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Restriction spectrum imaging
with elastic image registration
for automated evaluation of
response to neoadjuvant therapy
in breast cancer

Maren M. Sjaastad Andreassen1,2, Stephane Loubrie3,
Michelle W. Tong3,4, Lauren Fang3, Tyler M. Seibert3,4,5,
Anne M. Wallace6, Somaye Zare7, Haydee Ojeda-Fournier3,
Joshua Kuperman3, Michael Hahn3, Neil P. Jerome1,8,
Tone F. Bathen1,9, Ana E. Rodrı́guez-Soto3, Anders M. Dale3,5

and Rebecca Rakow-Penner3,4*

1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology,
Trondheim, Norway, 2Department of Oncology, Vestre Viken, Drammen, Norway, 3Department of
Radiology, University of California, San Diego, La Jolla, CA, United States, 4Department of
Bioengineering, University of California, San Diego, La Jolla, CA, United States, 5Department of
Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United
States, 6Department of Surgery, University of California, San Diego, La Jolla, CA, United States,
7Department of Pathology, University of California, San Diego, La Jolla, CA, United States,
8Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway,
9Department of Radiology and Nuclear Medicine, St. Olav’s University Hospital, Trondheim, Norway
Purpose: Dynamic contrast-enhanced MRI (DCE) and apparent diffusion

coefficient (ADC) are currently used to evaluate treatment response of breast

cancer. The purpose of the current study was to evaluate the three-component

Restriction Spectrum Imaging model (RSI3C), a recent diffusion-weighted MRI

(DWI)-based tumor classification method, combined with elastic image

registration, to automatically monitor breast tumor size throughout

neoadjuvant therapy.

Experimental design: Breast cancer patients (n=27) underwent multi-parametric

3T MRI at four time points during treatment. Elastically-registered DWI images

were used to generate an automatic RSI3C response classifier, assessed against

manual DCE tumor size measurements and mean ADC values. Predictions of

therapy response during treatment and residual tumor post-treatment were

assessed using non-pathological complete response (non-pCR) as an endpoint.

Results: Ten patients experienced pCR. Prediction of non-pCR using ROC AUC

(95% CI) for change in measured tumor size from pre-treatment time point to

early-treatment time point was 0.65 (0.38-0.92) for the RSI3C classifier, 0.64

(0.36-0.91) for DCE, and 0.45 (0.16-0.75) for change in mean ADC. Sensitivity for

detection of residual disease post-treatment was 0.71 (0.44-0.90) for the RSI3C
classifier, compared to 0.88 (0.64-0.99) for DCE and 0.76 (0.50-0.93) for ADC.

Specificity was 0.90 (0.56-1.00) for the RSI3C classifier, 0.70 (0.35-0.93) for DCE,

and 0.50 (0.19-0.81) for ADC.
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Conclusion: The automatic RSI3C classifier with elastic image registration

suggested prediction of response to treatment after only three weeks, and

showed performance comparable to DCE for assessment of residual tumor

post-therapy. RSI3C may guide clinical decision-making and enable tailored

treatment regimens and cost-efficient evaluation of neoadjuvant therapy of

breast cancer.
KEYWORDS

breast cancer, locally-advanced breast cancer, neoadjuvant therapy, magnetic resonance
imaging, breast MRI, diffusion-weighted imaging, restriction spectrum imaging
1 Introduction

Neoadjuvant therapy of breast cancer is used to enable breast-

conserving surgery, to provide an in vivo drug-sensitivity test bed

(1, 2), and provide short- and long-term prognostic information.

The goal of neoadjuvant therapy is pathological complete response

(pCR), defined as no remaining tumor tissue in breast and lymph

nodes as measured by post-surgical pathology, and which is

associated with prognostic benefits such as improved survival and

reduced recurrence rates (3). Early assessment of treatment

response is important for tailoring treatment regimens for the

best patient outcome, specifically identifying poor responders that

are candidates for escalated treatment.

The current gold standard for neoadjuvant treatment response

assessment in breast cancer is change in tumor size on dynamic

contrast-enhanced MRI (DCE), manually assessed by the longest

diameter in three dimensions (4). Changes in size may take several

weeks before being detected by DCE, potentially delaying critical

clinical decisions as well as requiring the administration of

Gadolinium-based exogenous contrast agents. Furthermore, DCE-

based manual measurements have conflicting results regarding

residual cancer detection specificity (5) and require expert

radiologist readers to delineate tumor tissue at each time point.

One MRI modality that does not require an exogenous contrast

agent is diffusion-weighted MRI (DWI), a method that is sensitized

to the microscopic diffusion of water molecules (6). In oncology,

DWI has received increased recognition for its usefulness in

detecting malignant tumors by reduced apparent diffusion

coefficient (ADC), commonly associated with the restricted

diffusion caused by highly cellular tumors (7). In the neoadjuvant

therapy setting, several studies have indicated that an increase in

ADC might predict treatment response (8–13), hypothesized to be

caused by a reduction in cellularity through the course of therapy.

However, despite the more restricted diffusion, untreated tumor

ADC values have somewhat surprisingly been proven to be higher

than that of healthy breast tissue (14). One possible reason is the

existence of edema and necrosis, which results in a decrease in

hindrance in extracellular water, increasing the ADC (15–17).

Additionally, areas of hyper-restricted diffusion signal from
02
healthy fatty tissue that lowers the ADC can make it challenging

to differentiate lesions from normal healthy breast tissue by ADC

alone. Consequently, the assessment of treatment response using

ADC often requires time-consuming manual delineation of tumors

to avoid the inclusion of any surrounding healthy breast tissue. This

calls for the exploration of alternative techniques that maximize the

potential of DWI as an adjunct or alternative to DCE methods.

Restriction Spectrum Imaging (RSI) is a multi-component

modeling framework that uses DWI signal over broad ranges of

diffusion weightings (b-values) to capture the restricted diffusion of

intracellular water (18, 19). RSI estimates of cellularity are shown to

be directly related to histopathological tumor cellularity in

preclinical models (20) and Gleason grade in the human prostate

(21, 22). Additionally, RSI is effective for treatment response

assessment for glioma (18, 23) and has decreased sensitivity to

edema compared to ADC (15). In the breast, a three-component

RSI model (RSI3C) has been shown to improve tumor conspicuity

and tumor discrimination from healthy breast tissue compared to

ADC in untreated patients (14, 24) but has not yet been evaluated

for treatment response assessment. The current study aimed to

assess the ability of RSI3C to both assess early response to treatment

and evaluate post-therapy residual cancer compared to

conventional manual DCE delineation, and subsequent DWI

quantitation using ADC, both of which rely on extensive

radiologist input.
2 Materials and methods

2.1 Subject eligibility

Twenty-seven breast cancer patients (median age 47 years,

range 20-68) were included in this retrospective analysis from

participants in a prospective phase II clinical trial; see Table 1 for

patient characteristics details. Criteria for inclusion in the trial

included biopsy-proven (core needle) unilateral invasive breast

cancer ≥2.5 cm (defined on imaging/clinical examination) with an

indication for neoadjuvant therapy. We included all participants

(n=31) from the University of California San Diego (UCSD) site
frontiersin.org
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who underwent multi-b-value DWI acquisition between December

2015 and June 2019. Written informed consent was obtained from

all patients. The study was approved by the local institutional review

board and conducted in accordance with the Declaration of

Helsinki. Four patients were excluded from further analyses due

to poor image quality for DCE (n=3) and DWI (n=1), resulting in

27 included patients. The sample size was determined by the

maximum number of participants recruited at the time of

analysis. The primary treatment was paclitaxel (+/-) experimental

agent followed by anthracyclines.
Frontiers in Oncology 03
Patients underwent MRI at four time points to evaluate

response to treatment: pre-treatment, early-treatment (3 weeks,

range 2-4 weeks), mid-treatment (12 weeks, range 7-13 weeks),

and post-treatment (22 weeks, range 18-27), illustrated in Figure 1.

Out of the 27 patients, 17 patients received all four scans; for three

patients, scans at specific time points were excluded due to major

patient movement (n=1) and poor DWI image quality (n=2). This

led to the following numbers available for analysis; pre-treatment

(n=27), early-treatment (n=17), mid-treatment (n=17), and post-

treatment imaging (n=27). Note that for five patients, surgery was

performed directly after the mid-treatment time point, and this was

thus categorized as a post-treatment scan rather than a mid-

treatment. The pre-treatment scans (n=27) were previously used

for the development of RSI3C in two studies (14, 24).
2.2 MRI acquisition and
image preprocessing

MRI data were acquired on a 3T GE scanner (MR750, DV25-26,

GE Healthcare, Milwaukee, US) with an 8-channel breast array coil

with a bilateral axial imaging plane. The MRI protocol included

Gadolinium DCE (Gadovist or MultiHance), non-fat-saturated T1,

and multi-b-value DWI acquisition. DCE acquisition parameters

included TE = 2.6 ms, TR = 5.4 ms, flip angle = 10°, acquisition

matrix 512 x 406, reconstruction matrix 512 x 512, and voxel size

0.625 x 0.625 (in-plane) x 2.4 (slice) mm3. DWI was performed

using reduced field of view (FOV) echo-planar imaging (EPI)

including the following parameters: SPECtral Inversion At Lipid

(SPECIAL) fat suppression, TE = 82 ms, TR = 9000 ms, b-values

(number of diffusion directions) = 0, 500 (6), 1500 (6), and 4000

(15) s/mm2, FOV = 160 x 320 mm2, acquisition matrix = 48 x 96,

reconstruction matrix = 128 x 128, voxel size = 2.5 x 2.5 x 5.0 mm3,

phase-encoding (PE) direction anterior to posterior (A/P).

All data analysis was performed using MATLAB 2020b

(MathWorks, Natick, MA). DWI data were averaged across

diffusion directions for each b-value, corrected for eddy current

artifacts, motion (18), and geometric distortion (25), and resampled

to match the geometry of the DCE images.

Fast longitudinal image registration (FLIRE) (26) was used to

co-register DWI data to non-fat-saturated T1 and to longitudinally

register all images and regions of interest (ROIs) to the pre-

treatment time point. FLIRE is based on a well-established non-

rigid deformable brain registration technique (27), which when

optimized for the breast has been shown in preliminary studies to

outperform existing registration methods, with significantly

reduced run time (26). We provided four example cases to

demonstrate differences in unregistered and registered images in

supplemental data (Supplemental Figures 1–4).
2.3 Tumor assessment by DCE

To provide standard-of-care response assessment, the longest

diameter of cancer in any plane (in cm) corresponding to biopsy-

proven cancer was manually defined on post-contrast DCE by a
TABLE 1 Clinical characteristics of patient cohort.

No. Patients 27

Median patient age, years (range) 47 (20-68)

Lesion type mass (mass vs. NME)

Mass 24

Mass + NME 3

Histologic type

NST 24

Metaplastic carcinoma 2

Mixed IDC/ILC 1

MBR score

1 1

2 11

3 15

ER status

Positive 15

Negative 12

PR status

Positive 13

Negative 14

HER2 status

Positive 3

Negative 23

Not analyzed 1

pCR status

pCR 10

non-pCR 17

Median time from therapy start to MRI scan, days (range)

Early-treatment 19 (15-26)

Mid-treatment 81 (48-94)

Post-treatment 153 (127-190)
NME, non-mass enhancement; NST, invasive breast cancer of no special type; IDC, invasive
ductal carcinoma; ILC, invasive lobular carcinoma; MBR, Modified Bloom-Richardson; ER,
estrogen receptor; PR, progesteron receptor; HER2, Human Epidermal Growth Factor
Receptor 2; pCR, pathological complete response.
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breast radiologist (RRP) for each time point. For cases with several

cancer lesions, the largest conglomerate of connected lesions was

used as the definition of cancer.
2.4 Automatic tissue classification and
tumor measurement using RSI3C

Full-lesion cancer and control regions of interest (ROIs) were

manually defined at the pre-treatment time point on a high b-value

DWI image (b = 1500 or 4000 s/mm2) avoiding macroscopic areas

of necrosis, validated by a breast radiologist (RRP) as described in

prior publications (14, 24). Cancer ROIs were drawn for the lesions

corresponding to biopsy-proven cancer; for cases with several

cancer lesions, the largest conglomerate of connected lesions was

defined as the cancer ROI. Control ROIs were defined using a semi-

automatic approach with the aim to include all representative

healthy breast tissue; first, a rectangular box was placed around

the entire healthy contralateral breast (only unilateral breast cancer

was included in this study), then the background was masked using

intensity thresholding and 3D connected components.

The DWI signal for all voxels across all available b-values was

fitted to a previously-developed RSI3c model (14, 24), given as:

SDWI(b) =  C1 exp( − b · ADC1)

+ C2 exp( − b · ADC2) +  C3 exp( − b · ADC3)

where SDWI is the diffusion signal in arbitrary units, b is the b-

value in s/mm2, and Ci denotes the voxel-wise, unit-less signal

contribution of each component i. The apparent diffusion

coefficient (ADCi) values, given in mm2/s, were fixed across

voxels as previously reported (17). C1 relates to restricted or

hyperrestricted diffusion in cancer and healthy fatty tissue and C2

to hindered diffusion in cancer and healthy fibroglandular tissue,

while C3 corresponds to fast diffusion and vasculature (17). The

data were normalized to the 95th percentile of the intensity of the

computed geometric mean of C1 and C2 of the control ROI for

each patient.

To create a global RSI3C tissue classifier applicable across

patients and time points, the first two components of RSI3C (C1

and C2) were selected, as these have previously demonstrated

excellent discrimination of cancer from healthy breast tissue

(16). Joint C1 and C2 probability density functions (PDFs) for
Frontiers in Oncology 04
voxels in cancer and control ROIs were calculated for all patients

simultaneously at the pre-treatment time point. The PDFs

generated a lookup table of the posterior probability of cancer,

given C1 and C2 measurements for any voxel. This was used to

create voxel-wise probability maps for each individual patient at

each time point (RSI3C map).

To estimate the longest tumor dimension after voxel

classification, the defined cancer ROI at the pre-treatment time

point was uniformly expanded by 1 cm to generate a ‘tumor-

containing region’ and used for analysis on the RSI3C map

(Figure 2). In addition, to account for any tumor growth outside

of the tumor-containing region, any components connected to the

tumor-containing region above 0.5 were included in the tumor-

containing region. After the tumor-containing region was defined,

the largest single connected component within the tumor-

containing region above a 0.5 threshold on the RSI3C map was

identified. For this lesion, the longest diameter in any plane (in cm)

was automatically calculated by using voxel coordinates; a detailed

description of lesion size calculation is given in supplemental

materials (Supplementary Methods). A one-dimensional RSI3C
measurement was chosen to ensure direct comparability with the

longest tumor diameter manually defined on DCE. For two cases,

any enhancement from the skin was masked as the focus of this

study was the primary tumor. The tumor-containing region

definition at pre-treatment was applied across all time points,

thus limiting the manual definition of cancer ROI and semi-

automatic definition of control ROI to the pre-treatment time

point. An example of a non-responding subject is given in Figure 3.
2.5 Diffusion quantification using ADC

Conventional apparent diffusion coefficient (ADC) maps were

calculated as described by Jensen et al. (22) using b-values< 1000 s/

mm2 taken from the multi-b-value RSI3C acquisition. The mean

ADC value was assessed within the pre-treatment cancer ROI

applied to all subsequent registered time points. The cancer ROI

was used rather than the tumor-containing region (as for RSI3C) to

avoid the inclusion of any healthy breast tissue at baseline (pre-

treatment time point). This approach thus avoids the time-

consuming and technically difficult manual delineation of a

tumor undergoing treatment and ensures the same number of
FIGURE 1

Trial schematic showing neoadjuvant treatments in relation to pre-treatment, early-treatment, mid-treatment, and post-treatment MRI, followed by
surgery. Seventeen patients were scanned at all four time points (given in parenthesis in figure).
frontiersin.org
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analyzed voxels for each time point. Any undefined values (zero and

infinite) at b = 0 s/mm2 and ADC were excluded (no undefined

values were present in the cancer ROI). Example cases including

violin plots to display ADC distribution are included in

supplemental materials (Supplemental Figures 5, 6).
2.6 Clinical response definition

The primary endpoint was non-pathological complete response

(non-pCR). pCR was defined as no residual invasive disease with or

without ductal carcinoma in situ in either breast or axillary lymph

nodes after neoadjuvant therapy (ypT0/is, ypN0) (28). Assessment

of pCR-status was performed on the post-surgical histological

specimen, and patients were categorized into pCR and non-pCR

groups. Non-pCR was used as endpoint rather than pCR as we

argue it is more clinically relevant to identify non-responders that

are candidates for escalated treatment. The post-treatment size and

residual tumor cellularity (manually estimated) of the post-surgical

specimen were recorded.
2.7 Assessment of treatment response by
imaging metrics

The tumor size from DCE and RSI3C classifier measurements, as

well as mean ADC values, were analyzed for all patients (n=27) at

the post-treatment time point. Absolute values were used as the
Frontiers in Oncology 05
purpose was to investigate the association with final pathology

(non-pCR) at the post-treatment time point. In addition, for the

patients who underwent all four scans (n=17), response to

treatment during the course of treatment was assessed using the

relative change in measured diameter sizes (DRSI3C, DDCE) and
change in mean ADC (DADC) from pre-treatment to each of the

early, mid, and post-treatment time points. The relative change was

used to assess how change in imaging modality over time could

predict non-pCR.
2.8 Statistical analysis

MATLAB 2020b (MathWorks, Natick, MA) and Excel Version

16.74 were used for statistical analysis. The area under the curve

(AUC) of receiver operating characteristics (ROC) curves were

calculated for all cases (n=27) at the post-treatment time point

for DCE, RSI3C classifier, and mean ADC to detect non-pCR (i.e.

positive was defined as a patient with remaining tumor tissue, and

so accurate detection of pCR corresponded to a negative

classification in the imaging). Furthermore, for cases with all four

scans (n=17), ROC curves were assessed for the ability of DRSI3C,
DDCE, and DADC to predict non-pCR at the early, mid, and post-

treatment imaging time points. We used an a priori assumption that

an increase in mean ADC (8–13) and a decrease in RSI3C classifier

and DCE size represents response to treatment, in line with

previous experience. Sensitivity, specificity, and accuracy were

calculated for the threshold yielding the highest accuracy; for
FIGURE 2

DCE, RSI3c maps, and ADC maps with corresponding size (manual DCE measurement and RSI3C classifier) and mean calculation (ADC) for all four
time points for a subject with no remaining tumor tissue on final post-surgical pathology. The cancer region (green outline) at the pre-treatment
time point was uniformly expanded by 1 cm to generate a cancer-containing region (blue outline). The longest diameter of cancer (in cm) was
manually defined on post-contrast DCE for each time point. For the RSI3C classifier, the largest single connected component within the cancer-
containing region was identified and the longest diameter (in cm) was automatically assessed. To account for tumor growth outside of the tumor-
containing region, any components connected to the tumor-containing region above a threshold of 0.5 were included in the analysis. The tumor-
containing region at pre-treatment was applied for all subsequent registered time points. The mean ADC was calculated within the cancer region
(green outline) for each time point. The RSI3C classifier shows a more pronounced size decrease at the early-treatment time point compared to
manual measurement by DCE. The RSI3C classifier was more specific at the post-treatment time point, while there was still some remaining tumor
left within the tumor bed at the post-treatment time point for the DCE (red arrow). Also, note that the RSI3C classifier is well-defined within the
cancer ROI at the pre-treatment time point (green outline). Tx, treatment; DCE, dynamic contrast-enhanced MRI; RSI3C, three-component
Restriction Spectrum Imaging model; ADC, apparent diffusion coefficient.
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completeness, accuracy (acc90) and sensitivity (sens90) requiring

specificity ≥ 90% were included in supplemental materials

(Supplemental Tables 1, 2). Diagnostic sensitivity and specificity

between techniques were compared by McNemar’s test, while

DeLong’s test was used to compare ROC curves. Alpha was set to

0.025 due to correction for two primary outcomes (AUC and

sensitivity/specificity).
3 Results

After post-surgical histology, 10/27 (37%) patients were

classified as showing pCR. Of the 17 non-pCR patients, the RSI3C
classifier correctly identified 12 using a threshold of 0.75 cm for

non-pCR definition, with 5 false negatives that showed generally

small remaining tumor size and varied cellularity (Figure 4A).

There was 1 false positive. Correspondingly, DCE correctly

classified 15 non-pCR patients, with only 2 false negatives and 3

false positives (using a threshold of 0.60 cm for non-pCR

definition). Example classifications are shown in Figure 4B.

Correlation plots between tumor size by RSI3C classifier and DCE

and cellularity are included in supplementary materials

(Supplemental Figure 7) and display moderate correlation.

Results for the post-treatment time point are given in Table 2;

corresponding ROC curves are given in Supplemental Figure 8.

Sensitivity, specificity, and accuracy for absolute post-treatment

tumor size were 0.88, 0.70, and 0.81 for DCE, and were 0.71, 0.90,

and 0.78 for the RSI3C classifier, and mean ADC at post-treatment

gave 0.76, 0.50 and 0.67.

McNemar’s test for comparison of sensitivity and specificity did

not show significant differences for comparison between

any modalities.

The AUC of the ROC evaluating the change in measured tumor

size from pre-treatment to the early-treatment, mid-treatment, and
Frontiers in Oncology 06
post-treatment time points were 0.64, 0.71, and 0.80 for DDCE;
0.65, 0.60, and 0.76 for the DRSI3C; and 0.45, 0.35 and 0.36 for

DADC (under the assumption that ADC increases with response).

Table 3 shows the complete data including threshold values;

corresponding ROC curves are given in Supplemental Figure 9.

DeLong’s test for comparison of ROC curves for early-treatment

time point resulted in non-significant p-values throughout: DDCE
vs. DRSI3C p=0.94, DDCE vs. DADC p=0.31, DRSI3C vs. DADC
p=0.43, mid-treatment time point: DDCE vs. DRSI3C p=0.42, DDCE
vs. DADC p=0.10 and DRSI3C vs. DADC p=0.14, and post-

treatment: DDCE vs. DRSI3C p=0.66, DDCE vs. DADC p=0.03,

and DRSI3C vs. DADC p=0.04.
4 Discussion

Our study shows that the classifier based on automatic cancer

tissue detection using a three-component Restriction Spectrum

Imaging model (RSI3C) indicated prediction of response to

treatment after only three weeks (AUC = 0.65, 95%CI 0.38-0.92).

Further, the RSI3C classifier could identify 71% of cases that

corresponded to residual tumor at surgery with 90% specificity in

the later phase of treatment, similar to the performance by manual

tumor measurement on DCE (0.65% sensitivity with 90%

specificity). In contrast to a conventional workflow using DCE or

ADC, which requires manual user input in the form of ROIs or

tumor diameter measurement, the RSI3C classifier is automatic

beyond the pre-treatment MRI scan. The findings suggest that the

RSI3C classifier is sensitive to early time point changes and provides

adequate classification at the post-treatment stage, supporting the

role of the RSI3C classifier to automatically monitor breast tumor

size throughout neoadjuvant therapy.

The performance, indicating prediction of response, was

present already at the early treatment time point and is probably
FIGURE 3

DCE, RSI3c maps, and ADC maps with corresponding size (manual DCE measurement and RSI3C classifier) and mean calculation (ADC) for all four
time points for a non-responding subject with remaining tumor tissue on final post-surgical pathology. Tx, treatment; DCE, dynamic contrast-
enhanced MRI; RSI3C, three-component Restriction Spectrum Imaging model; ADC, apparent diffusion coefficient.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1237720
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Andreassen et al. 10.3389/fonc.2023.1237720
due to the RSI3C classifier’s quantification reflecting tumor

cellularity, rather than tumor vascular perfusion as in DCE. The

RSI3C classifier is based on the first two components of the RSI3C
model (C1 and C2), which have previously demonstrated

discrimination of cancer from healthy breast tissue in the pre-

treatment setting (16). This is likely due to these two components

corresponding to cancer while simultaneously accounting for

varying degrees of fatty tissue and fibroglandular tissue.

Compared to ADC, the predictive performance of the automatic

RSI3C classifier was of the range of DCE at all time points. Our DCE

results are consistent with another directly comparable study (11),

where the longest diameter of manual DCE had an AUC of
Frontiers in Oncology 07
predicting pCR at the early time point of 0.64; AUC increased to

0.70 using a threshold-based DCEmodel (functional tumor volume,

FTV) (11). RSI3C in the breast is sensitive to slow diffusion within

hypercellular tumors while simultaneously suppressing signal from

healthy fatty and fibroglandular breast tissue (14). It is expected that

the RSI3C classifier reflects the decrease in cellularity through the

course of neoadjuvant therapy, consistent with RSI’s known

estimation of tumor cellularity (20) and Gleason grade in the

prostate (21, 22), though there was only moderate correlation to

cellularity in the current study. This might reflect the mechanism of

action of the primary chemotherapies used in this study, taxane and

anthracycline, which arrests cells in mitosis (4, 25) and thus leads to
TABLE 2 Sensitivity, specificity, accuracy, and receiver operating characteristics (ROC) area under the curve (AUC) for prediction of non-pCR for
manual dynamic contrast-enhanced MRI (DCE), three-component Restriction Spectrum Imaging model (RSI3C) classifier and the mean apparent
diffusion coefficient (ADC) after all neoadjuvant therapy prior to surgical intervention (post-Tx time point).

DCE RSI3C classifier ADC

Threshold value 0.60 cm 0.75 cm 1.5 × 10-3 mm2/s

Sensitivity (95% CI) Post-Tx 0.88 (0.64-0.99) 0.71 (0.44-0.90) 0.76 (0.50-0.93)

Specificity (95% CI) Post-Tx 0.70 (0.35-0.93) 0.90 (0.56-1.00) 0.50 (0.19-0.81)

Accuracy (95% CI) Post-Tx 0.81 (0.61-0.94) 0.78 (0.58-0.91) 0.67 (0.46-0.83)

ROC AUC 0.79 0.80 0.52
pCR, pathological complete response; Tx, treatment. For context, the longest diameter at pre-Tx was on average 4.9 cm (+/- 2.5) for DCE and 3.6 cm (+/- 1.7) for RSI3C. Mean ADC at pre-Tx was
1.1 × 10-3 mm2/s (+/- 0.3 × 10-3).
A

B

FIGURE 4

(A) Cases with remaining tumor tissue on final post-surgical pathology are included for the RSI3c classifier and manual measurement by DCE. RSI3C
classifier has more false negative plots than DCE, with 3/5 cases associated with low cellularity. (B) Two example cases, where (upper row) a true
positive case for both RSI3C classifier (1.5 cm) and manual DCE (2.0 cm) had corresponding high cellularity of 70% (size 1.1 x 0.6 cm) on final post-
surgical pathology, while (lower row) a false negative for RSI3C classifier (0 cm) and manual DCE (0 cm) had low cellularity of 1% and similar size (0.6
x 0.5 cm) on final post-surgical pathology. ADC maps are displayed as a reference. DCE, dynamic contrast-enhanced MRI; RSI3C, three-component
Restriction Spectrum Imaging model; ADC, apparent diffusion coefficient.
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cell death. This may help resolve early-phase diagnostic challenges

of tumors that regress with diffuse cell loss, observable in functional

measurements such as DWI, rather than with direct tumor

shrinkage, meaning little or no change in overall tumor size

on DCE.

Assessment of neoadjuvant therapy response at an early time

point is important for clinical decision-making, enables tailored

treatment regimens, and yields valuable information on in vivo

treatment efficacy. Thus, the current findings response assessment

after only three weeks by the RSI3C classifier with an accuracy of

0.76 may be of particular clinical interest. Establishing early

response status may allow for non-responding patients in

adaptive treatment regimens to switch to alternative treatment

regimens pre-surgery. This allows for the planning of additional

systemic therapy for non-responders, which is known to improve

survival (29, 30). On the other hand, establishing early complete

responders may facilitate de-escalated treatment strategies such as

shortened treatment regimens (31), thus avoiding unnecessary

chemotherapy with toxic side effects.

The RSI3C classifier is also informative of tumor cellularity in

later phases of therapy, which is important as post-therapy

cellularity is associated with overall patient survival (29).

Furthermore, the RSI3C classifier identified 71% of cases

demonstrating residual tumor at surgery with 90% specificity, in

line with conventional manual DCE measures (65% sensitivity with

90% specificity). DCE-based methods conventionally have a

prominent role in the context of surgical planning after

neoadjuvant therapy. However, our results suggest that the RSI3C
classifier may have a role in complementing DCE in this setting.

For precise longitudinal assessment of breast tumors during

neoadjuvant therapy, it is crucial for imaging methods to detect

treatment-related changes in vital tumor tissue as opposed to

tumor-related changes such as edema and necrosis. Necrosis was

purposely left out of the cancer ROI at the pre-treatment time point

but may have been included in the ROI if it developed through the
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subsequent time points, while edema may have been included in the

ROI also at the pre-treatment time point (Supplemental Figures 5B

and 6). As such, our study did not systematically investigate the

direct influence of these tumor-related changes. Nevertheless, the

limited efficacy of ADC (AUC< 0.5 for DADC early-, mid-, and

post-therapy and AUC = 0.52 for absolute ADC post-therapy)

compared to the RSI3c classifier in response assessment in our study

may indicate a decreased ability to evaluate treatment-related

changes in tumor cellularity in the presence of concomitant

changes in edema and necrosis. These effects on ADC are known

to become more pronounced as the b-value is reduced because of

greater sensitivity to the fast hindered diffusion, thereby raising the

ADC (15–17). Since our dataset focused on high b-values acquired

for RSI, only 0 and 500 s/mm2 were available for ADC calculation,

and not a range of several low b-values as in comparable studies (8).

This means that the possible effects of tumor-related edema and

necrosis may have been more pronounced in our study.

Compared to RSI3c, previous studies have shown that ADC

seems more sensitive to the heterogeneous breast tissue

environment (14, 24), consisting of varying degrees of fatty tissue

(hyper-restricted, low ADC) and fibroglandular tissue (hindered

diffusion, higher ADC). This is consistent with results demonstrated

in Supplemental Figure 5A where cancer ADC values scarcely fall

below that of the contralateral healthy breast control region at the

pre-treatment time point, likely due to the presence of hyper-

restricted fatty tissue. As the amount of viable tumor tissue

decreases as response to treatment and returns to healthy breast

tissue, the ADC response seems thus partly driven by the

characteristics of the background tissue rather than by the

treatment-related changes in tumor cellularity. This means that

ADC may have a “paradoxical” response pattern where ADC

decreases in a responding case as it returns to background fatty

tissue with lower ADC than the original tumor ADC (Supplemental

Figure 6). This is another factor that may explain why ADC

decreased with response, resulting in the unanticipated AUC
TABLE 3 Sensitivity, specificity, accuracy, and receiver operating characteristics (ROC) area under the curve (AUC) for the performance of DDCE,
DRSI3C, and DADC for prediction of non-pCR at each time point.

DDCE DRSI3C DADC (↑ = response)

Early-Tx
(3 weeks)

AUC (95%CI)
Sens.
Spec.
Accu.
Thresh.

0.64 (0.36-0.91)
0.55
1.00
0.71
-0.07

0.65 (0.38-0.92)
0.91
0.50
0.76
-0.58

0.45 (0.16-0.75)
0.82
0.33
0.65
0.47

Mid-Tx
(12 weeks)

AUC (95%CI)
Sens.
Spec.
Accu.
Thresh.

0.71 (0.45-0.96)
0.91
0.33
0.71
-0.73

0.60 (0.32-0.88)
1.00*
0.00*
0.65*
<-1.00*

0.35 (0.06-0.64)
0.91
0.17
0.65
1.06

Post-Tx AUC (95%CI)
Sens.
Spec.
Accu.
Thresh.

0.80 (0.59-1.00)
0.73
0.83
0.76
-0.72

0.76 (0.52-0.99)
0.64
1.00
0.76
-0.81

0.36 (0.07-0.65)
0.91
0.17
0.65
0.99
Note that the post-Tx time point is after all neoadjuvant therapy prior to surgical intervention. As the data is normalized to pre-Tx time point, threshold values are unitless multiplication factors.
* The optimal accuracy is achieved by a threshold where all cases are classified as non-pCR (sensitivity = 100%).
pCR, pathological complete response; Tx, treatment; DDCE, change in size from pre-treatment time point for manual dynamic contrast-enhanced MRI; DRSI3C, change in size from pre-
treatment time point for the three-component Restriction Spectrum Imaging model classifier; DADC, change in mean value from pre-treatment time point for apparent diffusion coefficient.
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values below 0.5, contrary to our a priori assumption based on

previous studies that an increase in mean ADC represents response

to treatment (8–13). RSI3c is on the other hand less influenced by

normal background tissue (14, 24). These effects on ADC are likely

to have been enhanced by the ROI delineation method in our study,

where the pre-treatment cancer ROI was used for all subsequent

longitudinally registered time points. This is different from

conventional ADC, where cancer ROIs typically are manually

defined for each time point (6), avoiding the inclusion of any

healthy tissue.

Despite many studies examining the role of ADC in

neoadjuvant therapy response assessment, there are conflicting

results in the literature. Although several single-center studies

have found ADC to predict response also in the early phase (10,

12) (13), the multi-center ACRIN 6698 trial (8) and a recent study

by Almutlaq et al. (9) show a low predictive value of ADC at this

time point, although predictive at the mid- and post-treatment time

point in the ACRIN 6698 trial (8). These inconsistent findings may

reflect the high sensitivity of ADC to healthy background tissue,

tumor-related edema, and necrosis, which again are influenced by

ROI methodology and b-value selection. As such, the

methodological factors in our ADC analysis, differing from more

conventional ADC analysis, indicate that it is difficult to determine

if the RSI3c classifier performs better than conventional ADC based

on our findings.

There were some limitations to our study. Most notably, the

sample size of this longitudinal study was small. A total of 27

patients were included, where 17 had all four MRI scans in the study

protocol, which limits the reliability and generalisability of the

conclusions. One limitation of the RSI3C classifier method is the

remaining requirement for user input for generating the pre-

treatment ROI, although tumors that receive neoadjuvant

chemotherapy are generally large (> 4 cm) and relatively easy to

detect on pre-treatment MRI scans, whereas the more challenging

task of delineating tumors that are affected by treatment is avoided.

We also acknowledge that the current study is an initial application

of the RSI3C classifier in a neoadjuvant breast cancer setting; further

optimization of the methodology (i.e. threshold value of RSI3C map,

cancer ROI expansion) is an area of interest for future research.

Additionally, the current registration method used in the study

(FLIRE) may introduce artificial changes in tumor size across time

(Supplemental Figures 1–4) as this approach is applied to the whole

breast and not specifically to the tumor. However, the focus in the

current paper was on characterizing changes in tissue properties,

using RSI3C-based measures, within the tumor across time. Lastly,

as discussed above, the ADC value appeared to associate with a

decrease in ADC with response; this finding was unexpected, and

possibly methodological rather than physiological in origin, and

should be investigated further in a larger cohort with greater

statistical power.

It is well-known that ADC has a comparable ability to DCE in

discriminating between benign and malignant lesions in pre-

defined small regions of the breast (32, 33). Nonetheless, images

that exhibit strong contrast between the tumor and surrounding

healthy tissue are imperative to enhance the clinical utility of DWI.

This is relevant in a range of settings including early detection,
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treatment evaluation, surgical planning, and surveillance. Previous

studies have demonstrated that RSI3C improves tumor conspicuity

and tumor discrimination from healthy breast tissue compared to

ADC (14, 24), which suggests that RSI3C can increase the current

role of DWI in clinical settings. In the current study, the RSI3C
classifier can automatically estimate tumor volume following a

single cancer ROI definition, which is an advantage compared to

conventional DWI which requires manually defined regions for

every time point during neoadjuvant therapy. This may improve

clinical decision-making to enable tailored treatment regimens.

Automatic assessment is particularly useful in the treatment

setting, as defining tumor volume is especially difficult when the

tumor shrinks in size and may be affected by treatment- and

procedure-related changes. RSI3C may also enable non-contrast

MRI, which could allow for increased monitoring of response by

avoiding time and costs related to administering Gadolinium-based

exogenous contrast agents. RSI3C may also aid in other areas of

patient care such as guiding biopsies to the most cellular aspects of a

patient’s tumor for improved diagnosis and treatment planning.

However, further research is necessary to assess the advantages

of RSI3C.

The development of advanced DWI methods such as RSI3c lays

the foundation for a quantitative, easily implemented, and cost-

efficient framework for clinical use. The multi-component RSI3c
model uses globally determined, fixed component ADCs, thereby

enabling rapid fitting (34) of the diffusion signal making it suitable

for application as a turn-key processing stream on multiple MRI

platforms (14). Acquisition-wise RSI3c uses high b-value ranges (up

to 4000 s/mm2 in this study with a scan time of 4 minutes and 25

seconds) which only requires simple modifications to clinical breast

MRI protocols which typically include low- and mid b-values (500-

1000 s/mm2). Furthermore, in the neoadjuvant therapy setting,

RSI3C uses an effective rapid longitudinal registration (26)

incorporating the pre-treatment MRI scan which automates the

response evaluation and requires minimal user input. These factors

are important for implementing RSI3C in standard-of-care

breast MRI.

Compared to DCE, DWI is prone to several image quality issues

such as low signal-to-noise ratio, spatial resolution, and B0

inhomogeneities in EPI acquisitions which can cause warping.

Specifically in the screening setting, spatial resolution is

important; while DCE has excellent spatial resolution, it is limited

in standard DWI. It is therefore likely that RSI3C, as well as

conventional ADC, will miss small malignant lesions (≤ 12 mm

in size), which is a well-known limitation for breast DWI (35–37).

Improvement of these limitations is important for DWI to act as a

reliable diagnostic tool.

In conclusion, our study demonstrates that the RSI3C classifier,

an automatic quantification procedure based on the three-

component RSI DWI model using elastically-registered images,

showed promising ability to assess response to treatment after

only three weeks of neoadjuvant breast cancer therapy. The

classifier eliminates the need for pre-defined lesions for each

imaging time point that is required for conventional DWI and

DCE analysis. We propose the RSI3C classifier as a novel response

biomarker that can work as a diagnostic tool in both early and late-
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phase of treatment. The RSI3C classifier shows highly promising

diagnostic properties which warrant large-scale validation studies in

routine breast cancer detection and follow-up in comparison to

DCE and ADC metrics.
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24. Rodrıǵuez-Soto AE, Andreassen MMS, Fang LK, Conlin CC, Park HH, Ahn GS,
et al. Characterization of the diffusion signal of breast tissues using multi-exponential
models. Magn Reson Med (2021) 87:1938–51. doi: 10.1002/mrm.29090

25. Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous
static magnetic field-induced distortion in Echo Planar Imaging. Neuroimage (2010)
50:175–83. doi: 10.1016/j.neuroimage.2009.11.044
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