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Review Article

Consensus statement for diagnosis
of subcortical small vessel disease

Gary A Rosenberg1, Anders Wallin2, Joanna M Wardlaw3,
Hugh S Markus4, Joan Montaner5, Leslie Wolfson6,
Costantino Iadecola7, Berislav V Zlokovic8, Anne Joutel9,
Martin Dichgans10, Marco Duering11, Reinhold Schmidt11,
Amos D Korczyn12, Lea T Grinberg13,14, Helena C Chui15 and
Vladimir Hachinski16

Abstract

Vascular cognitive impairment (VCI) is the diagnostic term used to describe a heterogeneous group of sporadic and

hereditary diseases of the large and small blood vessels. Subcortical small vessel disease (SVD) leads to lacunar infarcts

and progressive damage to the white matter. Patients with progressive damage to the white matter, referred to as

Binswanger’s disease (BD), constitute a spectrum from pure vascular disease to a mixture with neurodegenerative

changes. Binswanger’s disease patients are a relatively homogeneous subgroup with hypoxic hypoperfusion, lacunar

infarcts, and inflammation that act synergistically to disrupt the blood–brain barrier (BBB) and break down myelin.

Identification of this subgroup can be facilitated by multimodal disease markers obtained from clinical, cerebrospinal

fluid, neuropsychological, and imaging studies. This consensus statement identifies a potential set of biomarkers based on

underlying pathologic changes that could facilitate diagnosis and aid patient selection for future collaborative treatment

trials.
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Introduction

Vascular cognitive impairment (VCI) refers to cognitive
alterations caused by vascular disease.1,2 The aging of
the populations worldwide and the increase in vascular
disease with age has led to projections of major growth
in the numbers of patients with VCI over the next 30
years.2 However, in spite of its growing importance,
very few specific treatments, apart from treatments
for stroke, have been tested in VCI. In addition, there
is increased awareness of the role played by vascular
disease and neuroinflammation in accelerating the
course of Alzheimer’s disease (AD),3,4,5,6 with some
investigators raising the possibility that white-matter
changes are the starting point of AD.7,8,9 Several fac-
tors have impeded progress in organizing treatment
trials in VCI, including heterogeneity of clinical presen-
tations, and lack of pathologic consensus, making iden-
tification of homogeneous subpopulations of VCI
patients a critical unmet need.10 The use of biomarkers
aids identification of homogeneous patient groups.11,12

Large vessel strokes result in a sporadic pattern of brain
damage, making it difficult to predict the natural his-
tory. On the contrary, damage to small vessels, invol-
ving the subcortical white- and gray-matter nuclei often
follows a progressive course with gradual changes over
several years, providing information on the natural his-
tory, which can be used in treatment trials.13,14,15

Since changes in the subcortical and periventricular
white matter accrue over time in the elderly, the deep
white matter is a common site for ischemic and inflam-
matory injury. Patients with subcortical lesions have
been separated from the larger group of VCI patients
and referred to as subcortical small vessel disease
(SVD). The challenge is to identify patients with similar
underlying pathologic processes at an early stage
through the use of disease markers derived from clin-
ical, imaging, and biochemical studies to establish a
relatively homogeneous population to test treatments
developed in animal models. This special issue is a con-
sensus statement for treatment guidelines in patients
with progressive SVD of the white matter.

Historical perspective

In the early 1900s, clinical/pathology studies by Otto
Binswanger, Oskar Fischer, and Alois Alzheimer sepa-
rated arteriosclerotic dementia with multiple lacunar
strokes, état criblé, dilated perivascular spaces, and cor-
tical and periventricular white-matter atrophy from
neurodegeneration with senile plaques.16,17,18 Many
years lapsed until measurements of cerebral blood
flow (CBF) and volume of infarcted brain tissue
advanced the understanding of vascular dementia.19,20

However, this changed dramatically in the 1970s with

the discovery of computed tomography (CT) and sub-
sequently magnetic resonance imaging (MRI). The abil-
ity to visualize brain structure showed both regions of
infarction and changes in white matter. With MRI
becoming a routine diagnostic test, the overlap of vas-
cular disease and neurodegeneration lead to new cate-
gories of vascular dementia other than multiple cerebral
infarctions. The presence of progressive disease asso-
ciated with white-matter changes was referred to as
‘probable vascular dementia’.21,22

Currently, there is general agreement about the diag-
nosis of VCI in patients with large vessel strokes due to
either thrombosis or embolism, which can be readily
seen on neuroimaging.2 Some of these multi-infarct
patients show a cognitive decline with each
stroke.23,24 However, diagnosis of vascular dementia
due to SVD was more controversial because of the fre-
quent occurrence of white-matter changes in normal
elderly, the high incidence of overlap with other neuro-
degenerative disorders, and the lack of consensus on
the use of clinical, cerebrospinal fluid (CSF), neuroima-
ging, and neuropathologic findings in the diagnosis.10

Definitions of vascular cognitive
impairment

Since dementia described only the more advanced
stages of vascular disease and emphasized memory
loss, the term, VCI, was created to encompass all
forms of cognitive loss related to vascular disease
(Table 1).1,25 Large vessel strokes involve the cortex
and deep white matter with multiple etiologies, while
SVD occurs mainly secondary to vascular risk factors,
including hypertension, diabetes, hyperlipidemia, obes-
ity, smoking, sleep apnea, and hereditary blood vessel
diseases, resulting in activation of endothelial cells with
thrombosis and inflammation.26 Small vessel disease
includes both lacunar infarcts in the basal ganglia and
thalamus and white matter damage. Occasionally single
lacunar infarcts in strategic locations, particularly the
thalamus, can result in cognitive impairment, but more
generally multiple basal ganglia lacunes result in cogni-
tive impairment.27,28 However, dementia is uncommon
with single lacunar infarcts unless coexistent white-
matter damage and AD pathology are present.3,29,30

Multi-Infarct Dementia

Atherosclerosis of the carotids, vertebral and major
intracranial arteries mainly cause large vessel strokes.
Emboli from the heart, particularly with atrial fibrilla-
tion and from the atherosclerotic aortic arch and car-
otid generally lead to large strokes, but on occasion
showers of small emboli can occur. Initial attempts to
standardize diagnostic criteria for multi-infarct
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dementia required the temporal relationship of the
stroke to the decline in cognition, which failed to
occur in many patients with a progressive course,
which more closely resembled neurodegeneration.21,22

Although temporal relationship between the infarct
and the loss of cognitive function was considered as
critical for diagnosis, it was soon realized that many
patients with vascular causes of dementia had a pro-
gressive course that overlapped in the early stages with
AD, while MRI showed that many of these patients
had abnormal signal in the white matter, suggesting
possible cerebrovascular disease.

Subcortical Small Vessel Disease

Small vessel disease is a broad term that includes lesions
in subcortical gray and white matter. Small strokes pro-
duce lacunes, which can be seen in the basal ganglia and
deep white matter. Isolated infarcts in the basal ganglia
and thalamus cause stroke-like events with an unpre-
dictable course, and have been classified in the multiple
stroke category. Diffuse white-matter lesions, which
may have a different pathophysiology, tend to enlarge

over time, making it possible to determine a natural
history that could potentially be altered by treatment.
Lacunes are often present along with extensive white-
matter changes, which are often the case in hyperten-
sive SVD.3,27 Studies of the blood–brain barrier (BBB)
permeability show increased leakiness in white matter
remote from the index infarct in patients with lacunar
strokes.31 Many white-matter hyperintensities (WMHs)
may have lacunes at the edges along the course of per-
forating vessels supplying the respective brain region,
which may be a factor in the enlargement of the
WMH.32 Microinfarcts in the cortex, which are being
identified with pathologic studies and 7T MRI, are
associated with acceleration of AD, but their role in
white-matter pathology remains to be established.33

Many of the patients with sleep apnea have cognitive
impairment, but the relationship of sleep apnea to
WMHs needs further study.34

Binswanger’s Disease

Binswanger’s disease (BD) before CT and MRI was an
infrequent pathologic diagnosis that was made when
there was extensive demyelination associated with
arteriolosclerosis of deep white-matter vessels.35,36

Diagnosis before death is now possible from clinical,
imaging, and biochemical features; the typical patient
with BD has an insidious onset suggestive of small
strokes and clinical findings of executive dysfunction
on neuropsychological testing, early onset of motor
findings with prominent gait impairment, apathy,
incontinence, and in the advanced stages, pseudobulbar
findings with full-blown dementia.37,38,39,40,41 There is
generally a progressive course with some waxing and
waning of symptoms. Vascular risk factors are
common, particularly hypertension.34 Congestive
heart failure can lead to intermittent symptoms,
depending on the cardiac output. Atrial fibrillation
with episodic hypoperfusion may be present. Medical
diseases, such as hypothyroidism, B12 deficiency, colla-
gen vascular disease, and hematological disorders, need
to be ruled out. Cerebrospinal fluid should be tested to
exclude infections and in younger patients to rule out
multiple sclerosis. Binswanger’s disease is a spectrum
disorder; a collection of clinical, imaging, and molecu-
lar markers will be needed to approach diagnostic cer-
tainty. Diagnosis of BD is complicated by the overlap
with AD and white-matter changes of aging (Figure 1).

Age-Related White-Matter Damage

Periventricular WMHs are commonly observed in older
persons on fluid attenuated inversion recovery
(FLAIR) MRI. Population-based and cohort studies
have helped to define the course and clinical

Table 1. Major diagnostic categories for vascular cognitive

impairment patients.

Diagnostic

categories Description

Multiple infarcts Large vessel thrombotic occlusion or

emboli to major arteries involving gray-

and white-matter regions. MRI indicates

the regions of infarction in the cortex.

These patients have a step-wise course

Lacunar infarcts

and single

strategic

infarcts

Small strokes in basal ganglia and white

matter; single stroke in thalamic region

likely to impair cognition. These lesions

are considered as a separate entity since

they may have a different pathophysi-

ology than involved in the extensive

white-matter disease

Binswanger

disease (BD)

Progressive form of SVD with extensive

white-matter ischemic changes with or

without lacunar strokes secondary to

vascular disease with arteriolosclerosis.

Patients have gait disturbances, execu-

tive dysfunction, evidence of small

strokes (hyperreflexia), apathy, and

depression

CADASIL,

a representa-

tive inherited

SVD

Familial form of small vessel disease invol-

ving vessel smooth muscle NOTCH 3

accumulation with migraines, multiple

strokes, and dementia

CADASIL, cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy; MRI, magnetic resonance imaging;

SVD, small vessel disease.
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significance of WMHs in the periventricular and deep
white matter. The conclusions reached are highly
dependent upon study design, demographics, and def-
inition of WMHs. In community dwelling individuals
over the age of 75, using a quantitative definition of
WMHs (>0.5% of intracranial volume), periventricular
WMHs were found in 2/3 of an age-stratified cohort (75
to 89 y/o) selected for mobility (stratified from normal
to impaired) with relatively normal cognition. Over 4
years, the most important risk factors for progression
were age, hypertension, and WMH volume at baseline
with the cohort demonstrating significant decrements of
mobility and measures of cognitive processing speed
with periventricular WMH accrual from 0.99% to
1.74% of intracranial contents volume.42 The growth
of WMHs occurred by expansion of preexisting peri-
ventricular lesions, generally extending outward from
the anterior and posterior horns of the lateral ven-
tricles, making it less likely that they were due to
acute ischemic pathophysiology.43 One explanation is
that periventricular WMHs are caused by benign
venous collagenosis as opposed to deep WMHs that
are related to reduced blood flow with hypoxia.44

Although this condition and BD are linked with hyper-
tension and likely microvascular disease, the age of
onset, prevalence, clinical manifestations, rate of

progression, and site of lesions differ, suggesting that
other factors are also operative. Separation of elderly
individuals with age-related periventricular WMHs
from those related to BD will aid treatment trials by
reducing the numbers of patients to treat.

Inherited Forms of Small Vessel Disease

There are several recognized forms of inherited SVD.
Cerebral autosomal dominant arteriopathy with subcor-
tical infarcts and leukoencephalopathy (CADASIL), the
most common inherited SVD, which is a systemic vas-
cular disorder characterized by recurrent subcortical
strokes leading to vascular dementia, will be the focus
of this review. It is due to a mutation in the NOTCH3
gene, encoding a transmembrane receptor protein.
Granular osmiophilic material deposition around vascu-
lar smooth muscle cells is a specific diagnostic feature of
CADASIL. The clinical presentation of CADASIL is
characterized by migraine with aura, subcortical ische-
mic events, mood disturbances, apathy, and cognitive
impairment.45 Migraine with aura is usually the first
symptom. Transient ischemic attacks and ischemic
strokes are the most frequent manifestations in
CADASIL, often occurring in the absence of conven-
tional vascular risk factors. However, in one series,
hypertension was present in 20% of patients and the
risk factors of high cholesterol concentrations and smok-
ing were present in 50%, with an association between
current smoking and earlier stroke onset. Eventually,
multiple strokes cause gait problems, urinary incontin-
ence, depression, and pseudobulbar palsy.45,46

Leukoaraiosis

Leukoaraiosis was derived from the Greek words for
‘white’ and ‘rarified’, and was originally proposed to
describe the low signal seen on CT in the white
matter for which a concise etiology was lacking.47

The attenuated signal on CT corresponds to high
signal on T2-weighted MRI. The impetus for the use
of this descriptive term was originally to avoid the over
use of the association of white-matter changes, which
were seen in some normal individuals, with the patho-
logic process in BD. It is a ‘neutral’ term to be used
when neither a definite pathologic change nor a specific
clinical deficit has been linked with the CT and MR
changes. The use of a purely descriptive term was to
preclude ‘premature presuppositions’ and encourage
the search for causes.

Mixed Dementia

While relatively pure forms of BD and AD are found, it
appears that the largest group of patients has a

Figure 1. Venn diagram of the various categories of small vessel

vascular cognitive impairment (VCI). White-matter changes of

aging or leukoaraiosis indicate that the etiology is uncertain.

White-matter changes of aging can overlap with small vessel

disease (SVD) in patients with Binswanger’s disease. When

Alzheimer’s disease overlaps with SVD, mixed dementia is the

appropriate term. Inherited forms of SVD (ISVD), such as

CADASIL, are a separate category of SVD. CADASIL, cerebral

autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy.
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combination of both diseases.5,6,48 This important
group of patients has remained essentially undefined,
until the advent of amyloid positron emission tomog-
raphy imaging.49 These patients generally are older
than the typical patient with vascular disease. Often
memory impairment is present along with executive
dysfunction. White-matter changes are present on the
MRI, which may be difficult to differentiate between
those accruing over time in the elderly from those due
to hypoxic hypoperfusion with incomplete ischemia due
to arteriolosclerosis or cerebral amyloid angiopathy;
this is an important distinction because the latter
group could have both AD and SVD. In the patients
with AD, cerebral amyloid angiopathy results in micro-
bleeds that tend to be localized to the posterior white
matter, and which are suggestive of mixed type path-
ology. This group most likely will require multiple
treatments related to the vascular and AD aspects of
the pathology. The key will be to determine the dom-
inant features early in the course and to initiate treat-
ment directed to the major factors.

Pathophysiology of white-matter injury
in small vessel disease

The deep white matter is a watershed region that is vul-
nerable to reductions in CBF and oxygen delivery.50

The vasculature supplying the subcortical white matter
originates on the cortical surface and narrows as the
vessels descend into the deeper regions, leaving white
matter around the ventricles vulnerable.51 Brun has
described the damage to the region as ‘incomplete
infarction’.52 Hypertension has the major effect of nar-
rowing the vessel lumen and thickening the vessel outer
wall; in spontaneously hypertensive rats (SHR), spir-
onolactone, a potassium-sparing diuretic, used as an
antihypertensive, reverses these changes.53 Arterioles
are primarily affected showing arteriolosclerosis, lipo-
hyalinosis, and fibrinoid necrosis.30,54 The narrowed
lumen restricts CBF producing an intermittently hyp-
oxic environment. The vessels become stiff and respond
poorly to dilatation in response to reduced blood pres-
sure (cerebrovascular autoregulation) or when there is a
need to increase the supply of oxygen, such as during
brain activation.55,56 This leads to induction of hypoxia
inducible factor-1�, triggering transcription of a large
array of inflammatory and repair genes (Figure 2).57,58

Hypoxia inducible factor-1� induces furin, an activator
of membrane type matrix metalloproteinase (MT-
MMP), which activates the constitutive enzyme,
proMMP-2, breaking down endothelial basal lamina
and tight junction proteins, opening the BBB and allow-
ing proinflammatory plasma proteins to enter the
brain.59 As hypoxia worsens the inducible MMPs,
MMP-3 and MMP-9, are produced, accentuating the

damage to the blood vessels. The hypoxic and proin-
flammatory environment leads to myelin disruption.
Oxidative-nitrosative stress related to oxygen and nitro-
gen-free radicals takes place, resident microglia are acti-
vated and cytokines and chemokines recruit
macrophages, further enhancing oxidative stress and
proteolytic activity.60 The combination of free radicals
and proteases produces a nonimmunologic attack on
the myelinated fibers of the white matter, resulting in
‘by-stander’ inflammatory demyelination.61

Elevated levels of albumin suggest blood-derived
protein crossed a disrupted BBB.62 Pathologic studies
showed blood-derived proteins in the brains of patients
with SVD.63 Magnetic resonance imaging studies
with gadolinium-DTPA show increased permeabil-
ity.64,65,66,67 Patients with lacunar strokes have
increased permeability in deep white matter remote
from the lacunar infarct, and the increased BBB perme-
ability shortened the time to functional dependency as
measured 3 years later.68 By the time of death, brain
tissue shows multiple pathologies, which may or may
not reflect the early events, making it necessary to use
neuroimaging and CSF markers to identify initiating
events.

In CADASIL, pathogenetic mutations in NOTCH3
gene alter the number of cysteine residues in the extra-
cellular domain (ECD), leading to accumulation of the
protein within granular osmiophilic material deposits
in small arteries, veins, and capillaries throughout the
brain.69 There is degeneration of smooth muscle cells
with fibrosis of small arteries in the white matter.
Immunostaining for blood-derived proteins, as a
proxy for BBB permeability, showed focal breaches
of the BBB at the sites of microbleeds or infarcts,
but did not show generalized BBB leakage.46

Functional neuroimaging studies have provided evi-
dence of compromised cerebral hemodynamics in
CADASIL patients; studies of cerebrovascular reactiv-
ity, as determined by measurement of CBF changes
after exposure to inhaled CO2 or injected acetazola-
mide, indicate that cerebral blood vessels are dysfunc-
tional in CADASIL patients.70,71 Notably, an
association was reported between a lower cerebrovas-
cular reactivity at baseline and a larger increase in
WMHs at follow-up, suggesting a role for impaired
cerebrovascular reactivity in progression of white-
matter lesions. Positron emission tomography studies
have documented a significant decrease in CBF in the
white matter, consistent with a chronic ischemia of
white matter or decreased demand for oxygen and
blood supply consequent upon having fewer normal
cells to supply. The finding that CBF was reduced in
young patients before the occurrence of clinical symp-
toms indicates that ischemia could be occurring early
in the disease course.69,72
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Patients with SVD often have enlargement of the
Virchow-Robin perivascular spaces,73,74 which are
associated with amyloid angiopathy, hypertension,
and lobar microbleeds.75,76 At this time, the clinical
significance of the dilatation of the perivascular
spaces remains to be determined.

Diagnostic tests in vascular cognitive
impairment

Magnetic Resonance Imaging

Magnetic resonance imaging has dramatically impacted
the evaluation of patients with cerebrovascular disease
through the sensitivity to white-matter changes and
lacunar infarcts.77 Magnetic resonance imaging is
essential for initial screening of patients for cortical
infarcts, lacunes, WMHs, microbleeds, enlarged peri-
vascular spaces, and cortical atrophy. However, the

MRI has limitations as a diagnostic tool because
of the poor specificity and the significant numbers of
normal elderly with moderate to severe WMHs
of uncertain etiology.78,79 Neuropathologic validation
of imaging findings is complicated by alterations of
postmortem brain tissue.80,81

Cross sectional and long-term neuropsychological
studies, such as the LADIS (Leukoaraiosis and
Disability in the Elderly) study, have shown that
white-matter changes give rise to cognitive impair-
ment.82 Microstructural changes with diffusion tensor
imaging (DTI) in normal appearing brain tissue relate
more closely to the patients’ clinical presentation than
the volume of visible white-matter abnormalities on
FLAIR.83 These observations clearly indicate that
age-related SVD of the brain is a diffuse process affect-
ing the entire brain. In addition, population-based stu-
dies have shown that the WMHs, which increase in size
over 3 years, are related to cognitive impairment,

Figure 2. Hypothetical pathophysiologic mechanisms for white-matter damage secondary to vascular risk factors (hypertension,

diabetes etc.). Damage to the blood vessels leads to fibrosis with narrowing of the vessel lumen and thickening of the walls. There is

reduction of cerebral blood flow with hypoxia/ischemia that triggers a molecular injury cascade, beginning with hypoxia inducible

factor-1� (HIF-1�). The fur gene forms Furin, which is the activator of pro-membrane type metalloproteinase-1 (MT-MMP), the

activator of proMMP-2. Proteolytic disruption of the blood–brain barrier (BBB), vasoconstriction due to activation of endothelin-1, ad

demyelination, edema, and white-matter damage. HIF also activates a repair cascade that leads to angiogenesis and neurogenesis.

(From Rosenberg Lancet Neurology, permission granted).
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and increase the risk of stroke.13,83,84,85 Population stu-
dies using MRI provide important cohort information
of population, but are less useful in identifying patho-
logic changes in individual patients, and other MR
modalities augment the information (Table 2).

NMR Spectroscopy and Diffusion Tensor
Imaging

Other MR techniques that are more sensitive to patho-
logic changes in the white matter are proton NMR
spectroscopy (1H-MRS) and DTI. 1H-MRS, which
shows reductions in N-acetylaspartate (NAA) and cre-
atine (Cr) in ischemic tissue, is a marker of axonal and
neuronal injury.86 Patients with BD have reduced NAA
in the white matter, while WMHs in normal elderly
have normal NAA levels.87,88 There is lack of consensus
on the relationship of the level of NAA and cognitive
function with one report failing to find a correlation,89

and another showing that the level of white matter
NAA and Cr correlates with executive function on
neuropsychological testing, which may be related to
differences in populations studied or MR techniques.90

Diffusion tensor imaging is a sensitive method to
show microstructural damage in white matter. There is
growing evidence that DTI, particularly the mean diffu-
sivity component, is a more sensitive biomarker of
white-matter injury than T2 or FLAIR. Ischemic
changes in the white matter can be seen by either
1H-MRS or DTI and the results are comparable.91

Diffusion tensor imaging allows measurements of frac-
tional anisotropy and mean diffusivity.92 Quantification
of DTI may be confounded by the heterogeneity of
white-matter regions with crossing fiber tracts, which
can often be overcome with appropriate image

processing methods. Methods are needed to standardize
groups of patients, and atlases of controls are used to
normalize regional variations.93 A penumbra surrounds
WMHs where DTI is less severely affected than in the
center of the lesions, but more affected than normal
appearing white matter.93,94 Similar changes in DTI in
the penumbral region around the WMHs were seen in
CADASIL patients who had incident lacunes that arose
along the perforating arteries at the edges of the WMHs.32

Blood–Brain Barrier Permeability
Measurements

Measurement of BBB permeability is possible with con-
trast-enhanced MRI.68,95,96 Quantitative transfer con-
stants for BBB permeability can be obtained with
dynamic contrast-enhanced MRI (DCEMRI), using
the Graphical Method of Patlak, originally developed
for calculation of transfer constants with isotopes and
autoradiography, and adapted to human studies with
MRI.96,97,98 Increased BBB permeability can be seen in
regions of lacunar infarcts and in the deep white
matter.64,65,67 In addition to numerical transfer con-
stants, interesting patterns of increased permeability
can be seen by the construction of permeability maps,
which provide insight into the pathologic changes
underlying the increases in permeability. Such maps
show a diffuse pattern of permeability change in
normal appearing white matter, increased permeability
around the WMHs, and reduced permeability within
the WMHs (Figure 3). Recently, studies of permeability
in gray matter have shown increased permeability of
the hippocampus in normal elderly subjects, which
was more pronounced in patients with mild cognitive
impairment, suggesting a role of the BBB in AD.99

Table 2. Magnetic resonance neuroimaging diagnostic tests useful in evaluation of patients with VCI.

MR technique Variable measured Advantages/disadvantages

Fluid attenuated inversion

recovery (FLAIR)

Volume and location of white-matter

hyperintensities

Very sensitive to white-matter changes, but

not specific for ischemic pathogenesis

Proton magnetic resonance

spectroscopy (1H-MRS)

NAA and Cr Detects ischemia or demyelination, more

sensitive and specific than FLAIR in

identifying injured white matter

Diffusion tensor imaging

(DTI)

Structural changes in the white matter related

to axial and radial diffusion

More specific for injury than FLAIR

Diffusion tensor tractography

(DTT)

Extension of DTI that shows actual white-

matter tracts

Identifies regions of damaged white matter

and potential for lost connectivity

Dynamic contrast-enhanced

MRI (DCEMRI)

Gadolinium blood–brain transfer constant Indicates disruption of the blood–brain

barrier

Atrophy/brain volume 3D T1 sequences Correlates with cognition in sporadic dis-

ease and CADASIL

CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; Cr, creatine; MRI, magnetic resonance

imaging; NAA, N-acetylaspartate; VCI, vascular cognitive impairment.
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Biochemical Markers in Diagnosis of Small
Vessel Disease

Biochemical studies of blood and CSF provide import-
ant information in patients with SVD (Table 3).

Cerebrospinal fluid studies have been most useful
and are indicated particularly in patients with BD.
The CSF eliminates nonvascular causes, such as inflam-
mation secondary to infection, vasculitis, and multiple
sclerosis. This is essential in younger patients with

Figure 3. Representative permeability maps in the white matter obtained with dynamic contrast-enhanced magnetic resonance imaging

(DCEMRI). White-matter hyperintensities (WMHs) are colored in green and are derived from fluid attenuated inversion recovery

(FLAIR) MRI. The color scale in the right indicates the amount of permeability change with yellow being the highest values and red being

the lowest. (a) Upper row shows representative permeability maps for normal subjects. Scattered areas of red show that mild increases

in permeability can be seen in normal some of whom have WMHs (white arrows). (b) Lower row shows white-matter permeability maps

from several Binswanger’s disease (BD) patients. The large amount of green indicates that they have extensive WMHs. Areas of high

permeability, which were not seen in the normal are seen as yellow areas at the edges of the WMHs (white arrows). Normal appearing

white matter shows increased permeability. (Figure courtesy of Arvind Caprihan, PhD, MIND Research Network, Albuquerque, NM).

Table 3. Cerebrospinal fluid findings in patients with white-matter injury in VCI.

Test Interpretation

Albumin ratio increased (CSF/serum) Albumin made in the liver and found in very low concentrations in

CSF except when BBB is leaky

Reduced matrix metalloproteinase-2 index,

elevated MMP-3, and -9

Inflammatory molecules that disrupt the BBB by attacking the

basal lamina and tight junction proteins

Cytokines (TNF-alpha and IL-1beta) Expressed in blood and CSF during inflammatory responses

Multiple sclerosis panel (IgG index,

Oligoclonal bands, myelin basic protein)

Necessary to rule out MS as a cause of the WMHs on FLAIR and

may be expressed in neuroinfections due to viruses, bacteria,

fungal infections, or immunologic reactions

Alzheimer proteins (A� and PhosphoTau) Reduced A� found in CSF of AD patients along with elevated Tau

making them important to rule out AD

AD, Alzheimer’s disease; Ab, amyloid beta; BBB, blood–brain barrier; CSF, cerebrospinal fluid; FLAIR, fluid attenuated inversion

recovery; IL, interleukin; MMP, matrix metalloproteinase; VCI, vascular cognitive impairment; TNF, tumor necrosis factor.
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white-matter lesions. Measurements of CSF protein
levels as reflected in the albumin ratio (albumincsf/
albuminblood) can indicate BBB disruption when the
albumin ratio is elevated, which makes it more likely
for the patient to have VCI than AD.62

In addition to indicators of BBB opening, the CSF
can show neuroinflammation and byproducts of myelin
breakdown. Matrix metalloproteinases participate in
the neuroinflammatory response by attacking the pro-
teins in the basal lamina around cerebral blood vessels
and breaking down the tight junction proteins.59,100,101

During an inflammatory response, there is a shift of the
constitutive MMPs to the inducible MMPs that are
more disruptive. Inflammation increases the levels of
MMP-9 and MMP-3 in the CSF, while the constitutive
MMP-2 that is normally present in a proform is
reduced in the CSF, most likely due to activation;
MMP-3 and -9 are not normally present in CSF,
making them readily detectable when elevated in
inflammation.102,103,104

Matrix metalloproteinases exist in the blood and
move into the CSF when there is disruption of the
BBB, contributing to the CSF level. To determine the
intrathecal production of MMPs, an index can be cal-
culated by creating ratios with the albumin in the CSF
and blood, which is similar to the IgG Index used in the
diagnosis of multiple sclerosis.105 The index is formed
as follows: MMP index¼ [(MMP/albumin)CSF]/
[(MMP/albumin)blood]. Combining the MMP-2 index
and the MMP-3 activity effectively separates BD
from controls (Figure 4).104 Matrix metalloproteinases
are latent and once activated are rapidly removed.
Measurements of active MMPs are possible with

either gel zymography or immunocapture and fluoro-
metric assays, which are available for the active forms
for MMP-3 and MMP-9.106 Other CSF biomarkers
include neurofilament light, myelin basic protein, and
heart fatty acid binding protein.103 Sulfatide predicted
progression of white-matter lesions over 3 years, which
may reflect remyelination.107 Separation of SVD from
AD has been shown to be possible in studies of CSF
biomarkers. The CSF biomarkers that perform well in
differentiating AD and white-matter pathology are
phosphylated-tau (p-tau) and amyloid-�1-42 for AD
and neurofilament light, myelin basic protein, MMPs,
and tissue inhibitor of metalloproteinases-1 for white
matter inflammation and myelin break down. The
results of a single-center study are shown in Figure 5.

There are no validated blood biomarkers for BD.
However, studies using blood have indicated that a sys-
temic low-grade inflammation leading to endothelial
dysfunction is involved in SVD pathophysiology.
Several blood-derived biomarkers have been studied,
including C-reactive protein, interleukin-6 (IL-6),
Intracellular adhesion molecule-1, and thrombomodu-
lin. Interleukin-6 appears to be strongly associated with
silent infarctions.108,109 Intracellular adhesion mole-
cule-1 was elevated in patients with lacunar stroke
and leukoaraiosis,110 and in a prospective community-
based study predicted progression of WMHs.111

Homocysteine, which has been shown to cause endo-
thelial dysfunction, was elevated in patients with lacu-
nar stroke and leukoaraiois, and this association was
attenuated after controlling for circulating markers of
endothelial activation suggesting it was mediated via
endothelial dysfunction.

Figure 4. Relationship of matrix metalloproteinase (MMP)-2 index to MMP-3 activity for the SVD and control groups. (a) Scatter

plot of MMP-2 index and MMP-3 activity shows that the controls clustered in the high MMP-2 index and low MMP-3 activity quadrant

(black dots). The SVD group clustered in the low MMP-2 index and high MMP-3 activity (red dots). (b) A density plot of the ratio of

MMP-2 index to MMP-3 activity shows that the two groups could be separated based on their means with a P-value of 0.0005.
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Amyloid �1-42 (A�42) and phosphorylated-tau181
(p-tau181) are markers for AD in the CSF. Low
values of A�42 are suggestive of AD. However, there
is evidence that the presence of WMHs may lower
A�42 in the CSF by interfering with perivascular drain-
age.112 However, p-tau181 increases in AD and
does not appear to be affected by the WMHs. When
A�42 and p-tau are normal the likelihood of AD is

decreased, making them negative markers in the diag-
nosis of BD.113

Animal models of small vessel disease
to identify drug targets

Several animal models have been developed to study
VCI.114,115 The heterogeneity of the disease necessitates

Figure 5. Scatter plots showing univariate analyses of cerebrospinal fluid (CSF) biomarkers for controls, SVD, and AD. The SVD

patient group consists of MD (filled diamonds) and VaD (open diamonds). Error bars are represented by median and interquartile

range. (a) neurofilament light (NF-L), note the broken axis; (b) myelin basic protein (MBP); (c) heart fatty acid binding protein (H-

FABP); (d) total tau (T-tau), one missing value (mv) in controls; (e) tau phosphorylated at threonine 181 (P-tau181), two mv in controls

and one in MD; (f) amyloid beta 1–42 (A� 1–42); (g) matrix metalloproteinase 9 (MMP-9), lowest detection limit set to 40 ng/L; (h)

matrix metalloproteinase 10 (MMP-10); (i) tissue inhibitor of metalloproteinase 1 (TIMP-1); (j) matrix metalloproteinase 2 (MMP-2);

(k) matrix metalloproteinase 3 (MMP-3), one mv in MD and one in VaD; (l) tissue inhibitor of metalloproteinase 2 (TIMP-2). AD,

Alzheimer’s disease; SVD, subcortical vascular disease; MD, mixed dementia; VaD, vascular dementia. (From M Bjerke et al.,

J Alzheimer’s Dis permission granted).
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a variety of animal models to encompass the multiple
causes. Most animal studies are based on either hypoxic
hypoperfusion secondary to bilateral carotid artery
occlusion in normotensive rats or SVD secondary to
hypertension in the spontaneously hypertensive/stroke
prone rat (SHR/SP).69,116

Bilateral Carotid Artery Occlusion

Bilateral carotid artery occlusion (BCAO) produces
hypoxic hypoperfusion, which primarily affects the
deep white matter.117 The tissue is assumed to be hyp-
oxic although direct measurements of tissue oxygen
levels have not been made. White matter shows demye-
lination with breakdown of the BBB; MMPs are
expressed in the hypoxic tissue and contribute to the
myelin damage.118,119 In addition to the white matter
there is cellular damage in the hippocampus. Cerebral
blood flow is reduced in white matter, hippocampus,
and some areas of the cortex shortly after the vessels
are occluded; there is restoration of CBF over time.
A drawback of the BCAO model is that the changes
in the CBF occur acutely and resolve chronically. To
overcome this limitation, gradual occlusion of the car-
otids with a device that constricts over time has been
used. Gradual narrowing of the both common carotid
arteries using the ameroid constrictor device instead of
ligation circumvents the acute phase of CBF reduction
and acute inflammatory response observed in the
BCAO model.120

Spontaneously Hypertensive/Stroke
Prone Rats

Spontaneously Hypertensive/Stroke Prone rats develop
pathologic changes that resemble those in SVD.121 Bred
originally from Wistar-Kyoto rats, they evolved into a
hypertensive species and finally into the current SHR/
SP.122 Without modifications SHR/SP generally live for
over 1 year, developing strokes and intracerebral bleed-
ing before death. In addition to a diffuse brain SVD
that closely mimics human sporadic SVD, they have
damaged blood vessels in the kidneys.

Dietary modifications with high salt or low protein
diets (Japanese Permissive Diet) accelerate the patho-
logic changes.123 Recently, occlusion of one carotid
artery to increase the hypoxic injury was added to the
Japanese permissive diet in the SHR/SP animals.124

Depending on the purpose of the study, various modi-
fications can be made. For example, in studies involving
intracerebral hemorrhage, the high salt or Japanese
Permissive diet is introduced at age 6 weeks, which is
4 weeks before the onset of severe hypertension; this
results in hemorrhages around 6 to 8 weeks later. If
the dietary changes are delayed until the twelfth week,

then there are prominent changes in the white matter
that resemble those seen in BD and aging.

Both BCAO in the normotensive rats, and low pro-
tein, high salt diets with unilateral carotid artery occlu-
sion in the SHR/SP, damage neurons and white matter
through hypoxic hypoperfusion. Measurements of the
level of oxygen in the white matter over an extended
period of time have been performed using the minim-
ally invasive technique of electron paramagnetic reson-
ance.125 The oxygen content in the white matter begins
to gradually increase by the nineth week reaching a
maximum at 12 weeks after birth. After unilateral car-
otid artery occlusion and abnormal diet, which are
started at 12 weeks, the oxygen content in the white
matter falls precipitously to hypoxic levels where it
remains until the animal dies around week 16.
Therapeutic manipulations with BBB-directed strate-
gies, such as with activated protein C analogs elimi-
nated postischemic microbleeds in SHR, suggesting
that enhancing BBB integrity might have beneficial in
ischemic model in SHR.126

Cerebral Autosomal Dominant
Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy
Mouse Models

Transgenic mice expressing mutated NOTCH3 protein
in the ECD recapitulate the preclinical stage of the dis-
ease with NOTCH3ECD and granular osmiophilic
material deposits and white-matter lesions.127

Vascular accumulation of NOTCH3ECD is the earliest
pathologic change, a finding, which was suspected from
the immunohistochemical analysis of skin biopsies
from asymptomatic NOTCH3 mutation carriers.127,128

Mutant mice have a lower threshold for cortical spread-
ing depression, which could explain the higher inci-
dence of migraine with aura in CADASIL patients.129

Also, mutant mice have impaired cerebrovascular
reactivity, with reduced functional hyperemia and com-
promised autoregulation of CBF. Myogenic responses
have a major role in normal hemodynamic processes in
the brain, modulating vascular resistance and contri-
buting to local and global CBF regulation. Notably,
analysis of isolated vessels have showed reduced myo-
genic responses in both pial and parenchymal arteries in
mutant mice, a finding that could account for the
impaired cerebrovascular reactivity in these mice.130

Importantly, the data indicate that cerebral arteries
are dysfunctional in the absence of overt smooth
muscle degeneration and fibrosis, and that cerebrovas-
cular dysfunction is detectable before the appearance of
white-matter lesions, suggesting that the former could
cause the latter.130
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Treatments in Animal Models

The optimal model to use for testing of drugs will vary
with the pathologic process suspected. In the hyperten-
sive vascular disease of the elderly, SHR/SP is best.
In normotensive rats, BCAO can be used as a model
to study inflammatory mechanisms. For hereditary
forms of SVD, mouse models with specific genes will
be needed. Treatments in rats with hypoxic hypoperfu-
sion due to either BCAO or spontaneous hypertension
have indicated a number of potential therapeutic
agents.114,131 Cyclosporin A suppressed both glial acti-
vation and white-matter changes after chronic cerebral
hypoperfusion, suggesting that immunologic reaction
may have a role in the pathogenesis of the white-
matter changes.132 Cyclosporine A inhibits BBB break-
down in APOE4 Tg mice by inihibiting cyclophilin
A-MMP-9 pathway in pericytes leading to reversal of
neuronal dysfunction and secondary neurodegenerative
changes.133 A number of anti-inflammatory agents and
free radical scavenging agents have shown benefit.114

Treatments with minocycline significantly attenuated
the hypoxia-ischemia-induced brain injury and
improved neurobehavioral performance; the protection
of minocycline was associated with its ability to reduce
microglial activation.134 In the SHR/SP with the
Japanese permissive diet and unilateral carotid artery
occlusion, treatment with minocycline blocked the full
development of white-matter injuries seen on MRI and
improved behavior in the Morris water maze.135

Based on mouse models of CADASIL, target-
ing the synthesis of NOTCH3 or the clearance of
NOTCH3ECD deposits, might represent a first thera-
peutic option.136 Upregulation of Kv1 channels in cere-
bral arteries has been shown to be the molecular
mechanism underlying the diminished myogenic
responses in mutant mice.137 Treatment of hypertension
and other vascular risk factors, anti-aggregants, and
anti-inflammatory drugs are other possible avenues.

Multimodal approach to biomarkers

in vascular cognitive impairment diagnosis

Multiple pathologic processes produce the final changes
in the brains of patients with VCI. Depending on the
time of encountering the patient, there may be one or
more pathologies present. Autopsy is of less use in VCI
since by the time of death the majority of patients have
a variety of diseases, ranging from cerebral infarctions
to AD.6,138 A more practical approach based on the
need to identify the initiating factors in a multiple dis-
ease process is to use biomarkers that would ideally
reflect the brain pathology in the early stages of the
disease.139 Since the natural history can be determined
in BD, this is most likely the optimal form to use

biomarkers to separate from other forms for the pur-
pose of treatment trials.

Although there are a number of potential disease
markers from the clinical, imaging, and biochemical
perspective, none of them is diagnostic, making it
necessary to use a combination of these markers.140

Biomarkers derived from MRI are the best studied
with growth of both WMHs on FLAIR and FA
decrease on DTI, indicating progressive damage.141

Information on the use of a number of biomarkers of
diagnosis of BD is available, but most have not been
used in longitudual studies. For diagnosis, there are
studies showing that clinical and neuropsychological
testing, 1H-MRS, and CSF measurements of albumin,
MMPs, and neurofilament light can be used. It is pos-
sible to create a diagnostic scale by summing a series of
biomarkers, which when a given number of factors are
present, the likelihood of the diagnosis being BD is
increased. A statistical approach can be used to opti-
mize the diagnostic set through use of exploratory
factor analysis. Two processes are involved: initially,
diagnostic biomarkers need to be determined, and sec-
ondarily, the biomarkers that can be followed to show
progressive tissue damage need to be selected.
Biomarkers to be used in diagnosis should be obtained
at the early stages with the diagnoses confirmed after a
period of follow-up.

A potential multimodal approach would include three
groups of possible markers: clinical, imaging, and bio-
chemical, which are like three axes with grades of close-
ness to the full diagnosis of BD at points along each axis.
Clinical factors come from the neurologic examination
and the neuropsychological testing: features from the
examination include vascular risk factors, hyperreflexia,
and gait impairment; neuropsychological testing includes
impaired executive function with relative preservation of
memory and language; imaging features based primarily
on MRI include reduced NAA on 1H-MRS, increased
BBB permeability with DCEMRI, reduced FA and
increased mean diffusivity on DTI. Cerebrospinal fluid
measures include increased albumin ratio, reduced
MMP-2 index, elevated neurofilament light, and the
absence of AD biomarkers. A complicating factor is
that there is considerable overlap between AD and
VCI, which is not always be possible to document by
clinical or imaging means alone.54

Identifying an optimal set of markers will be challen-
ging since different investigators may have access
to a limited number of the possible biomarkers.
It may be necessary to have a ‘high tech’ set of markers
done by a limited number of investigators with the goal
of selecting optimal ones, and a ‘low tech’ group
of markers that are available at all research sites.
Additional factors such as age will need to be taken
into consideration.
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An approach to targeted treatment trials

Treatment trials in VCI have used drugs designed to
treat AD with limited success in heterogeneous popu-
lations.11 Treating vascular risk factors by aggressively
lowering blood pressure, controlling diabetes, reducing
hyperlipidemia, and encouraging exercise should be
performed in all VCI patients. The BD subpopulation
of VCI patients with white-matter injury related to hyp-
oxic hypoperfusion has inflammation, which could be
targeted for treatment along with vascular risk factors.
A recent epidemiologic study in the cohort of partici-
pants in the third generation of the Framingham Study
showed that hypertension begins to cause white-matter
damage in middle age, supporting aggressive treatment
of hypertension in mid-life.142 This has lead to a
reassessment of the normal range of blood pressure at
various ages since it may be beneficial to aggressively
lower blood pressure in the younger hypertensive
patients, while avoiding excessive blood pressure low-
ering in the very old, although the age boundaries are
still to be determined.143

While it remains a challenge to separate inflamma-
tion from multiple lacunar strokes as the primary mech-
anism of injury to the white matter, the interaction
between ischemia and Inflammation is an emerging
concept that may be relevant in those individuals with
progressive decline rather than discreet strokes.144 It is
likely that the extensive white-matter injury evolves
from small strokes that trigger either an inflammatory
response around the vessels or an inflammatory
response is initiated in the vessels damaged by hyper-
tension or diabetes. Since the disruption of the BBB
suggests inflammation, reducing permeability may be
beneficial and could be tested. Although the inflamma-
tory cascade causes damage in the early stages of an
injury, in the secondary stage when recovery with
angiogenesis is beginning, inflammation appears to be
necessary for recovery, which could compromise treat-
ment with anti-inflammatory agents. These studies have
been performed in the acute injury models and they
need to be performed in the chronic injury models to
determine the long-term effects of agents that block
inflammation.

A major challenge will be to identify the optimal
biomarkers both for diagnosis and for surrogate end-
points for treatment trials. Rather than attempt to cat-
egorize patients solely on the basis of one diagnostic
test, developing operational definitions based on com-
binations of features may help. This requires under-
standing the contribution of each of the factors to the
clinical presentation. For example, in the clinical exam-
ination it is well known that motor findings are uncom-
mon in the early stages of AD, where memory loss and
language problems are the dominant factors. However,

motor findings such as hemiparesis and asymmetric
hyperreflexia can be frequently present at the onset in
SVD. Similarly, executive dysfunction occurs early in
SVD. Confluent WMHs on MRI are highly suggestive
of BD, although it can be seen in AD and normal eld-
erly. Biochemical measurements of NAA with 1H-MRS
are more specific for ischemic damage to the white
matter, and DTI provides a more sensitive measure of
white-matter damage than FLAIR or T2-weighted
images. DTI has the advantage that it can be performed
in a shorter time and is readily available on most MRI
machines. Currently, confluent WMHs are the only
MRI correlates of cerebral SVD for which the require-
ment of a surrogate marker is fulfilled; progression of
confluent white-matter lesions correlates with cognitive
decline.13,147 Amyloid and tau imaging with positron
emission tomography could also be helpful to diagnose
comorbidity with AD in the patients with mixed dis-
ease,145 with the caveat that amyloid deposits can also
be present in cognitively normal individuals.146

Biochemical CSF studies provide the third axis of
diagnosis; elevated albumin ratio indicates that the
BBB is compromised, which is more likely to occur in
SVD than in AD. Furthermore, CSF shows changes in
proteins associated with AD, including A�42 and p-
Tau. In addition to the clinical, imaging, and CSF
results that are generally available in the clinic there
are number of research investigations that can be help-
ful.77 Promising biomarkers in the CSF include neuro-
filament light, as indicator of myelin breakdown, and
MMPs as a measure of inflammation. Finally, elevation
of BBB permeability is a marker of inflammation.

Discreet cut-points for the factors used to diagnose
BD are difficult to determine since it is a spectrum dis-
order with AD at one end and BD at the other, and a
large group of patients with overlapping disease in the
middle (Figure 6). Utilizing a combination of these fac-
tors it is possible to construct scales that reflect the
underlying pathophysiologic changes occurring in the
brain. One such scale is shown in Table 4, which is
based on a single center study, using cut-points that
have been determined in studies of individual factors
in patients and controls. High or low scores on these
scales would suggest the ‘pure’ forms, while intermedi-
ate scores would indicate ‘mixed’ pathologic processes.
Furthermore, since these biomarkers are dynamic and
change at different stages of the disease, it would be
possible to stage the disease process and modify treat-
ments based on the stage.148

Clarification of the optimal factors to include in clas-
sification scales would require a concerted effort of mul-
tiple centers and a harmonization of the data collection
methods.149 Such large data sets could be mined statis-
tically to identify best classification features. An even
more important exercise for such an endeavor to
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succeed would require agreement as to diagnoses.
These would have to be made after several years of
follow-up at each center based on the clinical picture.
Using this iterative approach, it would be possible
to construct retrospective databases that then could
be used prospectively to identify patients for targeted
treatment trials.

Recommendations for future directions

Treatment trials in animal models can help identify
agents to test in patients. Ideally, the drugs to be
tested would show benefits in several models and both
sexes as now required for acute drug studies in
stroke.150 Drugs that have been approved for other
uses, for example, the anti-inflammatory agents and
free radical scavengers, minocycline and simvastatin,
all of which have been shown to have beneficial effects
in animals models and could be tested in humans.151,152

A biologic product, E-selectin, has been shown to
reduce inflammation after induction of nasal tolerance
in the hypertensive rat.153 Reliable end points will need
to be established. For example, quantification of BBB
permeability could show reduction in short-term stu-
dies of several months. Reduction in the rate of
growth of WMHs by DTI could show improvement
in 6 to 12 months. Slowing the rate of cognitive decline
may require 2 to 3 years. The addition of neuropatho-
logic studies will help confirm diagnoses. This is an
ambitious project that requires identification of homo-
geneous populations with biomarkers, development of
potential drugs in appropriate animal models, and
establishment of consortium of investigators to test
promising agents, using agreed upon end points. Such
a procedure has recently been suggested for amyloid
angiopathy and could be applied to BD.154
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