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ABSTRACT OF THE THESIS 

 

Three-Dimensional CT-based Dynamic Elastography of Tissues and Materials 

by 

Lei Jia 

Master of Science in Civil Engineering 

University of California, Irvine, 2023 

Professor Lizhi Sun, Chair 

 

Elastography has emerged as a groundbreaking technique in recent decades, playing a 

pivotal role in enhancing medical imaging, especially in the realms of ultrasound diagnostics and 

magnetic resonance imaging. This research study delved deeply into these applications, distilling 

core procedures, effective methodologies, and universal computational strategies. It represents a 

pivotal advancement in proposing CT-based Dynamic Elastography (CTDE), establishing the 

theoretical and practical framework for its study and application. 

Venturing further, this research conducted meticulous virtual experiments to validate 

hypotheses and methodologies in CT-based elastography. This study utilized the finite element 

method to conduct simulations, which can obtain the same results as real-world dynamic 

vibration and CT-based imaging. Through analyzing CT data, the infinitesimal displacement 

generated as mechanical waves propagate through various tissues and materials can be measured, 

thereby determining the elasticity map. 

The two-dimensional simulations yielded a clear modulus map, not only affirming the 

proposed CTDE method but also laying a solid foundation for three-dimensional exploration. In 



 ix 

the realm of three-dimensional experiments, we utilized CT imaging data, from which both 

displacement and modulus maps were generated upon processing. Our analysis revealed that this 

elastography technique refines the contours within CT images, supplementing them with 

comprehensive modulus data, and thus equips physicians with an advanced diagnostic tool for 

the precise identification of potential tissue anomalies. Looking forward, the prospects of CT 

elastography hold significant promise, indicative of a forthcoming era in advanced medical 

imaging that could revolutionize both research and clinical practice. 
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Chapter 1. Introduction 

 
1.1 Background 

 
It is widely known that the hardness of pathological areas in the human body can be 

various. Thus, by identifying differences in hardness, one can determine the depth of the disease. 

Take breast cancer as an example, which is the most common cancer among women in the 

United States. It accounts for approximately 30% of all new female cancer cases annually [1]. 

The following is a comparison of Young's modulus values between breast cancer and normal 

human tissues. Notably, the elastic modulus of ductal carcinoma in the breast is higher, as shown 

in Figure 1 [2]. Therefore, for the diagnosis of breast cancer, a physical examination is usually 

conducted to check for the presence of lumps or swelling by press. However, bumps that can be 

felt are usually larger and superficial. Quantitative evaluation of the hardness and size of lesions 

in deeper regions is challenging. 

 
Figure 1. Comparison data come from [2]. Young’s modulus values of breast cancer and 

normal human tissues 
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To quantitatively visualize the hardness of pathological sites, I have delved into the 

development of ultrasound imaging and magnetic resonance imaging (MRI). The primary 

method of obtaining elastography is by applying shear waves to calculate the shear modulus. J. 

Ophir and colleagues conducted a quantitative analysis imaging of the strain and elastic modulus 

distribution in soft tissues using ultrasound, achieving excellent resolution [3]. R. Muthupillai 

and others obtained the shear modulus in gel materials through MRI technology. They were able 

to efficiently measure the displacement patterns corresponding to the cyclic displacements of 

small particles, highlighting their potential for medical tissue elastography [4]. Today, both 

ultrasound elastography and magnetic resonance elastography (MRE) techniques have been 

applied in clinical trials. 

There have been few studies reported in the field of X-ray elastography. Research by 

Theron J. Hamilton and others, which simultaneously used ultrasound and X-rays, highlighted 

the feasibility and potential of X-ray elastography [5]. Chika Kamezawa and colleagues 

conducted dynamic X-ray elastography following the application of shear waves [6]. It is 

precisely these studies that demonstrate the potential of X-rays in the field of elastography, due 

to their higher spatial resolution, allowing for the detection of deeper and smaller lesions. 

1.2 Selection of Diagnostic Tools 

 
Ultrasound elastography and MRE have already been utilized clinically. B.S. Garra and 

colleagues differentiated benign from malignant lumps using ultrasound elastography [7]. Rohit 

Loomba and others employed MRE to predict advanced fibrosis in patients with non-alcoholic 

fatty liver disease [8]. Yogesh K. Mariappan and colleagues found that the precision of X-ray 

elastography surpasses both ultrasound elastography and MRE, as shown in Figure 2 [9]. Given 

its superior spatial resolution and greater imaging depth, research into X-ray elastography 
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becomes highly significant. This paper concludes the experience of X-ray elastography, and how 

it can be achieved, and delves into the potential of CT elastography, and the method of using CT 

for elastography. 

 
Figure 2. Comparison data come from [9]. Detected tissue size order of magnitude between X-

ray/CT, MRI, and Ultrasound 
 

X-rays, discovered in 1895 by Wilhelm Conrad Röntgen, are a form of electromagnetic 
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varying degrees. This differential absorption allows the visualization of internal structures, such 

as bones and certain organs, thereby providing invaluable diagnostic information [10]. 

Traditional X-ray imaging, or radiography, produces two-dimensional (2D) images, which can 

be limited in detailing complex anatomic regions due to overlapping structures. 
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reconstructed into a detailed image using computational algorithms. The advantage of CT over 

traditional X-rays is its ability to image complex anatomies without overlap, offering superior 

contrast resolution. This enables clearer visualization of soft tissues, blood vessels, and other 

intricate structures, making it a vital tool in various medical specialties [11]. 

Leveraging X-ray-based elastography research offers the flexibility to analyze tissues not 

only in a two-dimensional space but also extends the capability to a three-dimensional realm. 

This multidimensional approach provides a more comprehensive visualization of tissue 

structures and their elastic properties, thereby enhancing our understanding of their 

biomechanical behavior. The potential of transitioning from two-dimensional to three-

dimensional (3D) imaging could revolutionize diagnostics by providing a depth-resolved 

analysis of tissue mechanics and pathology. 
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Chapter 2. Literature Review of Methods of Elastography 

 
2.1 Theoretical Foundations of Elastography 

 
Elastography is a non-invasive technique utilized in imaging to evaluate the mechanical 

characteristics of tissues. It encompasses the determination of tissue deformation arising from 

applied mechanical stress, and thereafter calculating the tissue's elastic modulus or rigidity. 

Alterations in the elastic modulus frequently occur due to pathological transformations within the 

tissues. Determining these variations enables healthcare practitioners to understand anomalies 

better and potentially pinpoint their root causes. We have examined literature on ultrasonic 

elastography, MRI elastography, and existing X-ray elastography, and have summarized the 

methods map of elastography, as shown in Figure 3. 

 

Figure 3. Methods of Elastography 
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2.2 Principles of Mechanics 

 
2.2.1 Wave Propagation in Tissues 

When a mechanical wave propagates through a medium like tissue, its behavior can be 

described by the wave equation. In a homogeneous isotropic medium, the wave equation is: 

∇!𝑢 −
1
𝑐!
𝜕!𝑢
𝜕𝑡! = 0 (1) 

where 𝑢 is the displacement field, and 𝑐 is the velocity of the wave.  

The wave speed is related to the medium's elastic modulus (E) and its density (𝜌) by: 

𝑐! =
𝐸
ρ (2) 

For tissues, which are often treated as incompressible, the elastic modulus relates more 

directly to the shear modulus, so we need to know the coefficient between this to constant [12].  

2.2.2 Elastic Constants 

Elastic modulus (E): In this situation, the elastic modulus is defined as the product of the 

square of the wave velocity and the density of the medium. The equation is: 

𝐸 = ρ𝑐!	 (3) 

where ρ is the density of the medium,	𝑐 is the velocity of the wave [26]. It defines the rigidity of 

a substance. A higher modulus signifies a substance that resists deformation, implying it's rigid 

and hard. On the other hand, a diminished modulus points to a more flexible substance, soft. 

Shear Modulus (G): also known as the relationship between elastic modulus and Poisson’s 

ratio. The relationship is: 

𝐺 =
𝐸

2(1 + 𝜈)	 (4) 
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where 𝜈 is the Poisson's ratio. It provides insight into a material's ability to resist shape changes 

when a force is applied parallel to one of its surfaces.  

Bulk Modulus (K): Bulk modulus quantifies a material's resistance to uniform compression. 

It's expressed as the relationship with elastic modulus and Poisson’s ratio. Mathematically: 

𝐾 =
𝐸

3(1 − 2𝜈)	 (5) 

where 𝜈 is the Poisson's Ratio. Substances with elevated bulk modulus, demonstrate resistance to 

volume alterations, rendering them largely impervious to compression under typical 

circumstances. 

Most materials have Poisson's ratio values ranging between zero and 0.5. A material with a 

Poisson's ratio close to 0.5 tends to become much thinner when stretched, while one near zero 

tends to maintain its dimensions [13]. 

2.3 Ultrasound Elastography 

 
Ultrasound elastography (UE) has evolved as a non-invasive tool offering valuable insight 

into the biomechanical characteristics of tissues, holding paramount importance in medical 

diagnostics, especially in detecting abnormalities such as tumors. The process of UE hinges on a 

simple premise: the elastic properties of tissues change when stress is applied.  

When a material remains within its range of elasticity, any deformation it undergoes 

corresponds directly to the force exerted upon it, which causes shifts in widely recognized elastic 

attributes like the modulus of elasticity, volumetric modulus, rigidity modulus, and the 

coefficient of material compression. Besides these standard elastic coefficients, there are 

parameters associated with longitudinal and lateral aspects, which get deduced based on how 

quickly respective waves travel through solid substances. Ultrasonic elastography mainly 
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includes the following three steps: applying excitation stress, measuring tissue strain, and 

calculating mechanical parameters [3]. The following is a detailed discussion. 

2.3.1 Application of Excitation Stress 

In the domain of ultrasound-based elastography, tissues are subjected to stress either via 

mechanical pressure or through the force of acoustic radiation. A handheld probe is generally 

employed to give multiple, controlled compressions to the tissue's exterior. This permits 

exploration at diverse tissue depths by adjusting the compression's depth and range [14]. 

2.3.2 Measuring Tissue Strain 

Following the stress application, tissues undergo deformation, and this deformation, known 

as strain, is what's primarily measured. Advanced imaging techniques, often employing radio 

frequency data, are used to gauge the tiny tissue displacements. The displacements can be on the 

order of micrometers, making precision and resolution critical factors for accurate measurements 

[15]. 

2.3.3 Calculation of Mechanical Parameters 

Upon obtaining the strain metrics, they're subsequently turned into a visual layout or 

graphic that illustrates the variance in tissue rigidity. The proportion of imposed stress to 

observed strain illustrates the firmness or pliancy of the tissue. This derived elastography image 

visually portrays tissue firmness, allowing medical experts to distinguish between regular and 

possibly abnormal tissues by assessing their elastic characteristics. 

2.3.4 Limitations of Ultrasound Elastography 

Ultrasound Elastography has emerged as a promising diagnostic tool. However, like all 

medical imaging techniques, it is not without its limitations. The first one is operator 

dependency; the accuracy of the results can be significantly influenced by the technician's 
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proficiency. Differences in probe pressure or misalignment can lead to variances in measured 

elasticity [16]. The second is depth limitation. Ultrasound elastography is depth-dependent, 

meaning it can only analyze tissues and lesions located within a specific range from the skin 

surface. Deeper lesions or tissues might not be as effectively evaluated [15]. Third is Pre-

compression Artifacts. Sometimes, the pre-compression applied by the transducer might deform 

the tissue before the actual measurements, possibly leading to misleading elastography data [17]. 

And the other one is limited resolution. Smaller lesions or those that are closely situated might be 

challenging to differentiate or even miss entirely due to the inherent resolution constraints of the 

technique [18]. And we cannot neglect the motion artifacts in regions close to major blood 

vessels or in organs like the lungs, the inherent motion can produce artifacts, compromising the 

reliability of elastography data [19]. 

2.4 Magnetic Resonance Elastography 

 
Magnetic Resonance Elastography (MRE) is a non-invasive imaging modality that 

quantifies tissue stiffness by measuring the propagation of mechanically induced shear waves 

within the body using MRI. This technique allows for the visualization and estimation of tissue 

elasticity, offering insights into various pathological conditions [4]. The propagation speed of 

these shear waves is directly related to the tissue's stiffness: faster wave speeds indicate stiffer 

tissues, while slower speeds suggest softer tissues [7]. MRE mainly includes several steps: 

Mechanical Actuation, MRI Sequence Image Capture, and Data Processing. The following is a 

detailed discussion. 

2.4.1 Mechanical Actuation 

Mechanical actuation in MRE involves an external device producing low-frequency 

vibrations, typically ranging between 30 Hz to 60 Hz [20]. This actuator is placed on the body's 
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surface over the region of interest, which, when activated, generates harmonic waves that 

permeate the tissues. The intensity, frequency, and duration of these waves are critically 

important parameters, as they determine the depth of penetration and the tissue's response. The 

external actuation's safety and comfort are paramount; hence, advancements have been made in 

designing actuators to ensure minimal discomfort to patients while effectively generating shear 

waves within the tissues. Selecting the appropriate frequency is crucial since certain biological 

tissues resonate more effectively at specific frequencies, ensuring accurate and comprehensive 

imaging [21]. 

2.4.2 MRI Sequence Image Capture 

Upon initiation of the mechanical actuation, a tailored MRI sequence, typically a phase-

contrast sequence with modifications, is employed to capture the consequent tissue movements 

[22]. As the shear waves generated by the actuator propagate through the tissue, the MRI 

machine captures the minute displacements these waves induce. The choice of MRI sequence 

and parameters, such as repetition time, echo time, and slice thickness, are optimized for the 

specific region being imaged. Moreover, advancements in MRI technology have allowed for 

real-time imaging of wave propagation, enhancing the quality and accuracy of resultant 

elastography [23]. 

2.4.3 Data Processing 

The collected wave data undergoes intricate processing using dedicated algorithms and 

inversion techniques to convert these wave images into elastography, which essentially depicts 

tissue stiffness [24]. Elastography provides color-coded maps with different colors or intensities 

representing different stiffness levels. The primary measure extracted is the speed at which the 

shear waves travel, with this speed being used to deduce the tissue's shear stiffness. This 
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inversion process is computationally demanding, and the quality of the resultant elastography 

heavily depends on the accuracy of the inversion algorithms. Current research is directed towards 

enhancing the resilience of these algorithms to various noise sources and improving their ability 

to handle complex tissue geometries and compositions [25]. 

2.4.4 Limitations of MRE 

Despite its potential and numerous advantages, MRE has its limitations: While MRE can 

assess deeper tissues compared to ultrasound-based elastography, there's still a limitation on how 

deep the induced vibrations effectively penetrate [26]. The MRE procedure requires specialized 

equipment (like mechanical actuators) and post-processing software, demanding a long-time 

learning period and increased procedural time [27]. Patient movement during the MRE process 

can introduce artifacts, potentially confounding the results [28].  

2.5 X-ray Elastography 

 
In recent years, specifically, over the last ten years, X-ray elastography has surfaced as a 

potent tool in evaluating the mechanical attributes of tissues, overcoming several drawbacks of 

alternative imaging approaches. This methodology facilitates high-definition imaging while 

performing elasticity evaluations. X-ray elastography fuses the deep penetration capabilities of 

X-rays to gauge the rigidity of tissues, a critical indicator of pathological alterations. By 

amalgamating X-ray imaging tactics with mechanical oscillations or external influences, it 

becomes possible to visualize the elastic traits of tissues, providing a deeper understanding of 

their mechanical properties. 

2.5.1 X-ray Elastography Evolution 

Hamilton et al. elucidated a pivotal approach for X-ray elastography, where they 

emphasized the role of X-ray phase contrast images being modified by ultrasonic radiation 
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pressure. This intersection of X-ray imaging and ultrasonic radiation presented a novel method 

where the acoustic waves introduced slight deformations in the tissue. The modifications in the 

X-ray phase contrast images resulting from these deformations provided insights into tissue 

elasticity [5]. This interaction between ultrasonic radiation pressure and X-ray imaging presented 

a fundamental foundation for future research in the field. 

2.5.2 X-ray Elastography Advanced Studies 

Kim et al.'s seminal work took the concepts forward by computing strain images from 3D 

CT image data using a breast-mimicking phantom [29]. Their findings showcased the potential 

of extracting biomechanical properties from standard X-ray images.  Kim and partners presented 

X-ray strain tensor imaging where they combined Finite Element Method (FEM) simulations 

with micro-CT experiments, achieving enhanced resolution and accuracy in strain measurements 

[30].  Chika Kamezawa and her partner used pneumatically vibrated polyacrylamide gel 

phantoms and obtained two-dimensional maps of storage and loss modulus, which were 

determined from temporal variation in displacement vectors of the vibrating particles in the 

phantoms. Their experiment provided storage modulus with a precision of 30%, and a spatial 

resolution was one order of magnitude higher than other imaging modalities [6]. One of the 

pivotal advancements in recent years was presented by Sutphin et al. They introduced 

elastography tomosynthesis using X-ray strain imaging of breast cancer. Their study effectively 

combined the high-resolution advantages of tomosynthesis, with elastography, enabling detailed 

strain evaluations in breast tissues. Their results provided compelling evidence for the 

adaptability of X-ray elastography in clinical settings, emphasizing its potential in early cancer 

detection and differentiation between benign and malignant lesions [31]. 

2.5.3 Future Research Directions 
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In the upcoming phase of my research study, I'm focusing on harnessing X-rays as the 

instrumental force to expose the selected specimen, coupled with the application of vibratory 

excitation. Using CT to generate two-dimensional images, when meticulously analyzed, has the 

potential to yield a comprehensive map detailing the elastic modulus of the specimen. This 

approach aims at achieving a detailed 2D CT-based elastography portrayal. With the integration 

of intricate computational mechanisms and traditional CT imaging, the goal is to transition into a 

three-dimensional arena, laying the foundation for CT-based dynamic elastography (CTDE). 

This advancement method would revolutionize how we detect the mechanical attributes of the 

materials or tissues under observation. I have summarized the research on elastography and 

identified subsequent research directions and details, as shown in Figure 4. 

 

Figure 4. Summary of Literature Research of Elastography 
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Chapter 3. Methodology of Achieving CT-based Dynamic Elastography 

 
In the realm of scientific inquiry, meticulous investigation often paves the way for 

significant breakthroughs. Following an exhaustive exploration into the intricacies of 

elastography, I have summarized a set of pivotal steps imperative to achieving meaningful 

outcomes in this domain. This chapter endeavors to delve into these steps in-depth and develop a 

simulation methodology for CTDE. Such basic work is crucial not merely for theoretical 

understanding, but to also ensure that subsequent simulation validations are robustly equipped 

and executed, as shown in Figure 5. 

 

Figure 5. Methodology of Achieving CT-based Dynamic Elastography 
 

 

3.1 Imaging Device 

 
A central element in the apparatus of X-ray elastography is the X-ray detector. The 

sensitivity and resolution inherent in the detector play a vital role in delineating the detailed 

deformation under the applied shear wave propagation. State-of-the-art detectors facilitate 

enhanced spatial resolution, paving the way for more precise analyses of the permeable X-ray, 

which provides more detailed views into the elastic properties of tissues. 

3.1.1 X-ray and CMOS 
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Within the frontier of progressive research, the instruments and tech solutions we leverage 

have a substantial bearing on the results of our research and scholarly undertakings. In the 

context of our experiment, while both the emitter and receiver of X-rays are undeniably crucial, I 

posit that the receiver holds paramount importance. Our primary objective is to document tissue 

deformations post mechanical wave stimulation. Therefore, it stands to reason that heightened 

attention and effort should be directed towards the receiving end. An important instrument that I 

am eager to incorporate into my impending research is the X-ray camera fortified with the 

sCMOS 16MP Detector. Its appeal is straightforward: it offers a peerless amalgamation of swift 

capturing velocity coupled with outstanding resolution. The shortest capture span of this 

apparatus clocks in at 50 microseconds, a duration amply satisfying the needs for photography at 

the millisecond scale following the initiation of mechanical vibrations. The combination of fast 

acquisition speed and best-in-class resolution makes the X-ray camera with sCMOS 16MP 

detector the ideal device for my real-life experiments [32]. The instrument's combination of 

speed and accuracy promises a surge in the quality of data acquired, thereby improving 

comprehensive research outcomes. But I didn’t use it in my simulation, I use the FEM instead. 

3.1.2 Vibrator 

In future research, I intend to use pneumatic vibration to impose mechanical waves onto the 

test subjects. Pneumatic vibration, in the realm of experimental mechanics and biomedical 

research, has increasingly become a foundational technique for imposing mechanical waves onto 

test subjects. Essentially, a pneumatic vibration table generates mechanical vibrations, which are 

then transmitted through air to the object being tested. This approach ensures a contact-free 

delivery of mechanical perturbations, eliminating potential biases from direct mechanical 
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interfaces. A standout application of pneumatic vibration lies in its extensive use in the clinical 

context of Magnetic Resonance Elastography [4]. 

Opting for pneumatic vibration provides several benefits. First, by decoupling the vibration 

source from the test subject, there's a significant reduction in the risk of transmission of 

unintended mechanical disturbances, leading to cleaner, more precise readings, as shown in 

Figure 6. Second, this method enables the customization of vibration frequencies and amplitudes, 

offering flexibility in experimental setups tailored to specific clinical scenarios. 

 

Figure 6. Diagram of Pneumatic Vibrator 
 

In conclusion, the pneumatic vibration method stands out not just for its technological 

sophistication but also for its practical utility. By ensuring that mechanical waves are delivered 
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promises to continually shape and advance future research endeavors. 
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3.2 Imaging Collection 

 
3.2.1 Apply Aerodynamic Vibration 

In the practice of elastography imaging, the initiation of aerodynamic vibration to the focal 

specimen stands as a critical procedure. This involves unleashing a fixed shear wave to provoke 

microscopic alterations in the entity under scrutiny. These alterations, albeit tiny, hold significant 

value in deducing the suppleness and mechanical attributes of the tissue or material in 

examination. It is imperative to recognize that inherent disparities exist in natural structures, 

particularly in biological tissues, featuring diverse cellular elements and extracellular 

environments. 

Therefore, the advent of shear waves triggers a range of deformation magnitudes in 

different zones of these tissues, a phenomenon spurred by disparities in aspects like density, 

elasticity, and overall tissue constitution. Hence, during an elastography assessment, the 

deformation patterns witnessed are a rich source of critical data. The differences in deformation 

scale across various areas are authentic indicators, mirroring the fundamental structural and 

mechanical distinctions present. Utilizing these divergent reactions, elastography furnishes a 

detailed representation of the specimen’s physical properties, thus facilitating a more enlightened 

comprehension of its shape and possible pathological conditions.  

3.2.2 Photo Capture Control 

Prior to initiating the vibrational procedure, it is essential to capture a baseline image of the 

specimen. This preliminary image serves as a reference point, facilitating the identification of 

changes or deformations induced by the subsequent vibrations. Once the vibration is applied, an 

additional set of four images is systematically taken over the course of the vibrational period. 
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The rationale for capturing these images during the vibrational phase lies in the nature of the 

applied wave, which exhibits a simple harmonic motion. 

Given this harmonic nature, each of the four images should ideally represent the specimen's 

state at every quarter of the wave's period. Such a strategic capturing sequence ensures that the 

full spectrum of the wave-induced deformation is documented comprehensively, spanning from 

the point of initial disturbance to its maximum displacement and back to its point of rest, as 

shown in Figure 7. However, this meticulous imaging strategy necessitates highly sophisticated 

equipment. The camera's shutter speed must be fast, with transient motions induced by the 

vibrations, capturing clear, undistorted images. Furthermore, the precision of the controlling 

mechanism is of paramount importance. Any inconsistency or time lag, no matter how minute, 

can jeopardize the accuracy of the results. Therefore, to ensure the reliability and validity of the 

elastography data, coordinate control of these devices is indispensable.  

 

Figure 7. Diagram of the Experiment 
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3.3 Data Process 

 
In the tapestry of our experimental design, data processing emerges as one of its most vital 

threads. The raw image data we acquire undergoes meticulous layer-by-layer refinement, 

allowing us to extract the precise datasets intended for our computational design. The processes 

of denoising and registration stand out as the linchpins of our data-handling approach. Having 

gathered and familiarized myself with a selection of the most apt methodologies for both 

denoising and registration, I am poised to delve deeper into their nuances in the ensuing 

discussion, as shown in Figure 8.  

 

Figure 8. Data Process Methods and Systems 
 

3.3.1 Noise reduction 

Ensuring the highest possible quality of the captured picture in elastography studies is of 

paramount significance. One of the primary challenges in achieving this is mitigating the noise 
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present in the picture data. The intrusion of noise into the picture not only hampers the clarity of 

visual information but also critically undermines the precision of the extracted data. It can 

introduce discrepancies that, if we cannot reduce them, may distort the findings, leading to 

errors. 

When these noisy pictures are subjected to image registration, a process that aligns and 

overlays multiple images to derive coherent data, the negative impact of noise becomes even 

more pronounced. The registration process relies heavily on the consistency and integrity of 

pixel values between sequential frames. Noise disrupts this consistency, posing challenges in 

achieving non-rigid registration and causing potential misalignments. These misalignments, 

however minute, can accumulate over sequences and diminish the reliability of the entire dataset. 

Therefore, adopting an effective noise reduction technique isn't just a choice; it's a 

necessity. By filtering out extraneous noise while preserving the vital details of the image, the 

chosen noise reduction method can enhance the fidelity of the video. This, in turn, ensures that 

subsequent analytical processes, like image registration, are performed on clean, accurate data, 

significantly boosting the credibility of the results. In summary, a judicious selection of a noise 

reduction method is a foundational step that sets the stage for the success of the entire research 

study. 

3.3.1.1 Butterworth Filter 

The Butterworth filter, often referred to as the "maximally flat magnitude filter," occupies a 

unique position in the domain of signal processing. Its conception can be traced back to the 

innovative work of the British engineer Stephen Butterworth. In his seminal paper, "On the 

Theory of Filter Amplifiers" published in 1930 [33], Butterworth introduced a filter design that 

would subsequently be ingrained in a multitude of applications, owing to its attributes. 
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The filter’s order determines the transition's sharpness from the passband to the stopband. 

As the order increases, the roll-off becomes steeper, providing clearer delineation between 

maintained and attenuated frequencies [34]. However, this clarity often comes at the cost of 

design complexity and potential realization challenges, especially when real-time processing is in 

the picture. 

Despite its commendable flat passband, it isn't without limitations. A notable limitation is 

its relatively gradual roll-off in comparison to alternative filter designs like the Chebyshev or 

elliptic filters [35]. This implies that, given the same order, a Butterworth filter might 

inadvertently allow more unwanted signals in the transition zone between its passband and 

stopband, as shown in Figure 9. Still, in contexts where a ripple-less, gentle transition outweighs 

the need for a sharp cutoff, it emerges as the preferred choice. It finds its place in diverse 

applications, ranging from audio engineering and telecommunications to the intricate realm of 

biomedical signal processing [36].  

 

Figure 9. (a) is the origin, and (b) has undergone a Butterworth filter. 
 

(a) (b)
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To sum it up, the Butterworth filter, renowned for its maximally flat frequency response and 

straightforward design parameters, continues to be a mainstay in signal processing applications. 

While not a panacea for all situations, its consistent and predictable behavior cements its status 

as a valuable tool in the signal processing library. 

3.3.1.2 Gaussian Filter 

The Gaussian filter, often recognized as the Gaussian smoothing operator, finds a wide 

range of applications in the realms of image processing, computer vision, and signal processing. 

This filter is characterized by its bell-shaped curve, which is defined by the Gaussian function. 

The central idea behind this filter is the concept of convolution, where an original signal or 

image is combined with the Gaussian function to produce a smoothed version [37]. 

Mathematically, it is defined by the Gaussian function: 

𝐺(𝑥) =
1

√2𝜋𝜎!
exp	(

−𝑥!

2𝜎!)	
(6) 

where,𝜎 denotes the standard deviation, determining the width of the bell curve. This function 

showcases how values farther from the center fall off exponentially, thus ensuring that only 

pixels or data points in the immediate vicinity have a prominent influence when filtering [38]. 

In image processing, it is extensively used for blurring and noise reduction. Images often 

come with a certain amount of noise, either due to sensor anomalies or transmission errors. 

Gaussian smoothing aids in attenuating high-frequency noise, making the underlying image 

features more prominent. This kind of blurring is not just indiscriminate smudging but is 

grounded in the spatial distribution defined by the Gaussian function. As a result, it gives more 

weight to the nearby pixels and less to the distant ones in a non-linear fashion, as shown in 

Figure 10 [39]. 
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Figure 10. (a) is the origin, and (b) has undergone a Gaussian filter. 
 

It has also found its way into edge detection algorithms. When combined with other 

operators, such as the Sobel operator, it can assist in identifying sharp intensity variations in 

images, which correspond to edges [40]. The beauty of the Gaussian filter lies in its adaptability 

to multi-dimensional data. While the function mentioned earlier represents a 1-dimensional 

Gaussian, it can be expanded to 2D, 3D, and beyond. For instance, in 2D, the equation became: 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎!
exp	(−

𝑥! + 𝑦!

2𝜎! )	 (7) 

This 2D version is particularly valuable in image processing, where both x and y spatial 

coordinates are considered [41]. 

To sum up, the Gaussian filter remains an integral component in various signal and image 

processing tasks due to its versatile applications. Its foundation in the Gaussian function ensures 

a natural and effective weighting scheme, leading to smoothed outputs that retain essential 

features while discarding noise. 

 

 

(a) (b)
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3.3.1.3 Laplacian Filter 

The Laplacian Filter is one of the foundational tools used in the domain of image processing 

for the purpose of edge detection and image sharpening. Fundamentally, it is a second-order 

derivative mask that can highlight regions of rapid intensity change in an image and is 

particularly sensitive to noise [37]. 

The Laplacian is mathematically represented by the divergence of the gradient of an image 

function. In two-dimensional space, provides a measure of the second derivative in the x and y 

directions. When applied to an image, it essentially computes the difference between a pixel's 

value and the average of its surrounding pixels. This difference often leads to the detection of 

edges within the image where there's a rapid transition of intensity [38], as shown in Figure 11.  

 

Figure 11. (a) is the origin, and (b) has undergone a Laplacian filter. 
 

It is especially useful for detecting edges in images. However, one must note that it might 

detect edges that are not perceptually significant. The zero-crossings (where the value of the 

filter changes sign) typically represent the locations of edges in the image [40]. The output of it 

can be subtracted from the original image to produce a sharpened version of the image. This 

(a) (b)
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technique enhances the edges, making the image appear clearly [42]. A notable characteristic of 

the Laplacian filter is its sensitivity to noise. Since it's a second-order derivative, even minor 

variations in intensity can get amplified. As a result, it's common to first apply a smoothing filter 

(like a Gaussian filter) before applying the Laplacian for edge detection [43]. 

 In conclusion, while it is a powerful tool in image processing, particularly for edge 

detection and image sharpening, careful preprocessing and postprocessing steps are crucial to 

ensure optimal and noise-free results. 

3.3.1.4 Sobel Filter 

The field of image processing has numerous tools to aid in edge detection, one of the most 

widely used among them being the Sobel filter (or Sobel operator). Fundamentally designed for 

edge detection, it emphasizes the boundaries where intensity variations are most noticeable in an 

image [37]. It works by calculating the gradient magnitude of an image intensity function. At 

every pixel in the image, the gradient points in the direction of the largest possible intensity 

increase and has a magnitude equal to the rate of change in that direction. With this, it's possible 

to get a fairly accurate measurement of the directional change in intensity, highlighting the edges 

[44]. 

It utilizes two 3x3 convolutional kernels, one estimating the gradient in the x-direction 

(horizontal) and the other estimating the gradient in the y-direction (vertical). These kernels are 

designed to respond maximally to edges running vertically and horizontally relative to the pixel 

grid, providing a measure of intensity change in respective directions [38]. 

When these masks are convolved over an image, they produce what's known as the gradient 

components for each direction. The magnitude and direction of the gradient can then be 

computed from these components [45].  
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The primary application of the Sobel operator is edge detection. Its ability to provide a clear 

delineation of intensity changes makes it a cornerstone in many edge-based image processing 

tasks [40]. By highlighting the edges, it can be used to enhance the overall clarity and definition 

of images, making details more distinguishable, as shown in Figure 12. 

 

 

Figure 12. (a) is the origin, and (b) has undergone a Sobel filter. 
 

It is sensitive to noise. It's often beneficial to preprocess an image using a smoothing filter 

before applying the Sobel operator to reduce the risk of amplifying the noise [42]. The direction 

of the gradient can provide information about the orientation of the edge. By computing the 

arctangent of the ratio of the two gradient components, one can infer the direction of the edge at 

every pixel [47]. By combining the gradient components from both directions, the magnitude or 

strength of the edge can be computed. This is often done using the Pythagorean theorem, 

providing a single value representing the strength of the edge [43].  

While it is robust in detecting edges, it does have its limitations. Its linear and relatively 

small-sized kernels make it less effective in detecting more subtle or curved edges. Also, as with 

(a) (b)
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most edge detectors, it is sensitive to noise and may require preprocessing for optimal results 

[48]. 

3.3.1.5 Median Filter 

Image noise is an inevitable issue in digital imaging, which can degrade image quality and 

impact subsequent analysis. One of the traditional and widely used techniques to address noise, 

in digital images is the Median Filter [37]. It operates in a straightforward manner by moving 

through the image pixel by pixel, replacing each value with the median value of neighboring 

pixels. This neighborhood is typically a square but can be any shape, and its size is generally 

defined by the user depending on the specific application [46]. For a grayscale image, if we 

consider a 3x3 neighborhood, it contains 9-pixel values. These values are sorted, and the middle 

value is selected. The central pixel of the 3x3 neighborhood is then replaced by this median 

value. 

One of the most notable advantages of the Median Filter is its ability to retain edge 

information while removing noise. This is particularly beneficial in scenarios where the 

preservation of edges is crucial, such as in medical imaging or object detection applications [38]. 

In comparison to mean or linear filters, which blur the image and might lead to edge loss, it has 

shown superior performance in preserving useful information. 

It has found its applications across a wide range of fields. It's extensively utilized in digital 

image processing, especially in preprocessing steps. For example, in computer vision 

applications, before extracting features or detecting objects, the image is often passed through a 

median filter to ensure noise reduction without compromising on the sharpness of the image 

[45]. In medical imaging, where the clarity of images can directly impact diagnosis and patient 

care, median filters play an essential role in enhancing image quality by suppressing noise while 
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retaining the details of organs, tissues, and other structures [49]. While it is potent against certain 

types of noise, it may not be the best choice for all noise types or applications. Furthermore, 

although it preserves edges, it might smooth out fine image details if applied aggressively or 

repeatedly, as shown in Figure 13. Therefore, a balance between noise reduction and detail 

preservation should be carefully considered [48]. 

 

Figure 13. (a) is the origin, and (b) has undergone a Median filter. 
 

3.3.1.6 Chebyshev Filter 

Filters are critical components in signal processing, aiding in the isolation of desired signals 

from undesirable noise or interference. The Chebyshev Filter, a particular type of filter design, 

stands out due to its unique characteristics in the frequency response caused by its equal ripple 

behavior, as shown in Figure 14 [34]. It is categorized based on their ripple behavior in the 

passband. There are Type I and Type II Chebyshev filters, with Type I exhibiting an equal ripple 

behavior in the passband and a monotonic behavior in the stopband, whereas Type II showcases 

the opposite behavior [50].  

(a) (b)
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Figure 14. (a) is the origin, and (b) has undergone a Chebyshev filter. 
 

The primary advantage of it is its steeper roll-off characteristics compared to the 

Butterworth filter. This means that Chebyshev filters can transition from the passband to the 

stopband more rapidly, making them desirable in applications that require strict band separation 

[51]. Chebyshev filters are employed in various fields, especially where a rapid transition 

between frequency bands is essential. Their applications span audio processing, radio frequency 

design, and even biomedical signal processing. For instance, in radio receivers, where isolating a 

particular channel or frequency is critical, the sharp roll-off of Chebyshev filters is highly 

beneficial [35]. It offers a unique balance between roll-off sharpness and ripple magnitude. Its 

design flexibility, derived from the Chebyshev polynomials, makes it a popular choice for many 

signal processing applications.  

3.3.2 Image Registration 

Medical image registration is a critical component in the field of medical imaging, aiding in 

the alignment of two or more images of the same region captured at different times, from 

different angles, or even by different modalities. This alignment process has been integral to 

(a) (b)
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enhancing the analysis and interpretation of medical images, thereby assisting medical 

professionals in diagnosis, treatment planning, and monitoring the progression of diseases. At its 

core, the primary objective of image registration is to determine a transformation that will best 

align features in the images under consideration. 

3.3.2.1 Fundamental Principles 

At the heart of medical image registration lies the core tenet of spatial alignment, which is 

to overlay two or more medical images such that the anatomical structures within them are 

correspondingly positioned. These images could be taken from the same modality at different 

instances or derived from entirely different imaging modalities. Achieving precise alignment is 

no simple task, given the potential for anatomical variations and differences in patient 

positioning across scans. Furthermore, discrepancies in imaging techniques, inherent noise, or 

resolutions can compound the challenge. The objective then becomes the determination of a 

spatial transformation, which, when applied, makes these images congruent or brings them to a 

common spatial framework. This transformation program is iteratively adjusted to optimize 

certain criteria or metrics, effectively minimizing the variance between the reference and the 

target image. The success of the registration process hinges on the accuracy of this 

transformation, which then ensures that the overlapping structures between the images are 

anatomically consistent. 

3.3.2.2 Registration Approaches 

Medical image registration can be broadly classified based on the nature of transformations 

into two categories: rigid and non-rigid. 

Rigid registration primarily involves transformations like rotation and translation that don't 

modify the image's shape or size. This type of registration is apt for anatomical structures that 
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remain largely unchanged across different images. For example, the skull, being a rigid structure, 

doesn't deform over time, making rigid registration ideal for brain imaging. 

In contrast, non-rigid registration accounts for deformable transformations, allowing images 

to be bent, stretched, or compressed to achieve alignment. Given that the human body is replete 

with soft tissues that can change shape and position, owing to breathing, muscle contractions, or 

even pathological conditions, non-rigid registration becomes indispensable.  

These approaches are not mutually exclusive and can be combined in hierarchical methods 

where rigid registration serves as an initial alignment step, followed by fine-tuning through non-

rigid methods. Next, we discuss the image registration method in detail. 

3.3.2.3 Optical Flow Method 

Optical flow is a fundamental concept in the domain of computer vision and image 

processing that pertains to the apparent motion of brightness patterns in a visual scene. It offers a 

means to infer the pattern and speed of objects' movement across a sequence of frames, most 

typically in a video. The inherent basis for optical flow is the temporal variation of image 

intensity. It operates under the assumption that the intensity of a pixel remains consistent over 

short periods of time, even as it moves from one position to another. 

Optical flow can be described as the distribution of the apparent velocities of movement of 

brightness patterns in an image. It's important to understand that optical flow doesn't measure 

actual object velocities but rather captures the temporal change in intensity patterns. The 

fundamental constraint here is the brightness constancy constraint, which assumes that a 

particular pixel's brightness (or intensity) does not change between consecutive frames, though 

its position might [52]. 
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Typically, optical flow algorithms aim to minimize the error in the brightness constancy 

constraint. Among the first and most influential techniques for optical flow computation is the 

Lucas-Kanade method, which employs a local approach using image gradients to compute the 

flow parameters [53]. Conversely, the Horn and Schunck method takes a global approach, 

factoring in the smoothness of the entire flow field. Over the years, numerous other methods, 

such as the Farnebäck algorithm and the Brox method, have been developed, each with its 

strengths and drawbacks [54]. 

Optical flow finds a broad spectrum of applications. In video compression, it aids in 

predicting frame sequences, thereby saving data. Robotics and autonomous vehicles, support 

navigation by analyzing scene dynamics. It's invaluable in understanding and interpreting human 

activities in surveillance videos. Furthermore, in computer graphics, optical flow assists in tasks 

such as video stabilization, video synthesis, and even in generating slow-motion sequences from 

standard footage [55]. 

Despite its potential, optical flow is not without its challenges. It is often sensitive to noise 

in images, and luminance changes can lead to incorrect flow estimations. The aperture problem, 

inherent to optical flow methods, defines the challenge of determining the correct motion 

direction of an edge when only the velocity perpendicular to the direction of the edge's gradient 

is known. Additionally, methods like Lucas-Kanade can struggle with large displacements due to 

their local nature [45]. 

The advent of deep learning has significantly impacted the optical flow domain. Deep 

learning-based methods, such as Flow Net, PWC-Net, and Lite Flow Net, have set new 

benchmarks in optical flow estimation, exhibiting remarkable accuracy improvements over 

traditional methods. These neural network models are trained on vast datasets and can capture 
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complex motion patterns, even in challenging scenarios. Furthermore, the integration of optical 

flow with other sensors, like depth cameras, is paving the way for more robust motion analysis, 

especially in 3D space [56]. 

Optical flow, with its ability to capture and represent motion in visual scenes, remains a 

cornerstone in the realm of computer vision. While traditional methods laid the foundation, the 

integration of modern machine learning techniques is pushing the boundaries of what's 

achievable. As technology continues to evolve, the precision and application range of optical 

flow methods are set to expand exponentially. 

3.3.2.4 B-spline Registration 

B-spline registration is a flexible and popular technique used predominantly in the field of 

medical image processing to map anatomical structures from one image to another. Its 

adaptability, precision, and ability to model complex deformations have made it a go-to method 

for many researchers and professionals. 

B-splines, or Basis splines, were introduced in the 1970s and have since been extensively 

used in computer graphics and geometric modeling. They represent a piecewise-defined 

polynomial function that can effectively model complex, free-form shapes with a high degree of 

smoothness [57]. 

In the context of image registration, B-splines can be used to denote a transformation field. 

A grid of control points is defined over an image. The transformation of every image voxel is 

computed as a weighted sum of the surrounding control point transformations. The degree of 

influence a control point has over a voxel is determined by the B-spline basis function. Higher-

degree B-splines allow smoother and more gradual transformations, whereas lower-degree B-

splines are more localized [58]. 
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B-spline registration can model both global and local deformations, providing a broad range 

of transformations, from rigid and affine to highly non-rigid [59]. The inherent smoothness of the 

B-spline functions ensures that the resulting transformation is continuous and differentiable, 

which is especially critical in medical imaging applications where the physical plausibility of 

deformations is vital as shown in Figure 15 [60]. Due to their piecewise nature, B-splines are 

computationally efficient, especially when combined with multi-resolution strategies [58]. 

 

Figure 15. The "Registered" image is obtained by registering the "Moving" image to the 
"Stable" image using the b-splines method. 

 

B-spline registration is predominantly used in medical imaging, including applications like 

inter-patient image registration, where one patient's images are aligned with another's; intra-

patient registration, where images of the same patient from different times or modalities are 

aligned; and atlas-based segmentation, where a known atlas is deformed to fit a new image for 

segmentation purposes [61]. 

Despite its advantages, B-spline registration does have limitations. The quality of 

registration depends largely on the chosen grid spacing of control points. Too coarse a grid may 

miss localized deformations, while too fine a grid may become computationally expensive and 

overfit noise.  

StableMoving Registered
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In conclusion, B-spline registration has proven to be an indispensable tool in the world of 

image processing, particularly in medical applications. Its ability to seamlessly integrate global 

and local deformations with computational efficiency has made it a popular choice among 

professionals and researchers alike. 

3.3.2.5 Finite Element Method for Image Registration 

Image registration is a critical task in image processing, often employed to align two or 

more images of the same scene taken at different times, from different viewpoints, or by 

different sensors. Over the years, numerous methods have been developed to address the 

complex challenges inherent in image registration, and among them, the FEM stands out as a 

particularly potent tool, especially for non-rigid registration tasks. 

The FEM, historically rooted in engineering and physical sciences for solving boundary 

value problems, has found its way into the realm of medical imaging and image registration [62]. 

FEM decomposes the image domain into a mesh of smaller, finite elements, like triangles or 

tetrahedra. The deformation or transformation is then computed within each of these small 

elements, allowing for a high degree of flexibility and precision. 

At its core, FEM aims to find an approximate solution to a boundary value problem by 

discretizing the problem's domain. In the case of image registration, this entails determining a 

deformation field that maps one image onto another. The deformation field is represented using a 

set of basic functions defined over the finite elements, and the registration problem boils down to 

optimizing the coefficients of these basis functions [63]. 

The primary advantage of FEM is its inherent ability to model complex deformations with 

high precision. Due to its roots in physical modeling, FEM can incorporate biomechanical 

properties, making it especially suited for registering images of anatomical structures that 
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undergo non-linear and non-uniform deformations, like the human brain or the heart [64]. The 

method's flexibility also allows it to be adapted to various image modalities and registration 

scenarios. 

Given its ability to model complex deformations, FEM has been extensively used in the 

medical imaging domain. For instance, in neuroimaging, FEM-based approaches have been 

employed to register MRI scans of the brain, considering the brain's biomechanical properties 

[65]. Similarly, in cardiology, FEM has been used to register images of the heart taken at 

different stages of the cardiac cycle. 

The field of image registration is dynamic, with constant innovations and improvements. 

There's a growing interest in integrating machine learning techniques with traditional methods 

like FEM to enhance registration performance [66]. Additionally, as computational power 

increases, the feasibility of employing even more detailed and high-resolution finite element 

models in real-time registration scenarios becomes a tangible reality. 

While FEM offers significant advantages, it is computationally more demanding than some 

other registration methods, especially when high-resolution meshes are used [67]. Also, the 

accuracy of FEM-based registration can be influenced by the quality of the mesh. Poorly defined 

or overly coarse meshes might not capture fine deformations. Another challenge is defining 

appropriate boundary conditions and material properties when employing FEM in a 

biomechanical context. 

In summary, the FEM offers a robust and flexible approach to tackle the challenges of non-

rigid image registration. Its foundation in physical modeling, combined with its mathematical 

rigor, makes it a vital tool in the library of image processing techniques, especially in 

applications demanding high precision and biomechanical fidelity. 
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3.3.2.6 Demons Algorithm 

In my research, I use the Demons algorithm to make image registration [68]. At its core, the 

Demons algorithm operates on the principle of optical flow. It seeks to estimate the apparent 

motion of brightness patterns in the image. The basic assumption guiding the algorithm is that 

the intensity of an image structure remains unchanged as it moves from one spatial position to 

another. In the context of medical images, this assumption translates to the idea that the intensity 

of a particular anatomical structure remains consistent across different images, even if its spatial 

position varies. 

Under the Demons framework, the displacement field, which denotes the transformation 

required to align the moving image to the fixed one, is iteratively updated. This is achieved by 

estimating local "forces" based on the difference in image intensities and gradients. The forces 

act as vectors, guiding the transformation required at each pixel or voxel to improve alignment. 

Here is an example that use demons’ method to register the moving picture to the stable picture, 

as shown in Figure 16. 

 

Figure 16. The "Registered" image is obtained by registering the "Moving" image to the 
"Stable" image using the Demons Algorithm. 

 

StableMoving Registered
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The Demons algorithm's primary strength lies in its simplicity and efficiency. Because it 

relies on intensity information and does not necessitate the extraction of complex features or 

landmarks, it can be applied to a wide range of images. Furthermore, the algorithm is particularly 

adept at handling local deformations, making it well-suited for non-rigid registration tasks. 

Its applications span various medical imaging domains, including but not limited to 

neuroimaging, lung imaging, and oncological imaging. In these areas, the Demons algorithm 

assists in temporal studies (tracking anatomical changes over time) and multi-modal image 

fusion, where images from different modalities, like MRI and CT, need to be aligned. 

 

3.4 Modulus Calculation 

 
Understanding the mechanical properties of materials, especially their modulus, is crucial in 

numerous applications spanning from engineering to biomedical fields. One innovative approach 

to determining the modulus of a material is by leveraging displacement maps. A displacement 

map, in essence, provides a spatial distribution of displacements in a material when subjected to 

external forces or deformations. Through analyzing this displacement pattern, we can infer key 

mechanical properties, primarily the modulus, which defines the material's resistance to elastic 

deformation. 

A displacement chart, frequently created through imaging methodologies or computational 

analyses, records the comparative movements of distinct areas within a substance under the 

effects of stress or strain. It graphically illustrates the movements or deformations occurring in 

different sectors of the material. The fineness and correctness of this chart hold paramount 

importance as they influence the exactitude of ensuing modulus evaluations directly. 
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Upon securing a displacement chart, the inaugural move is determining the strain the 

material undergoes. Strain signifies the deformation degree, illustrating the shifting occurring 

between particles in the material's composition. This can be inferred from the displacement chart 

by scrutinizing the relative shifts occurring between divergent sectors. 

In my study, the external stimulation employed is the shear wave. Because of utilizing this 

specific type of wave, it becomes imperative to calculate the shear modulus. The shear modulus, 

often denoted as the modulus of rigidity, represents the material's ability to deform elastically 

under shear stress without experiencing any change in volume. It provides key insights into the 

mechanical properties of the material in question, especially in response to shear forces. 

To determine the shear modulus, a fundamental preliminary step involves calculating the 

propagation speed of the mechanical wave within an elastic medium. The speed at which this 

wave traverses the material is contingent upon the medium's intrinsic properties and is directly 

linked to its rigidity and density. A faster propagation speed typically denotes a stiffer (or more 

rigid) material. 

Given the significance and intricacies of this calculation, we adopted the phase gradient 

method for assessing wave speed. This method offers advantages in terms of accuracy and 

precision. The phase gradient technique harnesses the spatial derivatives of the captured wave 

phase to provide a robust estimation of the wave's speed. By integrating these accurate wave 

speed measurements with the known relations governing wave propagation in elastic media, we 

can derive a precise value for the shear modulus, enhancing the reliability and applicability of 

our findings. Mathematically: 

C = 2𝜋𝑓
∆𝑢
∆𝜑	 (8) 
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where C	is	the	velocity	of	the	shear	wave,	 𝑓 is the excitation frequency, ∆𝑢 is the distance 

change, ∆𝜑 is the phase change [26]. 
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Chapter 4. 2D CT-based Dynamic Elastography Simulation 

 
4.1 Simulation Method 

 
Following our preliminary investigations, I've deduced that to accomplish CT-based 

dynamic elastography. First, we need to obtain deformation maps of the test object post-

aerodynamic vibration. This procedure can be effectively conducted within the confines of 

COMSOL Multiphysics. This software is tailored for simulating real-world Multiphysics 

phenomena, offering versatile features to emulate and analyze complex systems. 

For my research, the FEM played a pivotal role in creating a robust and accurate model for 

the simulation. The first step involved the careful setup of our material system within the 

software. After defining the precise parameters and boundary conditions, we subjected our 

modeled system to external vibrations. These vibrations are quintessential for studying the 

deformation behavior of materials under varying stress conditions. By introducing these 

disturbances, we were able to generate and capture images that displayed the deformations 

before and after the application of these vibrations. 

Following the image acquisition phase, we delved into the crux of our study: Image 

registration. Image registration is an advanced technique that superimposes two or more images 

(in our case, the deformed and the initial images) to compare and analyze the differences. By 

employing sophisticated algorithms and techniques, we calculated the displacement experienced 

by the material under the applied vibration. This displacement, along with the known period, 

gave us insights into the shear modulus of the material. 

Once we procured the shear modulus value via image registration, we entered the validation 

phase. It's essential to ensure that our derived results are not just accurate but also reliably 
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replicable. Given that the software has a strong foundation built on physics-based principles and 

mathematical rigor, its generated values served as a benchmark for our study. Hence, we 

juxtaposed our results against the elastic modulus we just inputted. 

In scrutinizing the results, we accounted for the permissible margin of error. If our derived 

shear modulus were congruent with input values, within an acceptable range of discrepancy, it 

would underline the viability of our image registration technique. It would not only validate our 

approach but also highlight the potential of image registration as a reliable tool in such analyses. 

Here is the map of the 2D CT-based elastography simulation method, as shown in Figure 17. 

 

Figure 17. 2D CT-based Dynamic Elastography Simulation Method 
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4.2 2D Simulation 

 
For our study, we turned to the software for constructing detailed structural models and for 

the subsequent analysis of those models, both in steady-state and transient scenarios. 

Structural modeling, as the foundation of our simulation, required us to ensure that the 

material parameters, boundary conditions, and loadings were precisely defined. The meticulous 

setup ensured that our analysis would be grounded in realism and that the generated results 

would mimic true material behavior. 

 
4.2.1 Modeling Geometry 

In the initial stage of our research process, we prioritize the task of geometry modeling, 

which is a cornerstone in achieving precise results in our study. This stage is characterized by the 

design and establishment of a fundamental structure that will undergo further analysis in 

subsequent stages of our project. First, I used the primary canvas for our modeling endeavor, and 

I constructed a rectangle. This rectangle is defined with a width of 10 cm and a height of 20 cm. 

Within this rectangular framework, we proceed to introduce circular elements, positioned to 

create a cohesive and balanced geometric configuration. The circles are delineated with precise 

coordinates to ensure accurate placement within the rectangle. The centers of these circles are 

distinctly positioned at coordinates (5, -4), (5, -8), (5, -12), and (5, -16), the radius is 1 cm.  

Subsequently, we undertake the process of unifying these individually crafted geometric 

elements into a cohesive whole, a procedure technically termed forming a "union." This step is 

pivotal, essentially merging the discrete entities to function as a single unit, fostering seamless 

interaction and coordination among the incorporated elements. The following table shows all the 

parameters of geometry in Table 1. 
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Table 1. Parameters of Geometry 

Section Circle Rectangular 

Coordinates Center:(5, -4), (5, -8), 
(5, -12), (5, -16) 

(0, 0), (10, 0), 
(0, -20), (10, -20) 

Features radius is 1 cm width 10 cm, height 20 cm 

 

4.2.2 Setting Material 

In the materials setup phase of our simulation, the meticulous selection and allocation of 

materials to the different geometric constituents of our model hold a pivotal role. We begin this 

crucial step by designating the Intermediate-grade Invasive Ductal Carcinoma (IDC) as the 

material for the four circular entities within our geometry. This material exhibits a specific 

density of 1000 kg/m³, alongside mechanical properties characterized by Young's modulus of 

10.4 kPa and a Poisson's ratio valued at 0.49. 

Transitioning our focus to the encompassing rectangular section of our model, we opt for 

Normal fat tissue to serve as the foundational material. This choice is guided by the tissue's 

inherent properties which include a density marked at 1000 kg/m³, significantly differentiating it 

from the IDC material chosen for the circular entities. We made Young's modulus at 3.25 kPa, it 

has a different resistance to deformations compared to the IDC. Moreover, we made the 

Poisson's ratio at 0.49, a vital aspect in the forthcoming simulations. We know that if the 

Poisson’s ratio is bigger than 0.5 the material will be incompressible. This detailed materials 

setup, rooted in precise specifications, not only aids in creating a realistic simulation 

environment but also paves the way for accurate and reliable results in our research endeavor. 

The following table shows all the parameters of material in the Table 2. 
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Table 2. Parameters of Material 

Section Circle (material1) Rectangular (material2) 

Young's modulus 10.4kPa 3.25 kPa 

Density 1000 kg/m³ 1000 kg/m³ 

Poisson’s ratio 0.49 0.49 

 

4.2.3 Setting Solid Mechanics 

In configuring the solid mechanics setup, a structured and well-strategized approach is 

paramount to achieve precise simulation results. Firstly, we fix the upper and lower boundaries 

of the rectangular framework in the y-direction. This entails immobilizing these edges to restrict 

movement and ensure stability during the simulation process, fostering a controlled environment 

for our experimental setup. Proceeding further, we impose a fixed constraint on the left 

boundary, wherein it is steadfast in both the x and y directions. This stipulation offers a firm 

anchorage, inhibiting any forms of displacement in the delineated directions, thereby establishing 

a rigid setup that mirrors real-life physical conditions meticulously. Following this, a significant 

action is undertaken on the right boundary where we introduce a vibration stimulus characterized 

by a sinusoidal wave. This wave is generated by a prescribed displacement with an amplitude of 

0.05 cm and a frequency operating at 100 Hz, as shown in Figure 18, parting a dynamic aspect to 

our setup, creating conditions to study the resulting behaviors and responses under such 

stimulations. 
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Figure 18. Experimental Model Details and Boundary Conditions 
 

Moving towards the remaining boundaries, we designate them as free boundaries. This 

affords them to experience natural reactions without any predefined constraints, allowing for 

organic responses and interactions during the simulation. To conclude the setup, a meticulous 

verification process ensued to ensure chronological accuracy in the applied settings, thus 

cementing a foundation that is devoid of errors and stands robust for the forthcoming analytical 

procedures, fostering a pathway toward yielding precise and reliable outcomes in our study. 

4.2.4 Setting Mesh 

In the forthcoming step of our methodology, we proceed to mesh the diligently configured 

component using a well-defined strategy to achieve optimal results. We enlist the aid of a 

Physics-controlled mesh to facilitate this essential process, a choice grounded in its ability to 

align the mesh generation closely with the physical attributes and boundaries stipulated in our 

model, fostering a higher degree of fidelity in the representation. 

In discerning the ideal element size for this endeavor, we settle on the 'fine' option, which 

implies a denser mesh grid, thereby allowing for a more detailed and nuanced capture of the 

varying physical phenomena during the simulation, ensuring a robust and detailed analysis later.  

Fixed 
Constraint

Prescribed 
Displacement

The blue circle 
filled with 
material 1

The gray part 
filled with 
material 2
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To bring this phase to completion, we activate the 'build all' function, a decisive step that 

effectively assembles the mesh, bringing together the individual elements in a cohesive manner, 

setting the stage for subsequent processes in our simulation study with a finely crafted mesh that 

stands ready to facilitate in-depth analyses and accurate outcomes. 

4.2.5 Setting Compute 

In the ensuing segment of our procedure, we direct our attention to configuring the compute 

segment, a pivotal section where the main analysis of our project occurs. The focal point here is 

initiating a transient study, a dynamic analysis that helps in understanding the time-varying 

phenomena occurring in our structure over a specified period. 

We decide to dissect one complete cycle of the study into 200 increment steps, as shown in 

Figure 18, a strategy designed to foster a granulated inspection, thereby capturing intricate 

details at each juncture, which will potentially yield a rich dataset and a more refined 

understanding of the dynamic responses occurring within each fleeting moment of the cycle. 

As we into this critical phase, our objective remains clear: to comprehensively explore the 

structural behaviors throughout one full cycle, leveraging the precision afforded by the 

meticulously segmented approach. Our anticipation is that, upon the completion of this analytical 

cycle, we will be equipped with a set of output results that offer deep insights and a detailed 

overview of the transient phenomena under study, laying a solid base for the ensuing discussions 

and conclusions in our research endeavor. 

4.2.6 Study Analysis 

Upon completion of the model setup, we proceeded with transient analysis. The transient 

analysis delved into the material's reactions to time-varying conditions, offering a dynamic 
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perspective of its behavior. The analyses yielded visual results: deformation images, as shown in 

Figure 19. 

 

Figure 19. The Resulting Deformation Diagrams 
 

At this juncture, we diligently proceed to manipulate the deformation diagrams derived 

from the transient analysis, setting a goal to represent them as grayscale images. This 

transformation not only facilitates a nuanced visualization but also aids in a meticulous analysis 

by emphasizing the varying degrees of deformation distinctly. Following this detailed 

representation transformation, we systematically output and save these refined grayscale 

diagrams, ensuring they are preserved for the subsequent analytical processes and discussions in 

our study. 

4.2.7 Data Save 

Upon utilizing the software for our computations, we distilled our findings into a set of 

deformation maps, conveniently stored as PNG files to facilitate subsequent data retrieval. These 

four illustrative images chronicle the transformation of our system in four distinct phases within 

a single cycle. Such visual representations serve not just as a testament to the system's dynamic 

evolution but also set the stage for the intricate data processing we'll be embarking on in the 

subsequent sections. 

0.102s 0.104s 0.106s 0.108s
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4.3 Data Processing 

 
In this chapter, we navigate the intricate process of using the results, steering them toward 

our targeted outcomes. Using MATLAB, we extract graphical data, setting the stage for 

subsequent manipulations. The 'Demons Method' is our chosen instrument for registering the 

acquired set of images. Our journey doesn't end there; from the registration, we derive 

deformation parameters, culminating in the creation of a displacement map. This paves the way 

for the final production of a modulus map. 

4.3.1 Data Input 

In this stage, images derived from simulation, organized chronologically, are stored in 

MATLAB arrays. This methodical approach forms a repository of variables, streamlining the 

subsequent processes, particularly facilitating the imminent registration tasks. 

4.3.2 Noise Control and Image Registration 

For noise reduction in our images, we implemented both the Butterworth filter and the 

Gaussian filter. In terms of image registration, I utilized the Demons algorithm, aligning the 

captured image data chronologically. Within a single cycle, the four designated "moving" images 

were systematically aligned with the initial, undeformed "stable" image. Through iterative 

experimentation, I meticulously fine-tuned the registration parameters to meet our precision 

criteria. After the registration, we retained the pivotal variables used, constructing a robust 

database that proved instrumental in subsequent calculations for displacement and modulus 

maps. 

4.3.3 Variable Analysis  
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In this step, our focus narrows to meticulous computations derived from variables obtained 

during registration, culminating in the generation of a displacement amplitude map, as shown in 

Figure 20.  

 

Figure 20. Displacement Amplitude Map 
 

Given that each variable encapsulates data corresponding to the magnitude of deformation 

along the x and y axes for each pixel within an image, we can calculate the overall displacement 

magnitude using the distance formula. By mapping these calculations back to their respective 

pixels, we produce a comprehensive displacement map. Armed with the displacement magnitude 

per point and cognizant of the time interval involved in inducing said displacement, we possess 

the necessary elements to calculate wave speed. Invoking the principles governing the 

propagation of elastic waves in solids, we can approximate the elastic modulus. This process 

ends in the form of an elastic modulus map, which is our aim, as shown in Figure 21. Upon 

scrutinizing the elastic modulus map derived above, the results depicted within confirm that the 

elastic modulus of the circular section ranges between 10,000 and 11,000, while the remaining 

areas vary from 3,000 to 4,000. This result is in harmony with the data inputs we utilized during 

our modeling process. 
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Figure 21. Elastic Modulus Map 
 

4.3.4 Data Output 

In this step, we chronologically catalog the obtained displacement and modulus maps, 

preserving them both as PNG images and structured data tables corresponding to specific time 

points. 

4.4 Results Comparison 

 
Upon obtaining our refined images, we embarked on a comparative study. The displacement 

maps and Young's modulus maps obtained post-registration were juxtaposed against the initial 

results from the simulation. This comparative analysis was instrumental in identifying the 

efficacy of our approach. A key revelation from this simulation was the ability of the refined 

maps to distinguish various regions or chunks within the material, highlighting differential 

behavior and properties. Through this methodology, we can calculate the modulus data that 

we've inputted.  
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4.5 Summary 

 
The results we have achieved, underscore the viability of our method: applying dynamic 

vibrations to an object, capturing its deformation, and then processing this data to derive its 

elastic modulus map. This approach is fundamentally rooted in the science of elastography, a 

validated scientific technique, affirming its scientific integrity. This non-invasive probing allows 

us to map the elasticity properties of soft tissues. 

At its core, our study has illuminated the potential of leveraging simulations combined with 

image processing techniques to achieve elastography imaging. The image acquisition phase in 

our study was simulated using software; however, in a practical scenario, high-speed CT imaging 

equipment would be employed. Nevertheless, the subsequent image processing phase remains 

consistent. Through adept data manipulation, we can obtain an elasticity feature map showcasing 

varying modulus distributions. The success of this experiment hints at its potential to 

differentiate between healthy and afflicted tissues in medical contexts. In real-world applications, 

the deformation imagery of the test object can be directly captured via CT. Conventional CT 

images currently offer only basic shape and shading information. Through 2D CTDE, we can 

achieve more detailed 2D elastography images with clearer boundaries, potentially amplifying 

the efficacy of current diagnostic procedures. 
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Chapter 5. 3D CT-based Dynamic Elastography Simulation 

 
Building upon the foundational understanding garnered from our two-dimensional 

simulations, we've embarked on an expansion of our research to encompass the intricacies of a 

three-dimensional realm. Given that both 2D CT and 3D CT serve the role of capturing images 

in this imaging technique, COMSOL Multiphysics remains our choice simulation tool. Utilizing 

this software, we've acquired three-dimensional deformation maps at varying transient moments 

within a single vibration cycle, which subsequently facilitated our modulus map computations. In 

this chapter, we delve deeply into the nuances of this simulation process, showcasing the 

significant outcomes of our endeavor and focusing on every intricate detail involved, as shown in 

Figure 22. 

 

Figure 22. 3D CT-based Dynamic Elastography Simulation Method 
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5.1 Modeling and Analysis 

 
In computational investigations, platforms like 3D modeling offer the means to visualize 

and dissect intricate structures and their reactions under diverse scenarios. To venture further, we 

construct a cubic 3D model measuring 10cm x 10cm x 10cm. Located within the cube is a sphere 

with a diameter of 1 centimeter. The following table shows all the parameters of material in the 

Table 3. 

Table 3. Parameters of Model 

Section Sphere (material1) Cube (material2) 

Coordinates Center (5, -5,5) Corner (0,10,0) 

Features radius is 1 cm width 10 cm, height 10 cm, 
depth 10 cm 

Young's modulus 10.4 kPa 3.25 kPa 

Density 1000 kg/m³ 1000 kg/m³ 

Poisson’s ratio 0.49 0.49 

 

To mirror real CT experiment scenarios and assess the model's reactions, one facet of the 

cube was securely anchored, serving as an anchor point and stabilizing base. Across from this 

anchored surface, a sinusoidal wave is generated by a prescribed displacement with an amplitude 

of 0.05 cm and a frequency operating at 100 Hz. This approach sought to expose the model to 

vibration scenarios to monitor its diverse reactions, as shown in Figure 23. 
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Figure 23. Model Details and Boundary Conditions 

 

Harnessing the time-dependent simulation, we could deduce the model's evolving reactions. 

The software churned out nuanced depictions of the model's shape alterations, documenting the 

subtle transitions and structural shifts due to the induced oscillations. Moreover, maps illustrating 

displacements were crafted, shedding light on the shifts in position and movements across 

various model sections, with a keen spotlight on the internal spherical segment. These detailed 

shape and displacement depictions carry significant weight, especially for the registration. 

5.2 Data Output and Transfer 

 
Upon obtaining results through the software, we extracted a set of deformation maps stored 

in the VTU format, representing three-dimensional model diagrams. These four VTU models 

mirror the deformation of the entire system at four distinct moments within a single cycle. Given 

MATLAB's limitation in natively reading 3D data files in subsequent steps, it becomes 

imperative to convert these data files into a format readable by MATLAB. In my simulation, I 

used the VTU format to save it. Leveraging Python, I've transitioned the data into the CSV 
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format, subsequently executing linear interpolation on the data within the CSV files. This 

transformation produces a well-structured three-dimensional array, setting the stage for the 

ensuing registration processes. 

5.3 Noise Control and Volume Registration 

 
In the progression of our research, the utilization of the Demon method played an 

instrumental role in the registration step. In this stage, we employ the mentioned theory to 

execute volume registration on the captured transient models. The primary objective is to discern 

the relative transformation values between these models. More precisely, we can calculate the 

coordinate shift for each point by non-rigid registration. 

Through this registration process, we are adeptly equipped to quantify the displacements in 

the X, Y, and Z directions. This not only furnishes us with an intricate view of positional changes 

but also empowers us to compute the magnitude of displacement experienced by each point 

within the model. Moreover, discerning the magnitude of displacement for each point holds 

considerable merit. It not only provides insight into the dynamic behavior of the model structure 

throughout the cycle but also paves the way for subsequent modulus analysis. Armed with this 

data, calculating the modulus becomes considerably more achievable. 

5.4 Modulus Calculate 

 
Utilizing the findings from the registration analysis, we adeptly extracted a comprehensive 

map delineating the magnitudes of displacement changes within the model. By considering the 

magnitude of these shifts, the time span of these alterations, as well as the frequency and 

amplitude of the vibrations inducing such changes, we deduced the system's elastic modulus. It's 

noteworthy that the contours of the inner sphere within the cube are distinctly outlined in the 



 57 

visualization of this modulus map, as shown in Figure 24. Examining the elastic modulus map, 

the depicted outcomes verify that the material within the circular region exhibits an elastic 

modulus ranging from 10,000 to 11,000. In contrast, the modulus values of the other areas lie 

between 3,000 and 4,000. These findings correspond seamlessly with the data inputs we 

established during our modeling phase. 
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Figure 24. Displacement and Modulus Map 

 

5.5 Results Comparison 

 
In this period, we employed 3D viewing software to dissect the acquired system modulus 

model into several distinctive feature slices for in-depth analysis. We have chosen several 

specific slices, each representing a unique cross-sectional modulus distribution of the system. 
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Through visual comparative analysis, we can visualize the distribution and values of the modulus 

at different depths within the 3D model. 

The crux of this step depends on determining whether the 3D simulation can genuinely 

emulate the successes seen in 2D, thus achieving the desired outcomes. In essence, this stage 

serves not only as validation but also as a pivotal juncture to test our underlying assumptions. If 

we can generate a system modulus map with clear boundaries in a three-dimensional simulation, 

following the steps of the two-dimensional experiment, it would attest to its potential 

applicability in 3D CTDE. 

Fortunately, our experimental findings demonstrate that this method successfully generates 

modulus distribution maps whose boundaries are well-defined, with the images precisely 

delineating the properties of different tissues. In the modulus map mentioned earlier, by setting 

aside some boundary details, we observe that the calculated modulus values align well with the 

data inputs formulated during the experimental design phase. 

5.6 Expanded Experiment 

 
In the preceding experiment, we utilized a perfect sphere positioned at the center of a cube. 

Now, we're placing an irregular object within a rectangular matrix and replicating the same 

experimental steps. If similar outcomes are achieved, it will substantially reinforce the credibility 

and persuasiveness of our experimental methods and underlying principles. 

We embedded a polymeric material into a phantom composed of a silicone matrix for our 

simulation. Owing to the irregular shape of the rubber, we employed a CT scanner during the 

modeling process to acquire its three-dimensional representation. This 3D model was then 

imported into COMSOL, facilitating the subsequent steps of simulation analysis. Detailed 

parameters of this experiment are presented in Table 4 [69]. 
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Table 4. Parameters of Model 

Section Rubber (material1) Silicone matrix (material2) 

Features Scanned by CT width 30 mm, height 28 
mm, depth 20 mm 

Young's modulus 2610 kPa 2140 kPa 

Density 2850 kg/m³ 1050 kg/m³ 

Poisson’s ratio 0.3 0.3 

 

Once our modeling was finalized, we were able to observe a 3D view of the entire model, as 

shown in Figure 25.  

 

Figure 25. Experimental Model Shape and Coordinate Information 
 

To facilitate detailed examination in subsequent stages, we conducted a sectional display by 

slicing the model at specific x-values of 6mm, 12mm, 18mm, and 24mm, as shown in Figure 26. 
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Figure 26. Slices of the Experimental Model in the X-axis Direction 
 

Implementing our experimental procedure and data processing techniques, we arrived at the 

following findings, displacement map and modulus map, as shown in Figure 27. We focus on the 

shape we can detect in the object, so we can set aside the edge effects in the modulus map. It 

becomes apparent that the shape of the rubber is distinctly highlighted, with values ranging 

between 2400kpa and 2600kpa. Meanwhile, the Silicone matrix registers between 1900kpa and 

2100kpa. Such outcomes correspond well with our initial data inputs, indicating that our 

methodology is characterized by its generality and potential for broader applicability. 

 

X=6mm X=12mm X=18mm X=24mm
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Figure 27. (a) is the displacement map and (b) is the modulus map 
 

5.7 Prospective Applications in CTDE 

 
After rigorous validation of the 3D simulation outcomes, it was evident that the clarity and 

feasibility of the images obtained were on par with the 2D results counterparts. As these 

simulations are validated, we propose that the CTDE has a compelling prospect. It can be 

anticipated that employing the same approach for acquiring CT images in the real world and 

subsequent registration could realize the desired outcomes. 

The 2D simulation and 3D simulation research expanded the theoretical feasibility of 

elastography from a two-dimensional plane to a three-dimensional space. The profound insights 

garnered from this endeavor not only attest to the robustness of our methodology but also 

underscore its potential for real-world application. With the prospective advancement of actual 

CTDE research, these simulations might soon manifest into reality. By doing so, we're poised to 
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shepherd this innovative approach from its conceptual phase to the forefront of practical research 

and application in the medical imaging domain. 
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Chapter 6. Conclusions 

 
The goal of this research was to implement three-dimensional CT-based dynamic 

elastography by harnessing aerodynamic vibration combined with image processing 

methodologies to deduce the elastic modulus of materials. Elastography primarily deduces the 

mechanical properties of materials by observing their deformations, holding significant 

implications in both engineering and medical realms. 

Through simulation facilitated by the software, we successfully garnered deformation maps 

under the dynamic vibration of the test subjects. These deformation illustrations depict the 

material's behavioral changes under vibrational influences, laying the base for ensuing 

calculations of elastic modulus. 

Subsequent image analyses were conducted using MATLAB, which encompassed noise 

mitigation, image registration, and variable analysis. Utilizing Butterworth and Gaussian filters, 

we adeptly minimized image noise and smoothened the edges. By employing the Demons 

algorithm for image registration, we managed to align the moving images with the steady ones, 

securing an accurate displacement field. Delving into this displacement map, we determined both 

the magnitude of displacement and the elastic modulus. 

Our findings indicate that the combination of aerodynamic vibrations with image processing 

techniques allows for successful extrapolation of the material's elastic modulus. Such 

methodologies carry latent application value in the biomedical domain, especially in tissue 

diagnostics and anomaly detection, akin to MRE. It can be used for diagnostic measurements of 

breast cancer, furnishing the advantage of attaining elastography maps within a shorter time 

frame as opposed to MRE. 
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Given that two-dimensional CTDE captures only one directional elastic distribution, 

dedicated to three-dimensional exploration would enable us to perceive the modulus distribution 

throughout the entirety of the 3D object. This depth of information can provide a more intricate 

understanding of heterogeneities within the object. To materialize this vision, a cubic 3D model 

was constructed, with sinusoidal vibrations administered to observe model responses. Transient 

simulations captured nuanced changes in model shape and structural transitions. Simulation 

outcomes were exported in 3D data format and converted to MATLAB readable CSV format 

using Python. Through volumetric registration techniques, we discerned coordinate shifts 

between distinct deformation images, leading to the retrieval of displacement magnitudes and 

elastic modulus. 

By comparing two-dimensional and three-dimensional simulation, the difference is obvious. 

While 2D simulations proffer rapid calculations and a simplified model, they fail to encapsulate 

the holistic deformation behavior of the object. In contrast, 3D simulations offer a more precise 

and elaborate depiction of model behavior, albeit at a higher computational cost. 

In summation, elastography emerges as a potential method in medical diagnostics. While 

ultrasound elastography and magnetic resonance elastography have been substantially integrated 

into clinical scenarios with pronounced success, CTDE, as a budding technique we proposed, 

offers deep penetration capabilities and high-resolution advantages, introducing fresh diagnostic 

possibilities. 

Future research endeavors should delve more profoundly into elastography techniques 

spanning a multitude of material types and different boundary conditions. The creation of a 

database dedicated to transformation parameters is essential to refine registration details 

meticulously. An exploration merging varied vibrational frequencies, amplitudes, and imaging 
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strategies could lay the foundation for enhanced computational efficacy and crisper elastography 

visuals. Considerations for employing CTDE methods in real-world settings should also be 

pondered, encompassing topics like the synchronized control of aerodynamic vibrations and 

strategies for radiation dosage management. Another critical aspect to inspect would be the noise 

reduction in CTDE, aiming to augment data processing accuracy. In essence, empirical research's 

nuanced insights will be invaluable. Such detailed data might not only broaden the technique's 

real-world applicability but also elevate its efficacy and impact in clinical settings. 
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