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Decoding Pain Anticipation Imaging Biomarkers using fMRI 
BOLD Contrast in Patients with cLBP  

 
Jiaxiuxiu Zhang 

 

Abstract 

Pain is known to have sensory, cognitive, and affective aspects. However, the mechanism 

behind individual perception and anticipation of pain remains a question in the field.  In this 

investigation, 26 subjects who suffered from varying levels of severity of chronic low back pain 

(cLBP) were recruited into a neuroimaging study which included structural magnetic resonance 

imaging (MRI) and evoked pain paradigm functional MRI (fMRI) experiments. During evoked pain 

paradigm fMRI experiments, participants received randomized cues on the intensity of the 

upcoming pain stimulations (either high, low, or uncertain). Their structural images were input into 

segmentation tools to measure the volume of 31 regions of interest (ROIs). fMRI images were 

collected, preprocessed, and then processed to build individual activation maps. Daily experience 

with cLBP was also collected through self-reporting PEG (Pain, Enjoyment, General activity) 

scores. We assessed to what extent brain structure volumes were associated with self-reported 

PEG scores. Further, we built logistic regression models with LASSO penalization for each 

subject separately to test three things: 1) if neural patterns of each cLBP patient were separable 

when perceiving high pain and low pain stimulus; 2) if high pain and low pain anticipation brain 

activation patterns of cLBP patients were distinguishable during known anticipation cues; and 3) 

if brain activation during known anticipation cue states could be used to decode each cLBP 

patient’s anticipation bias during uncertain cue states. All analyses focused on structural and 

neuronal activation measures form a priori selected brain regions including subfields of insula, 

nucleus accumbens, substantia nigra, anterior cingulate cortex, amygdala, caudate nucleus, 

putamen, pallidum, subgenual frontal cortex, and thalamus. The linear regression models showed 

that the volumes of left insula middle short gyrus, right insula anterior inferior cortex and bilateral 



 v 

anterior cingulate cortex were negatively associated with PEG scores, which reflect their daily 

experience with cLBP. The LASSO model built for individuals separating high pain and low pain 

perception had an average area under the curve (AUC) 0.773 ± 0.206 and the accuracy of 

prediction was 0.65 ± 0.179. The LASSO model built for each individual separating high pain 

anticipation and low pain anticipation has an average AUC of 0.861 ± 0.218 and accuracy of 

prediction of 0.75 ± 0.21. Furthermore, the linear regression models assessing the association of 

1) regional activation during pain perception, 2) regional activation during pain anticipation, 3)

individual anticipatory bias decoded for uncertain cue states with PEG scores were not statistically 

significant in this cLBP cohort. Thus, we were not able to explain individually perceived severity 

of cLBP by their neuronal activation and anticipatory bias, but their brain morphometry changes 

in this study.  
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Introduction 

Chronic low back pain (cLBP) is a complex condition with limited therapeutic options. 

Physical therapy, injection-based treatments, and pharmacologics (such as analgesics, anti-

inflammatory drugs, muscle relaxants, etc.) are all options for treating chronic back pain1. Among 

all of the treatments, opioid prescription for cLBP has increased and opioids are now the most 

commonly prescribed drug class2. However, complications of opioid use in treating cLBP may 

include addiction and overdose-related mortality, which have risen in parallel with opioid 

prescription rates2. In 2019, Eklund et al did a systematic review of increased opioid prescription 

in the US, which  found that there is scant evidence of efficacy for opioids to treat chronic back 

pain1. Loss of long-term efficacy could result from drug tolerance and emergence of hyperalgesia, 

where an individual’s anticipation and perception of painful experiences plays a crucial part. Many 

studies have been done to understand the mechanism of individual pain experience. Various 

studies report that changes in individuals’ expectation of pain affect their perception of pain3,4. 

Eklund et al. also showed that positive expectation (expecting low pain) reduced self-reported 

pain level while negative expectation (expecting high pain) worsened the experience of pain1. 

Nondeceptive placebo has demonstrated its efficiency in clinical practice and its effect may be 

mediated by expectation5. Better understanding underlying biological and psychological 

mechanisms might facilitate improved approaches for the management of cLBP and therapeutic 

outcomes. Given previous findings that expectation and anticipation play a major role in treatment 

outcomes3,4,6, discovering the mechanism of cLBP anticipation and perception may inform 

stratification of patients to clinical pain management programs.  

The goal of this study was to evaluate the association of brain structural and neuronal 

difference with severity of pain intensity and interference in participants with current cLBP. We 

analyzed structural brain magnetic resonance imaging (MRI) scans to study brain structure in 
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terms of difference in tissue volume in brain regions involved in pain processing and anticipation 

and functional magnetic resonance imaging (fMRI) to study neuronal activity using evoked pain 

paradigm16 in individuals with cLBP. fMRI is a noninvasive T2* relaxation -based MRI  modality 

that is sensitive to local concentration of paramagnetic deoxyhemoglobin8; the blood-oxygen-

level-dependent (BOLD) signal detected in fMRI reflects localized changes in blood flow and 

blood oxygenation level,  an indirect measure of neuronal activity7 .   The evoked pain paradigm 

fMRI experiment used in this study involved randomized events of rest, visual cues for anticipated 

pain stimulus levels 16,29,33 ( i.e., low, high, or unknown ), and delivery of pain stimulus at low or 

high pain levels.  The evoked pain paradigm fMRI experiment design aimed to quantify neuronal 

activity of each individual during active pain anticipation and pain perception states.  

Given that previous studies have found that cLBP is associated with both brain tissue 

volume and functional changes in certain brain structures9,10,11, here we focused on structural and 

functional brain changes in the regions of interest (ROIs) previously implicated in pain processing 

and anticipation: insula cortex, anterior cingulate cortex, amygdala, and thalamus 9,12,13,14,29. The 

nucleus accumbens9 and substantia nigra15  were also included in this study because they are 

involved in cognitive and emotion processing. Studies have shown that patients with chronic pain 

have significant volume decrease in the right anterior insula cortex and left middle cingulate 

cortex18. Becerra et al. showed that noxious stimuli reliably produces nucleus accumbens19. Brain 

stem excluding substantia nigra was selected for its role in nociception and pain processing. The 

anterior cingulate and amygdala ROIs were chosen for their role in affective processing networks, 

the nucleus accumbens as representative of the ventral striatum, along with its common targets, 

the pallidum and substantia nigra, and lastly the caudate nucleus and putamen as representative 

of the dorsal striatum. 

Through both volumetric and functional analysis of these regions, we expected to see 

structural difference correlated with varying severity of cLBP and subject-specific functional brain 

activation patterns when anticipating different levels of negative outcomes. We assessed the 
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degree to which an individual’s neuronal activity patterns during low versus high pain stimulus 

and during known low versus high pain anticipation cues are distinguishable. Then we decoded 

each individual’s anticipatory bias when presented with unknown visual cues. We aimed to assess 

the extent to which subject-specific intrinsic biases in pain perception and anticipation could 

explain the perceived severity of cLBP. 

 

Methods 

Participants 

Subjects were recruited through current VA-funded trials in veterans with diagnosed cLBP 

from the Bay Area.  Staff research associates contacted candidate participants to confirm their 

interest and conducted a 45-minute phone interview with each interested individual. The phone 

interview consisted of questions about their physical health, mental health, MRI safety, and 

substance use.  Prior to the study participation, all subjects gave their written informed consent 

and had received clinical MRI as part of usual care. Subjects were excluded from the study if they: 

(1) used psychotropic medication within the last 30 days; (2) fulfilled DSM-IV criteria for 

alcohol/substance abuse or dependence within 30 days of study participation; (3) fulfilled DSM- 

IV criteria for lifetime bipolar or psychotic disorder; (4) had ever experienced a head injury; (5) 

had clinically significant comorbid medical conditions, such as cardiovascular and/or neurological 

abnormality, or any active serious medical problems requiring interventions or treatment; (6) had 

a history or current chronic pain disorder; (7) had irremovable ferromagnetic material; (8) were 

pregnant or claustrophobic; and (9) were left-handed.  

     

Neuroimaging protocol 

A 3T Siemens Skyra scanner equipped with a 32-channel head coil was used to acquire 

multimodal brain MRI data. The scanner allows for simultaneous multi-slice acquisition, or 
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multiband (MB) imaging, which generates full-brain, high-resolution acquisitions at a reduced 

repetition time. The following images were obtained for each subject: (1) 3D T1-weighted MP-

RAGE for image registration, spatial normalization, brain parcellation, tissue segmentation 

(TR=2400 ms, TE=2.24 ms, flip angle=8°, FOV=256 mm*256 mm, 224 slices, 0.8*0.8*0.8 mm 

voxel); (2) two sets of task fMRIs using evoked pain paradigm (TR=820 ms, TE=35 ms, flip 

angle=58°, FOV=208 mm*208 mm, 72 slices, 2*2*2 voxel, MB=8). Field maps were acquired to 

correct for distortions, minimize registration error by using subject-specific templates and manual 

tweaking. Pulse oximeter was used on all participants to collect oxygen level of their blood. 

Acquisitions were time-locked to the onset of the task. The neuroimaging protocol was conducted 

the same across the entire clinical cohort.  

 

Evoked pain paradigm fMRI experiment design  

Before MRI, two temperatures between 42–46 ℃ were determined for each individual to 

elicit high pain and low pain through pain thresholding. Participants were then engaged in a 

sensory pain-anticipation task consisting of these two predetermined temperatures29,32,33 (Figure 

1); the two temperatures elicited low pain (LP) and high pain (HP) sensations, respectively. Heat 

was delivered through a 9 cm2 thermode (Medoc TSAII, Ramst-Yishai, Israel) on the participant’s 

left forearm. Each trial began with a duration of 10 seconds (10 s) of anticipation initiated by a 

visual cue (Figure 1). Each visual cue was followed by painful stimulation (either HP or LP) for a 

period of 7 seconds and a random period of rest time (7-30s) before the next trial began. Two 

sessions of tasks were conducted. Each session contained seven HP cues (HP cue followed by 

HP stimulation), seven LP cues (LP cue followed by LP stimulation) and 14 uncertain cues (UN 

cue followed by either HP or LP stimulation at 50% probability). The order of visual cues of high 

pain and low pain was randomized separately for each session as illustrated in Figure 1, described 

elsewhere in full detail 16,29,33.  
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Figure 1: Illustration of task-based fMRI Design 16,29,33: Each trial began with a duration of 10 seconds (10s) of 
anticipation initiated by a visual cue. Each visual cue was followed by painful stimulation (either HP or LP) for a period 
of 7 s and a random period of rest time (7-30 s) before the next trial began. Two sessions of tasks were conducted. 
Every run contained 7 HP cues (HP cue followed by HP stimulation), 7 LP cues (LP cue followed by LP stimulation) 
and 14 uncertain cues (UN cue followed by either HP or LP stimulation at 50% probability). Yellow visual cues were 
followed by either HP or LP stimulation at 50% probability. 
 
 
 
Structural image processing  

Structural T1 MRI analysis was conducted on all 26 subjects through Advanced 

Normalization Tools (ANTs)17 to extract ROIs defined in an MNI standard space atlas (see Table 

1). A total of 31 ROIs are chosen based on their prominent roles in pain prediction, processing, 

and relief. Accordingly, six ROIs were selected within the insula bilaterally: (1) posterior long 

gyrus, (2) anterior short gyrus, (3) middle short gyrus, (4) posterior short gyrus, (5) anterior inferior 

cortex, and (6) anterior long gyrus29,30. The posterior insula, according to the current evidence, 

encodes objective thermosensory information, whereas the middle  and anterior insula integrate 

thermosensory information with emotionally salient stimuli from all sensory modalities30, 31. 
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Neuroanatomical and functional brain imaging studies also indicate that anterior insula integrates 

interoceptive, cognitive, and emotional experiences29.  Nine  functionally relevant bilateral ROIs 

were selected: (1) anterior cingulate cortex, (2) amygdala, (3) nucleus accumbens, (4) caudate 

nucleus, (5) putamen, (6) pallidum, (7) substantia nigra, (8) pre-subgenual frontal cortex, and (9) 

thalamus. To extract these volumes, each subject’s structural image was spatially normalized to 

a template image in standard MNI-152 space using nonlinear warping method from ANTs17. The 

31 ROI masks which were defined in the MNI standard space were then registered onto each 

subject’s T1 image to segment certain parts of the brain and measure the volume of each ROI. 

Individual intracranial volume (ICV) was calculated as well for volumetric analysis. Specifically, 

the relative ICV-to-template ratio was determined by calculating the determinant of the affine 

transformation matrix acquired from the ANTs registration. The ICV-to-template ratio was then 

multiplied by the ICV of the MNI-152 template to calculated a total ICV value per subject. Spatial 

normalization and ROI segmentation results were inspected visually for accuracy.  
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Table 1: Regions of interest: 31 ROIs are chosen based on their prominent roles in pain prediction, processing, and 
relief. Insula, basal ganglia, cingulate cortex, frontal cortex, amygdala, brain stem and thalamus are the main areas 
that we focus on.  

 
 
Task-Based fMRI image processing  

MATLAB-based CONN functional connectivity toolbox6 was used to preprocess the task-

based fMRI images. Preprocessing included: (1) functional realignment and unwarp, (2) functional 

center to (0,0,0) coordinates, (3) functional slice-timing correction, (4) functional outlier detection, 

(5) functional direct segmentation and normalization, and (6) functional smoothing. Spatial noise 

reduction with masked ICA (Independent Component Analysis) was utilized for temporal noise 

reduction. Spatial masking was implemented before data smoothing, which helped  reduce the 

contamination of brainstem signals with physiological noise from neighboring regions. For the 

functional outlier detection (step 4), the intermediate settings were chosen with 97th percentile in 

the normative sample. For segmentation and normalization (step 5), default tissue probability 

maps were used for the simultaneous segmentation of gray, white matter and cerebrospinal fluid 

(CSF) and Montreal Neurological Institute (MNI) coordinate normalization. The smoothing kernel 
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used in the functional smoothing (step 6) was 4 mm full-width half maximum (FWHM). Next, 

denoising was performed on the functional data. Here, linear detrending and regression of the 

confounding effects of realignment and scrubbing was completed. De-spiking was implemented 

before regression and a band pass filter of [0.008 Hz, infinity] was applied after regression.  

 

Figure 2: Illustration of fMRI image processing flow: T1w images were input into Advanced Normalization Tool 
(ANTs) to extract ROI masks for each individual. BOLD task fMRI images were registered with T1w images for CONN 
pre-processing and denoising. The images were then inputted into the Analysis of Functional Neuroimages (AFNI) to 
build individual activation maps. ROI masks were applied to the individual activation maps for a multimodal image 
processing fusion to create a matrix of 31 ROIs as rows and 28 events as columns.  
 

Further analysis on preprocessed task fMRI data was conducted using the Analysis of 

Functional NeuroImages (AFNI) software package20. To reduce the false positives caused by 

signal overlapping in a short amount of time, time series data was fit using the AFNI 3dLSS, which 

applies a least-squares-sum model estimation to the individually modulated time-series data to 

deconvolve BOLD activation (3dDeconvolve)21. Masks of selected 31 ROIs created in T1 image 

space of each subject via ANTs processing were applied to the average BOLD activation maps 

for each anticipation and pain stimulus period (N=28) using AFNI 3dROIstats22 to extract the mean 
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activation in each ROI. An ROI activation map for each subject during pain perception and pain 

anticipation period was then created separately.  

 

Clinical Pain Severity Assessment 

The Pain, Enjoyment, General activity (PEG-3) Scale28 is a self-reported clinical severity 

assessment of pain intensity and interference of participants’ daily life. The PEG questionnaire is 

composed of three questions: 

 

1. What number best describes how, during the past week, pain has interfered with 

your enjoyment of life?  

2. What number best describes your pain on average in the past week? 

3. What number best describes how, during the past week, pain has interfered with 

your general activity?  

 

Participant answers to these three questions were provided on a scale of 0 to 10, where 

0 is “Does not interfere” and 10 is “Completely interferes” for questions 1 and 3. For the second 

question, 0 is “No pain” and 10 is “Pain as bad as you can imagine”. The overall pain score is 

calculate as the average of these three item level scores, higher overall score indicating greater 

pain severity.   

  

Statistical Analysis  

Aim 1: To assess to what extent patient-reported pain outcome measure (PEG-3) is associated 

with regional tissue volumes of brain regions implicated in pain processing and anticipation in 

patients with cLBP  

The single ROI volumes were compared with individuals’ PEG scores through linear 

regression to test their associations. Intracranial volume, age and sex were included in the 
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regression model as covariates. Holm’s correction was used to correct the results for multiple 

comparisons. R2 delta (of the ROI volume) was estimated by subtracting the R2 of regression 

model containing ICV, age and sex from the total R2 of the regression model containing ROI 

volume, ICV, age and sex. Effect size and confidence interval for each ROI were determined 

using the effect size package26 in R.  

 

Aim 2 : To determine the extent to which within-subject neural response during high pain vs low 

pain stimulus are distinguishable in patients with cLBP. To evaluate the association between 

individual neuronal brain activity during pain perception and patient-reported pain outcome 

measures (PEG-3) 

For each participant , the average activation from each ROI during pain stimulus trials  

were used as independent predictors in a logistic regression analysis with Least Absolute 

Shrinkage and Selection Operator (LASSO) to assess whether their neural activations during high 

pain and low pain stimulus are distinguishable. With 31 ROIs (independent predictor variables) 

but only 28 events (dependent outcome observations), regularized logistic regression allows us 

to search for a sparse regression model fit35. To balance the bias in predictor selection and 

variance in predictor load, we used a leave one out cross validation method to select the LASSO 

tuning parameter36. A major advantage of LASSO is that it is a combination of both shrinkage and 

selection of variables and optimal tunning in LASSO regularization allows for accurate and 

consistent discrimination between single-subject neurobiological patterns of low- and high-pain 

perception and anticipation. LASSO modeling was performed using glmnet package38. 

The model for each single subject to distinguish between high pain and low pain brain 

activation was assessed using receiver operating characteristic (ROC) analysis, and described 

by area under the curve (AUC). A permutation test was run to determine the accuracy of the 

LASSO models. 
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Similar to Aim1, the individual ROI average activation from all trials during pain perception 

was compared with individuals’ PEG scores through linear regression to evaluate their 

associations. The linear regression models didn’t include ICV, age and sex since we don’t expect 

them to be confounding effects to the association. All analyses were done in R studio software39.  

 

Aim 3 : To determine the extent to which within-subject neural responses during high pain vs low 

pain anticipation cues are distinguishable in patients with cLBP and decode their anticipatory bias 

when they were presented with unknown visual cues. To evaluate the association between 

individual neuronal brain activity during unknown pain anticipation, anticipatory bias and patient-

reported pain outcome measures (PEG-3) 

The activation in every ROI during certain pain level anticipation cue trials  were used to 

build individual pain anticipation classifiers using logistic regression modeling with LASSO 

regularization. LASSO modeling mirrored the approached used in Aim 2. LASSO was performed 

on a single-subject basis in which the training set contains neural activations from 31 ROIs 

simultaneously as independent predictors during 14 certain anticipation trials as high pain (HP) 

anticipation cue and low pain (LP) anticipation cue are the dependent outcomes, and then target 

data to decode would be the neural activation during the 14 uncertain anticipation cue trials.  

With the 14 uncertain anticipation cue trials brain activation being input into the model as 

test data, predictions were made based on if the neural patterns when presented with unknown 

visual cues were more similar to the one when presented with high pain visual cue or low pain 

visual cue. The LASSO probabilistic prediction results for all 14 unknown cue trials were then 

averaged to determine overall intrinsic anticipatory bias of each individual separately. Accordingly, 

participants with a low average probability (< 0.5) of anticipating HP during uncertain cues are 

interpreted as the ones with positive anticipatory bias, and the ones with a high average probability 

(≥ 0.5) of anticipating HP during uncertain clues are the negative anticipatory bias. Both binomial 

prediction and the predicted probability of anticipating high pain were reported. 
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Similar to Aims 1 and 2, the association between PEG-3 scores and neuronal activation 

averaged over all trials with known anticipation visual cues as well as decoded anticipatory bias 

and the PEG-3 overall scores were assessed through linear regression. The linear regression 

models didn’t include ICV, age and sex since we don’t expect them to be confounding effects to 

the association.  

 
Results  
Clinical characteristics of the cohort 

Table 2: Cohort characteristics at baseline  

 
 

Data was collected from 26 subjects for the current study; baseline demographic 

characteristics of the study cohort are reported in Table 3.  

Clinical Assessment- PEG Score  

 
Figure 3: Cohort PEG scores at baseline: PEG scales measure participants’ daily experience with their chronic low 
back pain.  
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Baseline (N=26) PEG-3 scores of the study participants are shown in Figure 3.  

 

Volumetric analysis  

The volumes of both left insula middle short gyrus and right anterior inferior cortex 

volumes were associated with worse PEG Question 1 scores (Figure 4 and Figure 5). The 

volumes of both left and right anterior cingulate gyrus were found to be negatively associated 

with PEG Questions 2 and 3 scores. When compared with average answers to all three 

questions, both left and right anterior cingulate gyrus volumes were shown to be negatively 

associated, meaning that the larger volume of both structures is associated with a relatively 

lower self-report score on PEG scale. The structural brain visualization was acquired with the 

BrainNet Viewer 27, as shown in Figure 6.  

 

Figure 4: Association between PEG scores and certain ROI volume: Among all the linear regression models that 
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were built, these eight models have a R2 delta over 0.25. All of them show a negative association between self-report 
PEG scores vs. certain ROI volume  

 

 
Figure 5: Effect size and 95% confidence level of all ROI volume linear regression models. Volumes of left insular 
middle short gyrus and right insula anterior inferior cortex were associated with PEG-1 scores. Volumes of both left and 
right anterior cingulate cortex were shown to associated with PEG-2, 3 and average scores.  
  
a) 

 
 
b) 
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c) 

 
 
d) 
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Figure 6: Effect size visualization of ROIs where volume was associated with PEG-3 scores.  

 
Low Accuracy of Lasso Models When Differentiating Between High Pain and Low Pain Neural 

Response Patterns  

In differentiating high pain and low pain brain activation at single subject level, LASSO 

logistic regression models performed modestly with an average area under the curve (AUC)  of 

0.773 ± 0.206, with 0.65 ± 0.179 accuracy, 0.747 ± 0.136 sensitivity and 0.543 ± 0.262 specificity 

across all participants. Among all the ROIs that were input into LASSO models as predictors 

(Figure 7), left posterior long gyrus (37.5%), right posterior short gyrus( 33.3%), right middle short 

gyrus (37.5%), and right anterior long gyrus (33.3%) within the insula contributed to the 

differentiation between high pain and low pain stimulus the most frequently across the subject-

specific LASSO logistic regression models. Right pallidum (37.5%) and right substantia nigra 

(37.5%) also played a role into perceiving high pain vs. low pain. The structures that were shown 

to contribute to differentiating between high pain and low pain were visualized in Figure 8.  

Four linear regression models (Figure 9) were also built to evaluate the association 

between average ROI activation during pain perception and reported PEG scores. All the effect 

sizes were too small to conclude whether there was an association between regional activation 

during pain stimulus and the PEG scores.  
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Figure 7: Receiving Operating Characteristic Curves for Pain Perception. Dashed lines are ROCs of individual 
subject-specific LASSO models in separating high pain and low pain perception. 
 
 

 

 
Figure 8: ROIs that contribute to differentiating between high pain and low pain stimulus  
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Figure 9: Association between ROI activation during pain perception and patient-reported PEG scores 
 
Table 3: Single subject LASSO logistic regression model accuracy in differentiating neuronal activity during 
high vs low pain stimulus (i.e., PAIN Model) and during high vs low pain anticipation cues (i.e., ANT Model)  

Subject ID PAIN Model Accuracy  ANT Model Accuracy  
1 0.57 0.71 
2 0.34 0.79 
3 0.68 0.56 
4 0.5 0.64 
5 0.73 0.79 
6 0.5 0.56 
7 1 0.5 
8 0.56 1 
9 0.5 1 
10 0.75 0.93 
11 0.62 0.86 
12 1 0.71 
13 0.5 1 
14 0.75 0.57 
15 1 1 
16 1 0.64 
17 0.75 0.56 
18 0.41 1 
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19 0.61 0.5 
20 0.64 0.5 
21 0.79 1 
22 0.5 1 
23 0.54 0.71 
24 0.66 0.5 
25 0.5 0.71 
26 0.41 0.79 

 

 
Figure 10: Anticipation and pain perception LASSO model accuracy comparison 
 
 
Higher Accuracy of Single LASSO Model When Decoding Participants’ Anticipatory Bias  

In differentiating brain activation during known high vs low pain anticipation cues at single 

subject level, LASSO logistic regression models performed at an average AUC of 0.861 ± 0.218, 

with 0.75 ± 0.21 accuracy, 0.828 ± 0.127 sensitivity, and 0.546 ± 0.321 specificity across all 

participants (Figure 11). Among all ROIs considered in these LASSO models, insula was the 

most frequent contributor (72% of the subjects) to differentiate the high pain stimulus anticipation 

and low pain stimulus anticipation. Within the insula, left posterior long gyrus (52%) were recruited 

during the anticipation of pain. Right nucleus accumbens (48%), left amygdala (44%), and right 

substantia nigra (42%) also were shown to play a role in anticipating negative outcomes (Figure 

12).  
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Table 3 shows the accuracy of LASSO models built for 26 subjects and Figure 10 shows 

the accuracy comparison between anticipation and pain perception LASSO models.  

 

 
Figure 11: Receiving Operating Characteristic Curves for Pain Perception. Dashed lines are ROCs of individual 
subject-specific LASSO models in separating high pain and low pain perception.  
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Figure 12: ROIs that  contribute to differentiating between high pain and low pain anticipation. 
 
 

Individual anticipatory bias based neuronal activation during the unknown pain anticipation 

visual cues was decoded for each participant separately using their own subject-specific LASSO 

models (Figure 13). Twenty out of the 26 subjects (76.9%) were stratified as presenting with a 

negative anticipatory bias while the six (23.07%) were recognized as having positive anticipatory 

bias based on their subject specific LASSO model. 

 

  
Figure 13: Decoding the bias of three subjects. Based on the probabilistic prediction made by the subject-specific 
LASSO model, individual’s brain activation during unknown visual cues is classified as more similar to the one when 
presented with high pain visual cues or to the one when presented with low pain visual cues. In this case, the subject 
with orange trendline shows that they are expecting high pain for four trials and low pain for the other ten trials. The 
subject with blue trendline is expecting high pain for seven trials and low pain for the rest seven trials. The subject with 
gray trendline is expecting high pain for nine trials and low pain for the rest five trials.  
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Four linear regression models were built to evaluate the association between average ROI 

activation during pain anticipation and reported PEG scores (Figure 14). It was shown that all the 

effect sizes were too small to conclude whether there was an association between certain ROI 

activation and PEG scores during the pain anticipation period. Participant average PEG scores 

were also input with their anticipatory bias for further analysis using linear regression. The p-value 

for the model is 0.262 and R2 is 0.03, indicating that there is no significant relationship between 

how participants experiencing chronic low back pain in their daily life versus their anticipatory bias 

during pain-anticipation paradigm. 

 

 
Figure 14: The association between ROI activation during pain anticipation and patient-reported PEG scores  
 

 
Discussion 

In this study, we aimed to evaluate the association of brain structural and neuronal 

alterations with severity of pain intensity and interference in participants with current cLBP. Our 
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major findings are as follows: 1) multivariate analysis showed that individual perception of cLBP 

is negatively correlated with left insula middle short gyrus, right insula anterior inferior cortex, 

bilateral anterior cingulate cortex volumes, 2) there was relatively lower accuracy when using 

individual LASSO models to separate individual neural patterns during high and low pain stimulus 

and there was no significant association between ROI neuronal activation during pain perception 

and PEG scores, 3) using subject-specific LASSO modelling showed relatively higher accuracy 

when classifying individual neuronal activity when presented with known visual cues of anticipated 

pain. We decoded each participants neuronal activity during unknown visual cues of anticipated 

pain as the classifier determines if an individual’s brain activation was more similar to the one 

when anticipating high pain or low pain outcomes; there was no significant association between 

ROI neuronal activation during pain anticipation and overall PEG scores as well as individual 

anticipatory bias and overall PEG scores. These findings add valuable information to the current 

understanding of pain anticipation and perception and may help with the further research on 

chronic low back pain patients’ different levels of experience.  

In volumetric analysis, psychiatric diseases and other health conditions are common 

comorbidities of cLBP, and could  affect the size of the brain structures23,24, it would be useful to 

add these conditions to the study for more in-depth analysis of the correlation between brain 

volume and individual daily experience with chronic low back pain. Previous studies have found 

that the anterior part of the insula plays a role in the anticipation of painful stimulus10,12. We, along 

with Greenberg et al. 25, have observed the recruitment of middle or anterior part of the insula 

when anticipating negative outcomes. This indicates that there might be more than a few parts of 

the brain that may be correlated with anticipation of negative outcomes. Perhaps including more 

brain structures, such as lower brain stem regions, may be informative since cognitive and 

emotional processing occur in this region30.  

One of the limitations of this study is the relatively small sample size, which causes group 

analysis to have big residual errors. Another limitation is that within the cohort, there might be a 
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large amount of heterogeneity, which causes the LASSO model accuracy to vary. Additionally, 

the number of predictors are more than the number of observations, which might result in 

predictors being overly penalized in the LASSO model. Further, during the anticipation period, the 

prior high- and low-pain stimulus might affect participants’ anticipation tendency in the following 

trial. Since these effects were not controlled for in the study, they could cause a biased result.  

Future studies could include more participants. Having a control cohort and a cLBP cohort 

can also help to control the heterogeneity of the entire cohort. Other regularization methods such 

as ElasticNet and Ridge could be used to compare the accuracy of the logistic regression models. 

Moreover, when computing for anticipatory bias, the model could include the prior pain stimulus 

level as one covariate to evaluate the effect. Although task fMRI is the gold standard to study 

neuronal activity, expertise and equipment required to run specialized task fMRI studies hinders 

its scalability and operationalization in clinical practice and in multi-center research studies. Using 

supervised machine learning models predictive of each subject’s anticipation bias phenotype from 

their resting state fMRI data can be more easily accessed in clinical settings.   

Overall, we explored the structural difference correlated with various severity of cLBP and 

subject-specific functional brain activation patterns when perceiving and anticipating different 

levels of negative outcomes. We also assessed the degree to which an individual’s neuronal 

activity patterns during low versus high pain stimulus and during known low versus high pain 

anticipation cues are distinguishable. We decoded individuals’ anticipatory bias when presented 

with unknown visual cues. Lastly, we evaluated the association between ROI neural activation 

during pain perception, anticipation, individual anticipatory bias and patient-reported PEG scores. 

Objective imaging-based biomarkers of intrinsic anticipation bias phenotyping such as those 

presented in this study may be applicable in clinical settings in stratifying patients with cLBP from 

which they might benefit the most. 
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