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Abstract

Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate 

molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-

cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines 

and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction 

of highly substituted alkenes and allenes. In addition, the mechanistic details of the process 

are studied, which revealed a reversible radical addition and a selectivity-determining radical 

recombination. The regio- and stereochemical outcome of the reaction is also rationalized.

Graphical Abstract

INTRODUCTION

Cycloaddition reactions are among the most efficient and atom-economical approaches 

to quickly build up molecular complexity.1 Arene–alkene cycloaddition (AAC) 

reactions represent an ideal means of converting planar arenes into three-dimensional 

architectures.2 However, most thermally induced dearomative cycloadditions are difficult 

to realize experimentally due to high kinetic barriers and competing reverse processes. 

Photochemically driven processes have allowed for the development of AAC as a photon 

allows for the reaction to proceed via excited-state intermediates.3

Photochemical cycloadditions between arenes and unsaturated systems (typically alkenes 

and acetylenes) can lead to the formation of ortho, meta, and para regioisomeric products 

(Scheme 1A).4 Under direct irradiation, the singlet S1 excited state of the arene is generated, 

and the formation of meta-cycloadducts dominates via a concerted cycloaddition.5 However, 

if the triplet T1 excited state is generated, arenes can behave more like diradicals, allowing 

access to ortho and para adducts via stepwise radical cycloaddition. Computational studies 

by Houk established this general paradigm,6 which was further confirmed by Cornelisse 

and co-workers.7 As the S1 excited state of the arene can be easily accessed with simple 

UV-light irradiation, meta cycloadditions have been extensively studied and applied in the 

synthesis of various natural products.3b,8,9
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Efficient access to the T1 state of the arene through direct excitation is challenging for 

several reasons. First, the gap between S0 and S1 can be large, especially for S1 (π−π*).10 

As a result, short-wavelength irradiation with Hg lamps is usually required. Second, the 

transition from S1 to T1 may be difficult because of the relatively fast relaxation of S1 to the 

ground state. Third, in accordance with El-Sayed’s rule, a forbidden ISC would be necessary 

for the conversion of S1 (π−π*) to T1 (π−π*).11 Finally, since meta cycloaddition can easily 

proceed via the S1 state, there will likely be a competition among multiple cycloaddition 

pathways even if the T1 state can be accessed. Despite these challenges, several ortho- 

and para-cycloadditions have been developed. For example, ortho-cycloadditions have been 

reported for systems in which the ISC to the T1 (π−π*) is facile. However, these systems 

are limited to specialized substrates with tethered alkenes.12 Recently, developments have 

been made with phenanthrene derivatives in an intramolecular cycloaddition.13 Only a 

few examples showed that electron-poor naphthalene derivatives could react with electron-

deficient alkenes to yield the para cycloadducts.14

An alternative method to access the T1 state of the arene is by visible-light mediated triplet–

triplet energy transfer (EnT).15 Because the T1 state is accessed directly without having 

to generate S1, only stepwise ortho-and para-cycloadditions are observed. Examples of 

EnT-induced dearomative ortho-cycloadditions include reactions of indoles16 as reported by 

You,17 Oderinde,18 Fu,19 and Zhang.20 In addition, early work from Meggers demonstrated 

the dearomatization of benzofuran and benzothiophene.21 Oderinde and co-workers later 

applied this strategy to electron-deficient indoles, benzofurans, benzothiophenes, and 

azaindoles.22 Glorius also realized the ortho cycloaddition of benzothiophene via an 

endergonic EnT.23 para-Cycloaddition is still rare under EnT conditions and mainly focuses 

on the sensitization of alkenes instead of arenes.24

Recently, our groups developed a selective intermolecular para-cycloaddition of bicyclic 

azaarenes with various activated and unactivated alkenes initiated by EnT (Scheme 1B).25 

This reaction displays good selectivity toward the formation of one isomer and affords 

valuable functionalized aromatic heterocycles that have been established as privileged motifs 

in pharmaceutically active compounds.26 Additional studies revealed a novel photochemical 

cascade with certain substitution patterns.27 In this study, we greatly expand upon the 

substrate scope to more challenging examples such as disubstituted alkenes and allenes 

under Lewis acid-mediated conditions developed in the Brown lab (Scheme 1C). In 

addition, we demonstrate that targets containing tetrasubstituted carbons can be accessed 

readily using this protocol. Finally, through a combination of mechanistic experiments and 

density functional theory (DFT) calculations, we present a detailed analysis of the reaction 

mechanism and reveal the energy landscape of the transformation.

RESULTS AND DISCUSSION

Initially, we employed 2-iPr-thioxanthone (ITX, ET = 65.4 kcal/mol)28 as the photosensitizer 

for the reaction between quinoline (ET = 61.9 kcal/mol) and 1-hexene, which resulted in 

<2% conversion. A similar result was obtained with [Ir(dFCF3ppy)2dtbbpy]PF6 (Ir–F, ET 

= 60.1 kcal/mol). Addition of 25 mol % HNTf2 resulted in the formation of the para 
cycloadducts 2 and 3, albeit in low yields (Table 1, entry 3). Further studies showed that 
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Lewis acids were more effective (Table 1, entries 4–5). We found that 125 mol % BF3·OEt2 

was required for full conversion (Table 1, entry 6), likely due to product inhibition. Finally, 

while the higher-energy sensitizer ITX gave a similar result as [Ir(dFCF3ppy)2dtbbpy]PF6 

(Table 1, entry 7), the use of lower-energy sensitizers led to diminished yields.

While evaluation of various Lewis acids, photosensitizers, and temperatures did not alter 

the selectivities, regioselectivity was found to be controlled by the polarity of the solvent 

and the position of the quinoline substituent (Scheme 2A). For these reactions, we define 

2 as the 8-to-5 product and 3 as the 5-to-8 product based on the order of bond formation 

(vide infra). For quinoline (1), the 8-to-5 product 2 was the major regioisomer formed in 

all solvents evaluated, with the highest regioselectivity observed in toluene (12:1 rr). When 

6-Me-quinoline was evaluated, a switch in regioselectivity occurred, yielding the 5-to-8 

product as the major isomer. In addition, a similar correlation between regioselectivity and 

solvent polarity was observed, with MeCN yielding the highest regioselectivity for the 

5-to-8 product (>20:1 rr).29

To understand the impact of substituent position on regioselectivity, we tested quinolines 

with methyl groups at different positions (Scheme 2B).30,31 For quinolines with substitution 

on the pyridine ring (products 2, 4–7) or substitution on the 5- and 7-positions of the phenyl 

ring (products 8–9), the 8-to-5 product was favored. The 5-to-8 product was preferentially 

formed when the substituent was in the 6- or 8-position on the phenyl ring (products 10–11). 

A lower yield was found for formation of 5 and 11, as coordination of the Lewis acid was 

likely impeded (see 12). X-ray structures of 13 and 14 were obtained to confirm the identity 

of the major regioisomer.

We explored the reaction scope for 5-substituted quinolines due to both the high diastereo- 

and regioselectivities observed and the potential for constructing products containing 

sterically congested carbons (Scheme 3). Substituents with a wide range of steric and 

electronic properties were well-tolerated under the conditions. Various quaternary carbons 

were achieved with different sp3 (products 8, 15–16, 19) or sp2 (products 17–18) substituted 

quinolines. Heteroatom substituted centers with F (product 22), Cl (product 23), O (product 

20), N (product 21), and Si (product 24) were also easily prepared in high yields and 

selectivities. It is notable that intermolecular cycloaddition is faster than an intramolecular 

process (products 25–26). This is likely due to the slow reaction between C8 and the 

terminal carbon of the alkene via an 8- or 9-membered transition state. The alkene scope was 

also broad with excellent functional group compatibility with alkenes (product 27), ethers 

(product 30), esters (product 29), and halides (product 28). All mono-substituted alkenes, 

regardless if activated (products 34–40) or unactivated (products 27–33), favored formation 

of the endo-diastereomer (dr ~ 10:1). Exclusive endo products (dr > 20:1) were found 

using styrenes regardless of the different substitution patterns. Even sterically demanding 

alkenes allowed for formation of the endo-products 31–33. With 1,2-disubstituted alkenes, 

stereo-convergence to the trans product was observed from either cis or trans alkene inputs 

(product 42–43), with the alkene substituent closer to the 5-position still being placed endo 
to the pyridine ring. Even for cis-cyclic alkenes like cis-cyclohexene, cis-cycloheptene, and 

cis-cyclooctene, the trans products 44–46 were isolated with high diastereoselectivity. The 

anti-structures 41·MeI, 44·MeI, and 46·MeI were confirmed by X-ray analysis. The product 
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of cis-cyclooctadiene 47 was formed with lower dr, presumably because bond rotation was 

constrained by the internal alkene. For indene and dihydronaphthalene, bond rotation was 

even more constrained, and only the cis-exo-isomers were isolated (49 and 50). With respect 

to limitations, 1,1-di, tri-, and tetrasubstituted alkenes did not allow for product formation 

(products 51–52). Finally, the reaction could be easily scaled up to 1.2 mmol/h using a flow 

chemistry system (8).

In addition to alkenes, allenes also underwent cycloadditions smoothly with quinoline 

substrates under standard conditions (Scheme 4, products 53–58).32 Regardless of the allene 

substitution pattern, the 8-to-5 product was exclusively formed. In the case of nonsymmetric 

allenes, mixtures of alkene isomers were formed (54 and 56). With 1,3-disubstituted 

allenes or trisubstituted allenes, the diastereoselectivities varied from endo- to exo-selective 

(products 56–58).

Based on our previous report,25 the mechanism of the reaction likely involves triplet–

triplet energy transfer to a Lewis acid-activated quinoline followed by stepwise radical 

cycloaddition. However, there are several aspects that need to be considered in more detail 

(Scheme 5): (1) the role of the Lewis acid; (2) aromatic ring selectivity (benzene vs 

pyridine); (3) ortho, meta, and para selectivity; (4) 5-to-8 vs 8-to-5 regioselectivity; and 

(5) diastereoselectivity. We conducted further mechanistic studies to address all of these 

issues.

We first focused on determining the first nonreversible step of the reaction as it is important 

for understanding the origins of the observed selectivities.33,34 To probe this, we conducted 

the standard reaction with the E-2D-labeled alkene 59. If the intermolecular radical addition 

step was selectivity-determining, we would expect to isolate 60a and/or 60b with recovered 

unchanged 59 (Scheme 6A). However, while 60a and 60b were isolated in a 1:1 mixture, 

the excess unreacted alkene 59 was recovered as a 1:1 mixture of E- and Z-isomers. One 

interpretation of this result is if the first intermolecular radical addition step is reversible and 

the second intramolecular radical recombination step is selectivity-determining. However, 

the isomerization of 59 could arise by an alternative unknown pathway. Therefore, 13C 

kinetic isotope effects (KIEs) at natural abundance were determined using the methods 

developed by Singleton and co-workers (Scheme 6B).35 We initially carried out KIE 

measurements on 5-Me-quinoline, the standard substrate in all DFT calculations, and 

observed a strong KIE at C5 (1.017). However, overlapping signals in the 13C NMR spectra 

with C8 and C10 made it difficult to confirm the KIE value at C8. Thus, 5-OAc-quinoline 

was investigated and a similarly strong KIE at C5 was observed (1.019).

These mechanistic experiments strongly point to the first step being reversible and the 

intramolecular radical recombination being the selectivity-determining step. The observation 

that even cis-cyclic alkenes like cyclohexene preferentially form the trans product lends 

further support to the existence of a long-lived biradical intermediate that allows for bond 

rotation before recombination (see product 44, Scheme 3). A revised mechanism is therefore 

proposed in Scheme 6C. Photo-sensitization of the BF3 complex 1A by the excited triplet 

state of [Ir–F] generates 3A. Radical addition to 1-hexene then results in the formation of 
3B, which upon intersystem crossing yields the singlet 1B. This singlet intermediate can 
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then undergo either radical fragmentation to revert to starting materials 1A and 1-hexene or 

recombination to yield product 3C.

To further reveal the energetic landscape traversed by the reaction, which our experiments 

suggested was more complex than previously assumed,25,38 we performed DFT calculations 

(Scheme 6D). The three energy surfaces, triplet (T), open-shell singlet (OSS), and closed-

shell singlet (CSS), were mapped out in detail along the reaction coordinates. At the 

beginning of the reaction, energy transfer from the excited photosensitizer to the ground-

state quinoline–BF3 1A yields the triplet 3A. As the energy transfer process itself is not 

expected to impact the observed selectivities, we elected to focus our computational efforts 

on the subsequent transformations of 3A. Its reaction with propene (60) (used as a truncated 

computational model for 1-hexene) via 3TS-1 on the triplet surface forms the first C–C 

bond with a calculated activation free energy of 15.6 kcal/mol. While the formation of the 

triplet biradical intermediate 3B is slightly exergonic, our calculations showed that it would 

most likely undergo intersystem crossing (ISC) to the open-shell singlet 1B, which lies about 

4–6 kcal/mol below 3B. The OSS and CSS surfaces intersect at two transition points (TPs) 

where the open-shell and closed-shell wave functions transition smoothly: TP-A, which 

leads back to separated reactants, and TP-B, which furnishes the cycloadduct. Instead of 

being determined by only a single triplet radical addition transition state (TS), the chemo- 

and diastereoselectivities of the reaction are therefore controlled by the rate of ISC from 3B 
to 1B, as well as the energies of the OSS to CSS TPs.36

Two possible roles were hypothesized for the requirement of Lewis acid complexation in 

this reaction: (1) facilitating energy transfer by lowering ET, and (2) accelerating the radical 

addition step by increasing the electrophilicity of the quinoline substrate. To probe the role 

of the Lewis acid in the energy transfer process,37 we performed Stern–Volmer quenching 

studies. It was found that quinoline and quinoline–BF3 complexes have similar quenching 

efficiencies (Scheme 7A). This result suggests that, while facilitating energy transfer, Lewis 

acid coordination is not strictly required for sensitization to happen. During the course of 

our study, Morofuji and Kano also showed that direct energy transfer to quinoline is feasible 

without the addition of an acid.38,39 In contrast, the idea that Lewis acid primarily assists 

in the radical addition step found experimental support. When the standard reaction was 

conducted with E-2D-labeled alkene 59 in the absence of BF3, we observed <2% yield of the 

product and no epimerization of the alkene starting material, which indicated that the radical 

addition barrier was significantly higher without the Lewis acid (Scheme 7B).

To further verify that Lewis and/or Brønsted acid complexation has the effect of lowering the 

radical addition barriers, we calculated the radical addition TSs between various quinoline 

substrates and alkene partners. In all cases, the calculations confirmed that both Lewis 

and Brønsted acid complexation led to lower activation free energies (ΔG‡) for the radical 

addition step (Scheme 7C). The magnitude of this effect is dependent on the identity of the 

acid as well as the quinoline/alkene combination, ranging from a 1.1 kcal/mol decrease for 

5-Me-quinoline/propene (with BF3 complexation) to 5.3 kcal/mol for the 3-Me-quinoline/

2-butene (with H+ complexation) system investigated by Morofuji and Kano.38

Guo et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equipped with a deeper understanding of the reaction mechanism, we next sought to 

rationalize the observed selectivities. Our calculations of the triplet-state quinoline substrates 

indicate that there is a higher spin density on the benzene moiety than the pyridine 

moiety with or without Lewis acid complexation (Figure 1), which is likely linked to the 

experimentally observed regioselectivity for the benzene ring.

We next turned our attention to rationalizing the observed para selectivity of the reaction 

over ortho (meta cycloadditions were not considered here as they are concerted and occur 

exclusively on the singlet energy surface). As our mechanistic studies revealed that the 

OSS to CSS TPs were likely the selectivity-determining structures in the reaction, we 

concentrated our efforts on locating and comparing the TPs for the para and ortho addition 

pathways. Because free energies cannot be calculated for these TPs as thermal contributions 

to energy from molecular vibrations cannot be obtained for nonstationary points on the 

potential energy surface,39 we present the electronic energies in Scheme 8A for the ortho- 

and para-additions originating from 3B. We found that for both the TP and the final 

cycloadduct, the calculated electronic energies of ortho were much higher (9 kcal/mol) than 

para. This result suggests that the formation of the para cycloadduct is likely kinetically 

favorable for this substrate.

Furthermore, the ortho and para products also differ in their photostability under the reaction 

conditions. The ET of the ortho product 1D was calculated to be 57.7 kcal/mol, which is 

smaller than that of the photosensitizer [Ir–F] (60.1 kcal/mol). In contrast, the para product 
1C had a calculated ET of 76.5 kcal/mol, meaning that it is likely photostable under the 

reaction conditions. We therefore reasoned that the ortho product can be sensitized and 

undergo radical fragmentation back to the starting materials, which funnels the reaction 

toward exclusive para product formation.

Although we were not able to isolate an ortho product and confirm the photosensitization-

induced fragmentation, we observed two fused-ring products, which may suggest that an 

ortho cycloaddition does occur under the reaction conditions for certain substitution patterns 

(Scheme 8B).40 Cyclopropyl chloride 66 was isolated together with the para cycloadduct 

67. The formation of 66 can be rationalized through a second energy transfer to the ortho 
cycloadduct 62, followed by C–Cl bond homolysis.41 The resulting diradical 64 undergoes 

recombination to deliver 65. In addition, in the case of 68, a second energy transfer can 

occur to fragment the central C–C bond. Subsequent recombination can then yield a new 

cyclobutane product 73. Overall, while formation of the para adducts is likely kinetically 

favored, for some substitution patterns, a photolabile ortho-adduct may be generated.

The 5-to-8 vs 8-to-5 regioselectivity of the reaction is also worthy of discussion. Having 

established through our mechanistic studies that the radical addition step is not selectivity-

determining, we reasoned that the relative stability of the long-lived biradical intermediates 

could be key to explaining the regioselectivity. In the solvent-controlled regime (Scheme 

2A), the biradical intermediate leading to the 5-to-8 product is expected to have a larger 

net dipole moment due to the alignment of partial dipoles (Scheme 9A). As a result, 

the 5-to-8 biradical intermediate would be better stabilized by more polar solvents. Our 

calculated dipole moment values (pcalc) for the biradical intermediates confirmed that the 
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5-to-8 biradical intermediate is more polar at 8.2 Debye, compared to 7.0 Debye for the 

8-to-5 biradical intermediate. This is in good agreement with our experimental observations 

that higher-polarity solvents favor the 5-to-8 product.

In the substitution-controlled regime (Scheme 2B), the stability of the biradical 

intermediates is primarily dictated by the degree of hyperconjugation. In these cases, the 

formation of the more stable biradical may render it less likely to undergo fragmentation 

back to starting materials. With an alkyl substituent in the 5- or 7-position, the biradical 

intermediate leading to the 8-to-5 product is better stabilized by hyper-conjugative donation 

than its 5-to-8 counterpart (Scheme 9B). This explains the preferential formation of 

the 8-to-5 product for the 5- and 7-substituted substrates. For quinoline substrates with 

substitution in the 6- or 8-position, the 5-to-8 biradical intermediate would be better 

stabilized by hyperconjugation, leading to the opposite regioselectivity.

Finally, we set out to rationalize the endo diastereoselectivity of the reaction, for which 

we proposed that London dispersion forces could be the key factor (Scheme 10).42 To 

verify that dispersive interactions favor the formation of the endo product diastereomer, 

we compared TP energies calculated at the B3LYP/def2-TZVPP, SMD(CH2Cl2) (not 

dispersion-corrected), and B3LYP-D3/def2-TZVPP, SMD(CH2Cl2) (dispersion-corrected) 

levels (Scheme 10B). Our results confirmed that the electronic energies of the TPs leading 

to the endo diastereomers are indeed lowered more compared to the exo diastereomers when 

a dispersion-corrected functional was applied. In the reaction between 5-Me-quinoline and 

propene, dispersion correction favors the endo-product-forming TP by 0.7 kcal/mol relative 

to its exo counterpart. When the alkene substituent is a larger tert-butyl group instead of the 

methyl group of propene, this effect is even more pronounced, with dispersion adding 1.8 

kcal/mol favorability to the endo-product-forming TP. Noncovalent interaction (NCI) plots 

for the MECPs also showed that at these C–C-forming bond lengths, the alkene substituent 

is within the right distance range to have favorable dispersive interactions with the pyridine 

moiety of the quinoline when in the endo position. These computational results showed 

that dispersion indeed has the effect of steering diastereoselectivity toward the endo product 

isomer.

CONCLUSIONS

We described herein a dearomative para -cycloaddition of quinolines with a variety of 

activated and unactivated alkenes. The reaction was enabled by photosensitization of the 

Lewis acid-complexed substrates and displays high diastereo- and regioselectivities that 

are tunable through varying the solvent and substitution patterns. Our mechanistic studies 

revealed a complex multisurface energetic landscape traversed by the reaction. Using a 

combined experimental and computational approach, we also disclosed the origins of the 

observed regio- and diastereoselectivities. Given the emerging interest in bridged polycycles 

and heterocycles in medicinal chemistry, we anticipate that this method will find substantial 

use in facilitating the efficient synthesis of such scaffolds.
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Figure 1. 
Calculated spin densities.
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Scheme 1. 
Arene–Alkene Cycloaddition
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Scheme 2. 
Regioselectivitya

aReactions were run on a 0.25 mmol scale with standard conditions; yield of the isolated 

product is reported as combined yields of both diastereomers, average of two runs; dr and rr 

were determined by NMR analysis of the unpurified mixture. *NMR yield.

Guo et al. Page 15

J Am Chem Soc. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Substrate Scopea

aReactions were run on a 0.25 mmol scale; yields of isolated products were reported as 

combined yields of both diastereomers; dr and rr were determined by NMR analysis of 

the unpurified mixture; average of two runs. Condition for methylation: MeI (5 equiv), 

dioxane, 50 °C, 12 h; *48 h; †yields of all for diastereo- and regioisomers; ‡>20:1 dr after 

purification.
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Scheme 4. 
Allene Scopea

aReactions were run on a 0.25 mmol scale; values of dr, rr, and E/Z were determined by 

NMR analysis of the unpurified reaction mixture. *Combined yield of both diastereomers. 

Average of two runs.
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Scheme 5. 
Selectivity Challenges
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Scheme 6. 
Selectivity-Determining Step
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Scheme 7. 
Role of Lewis Acid
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Scheme 8. 
Ortho vs Para Selectivity
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Scheme 9. 
5-to-8 vs 8-to-5 Regioselectivity
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Scheme 10. 
Endo vs Exo Diastereoselectivity
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Table 1.

Reaction Optimization

a
Reactions were run on a 0.1 mmol scale.

b
Combined yields (rr and dr) were determined by crude NMR for using CH2Br2 as the internal standard.

c
5 mol % cat., 395 nm LED, 36 h.
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