − 1)

]
≥ 1

2N

[
N(2wi − 1)2(1− ηi) +N(2wi − 1)

]
(Because 1 ≥ (2wi − 1)2)

=
1

2
(2wi − 1)2(1− ηi) +

1

2
(2wi − 1)

Let η = 2 exp
(
−2M2(w̄− 1

2
− 1
M

)2

M−1

)
, so η ≤ ηi ∀i ∈ [M ]

Ẽ(j)
+ gj(Z) = 2

M∑
i=1

Ẽ(j)
+ [ŵiZij]−

M∑
i=1

(2ŵi − 1)

≥
M∑
i=1

(2wi − 1)2(1− ηi) +
M∑
i=1

(2ŵi − 1)−
M∑
i=1

(2ŵi − 1)

≥ (1− η)
M∑
i=1

(2wi − 1)2

= 4Mσ̃2(1− η), (B.29)

where σ̃ =
√

1
M

∑M
i=1(2wi − 1)2.

Since w̄ ≥ 1
2

+ 1
M

+
√

(M−1) ln 2
2M2 , so η ≤ 1, which implies Ẽ(j)

+ gj(Z) ≥ 0.

Then by (B.27) and (B.29) we have

P̃(j)
+ gj(Z) < 0 ≤ exp

− N2
(
Ẽ(j)

+ [gj(Z)]
)2

2M [M2N + (M +N)2]


≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
. (B.30)

Step 2. With the same argument and following the same logic, we can obtain the same
upper bound for P̃(j)

− gj(Z) > 0.
Step 3. Combining the results we obtained from Step 1 and Step 2.
Since

P
(
ŷwmvj = yj | y1, · · · , yN

)
= I (yj = +1) · P̃(j)

+ (gj(Z) < 0) + I (yj = −1) · P̃(j)
− (gj(Z) > 0)
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and both P̃(j)
+ (gj(Z) < 0) and P̃(j)

− (gj(Z) > 0) have the same upper bound, we have that

P
(
ŷwmvj = yj | y1, · · · , yN

)
≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
.

The upper bound above does not depend on the value of {yk}Nk=1. By what we have discussed
in the very beginning of the proof,

P(ŷmvj 6= yj) ≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
.

Now, we can directly prove Theorem 3.3 as follows:

Proof. (Proof of Theorem 3.3 )
Since the upper bound of P(ŷmvj 6= yj) doesn’t depend on j, it can directly imply that

1

N

N∑
j=1

P(ŷmvj 6= yj) ≤ exp

(
− 8MN2σ̃4(1− η)2

M2N + (M +N)2

)
,

which is the desired result in Theorem 3.3 .
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Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 4.1

Proof. Without loss of generality, we denote by π the prevalence of true labels, i.e., P(yj =
k) = πk,∀j ∈ [N ], k ∈ [L], where P denotes the probability measure. Note that even in the
scenario that yj is assumed as fixed instead of random, our analysis and results will still hold
with πk = I (yj = k). Furthermore, we assume the group of workers are S with |S| = M .

For WMV-linear, the weights {ν̂i}Mi=1 are independent of the data matrix Z̃. The associ-
ated weighted majority voting is

ŷj = argmax
k∈[L]

M∑
i=1

ν̂iI (Zij = k) ,

where ν̂i = Lŵi−1 and E[ŵi] = wi. Thus, we have Eν̂i = νi = Lwi−1 and −1 ≤ ν̂i ≤ L−1.
Let

s
(j)
k

.
=

M∑
i=1

ν̂iI (Zij = k) , ∀k ∈ [L], j ∈ [N ] (C.1)

be the aggregated score of jth item that on potential label class k. Thus the general aggre-
gation rule can be written as ŷj = argmaxk∈[L] s

(j)
k .

We will frequently discuss condition probability, expectation and variance conditioned
on the event {yj = k}. Without introducing ambiguity in the context, we define:

Pk ( · )
.
= P( · |yj = k) (C.2)

Ek [ · ]
.
= E[ · |yj = k] (C.3)

Note that

Ek
[
s

(j)
l

]
=

M∑
i=1

νi

(
wiI (l = k) +

(
1− wi
L− 1

)
I (l 6= k)

)
, ∀l, k ∈ [L]. (C.4)
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First of all, we expand the error probability of labeling the j-th item wrong in terms of
the conditional probabilities:

P(ŷj 6= yj) =
∑
k∈[L]

P(yj = k)P(ŷj 6= k|yj = k) =
∑
k∈[L]

πkPk (ŷj 6= k) . (C.5)

Our major focus in this proof is to bound the term Pk (ŷj 6= k). Our approach will be
based on the fact of the following events relations:⋃

l∈[L],l 6=k

{
s

(j)
l > s

(j)
k

}
⊆ {ŷj 6= k} ⊆

⋃
l∈[L],l 6=k

{
s

(j)
l ≥ s

(j)
k

}
. (C.6)

We want to provide an upper bound for P(ŷj 6= yj). Note that

Pk (ŷj 6= k) ≤ Pk

 ⋃
l∈[L],l 6=k

{
s

(j)
l ≥ s

(j)
k

} ≤ ∑
l∈[L],l 6=k

Pk
(
s

(j)
l ≥ s

(j)
k

)
. (C.7)

With s
(j)
l defined as in (C.1), and when l 6= k, we define

ξ
(i)
kl

.
= s

(j)
l − s

(j)
k = ν̂i (I (Zij = l)− I (Zij = k)) , (C.8)

Ek
[
ξ

(i)
kl

]
= Eν̂i ·

(
1− Lwi
L− 1

)
= − 1

L− 1
(Lwi − 1)2, (C.9)

Λ
(j)
kl

.
=

M∑
i=1

Ek
[
s

(j)
k − s

(j)
l

]
= −

M∑
i=1

Ek
[
ξ

(i)
kl

]
=

1

L− 1

M∑
i=1

(Lwi − 1)2. (C.10)

We have

Pk
(
s

(j)
l ≥ s

(j)
k

)
= Pk

(
M∑
i=1

ν̂i (I (Zij = l)− I (Zij = k)) ≥ 0

)

= Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ −

M∑
i=1

Ek
[
ξ

(i)
kl

])
,

= Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ Λ

(j)
kl

)
(C.11)

Note that
{
ξ

(i)
kl

}
i∈[M ]

are conditional independent when given {yj = k}, and they are

bounded given the voting weight {ν̂i}i∈[M ] are bounded. Therefore, we could apply Hoeffding

concentration inequality to further bound Pk
(
s

(j)
l ≥ s

(j)
k

)
.
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Apparently, −1 ≤ ξ
(i)
kl ≤ (L − 1). Note Λ

(j)
kl ≥ 0, by appling Hoeffding inequality to

(C.11),

Pk
(
s

(j)
l ≥ s

(j)
k

)
≤ Pk

(
M∑
i=1

ξ
(i)
kl −

M∑
i=1

Ek
[
ξ

(i)
kl

]
≥ Λ

(j)
kl

)

≤ exp

(
− 2Λ

(j)
kl

2∑M
i=1 [(L− 1)− (−1)]2

)

≤ exp

− 2Λ
(j)
kl

2(
L
√
M
)2


≤ e−2t2 ,

where t = 1
L(L−1)

√
M

∑M
i=1(Lwi − 1)2.

The right hand side of last ineiquality does not depend on k, l or i, straightforwardly,

Pk (ŷj 6= k) ≤
∑

l∈[L],l 6=k

Pk
(
s

(j)
l ≥ s

(j)
k

)
≤ (L− 1)e−2t2 . (C.12)

Furthermore, we have

P(ŷj 6= yj) =
∑
k∈[L]

πkPk (ŷj 6= k)

≤ (L− 1)e−2t2

∑
k∈[L]

πk


= e−2t2+ln(L−1) (C.13)

The bound e−2t2+ln(L−1) does not depend on j, thus it is also a valid bound for the mean
error rate. That is to say

1

N

N∑
j=1

P (ŷj 6= yj) ≤
1

N

N∑
j=1

e−2t2+ln(L−1) = e−2t2+ln(L−1).

Note that t = F (S)
L(L−1)

, thus we have proved the desired result.

C.2 Proof of Lemma 4.2

Proof. Assume |S| = k. Let F̂plug(S) be the pluggin estimator for F (S), i.e.,

F̂plug(S) =
1√
k

∑
i∈S

(Lŵi − 1)2.
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First we show that F̂plug(S) is a biased estimate of F (S).

E[F̂plug(S)] =
1√
k

∑
i∈S

(
L2E[ŵ2

i ]− 2LE[ŵi] + 1
)

=
1√
k

∑
i∈S

(
L2
(
var(ŵi) + w2

i

)
− 2Lwi + 1

)
=

1√
k

∑
i∈S

(
(Lwi − 1)2 + L2var(ŵi)

)
= F (S) +

1√
k

∑
i∈S

L2var(ŵi).

Note that Eŵi = wi and E[v̂ar(ŵi)] = var(ŵi), thus we can move terms around to construct
an unbaised estimate of F (S) based on F̂plug(S):

F (S) = E

[
F̂plug(S)− 1√

k

∑
i∈S

L2v̂ar(ŵi)

]
,

which leads to a unbaised estimate of F (S) as follows.

F̂ (S) = F̂plug(S)− 1√
k

∑
i∈S

L2v̂ar(ŵi)

=
1√
k

∑
i∈S

(
(Lŵi − 1)2 − L2v̂ar(ŵi)

)
,

which is the same form as (4.7) and E[F̂ (S)] = F (S).

C.3 Proof of Theorem 4.3

Proof. Similar to the proof of Lemma 4.2, we assume |S| = k. With ŵi and v̂ar(ŵi) defined as

in (4.10), it is straightforwardly to show that Eŵi = wi and E[v̂ar(ŵi)] = wi(1−wi)
n

= var(ŵi),
then by Lemma 4.2 the corresponding unbaised estimator of F (S) is

F̂ (S) =
1√
k

∑
i∈S

[
(Lŵi − 1)2 − L2ŵi(1− ŵi)

n− 1

]

=
n

(n− 1)
√
k

∑
i∈S

[(
Lŵi − 1− L− 2

2n

)2

−
(

(L− 2)2

4n2
+
L− 1

n

)]
,
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therefore G has two equivalent forms:

G = (Lŵi − 1)2 − L2ŵi(1− ŵi)
n− 1

(C.14)

and G =
n

n− 1

[(
Lŵi − 1− L− 2

2n

)2

−
(

(L− 2)2

4n2
+
L− 1

n

)]
(C.15)

Next, we prove the confidence interval of F (S) based on the form (C.15) of G. We define
random variables {Xi}i∈S as

Xi
.
=

(
Lŵi − 1− L− 2

2n

)2

− λ,

where λ =
(

(L−2)2

4n2 + L−1
n

)
. Then

F̂ (S) =
n

(n− 1)
√
k

∑
i∈S

Xi.

Note that {Xi}i∈S are a collection of independent random variables, −λ ≤ Xi ≤
(
L− 1− L−2

2n

)2−
λ, and EF̂ (S) = F (S). We can apply Hoeffding Inequality to bound the following probabil-
ity,

P
(
|F̂ (S)− F (S)| ≤ n

(n− 1)
√
k
· β
)

= P

(
n

(n− 1)
√
k
|
∑
i∈S

Xi − E

[∑
i∈S

Xi

]
| ≤ n

(n− 1)
√
k
· β

)

= P

(
|
∑
i∈S

(Xi − EXi)| ≤ β

)

≥ 1− 2 exp

(
− 2β2

k(L− 1− L−2
2n

)4

)
= 1− 2e−2α2

, (C.16)

where α = β

(L−1−L−2
2n

)2
√
k

and the inequality is due to Hoeffding bound. Meanwhile,

P
(
|F̂ (S)− F (S)| ≤ n

(n− 1)
√
k
· β
)

= P

(
|F̂ (S)− F (S)| ≤

n
(
L− 1− L−2

2n

)2

(n− 1)
α

)

≤ P
(
|F̂ (S)− F (S)| ≤ n(L− 1)2

n− 1
α

)
, (C.17)
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which implies that [F̂ (S)− n(L−1)2

n−1
α, F̂ (S) + n(L−1)2

n−1
α] covers F (S) with probability at least

1− 2e−2α2
.

C.4 Proof of Theorem 4.4

Proof. Let xi = (Lŵi−1)2−L2v̂ar(ŵi), then the optimization problem (4.11) can be written
as

argmax
S⊆Ω

F̂ (S) s.t. |S| ≤ K (C.18)

where

F̂ (S) =
1√
|S|

∑
i∈S

xi.

Note that {ŵi}i∈Ω are given in these optimization problems, thus we do not treat xi as
random. The problems (4.11) (i.e., (C.18)) are deterministic combinatorial problems. In this
proof, we show that the output from Algorithm 3 achieves the global maximum of problem
(C.18).

The worker selection problem is to select a worker set denote by S? such that F̂ (S?) ≥
F̂ (S) for any set of workers S ⊆ Ω. Let σ be a permutation of Ω = {1, 2, · · · ,M} such that
xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(M).

We want to show that given any globally optimal solution of problem (C.18) S?, which
has cardinality |S?| = k?, we have F̂ (S?) = F̂ ({σ(1), σ(2), · · · , σ(k?)}).

To see this, let S ′ = {σ(1), σ(2), · · · , σ(k?)}, and we assume F̂ (S?) > F̂ (S ′). Since the
value of function F̂ (S) only depdends on cardinality of S and {xi}i∈S, the configuration 1

of values {xi}i∈S? is not equal to {xi}i∈S′ . This further implies that there exist i ∈ S?\S ′
and j ∈ S ′\S? such that xi 6= xj. Since i /∈ S ′ and S ′ is the top k? x-values, then xi < xj.

Therefore, if we replace i in S? with j will increase the value of F̂ , i.e., F̂ ((S?\ {i})∪{j}) >
F̂ (S?). This contradicts with the fact that F̂ (S?) is global optimum. Thus we conclude that
F̂ (S?) = F̂ ({σ(1), σ(2), · · · , σ(k?)}).

The analysis above implies that if we know the cardinality of the global optimal solution
k?, then the top k? workers in terms of x-values will be the global optimum in problem
(C.18), although it might not be the unique one. Based on the fact that the cardinality
of S? has to be one of the values in {1, 2, · · · ,min(K,M)}, we can compute the value of
F̂ ({σ(1), σ(2), · · · , σ(k)}) with k from 1 to min(K,M). Then the maximum of the yielded
F̂ function values has to be a global optimum of problem (C.18), and thus the corresponding
worker set is global optimum of problem (4.11). Algorithm 3 follows exactly the procedure
described above, therefore it output a globally optimal worker set.

1Here, we use configuration to denote sets that allow duplicates of values such as {1, 1, 1, 2, 3, 3}.
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As mentioned in the remark of Theorem 4.4, we can show that S∗ also solves the following
multi-objective optimization problem that simultaneously maximizes the score F̂ (S) and
minimizes the number |S| of workers actually deployed.

Theorem C.1. Consider a multiple-objective optimization problem,

argmax
S⊆Ω

(F̂ (S), − |S|), s.t. |S| ≤ K,

then S? is its Pareto optimal solution.

Proof. By Theorem 4.4, suppose S? is the global optimum of problem (4.11) and |S?| ≤ K,
then there is no other set S such that S ≤ K and F̂ (S) > F̂ (S?). This implies that
within the sets with cardinality no more than K, there is no other set could improve F̂ (S).
Thus S? is Pareto optimal2 according to its definition in the context of multiple objective
optimization.

2http://en.wikipedia.org/wiki/Multi-objective optimization
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