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Invited Feature Article

Smart three-dimensional processing
of unconstrained cave scans using small
unmanned aerial systems and red,
green, and blue-depth cameras

Guoxiang Zhang1, Holley Moyes2, and YangQuan Chen1

Abstract
This article focuses on a novel three-dimensional reconstruction system that maps large archeological caves using data
collected by a small unmanned aircraft system with red, green, and blue-depth cameras. Cave sites often contain the best-
preserved material in the archeological record. Yet few sites are fully mapped. Large caves environment usually contains
complex geometric structures and objects, which must be scanned with long overlapped camera trajectories for better
coverage. Due to the error in camera tracking of such scanning, reconstruction results often contain flaws and mis-
matches. To solve this problem, we propose a framework for surface loop closure, where loops are detected with a
compute unified device architecture accelerated point cloud registration algorithm. After a loop is detected, a novel
surface loop filtering method is proposed for robust loop optimization. This loop filtering method is robust to different
scan patterns and can cope with tracking failure recovery so that there is more flexibility for unmanned aerial vehicles to
fly and record data. We run experiments on public data sets and our cave data set for analysis and robustness tests.
Experiments show that our system produces improved results on baseline methods.
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Introduction

It has long been recognized that cave sites often contain the

best-preserved material in the archeological record. Cave

archeology has developed its methodologies for mapping

and recording sites, yet few sites are mapped to true three-

dimensional (3D) models because it is a slow and tedious

process for archeologists to record and bookkeep caves.

They need to incrementally set up baseline along the cave

and then measure the distance from the baseline to cave

walls or objects of interest and mark walls or objects in a

two-dimensional (2D) map by hand.1 This slow process has

a major negative impact on cultural relic preservation.

Typically, archeological teams will visit a site and begin

to record it in 1 year, but when they come back to finish

data collection, it has been looted, artifacts stolen, archi-

tecture destroyed, and the archeological record disturbed.
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Therefore, archeologists need a faster, more efficient

method of surveying and recording the sites.

To accelerate cave mapping, a system that can automate

the process needs to be developed. In this system, we first

focus on building globally consistent and accurate 3D mod-

els using red, green, and blue-depth (RGB-D) data recorded

with unmanned aerial vehicles (UAVs). This falls into the

research area of visual simultaneous localization and map-

ping (vSLAM). There are still many challenges in making a

well-working vSLAM system that emphasizes surface esti-

mate accuracy.2,3 Major difficulties are from three sources.

First, the camera tracking error accumulation problem can

be considered unavoidable due to the incremental nature of

any vSLAM system. Second, it is hard to find all the impor-

tant loops. Intuitively, the more loops in data, the more

information can be used to recover precise camera trajec-

tory and the 3D model. But, in practice, when running

existing vSLAM systems on data sets with loopy motion

at different scales, mismatches can always be found when

scanned more than once. This means that loops are not

successfully detected, indicating that the recovered camera

trajectory is not precise enough. Third, an effective and

optimal way of optimizing loop closure in a dense vSLAM

system is not yet attempted, due to perhaps the cost of

reintegrating dense models.

To get better camera tracking and dense mapping accu-

racy, researchers tried different ways. In Lefloch et al.,4

curvature information was added into the frame-to-model

iterative closest point (ICP). To detect those loops, most

vSLAM systems5–7 use bag of words (BoW),8 but it is well

known that it is not very reliable under lighting conditions

or viewing angle changes. Since the BoW only matches

sparse features from images but cannot fully utilize all

camera observation data and spatial information. On the

other hand, vSLAM systems tend to add the loops very

conservatively to reduce the severe influence of the false

loops, thus many important loops may not be connected.

Even after loops are successfully detected, there is still

another problem in the dense vSLAM system: how to cor-

rect reconstructed surface optimally. Since most dense

vSLAM systems9,6,10 use a frame-to-model fusion process,

which makes it difficult to quantify, isolate, and remove the

influence of past camera data, and it is also computational

expensive for a full camera data sequence refusion. Whelan

et al.10 suggested forming a deformation graph across the

reconstructed dense model to deform its surface to connect

the loop. When the loop area is large, the model may not be

deformed optimally, since past camera observations are not

reused to manipulate the 3D model. They assumed that the

scenes are elastic, but in reality, they are mostly rigid.

Motivated by the fact that humans can notice mis-

matches in 3D models very easily by looking at the spatial

displacement of surfaces. We propose to resolve mis-

matches directly by closing surface loops to get a consistent

3D model and a precise camera trajectory estimate in the

vSLAM system. After surface loops are detected, instead of

optimizing surface directly to propagate correction intro-

duced by surface loop, in this article, the surface loop cor-

rection is done through sparse feature bundle adjustment

(BA), so that all the past camera poses can be corrected

based on their observations. By running extensive experi-

ments on different data sets, we observed that combining

sparse features with surface loop closure can produce better

results. Not only 3D models get improved, but also camera

trajectories estimate becomes more accurate. This is

because our framework can detect loops in the dense sur-

face domain and optimize loops in the sparse feature

domain. Note that our framework can detect surface loops,

yet other means of detecting loops can still be utilized.

In the following, we summarize the key contributions of

our method:

1. We propose a novel 3D reconstruction system that

corrects surface loops with sparse feature-based

BA. We demonstrate that this novel system can give

much-improved camera tracking and dense model-

ing results.

2. We propose a fast 3D surface-based loop detection

method, which is based on a new compute unified

device architecture (CUDA)-accelerated point

cloud registration algorithm. Experiments show that

it is fast and accurate.

3. We propose a novel objective function for surface

loop filtering with a sparse feature-based optimiza-

tion graph. This graph is more robust to different

scan patterns and can cope with tracking failure and

recovery so that there is more flexibility for UAVs

to fly and record data. In addition to the flexibility,

experiments show that it performs better than state-

of-art methods when only a limited number of loops

are detected.

Related work

Related work in visual SLAM

Visual SLAM has been studied actively by researchers

from different fields, such as robotics, computer vision, and

computer graphics. They solve this problem with their

emphases and preferences, which lead to diverse visual

SLAM systems. Sparse feature-based SLAM systems are

well developed because sparse features can be used to

downsample data from sensor reading (e.g. images) to

sparse data representation as image keypoints and feature

vectors, which means less computation since data from

different frames are matched solely based on feature vec-

tors of their keypoints. Extended Kalman filter or particle

filter-based filtering approaches11,12 can take keypoints as

visual landmarks and solve vSLAM as a data filtering pro-

cess. A drawback of this approach is that the filter cannot

be reoptimized again based on all previous data. Then,

maximum a posteriori (MAP)-based approaches are used
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to optimize all observed camera data in a batch setting,7

which utilizes BA from Structure from Motion,13,14 and to

get better accuracy.7 To run BA for loop closure, the loops

need to be detected. In the sparse image feature setting,

BoW-based loop closure is widely used. But it gives a high

portion of false loops, which can severely degrade the per-

formance of a vSLAM system, so a very strict loop filtering

is often used,7 where many loops are rejected. This causes a

big problem when there are many loopy motions in camera

movement.

Another line of vSLAM research focuses on surface

reconstruction. With the parallel processing power of

graphics processing unit (GPU), Newcombee et al. pro-

posed KinectFusion9 which performs real-time dense 3D

camera tracking and model fusion. It has a volumetric

scene representation, which can be rendered to a depth

map at a given camera pose. Tacking is done through a

frame-to-model projective ICP, which is parallelized on

GPU for real-time performance. Finally, new camera

data are fused into the volumetric model using a running

average. KinectFusion can be considered of fusing very

local loops together using the model it maintains as a

proxy, but it does not close large loops. To close large

loops, it is important to detect loops and find relative

poses between loop areas. In BoW, image keypoints and

features are used for both loop detection and relative

pose generation, but in dense 3D systems, there is no

such comparably reliable point cloud feature. Whelan

et al. use BoW in a dense SLAM system called Kintin-

uous,6 which is an extended KinectFusion system. Later,

to better solve the loop detection and optimization prob-

lem, ElasticFusion10 proposed to use ICP to find relative

poses of potential loops, which are proposed by two

sources of information: spatial prior and appearance-

based place recognition. Our work shares similarities

with Whelan et al.,10 but we propose a different

approach and underlying algorithms, instead of using

projective ICP, which highly depends on initialization.

We propose a GPU-based global point cloud registration

method to detect loops with other prior information from

sparse feature alignment. After surface loop was

detected, in Kintinous, a pose graph of keyframes was

utilized, while the authors mentioned that mesh defor-

mation was required to get smooth 3D models, which

indicates loop correction is not done optimally. In Elas-

ticFusion, the pose graph is replaced by a deformation

graph distributed inside the dense model. This deforma-

tion graph does not have a backing physical meaning,

because most of the scenes scanned are not elastic. In

our framework, we utilize BA to have a MAP correction

of all past keyframes, which is theoretically optimal.

BundleFusion14 used BA to optimize loops, but they

do not close surface loops. Instead, they close sparse

feature loops and only use the dense surface for feature

correspondence search and tracking.

Related work in loop detection

Handcrafted image features are widely used in loop closure

detection. Cummins and Newman propose Fast appearance

based mapping (FAB-MAP),15 which is a probabilistic

framework for navigation using only appearance data.

Angeli et al. propose an online method to run visual

word-based loop detection within the framework of an

online image retrieval task.16,17 Williams et al.18 describe

a relocalization module, in which relocalization is per-

formed by a randomized lists classifier to establish land-

mark correspondences in the image and then random

sample consensus (RANSAC) to determine the pose

robustly from these correspondences. Another widely used

approach, distributed BoW,8 is proposed by Galvez-Lopez

and Tardos, which use BoW for visual place recognition

with features from accelerated segment test (FAST) key-

point detector and Binary Robust Independent Elementary

Features (BRIEF) with a binary vocabulary tree.

There are new attempts to make further improvements,

including modifications on the BoW19–21 and detection by

image sequences.22–24 There are also explorations to detect

loops with more than a single image.25,23,26 Some works try

to improve loop detection precision with loop verification

threshold learning in RANSAC based on geometric.27

Some others try to make improvements for special

environment.28,29

After, convolutional neural networks (CNNs) dominate

computer vision-related tasks6. There are research works

that try to build loop detection methods with CNN features

for similarity search.30–32,26 Another line of work builds

special CNN architectures for loop detection problem.33,33

Overview of the proposed system

The method proposed aims at producing accurate 3D

models by detecting and optimizing surface loops in

sparse feature-based visual SLAM systems. By adding

surface loop closure into a vSLAM system, we can get

globally consistent and optimal 3D models. With our pro-

posed algorithms, we build a novel system with five com-

ponents: (1) tracking, (2) surface model fusion, (3) fast

surface loop detection, (4) surface loop filtering, and (5)

loop optimization.

Tracking

We employ the tracking part from ORB-SLAM2,7 which is

a very wellimplemented sparse feature-based SLAM sys-

tem. Inside this tracking module, the Oriented FAST and

Rotated BRIEF (ORB) features are extracted for keypoint

matching. Then frames are tracked against keyframes with

motion estimate and then refined with a local sparse map.

Keyframes are generated when tracking is weak, or the

local BA thread is free. Local BA is used to correct the

reprojection error of feature correspondences among
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covisible keyframes in a background thread. This tracking

module provides camera poses for each frame and a covi-

sibility graph across keyframes.

Surface model fusion

We fuse surface models on a GPU using surfels as a map

representation similar to the literatures.34,10 Each surfel has a

position p, normal vector n, radius r and confidence c. We

fuse keyframes within every k frames (k ¼ 50 for all experi-

ments) into a surface fragment. These surface fragments are

generated for two reasons. One is to integrate out raw RGB-

D data noise. Another one is to reduce the number of 3D

pieces, so that loop detection computation is accelerated.

After each scene fragment is generated, for the later optimi-

zation process, it is linked to the keyframe whose timestamp

is closest to the first frame within the range.

Fast surface loop detection

The proposed surface loop detection is done by point cloud

registration on surface fragments. To detect surface loops

effectively, the covisibility graph from tracking is utilized to

prefilter covisible surface fragment pairs that are already

connected. Thus, a majority of unnecessary computation can

be avoided. To detect surface loops efficiently, we propose

using CUDA to accelerate point cloud registration. Details

of this acceleration are described in the next section.

Surface loop filtering

After loop candidates are detected, they need to go through

a novel loop verification algorithm, so that false loops

would not diverge the subsequent optimization process.

This is in the surface loop filtering section.

Loop optimization

After surface loops are detected and verified, the loop pairs

are used to connect pose graph vertices and also trigger

more image loop detection, which again uses spatial prior

and ORB feature matching. Then, the pose graph is opti-

mized to give a coarse pose correction and then a full BA is

performed to get MAP optimally fine-tuned camera trajec-

tory estimate. Details are in the loop optimization section.

Fast surface loop detection

To formulate surface loop detection formally, we denote a

surface fragment as a set of points P with their normal. Then

the surface fragment-based loop detection problem can be

solved by point cloud registration methods. In a 3D recon-

struction system, it is desired to get results quickly. In Elas-

ticFusion, Whelan et al. resort to projective ICP, which can be

performed very quickly on GPU. But, when surface mis-

matches are big, the initialization-dependent nature of ICP

makes it difficult to converge to the right solution. So we turn

to global point cloud registration in our framework, which

does not depend on initial alignment at all. Our algorithm is

based on RANSAC and inspired by Choi et al.,35 which uses a

method that is modified from Point Cloud Library.36 The

major differences are that we accelerated the most time-

consuming parts using GPU programming with an efficient

nearest neighbor (NN) search method. Traditionally, RAN-

SAC is formulated as an iterative process with proved con-

vergence.37 But different iterations and different hypotheses

can be considered to be totally independent of each other. This

means different hypotheses can be mapped to different pro-

cessing cores to be tested in parallel.

As shown in Algorithm 1, point clouds are down-

sampled to the resolution of the typical precision of

RGB-D sensors to reduce unnecessary computation. Fast

point feature histograms (FPFH) features are extracted for

each point in P and Q for point correspondence pairs

generation. To make the NN search more efficient, we

precached all the NNs of P in Q using FPFH feature dis-

tance. Then, for each hypothesis, four points are randomly

sampled from P, and their correspondences are found

through the precached NNs. After that, a pre-rejection

step, which rejects hypotheses whose point pairs cannot

make a similar polygon, is performed. t is a similarity

threshold and set to 0:9 in all our experiments. Then,

hypotheses testing, which is the most time-consuming

step, tests both inlier ratio and fitness score on GPU.

We test each hypothesis on a thread block with efficient

parallel reductions. For the NN search during hypotheses

testing, we utilized a 3D grid to replace the k-d tree to fit

the special need of GPUs, since a GPU will slow down

when different threads go to different code branches dur-

ing the k-d tree search. We propose using a 3D grid for the

NN search, given that the point clouds to be searched can

be stored in a limited volume. This guarantees that we can

use a grid with a limited size for the NN search without

jeopardizing search accuracy. When a point is stored into

the search grid, the indices ðix; iy; izÞ of its cell are calcu-

lated by the following equation

ix ¼ ðxp � xcÞ=lc

iy ¼ ðyp � ycÞ=lc

iz ¼ ðzp � zcÞ=lc

(1)

where lc is the cell edge length of the NN 3D grid. The

ðxc; yc; zcÞ is the coordinate of the center of target point

cloud. It is subtracted so that the translation of the point

cloud does not affect searching. When a point wants to

query its NN, the search is accomplished through a table

looking up, which has a time complexity of Oð1Þ, given

cell edge length the same as point cloud downsample res-

olution. It is faster than the k-d tree which has a OðlognÞ
time complexity. We observed speedup by only replacing

the k-d tree with a 3D search grid in CPU only code. More

importantly, there is no branching during searching, so it

fits much better on a GPU than the k-d tree.
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Surface loop detection evaluation

We run experiments to compare speed, recall, and precision

performance with the baseline method: point cloud regis-

tration part of Choi-Zhou-Koltun (CZK) on redwood pair-

wise registration evaluation data set by Choi et al. We

report results in Table 1. Recall and precision for CZK are

from reports of article authors, but speed is measured on

our machine. We use the same hyper-parameter values as in

the published code of CZK: 0.05 m as point cloud down-

sampling leaf size, 0.1 m as normal estimate radius, 0.25 m

as FPFH feature estimate radius, 4,000000 as hypotheses

count, and 0.075 m as maximum point correspondence

distance. We use an Intel i7-6850 K (https://ark.intel.

com/content/www/us/en/ark/products/94188/intel-core-i7-

6850k-processor-15m-cache-up-to-3-80-ghz.html) clocked

at 3.6 GHz and an NVIDIA Titan X Pascal (https://www.

nvidia.com/en-us/geforce/products/10series/titan-x-pascal/)

for our evaluation.

Observations. Our global point cloud registration can finish in

around 20 ms, which is around 366 times faster than CZK as

in Table 1. With this speed, it can run at 50 Hz, which means

we can process more loop candidates. Our recall performance

is not compromised for speed. Instead, it is even better than all

these two methods. From Table 1, the low precision is an issue

that needs to be solved, so an effective loop filtering method is

proposed and described in the following section.

Surface loop filtering

The results out of the surface loop detection algorithm in

the previous section have a low precision problem. Choi

et al. proposed to use a line process-based optimization to

solve it.35 But that method requires scanning to be tracked

fully successfully from the beginning to the end, and each

surface fragment cannot be empty. However, during a long

scanning session, it is almost impossible to guarantee that

RGB-D cameras always have surfaces observed within

their effective range. A failure to maintain that will lead

to an empty surface fragment. Thus, the graph vertices are

potentially divided into more than one subgraph, which

leads to erroneous optimization results. A similar problem

will occur when tracking failure is present in the tracking

part, which will break the optimization graph as well.

Table 1. Performance evaluation of different point cloud registration methods.

Time/pair (ms) Recall Precision

CZK Ours CZK Ours CZK Ours

Living room 1 7606.20 24.71 61.2% 62.4% 27.2% 23.6%
Living room 2 7469.58 18.19 49.7% 50.3% 17.0% 20.5%
Office 1 7556.02 21.63 64.4% 67.8% 19.2% 19.3%
Office 2 7418.12 17.45 61.5% 71.1% 14.9% 16.4%
Average 7512.23 20.50 59.2% 62.9% 19.6% 20.0%

The best performance is marked in bold.

Algorithm 1. Global Point Cloud Registration on GPU
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To address this problem, we propose to minimize (2)

instead, which has a supporting optimization graph that is

always fully connected whenever sparse features are

matched from either tracking or failure recovery

min
X;T;S

X
c

X
v2V ðcÞ

~xc
v � KTcwX v

�� ��
S

þ
X

ij

f ðT iw;T jw; sijjKijÞ

s:t: 0 < sij < 1; for all i; j pairs

(2)

where

f ðT iw;T jw; sijjKijÞ

¼
X

ðpi;pjÞ2Kij

CðsijÞ � ðpi � T iwT�1
jw pjÞ

���
���

2

þ jjgij � sijjj2�ij

(3)

The objective function optimizes over a set of point

clouds X ¼ fX v 2 E3g estimated from sparse feature key

points, camera trajectory T ¼ fTcw 2 SEð3Þg, and a set of

switch variables S ¼ fsij 2 Rg. The first term in eq. (2)

builds a least-square optimization graph for BA from sparse

keypoint observations, where Xv is the 3D coordinate of a

point visible in the cth camera. ~xc
v is the 2D pixel observa-

tion coordinate of the 3D point Xv. K is the camera intrin-

sics matrix. S is the covariance matrix associated to the

scale of the keypoint. The second term is surface loop

connections with switchable constraints38 with sij as a

switch variable for surface loop connection that connects

keyframes i and j. Let Pi be the surface fragment referred

by keyframe i, Kij is the set of NN correspondence pairs

between T�1
iw Pi and T�1

jw Pj that are within distance e¼ 0.05

m, which is typical noise level of RGB-D sensor.

In eq. (3), CðsijÞ is a switch function and we use a linear

function CðsijÞ ¼ sij as suggested in Sunderhauf and Prot-

zel.38 �ij is information of switchable prior constraints. It

controls the influence of the loop candidate tested. Let T ij

be the transformation that aligns all the pj to related pi in

Kij, that is

pi � T ijpj; for all ðpi; pjÞ 2 Kij: (4)

Then

X
ðpi;pjÞ2Kij

CðsijÞ � ðpi � T iwT�1
jw pjÞ

���
���

2

�
X

ðpi;pjÞ2Kij

CðsijÞ � ðpi � T iwT�1
jw T�1

ij piÞ
���

���
2

(5)

To accelerate computation of eq. (5), we follow an approx-

imation proposed in Choi et al.35 The local parameteriza-

tion of T iwT�1
jw T�1

ij is represented with a six-dimensional

vector x ¼ v; tð ÞT ¼ a;b; g; x; y; zð ÞT , which consists of

three rotational angles a;b; g and three translation

components x; y; z. Since its rotation is small under the

assumption that the registration result is good and camera

pose estimates are not far away from the correct solution,

the approximations sinðqÞ � q and cosðqÞ � 1 are utilized

for all a;b; g. Then

T iwT�1
jw T�1

ij pi �

1 �g b x

g 1 �a y

�b a 1 z

0 0 0 1

2
666664

3
777775

pi

¼
1 �g b

g 1 �a
�b a 1

2
664

3
775pi þ t

¼ I þ
0 �g b

g 0 �a
�b a 0

2
664

3
775

0
BB@

1
CCApi þ t

¼ pi þv� pi þ t

¼ pi � pi �vþ t:

(6)

Plug eq. (6) into eq. (5)

X
ðpi;pjÞ2Kij

CðsijÞ � ðpi � T iwT�1
jw pjÞ

���
���

2

�
X

ðpi;pjÞ2Kij

CðsijÞ � ð�pi � wþ tÞ
�� ��2

¼
X

ðpi;pjÞ2Kij

CðsijÞ � �½pi��jI
� �

� x
�� ��2

¼ CðsijÞ � x
�� ��2

LL
;

(7)

where

L2
L ¼

X
ðpi;pjÞ2Kij

�½pi��jI
� �T � �½pi��jI

� �
(8)

where

�½pi��jI
� �

¼
0 zpi �ypi 1 0 0

�zpi 0 xpi 0 1 0

ypi �xpi 0 0 0 1

2
64

3
75 (9)

where xpi; ypi; zpi are the three components of pi. Then our

eq. (3) becomes

f ðT iw;T jw; sijjKijÞ ¼ CðsijÞ � x
�� ��2

LL
þ jjgij � sijjj2�ij

: (10)

After optimizing eq. (2), keyframes i and j should be

connected as a loop if the optimized value of switch vari-

able sij is greater than a threshold.

Surface loop filtering evaluation

Experiment design. To understand the performance of the pro-

posed method and compare it with CZK, we run experiments

6 International Journal of Advanced Robotic Systems



on the augmented ICL-NUIM data set for loop filtering eva-

luation. In the experiments, RGB-D frames are first fused into

scene fragments with the implementation provided by CZK.

Point cloud registration results from CZK are used as loop

detections. Two sets of experiments are conducted: One takes

all the successful point cloud registration results as loop detec-

tions, denoted as All pairs in Table 2. Another set of experi-

ments only consider point cloud pairs that are not covisible in

ORB-SLAM2 tracking results as loop detections, which is

denoted as Only non-covisible pairs in Table 2. A pair of

scene fragments is covisible if there are any covisible frames

between two sets of frames contained in the two scene frag-

ments. This only non-covisible set of loops is more close to

practical use cases because the covisible pairs can be ignored

for computational speed consideration and have been well

connected in SLAM systems, already.

Observations. When only non-covisible pairs are pre-

sented, the proposed method outperforms CZK in aver-

age precision, while recall is only 2% less. For office 1

sequence, our method gives better results in both preci-

sion and recall, while CZK output only 62.5% precision.

Such a low precision usually causes serious problems

because too many false loops go in the loop optimiza-

tion step. For the other three sequences, our method

gives competitive results. When all pairs are considered,

CZK performs so well that our method is closely under

it. The difference is mainly in recall, while precision

difference is very small. Considering precision is more

important than recall for loop optimization, we would

like to note that this minor difference rarely impacts on

the final loop optimization result.

In addition to the cases where our method performs

better, note that our method is less strict to use in practical

scenarios, especially on a fast-moving UAV platform.

Because our method does not require maintaining RGB-D

cameras facing surfaces all the time, which is required by

CZK. This requirement difference is inherently implied by

underlying optimization pose graphs.

Loop optimization

After a surface loop passing verification, map optimization is

followed to reduce mismatches and errors. We employ pose

graph optimization and new data association and finally run a

full BA to get a MAP-based optimization to correct the cam-

era trajectory estimate and thus improve the 3D model.

When a surface loop pair fi; jg passes loop verifica-

tion, we then try to find data association in the sparse

feature domain. This is done by first retrieve all the

covisible keyframes for both keyframes i and j noted

as F i and F j. Then collect all the local sparse map

points fX pgi and fX pgj that are observed by F i and

F j, respectively. Then data association between fX pgi

and fX pgj are constructed by both distances in image

feature space and Euclidean space. After that, we run

RANSAC to filter out outliers in the matches and also

improve the transformation T ij. If this process converges

with enough inlier matches, we add a loop connection

for keyframes i and j. And update keyframe connections

by merging the observations of matched sparse map

points. These merged map points will help improve dur-

ing the final BA process. If it does not converge, we still

add a loop connection with the T ij. We do this because

in some cases, even though the areas related to key-

frames i and j do not have enough sparse map points

for a good matching result, a loop connection can lead

to a better initial start point for BA.

Finally, a full BA is performed for all the keyframes and

observed map points by optimizing the following equation

min
X

c

X
v2V ðcÞ

~xc
p � KTcwX v

���
���
S

(11)

Evaluation of the full 3D reconstruction
system

In addition to experiments in the fast surface loop detection

section and surface loop filtering section, extensive experi-

ments are performed to evaluate the proposed full 3D

reconstruction system on multiple data sets: our Maya cave

data set, augmented Imperial College London and National

University of Ireland Maynooth (ICL-NUIM),35 Technical

University of Munich (TUM) RGB-D data set,39 Scene

understanding 3D (SUN3D) data set,40 and some other

public data sequences. Comparisons are made with other

online and offline methods. There are many SLAM algo-

rithms and implementations. Here, we choose baseline

methods in a way that they can best show the characteristics

Table 2. Performance evaluation of different loop filtering methods reported in percentage.

Recall (%)/Precision (%)

All pairs Only non-covisible pairs

Registration CZK Ours Registration CZK Ours

Living room 1 61.2/27.2 57.6/95.1 43.5/93.7 48.8/13.0 48.8/92.2 36.4/91.7
Living room 2 49.7/17.0 49.7/97.4 47.1/97.3 30.2/5.2 30.2/94.1 28.3/93.8
Office 1 64.4/19.2 63.3/98.3 34.4/98.4 27.0/2.3 27.0/62.5 27.0/100.0
Office 2 61.5/14.9 60.7/100.0 58.5/96.3 29.3/2.9 22.0/100.0 29.3/92.3
Average 59.2/19.6 57.8/97.7 45.9/96.4 33.8/5.9 32.0/87.2 30.3/94.5

The best performance is marked in bold.
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of our proposed system: We choose ORB-SLAM27 since

we use the tracking part of it and offline method CZK35

because our loop filtering part is inspired by it. We denote

the tracking part of ORB-SLAM2 as tracking and full

ORB-SLAM2 as ORB-SLAM2 in all experiments. Results

of baseline methods are from original articles or their

authors when available.

Maya cave data set

The Maya cave data set is a data set collected by a team of

archeologists using an RGB-D sensor Kinect V1 in Maya

caves at Las Cuevas, Belize. Light-emitting diode lights are

used to light up the environment as in Figure 1. In this data

set, caves are scanned with a loopy motion for more loop

optimization.

Experiment design and baseline methods. We evaluate mod-

ules of both tracking and loop closure from different

approaches on the data we collected. For RGB-D data,

there are two major different camera tracking methods,

which are sparse feature-based and dense frame-to-model

approaches. We choose the ORB-SLAM2 as the implemen-

tation for the sparse feature tracking and the ElasticFusion

for the dense frame-to-model implementation. In experi-

ments for tracking, both implementations have their loop

closure disabled so that the difference can reflect tracking

performance. In tracking of ElasticFusion, there is one

important parameter that controls the weight of RGB in

tracking. We use the default 10 for RGB-D tracking, and

a number greater than 100 can disable RGB completely so

that the tracking is totally based on the depth. For loop

closure, there are three different types. ElasticFusion is

using Ferns-ICP-based approach. ORB-SLAM2 utilized

BoW. Our point cloud registration-based surface loop

detection approach is the third type compared.

Observations on tracking. From Figures 2 to 5, we can see

that RGB-D tracking of ElasticFusion does not work well

on cave data, especially compared with when it uses depth

only. We think this is due to the moving light source. RGB-

D tracking calculates a transformation matrix partially by

minimizing the intensity difference of two aligned images,

which assumes the lighting condition of scenes is static.

Figure 2. Results on the chamber-floor-walking sequence. (a) ElasticFusion RGB-D tracking, (b) ElasticFusion Depth tracking, (c)
ElasticFusion full, (d) ORB-SLAM2 tracking, (e) ORB-SLAM2 full, and (f) Ours. RGB-D: red, green, and blue-depth; ORB: oriented FAST
and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated segment test; BRIEF: binary robust
independent elementary features.

Figure 1. A part of a cave.
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The ElasticFusion depth tracking working quite well in

most sequences excepts on the chamber-floor-walking data

sequence. We can see in Figure 2(b) that half of the floor

data get rotated around 90� clockwise. It is almost impos-

sible for a dense direct tracking to recover from the error;

due to that, there are no strong correspondences. The track-

ing of ORB-SLAM2 performed very well in all the data

sequences, and it provides the possibility of globally

optimize the map. The robustness of feature-based tracking

implemented by ORB-SLAM2 is the reason that we use it

as our tracking module.

Observations on loop detection and optimization. When we

compare the performance of loop closure, our surface-

focused method performs the best. It connects important

loops in all four sequences. The difficult data are the

Figure 4. Results on the chamber-alcove data sequence. (a) ElasticFusion RGB-D tracking, (b) ElasticFusion Depth tracking, (c)
ElasticFusion full, (d) ORB-SLAM2 tracking, (e) ORB-SLAM2 full, and (f) Ours. RGB-D: red, green, and blue-depth; ORB: oriented FAST
and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated segment test; BRIEF: binary robust
independent elementary features.

Figure 3. Results on the chamber-entrance data sequence. (a) ElasticFusion RGB-D tracking, (b) ElasticFusion Depth tracking, (c)
ElasticFusion full, (d) ORB-SLAM2 tracking ,(e) ORB-SLAM2 full, and (f) Ours. RGB-D: red, green, and blue-depth; ORB: oriented FAST
and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated segment test; BRIEF: binary robust
independent elementary features.
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chamber-floor-walking one, as shown in Figure 2. Neither

ElasticFusion nor ORB-SLAM2 tracks the camera trajec-

tory correctly. Even after their loop closure, mismatches

are still significant. Our method shows its robustness by

reconstructing consistent 3D models on all data.

Augmented ICL-NUIM data set

We use the augmented ICL-NUIM data set35 to quantita-

tively analyze the performance of our system. This data set

is a synthetic data set with ground truth surface models and

camera trajectories. It has two indoor scenes: a living room

and an office, and four RGB-D sequences, two sequences

for each scene.

Experiment design. Evaluation metrics are camera trajectory

translation root mean square error (RMSE) described by

Handa et al. and the mean distance of the reconstructed

surfaces to the ground truth surfaces in the same way as

Whelan et al. We report them separately in Tables 3 and 4.

Since different systems use different ways to fuse 3D mod-

els, for a fair comparison, we fuse 3D models using Elas-

ticFusion using the same parameters with a camera

trajectory estimate from each system. We use truncating

depth distance of 4 m and 10 as the surfel confidence

threshold for fusion.

Observations. From Tables 3 and 4, our system can give best

results on all data sequence in terms of both trajectory and

surface estimation accuracy. To give a more informative

Table 3. Mean surface reconstruction error (in m) on augmented ICL-NUIM sequences.

Living room 1 Living room 2 Office 1 Office 2 Average

CZK 0.033 0.028 0.019 0.022 0.026
Tracking 0.031 0.022 0.019 0.014 0.022
ORB-SLAM2 0.017 0.010 0.015 0.013 0.014
Ours 0.007 0.007 0.013 0.010 0.009

ORB: oriented FAST and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated segment test; BRIEF: binary
robust independent elementary features.
The best performance is marked in bold.

Figure 5. Results on the chamber-cave-floor data sequence. (a) ElasticFusion RGB-D tracking, (b) ElasticFusion Depth tracking, (c)
ElasticFusion full, (d) ORB-SLAM2 tracking, (e) ORB-SLAM2 full, and (f) Ours. RGB-D: red, green, and blue-depth; ORB: oriented FAST
and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated segment test; BRIEF: binary robust
independent elementary features.
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comparison, we report an error map of the reconstructed

model in Figure 6 on Living room 1 data sequence. We can

see our results that have the lowest error across the whole

model. Our method performs better because more loops get

detected for improving the final loop optimization results. In

ORB-SLAM2, the loop detector has trouble detecting some

important loops because its consistency check can hardly be

satisfied due to very local view overlappings. On the other

hand, our surface loop detector does not have this problem.

Compared to CZK, the performance gain comes from the

advantage of sparse feature-based BA optimization, which

can produce MAP results, thus more accurate camera trajec-

tories and better reconstructed 3D models.

SUN3D data set

The SUN3D data set40 is a large-scale RGB-D database that

captures many places. It contains many data sequences.

And there are eight sequences (http://sun3d.cs.princeton.

edu/listNow.html) that are labeled with object annotations

and widely used for evaluating SLAM and 3D reconstruc-

tion systems. Since there is no ground truth available, we

follow this practice and run experiments on these

sequences. We show qualitative results in the form of

screenshots of reconstructed 3D models in Figure 7.

For the sequences in Figure 7, we highlight the mis-

matches in tracking results so that readers can better com-

pare them with our results. For sequences harvard_c5,

harvard_c6, and harvard_c8, there are no loops detected

on top of tracking. So we do not include screenshots for

them.

Observations. SUN3D data sequences are scanned with very

loopy motion in some areas but only once for some other

scene parts, thus is considered more difficult. Even though

our method does not produce perfect reconstructed 3D

models, it dramatically removed some significant mis-

matches. Also, our results are on par or better than other

methods. Interested readers may compare with the results

of CZK on this webpage (http://redwood-data.org/indoor/

models.html).

TUM RGB-D data set

The TUM data set39 is an RGB-D data set that is commonly

used to evaluate SLAM systems. This data set has 39 RGB-D

sequences recorded in office and industrial environments

with a large variety of camera motions and scenes. Along

with RGB-D sequences, ground truth camera trajectories

that are recorded with a motion capture system are also

available. Following common practice, we run experiments

only on sequences that are commonly used for SLAM

evaluation.7

Observations. From the results listed in Table 5, it shows that

for data sequence fr1/desk, fr1/room, fr2/desk, and fr3/

office, our method makes improvement on tracking and

achieves competitive results comparing full ORB-

Figure 6. Distance error map of reconstructed models from different methods against ground truth on living room 1 data sequence.
(a) CZK, (b) tracking, (c) ORB-SLAM2, and (d) Ours. ORB: oriented FAST and rotated BRIEF; SLAM: simultaneous localization and
mapping; FAST: features from accelerated segment test; BRIEF: binary robust independent elementary features.

Table 4. RMSE (in meters) of estimated camera trajectories.

Living room 1 Living room 2 Office 1 Office 2 Average

CZK 0.10 0.13 0.06 0.07 0.09
Tracking 0.14 0.05 0.05 0.03 0.07
ORB-SLAM2 0.10 0.03 0.04 0.03 0.05
Ours 0.03 0.02 0.03 0.02 0.03

RMSE: root mean square error; ORB: oriented FAST and rotated BRIEF; SLAM: simultaneous localization and mapping; FAST: features from accelerated
segment test; BRIEF: binary robust independent elementary features.
The best performance is marked in bold.
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Figure 7. Results on sequences of the SUN3D data set. The left column shows the results of the tracking part. The right column shows
the results after our loop optimization. We highlight the mismatches in tracking results so that differences are easier compared.
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SLAM2. Among these sequences, fr1/room has high abso-

lute trajectory error (ATE) in tracking, and our surface loop

significantly reduced the error. For the small performance

difference, we think that it is due to the implementation

difference of the tracking part and that the difference only

has only marginal effects on reconstructed 3D models when

ATE error is less than 0.02 as presented in Table 4 and

Figure 6. For sequences fr1/desk2 and fr2/xyz, the tracking

has provided good enough results that most of the frames

are connected in the covisibility graph such that there are

no loops to be detected. The sequence fr3/nst is a scan of a

flat wall with rich texture but no geometry changes, so our

method cannot detect surface loops in it; thus, no improve-

ment is made. The TUM data set indicates that even though

our method is designed for larger-scale environments with

rich geometry changes, it can produce competitive results

for some small-scale environments.

Other public real-world scenes

We also run experiments on public real-world data

sequences for qualitative analysis and a robustness test.

We run our system on Copyroom and Lounge data

sequences from Zhou et al. and DysonLab data set from

Whelan et al. We report our qualitative results in Figure 8.

Since there are no ground truth models available, we only

report screenshots of reconstructed models from our sys-

tem. Due to space limitations, we do not include the results

of other systems. Interested readers can refer to the authors’

release. Visually, our system produces results at least

matching the state-of-the-art methods.

Conclusion

This article presents a novel 3D reconstruction system that

maps both large archeological caves and general indoor

environments with RGB-D cameras. The proposed system

produces accurate 3D models by detecting and optimizing

surface loops in sparse feature-based visual SLAM sys-

tems. By adding surface loop closure into a vSLAM sys-

tem, globally consistent and optimal 3D models are

generated accurately. The proposed system consists of five

components: (1) sparse feature-based camera tracking from

ORB-SLAM2, (2) surface model fusion powered by Sur-

fels, (3) a novel fast surface loop detection algorithm, (4) a

novel surface loop filtering method, and (5) loop optimiza-

tion based on sparse feature-based BA.

For fast surface loop detection, we propose and imple-

ment a CUDA-based global point cloud registration algo-

rithm that is parallelized to run on GPUs for faster

RANSAC hypotheses testing. The proposed point cloud

registration algorithm can finish in around 20 ms on NVI-

DIA Titan X Pascal without any precision and recall per-

formance losses. The accelerated computational speed

makes it possible to be used as a loop detection method.

In the surface loop filtering component part, a novel

objective function is proposed to remove false-positive

loops from entering the loop optimization step. The pro-

posed objective function formulates a least-square pose

graph with a BA term as the supporting backbone graph

and robust least square terms with switchable constraints

for surface loop detections. Due to the inherent difference

in underlying optimization pose graphs, compared with its

Table 5. TUM RGB-D data set comparison ATE (m).

Sequence name ORB-SLAM2 Tracking Ours

fr1/desk 0.016 0.021 0.019
fr1/desk2 0.022 0.028 0.028
fr1/room 0.047 0.295 0.068
fr2/desk 0.009 0.016 0.015
fr2/xyz 0.004 0.011 0.011
fr3/office 0.010 0.025 0.013
fr3/nst 0.019 0.034 0.034

RGB-D: red, green, and blue-depth; ATE: absolute trajectory error; ORB:
oriented FAST and rotated BRIEF; SLAM: simultaneous localization and
mapping; FAST: features from accelerated segment test; BRIEF: binary
robust independent elementary features.

Figure 8. Reconstructed models of real-world scenes. (a) Copyroom, (b) Lounge, and (c) DysonLab.
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closely related work: CZK, our method is less strict to use

in practical scenarios, especially on a fast-moving UAV

platform. Because our method does not require maintaining

RGB-D cameras facing surfaces all the time, but CZK

requires it. In addition to the flexibility, the proposed

method is benchmarked against CZK on the augmented

ICL-NUIM data set in terms of filtered loop detection pre-

cision and recall. Experiments show that the proposed

method performs better (with þ37:5% precision and

equally better recall) than CZK when only a limited num-

ber of loops are detected and provides competitive perfor-

mance on all other scenarios.

Moreover, experiments are conducted to evaluate the

performance of the full novel system on multiple data sets,

including our Maya cave data set, augmented ICL-NUIM,

TUM RGB-D data set, SUN3D data set, and some other

public data sequences. The results are evaluated with ATE

or trajectory RMSE when ground truth camera trajectories

are available, surface reconstruction error when ground

truth 3D models are accessible, and visual comparisons

when no ground truth is available. The results show that

sparse feature-based camera tracking performs the best in

cave environments. The results also show that the proposed

system produces the most reliable and accurate 3D recon-

struction performance when surface loops are detected, fil-

tered, and optimized on a sparse feature-based objective

function. Other than in cave environments, experiments

on other data sets show that the proposed system produces

results on-par or better than baseline methods.
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