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[ Original Research Asthma ]
Whole Genome Sequencing Identifies
CRISPLD2 as a Lung Function Gene in
Children With Asthma
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BACKGROUND: Asthma is a common respiratory disorder with a highly heterogeneous nature
that remains poorly understood. The objective was to use whole genome sequencing (WGS)
data to identify regions of common genetic variation contributing to lung function in in-
dividuals with a diagnosis of asthma.

METHODS: WGS data were generated for 1,053 individuals from trios and extended pedigrees
participating in the family-based Genetic Epidemiology of Asthma in Costa Rica study.
Asthma affection status was defined through a physician’s diagnosis of asthma, and most
participants with asthma also had airway hyperresponsiveness (AHR) to methacholine.
Family-based association tests for single variants were performed to assess the associations
with lung function phenotypes.

RESULTS: Agenome-wide significant associationwas identified betweenbaseline FEV1/FVC ratio
and a single-nucleotide polymorphism in the top hit cysteine-rich secretory protein LCCL
domain-containing 2 (CRISPLD2) (rs12051168; P ¼ 3.6 � 10�8 in the unadjusted model) that
retained suggestive significance in the covariate-adjusted model (P ¼ 5.6 � 10�6). Rs12051168
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was also nominally associated with other related phenotypes: baseline FEV1 (P ¼ 3.3 � 10�3),
postbronchodilator (PB) FEV1 (7.3 � 10�3), and PB FEV1/FVC ratio (P ¼ 2.7 � 10�3).
The identified baseline FEV1/FVC ratio and rs12051168 association was meta-analyzed
and replicated in three independent cohorts in which most participants with asthma also had
confirmed AHR (combined weighted z-score P ¼ .015) but not in cohorts without information
about AHR.

CONCLUSIONS: These findings suggest that using specific asthma characteristics, such as AHR,
can help identify more genetically homogeneous asthma subgroups with genotype-phenotype
associations that may not be observed in all children with asthma. CRISPLD2 also may be
important for baseline lung function in individuals with asthma who also may have AHR.

CHEST 2019; 156(6):1068-1079
KEY WORDS: airway hyperresponsiveness; asthma; lung function; whole genome sequencing
sta-Pérez and Canino), University of
Rico.
onal Heart, Lung, and Blood Institute
dicine (TOPMed) Consortium are listed

Chawes contributed equally to this

esented at the ASHG 2018 Conference,
o, CA, and ERS International Congress
Paris, France.
etic Epidemiology of Asthma in Costa
he National Institutes of Health [Grants
., M. H. C., D. Q., S. T. W., and J. A. L. S.
Institutes of Health/National Heart Lung
HL132825]. R. S. K. and J. A. L. S. were
eart Lung and Blood Institute and the
s R01HL123915, W81XWH-17-1-0533].
re supported by the National Heart Lung
1HL141826]. The Hartford-Puerto Rico
National Institutes of Health [Grants
. was supported by the National Institute
ases of the National Institutes of Health
. received support from the Fund for

s from the American Asthma Foundation
f Health [R01HL118267, R01AI079139,
gen Prospective Studies on Asthma in
. S. A., K. B., and H. B., were funded by
ds all listed on http://copsac.com/home/
k Foundation, Danish State Budget,
esearch, Danish Council for Independent
search Foundation provided core support
e Studies on Asthma in Childhood. The
ixture in Latino Americans study; the
thma, Genes and Environments; E. G. B.;
ted by the Sandler Family Foundation;
Robert Wood Johnson Foundation Har-
lopment Program; Harry Wm. and Diana
rship in Pharmaceutical Sciences II; and
Blood Institute [Grants R01HL117004,
X01HL134589]; the National Institute of
[Grants R01ES015794, R21ES24844]; the
Health and Health Disparities [Grants

3, RL5GM118984]; and the Tobacco-
am [Grant 24RT-0025].
A. Lasky-Su, ScD, Channing Division

artment of Medicine, Brigham and
wood Ave, Boston, MA 02115; e-mail:

ollege of Chest Physicians. Published by
d.
hest.2019.08.2202
Asthma is a disease with a strong genetic basis and
substantial heterogeneity1-3 combined with early life
and environmental factors4 that is characterized in
three general domains based on most traditional
approaches: (1) reversible airway obstruction, (2)
airway hyperresponsiveness (AHR), and (3) airway
inflammation.3,5 Despite these features, patients differ
across a wide range of clinical manifestations,
inflammatory characteristics, severity, and outcomes,3

stemming from differing underlying endotypes and
causes.2,6 Asthma outcome has benefited from
personalized care programs; however, despite the
current national asthma guidelines,7,8 its prevalence
and economic burden continues to increase
worldwide.3,5 Common clinical symptoms shared
across different asthma endotypes, along with
variables including age and time of onset, sex, and
lung function, make it extremely complicated to
define appropriate treatment regimens and strategies
for disease control. Although targeted therapies based
on disease stratification and severity are available,9,10

precise identification and classification of phenotypes
and endotypes has become imperative and will benefit
from conducting data-driven large multicenter
genome-wide studies.

Albeit genome-wide association studies of asthma have
identified and replicated associations of several single-
nucleotide polymorphisms (SNPs) with asthma,11-14

these variants explain only a fraction of the total of
disease variants.1 The use of broad categorizations
tailored toward clinical classifications further complicate
gene discovery through misclassification of case and
control subjects that leads to reduced statistical power
from misclassification. This explanation has become an
impetus for creating more genetically homogeneous
disease subgroups.
1069
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Whole genome sequencing (WGS) enables a more
focused assessment of low-frequency and rare genetic
variants; however, this assessment is not feasible until
WGS data are available in a large enough number of
individuals for sufficient statistical power to evaluate
these low-frequency variants. To date, to our knowledge,
only two WGS studies of asthma have been
published.15,16 A recently published WGS study
identified several viral and bacterial species in children
1070 Original Research
with asthma and pneumonia17; however, to our
knowledge, none have focused on the genetic basis of
lung function among individuals with asthma.15,16 In
this study, we present, to our knowledge, the first WGS
analysis of lung function phenotypes by using family-
based association tests (FBATs)18,19 for extended
pedigrees of 1,053 individuals who participated in the
Genetic Epidemiology of Asthma in Costa Rica study
(GACRS) cohort.20
Materials and Methods
Study Population

The study included children with asthma who were aged 6 to 14 years
from the GACRS family-based trios and probands from extended
pedigrees who were recruited from a genetically homogeneous Hispanic
population isolate in the Central Valley of Costa Rica with one of the
highest prevalences of asthma worldwide (24% in children).21

Enrollment and baseline characteristics of the Costa Rican trios have
been described previously in detail.20 In brief, unrelated children were
eligible if they had a high probability of having at least six great-
grandparents born in the Central Valley of Costa Rica and they had
asthma, defined as physician-diagnosed asthma plus a history of at least
two episodes of troublesome lung symptoms or asthma attacks in the
prior year.22 Children with an asthma diagnosis in this cohort also were
evaluated for AHR by using a methacholine challenge. Additional
probands were included from the extended pedigrees in which asthma
was diagnosed by using the same diagnostic criteria. Further details can
be found in e-Appendix 1.

Ethics
Oral and written parental consent and participating child’s assent were
obtained. The study was approved by the Partners Human Research
Committee at Brigham and Women’s Hospital (Boston, MA;
Protocol No. 2000-P-001130/55).

Whole Genome Sequencing

WGS was performed as a part of the TOPMed program offered
through the NHLBI. Details about the TOPMed sequencing and
variant calling are available in e-Appendix 1.

Statistical Analysis

Single-Variant Family-Based Association Scans: Single-variant
association analyses across four quantitative lung function phenotypes
were performed using FBATs18,19 that use the within-family
information and are therefore robust to population stratification.23

The FBAT approach tests for association between the offspring
phenotype and the Mendelian residual. The Mendelian residual is
described by the offspring genotype minus the expectation under
Mendel’s law, computed using the parental genotypes. If parental
genotypes are missing, FBAT uses the sufficient statistic approach to
compute the expectation under the null hypothesis.24 Treating the
parental genetic data and the offspring phenotype in this manner
means that this approach is robust against population stratification
and phenotype misspecification. For the analysis, we used the
publicly available software implementation FBAT Toolkit (https://
sites.google.com/view/fbat-web-page).

The association analyses for the lung function phenotypes
(prebronchodilator FEV1, prebronchodilator FEV1/FVC ratio,
postbronchodilator [PB] FEV1 , PB FEV1/FVC ratio) were performed
using two primary statistical models: (1) an unadjusted model in
which the phenotype was the mean-centered lung function variable
and (2) an adjusted model in which the phenotype was the lung
function variable residual of a linear regression model that adjusted
for sex, height, and dichotomized age (< or $18 years). We
performed these analyses by using (1) all probands with available
phenotypic information (531 probands of 1,053 individuals from the
extended pedigrees and trios), including individuals with and those
without an asthma diagnosis, and (2) only probands with an asthma
diagnosis (n ¼ 302). A minimum of five informative families was
required for all of these analyses, which corresponds approximately
to a minor allele frequency (MAF) cutoff of 0.3%.

Multivariate Family-Based Association Scan: Given the correlation
between lung function phenotypes, we also used a multivariate
generalized estimating equation (GEE) FBAT-GEE model.25 FBAT-
GEE accounts for the correlation between phenotypes and therefore
minimizes multiple comparisons by analyzing all phenotypes
simultaneously, resulting in one joint P value to evaluate whether the
genetic variant is associated with any of the lung function phenotypes.

Rare Variant Analysis: Because of the limited sample size with WGS
in GACRS, rare variant analyses were underpowered. Therefore, we did
not present them here.

Replication Cohorts

We identified six validation cohorts of children with an asthma
diagnosis including four from the National Heart, Lung, and Blood
Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed)
consortium (CAMP26: Childhood Asthma Management Program,
GALAII27: Gene-Environments and Admixture in Latino Americans,
SAGE27: Study of African Americans, Asthma, Genes and the
Environment and SAPPHIRE28: Study of Asthma Phenotypes and
Pharmacogenomic Interactions by Race-ethnicity) and two
independent cohorts (HPR29: Hartford-Puerto Rico (HPR) and
COPSAC2000: Copenhagen Prospective Study on Asthma in
Childhood30,31). Among these, three cohorts also identified that most
of these children with asthma also had confirmed AHR (CAMP,26

HPR,29 COPSAC30). Rest of the three cohorts did not have
information about AHR (GALAII, SAGE,27 SAPPHIRE28). Details
about the replication study populations can be found in e-Appendix 1.

Replication Analyses

Children with a diagnosis of asthma were included from each cohort
for the replication. A total of 5,451 subjects with both genotype and
phenotype data were included from CAMP (n ¼ 769), HPR (n ¼
490), SAPPHIRE (n ¼ 802), GALA II (n ¼ 2,203), SAGE (n ¼
1,124), and COPSAC2000 (n ¼ 63) as described in Table 1. Linear
models with lung function variables, prebronchodilator and PB FEV1

and FEV1/FVC ratios, as outcome were used in both adjusted and
unadjusted models in which the adjusted model included age, sex,
and height. For CAMP, the models were additionally adjusted for
the first two principal components, race and the interaction between
[ 1 5 6 # 6 CHE ST D E C EM B E R 2 0 1 9 ]
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genotype and race because this was the only replication population
with multiple ethnicities. In SAPPHIRE, the models were adjusted
additionally for genome-wide percentage of African ancestry.
Combined P values were calculated across the replication cohorts by
means of ascertainment schemas. P values were combined using the
weighted z-score method, a widely used and robust method for
combining P values in meta-analysis,32 from the Bioconductor
survcomp33 package in R because of variable sample sizes across
cohorts.

Results

Baseline Characteristics

On the basis of 1,053 individuals from extended
pedigrees, FBAT identified 317 nonsingleton nuclear
families and 248 trios for the analysis. Baseline
characteristics for the 531 GACRS samples that were
used for phenotype construction and the replication
cohorts are listed in Table 1.

Single-Variant FBAT

After the quality control and data cleaning procedure,
25.8 million autosomal SNPs remained for single-
variant analysis. Additional details are available in
e-Appendix 1.

Lung Function Phenotypes

Single-variant association analyses for the four lung
function phenotypes led to association P values for 12.2
million SNPs, with l inflation factors that ranged, across
variants with more than 10 informative families,
between 1.023 and 1.067. e-Tables 1 through 4 provide
lists of all SNPs with association P values lower than
10�5 for each lung function phenotype analyzed in all
children in the GACRS. In the evaluation of the
covariate-unadjusted analysis, rs12051168 (Fig 1)
achieved genome-wide significance for unadjusted
baseline FEV1/FVC ratio (P ¼ 3.6 � 10�8) (e-Table 1).
SNP rs12051168 is on chromosome 16 (16: 84879324) in
the intronic region of the cysteine-rich secretory protein
LCCL domain-containing 2 (CRISPLD2) gene with an
MAF of 0.39 in Hispanics (Table 2). Another SNP,
rs12919905, also in the intronic region of CRISPLD2
gene (chromosome 16: 84880424) suggestively achieved
the genome-wide significance threshold (P ¼ 5.34 �
10�8) (e-Table 1). The corresponding P value for
rs12051168 in the covariate-adjusted model for FEV1/
FVC ratio was 5.61 � 10�6 (e-Table 1, Table 3). The
adjusted models also showed similar associations for the
other lung function phenotypes: baseline FEV1 (P ¼
3.3 � 10�3), PB FEV1 (P ¼ 7.3 � 10�3), and PB FEV1/
FVC ratio (P ¼ 2.7 � 10�3)(Table 3). The associations
1071
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Figure 1 – LocusZoom plot highlighting the top hit (rs12051168) of the single-variant whole genome sequencing family-based association test analysis.
The plot shows the covariate-unadjusted results with �log10 P values (y-axis 1), recombination rates (y-axis 2), and genome-wide significance threshold
(dashed line) for SNPs (rs12051168 as highlighted by the red dashed line, rs12919905 adjacent to rs12051168 as highlighted by the gray dashed line) in
the CRISPLD2 gene on chromosome 16. cM ¼ centimorgan; Mb ¼ Megabase; SNP ¼ single-nucleotide polymorphism.
with lung function phenotypes were slightly attenuated
in the covariate-adjusted model including those with
asthma only (Table 3).

The closest functional variant to the rs12051168 SNP in
the CRISPLD2 gene was a splice donor at another SNP,
rs185968132, which is illustrated in Figure 2.
Furthermore, the SNPs within the 17q21 region, the
most replicated childhood asthma locus, which
encompasses the ORMDL3 (ORMDL Sphingolipid
Biosynthesis Regulator 3) gene12,13,34, had nominally
significant (P <.05) associations with lung function. In
the unadjusted analysis, the functional SNP,
rs12936231,35 yielded nominal associations with the
baseline FEV1/FVC ratio (P ¼ .044), FEV1 (P ¼ 7.6 �
10�3) and PB FEV1 (P ¼ 8.9 � 10�3).

Multivariate FBAT and Haplotype Analyses

Using FBAT-GEE, we observed an overall significant
association between the rs12051168 SNP and the lung
function phenotypes (P ¼ 4.5 � 10�5) (Table 3). To
investigate further, we used the FBAT haplotype test18

for rs12051168, and the closest coding variant in
CRISPLD2, rs12051468, was in linkage disequilibrium
with rs12051168 (Table 4). This finding indicated that
these two associated SNPs do not show an independent
1072 Original Research
signal and that minor alleles are associated with
decreased lung function. Haplotype TA has a frequency
of 0.58 and is associated with increased lung function,
whereas haplotype CG has a frequency of 0.35 and is
associated with decreased lung function.

Replication in Independent Asthma Cohorts

Table 2 describes the MAFs of the two lung function SNPs
of interest, rs12051168 and its coding variant rs12051468,
in discovery and in replication cohorts. Notably, although
white and Hispanic cohorts had a similar MAF for
rs12051168, the black cohorts had a much lower MAF
(w0.15). Table 3 summarizes the replication findings in
all cohorts. Although rs12051168 was not significant
overall in all of the cohorts, this finding was replicated
across the three independent cohorts (HPR, CAMP, and
COPSAC2000) in which most children with asthma also
had confirmed AHR (combined P value for baseline
FEV1/FVC ratio ¼ .015) (Table 3).

Discussion
In this WGS family-based analysis of lung function
phenotypes among children with asthma, we identified a
plausible suggestive association between baseline FEV1/
FVC ratio and the rs12051168 SNP in the CRISPLD2
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TABLE 2 ] Replication SNPs, Their MAFs, and Ethnicity
Across Cohorts

Cohort

Discovery SNP MAF Ethnicity

GACRS rs12051168 0.392 Costa Rican

rs12051468 0.375

Replication

CAMP rs12051168 0.37 White

rs12051468 0.38

CAMP rs12051168 0.14 Black

rs12051468 0.38

HPR rs12051168 0.32 Puerto Rican

rs12051468 0.39

COPSAC2000 rs12051168 0.46 European,
Danish

rs12051468 0.43

SAPPHIRE rs12051168 0.15 Black

rs12051468 0.40

GALA II rs12051168 0.32 Hispanic

rs12051468 0.34

SAGE rs12051168 0.15 Black

rs12051468 0.39

MAF ¼ minor allele frequency; SNP ¼ single-nucleotide polymorphism.
See Table 1 legend for expansion of other abbreviations.
gene, a gene that has been implicated in
pharmacogenetics mechanisms of asthma previously.36

Nominally significant associations also were detected
between rs12051168 and the baseline FEV1 and PB
FEV1/FVC ratio. A multivariate GEE model detected a
significant joint association between rs12051168 and the
lung function phenotypes. This finding was replicated
and showed a trend for all lung function phenotypes
when meta-analyzed in three cohorts with a parental
report of physician-diagnosed asthma with AHR
confirmed by means of a methacholine challenge in
most subjects, suggesting that this lung function
association at rs12051168 may be specific to individuals
with AHR. We were not able to replicate this finding in
other cohorts because AHR was not measured in the
other cohorts, so we could not evaluate the subjects on
the basis of this criterion. Therefore, our results suggest
that we can achieve better accuracy with a more
stringent asthma definition and ascertainment.
Together, these findings further help confirm those of
previous studies36-38 that suggest CRISPLD2 is a lung
function candidate gene for children with asthma that
may be specific to those who also have confirmed AHR.

There is significant prior evidence that CRISPLD2, a
glucocorticoid-responsive gene and regulator of immune
chestjournal.org
response, could be a potential candidate for
pharmacologic targeting to treat asthma. We previously
reported that the CRISPLD2 gene on chromosome 16
may play a role in modulating two important asthma
pharmacogenetic phenotypes in response to inhaled
corticosteroid use.36 The study highlighted several SNPs
within CRISPLD2, or spanning 50 kilobase pairs on
either side, that were nominally associated with inhaled
corticosteroid resistance and bronchodilator response.36

This prior work also identified nominally significant
associations between SNPs in the CRISPLD2 gene and
changes in lung function after investigating
bronchodilator response to an inhaled short-acting b2-
agonist36 in a discovery and replication study in more
than 2,000 people with asthma.37

Previous functional RNA-sequencing studies of human
airway smooth muscle cell lines found that treatment
with dexamethasone, a glucocorticoid,36 was associated
with increased CRISPLD2 messenger RNA and protein
expression and that CRISPLD2 expression was induced
by the proinflammatory cytokine IL-1b, suggesting that
CRISPLD2 regulates antiinflammatory effects of
glucocorticoids in the airways.36 These findings were
replicated in other studies by analyzing publicly
available expression data from human airway smooth
muscle cells treated with dexamethasone38 and
fluticasone.39 An immune regulatory role of the
CRISPLD2 protein is further supported by studies
showing its potential for regulating endotoxin
function.40 However, it has been reported that even
mutation or overexpression of late gestation lung 1
(LGL1) can lead to cell proliferation and metastasis via
binding and upregulation of miR-652-3p in patients
with non-small cell lung cancer.41

Although the regulatory role of CRISPLD2 in
maintaining proper lung function is accumulating and
being realized in humans, its role in crucial
developmental processes leading to lung formation are
widely reported in mouse studies. CRISPLD2, also
known as LGL1, has been shown to regulate fetal lung
development in experimental studies of rats.42 Several
studies of rat lung models have shown that the
glycoprotein-inducible protein encoded by CRISPLD2 is
implicated in both branching morphogenesis and
alveologenesis and that the absence of LGL1 is lethal to
embryos.42-44 One of the studies highlights that
postnatal LGL1 deficiency and knockout leads to
production of inflammatory cytokines, altered
pulmonary lung function, lung injury, and possible
predisposition to an early onset of adult lung disease.43
1073
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TABLE 3 ] Phenotypes Across Discovery and All Replication Cohorts for SNP rs12051168

Discovery Cohort

Phenotype Cohort z Score
P Valuea

(All Samples)
P Valuea

(With Asthma)
FBAT-GEE

(Joint Phenotypes)

FEV1 GACRS �2.940 3.3 3 10L3 1.3 3 10L2 4.5 3 10L5

FEV1/FVC ratio �2.685 5.6 3 10L6 9.1 3 10L6 ...

PB FEV1 �4.541 7.3 3 10L3 1.6 3 10L2 ...

PB FEV1/FVC ratio 0.003 2.7 3 10L3 3.5 3 10L3 ...

Replication Cohorts With Asthma Diagnosis and Confirmed AHR in Most Participants

Phenotype Cohort P Valuea
Meta-P Weighted

z Score

Baseline FEV1/FVC ratio CAMP .055 .015

HPR .076 ...

COPSAC2000 .11 ...

Replication in All Cohorts

Phenotype Cohort P Valuea
Meta-P Weighted

z Score

Baseline FEV1/FVC ratio CAMP .055 .35

HPR .076 ...

COPSAC2000 .11 ...

SAPPHIRE .71 ...

GALA II .59 ...

SAGE .58 ...

Boldface indicates significant or suggestive P values. The CAMP cohort was adjusted additionally for race and interaction between genotype and race, which
was either significant or suggestive in the models for baseline FEV1/FVC ratio (P ¼ .051) and PB FEV1 (P ¼ .054), and PB FEV1/FVC ratio (P ¼ .023); however,
race was not significant in any model. AHR ¼ airway hyperresponsiveness; FBAT ¼ family-based association test; GEE ¼ generalized estimating equation.
See Tables 1 and 2 legends for expansion of other abbreviations.
aAdjusted for sex, age, and height.
A 2015 human fetal airway fibroblast study45 confirmed
the importance of CRISPLD2 for fetal lung development,
which may affect lung function phenotypes in
childhood.

The association between CRISPLD2 and baseline
FEV1/FVC ratio in this study suggests that CRISPLD2
not only regulates treatment response to inhaled b2-
agonists and glucocorticoids but also may play a larger
role in asthma pathogenesis by altering baseline lung
function. These findings expand on our previous work
and suggest that variants within CRISPLD2 may (1)
affect altered baseline lung function, a key
characteristic of asthma, and (2) be specific to
children with confirmed AHR.

The top hit for the rs12051168 SNP within the
CRISPLD2 gene was for baseline FEV1/FVC ratio
but not FEV1. Children with asthma can have an
abnormal FEV1/FVC ratio despite a normal FEV1 or
1074 Original Research
FVC, a condition termed dysanapsis, which is
believed to occur when early life lung volume and
airway length growth outpace the increase in airway
caliber.46 We also previously have shown that
airway dysanapsis was associated with worse lung
function outcomes47 in children with asthma who
were obese,46 highlighting further the importance of
reevaluating asthma phenotypes and definitions.
Therefore, to avoid potential observation bias, we
chose to focus on lung function, one of the
common attributes and features of asthma
phenotypes in general.

The major strength of our WGS data is the broad
coverage of the genome, providing in-depth information
about copy number variations; noncoding and
intergenic regions; and ability to access rare frequencies,
particularly rare variants with MAF lower than 1%.
However, we were not able to evaluate rare variants
because of limited statistical power. Notably, we still
[ 1 5 6 # 6 CHE ST D E C EM B E R 2 0 1 9 ]
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Figure 2 – The figure provides a haplotype overview of the SNPs in the CRISPLD2 gene on chromosome 16 showing linkage disequilibrium (LD)
between the SNPs and corresponding haplotype blocks. TSS ¼ transcription start site.
identified a compelling common variant in our WGS
analysis: the rs12051168 SNP with an MAF of 0.39 in
the population in our study and 0.30 in the 1000
Genomes Project population.48 The family-based single-
variant FBAT approach,49 with analysis of trios of
children, parents, and extended pedigrees used in our
study, is a significant advantage compared with
population-based designs because it is robust against
population admixture and stratification and allows both
linkage and association tests,19 which could be used in
future studies.

Despite these strengths, our study was subject to
several limitations. Most notably, the small sample
size makes the analysis underpowered and prohibits
the evaluation of rare genetic variants. Another
limitation may be the lack of consistency of
TABLE 4 ] Haplotypes Showing Significant Associations
for rs12051168 and for rs12051468

Haplotype
Allele

Frequency z Score P Value

2-2 (TA) 0.58 4.38 1.2 � 10�5

1-1 (CG) 0.35 �4.30 1.8 � 10�5

1-2 0.04 �1.14 .25

2-1 0.02 0.29 .77

chestjournal.org 107
phenotypes between the discovery and replication
populations; most of the children had mild to
moderate asthma with AHR in the discovery
population, while the asthma phenotypes in the
replication populations were heterogeneous.

Conclusions
In conclusion, we present the first, to our
knowledge, WGS analysis of lung function
phenotypes among children with asthma, identifying
a variant in CRISPLD2 as associated with the
baseline FEV1/FVC ratio. Although this finding did
not replicate in all six cohorts, there was nominal
replication in three cohorts of children with a
diagnosis of asthma among whom most also had
confirmed AHR. Our findings suggest that more
refined evaluation of asthma phenotypes focused on
the physiologic characteristics of asthma is useful
for identifying genetic variants for specific asthma
domains. With CRISPLD2 known to regulate the
antiinflammatory effects of glucocorticoids in airway
smooth muscle cells, our WGS data extend those
findings and suggest that CRISPLD2 may play a
larger role in asthma pathogenesis, which is
biologically plausible because mechanistic studies
have proposed a role of CRISPLD2 in lung
organogenesis.
5
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