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Abstract
Computational models of perceptual decision-making depend
heavily on empirical goodness-of-fit measures for model selec-
tion. However, it is not possible to improve models’ fit to data
indefinitely, particularly when the data in question are variable
across multiple elicitations. The completeness of a model or a
theory assesses the extent to which it can predict observations
in comparison with an ideal model. We measure the complete-
ness of contemporary race models on a paradigmatic percep-
tual decision-making task - random dot motion discrimination
- and show that the simple drift diffusion model is already
close to complete in describing random dot motion discrim-
ination data, with more complex models being in fact over-
fit to datasets. Thus, in this paper, we quantitatively demon-
strate limits to the ability of conventional choice fraction and
response time data to disambiguate complex models of percep-
tual decision-making.
Keywords: random dot motion discrimination, retest reliabil-
ity, completeness, race models, drift diffusion

Introduction
Random dot motion discrimination (RDM) task is a
workhorse experimental paradigm in the study of percep-
tual decision-making (Gold, Shadlen, et al., 2007; Ratcliff
& McKoon, 2008). The attractiveness of this task is ampli-
fied by the illustrious history of connections between psy-
chology, modelling and neuroscience made possible by the
use of RDMs in primate studies to understand the ‘evidence-
integrative’ behavior of LIP neurons (Britten et al., 1992;
Gold, Shadlen, et al., 2007).

A variety of computational race models have been applied
in the study of the perceptual decisions inherent in tasks
like random dot motion discrimination (Brown & Heathcote,
2008; Ditterich, 2006; Ratcliff & McKoon, 2008; Usher &
McClelland, 2001). While these models share some basic as-
sumptions about the nature of the choice process, viz. that
it comprises of temporal integration of evidence in favor of
various alternatives up to some evidence threshold (Brown &
Heathcote, 2008; Ratcliff & McKoon, 2008), they also dif-
fer along important dimensions, e.g. whether the evidence
threshold is fixed, or dynamic (Cisek et al., 2009; Thura et
al., 2012). While some researchers have sought to differenti-
ate these models using empirical evaluation, (Hawkins et al.,
2015; Thura et al., 2012), this is not straightforward to ac-
complish. For example, Donkin et al. (2011) show that two
models may fit a dataset equivalently well, but show different
trends in the direction of a particular shared model parame-
ter, suggesting that the mapping of model parameters to latent

cognitive variables may not be accurate, which may limit the
interpretability of model-based analyses.

An additional challenge to the interpretability of model-
based analyses, and even predictions, for RDM tasks lies in
the currently inadequate characterization of sources of noise
for the task. While race models have several sources of vari-
ance built into their equations, these values are empirically
known to be unreliable (Lerche & Voss, 2017), and have weak
theoretical bases (Brown & Heathcote, 2008). Recently, Rat-
cliff et al. (2018) used a double pass paradigm to characterize
how well drift diffusion models can accommodate the effect
of exogenous noise while fitting RDM data. However, such
efforts do not confront the fundamental problem that variance
parameters in these models are not systematically grounded
and serve almost entirely as mathematical receptacles of oth-
erwise inexplicable variance in data fitting exercises (Brown
& Heathcote, 2008).

Both these lacunae in current computational models of per-
ceptual decision-making, in our view, stem from an overly
statistically-driven focus towards model evaluation and selec-
tion (Yarkoni, 2022). If fitting the data as precisely as possi-
ble, modulo statistical regularization, is the primary criteria
for model goodness, then parameter interpretability becomes
a secondary concern, and the ultimate provenance of noise in
models a tertiary one.

When can we say that models are good ‘enough’ in terms
of empirical goodness-of-fit for us to consider other crite-
ria for model selection? The concept of ‘completeness’, re-
cently introduced by Fudenberg et al. (2019), offers an ele-
gant answer to this question. The completeness of a model,
in simple terms, is defined as the ratio of the improvement
in predictive performance a model produces vis-a-vis a naive
or random baseline to the improvement in predictive perfor-
mance produced by the best possible model vis-a-vis the same
naive baseline. The best possible model is taken simply to be
the unparameterized table of mappings from the independent
variable to the dependent variable.

When this mapping is not bijective, the best possible model
will not be perfect. For example, if a person responds to
the presentation of a stimulus X with the response y1 at one
time, and y2 at another, then a predictor will necessarily in-
cur some loss when trying to assign a value to at least one of
the two observations in this dataset (Fudenberg et al., 2019).
This is particularly true for behavioral datasets, since behav-
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ioral responses frequently have low retest reliability. It has
recently been observed that complex models fit to individual
elicitations of behavior, in fact, run the risk of becoming over-
precise, in the sense that their predictions explain the dataset
rather than the phenomenon (Sifar & Srivastava, 2022). Thus,
in such settings, knowing the completeness of a class of mod-
els can inform scientists about the extent to which further im-
provements in empirical goodness-of-fit can convey scientific
insight.

In this paper, we characterize the completeness of well-
known race models applied to random dot motion discrimina-
tion (RDM) data. The primary unknown in this exercise is the
performance of the ideal model for this task, which we mea-
sure using a test-retest reliability experiment, showing sub-
jects the exact same RDM stimuli one week apart. We then
use this estimate of the best possible model’s performance
to assess the completeness of several race models commonly
used to study RDM and other related tasks. As a corollary to
our main result, we also identify the test retest reliability of
the parameters of these models for RDM.

Methods
Design
Participants performed a 2-alternative forced choice (2AFC)
random dot motion (RDM) discrimination task which re-
quired them to indicate the direction of a set of apparently
moving dots, see Figure 1a. We followed the task specifi-
cations from the RDM experiment in Ratcliff et al. (2018).
Five white dots, each of radius 1 × 1 pixel, move apparently
in space and time by virtue of quick successive presentation at
every frame in an invisible circular aperture (of radius 100px)
on a black background.

Every trial is described by coherence level and direction of
movement. Coherence determines the probability of each dot
being a signal dot per frame, refer Figure 1b for more details.
The signal dot moves by 4 pixels in the direction of motion
at the next frame while the noise dot is placed randomly. The
dots are regenerated every 3 (dot life) frames such that the
motion is described globally (Pilly & Seitz, 2009). A total of
24 frames were presented for 400 ms with the screen refresh
rate of 60 Hz. The participant was required to respond within
1500 ms of the stimulus onset with the designated key press
(Left arrow key for left direction, Right arrow key for right
direction). The trial structure was self paced such that the
user had to press a key to continue to the next trial.

The task was designed using the Pygame module (v2.1.2)
of Python. The monitor used for display was ASUS
VG248QE, 24-inch FHD with a screen resolution of
1920x1080 (width × height) at 40% brightness level (to re-
duce eye strain). The task was designed for retest reliability
estimation ensuring that every participant viewed the exact
same stimuli, in the same sequence, in both sessions. The
three levels of coherence and 2 possible directions (left and
right) were randomly interleaved, and then we pre-generated
the dot positions for the 24 frames of every trial in every

block. This means that the dot position at every frame was
exactly the same between the two sessions for a given trial.

Procedure

We recruited a total of 69 (25F) participants for the exper-
iment. We provided a compensation of USD 6 for all four
sessions, and USD 2.5 in case the participant did not achieve
the required accuracy in the staircase procedure (explained
later). The overall design is illustrated in Figure 1c.

Each participant was seated on a height adjustable chair in
front of the monitor display in a dark room. The viewing dis-
tance (60 cm) was manually measured for each session from
the center of the screen to the nose of the individual.

Following a practice session for task familiarity, we con-
ducted a 4 up-1 down staircase to estimate the psychophys-
ical threshold with correct response probability of 84% (Lu
& Dosher, 2013). The staircase continued for a total of 30
reversals. For a given participant, we estimated the subjec-
tive threshold of coherence level as the mean of the last six
reversals. We used this threshold (JND) ± 0.05 as the three
levels of subjective coherence per participant. We had to drop
24 participants from the experiment at this stage because they
could not achieve the accuracy level needed within 30 rever-
sals.

Finally, we continued to the main experiment session with
a total of 45 (17F) participants. The two main sessions were
exactly the same with respect to task conditions and stimulus
presentation. With the trial structure depicted in Figure 1a,
each participant performed 90 trials per block. Error feedback
was provided for 300 ms.

Response Variables

For every trial, we recorded the reaction time (RT) and re-
sponse correctness (1/0).

Data cleaning

An average of 300 trials per coherence level were presented
to each participant. Trials across sessions for each partici-
pant with missing responses in either session were removed
from the analysis, yielding an average of 298 trials per co-
herence level per participant. Three participants’ data had to
be removed because of poor accuracy and more than fifteen
sub-200ms RT trials. With this last exclusion, we were left
with a total of 42 (17F, mean age 23.7) participants for the
final analysis.

Analysis
We measured retest reliability of random dot motion task sep-
arated by at least one week at three subjective coherence lev-
els. Assuming the entire source of variability is accounted
for by the external stimulus, we expect the participant per-
formance to approach its true value with a large number of
trials per coherence level assuming the underlying perceptual
decision-making process has high reliability.
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(a)

Dot Identity
signal noise

Remaining  Dot Life
1 2 3

Remaining  Dot Life
1 2 3

(b) (c)

Figure 1: Task design a. Trial structure. Error feedback only in main sessions. Dot positions at every frame for every trial in the
two main sessions was exactly the same for the retest paradigm. b. RDM implementation details using five consecutive frames
for three dots marked by numerical digits. Signal dot movement is restricted to horizontal axis while noise dot movement is
random. Dot life controls the number of frames a dot maintains its identity (signal/noise) to prevent local movement inference.
c. Experiment design. The four sessions conducted per participant with specific details. The results presented in this study
belong to the two main retest sessions conducted at least a week apart.

Models
We use three variants of accumulator models in our analy-
sis. The simplest model is the drift diffusion model (DDM),
which also acts as a baseline for other variants of choice mod-
els (Stone, 1960). According to this model, noisy evidence

dx = νdt + c
√

dt

accumulates until a fixed decision boundary (threshold) a is
reached. ν is the drift (slope) towards the threshold start-
ing from z which is diffused by wiener noise represented by
c
√

dt. An additive term of Non decision time (Ter) on top of
accumulated evidence is used which is the time required for
encoding and motor responses. We assume z=0, fixed values
for scaling parameters c and timestep dt across all models.
Assuming one level of drift rate per coherence (difficulty)
level, a total of five parameters were free for model fitting
(ν1,ν2,ν3, a, Ter).

The second model is a variant of DDM - the collapsing
bounds model - which additionally assumes that the decision
threshold collapses as a function of time, given by the follow-
ing equation (Hawkins et al., 2015) :

u(t) = a− (1− exp(−(
t
λ
)k))(0.5a−a′)

where λ is the shaping parameter, while a′ is the asymptotic
threshold.

The third model is an urgency gating model which assumes
that instead of a drop in threshold, there is an urgency gain in
the evidence accumulation process during the course of a trial
given by the following equation (Hawkins et al., 2015) :

γ(t) = b0 +
syexp(sx(t −d))

1+ exp(sx(t −d))
+

1+(1− sy)exp(−sxd)
1+ exp(−sxd)

where sx, sy are the shape parameters, d is the delay and b0 is
the intercept.

We also test more complex variants of each of these base
models, which add variability parameters for the drift ∼
N (0,η), starting point (sz ∼ U(zmin,zmax)) and non decision
time (st ∼ Ter ± st0).

Analytic tools
For continuous variables like mean RT, choice accuracy and
individual trial level RT, we used Pearson’s correlation r to
measure the reliability across the retest sessions. Addition-
ally, we used κ to measure binary individual level choice
agreement.

We used the model fitting routine provided by CHaRT-
R package for parameter estimation (Chandrasekaran &
Hawkins, 2019). Model parameters were estimated using
the QMPE statistic for each participant independently. For
each coherence level, error and correct RT distributions were
split into 10 quantile bins. Fits were obtained by maximising
ln(L(θ|T )) ∝ ∑

m
j=1 N jln

∫ j
q̂ j−1

f (t,θ)dt for m quantiles, N j =
number of observations in each quantile of a given coherence
level and f (t,θ) is the corresponding likelihood value. This
gave us an approximation of the log likelihood value (LL) for
the model fit (Heathcote et al., 2002).

Following Sifar and Srivastava (2022), we define the ideal
model simply as the predictions made by a participant when
(s)he is presented with the exact same stimulus in a different
session. In other words, session i is treated as the ideal model
for session j data, i ̸= j. The log likelihood (as measured by
QMPE) was used to measure the completeness of the models.
Following Fudenberg et al. (2019), we measure completeness
as,

LLRandom −LLModel

LLRandom −LLIdeal
.

We also report BIC as a measure of model goodness-of-
fit. For the ideal model, the number of free parameters is not
straightforward to establish. We set it at 10 for the calcu-
lations we report here, but values between 1-20 reproduced
similar results.
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Figure 2: Observed retest reliability a. For the histogram,
we first normalised observed RTs per participant to ensure
that within and between participant variability is not mixed.
We plot normalised RT histograms for session 1 and 2, seg-
regated by hit(∼ 30,000 trials per session in upper panel) and
error(∼ 7,500 trials per session in lower panel). b. Each dot
in the scatter plot depicts the accuracy for a given coherence
level and participant.

Results
We present three sets of results. First, we present our esti-
mates of the test-retest reliability of the random dot motion
discrimination task. Second, we present our estimates of the
completeness of different choice models with respect to the
task. Third, we demonstrate the reliability of different pa-
rameters in these models to data fits across sessions.

Reliability estimates for RDM
A two-way repeated measures ANOVA was conducted with
coherence and session as the independent factors and mean
RT as the dependent variable. We observed main effects
for session [F(1,41) = 17.66, p < 0.001] as well as coher-
ence [F(2,82) = 34.86, p < 0.001] with no interaction effect.
Treating session as a treatment, the difference in mean RT for
subjects, across conditions, yields an effect size of Cohen’s
d = 0.3.

We found retest reliability of the mean RT across coher-
ence levels and subjects to be r = 0.84. The corresponding
value for accuracy across all coherence levels is r = 0.68 (also
see Figure 2b).

Trial level consistency for accuracy measured using Co-
hen’s κ was none to slight (κ = 0.2). Similarly, the average
retest reliability for individual trial RT was negligible (r =
0.15), across all coherence levels and participants.

It is unsurprising to see low reliability for individual tri-
als, given that evidence integration is unlikely to recruit the
same neural pathways across multiple task elicitations (Beck
et al., 2012). However, the moderate correlations seen for ac-
curacy across sessions is surprising, given that RDM is meant
to be a perceptual decision-making task with little cognitive
variability. The reliability for accurate choices we find in our
experiment is similar to values seen for much more abstract
risky economic decisions (Sifar & Srivastava, 2022), suggest-

0.2 0.4 0.6 0.8 1.0
m, s1

0.2

0.4

0.6

0.8

1.0

m
,s

2

s1, s2
0.2
0.4
0.6
0.7
0.85

Figure 3: Limits on model-data correlations imposed by test-
retest reliability of the underlying construct. All points below
the x = y line on each of the curves represent instances of
models overfit to session 1’s data; correlation of such a model
with session 2’s data is guaranteed to be lower.

ing more cognitive involvement in this task than has been ap-
preciated heretofore.

Another underappreciated aspect of retest reliability is that
it imposes strong limits on the degree of correlation fits to
one instrument may achieve on another (Vul et al., 2009). In
particular, the consistency of a model m with data observed
in two sessions s1 and s2 is limited by a statistical identity

ρm,s2 ≤ ρs1,s2ρm,s1 +
√

(1−ρ2
s1,s2)(1−ρ2

m,s1).

This relationship is graphically illustrated in Figure 3,
showing that for low retest reliability, extremely high corre-
lations between the model and one session’s data is guaran-
teed to produce much lower correlations for that model for
the other session’s data, even if both sessions use the same
target stimuli and protocol.

This observation is of immediate relevance for scientists
seeking to fit models to behavioral data as inputs to down-
stream neural modelling. For example, Pisauro et al. (2017)
predict value based decisions using a dynamic sequential
sampling model with very high precision (accuracy : r =
0.96; RT : r = 0.91) in order to subsequently identify clus-
ters of EEG activity monitored while doing the task. Given
the substantially lower reliability of accuracy we have seen
for RDM and Sifar and Srivastava (2022) have documented
for value-based choice, it is unclear to what extent the bijec-
tive mapping from behavior to brain regions posited in such a
study can be assuredly inferred.

Completeness of race models on RDM
Figure 4 (left panel) plots our estimates of completeness for
six race models - simple DDM, collapsing bounds, urgency
gating, and variants thereof with additional parameters meant
to represent intra- and inter-trial variability, for both sessions
individually. For the random predictor, we used the observed
RT and generated random labels for accuracy.
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Figure 4: Completeness measures for each session. Left
panel Completeness of race models for RDM. Black line in-
dicates 100% completeness. Right panel Difference of BIC
for each model from ideal model BIC.

We note that both the simple DDM and UG models demon-
strate more than 90% completeness for the random dot mo-
tion discrimination task. The other models used in our com-
parison are actually over-complete, in the sense that they
show lower residuals with respect to the first session’s data
from participants, than those participants’ own responses to
the same stimuli do from a second session.

The difference between BIC of the race models from the
ideal model’s BIC (taking the average of BIC calculated using
either session as the ideal model), plotted in Figure 4 (right
panel), yields an identical conclusion. Negative values of this
quantity indicate that the BIC for a model of participants’ data
is a closer empirical fit than participants’ test data is to the
same participants’ retest data.

This pattern of classic models already being close to com-
plete appears to be a recurrent pattern across studies. Fuden-
berg et al. (2019) found this to be true for predicting certainty
equivalent assignments for monetary gambles by human re-
spondents, and in predicting first move patterns in game-
theoretic games. Sifar and Srivastava (2022) found this to
be true for predicting choice proportions in risky economic
decisions. In continuation of this trend, we find this to be true
for predicting accuracy and RT patterns in an RDM task.

Reliability of race model parameters for RDM
Finally, we measured the reliability of recovered model pa-
rameters across sessions. The upper panel in Figure 5 shows
the reliability of each model parameter for the three basic
models alongside the simplified, but widely used, EZ-DDM
model (Wagenmakers et al., 2007).

The EZ-DDM model’s parameter estimation process is
simply an analytical transformation of the choice proportion,
mean and variance of the RT distributions to three prominent
DDM model parameters under some simplifying assump-
tions (Wagenmakers et al., 2007). We find that, despite (or
perhaps because of) its simplicity, EZ-DDM’s parameter es-
timates were the most reliable across the two sessions, with
the five parameter simple DDM coming in second in terms of
reliability. We also observed the highest retest reliability for
non-decision time across all models, followed by drift rate.

All other parameters exhibited very poor reliability, even be-
coming negatively correlated in some cases.

The lower panel in Figure 5 shows the reliability of param-
eters for the more complicated variants of the base models. In
addition to poor reliability of the added parameters, we also
observed reduced consistency for drift rate for all models in
this category, compared to the simpler models in the upper
panel.

General Discussion
In this paper, we described our efforts at measuring the com-
pleteness of race models for RDM. Three results emerged
from our analysis. Our first result is the demonstration of
moderate retest reliability for accuracy and high retest reli-
ability for response time distributions for the RDM task in
aggregate, but extremely low trial-level reliability for both
variables. The fact that cohort-level reliability of choice accu-
racy in a perceptual decision-making task is less reliable than
choice proportions in abstract economic decisions is surpris-
ing, and warrants further investigation.

Our second result is the observation that simple race mod-
els are already more than 90% complete, in the sense that the
empirically best model for this task would not reduce mean
squared loss by more than 10% from what simple DDMs
alone can accomplish. We note that this finding is not en-
tirely unexpected. A recent parameter recovery study across
multiple researchers’ DDM model fitting pipelines revealed
that fits produced by the simplest models tended to provide
the best explanations for the test data (Dutilh et al., 2019).

While these earlier results point to simpler race models be-
ing better in a relative sense than complex ones, our results
lay down an objective marker for just how well they work, and
how little explainable variance is genuinely left in the residu-
als of their predictions on RDM data. Put simply, DDM is a
‘good enough’ model of RDM and related tasks; more com-
plex models can fit individual choice proportion and response
time datasets better as a curve-fitting exercise, without gener-
ating reliable insights. Thus, we suggest that better insights
into perceptual decision-making require richer data, not more
complex models (Sifar & Srivastava, 2022).

Our third result is the observation that all parameters in the
EZ-DDM model, but only drift rates and non-decision time
parameters for other models, are reliable across session fits.
Lerche and Voss (2017) make similar observations in reliabil-
ity testing of race models across a battery of cognitive tasks.

Overall, we show that more precise models of the RDM
task may not necessarily be better, since their precision arises
from over-fitting to single observations of intrinsically vari-
able behavior. As we demonstrate, maximizing model-data
correlations for one session’s observations of low reliability
data guarantees that the fit models will fail to predictively
generalise even to the same participants’ responses to the
same stimulus. Thus, our results support a recent theoretical
claim that the presence of irreducible noise can easily defeat
empirical claims proved using Fisherian hypothesis testing,
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lation under investigation. Error bars represent 95% CI.

since this inference engine is not designed to reason about
non-stationary observations (Yarkoni, 2022).

A practical implication of accepting this argument is that
small to moderate empirical effects documented in the litera-
ture on the basis of statistically significant group differences
in DDM parameters must be interpreted with caution. As
a visual demonstration of the breadth of studies affected by
this cautionary principle, we show a subset of such results,
focusing only on drift rate-based results for succinctness, in
Figure 6 (Fish et al., 2018; Huang-Pollock et al., 2017; Kar-
alunas et al., 2014; Karalunas et al., 2018; Karalunas et al.,
2012; Limongi et al., 2020; Metin et al., 2013; Moustafa et
al., 2015; Poole et al., 2021; Ratcliff et al., 2001; Sripada &
Weigard, 2021; Theisen et al., 2021; A. Weigard & Huang-
Pollock, 2017; A. S. Weigard et al., 2021). For each study,
we used the reported mean and standard deviations to mea-
sure Cohen’s d between groups with statistically significant
differences. Figure 6 shows the claimed results depicted by
black markers. We show the effect size of drift rate mea-
surements obtained by treating session as a condition in our
analysis by solid red vertical lines. Dashed lines are used to
report a similar effect size in drift rate for a recognition mem-
ory task in DDM parameters retest reliability study conducted
by Lerche and Voss (2017). In view of the high unreliabil-
ity of these parameters in both RDM and memory tests, only
effect sizes substantially larger than the session-based sizes,
can be interpreted unambiguously.

Our results may seem counter-intuitive in seeming to favor
older, simpler models over newer, complex ones. Progress to-
wards better explanations inevitably involves the use of more
complex models. It is equally necessary to appreciate, as
we show in this paper, that unreliability of data used to es-
timate model parameters fundamentally limits the granular-
ity at which models can be discriminated based on empirical
goodness-of-fit. As Almaatouq et al. (2022) have recently ar-
gued, progress in understanding requires the complexity of
models and richness of data to expand together.
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