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Abstract

From an operations standpoint, the most important task of a traffic surveillance system is

determining reliably whether the facility is free flowing or congested.  The second most important

task is responding rapidly when the facility becomes congested.  Other tasks, such as quantifying

the magnitude of congestion, are desirable, but tertiary.

To address the first two tasks, this paper presents a new approach for traffic surveillance using

existing detectors.  Rather than expending a considerable effort to detect congested conditions, the

research employs a relatively simple strategy to look for free flow traffic.  The work should prove

beneficial for traffic management and traveler information applications and it promises to be

deployable in the short term.

Keywords: traffic surveillance, loop detectors, travel time measurement, vehicle reidentification,

Congested traffic
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Introduction

Traditional traffic surveillance strategies use loop detectors to calculate aggregate measures such as

flow and occupancy at discrete locations on a freeway.  Typically, these point measurements are

assumed to be representative of extended links spanning detectors.  This assumption is usually not

valid during congested conditions, when disturbances propagating through the traffic stream can

result in significant changes both temporally and spatially.  The limitation of point data has lead to

the development of many advanced surveillance technologies [1-4], which promise to match

observations of the same vehicle at successive detector stations, so called vehicle reidentification.

Often times, these advanced technologies are developed without consideration for the general goals

of traffic surveillance, and as a result, an operating agency may risk investing in an expensive

surveillance system to capture extraneous information.

From an operations standpoint, the most important task of a traffic surveillance system is

determining reliably whether the facility is free flowing or congested.  The second most important

task is responding rapidly when the facility becomes congested.  Other tasks, such as quantifying

the magnitude of congestion, are desirable, but tertiary.  Conventional loop detector surveillance

strategies satisfy the first and tertiary tasks, but the response time to delays between detector

stations may be excessive [5].  Some of the advanced surveillance technologies promise to satisfy

all of these tasks, but they have yet to see widespread deployment.  The cost to develop the new

technologies is substantial because they require new detector hardware.   In contrast, this paper

proposes an interim surveillance algorithm using existing dual loop speed traps in a new way.  The

approach will improve the performance of these detectors on the first and second tasks.

The algorithm identifies relatively distinct vehicles1 at the downstream detector station and then for

each of these vehicles, it looks for a similar vehicle in the same lane at the upstream station within a

time window bounded by reasonable free flow travel times.  Thus, if traffic is free flowing over

the link between detectors, this approach will usually find a match in the time window.  If the

freeway is congested, vehicles will be delayed and the true match for a vehicle will not be found in

the time window.  When a match is found, the algorithm can also address the tertiary tasks, such

as calculating that vehicle's travel time.  In other words, the algorithm will report free flow travel

                                                

1 Specifically, those vehicles that are longer than the average passenger vehicle, henceforth referred to as "long

vehicles".
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times or "traffic is not free flowing".  In the latter case, other surveillance techniques can be used to

measure travel time if the metric proves to be desirable, e.g., [6].

To illustrate the potential benefits of the new system, consider incident detection using point

detectors.  Lin and Daganzo [5] note that two signals emanate from an incident, a backward

moving shock wave and a forward moving drop in flow.  Detection of an incident can happen only

when both of these signals have been received.  Although the drop in flow travels at the prevailing

traffic speed, their work estimated the shock wave speed to be on the order of 8 mph.  Fortunately,

the drop in flow reflects the fact that vehicles are being delayed behind the incident.  So rather than

waiting for the slow moving shock wave, the new algorithm could quickly identify the onset of

delay corresponding to the drop in flow.

Is Traffic Free Flowing?

All vehicles that traverse a link between two detector stations must, by definition, pass both

stations.  For these vehicles, every downstream observation should have a corresponding upstream

observation and the time between these two observations is simply that vehicle's link travel time.

These travel times are not known a-priori; however, if the vehicle travels at free flow velocities

over the entire link, the travel time is bound by the distance between stations and a reasonable

range of free flow velocities.  For this study, the travel time range is defined as follows:

tt
v v

=
+ −







distance
( , )

distance
( , )max

,
max10 55 10 45

(1)

where

tt = the range of feasible free flow travel times [hours],

v = local velocity measurement at the downstream detector station [mph],

distance = the known distance between detector stations [miles].

This constraint is illustrated in Figure 1.  Chang and Kao [7] suggest that lane change maneuvers

are relatively infrequent during free flow conditions.  So a free flow vehicle observed at the

downstream station will usually have a corresponding observation at the upstream station in the

same lane, in the time window bound by tt.  Congestion will disrupt this relationship, both because

the travel time will increase beyond the free flow travel time range and because there may be an

increase in lane change maneuvers, particularly if one or more lanes are blocked.
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Parameter Measurement

For a given downstream vehicle, many upstream vehicles may be observed in the corresponding

time range.  Effective vehicle length, as defined in this section, is used to differentiate between

vehicles.  As a vehicle passes over a speed trap, e.g., Figure 2A, the controller normally records

four transitions, as shown in Figure 2B.  After accounting for any unmatched transitions, the

following parameters are calculated for each vehicle: speed trap traversal time via the rising edges,

TTr, speed trap traversal time via the falling edges, TTf, total upstream detector on-time, OTu, and

total downstream detector on-time, OTd, where:

TT t tr RISE down RISE up= −_ _ (2)

TT f = tFALL_down − tFALL_up

OTu = tFALL_up − tRISE_up

OTd = tFALL_down − tRISE_down

Under free flow conditions, the two traversal times should be approximately equal because any

acceleration is negligible during the short period that a vehicle is over the detector, similarly the two

on-times should be approximately equal.  For this paper, each pair of measurements is reduced to a

single value using the harmonic mean,

TT
TT TTr f

=
+
2

1 1
(3)

OT
OT OTu d

=
+
2

1 1

From Figure 2A, vehicle velocity is simply the loop separation, 20 ft for this study, divided by the

traversal time.  The effective vehicle length, L, is the velocity multiplied by the on-time,

L
OT

TT
= ⋅ [ ]20

ft (4)

The controller samples the loops at 60 Hz, so at best, each parameter in Equation 3 is accurate to

±1/30 seconds.  Assuming the times from Equation 2 are expressed in seconds, the length range,

LR, is defined as:
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LR
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(5)

and the measurement uncertainty is defined as the difference between the maximum and minimum

length estimates.  Finally, to ensure the best measurements possible, any hardware problems such

as cross talk between detectors are identified using [8] and corrected.

Length Range

As previously noted, the algorithm compares observations, or length measurements, between

detector stations.  If the length range for a downstream observation overlaps that of an upstream

observation, then the two observations may have come from the same vehicle.  Otherwise, the

result of the pair-wise comparison can be dismissed as an unlikely match because even allowing

for the measurement uncertainty, the two ranges do not intersect.  Unfortunately, most

observations fall in a small range, which is on the order of the measurement uncertainty during free

flow conditions.

For example, Figure 3 shows the distribution of observed vehicle lengths over 24 hours at one

detector station.  Roughly 80 percent of the observations fall between 16 and 23 feet.  During free

flow conditions, the measurement uncertainty is on the order of two feet for these short vehicles,

making difficult the task of differentiating between them.

In contrast, some length observations are as long as 80 feet.  Figure 4 shows a typical example of

the measurement uncertainty for vehicles over 23 feet.  The large range of feasible lengths and the

lower frequency of observations for the long vehicles make it feasible to differentiate between these

vehicles even at free flow velocities.

Algorithm Implementation

Using an example to illustrate the algorithm implementation, consider the 1.3 mile freeway

segment shown in Figure 5.  To eliminate the common vehicles, all downstream vehicles shorter

than 23 feet are ignored.  Whenever a long vehicle passes the downstream speed trap, the

algorithm searches a fixed time earlier, bounded by Equation 1, for any upstream vehicles in the

same lane whose length range, as defined by Equation 5, intersects the downstream vehicle's

length range.  If an intersection is found, the corresponding upstream vehicle is considered a

possible match.  If more than one intersection is found within the time window, then arbitrarily,
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the most recent of these upstream observations is considered the possible match.  Otherwise, the

downstream vehicle does not have a match.

Occasionally, a free flow vehicle will not have a match in the same lane either because the vehicle

changed lanes, or because of a misdetection at one of the stations.  On the other hand, a delayed

vehicle should not have a match, but a false positive may fall within the time window.  To

eliminate most of these transients, the algorithm takes a moving average of the 10 most recent

outcomes (including the current outcome), where a possible match is assigned a value of one and a

non-match is assigned a value of zero.  The current downstream vehicle is considered free flowing

if this moving average is at least 0.5, otherwise, it is considered delayed due to congestion.  Using

just over 2.5 hours of data from the two speed traps, the circles in Figure 6 show the travel times

for all of the long vehicles that were considered free flowing and that had a possible match in the

example.  These free flowing matches will be referred to as fast matches.

Verification

Generating ground truth data to verify the algorithm is complicated by the simple fact that vehicle

reidentification over extended distances is inherently difficult, both for an automated system and

for a human.  It is prohibitively time consuming for a human observer to generate exact matches

for a large number of vehicles.

Fortunately, it is not necessary to match every vehicle manually.  If the algorithm is correctly

matching vehicles, it will also yield the true travel times for those vehicles.  Although travel time

over a freeway link can change dramatically in a short period of time, the travel times for two

successive vehicles will be very similar.  Thus, a human observer must manually match a sufficient

number of vehicles to capture changes in link travel time, but this can be accomplished using a

small fraction of the passing vehicles.  Manual verification is still a labor-intensive process, but

now it becomes feasible to generate ground truth for significant samples.  This study used video

data, recorded concurrently with the speed trap data, for manual verification and the resulting travel

times from the ground truth matches are shown with stars in Figure 6.  Finally, Table 1 shows that

7.4 percent of the vehicles were long vehicles in this example and 71 percent of these vehicles were

matched.

Detecting the Onset of Congestion

The onset of congestion is characterized by a dramatic increase in link travel times.  When this

occurs, the true travel times will not fall within the range specified by Equation 1.  Notice that the
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algorithm did not find any fast matches after 14.7 hours, which according to the ground truth,

corresponds to the onset of congestion.

Although the measured travel times in Figure 6 are useful for traffic surveillance, from this plot, it

is impossible to differentiate between congestion and an absence of long vehicles.  The true

diagnostic power of the method comes from the moving average for the fast matches, as shown in

Figure 7.  The free flow periods are characterized by high average values and congested periods by

low values.  Unfortunately, there is significant noise in these measurements.  During free flow

conditions, most of this noise is due to the presence of the two ramps and the long distance

between stations.  Both of these factors increase the probability that a free flow vehicle will change

lanes and thus, not have a match in the same lane.  During congested conditions, the long distance

between detectors increases the time range in tt, and thus, increases the probability of finding a

false positive.

To filter out most of the false positives, consider the number of unmatched vehicles preceding each

fast match, as shown in Figure 8A.  Each of the matches preceding the onset of congestion at 14.7

hours have few preceding unmatched vehicles while most of the matches after the onset have many

preceding unmatched vehicles.  The contrast between the two groups can be increased by taking a

moving sum over this data, e.g., Figure 8B shows the results after taking a moving sum of two

samples.  To eliminate the false positives, all fast matches that have more than four unmatched

vehicles in Figure 8B are discarded.  Figure 9 shows the results after recalculating the moving

average over all outcomes.  Note that the process has eliminated all of the noise during congestion.

Extending Surveillance into Congestion

Looking closer at the ground truth travel times in Figure 6, there is a transition period between free

flow and heavy congestion, characterized by increasing travel times.  In an attempt to capture the

mildly congested vehicles during the transition, two additional travel time ranges are defined:

The range of feasible "medium" travel times [hours] = ttm = 





distance distance
45 35

, (6)

The range of feasible "slow" travel times [hours] = tts = 





distance distance
35 28

, (7)

where the denominators in the bracketed expressions bound the possible link velocities [mph] for

each set.  As conditions worsen on the link, the true travel times will pass from tt  to ttm , then to
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tts , and finally exceed all three ranges.  The ranges were selected so that collectively they span a

larger, continuous range of non-overlapping travel times and each individual range spans

approximately the same amount of time between its high and low values.

Repeating the analysis presented in Algorithm Implementation, modifying the time window

according to Equations 6 and 7, yields medium matches and slow matches, respectively.  Naively

treating each group of matches independently, no medium matches are found in the example, but

four slow matches are identified, as shown with squares in Figure 10A.

At the onset of congestion, the increasing travel times imply that medium matches must be

preceded temporally by fast matches and slow matches must be preceded temporally by medium

matches.  To exploit this phenomenon, modifying the moving average for the medium matches,

each vehicle is assigned a weight of one if it has a possible fast match    or   possible medium match,

and zero otherwise.  By definition, if a vehicle passes the moving average test for fast matches, it

must also pass the new test for medium matches, thus, a medium match will be ignored if the

vehicle passes the moving average test for fast matches.  Similarly modifying the moving average

for the slow matches such that each vehicle is assigned a weight of one if it has a possible match in

any of the three ranges, all slow matches that are coincident with fast or medium matches for the

same vehicle are ignored.  The results are shown in Figure 10B, where the fast matches have not

changed, the medium matches are shown with pentagons and the slow matches are shown with

squares.2  The modified algorithm has found more true matches after the onset of congestion, but

as the figure shows, the lower acceptance criteria has allowed a number of false positives to slip

through.

Finally, using a hybrid of the two approaches, a fast match is only allowed to influence the

medium or slow matches if any of the vehicles in the moving average passed the moving average

test for the fast matches.  Likewise, a medium match is only allowed to influence the slow matches

if any of the vehicles in the moving average passed the moving average test for the medium

matches.  The resulting travel times are shown in Figure 11.  The false positives during congestion

have been eliminated and compared to Figure 10A, twice as many matches are retained after the

onset of congestion.

                                                

2 Note that this analysis does not exploit the filtering discussed in the previous section because some locally

common vehicles will cause false positives in more than one time range.
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Future research will attempt to optimize the algorithm parameters, e.g., changing the minimum

vehicle length, the travel time range(s), and the number of vehicles in the moving average.  The use

of overlapping travel time ranges could also improve performance.

Conclusions

This paper has developed a new traffic surveillance strategy using existing detectors.  Rather than

reporting local conditions at the detectors, the strategy identifies when the link between two

detector stations becomes congested.  This process showed good performance over a 1.3 mile

segment with two ramps.  Unlike most surveillance strategies that attempt to match vehicle

measurements between detector stations, this work is compatible with the existing detector

infrastructure.  Perhaps more importantly, it is simple enough that it could be implemented on the

existing Model 170 controllers, which are based on 20 year old computer technology.

To place the work in context, it is intended to augment, rather than supplant, the local

measurements made by conventional surveillance strategies.  By combining the existing local data

with the new link data, it should be possible to identify transients in either data set and improve

performance beyond what would be possible with just one of these data sets.
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Subgroup Size
total number of vehicles in 
sample

4344

total number of long 
vehicles in the sample

320

number of ground truth 
matches

106

number of long vehicles 
before onset of congestion

115

number of fast matches 8 2

Table 1  The number of vehicles in various subgroups for the example.
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