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ABSTRACT OF THE DISSERTATION

Large Scale Observational Analytics

for Clinical Evidence Generation

by

Yuxi Tian

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2023

Professor Marc A. Suchard, Chair

Longitudinal observational health data are rapidly becoming standardized and consolidated

at massive scale. However, the large size and observational nature of this data create infras-

tructural, statistical, and computational challenges to their utilization for generating reliable

clinical evidence. I first review principles of observational research and various method-

ological and statistical tools used to conduct modern observational studies. I then discuss

methodological advancements and their clinical implementations in large scale observational

health analytics. I introduce a framework for evaluating propensity score methods that are

a central tool in addressing confounding in non-randomized studies. This framework incor-

porates simulations that model real-world survival data and negative control experiments.I

adapt my evaluation framework to probe the real-world prevalence and consequences of “in-

strumental variables” that unduly dominate propensity score models and bias clinical effect

size estimates. I then compare propensity score adjustment methods in research evaluating

spline functions for multiple treatment settings. Next, I turn to statistical computing chal-

lenges that hinder the application of high-quality methods in large data. I utilize graphics

processing unit (GPU) programming to accelerate logistic regression, a staple statistical re-

gression used for propensity score estimation, in the high-dimensional regimes necessitated

ii



by the largest health databases. Finally, I conduct clinical studies using tools developed

through the Observational Health Data Sciences and Informatics (OHDSI) community that

allow large-scale and high-quality observational studies to be conducted with previously

unattainable efficiency. In one study, I analyze the comparative effectiveness of two pop-

ular osteoporosis drugs in preventing fractures and in regards to concerning drug-related

adverse events. In a second study, I address the highly controversial use of recombinant

human bone morphogenetic protein 2 in spinal fusion surgeries. In a third study, I report on

the comparative effectiveness of antidepressant treatments in preventing suicide and suicidal

ideation within a novel all-by-all paradigm of conducting many hypothesis simultaneously

within a medical domain. In a final study, I evaluate the effectiveness of generic vs branded

medications of many drugs across three medical domains with regards to death and ma-

jor cardiovascular events. I conclude with thoughts about future research and progress in

observational medical science.
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CHAPTER 1

Introduction

Although randomized controlled trials (RCTs) are considered the gold standard of evi-

dence in medicine, they are not suitable to answer every clinical question of interest. RCTs

are prohibitively expensive and time consuming to conduct, underpowered for the detection

of rare clinical outcomes, and frequently have inclusion and exclusion criteria so strict as to

exclude a substantial proportion of real-world patients. In addition, they are ill equipped

to provide answers to patient specific clinical questions in an emerging area of “precision

medicine.” Observational health data offer an alternative to RCTs as a complementary re-

source for reliable clinical evidence generation.

The last decade has seen large advances in health data digitization and the development

of observational analytics for drug safety surveillance. Catastrophic drug recalls such as the

2004 worldwide withdrawal of the COX-2 inhibitor Vioxx due to increased risks of heart

attack and stroke contributed to the passage of the Food and Drug Administration (FDA)

Amendments Act of 2007, which mandated the development of an “active postmarket [drug]

risk identification system” and validated methods to analyze safety data from at least 100

million patients by 2012. Out of this mandate came the FDA’s Sentinel Initiative for drug

surveillance and the public-private Observational Medical Outcomes Partnership (OMOP)

to inform appropriate methods for observational database use. After its five-year lifespan,

OMOP investigators continued their work through Observational Health Data Sciences and

Informatics (OHDSI), a multi-stakeholder, interdisciplinary collaborative in which I am a

collaborator. OHDSI has over 140 collaborators across the world and nearly 700 million

patient records have been converted to the OMOP Common Data Model [2], a standardized

representation of health data [3]. Meanwhile, health data digitization has exploded since
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the American Recovery and Reinvestment Act of 2009 required all healthcare providers

to adopt and demonstrate “meaningful use” of electronic medical records by 2014 under

threat of Medicaid and Medicare reimbursements curtailment. As a result, the already

growing percentage of office-based physicians using any electronic health records (EHR)

system increased from 48% in 2009 to 87% in 2015 [4], and the percentage of hospitals using

a comprehensive “basic” EHR increased from 12% to 84% during the same period [5].

The proliferation of digital health data has already transformed medical practice, but we

have only begun to realize health data’s potential for improving patient outcomes. EHRs

have facilitated medical coordination, simplified records access, and in many cases allow

providers and administrators to study broad statistics for their patient population — at the

cost of substantial time devoted to entering the data into the system [6]. However, what is

lacking is quantitative analysis of large-scale observational data to improve individual pa-

tient treatment decisions. Non-randomized data are inherently difficult to utilize because

they contain systemic biases and missing data that require further methodological research

to tame. Furthermore, the sheer scale of observational health data poses computational

challenges for clinical researchers, as even simple statistical models may become computa-

tionally expensive or infeasible for widespread use. Despite health data digitization, EHR

data remain much less available for clinical research than insurance claims data that are

less clinically accurate. Because of a lack of research infrastructure and efficient and rig-

orous observational methods, most modern observational studies are still poorly or slowly

executed, and can take weeks to months to complete despite using pre-existing retrospective

data [7]. In light of current reality, many tantalizing promises of digital health — rigorous

and automated drug safety surveillance, personalized medicine, high-quality evidence at a

clinician’s or researcher’s fingertips — remain years away.

In this dissertation, I present broad advances in observational health data analytics that

range from conducting high quality clinical studies that inform medical practice to developing

efficient computational solutions for widely used statistical models. I develop statistical and

epidemiological methods to control for confounding inherent to non-random health data, with

the goal of improving observational study design. I provide statistical computing advances to
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accelerate high-dimensional statistical regressions most commonly utilized in observational

studies, to allow clinical researchers to conduct quality studies without the need for extrava-

gant computing resources. Using OHDSI tools and methods, I conduct collaborative clinical

studies to provide answers to pressing real-world clinical questions.

In Chapter 2, I present an overview of the statistical concepts that underlie our research

community’s approach to observational studies, including the predominant use of propensity

scores (PS) for measured confounding control and negative control outcomes as an emerging

tool for quantifying unmeasured confounding. In Chapter 3, I review statistical models com-

monly used in observational studies and discuss their numerical computation and approaches

to model selection. I briefly describe the software environment that I work in, and relevant

computing concepts.

The remaining chapters 4-11 can be read as independent articles. The first three involve

advances in epidemiological methodology for conducting large-scale observational studies us-

ing PS methods. Considering the ubiquity of PS adjustment in observational studies, it is

surprising that the choice of PS model is often one based on investigator preference instead

of rigorous comparative performance testing. In Chapter 4, I describe a PS evaluation frame-

work that incorporates simulation experiments and negative control experiments. I apply

my methods to compare the performance of the popular “high-dimensional propensity score”

algorithm to the statistical workhorse L1-regularization as PS model selection methods.

In Chapter 5, I adapt my PS evaluation framework to study the real-world impact of “in-

strumental variables” that strongly affect treatment assignment but have no direct causative

effect on the study outcomes. These variables have been shown to produce biased treatment

effect estimates in small simulations, but their prevalence and consequence in empirical data

is unknown. I conduct experiments evaluating instrumental variables in real-world settings

and further explore optimum PS model approaches.

In Chapter 6, I move beyond PS model estimation and consider how to best adjust for a

PS in outcome models. I compare the familiar PS adjustment method of inverse probability of

treatment weighting to spline methods in multiple treatment scenarios. Multiple treatments
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require a multidimensional PS, and optimum adjustment methods involve more complex,

multivariate strategies.

Remarkable new research infrastructure has dramatically streamlined the study design

process for large-scale observational studies. However, study execution time is a frequent

research bottleneck, as statistical computation of large models remains frustratingly slow

despite advances in statistical software. In Chapter 7, I develop a numerical optimization

to generalized linear models widely use in observational studies, including logistic regres-

sion, that couples with graphics processing unit (GPU) programming to offer significant

improvements in statistical computing time. My implementation allows clinical researchers

to conduct large observational studies without complicated and expensive computing re-

sources, and allows those with considerable resources to tackle more ambitious projects such

as fitting many thousands of models as a part of drug safety surveillance.

I conduct several collaborative projects to provide high quality evidence for contempo-

rary clinical questions using large-scale longitudinal databases. Chapter 8 describes a large

network study across 9 databases to study the comparative effectiveness of two popular osteo-

porosis medications: alendronate and raloxifene. We focus primarily on fracture prevention

outcomes, and also investigate select serious adverse events associated with alendronate.

Chapter 9 describes a clinical study on the highly controversial use of recombinant human

bone morphogenetic protein 2 (BMP) in spinal fusion surgeries as a bone graft alternative.

BMP use plummeted when misrepresentations of industry-sponsored research came to light,

but few studies have evaluated BMP’s safety using large-scale PS methods, and none have

done so in multiple databases under a single study design.

In Chapter 10, I report on the comparative effectiveness of antidepressant treatments

in preventing suicide and suicidal ideation across multiple databases. We embrace a new

paradigm of conducting studies within a clinical domain, that of conducting all pairwise

comparisons among a large number of available treatments, thus generating hundreds to

thousands of hypothesis that are all investigated under a consistent study methodology.

Chapter 11 addresses the comparative effectiveness topic of generic vs branded med-

4



ications across three clinical domains of hypertension, hyperlipidemia, and diabetes in a

comprehensive national database representing nearly all persons in a country of nearly 10

million. Both main results and extensive subgroup analyses favor one medication type over

the other, an interesting finding considering the perceived equivalence of generic and branded

drugs.

I conclude in Chapter 12 with a discussion of the current state of observational health

research, how my contributions fit into an integrated system of generating clinical evidence,

and proposals for future research.
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CHAPTER 2

Review: The Modern Observational Study

2.1 Introduction

In this chapter I review concepts in causal inference and the statistical analysis of ob-

servational data. Medicine comprises informed decisions aimed at improving patient health.

Clinical research, whether couched in causal statistical language or not, is used by patients

and their physicians to make medical treatment decisions. In the process of determining a

treatment’s differential effect on an outcome, we have information on a patient’s outcome

given whether or not she received the treatment, but not the potential outcome if – in a par-

allel universe – she had made the alternative treatment decision. The Rubin causal model

is a formal approach to causal inference that operates in the framework of potential out-

comes [8]. In this model, randomized treatment assignment readily provides unbiased effect

estimates, but nonrandom observational data require additional statistical adjustments in

their analysis. The propensity score (PS) is a predominant method to estimate the other-

wise unknown treatment assignment probability in observational data, and its adjustment

allows for theoretically unbiased observational studies. However, PS methods can only con-

trol for measured confounding, and observational data is fraught with unknown sources of

bias. Negative and positive control outcomes are emerging tools to control for unmeasured

confounding in observational data by estimating systemic biases using a known clinical stan-

dard of truth. The combined use of PS and control outcomes offers the most comprehensive

available approach to analyzing large-scale observational health data.

It is important to note that observational data analysis in itself is not a novel field, and

well developed statistical methods – including propensity score methods – exist for causal in-
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ference in econometrics, clinical trial analysis, and epidemiology. However, electronic health

data necessitate much larger models than previous methods and computational tools were

designed for. Whereas traditional randomized studies include up to thousands of subjects,

observational studies can contain hundreds of thousands to millions of patients due to the

massive sizes of many health databases. Furthermore, health databases contain tens to hun-

dreds of thousands of unique covariates – drugs, conditions, procedures, measurements –

and collinearity among them is commonplace. The high dimension in both patients and

covariates challenges popular methods and statistical computing tools.

2.2 Potential Outcomes and the Rubin Causal Model

This section is largely attributable to and motivated by the text Causal Inference in

Statistics, Social, and Biomedical Sciences [9]. Suppose I have a headache and am considering

taking ibuprofen to treat it. I am interested in whether I have less of a headache if I take

the drug versus if I do not take the drug, that is, the causal effect of ibuprofen on reducing

headache. However, I can only decide to take the ibuprofen or not, and observe my headache

outcome for that treatment decision. I am unable to observe the potential outcome for the

treatment decision I did not take, and thus it is impossible to know the actual causal effect

of ibuprofen on my headache.

While my counterfactual self that took the other treatment decision is unavailable for

analysis, we can learn about the causal effect of interest given information on multiple people

who took or did not take the treatment. Another person similar to myself could serve as a

comparison, and make the opposite treatment decision from me, and the difference in our

outcome can be causally attributed to the treatment. In order to do such an analysis, we

first rely on the Stable Unit Treatment Value Assumption (SUTVA):

SUTVA: The potential outcomes for any unit do not vary with the treatments assigned

to other units, and for each unit, there are no different forms or versions of each treatment

level, which lead to different potential outcomes.

In the above example, SUTVA means that my comparison person’s reaction to treatment
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has no bearing on my own, and vice versa. Also, the treatment that all treated people in

a study receive are identical, so that we are studying a common causal effect across the

population. These assumptions can be violated in practice – if I live with the comparison

person, their having a headache can affect my own, and we may receive slightly different

ibuprofen tablets – but we rely on them to define a consistent causal effect to estimate.

The fundamental problem with comparing people receiving different treatments to infer

causal effects on unobserved potential outcomes is that individuals receive treatments for

different reasons. A person with a more severe headache may be more likely to take ibuprofen

than someone with a minor headache, and thus they would not serve as adequate comparisons

for each other. We need to learn about the treatment assignment mechanism in real-world

situations to properly compare people who received differing treatments.

Suppose there are n study subjects indexed by i, and each subject has a treatment

indicator wi = 1 if they receive a treatment and wi = 0 if they do not. We observe an outcome

Yi(wi) for each subject, but we do not observe the potential outcome for the treatment

they do not receive: Yi(1 − wi). For a single person, we are interested in their unit-level

causal effect Yi(1) − Yi(0). In the study population, each person has their own treatment

assignment wi and pre-treatment variables (a.k.a. covariates) that may affect their treatment

assignment, represented as a p-dimensional vector xi. We obtain some causal estimand τ of

the true treatment effect size, which can be expressed as some function of all of the potential

outcomes, pre-treatment variables, and treatment assignment in the study population:

τ = τ(Y (0),Y (1),X,W ) (2.1)

where Y (0) is the vector of all potential outcomes with wi = 0, Y (1) is the vector of all

potential outcomes with wi = 1, X is the n× p matrix of pre-treatment covariates, and W

is the vector of all treatment assignments wi.

Unfortunately, τ cannot be calculated in this form because potential outcomes are unob-

served. In order to perform inference, we turn to the treatment assignment mechanism and

introduce further assumptions that are sufficient for valid causal inferences.
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A subject’s assignment probability the sum of probability of all possible treatment as-

signment vectors W where wi = 1:

pi(X,Y (0),Y (1)) =
∑

W :wi=1

Pr(W |X,Y (0),Y (1)). (2.2)

We are interested in the probability of treatment assignment for subpopulations with a

specific value of covariates, xi = x, also known as the propensity score e(x):

e(x) =
1

N(x)

∑
i:xi=x

pi(X,Y (0),Y (1)) (2.3)

where N(x) is the number of subjects with xi = x.

Under a set of assumptions collectively referred to as regular assignment mechanism,

we are able to draw valid causal inferences by adjusting for covariates that differ between

treated and control units. The unobserved potential outcomes Y (0) and Y (1) are no longer

necessary to obtain causal estimands.

Regular treatment assignment entails the following assumptions:

1. the assignment mechanism is individualistic: the unit level assignment probabilities can

be written as a common function of that unit’s potential outcomes and covariates; that

is, all units with the same potential outcomes and covariates share through a common

function the same assignment probability

2. the assignment mechanism is probabilistic: the unit level assignment probabilities are

strictly between zero and one

3. the assignment mechanism is unconfounded: all assignment probabilities are free from

dependence on the potential outcomes

Unconfoundedness implies that the propensity score is solely a function of covariates xi:

Pr(wi = 1|Yi(0), Yi(1),xi) = Pr(wi = 1|xi) = e(xi). (2.4)
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The propensity score is a balancing score, that is, a function of the covariates xi sufficient

for introducing independence between treatment assignment and covariates:

wi ⊥⊥ xi|e(xi). (2.5)

In summary, with a regular treatment assignment mechanism, it is possible to draw

valid causal inferences by conditioning on covariates xi. Because the propensity score is a

balancing score, it is also sufficient to condition on just the propensity score e(xi) and not

the entire vector of covariates. However, the unconfoundedness assumption is not testable,

so we have in essence traded in unobservable potential outcomes for an untestable treatment

assignment assumption. Nonetheless, we have arrived at a method (the propensity score)

that allows for causal inference within the potential outcomes framework.

2.3 Negative Control Outcomes and Residual Bias

This section is motivated by two papers by Schuemie et al. [10, 11]. Observational studies

can be subject to various sources of bias that lead to unreplicable results. Unaccounted-for

bias arises from each study’s unique study population, study design, and unmeasured con-

founding. For example, two studies investigating the same clinical question in the same

population can reach differing conclusions [12, 13]. We refer to the totality of bias after

controlling for measured confounders as residual bias, or systematic error. Even after ad-

justment through various statistical methods, systematic error exists and biases the results

of traditional significance tests such as p-value calculations.

Observational studies lack the stringent study population selection and control of con-

founding through randomization that randomized trials provide. They therefore attempt to

estimate an unknown quantity (the treatment effect size of interest) despite being subject

to an unknown amount of residual bias. Negative control outcomes are an emerging tool

in observational research that addresses this problem by providing a standard of clinical

truth in observational studies [14, 15]. Negative controls are outcomes that the investigator
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believes to be differentially unrelated by the compared treatments. As such, the true effect

size of the compared treatments on the negative control should be unity, favoring neither

treatment. If the estimated effect size on the negative control differs from unity, then the

effect can be attributable to residual bias.

With a set of negative controls (perhaps 50 or 100), we can obtain a reliable estimate

of the residual bias from the individual negative control estimates. Perhaps one treatment

group, for reasons unrelated to the treatments of interest, is more likely to develop recorded

outcomes of any type. Alternatively, perhaps one treatment group is differentially affected

by an unmeasured confounder that would lead to more outcomes of many types. Whatever

the explanation, we are able to fit negative control estimates to an empirical null distribution

[10] that approximates the distribution of residual bias. A Gaussian distribution provides a

good approximation:

Suppose we are comparing two drug treatments, so that each negative control outcome

corresponds to a drug-outcome pair estimate. Let yi denote the estimated log effect estimate

of the ith negative control drug-outcome pair, and τi be the associated standard error. There

are n total negative controls, i = 1, · · · , n. Let θi be the true error associated with pair i,

that would be obtained if the population were infinitely large. We assume that yi is normally

distributed around θi with standard deviation τi. Additionally, we assume that all the θi

arise from a normal distribution (the null distribution) with mean µ and variance σ2:

θi ∼ N(µ, σ2)

yi ∼ N(θi, τ
2
i )

(2.6)

where N(a, b) denotes a normal distribution with mean a and variance b. The empirical null

distribution parameters µ and σ can be estimated through maximum likelihood:

L(µ, σ|θ, τ) =
n∏
i=1

∫
p(yi|θi, τi)p(θi|µ, σ)dθi. (2.7)

With the maximum likelihood estimates µ̂ and σ̂, we can calibrate new p-values that

11



utilize the empirical null distribution. Suppose a new drug-outcome pair (that of our outcome

of interest has log effect estimate yn+1 and estimated standard error τn+1. We assume that

the true effect size θn+1 arises from the same empirical null distribution:

yn+1 ∼ N(µ̂, σ̂2 + τ 2
n+1). (2.8)

The calibrated one-sided p-value is now

Φ(
yn+1 − µ̂√
(σ̂2 + τ 2

n+1)
) (2.9)

if yn+1 < µ̂ and

1− Φ(
yn+1 − µ̂√
(σ̂2 + τ 2

n+1)
) (2.10)

if yn+1 > µ̂, where Φ(•) is the cumulative distribution function for the standard normal

distribution.

We now have a method for estimating the residual bias distribution and using that

estimate to calibrate p-values for estimated effect sizes on our outcomes of interest. However,

there is no free lunch. We are still burdened by the unverifiable assumption that there is no

differential effect of the compared treatments on the negative control outcomes. Sometimes,

we have strong confidence in such assumptions. Consider the negative controls used in

Chapter 9, in which the compared treatments are spinal fusion surgeries with and without

an artificial bone growth factor to promote bone growth. On of the negative controls (and

an OHDSI favorite) is “ingrowing nail,” as it seems very implausible that having one kind of

surgery or another would differentially affect an ingrown toenail. However, another negative

control is “alcohol abuse.” While it is difficult to imagine surgery having a direct effect on

alcohol abuse, it is possible to imagine dramatic differential surgical outcomes that might

lead a patient to abuse alcohol. These secondary, plausible (if not somewhat far-fetched)

effects are imaginable for some negative controls, and the assumption of no differential effect

is not perfect. However, we still have come a long way from acknowledging residual bias and

doing nothing about it, as is the case in many published observational studies.
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CHAPTER 3

Review: Statistical and Computational Concepts

3.1 Introduction

In this chapter I review statistical methodology for conducting observational studies. I be-

gin by describing logistic regression, which is commonly used for propensity score estimation.

I then detail the Cox proportional hazards model, which is commonly used for estimating

outcome effect sizes with longitudinal data. To obtain maximum likelihood estimates for

our models, we utilize cyclic coordinate descent as our optimization strategy, which is also

detailed in Chapter 7. I also review methods for propensity score estimation and adjustment.

PS model selection is a major decision, and I describe methods for automated selection of

covariates, including regularized regression. There are multiple methods for adjusting for

a PS in outcome models, and I describe strategies including matching, stratification, and

splines. Finally, I overview relevant programs in the OHDSI software suite that allow us to

conduct large-scale observational studies efficiently, from both a design and computational

perspective.

3.2 Logistic Regression

Logistic regression is a predominant approach to modeling a binary dependent variable,

including the binary treatment variable in a propensity score. Let i index patients 1, · · · , n,

xi be a vector of J pretreatment covariates, and yi be the treatment indicator. We model the

treatment assignment process as a Bernoulli distribution in which the assignment probability

pi is a logit transform of the linear predictor xiβ, where β is a vector of regression coefficients:
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pi =
exp(xiβ)

exp(xiβ) + 1
; (3.1)

xi and β are expanded to include an intercept term.

The log-likelihood function for maximum likelihood estimation over all patients is

L(β) =
n∑
i=1

yixiβ − log[1 + exp(iβ)]. (3.2)

3.3 Cox Proportional Hazards Model

This section is derived partly from [16]. The Cox proportional hazards model is a survival

model, in which the dependent variable is a time until outcome, and observations can be

censored. Censored observations have not had an outcome at the time that the subject is

no longer observed. The Cox model is a common model for estimating hazard ratios in

time-to-event data such as those from longitudinal databases.

Let T be the variable for time until outcome, and f(t) be its probability distribution

function. We deal more with the survival function S(t) that represents the probability of

being alive just before time t:

S(t) = Pr{T ≥ t} =

∫ ∞
t

f(x)dx. (3.3)

The hazard function λ(t) is the instantaneous rate of occurrence of the event and is given

by

λ(t) = lim
∆t→0

Pr(t ≤ T < t+ dt|T ≥ t)

dt
=
f(t)

S(t)
. (3.4)

The above expression can be solved for an equation for the survival function S(t):

S(t) = exp(−
∫ t

0

λ(x)dx). (3.5)
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The Cox proportional hazards model assumes that all subjects share a baseline hazard

function λ(t) modulated by their linear predictor of covariates xiβ. Each subject’s hazard

function is

λi(t|xi) = λ0(t) exp(xiβ). (3.6)

The subject-specific survival function can then be expressed as

Si(t|xi) = S0(t)exp(xiβ) (3.7)

where S0(t) = exp(−
∫ t

0
λ0(x)dx) is the baseline survival function.

Note that the proportional hazards model is a simple additive model for the log of the

hazard, log λi(t|xi) = α0(t) + xiβ, and the “hazard ratio” of our desired treatment is the

coefficient β for the corresponding covariate.

Let be δi be the censoring variable, with δi = 1 indicating the outcome event and δi = 0

indicating censoring. Also let Ri = {j : tj ≥ ti} be the “risk set” of patients j with time to

outcome (or censoring) greater than or equal to ti. The log-likelihood function for maximum

likelihood estimation over all patients is:

L(β) =
n∑
i=1

δi(xiβ − log
∑
j∈Ri

exp(xjβ)). (3.8)

3.4 Cyclic Coordinate Descent

Numerical optimization refers to the method of finding the estimates β̂ that maximize the

log-likelihood, and are the most likely coefficients given the observed data. We employ cyclic

coordinate descent (CCD) that cycles through all J covariates and takes one-dimensional

Newton steps in each covariate dimension. A Newton step size is equal to the first derivative

of the log-likelihood divided by the second derivative, and one-dimensional Newton steps in-

volve only taking scalar derivatives of the log-likelihood with respect to each covariate [17].
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This avoids the inversion of second derivative Hessian matrices present in the multivariate

Newton’s method and other optimization strategies. With thousands of covariates avail-

able in observational studies conducted in large-scale longitudinal databases, these Hessian

matrices can become very large and their inversion computationally expensive.

Suppose we are taking a one-dimensional Newton step for covariate k. The first derivative

(gradient) of the log-likelihood is gk = ∂L(β)
∂βk

and the second derivative (hessian) is hk =

∂2L(β)

∂β2
k

. The Newton step update is then

βk ← βk −
gk
hk
. (3.9)

For logistic regression, these derivatives are:

∂L(β)

∂βk
=

n∑
i=1

yixi,k −
xi,k exp(xiβ)

1 + exp(xiβ)

∂2L(β)

∂β2
k

= −
n∑
i=1

x2
i,k exp(xiβ)

(1 + exp(xiβ))2
.

(3.10)

For Cox proportional hazards regression, these derivatives are:

∂L(β)

∂βk
=

n∑
i=1

δixi,k − δi

∑
j∈Ri

xj,k exp(xjβ)∑
j∈Ri

exp(xjβ)

∂2L(β)

∂β2
k

= −
n∑
i=1

δi
[∑j ∈ Rix

2
j,k exp(xjβ)∑

j∈Ri
exp(xjβ)

−
(
∑

j∈Ri
exp(xjβ))2∑

j∈Ri
exp(xjβ))2

]
.

(3.11)

3.5 Propensity Score Estimation and Regularized Regression

Because the PS models the binary treatment assignment process, it is usually estimated

through a logistic regression. The primary topic of concern is how to select covariates to in-

clude in the PS model. There are potentially thousands of variables available in observational

longitudinal databases, including conditions, procedures, drug exposures, and more. Tra-

ditionally, investigators manually select suspected confounders to include in the PS model.

However, the reliably of such expert opinion is questionable, and different experts can (and
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typically do) arrive at somewhat different sets of covariates. Recently, automated systems

for selecting PS model covariates have been developed.

Chapter 4 evaluates two approaches to automated covariate selection for PS models. One

approach employs a univariate screen on the covariates to select most likely confounders for

the PS model. Covariates are ranked by a metric for their association with the outcome, and

an arbitrary number of the top ranked covariates are selected [18] The other approach, often

utilized by researchers in the OHDSI community, is to include all pretreatment covariates in

the PS model [19]. To avoid model overfitting and perform model selection, statistical reg-

ularization is employed. Statistical regularization penalizes the log-likelihood by a function

of the covariate coefficients, with the goal of shrinking some coefficient magnitudes. Two

common penalties are the L1 norm of the coefficients (a.k.a. the “lasso” penalty [20]), and

the L2 norm of the coefficients (A.K.A. the “ridge” penalty). The lasso has the attractive

property of shrinking some coefficients to exactly zero, thus excluding the covariate from

the model. With the lasso penalty, the target for maximum likelihood estimation becomes

a penalized log-likelihood P (β) = L(β) + p(β):

p(β) = −λ
J∑
j=1

|βj| (3.12)

where λ is a hyperparameter controlling the magnitude of penalization.

The corresponding penalized log-likelihood with ridge regression is

p(β) = −λ
J∑
j=1

β2
j (3.13)

The optimum value of λ is commonly found empirically through a process called cross-

validation. In cross-validation, the data are divided into multiple folds, and the folds are

left out one at a time. The logistic regression is fit to the remaining folds, and the opti-

mum solution β̂ is used to calculate an out-of-sample predictive likelihood on the left-out

fold. Different values of λ are searched, and the one with the highest average out-of-sample

likelihood is selected as the optimum value.
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Chapter 5 touches on a related controversy in PS estimation. The PS is defined as an

estimate of the treatment assignment probability, and one would think that to estimate it one

should build a model to predict the treatment using pretreatment covariates. Performing PS

estimation this way allows one to construct a stratified population that mimics a randomized

study, allowing for unbiased outcome effect size estimation. Outcome data, that postdates

the treatment, should not affect the PS model. This approach to PS estimation is advocated

by Rubin, one of the early introducers of the propensity score in observational studies [21],

in multiple subsequent papers [22, 23, 24]. We follow this approach in [19] and many OHDSI

research projects [25], including only pretreatment covariates and using regularized regression

as our model selection strategy.

In contrast, there is a school of thought that believes the outcome data can and should be

incorporated into the PS model, because only variables that affect both the treatment and

the outcome are true confounders. Other variables would merely introduce bias and variance

into the PS-adjusted effect size estimate. This approach, which guides the univariate screen

mentioned above, sacrifices the definition of the PS as a treatment prediction model for an

attempt to identify and only include true confounders as PS model covariates.

3.6 Propensity Score Adjustment

As many methods there are for selecting covariates to include in a PS model, there

are even more methods to adjust for a PS in the outcome model, which is often a Cox

proportional hazard model. These methods are partly described in [26], and I have listed

the most common methods below.

• Covariate adjustment – the PS is used directly as a covariate in the outcome model,

typically as the only covariate other than the treatment indicator. The PS can be

included as a single covariate as a linear predictor. This requires the assumption that

the treatment effect is linearly associated with the PS. Alternatively, a transformation

of the PS, such as spline functions, can be used instead to allow for nonlinear effects.

Spline adjustments of the PS are explored in Chapter 6.
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• Matching – the PS is used as the metric for matching treated and comparator subjects

to create a group of matched sets; the outcome model will be stratified according to

the matched sets. The matching is traditionally one-to-one matching, but variable

length matching is possible and frequently performed. A caliper is used as a maximum

matching distance to prevent subjects with too distant propensity scores from being

matched.

• Stratification – the PS is used to stratify subjects into large buckets based on quantiles.

Five or ten strata are often used, and the outcome model is again stratified according

to the strata.

• Inverse probability of treatment weighting (IPTW) – each subject is weighted by the

inverse of their PS. This creates a pseudo-population with an inflated population, in

which both treatment cohorts have identical PS distributions. The outcome model

now becomes weighted.

3.7 The OHDSI Software Suite

In addition to converting hundreds of millions of patient records across dozens of databases

around the world to the OMOP Common Data Model (CDM) [2], the OHDSI community

has developed a suite of observational analytics software to facilitate conducting large-scale

observational studies. I describe some of these software tools that I utilize the most for my

research:

• ATLAS – this web tool (https://atlas.ohdsi.org/) is a comprehensive portal to

explore CDM data and to specify observational studies at the click of a button. One

can view dashboard representations of data, explore individual (anonymized) patient

records, search the CDM vocabulary, construct concept sets and cohort definitions,

generate cohorts on a database, and fully specify an observational study that is auto-

matically constructed as a downloadable R package. For most of the OHDSI collabo-

rations utilized in the chapters of this dissertation, ATLAS was used to construct the
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study specifications required for obtaining the clinical data of interest.

• CohortMethod – this R package [27] provides a central interface for running es-

timation studies in which two treatments are compared for one or more outcomes

of interest. CohortMethod interfaces with the data server through the package

DatabaseConnector using universally translated SQL from the package SqlRen-

der. Covariates are constructed through the package FeatureExtraction. Once

the data are obtained, the R package Cyclops does the heavy lifting of regular-

ized regression to obtain propensity scores and to calculate outcome models. P-value

and confidence interval calibration with control outcomes is then provided through

the package EmpiricalCalibration. CohortMethod also provides the graphical

scripts that generate displayable figures for study results.

• Cyclops – this R package [28] performs efficient cyclic coordinate descent for general-

ized linear models, including Poisson regression, logistic regression, Cox proportional

hazards regression, linear regression, and the self-controlled case series [29]. Cyclops

also performs cross-validation to search for optimum regularization hyperparameters.

Cyclops outperforms many existing R software in conducting sparse and regularized

regression on high-dimensional data. I extend the capabilities of Cyclops to perform

graphics processing unit (GPU) computation in Chapter 7.
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CHAPTER 4

Evaluating Large-Scale Propensity Score Performance

Through Real and Synthetic Data Experiments

4.1 Introduction

Retrospective observational studies constitute a resource for clinical evidence gathering

complementary to randomized controlled trials. Longitudinal databases contain staggering

volumes of information available for conducting retrospective studies: all recorded medical

conditions, procedures, medications, and clinical measurements for millions of patients in

real-world settings [30]. Unfortunately, observational studies suffer deficiences that introduce

bias and prevent their more widespread use by the medical community [31, 32]. Chief among

these is the unknown and non-random treatment assignment process that precludes the

cohort balance inherent in randomized studies.

The propensity score (PS), an estimate of treatment assignment probability, is a pre-

dominant tool for confounding control in retrospective studies where the true treatment

assignment process is unknown [33, 21]. Propensity scores are frequently estimated using a

logistic regression model with pretreatment baseline patient covariates such as demographics

and indicators for medical conditions, procedures, and drug exposures [26]. Traditionally,

the investigator manually selects suspected confounders to include as PS model covariates

[34]. However, the reliability of expert opinion in properly selecting confounders out of all

available covariates is suspect [35]. Many aspects of a patient’s medical profile could be

contributive to a treatment decision, yet escape an expert’s contemplative recollection. In

contrast, several automated methods for covariate selection better utilize the multitude of co-

variates available in longitudinal databases. The high-dimensional propensity score (hdPS)
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algorithm [18] has gained widespread use in pharmaco-epidemiology [36]. The algorithm

screens covariates by marginal associations and includes a predetermined number in the PS

logistic regression model. In contrast, other automated PS model selection methods – such

as iterative selection procedures [9], the covariate balancing propensity score [37], and statis-

tical regularization [38, 39, 40] – all consider joint effects of covariates instead of individual

effects. In particular, L1-regularization is a workhorse of statistical model selection, and

introduces a penalty term into the PS logistical regression likelihood that pushes coefficient

values to zero, dropping the respective covariates from the model [20].

Rich literature addresses PS adjustment methods to estimate comparative treatment

effects, including stratification, matching, and direct inclusion into the outcome model [26,

9, 41, 42]. However, relatively few studies evaluate PS estimation method performance

[40, 43]. In this paper, we address the comparative performance and optimal selection of

PS estimators in large-scale observational settings on the order of 100,000 subjects and

100,000 unique covariates. We detail a framework for evaluating PS methods, and conduct a

comparison of the hdPS algorithm with L1-regularization for PS estimation. Our framework

includes two aspects: a survival simulation method that extends the “plasmode” framework

concept [44, 45], and negative control outcome experiments that utilize outcomes known to be

unrelated to the investigated treatments [14, 10]. Synthetic and negative control experiments

each have limitations, but their combined use offers value in evaluating PS performance.

4.2 Synthetic Framework

Our synthetic approach realistically simulates survival outcomes while preserving char-

acteristics of real-world clinical cohorts. From a longitudinal database, we construct new

user cohorts comparing the effect of two drugs on an outcome of interest [38]. Using the

empirical exposure status and baseline covariates, we model the outcome of interest under

a Cox proportional hazards model and then simulate new outcomes under a desired true

hazard ratio.

22



4.2.1 Notation

N total study subjects are indexed by i, and have treatment indicator wi and p-length

baseline covariate vector xi. ti is the event time, and δi is the censoring indicator, with

δi = 0 indicating censoring and δi = 1 indicating the outcome of interest. Under the

proportional hazards model, η and β are the log hazard ratios for the treatment and the

baseline covariates, respectively; the subject-specific hazard is then θi = wiη + xiβ. The

baseline survival function S(t) traces the probability of surviving to time t after treatment

initiation and C(t) is the analagous baseline censoring function.

4.2.2 Estimate Simulation Components

Outcome simulation requires estimates for S(t), C(t), and β. We estimate S(t) by fitting

a distribution to the observed outcome of interest, and C(t) by fitting a distribution to the

censoring times. Critically, the censoring function must be covariate-free to maintain non-

informative censoring for the proportional hazards model, meaning that a subject’s censoring

time and survival time are independent. This point is overlooked in the “plasmode” frame-

work, leading to inaccurate true hazard ratios that are not proportional hazards. Possible

forms for S(t) and C(t) include parametric distributions such as exponential, Weibull, Gom-

pertz, gamma, and lognormal; discrete nonparametric estimators such as the Breslow and

Kalbfleisch-Prentice estimators [46] (which without covariates are respectively the Nelson-

Aalen and Kaplan-Meier estimators); and nonparametric spline functions [47]. The S(t)

distribution determines how the covariate coefficients β are estimated. For parametric and

spline estimators, the parameters that characterize S(t) are jointly estimated with the co-

variate coefficients often using maximum likelihood estimation on the full survival likelihood

function. For the discrete nonparametric estimators, covariate coefficients are first estimated

via the partial likelihood function, and then used to produce S(t) [48, 49]. We additionally

smooth the discrete nonparametric estimators to avoid excessive simulated outcome time

ties that can affect estimation bias (see Web Appendix 1). The subject-specific hazard is

then θi = wiη̂+xiβ̂ and the subject-specific survival function S(t)exp{θi}, where η̂ and β̂ are
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maximum likelihood estimates.

4.2.3 Simulate Outcome and Censoring Times

Under the proportional hazards framework, each subject’s survival process is S(t)exp{θi}

and censoring process C(t). We use inverse transform sampling and draw for each subject

two Unif(0, 1) random variables Ri,s and Ri,c. The respective outcome and censoring times

are ti,s = min{t : Si(t) ≤ Ri,s} and ti,c = min{t : C(t) ≤ Ri,c}. The final simulated event is

the miminum time:

ti = min{ti,s, ti,c} and

δi =


1 ti,s < ti,c

0 ti,s ≥ ti,c

.
(4.1)

4.2.4 Adjust Simulation for Hazard Ratio and Outcome Prevalence

To simulate under a desired treatment hazard ratio η∗, we replace the empirically esti-

mated η̂ by η∗: θi = wiη
∗+xiβ̂. The expected resultant simulated outcome prevalence (OP)

is

p =
1

N

∑
i

∫ ∞
0

Pr (ti,s = t < ti,c) dt =
1

N

∑
i

∫ ∞
0

(
∂

∂t
S(t)exp{θi}

)
C(t) dt. (4.2)

Let t(k) be the observed outcome times; the corresponding equation for discrete estimators

is

p =
1

N

∑
i

∑
t(k)

[
S
(
t(k−1)

)exp{θi} − S
(
t(k)

)exp{θi}
]
C(t(k)). (4.3)

Similarly to the “plasmode” framework, we simulate under a desired outcome prevalence p

by adjusting the baseline survival function by an exponential factor γ ∈ (0,∞): S(t)→ S(t)γ.
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Adjustment factor γ is computed numerically to satisfy the outcome prevalence Equation

(4.2). This approach is a constant modification to the baseline outcome hazard. In Web

Appendix 2, we propose additional approaches to adjusting for outcome prevalence that may

suit the investigator.

4.3 Negative Control Outcome Experiments

As an alternative to simulations under known hazard ratios, we perform negative out-

come control experiments using sets of outcomes a priori believed to be unrelated to the

compared treatments, thus having a presumed true hazard ratio of 1 [14, 10]. Negative

control outcomes entirely utilize real-world data from the observational database. For the

considered cohort, we identify a set of negative control outcomes, and produce a PS-adjusted

estimate of treatment effect size for each outcome. Deviations from unity in the estimated

hazard ratios may be due to random error, residual systemic biases (possibly arising from

inadequate PS adjustment), or incorrect negative control selection. While the precise rel-

ative contribution of each of these individual effects cannot be determined or divined, we

assume that successfully controlling for one source of bias reduces the absolute bias in the

estimated hazard ratio. That is, for a particular set of empirical cohorts and negative control

outcomes, we interpret as superior the propensity score method whose adjustment brings the

estimated hazard ratios closer to 1.

4.4 Application

Clinical scenarios

We compare PS methods through reproductions of two previously published retrospective

cohort studies using the Truven Health MarketScan Medicare Supplemental and Coordina-

tion of Benefits Database. Each study compares two drugs: one designated as the active

treatment and the other as the reference. See Web Appendix 9-12 for full cohort definitions.
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Anticoagulants – The first study [50] is a new-user cohort study of dabigatran and war-

farin initiators in patients with non-valvular atrial fibrillation. Dabigatran is the active

treatment, warfarin is the reference, and intracranial hemorrhage is the outcome of interest.

N onsteroidal Anti-inflammatory Drugs – The second study [51] is a new-user cohort

study of COX-2 inhibitors and traditional nonsteroidal anti-inflammatory drugs (NSAIDs)

initiators. We select celecoxib, a representative COX-2 inhibitor, as the active treatment;

diclofenac, a representative traditional NSAID, as the reference; and upper gastrointestinal

complications as the outcome of interest.

4.4.1 Covariates

We extract two sets of pretreatment covariates for our studies, termed “CDM Covariates”

and “hdPS Algorithm Covariates.” The “CDM Covariates” follow the Observational Medical

Outcomes Partnership Common Data Model Version 5 format [2], while the “hdPS Algorithm

Covariates” are our reproduction of the specific covariates described in the hdPS algorithm

paper [18]. Both sets of covariates include demographic information including sex, age, and

treatment initiation index year. The “CDM Covariates” used are more expansive than the

“hdPS Algorithm Covariates,” with the latter including conditions, procedures, and drug

covariates, and the former additionally including measurements, observations, aggregate

disease scores, and multiple lookback windows. No threshold is used to exclude infrequent

covariates. See Web Appendix 13 for full covariate details.

4.4.2 Simulation Methods

We obtain β̂ through partial likelihood maximum likelihood estimation, and include L1-

regularization on all covariates except treatment to promote model fitting [52]. We manually

select the regularization penalty to yield an approximate model size of 500, coinciding with

the number of covariates selected by the hdPS algorithm. We use the Breslow estimator for

S(t) [49], and the Nelson-Aalen estimator for C(t). We adjust for outcome prevalence by

the modification S(t)→ S(t)γ, with γ obtained numerically through Equation (4.2).
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4.4.3 Propensity Score Methods

We compare the hdPS algorithm to L1-regularization as PS estimation methods. The

synthetic model is constructed using both covariate sets combined, but we apply the hdPS

algorithm only to the specifically preprocessed “hdPS Algorithm Covariates,” and we ap-

ply L1-regularization to “hdPS Algorithms Covariates” alone, “CDM Covariates” alone,

and both covariate sets combined. We include two variations of the the hdPS algorithm:

“bias-based hdPS” that screens covariates based on their apparent relative risk, a mea-

sure of confounding on the outcome [53], and “exposure-based hdPS” that screens based on

treatment relative risk [43]. We use default hdPS algorithm settings, including considering

the 200 most prevalent covariates in each “data dimension,” selecting the top 500 overall

ranked covariates, and fitting an unregularized logistic regression model [18]. However, as

the unregularized model can lead to “convergence failures” that occur due to the PS es-

timate nonexistence [36, 54, 55], we evaluate the hdPS algorithm both with and without

L1-regularization. All regularization penalties are selected through 10-fold cross-validation

using large-scale regression tools [28]. Table 4.1 lists the 7 compared PS methods.

PS method Description
L1-Reg-All L1-regularization on combined covariates
L1-Reg-CDM L1-regularization on “CDM Covariates” only
L1-Reg-HDPS L1-regularization on “hdPS Algorithm Covariates” only
bias-hdPS bias-based hdPS algorithm, without regularization
bias-hdPS-Reg bias-based hdPS algorithm, with regularization
exp-hdPS exposure-based hdPS algorithm, without regularization
exp-hdPS-Reg exposure-based hdPS algorithm, with regularization

Table 4.1: PS methods evaluated across two real-world studies

Using the CohortMethod package [56], we perform PS matching and then estimate the

treatment hazard ratio using a stratified Cox survival outcome model with treatment as the

only covariate. We avoid one-to-one matching due to inferior covariate balance [57] and bias

reduction [58], and instead use variable length matching [59] with a maximum ratio of 10:1

and a propensity score caliper of 0.05, and use a greedy matching algorithm [60]. We use the

less prevalent treatment as the “one” in the many-to-one matching to maximize the number
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of subjects that are matched.

4.4.4 Negative Controls

For each study, we identify a set of 50 negative control outcomes using the approach

described in [10] and the specific method detailed in [61]. Because extremely rare outcomes

lead to effect estimates with substantial variance, we exclude outcomes that have less than

0.02% prevalence in the combined treatment groups. After this exclusion, there are 49

negative control outcomes for the Anticoagulants study and 29 for the NSAIDs study. A list

of negative outcomes used are given in Web Appendix 6-7.

4.4.5 Metrics

We evaluate PS methods on outcome-dependent and outcome-independent metrics. Outcome-

dependent metrics require simulated or real outcome data. In the simulations, we report the

estimation bias and 95% confidence interval coverage obtained from the profile likelihood

[62]; in the negative control experiments, we report bias from the presumed null true value.

Outcome-independent metrics evaluate PS performance absent of any outcome data, and

include the c-statistic of the PS model, a.k.a. the area under the receiver operating charac-

teristic curve (AUC), and standardized difference measures of covariate balance [59, 63].

4.5 Results

4.5.1 Cohorts

The Anticoagulants study contains 72,489 subjects: 19,768 new dabigatran users and

52,721 new warfarin users. There are 98,118 unique baseline covariates among all subjects,

and the outcome prevalence of intracranial hemorrhage is 0.26%. The NSAIDs study con-

tains 121,317 subjects: 78695 new celecoxib users and 42,622 new diclofenac users. There

are 75,425 unique covariates among all subjects, and the outcome prevalence of upper gas-

trointestinal complications is 1.81%. Table 4.2 reports summary statistics about covariates
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in each study. The “CDM Covariates” set is notably larger than the “hdPS Algorithm

Covariates” set in both studies.

Covariates
Study All CDM hdPS

Anticoagulants Full cohorts 98,118 82,281 15,854
Synthetic model 525 446 83

NSAIDs Full cohorts 75,425 63,004 12,441
Synthetic model 530 478 60

Table 4.2: Number of covariates in each study, by source covariate set. Both sets share same
demographics covariates.

4.5.2 Propensity Score Estimate Existence

To explore the robustness of the default hdPS algorithm without regularization, we con-

duct tests for hdPS estimate existence under varied simulation parameters (Web Appendix

3). We find that simulations with smaller cohorts and lower outcome prevalences have less

likely PS estimate existence. To address this problem, L1-regularization readily promotes

model existence for the hdPS algorithm.

4.5.3 Propensity Score Distributions

Figure 4.1 plots for the NSAIDs study the distribution of preference scores that normalize

propensity scores by their prevalence [64]. The exposure-based hdPS algorithm is sharply

peaked due to hundreds of subjects with identical PS values, indicating poor treatment group

differentiation. These coincident PS values with exposure-based hdPS are also observed in

the Anticoagulants study (Web Appendix 5).
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Figure 4.1: NSAIDs study: preference score distributions. Bias-based hdPS algorithm used on the
empirical outcome of interest. exp-hdPS fails to construct a PS model.

Figure 4.2 shows the AUC and proportion of matched subjects for compared PS methods.

The hdPS algorithm produces similar results with and without regularization. Although

the two studies differ in absolute AUC values, they demonstrate a similar ordering of PS

methods in order of highest-to-lowest AUC: L1-Reg-All, L1-Reg-CDM, L1-Reg-HDPS, bias-

based hdPS, exposure-based hdPS. L1-Reg-All and L1-Reg-CDM have significantly higher

AUC than the other methods that use only the “hdPS Algorithm Covariates,” suggesting

that the larger “CDM Covariates” set allows for improved treatment prediction accuracy.

Expectedly, increased AUC and PS distribution differentiation lead to fewer suitable subjects

included in the matching process.
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Figure 4.2: A) c-statistic (AUC) of propensity score models. B) percentage of subjects included in
matching process. Bias-based hdPS algorithm results from empirical outcome of interest data.

4.5.4 Simulation – Covariate Balance

In the simulation experiments, only the 500 or so synthetic model covariates are true

confounders that contribute to estimation bias. Figure 4.3 shows the original and PS adjusted

standardized differences for these synthetic model covariates in the Anticoagulants study. A

covariate whose standardized difference is improved by PS adjustment will lie below the

dotted line. While all PS methods improve covariate balance, L1-Reg-All and L1-Reg-CDM

perform best and exposure-based hdPS algorithm worst. Additional analysis reveals L1-Reg-

HDPS creates better covariate balance than the bias-based hdPS algorithm (Web Appendix

5). The same relative PS method performance also holds when looking at all covariates

instead of just the synthetic model covariates. The NSAIDs study demonstrates similar
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results (Web Appendix 5).

The after-matching outlier in Figure 4.3 is the “CDM Covariates” indicator for “Condi-

tion Era Overlapping with Cohort Index: Atrial Fibrillation” that is more frequent in the

warfarin group. Patients with this covariate have atrial fibrillation records both before and

after treatment initiation, and are considered to have chronic atrial fibrillation that may

require the stronger anticoagulant control that warfarin is believed to provide. As such, this

covariate has high clinical plausibility as a confounder. This derived covariate is absent from

the “hdPS Algorithm Covariates” set, and the 5 PS methods that balance only using “hdPS

Algorithm Covariates” exacerbate its imbalance.
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Figure 4.3: Anticoagulants study: before and after PS matching scatterplot of absolute standardized
differences for synthetic model covariates. After matching outlier corresponds to higher indicators
for “Condition Era Overlapping with Cohort Index: Atrial Fibrillation.” in Warfarin group.
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4.5.5 Simulation – Hazard Ratio Estimation

Figure 4.4 presents the log hazard ratio estimation bias and confidence interval coverage

over 100 simulations for the two studies under varied simulation parameters. In general, all

PS methods improve on estimation bias relative to unadjusted, the hdPS algorithm with

and without regularization have similar estimates, L1-Reg-All and L1-Reg-CDM are similar,

and L1-Reg-HDPS and bias-based hdPS are similar. There is a similar ordering of PS

methods relative to the unadjusted estimate in both studies: exposure-based hdPS is closest

to unadjusted, followed by L1-Reg-HDPS/bias-based hdPS, with L1-Reg-All/L1-Reg-CDM

farthest. Coverage of the true HR expectedly mirrors the estimation bias, and is broadly

higher in the NSAIDs study.

Both studies display a strong negative shift in bias with increasing true hazard ratio.

This shift dominates the difference between PS methods, and no PS method uniformly has

least bias across all simulation parameters. Because positively biased estimates shift past 0,

this observation is not explained by our displaying raw instead of proportional bias. Instead,

we believe it to be an artifact of the simulation process with its strict proportional hazards

assumptions. In Web Appendix 8, we reproduce and explore this trend in the special case of

1-1 matching. Because real-world data do not necessarily conform to a proportional hazard

model, this source of bias reveals a limitation of the “plasmode” and, by extension, our

simulation framework.

33



 HR: 2.0 |  OP: 10%

 HR: 1.5 |  OP: 10%

 HR: 1.0 |  OP: 10%

 HR: 2.0 |    OP: 5%

 HR: 1.5 |    OP: 5%

 HR: 1.0 |    OP: 5%

 HR: 2.0 |    OP: 1%

 HR: 1.5 |    OP: 1%

 HR: 1.0 |    OP: 1%

−0.2 −0.1 0.0

log HR bias

Anticoagulants

0.00 0.25 0.50 0.75 1.00

coverage

A)

 HR: 2.0 |  OP: 10%

 HR: 1.5 |  OP: 10%

 HR: 1.0 |  OP: 10%

 HR: 2.0 |    OP: 5%

 HR: 1.5 |    OP: 5%

 HR: 1.0 |    OP: 5%

 HR: 2.0 |    OP: 1%

 HR: 1.5 |    OP: 1%

 HR: 1.0 |    OP: 1%

−0.05 0.00 0.05 0.10 0.15

log HR bias

NSAIDs

0.00 0.25 0.50 0.75 1.00

coverage

B)

method
L1−Reg−All

L1−Reg−CDM

L1−Reg−HDPS

bias−hdPS

bias−hdPS−Reg

exp−hdPS

exp−hdPS−Reg

unadjusted

Figure 4.4: Bias in log hazard ratio (HR) with 1 standard deviation intervals, and coverage of
true HR by 95% confidence intervals across 100 simulations for A) Anticoagulants and B) NSAIDs
study under different simulation parameters of true HR and outcome prevalence (OP). Vertical line
drawn at 0 bias and 95% coverage.

4.5.6 Negative Control - Hazard Ratio Estimation

Figure 4.5 shows the hazard ratio estimates and standard errors for the negative control

outcomes for the Anticoagulants study. Estimates that lie above the dotted line include
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the presumed true hazard ratio of 1 in their 95% confidence interval, and we consider these

as “validated” negative control outcomes. In the absence of bias and negative control mis-

specification, we expect to validate 95% of the negative controls. Adjustment by any PS

method substantially increases the number of validated outcomes relative to the unadjusted

estimates. The three L1-regularization methods and bias-hdPS validate between 86% and

90% of the negative control outcomes, while bias-hdPS-Reg, exp-hdPS, and exp-hdPS-Reg

validate fewer, between 80% and 82%. The hdPS algorithm methods are able to construct

existing PS models for all negative control outcomes. In the NSAIDs study (Web Appendix

5), the unadjusted estimates validate 83% of the negative control outcomes, and most PS

methods do not improve significantly on this proportion, except L1-Reg-CDM at 97%. Both

bias-hdPS and exp-hdPS demonstrate degrees of PS estimate nonexistence. These relative

PS performance results are corroborated by Gaussian empirical null distributions fit to the

negative control estimates (Web Appendix 4).
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0.250.5 1 2 4
Hazard Ratio

Unadjusted

0.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.0470.88 ± 0.047

0.250.5 1 2 4
Hazard Ratio

L1−Reg−All

0.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.0430.9 ± 0.043

0.250.5 1 2 4
Hazard Ratio

L1−Reg−CDM

0.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.05

0.250.5 1 2 4
Hazard Ratio

L1−Reg−HDPS

0.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.058
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0.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.0580.8 ± 0.058

0.250.5 1 2 4
Hazard Ratio

exp−hdPS−Reg

0.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.050.86 ± 0.05

0.250.5 1 2 4
Hazard Ratio

bias−hdPS
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Figure 4.5: Anticoagulants study, estimates and standard errors for 49 negative control outcomes
. Dashed line represents the boundary at where the 95% confidence interval does (above) or does
not (below) contain the assumed true hazard ratio of 1. Coverage indicates proportion of intervals
that contains 1.

4.6 Discussion

In this paper, we detail a combined synthetic and negative control framework for evaluat-

ing PS performance, and evaluate PS estimation methods that represent ideological opposites

in automated selection: L1-regularization performs model selection for all covariates simula-

taneously in a multivariable approach, while the hdPS algorithm relies on a univariate covari-

ate screen. We find that L1-regularization outperforms both bias-based and exposure-based

hdPS algorithm on treatment prediction accuracy and covariate balance, with exposure-

based hdPS algorithm having the worst performance. We also find that the use of a larger,
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more comprehensive covariate set substantially improves treatment prediction accuracy and

covariate balance. In the simulations, either L1-regularization or the bias-based hdPS al-

gorithm generally offers the least estimation bias, but results are strongly influenced by

simulation parameters, revealing a limitation of the simulation framework. In the negative

control experiments, PS adjustment offers significant improvement over unadjusted in one of

two studies, in which L1-regularization produces the closest to nominal number of validated

negative controls and least biased empirical null distributions.

While defined as the probability of treatment assignment, propensity scores are used to

reduce confounding bias by constructing covariate-balanced cohorts such as those inherent

in randomized studies. So should PS estimation methods be judged on their success on

outcome-independent metrics of treatment prediction and covariate balance, or outcome-

dependent metrics of bias reduction? Bias reduction is the most immediate metric; after all,

what good are treatment prediction and cohort balance if the PS cannot deliver unbiased

estimates? However, the incorporation of outcome data can introduce arbitrary adjustment

decisions and biases that complicate a clear comparison of PS methods, and methods that

work well for one outcome may for another. In contrast, outcome-independent metrics

are influenced by fewer study design decisions, and are more generalizable than outcome-

dependent metrics determined on single outcomes.

Our survival simulation method extends the “plasmode” framework [44] by detailing

additional distributional forms for the survival and censoring processes; proposing additional

outcome prevalence adjustment methods; using non-informative, covariate-free censoring

to avoid violating the proportional hazards model; and using the more accurate outcome

prevalence Equation (4.2). While simulations benefit in having known effect sizes, even the

most realistic simulations cannot capture the full complexity of real-world data. Our negative

control outcome experiments entirely utilize real-world data for method evaluation, and avoid

numerous simulation design choices that can introduce investigator bias. Granted, the use of

control outcomes comes with the obvious concern of their misspecification, and uncertainty

of their true effect sizes. The proper specification of negative and positive outcome controls

will require continuous effort based in expert medical opinion, randomized trial results, and
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testing across multiple databases.

Under the potential outcomes framework, the propensity score is a balancing score, such

that its adjustment preserves unconfoundedness – the independence between treatment as-

signment and potential outcomes [9]. Unconfoundedness is violated by propensity score

estimators that utilize outcome information such as the bias-based hdPS algorithm and the

outcome-adaptive lasso [65], and by outcome-sensitive adjustment techniques such as dis-

ease risk scores [66]. To be clear, the data may well be unconfounded, and in the case

of simulations they can be known to be; it is the PS estimator that discards unconfound-

edness and that should be avoided if operating under the potential outcomes framework.

Furthermore, outcome-dependent PS estimator performance should be evaluated using neg-

ative and/or positive outcome controls instead of simulations. Using simulated outcomes

generated through a known process can favorably bias outcome-dependent PS estimators in

an unrealistic and prophetic fashion. As an extreme example, one could construct the PS

model with the exact covariates present in the synthetic model, and thus produce artificially

unbiased effect estimates.

An argument in favor of outcome-dependent propensity scores, and more broadly inves-

tigator selected propensity score models, is the concern over pre-treatment variables that are

uncorrelated with true confounders, strongly predict the treatment, and contribute no con-

founding on the outcome. These variables, sometimes known as “instrumental variables,”

promote treatment prediction without balancing confounders, and can inflate estimation

bias or variance. The potential harmful effects of instrumental variables have been shown

in theoretical examples and simulation experiments [34, 67]. However, the prevalence of in-

strumental variables in real-world data is debatable and their identification difficult. In our

experiments, the bias-based hdPS algorithm that should avoid instrumental variables is not

superior to L1-regularized methods that include all available covariates, suggesting of a lack

of instrumental variables. Comprehensive methods for instrumental variable identification

and characterization in real-world observational data, and knowledge of the consequences on

propensity score estimator selection, are still lacking and require further investigation.

The hdPS algorithm performs two functions: it presents tactics to address observational
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data quality, and it utilizes a univariate screen for PS model selection. On the issue of data

quality, the hdPS algorithm’s separation of data sources, attention to coding granularity, and

data augmentation by covariate frequency are clear-eyed approaches to the unique challenges

of observational health data. On the issue of model selection, our results show the hdPS

algorithm’s univariate screen suffers from covariate interdependence in large-scale data. We

show that hdPS estimate nonexistence, or “nonconvergence,” is a problem in smaller sam-

ple sizes and with lower outcome prevalences, corroborating published observations [54, 55].

And, if there is enough covariate interdependence and collinearity to render the hdPS algo-

rithm inoperable in smaller studies, there is no reason to believe covariate interdependence

is not a serious problem despite algorithm convergence in larger studies. For example, in our

studies L1-regularization outperforms the hdPS algorithm in treatment prediction (AUC),

despite the exposure-based hdPS explicitly selecting for marginal treatment associations.

An undeniable benefit of a univariate screen is its computational efficiency; in our problem

sizes, on the order of 100,000 subjects and 100,000 covariates, the hdPS algorithm can screen

covariates in mere minutes. However, modern computational machinery increasingly handles

large-scale regressions in observational health research. The Cyclops package [28] can run

similarly sized, cross-validated logistic and Cox survival regressions in reasonable hours of

compute time on ubiquitous personal computers. Computer parallelization and future sta-

tistical computing advances can further improve large-scale observational analyses, reducing

computational burden as a barrier to utilizing appropriate methods.
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CHAPTER 5

Evaluating Instrumental Variables in Propensity Score

Models Using Synthetic and Negative Control

Experiments

5.1 Introduction

Propensity scores (PS), an estimate of treatment assignment probability, are widely used

for confounding control in observational studies [33, 21]. PS adjustment allows for the

comparison of only similar treated and control persons in a cohort, thus approximating

randomized experiments that are the gold standard in clinical evidence [22]. There remains

controversy over the issue of variable selection for the PS model in high-dimensional datasets

where the number of covariates can range from the hundreds to the many tens of thousands.

Traditionally, clinical investigators construct a PS model using expert domain knowledge,

including only covariates known or suspected to the investigators as confounders. However,

this human-dependent process can be substantially and inexorably biased [57].

Various automated propensity score model selections exist to eliminate human bias from

the task of selecting a parsimonious PS model out of thousands of available covariates. Still,

concern remains over whether to include all pretreatment covariates in the automated se-

lection process or whether to first curate them to only include “real” confounders that will

ultimately reduce estimation bias in the outcome of interest. In particular, there are con-

cerns over instrumental variables (IVs) that causally affect the outcomes only through their

effect on the treatment [68]. Instrumental variables are covariates that are associated with

treatment, independent of all confounders, and independent of the outcome conditional on
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treatment and confounders [68]. When used to estimate average treatment effects, instru-

mental variables analysis provides unbiased bounds on the treatment effect size [69, 70, 71].

“Instrumental variables” is also more broadly to refer to variables that meet the mentioned

criteria, and can be conditioned on, as in a propensity score, irrespective of conducting an

IV analysis.

When used as conditioning variables, IVs are the source of “Z-bias,” whereby they may

increase bias from unmeasured confounders in observational data [31, 72]. As such, IVs are

also known as “bias amplifiers” for amplifying existing residual bias after conditioning on

other measured confounders [73, 67]. The potential deleterious effects of both IV have been

shown in both theoretical frameworks [67, 74] and small simulation studies [75, 76, 77]. In

addition to amplifying bias, conditioning on IVs may also reduce precision [34, 78].

While IVs can be easily simulated, it is controversial how prevalent IVs are and how

to identify them in real-world data. IVs are sensitive to deviations from their unverifiable

definitional assumptions [71, 79], and perfect IVs are difficult to identify for IV analyses

[80]. In real-world observational health data, researchers often use provider characteristics

as IVs, such as distance to health care facility or physician variation [81], but these IVs can

be flawed and also unavailable in large-scale insurance claims databases that are used for

many observational studies. In the absence of tools for identifying quality IVs, there is a

movement to only include covariates associated with the outcome in propensity score models

[82]. The popular high-dimensional propensity score (HDPS) [18] selects only covariates that

have a high apparent relative risk with the outcome [83].

In this study, we conduct simulations and negative control experiments to explore the

effect of IVs in real-world data and optimal PS models for reducing bias in the presence

of IVs. By basing our simulations on real-world data, we utilize much larger models than

those used in existing simulation studies. We also explore calendar year as a potential IV

that would readily available in longitudinal data [84, 85]. Our contrasting PS models pit

the approach of selecting covariates to purely predict the treatment to solely considering

association with the outcome. In addition to reporting the simulation bias and precision, we

measure effects on the residual bias using negative control outcomes [14, 15].

41



5.2 Methods

5.2.1 Clinical Study

We base our experiments on a real-world anticoagulants study of first time dabigatran

to warfarin users among patients with atrial fibrillation from 2010 - 2018 using the Truven

Health MarketScan Medicare Supplemental and Coordination of Benefits Database. The

primary outcome is gastrointestinal bleeding. This is a reproduction of a published obser-

vational study [50] and follows a new user cohort study design [86, 38]. Extracted baseline

patient covariates are encoded in the Observational Medical Outcomes Partnership (OMOP)

Common Data Model Version 5 format [2], and indicator variables for demographics, condi-

tions, procedures, drugs, observations, and measurements. See the Supplementary Material

for more pretreatment covariate details. We use the CohortMethod R package [87] to con-

struct the study cohort.

5.2.2 PS Models

We experiment with a large number of PS models, all of which are fit using large-scale

regression models [19] of the real-world anticoagulants study through the Cyclops R package

[28]. Six of these models do not include simulated IVs. Firstly, we conduct unadjusted anal-

yses without a propensity score. Secondly, we use all measured covariates (All Covariates) in

the PS model to maximize treatment prediction. Thirdly, we examine the fitted All Covari-

ates PS model and select the calendar year covariate with the largest absolute coefficient,

which is the indicator for 2010. This indicator for 2010 is a strong predictor for warfarin

because dabigatran was only just coming onto the market at that time, and physician aware-

ness and preference could have been a factor in dabigatran use. We then fit a large-scale

Cox proportional hazards outcome model for GI bleed, and analyzed the model coefficients

to confirm that 2010 has zero coefficient, thus no conditional association with the outcome.

Fourthly, we exclude all calendar year indicators from the All Covariates model. Fifthly,

we screen the most prevalent 500 covariates according to the HDPS apparent relative risk
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criterion and only include in the PS model the 200 top ranked covariates. These covariates

have the highest univariate relative risk with the outcome, and we call this covariate set the

“HDPS Set.” Sixthly, we use the fitted outcome model and include in the PS model only

the covariates that have non-zero coefficients. These covariates have the highest conditional

association with the outcome in a multivariate model, and we call this covariate set the “Cox

Set.”

The remaining PS models include a simulated IV. We use three baseline covariate sets

corresponding to the second, fifth, and sixth PS models described above. To these PS models,

we add a single simulated IV with one of three prevalences (p = 0.025%, 0.05%, 0.1%), and

one of three relative risks with the treatment variable (r = 1.5, 2, 4). For each of the three

baseline covariate sets, there are 9 additional PS models, one for each prevalence-relative risk

combination. There are a net total of 33 PS models, listed in Table 5.1. DAGs representing

simulations using simulated outcomes are shown in Figures 5.1A and 5.1C.

1. Unadjusted 7. All + 0.025/1.5 16. HDPS + 0.025/1.5 25. Cox + 0.025/1.5

2. All Covariates 8. All + 0.025/2 17. HDPS + 0.025/2 26. Cox + 0.025/2

3. No 2010 9. All + 0.025/4 18. HDPS + 0.025/4 27. Cox + 0.025/4

4. No Years 10. All + 0.05/1.5 19. HDPS + 0.05/1.5 28. Cox + 0.05/1.5

5. HDPS Set 11. All + 0.05/2 20. HDPS + 0.05/2 29. Cox + 0.05/2

6. Cox Set 12. All + 0.05/4 21. HDPS + 0.05/4 30. Cox + 0.05/4

13. All + 0.1/1.5 22. HDPS + 0.1/1.5 31. Cox + 0.1/1.5

14. All + 0.1/2 23. HDPS + 0.1/2 32. Cox + 0.1/2

15. All + 0.1/4 24. HDPS + 0.1/4 33. Cox + 0.1/4

Table 5.1: Evaluated PS models. Simulated IVs have prevalence p and relative risk with treatment
r represented as p/r. Models 7-15 add a simulated IV to the Model 2. Models 16-24 add a simulated
IV to Model 5. Models 25-33 add a simulated IV to Model 6.
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Figure 5.1: A) directed acyclic graph (DAG) showing calendar year 2010 as an IV affecting esti-
mation of hazard ratio (HR) of simulated outcomes of GI bleed. B) DAG showing negative control
outcomes with no presumed effect from compared treatments. C) DAG showing effects of simulated
IV under specified prevalence and relative ratio on the HR estimate of simulated outcome. D) DAG
showing effects of simulated IV on negative control estimates

5.2.3 Outcome Simulations

Using the real-world anticoagulants study as a simulation framework, we simulate new

outcomes according to a “plasmode” design [44, 45]. The specific plasmode design we employ

is detailed in [19]. We first fit the data to a Cox proportional hazards model to obtain a

realistic survival model for outcome simulation, including covariate coefficients and survival

functions for the outcome and censoring events. Keeping the original covariates, we calculate

each subject’s linear predictor, and simulate outcome times and censoring times under a

desired true hazard ratio. We simulate under four true hazard ratios (1, 1.5, 2, 4). With

each fitted PS model, we perform variable length PS matching [59] with a maximum ratio of

10:1 and a caliper of 0.2, and use a greedy matching algorithm [60]. We then fit a PS-stratified

Cox proportional hazard model with the simulated outcomes, to obtain point estimates and

95% confidence intervals of the treatment effect size.
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5.2.4 Negative Controls

Negative control outcomes are an emerging tool in observational research that allow for

experiments using real data by providing a standard of clinical truth – that of no effect

between exposure and outcome [14, 15]. In a clinical observational study setting, a nega-

tive control is an outcome that investigators can determine, with some confidence, is not

differentially affected by the active treatment or reference treatment. Effect estimation on

a large set of negative control outcomes provides a distribution whose deviation from the

expected null effect approximates the systemic study bias, or residual bias after controlling

for measured confounding [10].

We identify 49 negative control outcomes through a data-rich algorithm [61] combined

with manual curation. Similar to the simulated outcomes, we perform variable ratio PS

matching and fit PS-stratified Cox proportional hazards models for the negative control

outcomes. We fit the set of negative control estimates – each presumed to have a true hazard

ratio of 1 – to an empirical null distribution [10]. This distribution characterizes the study

residual bias after PS adjustment [11] and arises from both unmeasured confounding and

inappropriate control of measured confounding, such as inclusion of IVs. DAGs representing

simulations using negative control outcomes are shown in Figures 5.1B and 5.1D.

5.2.5 Metrics

For both simulated and negative control outcomes, we compare the bias and standard

deviation (SD) of the estimated hazard ratios to the true hazard ratios (known for the

simulated outcomes and presumed to be 1 for the negative control outcomes). We fit the

negative control estimates to empirical null distributions, and report the distribution means

and SDs. To assess how the instrumental variables affect the covariate balance through the

PS, we compare before and after matching standardized mean differences (SMDs) for all

covariates. We plot the distribution of SMDs and also note the number of after-matching

SMDs that cross a threshold of 0.1. We also plot the distributions of the fitted PS models.
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5.3 Results

In the anticoagulants study, there are 20474 first-time dabigatran users and 56648 first-

time warfarin users. There are 52729 total unique covariates in the All Covariates set, of

which 900 have nonzero coefficients in the fitted PS model. The HDPS Set of covariates

contains the 200 covariates with the highest apparent relative risk out of the 500 covariates

with the highest prevalence. Of these, 170 have nonzero coefficients in the fitted PS model.

The Cox Set of covariates obtained from a large-scale outcome model contains 74 covariates,

and 73 of them have nonzero coefficients in the fitted PS model. There are 31 covariates that

overlap between the PS model for All Covariates and the Cox PS model, 26 that overlap

between the HDPS PS model and the Cox PS model, and 93 that overlap between the All

Covariates PS model and the HDPS PS model.

Figure 5.2 plots for the PS models the preference score distributions that normalize

propensity scores by their prevalence. There are few discernible differences among the PS

plots for All Covariates and All Covariates with 2010 removed and with all calendar years

removed. These three PS distributions show moderately strong differentiation between the

dabigatran and warfarin populations. In contrast, the PS distributions built on the HDPS

Set and Cox Set of covariates show more overlap between distributions. All three distribu-

tions with a simulated instrumental variable have large spikes in the dabigatran distribution

close to 1, showing that the simulated IV has a strong effect on the PS distributions. On

inspection of the PS models over 100 simulations, every single simulated PS model includes

the simulated IV as a covariate with nonzero coefficient.
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Figure 5.2: Propensity score distributions represented as preference scores that normalize propen-
sity scores by prevalence. The three plots from simulated IV PS models are taken from simulations
with 10% IV prevalence and relative risk of 4.
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Simulation results under a true hazard ratio of 4 are shown in Figure 5.3, with detailed

mean and SD provided in Table 5.2. The unadjusted estimate has by far the largest bias and

lowest coverage of the true effect size of all compared methods. Relative to All Covariates,

removing calendar year 2010 very slightly increases the bias, and removing all calendar

years increases the bias even more. The HDPS Set has smaller bias and variance than All

Covariates, and the Cox Set has almost no bias and even smaller variance. For simulations

with simulated IV based on All Covariates and HDPS Set, increasing the simulated IV

prevalence and relative risk actually decreases the study bias, while having mixed effects on

the variance. The simulations with simulated IV added to Cox Set has the smallest bias,

followed by those added to HDPS Set, then those added to All Covariates. All methods

other than unadjusted have high coverage of the true effect size. Simulation results under

the other three simulated true hazard ratios display similar patterns and are shown in the

Supplementary Material.
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Figure 5.3: Left: bias and SD of simulation experiments with true hazard ratio of 4. Right: coverage
of true effect size of HR = 4 across 100 simulations. For the 9 simulated IV settings, the shapes
represent All Covariates, the numbers represent HDPS set, and the letters represent Cox set.
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1. Unadjusted -0.199 (0.061) 16. HDPS + 0.025/1.5 0.024 (0.078)

2. All Covariates 0.026 (0.084) 17. HDPS + 0.025/2 0.020 (0.071)

3. No 2010 0.027 (0.081) 18. HDPS + 0.025/4 0.016 (0.074)

4. No Years 0.030 (0.082) 19. HDPS + 0.05/1.5 0.022 (0.078)

5. HDPS Set 0.015 (0.075) 20. HDPS + 0.05/2 0.019 (0.079)

6. Cox Set -0.006 (0.072) 21. HDPS + 0.05/4 0.017 (0.075)

22. HDPS + 0.1/1.5 0.017 (0.075)

23. HDPS + 0.1/2 0.019 (0.079)

24. HDPS + 0.1/4 0.014 (0.084)

7. All + 0.025/1.5 0.031 (0.086) 25. Cox + 0.025/1.5 0.002 (0.067)

8. All + 0.025/2 0.031 (0.091) 26. Cox + 0.025/2 -0.001 (0.070)

9. All + 0.025/4 0.019 (0.073) 27. Cox + 0.025/4 0.001 (0.069)

10. All + 0.05/1.5 0.028 (0.085) 28. Cox + 0.05/1.5 -0.002 (0.069)

11. All + 0.05/2 0.021 (0.085) 29. Cox + 0.05/2 -0.002 (0.073)

12. All + 0.05/4 0.018 (0.088) 30. Cox + 0.05/4 0.002 (0.076)

13. All + 0.1/1.5 0.024 (0.083) 31. Cox + 0.1/1.5 -0.001 (0.072)

14. All + 0.1/2 0.024 (0.083) 32. Cox + 0.1/2 -0.004 (0.074)

15. All + 0.1/4 0.010 (0.091) 33. Cox + 0.1/4 -0.007 (0.088)

Table 5.2: Simulation bias for true HR = 4, as Mean (SD), for all PS models

While the above results represent performance under a known outcome model, the nega-

tive control distributions approximate the residual study bias. The null distribution means

and SD are shown in Figure 5.4 and Table 5.3. The unadjusted estimate has by far the

largest bias (deviation from 0 mean) and variance, and the lowest coverage of unity HR by

the individual negative control estimates. Among PS models without simulated IVs, All

Covariates has the smallest bias, while removing calendar year 2010 and all calendar years

creates increasingly larger bias. HDPS Set has larger bias and variance than All Covariates,

though higher coverage. Meanwhile, Cox Set has even larger bias and variance than HDPS

Set and lower coverage than All Covariates. Among PS models with a simulated IV, for each
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IV prevalence and relative risk the All Covariates estimate has smaller bias and variance and

lower coverage than the HDPS Set estimate, which in turn has smaller bias and variance and

lower coverage than the Cox Set estimate. Adding an instrumental variable to All Covariates

increases both the bias and variance but also the coverage, though the magnitude of increase

is not clearly associated with the strength of the IV. However, adding an IV to the HDPS

Set slightly decreases the bias overall, and noticeably increases the variance and lowers the

coverage. Finally, adding an IV to the Cox Set decreases the bias and variance, and manages

to increase the coverage under some settings. Increasing the relative risk of the simulated

IV slightly increases the coverage throughout.
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1. Unadjusted -0.173 (0.229) 16. HDPS + 0.025/1.5 -0.038 (0.088)

2. All Covariates -0.013 (0.028) 17. HDPS + 0.025/2 -0.036 (0.087)

3. No 2010 -0.023 (0.024) 18. HDPS + 0.025/4 -0.039 (0.082)

4. No Years -0.042 (0.017) 19. HDPS + 0.05/1.5 -0.039 (0.086)

5. HDPS Set -0.039 (0.051) 20. HDPS + 0.05/2 -0.037 (0.088)

6. Cox Set -0.089 (0.147) 21. HDPS + 0.05/4 -0.038 (0.086)

22. HDPS + 0.1/1.5 -0.037 (0.091)

23. HDPS + 0.1/2 -0.038 (0.085)

24. HDPS + 0.1/4 -0.038 (0.080)

7. All + 0.025/1.5 -0.017 (0.035) 25. Cox + 0.025/1.5 -0.079 (0.147)

8. All + 0.025/2 -0.018 (0.041) 26. Cox + 0.025/2 -0.078 (0.146)

9. All + 0.025/4 -0.017 (0.041) 27. Cox + 0.025/4 -0.079 (0.142)

10. All + 0.05/1.5 -0.017 (0.039) 28. Cox + 0.05/1.5 -0.078 (0.147)

11. All + 0.05/2 -0.016 (0.040) 29. Cox + 0.05/2 -0.079 (0.147)

12. All + 0.05/4 -0.016 (0.039) 30. Cox + 0.05/4 -0.080 (0.143)

13. All + 0.1/1.5 -0.018 (0.038) 31. Cox + 0.1/1.5 -0.078 (0.145)

14. All + 0.1/2 -0.018 (0.038) 32. Cox + 0.1/2 -0.078 (0.143)

15. All + 0.1/4 -0.020 (0.040) 33. Cox + 0.1/4 -0.079 (0.141)

Table 5.3: Negative control distributions, as Mean (SD), for all PS models

Propensity scores reduce confounding by creating comparable cohorts that are balanced

with respect to pretreatment covariates. Figure 5.5 shows the covariate balance for the All

Covariates set of covariates. The All Covariates PS model does the best in balancing the

covariates, and removing calendar year 2010 or all calendar years from the PS model results

in the respective calendar years becoming unbalanced. The HDPS Set PS model does a

worse job with covariate balance, and the Cox Set PS model does an even worse job. Adding

a strong IV to the All Covariates, HDPS Set, and Cox Set PS models has very little effect

on the covariate balance distribution, even though we have seen it has a strong effect on

the PS distribution (Figure 5.2). Figure 5.6 shows the covariate balance of just the HDPS
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Set covariates. The HDPS Set PS model does the best at balancing covariates, and the

All Covariates PS model also keeps all after-matching standardized differences below 0.05.

However, the Cox Set PS model fares poorly on these covariates’ balance, and fails to balance

numerous covariates.
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Figure 5.5: Pre-matching vs post-matching covariate absolute standardized differences for All Co-
variates. Each point represents one covariate. The three plots from simulated IV PS models are
taken from simulations with 10% IV prevalence and relative risk of 4.
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Figure 5.6: Pre-matching vs post-matching covariate absolute standardized differences for HDPS
Set covariates. Each point represents one covariate. The three plots from simulated IV PS models
are taken from simulations with 10% IV prevalence and relative risk of 4.
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Figure 5.7 shows the negative control outcome estimates generated by the PS models,

along with the coverage by the estimates of the presumed true hazard ratio of 1. Nominally,

95% of the estimates’ 95% confidence intervals should include 1. The unadjusted estimates

have the smallest coverage, and have a mean estimate that is noticeably negative. At 84%,

the All Covariates PS model has higher coverage than the HDPS Set at 61% and the Cox

Set at 71%. Removing calendar year 2010 and all calendar years both increase the coverage

from the All Covariates PS model. Adding a simulated IV to the All Covariates, HDPS Set,

and Cox Set PS models increases the number of negative control estimates that produce

nonsignificant confidence intervals.
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Figure 5.7: Negative control outcome estimates with associated coverage of presumed true hazard
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below the dotted lines no not include 1 and are statistically significant.
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5.4 Discussion

The propensity score is defined as an estimate of treatment assignment probability using

pretreatment covariates, and its use is sufficient in removing bias from all observed covari-

ates [21, 9]. In other words, knowing the true treatment assignment probability would allow

for perfectly unbiased outcome effect estimates in observational studies, through the design

of stratified studies that approximate randomized trials [22]. Knowing this, it makes def-

initional sense to build the PS model with the goal of treatment prediction, and include

only pretreatment covariates; the outcome, which postdates the treatment, would have no

role in the PS model [23, 24]. Large scale regularized regressions are a natural approach to

estimating the PS in the presence of thousands of covariates, as are available in longitudinal

observational databases [19].

Instrumental variables are established to be bias amplifiers in numerous theoretical and

simulation studies [67, 74, 75, 76, 77]. There seems to be agreement that known IVs should

be removed from the set of conditioning variables [88]. The question becomes, how can

we identify IVs in real-world observational data that adhere to multiple unverifiable causal

criteria? Faced with this dilemma, some authors have abandoned the purpose of the PS as a

treatment prediction model, and advocate for including covariates based on association with

outcome [82]. This approach embraces a novel ideology for PS estimation: fit an outcome

model, use the results to build a PS, and use the PS in another outcome model. The high-

dimensional propensity score takes this to an extreme in utilizing a univariate screen to

identify the most outcome-associated covariates for PS model inclusion [18]. The HDPS has

become a common tool for automated PS model construction [36, 89].

We observe that sacrificing treatment prediction to create PS model covariate sets based

on outcome association has expected consequences in PS distribution quality. Larger PS

models do increasingly better jobs at separating PS distributions of the target and compara-

tor treatment (Figure 5.2). The All Covariates PS model, built on thousands of covariates,

achieves the most separation between dabigatran and warfarin populations, while leaving

enough overlap to allow for meaningful study comparison. In contrast, the HDPS Set PS
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model, built on 200 covariates identified through a univariate screen for outcome association,

does not identify a large set of warfarin patients with low preference score. The Cox Set PS

model, built on 74 covariates identified in a multivariate regularized outcome model, has very

little preference score separation between the two groups. For all three PS models, inclusion

of a simulated IV causes a dramatic spike in the preference score distribution at the high

end of the scale near 1, showing that indeed the simulated IV strongly affects treatment

assignment probability.

One might presume that a simulated IV dominating the PS distribution would diminish

the relative contribution of other covariates in the PS model and have a detrimental effect

on other covariates’ balance. Surprisingly, we observe that inclusion of a simulated IV has

almost no perceptible effect on covariate balance (Figures 5.5 and 5.6). We do observe a

similar relationship between PS model size and covariate balancing performance: the larger

the PS model, the more covariates are successfully balanced (Figure 5.5). The All Covariates

PS model is built on all covariates, and even though the resultant PS model only has 900

nonzero coefficients, all covariates are satisfactorily balanced. The HDPS Set and Cox Set

PS models fail to restrict all after-matching standardized differences to below 0.1. When

we observe the covariate balance only for the 200 HDPS Set covariates, the HDPS Set PS

model unsurprisingly performs the best covariate balancing (Figure 5.6). However, the All

Covariates PS model also performs excellently, showing that including [even vastly] more PS

model covariates does not compromise the balance of a smaller subset of covariates that may

be of interest to the investigator.

In our plasmode simulations under a known true hazard ratio, the Cox Set PS model

unsurprisingly demonstrates the least bias, as it builds the PS using the exact covariates used

to build the parametric outcome generating model (Figure 5.3 and Table 5.2). Surprisingly,

the HDPS Set PS model has slightly smaller bias than the All Covariates PS model, even

though the HDPS Set PS model does a poorer job balancing the 74 covariates of the Cox

Set that are used for simulated outcome generation. The HDPS Set PS model also has fewer

covariates, 26, that overlap with the Cox Set than the All Covariates PS model, at 31. These

results suggest that there is merit to selecting PS model covariates by outcome association

60



when it comes to study bias. Interestingly, removal of our suspected IV calendar year 2010

from the All Covariates PS model increases – rather than decreases – study bias, and removal

of all calendar years further increases the bias. Additionally, inclusion of a simulated IV to

the All Covariates and Cox Set PS models often decreases the study bias. Most strikingly,

the All Covariates PS models with simulated IV have smaller bias with stronger and more

prevalent simulated IV. Inclusion of simulated IV does seem to generally increase variance

across observed PS models.

Instrumental variables are widely known as bias amplifiers [67], yet our simulation results

show them having the opposite effect: removing suspected calendar year IVs slightly increases

bias, while adding a simulated IV sometimes decreases bias. We notice that published

simulation studies utilize small simulation models in which the IV is one of a few – if not

the only – simulated covariates [75, 76, 77]. Meanwhile, we are adding simulated IVs (or

removing suspected IVs) from much larger models with at least 74 covariates and up to

tens of thousands of covariates. Our large PS models more accurately reflect real-world

scenarios in which longitudinal observational databases provide many thousands of potential

confounding covariates. While we cannot explain the observed paradoxical IV effects, we

believe that IVs have much weaker effect in real-world data than in small simulations. A

similar view, that adjusting for a suspected (and possibly imperfect) IV likely reduces net

bias, is shared by one of the aforementioned simulation studies [77].

Our plasmode simulations reveal somewhat of a circular result: using the exact covariates

that affect the outcome in the PS model produces almost no study bias. Unfortunately, it is

impossible to know the exact outcome generating process of real-world outcomes of interest.

Whether through univariate screens or multivariate regressions, whatever outcome models

we utilize to select covariates are inherently parametric and likely fail to capture the “true”

generative model. Negative controls are able to provide what simulation experiments cannot

– a standard of clinical truth (that of no effect) in real-world data. By using real data

as negative control outcomes, our negative control experiments are able to estimate the

distribution of residual study bias. Our negative control experiments show a clear result:

a PS model based on modeling treatment assignment results in less residual study bias as
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measured by negative control distributions (Figure 5.4 and Table 5.3). The All Covariates PS

model and associated simulated IV PS models have smaller residual bias, smaller variance,

and higher coverage than the respective HDPS Set PS models, which in turn perform better

than the Cox Set PS models. Inclusion of simulated IV does seem to generally increase

negative control distribution variance across observed PS models.

We offer a word of a caution in selecting covariates based on outcome association through

the apparent relative risk of Bross [83]. When we select for the “HDPS Set” the top apparent

relative risk covariates out of all covariates, the resultant PS model completely fails to sepa-

rate the treatment and comparator cohorts. Furthermore, both the plasmode simulation bias

and the residual study bias are substantially larger than that of other methods. This is due

to low prevalence covariates completely dominating the ranked list of covariates by apparent

relative risk. The HDPS algorithm [18] only selects among highly prevalent covariates for

the PS model, thus avoiding this phenomenon, and we are sure to select our HDPS Set from

among the 500 most prevalent covariates. Our use of regularized regression [19] to fit PS

models avoids this issue in the All Covariates PS model despite inclusion of all covariates,

as lowly prevalent covariates are shrunk by the lasso penalty [20] to have zero coefficients.

In conclusion, we find that IVs have at most a weak effect on bias in simulations and

negative control experiments based on large-scale real-world data, though they do reduce

precision. IVs also have very little effect on covariate balance despite strongly affecting PS

distributions. We agree with the conviction that PS models should be based on estimating

treatment assignment probability as per the definition of the propensity score, and that

outcome data not be used in selecting covariates for the PS model [23, 24]. Because real-world

data cannot be omnisciently modeled, simulation experiment results may not offer practical

comparisons of PS methods. Instead, we prefer to conduct negative control experiments that

approximate residual bias, and those results confirm that large PS models curated through

regularized regression [19] offer least bias with or without instrumental variables.
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CHAPTER 6

Performance Evaluation of Regression Splines for

Propensity Score Adjustment in Post-Market Safety

Analysis with Multiple Treatments

6.1 Introduction

Observational health data provide a key resource for monitoring post-market drug safety

and effectiveness. However, while many medical situations present with multiple (more

than two) treatment options, comparative effectiveness research has been largely limited to

comparing only two treatments. As a result, conclusions about multiple treatments rely on

comparing results from disparate studies, with possibly differing study design elements.

The propensity score (PS), an estimate of treatment assignment probability conditional

on observed baseline characteristics, is a widely used tool for confounding control in obser-

vational studies [21, 33]. There is substantial debate as to how to best select variables to

include in the PS, how to estimate the PS, and how to use the PS to adjust for confound-

ing in the outcome model [90, 34, 40]. Simulation studies assuming correct specification of

the PS model have shown that inverse probability treatment weighting (IPTW) provides

better mean square error than matching or stratifying on the PS, with reduced precision

for PS matching and increased bias for PS stratification [91, 92]. PS adjustment through

direct inclusion of the PS in the outcome model is an alternative to weighting, and its ap-

plication through spline functions has been frequently utilized [90, 34, 93] in two-treatment

settings. Recently, an extensive simulation study [42] found that PS splines can provide

better performance than other PS methods, including IPTW.
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Estimation of causal effects using the PS has straightforward extensions in multiple treat-

ment settings [94], but there is little research on the relative performance of PS methods

for multiple treatments [95, 96]. A recent study found IPTW to be substantially more bi-

ased than PS matching and matching weights in a three-treatment setting [96]. However,

PS matching and matching weights improve bias at the cost of restricting the population

of interest. To our knowledge, the relative performance of IPTW in comparison to splines

has not been investigated in multiple (more than two) treatment settings. In this paper, we

conduct simulation experiments to compare IPTW and spline methods for estimating the

average treatment effects for three treatments. We compare performance between IPTW and

splines with simulations under a range of PS distributions, outcome prevalences, constant

and heterogenous treatment effect sizes.

6.2 Background

6.2.1 Notation

For the i = 1, · · · , n individuals in the observed data, let Ti ∈ {0, 1, 2} denote the

treatment variable with observed value ti, and Yi denote the binary outcome variable with

observed value yi. We observe a vector xi = (xi,1 · · ·xi,p) of p pretreatment baseline covari-

ates. The propensity score (PS) has three components indicating probability of assignment

to each treatment: ei = (ei,0, ei,1, ei,2), where ei,t = Pr(Ti = t|xi), t = 0, 1, 2. Let Yi(t) be the

potential outcome if individual i had received treatment t, as defined in the Rubin causal

model.

6.2.2 Average Treatment Effect Definition

We are interested in the average treatment effect (ATE) of treatment t, (t ∈ {0, 1, 2})

relative to treatment t′, (t′ 6= t), and the risk ratio (RR) as the measure of effect size. We

define our estimands of interest as: RR1 =
∑n

i=1 Yi(1)∑n
i=1 Yi(0)

, RR2 =
∑n

i=1 Yi(2)∑n
i=1 Yi(0)

, and RR3 = RR2

RR1
.
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6.2.3 IPTW Estimation

Inverse probability treatment weighting (IPTW) uses weights based on the PS to con-

struct a pseudo-population that is balanced on observed covariates [90, 97]. For ATE es-

timation, the weight for patient i is the inverse of the propensity score of his/her received

treatment: wi = 1/eti,i. The IPTW weights are used to conduct a weighted logistic regression

of the binary outcome on the treatments:

logit(Pr(Yi = 1|Ti = ti)) = β0 + β1 ∗ I(ti = 1) + β2 ∗ I(ti = 2) (6.1)

where I is an indicator function.

Because all IPTW weights are greater than one, the weighted outcome model has a larger

effective sample size than the original population, which can lead to variance underestimation

[98]. We therefore use stabilized IPTW weights that adjust each weight by the marginal

probability of the received treatment: wi = pti/ei,ti , where pt = 1
n

∑n
i=1 I(Ti = t) for t =

0, 1, 2 [98].

We use the maximum likelihood estimates of the outcome model parameters β̂ to calculate

the marginal relative risk estimators:

RRk =

∑n
i=1 Pr(Yi = 1|β̂, Ti = k)∑n
i=1 Pr(Yi = 1|β̂, Ti = 0)

, k = 1, 2. (6.2)

We use a sandwich variance estimator for the covariance matrix of β̂ [99]. We then

estimate the marginal relative risk variance through the Delta method [100]. See Section 2

of Supplementary Material for details.

6.2.4 Estimation of Regression Splines

Direct regression methods utilize the PS directly in the outcome model as a predictor.

Because the three PS components are linearly constrained to sum to 1, when we use the

PS directly in the outcome model regression we drop the first component ei,0. The simplest
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regression approach would be to include the separate PS components in the outcome model

as linear predictors, but this requires the restrictive assumption of linear effects. Instead, we

allow a nonlinear effect by modeling a spline function on the logit of the propensity score,

that has θ as model parameters.

logit(Pr(Yi = 1|Ti, ei)) = β0 + β1 ∗ I(ti = 1) + β2 ∗ I(ti = 2) + s(e∗; θ) (6.3)

where e∗i = (e∗i,1, e
∗
i,2) = (logit(ei,1), logit(ei,2)) denotes the logit of the PS, and s denotes the

spline function.

In our experiments, we use natural cubic splines and thin plate regression splines of the

PS. Cubic splines fit data to piecewise cubic polynomials in between ”knots” and require

continuous first and second derivatives at the knots [101]. Natural cubic splines (a.k.a.

restricted cubic splines) additionally impose linearity outside the boundary knots, and are

represented by B-spline basis functions [101]. These cubic splines are functions of a single

variable, so for a PS with two components, we assume an additive effect from two separate

natural cubic splines:

s(e∗i ; θ) =
m∑
j=1

B1,j(e
∗
i,1) +

m∑
j=1

B2,j(e
∗
i,2) (6.4)

where Bt,j represents the jth B-spline function for PS of treatment e∗i,t, and m is the number

of total basis functions determined by the number of knots. Commonly, the number of knots

is predefined, knots are placed at equally spaced percentiles of the data, and five or fewer

knots are generally sufficient [102].

Unlike natural cubic splines, thin plate splines utilize a basis function that can extend to

multiple variables. A ”thin plate regression spline” (TPRS) uses thin plate splines with a

knot placed at every data point, with additional penalization to avoid overfitting [103] and

fit to a desired low rank approximation. We use TPRS in two ways: an ”additive” approach

with a separate TPRS for each PS component, and a ”joint” approach with a TPRS on the

2-component PS.
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Additive: s(e∗i ; θ) =
m∑
j=1

U1,j(e
∗
i,1) +

m∑
j=1

U2,j(e
∗
i,2)

Joint: s(e∗i ; θ) =
m∑
j=1

Vj(e
∗
i,1, e

∗
i,2)

(6.5)

where Ut,j represents the jth thin plate function for e∗i,t, and Vj represents the jth thin plate

basis function for the 2-component PS e∗i , and m is the total number of basis functions

determined by the desired low rank approximation.

For all spline models, we use the maximum likelihood estimates of the spline outcome

model parameters β̂ to calculate the marginal relative risk estimators. We then use a model-

based variance estimator for the covariance matrix of β̂ and estimate the marginal relative

risk variance through the Delta method.

6.3 Simulation Experiments

6.3.1 Data Generation

Following the data generation process in two existing studies [96, 63], for each individual

i we simulate ten covariates xi = (xi,1, · · · , xi,10) (3 binary, 1 categorical, 6 continuous) ac-

cording to prespecified distributions. We simulate treatment Ti from a multinomial logistic

distribution with probabilities (ei,1, ei,2, ei,3). We simulate binary outcome Yi from a logis-

tic distribution with probability Pr(Yi = 1|Ti,xi). See Sections 3.1-3.3 of Supplementary

Material for precise details.

We simulate 24 ”scenarios” that represent all combinations of different simulation param-

eters for treatment prevalence (equal, 33:33:33; unequal, 10:45:45), PS overlap (good, fair,

poor), outcome prevalence (rare, approximately 2%; common, approximately 10%), and true

treatment effect (null, non-null with RR1 = 0.8 and RR2 = 0.6). We simulate 1000 times

with a sample size of n = 5000. Figure 6.1 shows the PS distribution for simulations under

unequal treatment prevalence and fair PS overlap, and the other 5 treatment generating

distributions are provided in Sections 3.2.1-3.2.6 of Supplementary Material.
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Figure 6.1: Propensity score distribution for simulations with unequal (10:45:45) treatment preva-
lence and fair PS overlap, drawn for 5000 sample size. PS0, PS1, PS2 represent three components
of PS for treatments 0, 1, 2

Across simulations, we vary the PS distribution from good to poor by changing the

coefficients of the covariates in the treatment generating model. We also simulate outcomes

under different prevalences by changing the intercept term in the outcome generating model.

We vary the true marginal relative risk by altering the coefficients of the treatment variables

in the outcome generating model. We simulate outcomes with and without treatment effect
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heterogeneity, which we model as an interaction between treatment and one covariate (X4)

in the outcome generating model.

6.3.2 Model Fitting

We estimate the PS using a multinomial logistic regression of treatment on covariates.

We then use the ten adjustment methods in Table 6.1 to obtain estimates of the marginal

relative risk. Truncated IPTW was used to reduce the effects of extreme weights that may

inflate variance [104, 105]. Two of the adjustment methods allow treatment effects to vary

with propensity score splines through interaction terms, which may be helpful when the

underlying data exhibits treatment effect heterogeneity.

We fit each of the 10 adjustments methods under four “settings”:

1. Heterogeneity: treatment-covariate X4 interaction added in outcome generating model

2. Trimming: exclusion of subjects based on PS percentiles [106], and applied to study

population before PS adjustment 3. PS misspecification: intentional removal of covariate X9

from PS estimation process 4. Standard: no heterogeneity, trimming, or PS misspecification

Adjustment method Description
Outcome Model Direct outcome regression on covariates, no PS adjustment
IPTW Stabilized IPTW
IPTW Fixed Trunc. Stabilized IPTW truncated to [0.10, 10]
IPTW % Trunc. Stabilized IPTW truncated to 99th percentile by treatment
Cubic 1 Additive natural cubic splines with 1 interior knot at median
Cubic 4 Additive natural cubic splines with 4 interior knots at quantiles
TPRS 1D Additive thin plate regression splines
TPRS 2D Joint thin plate regression spline
Cubic + interaction Cubic 4 + interaction between treatment and splines
TPRS + interaction TPRS 2D + interaction between treatment and spline

Table 6.1: Compared PS adjustment methods

See Section 4 of Supplementary Material for greater detail.
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6.3.3 Performance Evaluation

We assess the methods’ performance based on their bias, variance, root mean square

error (rmse), and coverage of the true marginal relative risk across simulations. As a sup-

plemental consideration, we also evaluate IPTW weight distributions and covariate balance

after weighting, which are pre-outcome diagnostic metrics for assessing validity of IPTW

estimates. Because splines utilize the PS directly in the outcome model, no similar diagnos-

tics exist prior to looking at outcome data. The diagnostics for the scenario with unequal

treatment prevalence and fair PS overlap are shown in Figure 6.2 and those for all treatment

generating distributions are provided in Section 5 of Supplementary Material.
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Figure 6.2: IPTW diagnostics for simulations under unequal treatment prevalence and fair covariate
balance, with normal/heterogeneous analyses in bottom row, trimmed analysis in middle row,
misspecified PS analysis in top row. Top left: Percentiles of IPTW weights. Tips are 1st and 99th

percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top right: density
of IPTW weights. Bottom: Before (green triangle) and after (red circle) IPTW weighting absolute
standardized mean differences between treatment groups 2 to 1 (left) and treatment groups 3 to 1
(right).
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6.4 Results

Full results for all simulations are provided in Section 6 of Supplementary Material.

Across all simulations, results (bias, variance, rmse, and coverage) for null and non-null

treatment effects are extremely similar, when other simulation parameters are fixed. Fig-

ure 6.3 shows the rmse in estimating the marginal relative risk for all six combinations of

treatment prevalence and PS overlap, under 10% outcome prevalence, null true treatment

effect size, and standard setting (no treatment effect heterogeneity, trimming, or PS mis-

specification). Under good PS overlap, there are few differences among PS methods, and

all demonstrate small rmse. Under fair and poor PS overlap, direct outcome regression and

the four spline methods without interaction have the smallest rmse and perform similarly

to each other. Under this setting, all IPTW methods have high rmse, though truncation

reduces the rmse. The spline models with interaction perform worse than the spline meth-

ods without interaction, which could be due to overfitting in the absence of treatment effect

heterogeneity.
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Figure 6.3: RMSE in scenarios with 10% outcome prevalence, null effect sizes, by degree of PS
overlap (good, fair, poor)

Figure 6.4 shows the bias, variance, rmse, and coverage of the true marginal relative

risk for the simulations under unequal treatment prevalence, fair PS overlap, 10% outcome

prevalence, null true effect size, for each of the four settings (heterogeneity, trimming, PS

misspecification, and standard). In all four settings, direct outcome regression and the four

spline methods without interaction produce similar results and have the smallest rmse. Al-

though additive natural cubic splines have a slightly lower coverage with 1 interior knot at

the median compared to 4 interior knots at quantiles in this and several other scenarios, the

splines’ performance with 1 knots and 4 knots are generally comparable (see full results in

Section 6 of Supplementary Material). In all but the misspecified PS setting that has large

bias, the rmse is dominated by the variance over the bias. Compared to IPTW, truncated
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IPTW adds bias when PS overlap is good to fair but reduces bias when there is substantial

lack of overlap (poor overlap and unequal treatment prevalence scenarios). Additionally,

across all scenarios, IPTW truncation substantially reduces variance for smaller rmse. PS

trimming reduces the bias of IPTW methods, suggesting that extreme weights pose chal-

lenges to these methods. Trimming also improves coverage and greatly reduces variance of

the IPTW estimate, leading to similar rmse as the truncated IPTW estimates. However,

with trimming, the variance of direct outcome regression and spline methods without in-

teraction increase slightly due to the smaller sample size, but these methods still have the

smallest rmse. Interestingly, PS trimming generally reduces the bias of spline models with

interaction.
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Figure 6.4: Results for 10% outcome prevalence, unequal treatment prevalence, fair PS overlap,
null effect sizes, T1/T0 effect
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Treatment effect heterogeneity in the true outcome generating model causes direct out-

come regression and spline methods without interactions to become misspecified. This leads

to higher bias for these methods in the heterogeneity setting compared to the standard set-

ting, unlike IPTW where the bias is similar in both settings. However, the methods’ variance

are generally similar in the heterogeneity setting and the standard setting and dominate over

the bias. Interestingly, the splines with interaction that attempt to model treatment effect

heterogeneity continue to have higher bias and higher variance than the spline methods

without interaction. PS misspecification increases the bias for all methods to levels that

meaningfully affect the rmse, and there is a noticeable decline in coverage. However, the

relative performance of methods does not change from the standard setting.

Figure 6.5 shows the effect of simulating under different outcome prevalences (rare, ap-

proximately 2%; common, approximately 10%) and standard setting, for otherwise the same

simulation parameters as in Figure 6.4. Direct outcome regression and four spline methods

without interaction maintain their low bias and good coverage in both outcome prevalence

settings, while IPTW methods have a large increase in bias and a large notable decline

in coverage in the rare prevalence setting. Interestingly, cubic spline with interaction has

smaller bias under the rare prevalence setting. Overall, all methods have increased variance

and rmse in the rare outcome prevalence simulations, but their relative performance does

not change from the common outcome prevalence setting.
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Figure 6.5: Results comparing common and rare outcome prevalence in simulations with unequal
treatment prevalence, fair PS overlap, null effect sizes, normal analysis, T1/T0 effect

6.5 Discussion

Across a range of simulations, we find that PS adjustment using splines generally provide

smaller rmse, bias, and variance than IPTW in a three-treatment setting. Direct outcome

regression on covariates also provide comparably favorable performance as splines. However,

our simulations are based on a model with only 10 covariates, and direct outcome modeling is

known to struggle in realistic studies that have more covariates and relatively few outcomes.

When there is treatment effect heterogeneity, we observe that PS splines without treat-

ment interaction provide biased estimates. We suspect that this is because they misspecify
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the outcome model by assuming a constant treatment effect. We indeed see that bias in-

creases for the spline methods, while not changing much for IPTW. However, using splines

with interactions between treatment and PS to model the treatment effect heterogeneity did

not improve bias or rmse. These heterogeneity results stand in contrast to the simulations

in [42] that found that fitting separate spline models by treatment group provided less bias

compared to a single spline model in simulations with treatment effect heterogeneity. In that

study, however, the treatment effect is directly proportional to the PS, resulting in much

more pronounced heterogeneity than in our simulations. Similarly, the authors of [107] find

that their approach of separate spline models with multiple imputation provides superior per-

formance under simulations with treatment effect heterogeneity modeled through generating

outcomes from different distributions for the different treatment groups. Such an outcome

generating model also leads to rather extreme treatment effect heterogeneity. Perhaps under

a more extreme model of treatment effect heterogeneity, our simulations may also find that

the spline methods become biased, and that the splines models with interaction are indeed

preferable.

Parsimony and interpretability are important model considerations in clinical and reg-

ulatory settings, where methods and results need to be understood by a diverse group of

stakeholders including patients and physicians. In using PS splines, there are several imple-

mentation decisions: what spline function to use, how many knots to employ, whether and

how to incorporate smoothing. Because the PS is multidimensional in the multiple treatment

setting, separate spline functions on the individual PS components may not provide as much

model complexity as a multidimensional spline function. However, in our simulations, the

“joint” thin plate regression spline on the multidimensional PS provide similar results as the

separate “additive” thin plate splines and the cubic spline methods. This favors the easy-to-

understand cubic spline, “piecewise cubic polynomials,” over the more advanced thin plate

regression spline, which we would be harder pressed to explain to a clinical researcher as a

“low rank approximation to the full smoothing spline using thin plate basis functions.” We

do find that in some simulations, the cubic splines with only a single interior knot provided

noticeably different estimates and lower coverage than the cubic splines with 4 interior knots.
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When analyzing real data, we suggest using data driven methods to select the number of

knots. Other studies have argued that a relatively small number of knots is sufficient for

fitting cubic splines [102].

Our results for multiple treatments extend findings established in studies with two treat-

ments. For example, other studies [108, 96] find that IPTW performs poorly with low

PS overlap (a.k.a. positivity) and low outcome prevalence. Our generally favorable spline

results are also consistent with other studies [109, 42]. However, real-world multiple treat-

ments studies are more likely to deviate from ideal conditions than two-treatment studies.

The multidimensional PS space for three treatments is more difficult to evenly populate than

that of a linear PS for two treatments; higher dimension PS spaces with more than three

treatments would be even more challenging. As a result, multiple treatments studies may in-

herently demonstrate poorer positivity with increasing number of treatments. Additionally,

trimming based on the PS is a more difficult task in multiple dimensions, as it is more likely

to eliminate an unacceptably large proportion of patients. For example, trimming based on

the fixed boundaries 0.10-0.90 would leave 80% of the PS space in a two treatment setting,

while the analagous boundaries in a three treatment setting would leave the square of that

proportion, 64%. Our trimming approach based on percentiles in each treatment group, as is

popularly done in the two-treatment setting [106], would also trim away progressively more

patients with more treatments.

Regulators often rely on companies to provide evidence of product safety and must do

their due diligence to prevent investigator biases such as selecting analysis parameters that

happen to produce desired results. For this reason, PS methods such as matching and

weighting are attractive for separating PS adjustment from treatment effect estimation,

allowing for pre-outcome diagnostics to assess whether the method is likely to provide a

valid estimate [99]. Our IPTW diagnostics (Figure 6.2 and Section 5 of Supplementary

Material) show a much wider weight distribution for a treatment group with low prevalence,

and an inability to control weighted covariate standardized mean differences to below 0.10 in

the poor PS overlap simulations. These conditions both presage poor IPTW performance.

Spline methods have the disadvantage that they have no similar pre-outcome diagnostics.
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However, in our simulations they increasingly outperform IPTW as the IPTW diagnostics

become less favorable. In real-world studies, we suggest conducting sensitivity analyses to

verify that conclusions from IPTW analyses still hold with the splines.

While we have mainly focused on splines and IPTW as PS adjustment methods, other

methods may also be used in multiple treatment settings. Matching for multiple treatments

is possible but becomes computationally challenging with more than three treatments [110].

Instead, the method of matching weights [111] has shown favorable performance compared to

IPTW and matching for three treatments [96]. However, matching weights creates a matched

pseudo-population and does not estimate the ATE in the entire sample; in our study, we

prioritized comparing methods that estimate the ATE. Splines are also far from the only

outcome regression PS adjustment method. One could include the PS as a continuous or

categorical variable, for example. However, we don’t expect these approaches that assume

linear effects to provide superior results to the flexible modeling of splines.
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CHAPTER 7

GPU Parallelization of Cyclic Coordinate Descent for

Large Scale Cross Validated Logistic Regression

7.1 Introduction

Contemporary longitudinal observational health databases contain time-stamped patient-

level data on up to hundreds of millions of patients, and offer staggering amounts of data for

clinical research [30]. These data are particularly useful for post-market safety surveillance of

drug adverse events [112]. Observational health data can provide thousands of unique patient

characteristics – demographics, drugs, conditions, procedures – as potentially confounding

covariates in statistical analyses. Generalized linear models with unknown parameter reg-

ularization offer a rich tool for estimating the association between drugs and outcomes of

interest while accounting for these many covariates [113, 29]. Statistical regularization meth-

ods such as the lasso [20] provide Bayesian priors on the covariate model parameters while

providing shrinkage on the number of model covariates [114]. However, the large scales of the

resultant regression models can pose a taxing computational burden on typical computing

resources available to the clinical researcher.

One solution to challenging computations is to distribute work across multiple CPU cores

or a CPU cluster. This approach is well suited to fitting GLMs while simultaneously search-

ing for optimal regularization parameters because cross-validation – a popular method for

the regularization parameter search – involves fitting a number of independent, separate

models in an “embarrassingly parallel” fashion [115]. However, the small number of cores

on a typical desktop computer limit the maximum speed up of GLM fitting, while CPU

clusters can be expensive or inaccessible for many interested clinical researchers. Further-
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more, CPUs have begun to hit a hardware limit on their clock speeds and thus their future

improvement in computing power [116]. In contrast, graphics processing units (GPUs) are

relatively inexpensive, easy-to-use hardware that offers impressive potential for speeding up

computations [117]. A GPU can be connected directly to a personal computer and, with

compatible software, require no additional expertise to use.

GPUs for general computing have seen considerable use in the field of computer science

and machine learning, such as for Support Vector Machine computation [116, 117, 118, 119,

120]. However, their use in statistical computing has been more limited. Suchard et al. [121]

provides an introduction to using GPUs for statistical model fitting. The impressive benefits

of GPUs achieving one to two orders of magnitude improvement over CPUs is demonstrated

for a Bayesian self-controlled case series model in Suchard et al. [28]. A similar magnitude

of improvement is seen in Zhou et al. [122] that applies GPUs to high-dimensional opti-

mization. In this paper, we extend the work of Genkin et al. [123] by developing a GPU

implementation for fitting logistic regression, a widely used model for binary classification,

through cyclic coordinate descent (CCD). Instead of fitting cross-validation folds indepen-

dently in an embarrassingly parallel fashion, we exploit fine-grain parallelism and fit them

synchronously to achieve maximal GPU efficiency. We implement our GPU program in the

R package Cyclops [28], and provide numerical results comparing GPU to single-threaded

and multi-threaded CPU.

7.2 Methods: Background

7.2.1 GPU Architecture

GPUs are many-core architectures that consist of a number of multiprocessors that each

contain numerous cores. A modern GPU can consist of thousands of total cores, allowing

for massive parallelization of computational tasks. In this paper we utilize a NVIDIA Titan

V GPU, which is based on the NVIDIA Volta architecture comprising 64 cores per multi-

processor and 80 total multiprocessors, for 5,120 total cores. This GPU can deliver 14.90
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TFLOPS of single-precision performance, or 7.45 TFLOPS of double-precision performance.

OpenCL is a computing platform for GPUs that provides compatibility across hetero-

geneous GPU hardware, and is what we use in this paper [124]. Cano [117] provides an

introduction to GPU architecture. GPU cores execute the same GPU program (“kernel”)

on different elements of large data arrays. A single element, or index, of the overall GPU

task is known as a thread. Threads are organized into thread blocks that are mapped onto

the many multiprocessors. Each GPU core has 32-bit memory registers to store local vari-

ables for a given thread. All threads in the same thread block have access to a small shared

memory on the multiprocessor, and accessing shared memory is as fast as accessing registers

[125]. All threads have access to a large high-bandwidth global memory on the GPU. GPU

kernels are executed across multiple thread blocks, the size of which is specified by the user

and the number of which depend on the total amount of threads. These thread blocks are

delegated to the multiprocessors, and (on NVIDIA hardware) broken down into 32-thread

“warps” that run on individual cores in a pipelined fashion. The GPU schedules warps to

maximize efficiency, by swapping out idle warps waiting on data access or function results

with ones ready for computation [117].

7.2.2 GPU Programming

GPUs contain thousands of processor cores that can apply the same numerical opera-

tions simultaneously to elements of large data arrays under a “Single Instruction, Multiple

Threads” (SIMT) programming paradigm. While GPUs offer great potential for parallelism

through its many processor cores, there are several main limitations to their performance:

• Kernel overhead - the overhead to launch a kernel can be on the order of microseconds

[126]. Moreover, launching multiple kernels can become costly if kernels are sequentially

dependent on each other, such as with each step of CCD. Increasing the amount of

work per kernel and reducing the number of kernels can improve performance.

• Global memory access - accessing global memory is hundreds of times slower than ac-

cessing local memory [127], so reads and writes to global memory should be kept at
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a minimum. Because data are retrieved in 128 byte segments, 16 sequential double-

precision global memory read/writes can be serviced by a single global memory trans-

action, known as a “coalesced” memory access. Noncontiguous read/writes are, in

contrast, “noncoalesced.” Data should be organized as much as possible to maximize

coalesced memory accesses.

• Memory transfer - transferring data between the CPU (host) and the GPU (device)

is extremely slow, and has overhead on the order of tens of microseconds [128]. The

amount of data transfer operations should be kept at a minimum. Separate data

transfers should be grouped together into a single transfer to reduce overhead, and

as much computation should be done on the GPU as possible. While the latency in

global memory access can be hidden by switching among active warps, memory transfer

latency cannot be hidden.

Optimizing GPU performance around these principles is our main goal in achieving maximum

performance in our logistic regression implementation.

7.2.3 Logistic Regression

Logistic regression is a common regression model for problems with a binary dependent

variable. In large-scale observational clinical studies, logistic regression is widely used to

estimate the propensity score – an estimate of treatment assignment probability conditional

on pretreatment patient covariates – for confounding control [33]. The number of covariates

can be hundreds or thousands in more expansive propensity score model [38, 19]. Let there

be N patients, and the observed treatment be yi = 1 for the treatment of interest and yi = 0

for the reference treatment. We model the treatment assignment process as a Bernoulli

distribution where the assignment probability pi is a logit transform of a linear combination

of J pretreatment covariates xi:

pi =
exp(xiβ)

exp(xiβ) + 1
(7.1)
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where β is the vector of J regression coefficients. xi and β have been expanded to include

an intercept term.

The log-likelihood for maximum likelihood estimation over all patients is:

L(β) =
n∑
i=1

yixiβ − log[1 + exp(xiβ)]. (7.2)

7.2.4 Statistical Regularization

Observational health databases offer thousands of conditions, procedures, drugs, and

other recorded medical characteristics that might be included as study covariates. Statistical

regularization is often necessary in these high dimensional settings to avoid model overfitting

[113, 114, 123]. We focus on “lasso” regularization that penalizes the likelihood by a penalty

p(β) equal to the L1 norm of the covariate vector β [20]. The lasso penalty is also equivalent

to imposing independent Laplace priors on the βj. The degree of penalization is controlled

by a single hyperparameter λ. The target for maximum likelihood estimation becomes the

penalized log likelihood P (β) = L(β) + p(β):

p(β) = −λ
p∑
j=1

|βj| (L1 regularization). (7.3)

The size of λ strongly affects the model fitting process through maximum likelihood es-

timation [129]. If λ is too small, the model may be overfitted or have no unique solution,

whereas if it is too large we have the opposite problem of underfitting and excessively shrink-

ing the coefficients of important covariates. Therefore, the optimum value of λ is often found

through cross-validation that divides the data into multiple folds, fits the data with one fold

left out at a time, and uses the fitted model to compute the out-of-sample likelihood in the

excluded fold to avoid overfitting [114]. Different values of λ are searched, and the one with

the highest average out-of-sample likelihood is selected as the optimum value.

Additionally, we also implement ridge regression, which penalizes the L2 norm of the

parameters β:
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p(β) = −λ
p∑
j=1

β2
j (L2 regularization). (7.4)

7.2.5 Maximum Likelihood Estimation Using Cyclic Coordinate Descent

Cyclic coordinate descent (CCD) optimizes the penalized log likelihood by cycling through

all J covariates and taking one-dimensional Newton steps in each, a process that only in-

volves taking scalar first and second partial derivatives of the log likelihood [17]. This process

avoids inversion of a large second derivative Hessian matrix present in the multivariate New-

ton’s method and other multivariate optimization strategies [130]. In addition, we follow

the optimization approach in [123] that employs an adaptable trust-region bound on ∆βj,

the unbounded one-dimensional Newton step. Algorithm 1 details the steps to implement

CCD by alternatingly calculating coordinate updates ∆βj and updating a vector of linear

predictors θ = {θi}, θi = xiβ for the N subjects.

initialize initial search vector β = 0;

while β not yet converged do

for j ← 1 to J do

compute univariate gradient ∂
∂βj

L(β) and hessian ∂2

∂βj
2L(β) ;

compute ∆βj from ∂
∂βj

L(β), ∂2

∂βj
2L(β), and derivatives of p(β);

if ∆βj 6= 0 then

βj ← βj + ∆βj ;

update θi = xiβ for subjects with xi,j 6= 0;

end

end

end

Algorithm 1: Cyclic coordinate descent

7.2.6 Computational Work

In logistic regression, the univariate derivatives of the log likelihood function L(β) are
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∂

∂βj
L(β) =

N∑
i=1

yixi,j −
xi,j exp(θi)

1 + exp(θi)

∂2

∂βj
2L(β) = −

N∑
i=1

x2
i,j exp(θi)

(1 + exp(θi))2

(7.5)

where θi = xiβ are values of the linear predictors. We divide the work in Algorithm 1 into

the following steps:

A.1 Compute
∑N

i=1 yixi,j for all j (One-time computation)

A.2 Loop over all j:

(a) Compute gradient component−
∑N

i=1
xi,j exp(θi)

1+exp(θi)
and hessian term−

∑N
i=1

x2i,k exp(θi)

(1+exp(θi))2
.

When the data matrix X is dense, these operations have serial complexity O(N).

When X is sparse, these operations have serial complexity O(Xmax) where Xmax

is the number of nonzero xi,j

(b) Compute derivatives of penalty term, ∂
∂βj
p(β) and ∂2

∂βj
2p(β). This is done in

constant time O(1)

(c) Compute ∆βj in constant time O(1)

(d) If ∆βj 6= 0, update βj ← βj + ∆βj. This is done in constant time O(1)

(e) If ∆βj 6= 0, update θi ← θi + xi,j∆βj. This operation has the same serial com-

plexity as in Step A.2a

A.3 Calculate and check convergence criterion for β. Criteria that depend on the linear

predictors θ have serial complexity O(N)

The penalty p(β) for lasso L1 regression requires directional derivatives [17].

We will refer to the entirety of Algorithm 1 as a “CCD algorithm” that proceeds until

β converges. Step A.2 is a “CCD cycle” that cycles through each of the J covariates, and

each covariate step is a “CCD step.”
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7.2.7 Data Sparsity and Memory Access

When the data X are dense, Steps A.2a and A.2e are dense operations with serial com-

plexity O(N). When X are sparse, only nonzero subjects {i : xi,j 6= 0} and their corre-

sponding covariate values xi,j are stored and need to be accessed or updated. The serial

complexity reduces to O(Xmax), where Xmax is the number of nonzero xi,j that can be

substantially smaller than N for very sparse data. However, even with sparse X the linear

predictors θ are still dense, and must be accessed non-contiguously, resulting in noncoalesced

and expensive memory access. When covariate prevalences are high, such as in the double

digit percentages, the extra memory overhead of sparse data representation and irregular

memory access can outweigh the benefits of sparsity. However, in large observational medi-

cal studies with hundreds or thousands of covariates, most covariates usually have sufficiently

low prevalence to warrant sparse representation.

7.3 Methods: GPU Implementation for Logistic Regression

Logistic regression is relatively resistant to GPU optimization because the amount of

local operations is small relative to the amount of expensive global memory transactions.

The gradient and hessian calculation of Step A.2a involves a simple transformation of the

global vectors X and θ and reduction over all nonzero indices. Updating θ in Step A.2e

requires writing to the global vector θ. There is relatively little arithmetic in between these

two steps to calculate ∆βj. In addition, CCD is an inherently serial algorithm, as each

coordinate cannot proceed until the last one is updated. However, despite these limitations

we find fruitful areas for GPU optimization, especially for cross-validation.

7.3.1 Updating Gradient and Hessian

Listing 7.1 provides a GPU kernel for Step A.2a that sums together the components of

the gradient and hessian for index (covariate) j. The offsets for index j in the index and data

vectors are offK and offX, respectively. The kernel is called as TBS thread blocks each
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of size TPB (threads per block), and these TBS * TPB threads collectively work over the

N (a.k.a. Xmax) non-zero entries of index j. Within each thread block, the kernel features

a transformation of respective nonzero parts of two vectors X−,j and θ and a subsequent

reduction over all TPB threads. This “fused” transformation-reduction has been described

in [28]. Finally, the TBS partial gradient and hessian sums are written to locations in global

memory, where they will be accessed by the next kernel. We call these locations “buffers”

because they are written to and used across different kernels.

7.3.2 Updating Delta

Listing 7.2 provides a GPU kernel that completes summing the gradient and hessian

components, and calculates the covariate step size ∆βj using the gradient, hessian, regular-

ization hyperparameter, previous coefficient β, and the adaptable trust-region bound [123].

The kernel is launched as a single work-group of size TPB. The reduction over the TBS gra-

dient and hessian components is performed across multiple threads, while computing ∆βj is

performed on a single thread. Although the work done in this kernel is minimally parallel,

we still opt to perform it on the device instead of the host, to avoid expensive host-device

memory transfers.

7.3.3 Updating Linear Predictors

Listing 7.3 provides a GPU kernel that uses ∆βj to update the nonzero entries of covariate

j in the vector of linear predictors θ (a.k.a. XBeta). Notice the kernel uses the same

patterns of data access as in updating the gradient and hessian. Whereas Listing 7.1 read

from the nonzero entries of θ, now we write to them.

Together, the three above kernels are run sequentially for each covariate index to consti-

tute one CCD loop. We then run another kernel to compute the convergence criterion for the

CCD algorithm. We use the absolute change in xiβ as our difference and ε = 1e−7 as our

threshold. This convergence criterion, and others such as the likelihood, involve independent

calculations and a reduction across all subjects, which is a parallel task well suited for the
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GPU. We do not detail the GPU kernel to calculate the convergence criterion, except to say

that we use the same patterns of data access, transformation and reduction as in Listing 7.1.

7.3.4 CCD Loop (“Single”) Kernel

Instead of separate kernels to update the gradient and hessian, delta, and the linear

predictors θ, we can implement the entirety of a CCD loop, including iteration over all

covariates, into a single GPU kernel. Thus, if there are J covariates, instead of launching

3J kernels, we launch only one kernel per data representation type (dense, sparse, indicator,

intercept). The advantages of such a combined kernel include saving on kernel overhead, and

avoiding having to read from and write to the global buffers buffer (in between Listing

7.1 and Listing 7.2) and deltaVector (in between Listing 7.2 and Listing 7.3). The

disadvantage of this approach is that instead of distributing the work of computing the

gradient and hessian, and updating θ, across TBS thread blocks, we use only a single thread

block. We do this because we require synchronization across all threads, and synchronization

commands are available only within a thread block, not across different thread blocks. It

may seem counterintuitive to reduce the number of parallel tasks on a GPU that is designed

to handle massive parallelization. However, we will show that the benefits of this single

kernel method in some cases outweigh its inefficiencies compared to the separate kernels.

7.3.5 Synchronized Cross Validation

To search for the optimum regularization hyperparameter λ, we use k-fold cross-validation,

which at each value of λ searched has the following steps:

B.1 Set λ

B.2 Divide data into k folds

B.3 For each fold 0 ≤ l < k:

(a) Leave fold l out of data
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(b) Run CCD algorithm to completion on remaining data

(c) Using fitted model β̂l, calculate out-of-sample likelihood in fold l

B.4 Average out-of-sample likelihoods across all k folds

B.5 Repeat Steps B.2 - B.4 r times with different data partitions

By repeating k-fold cross-validation r times, we reduce spurious effects from random data

partitioning [131]. There are now k ∗ r = R total repetition-fold combinations, which we call

“replicates,” and R total CCD algorithms to fit.

On the CPU, the R CCD algorithms are fit serially, leading to approximately R times

the runtime of a single CCD algorithm at each λ value searched. Additionally, we can run

multithreaded CPU to fit the replicates in parallel. We could then utilize the same GPU

kernels in Listings 7.1 - 7.3 or the single combined kernel, by serially calling the kernels for

each replicate. However, this fails to utilize the full resources of the GPU, that can handle

many parallel tasks. We increase the parallel tasks involved by “synchronizing” replicates,

so that they all proceed through the steps of the CCD algorithm in lockstep. That is, all R

replicates take the first coordinate step together, then the second, and so on. Each replicate

uses the same underlying data X, but has a different set of binary weights wl = {wli}, where

l indexes the replicate. In addition, each replicate has its own model parameters βl and

linear predictors θl = {θli}, θli = xiβ
l. This synchronized approach is detailed in Algorithm

2, where the loop over R replicates is performed in parallel.

7.3.6 Memory Representation

As described in Section 7.2.7, for sparse and indicator data we access the nonzero xi,j

contiguously but they refer to non-contiguous indices of the dense linear predictors θ. This

leads to expensive noncoalesced reads of θ in calculating the gradient and hessian, and non-

coalesced writes to θ when updating θ. In cross-validation, every CV replicate accesses the

same data matrix X but their own βl,θl,wl. These replicate specific vectors can be in-

terleaved as in (θ0
0,θ

1
0 · · · ,θR−1

0 , · · · ,θ0
n−1,θ

1
n−1, · · · ,θR−1

n−1 ). This interleaved memory layout
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initialize all initial search vectors βl = 0;
while βl not yet all converged do

for j ← 1 to J do
for l← 1 to R do

compute univariate gradient ∂
∂βj
L(βl) and hessian ∂2

∂βj
2L(βl) ;

compute ∆βlj from ∂
∂βj
L(βl), ∂2

∂βj
2L(βl), and derivatives of p(βl);

if ∆βlj 6= 0 then
βlj ← βlj + ∆βlj;

update θli for subjects with xi,j 6= 0;

end

end

end

end
Algorithm 2: Cyclic coordinate descent for cross-validation

promotes coalesced reads and writes to θ, as opposed to the noninterleaved layout that puts

each replicate’s vectors end-to-end: (θ0
0,θ

0
1, · · · ,θ0

n−1, · · · ,θR−1
0 ,θR−1

1 , · · · ,θR−1
n−1 ). We will

compare both of these memory representation layouts in the Demonstration section.

7.3.7 2-Dimensional Kernels for Cross Validation

For cross-validation, we extend Listings 7.1 through 7.3 to work on R replicates in List-

ings 7.4 through 7.6. Our work grid is now two dimensional: one dimension indexing the

replicates, the other to index the work that each replicate needs to do. For updating the

gradient/hessian and θ, the thread blocks have size (TPB0, TPB1), where TPB0 repre-

sents the number of replicates each thread block handles, and TPB0 * TPB1 = TPB, the

same size as the thread blocks for non cross-validated kernels. When using the interleaved

memory layout, TPB0 = 16, and when using the noninterleaved memory layout, TPB0

= 1. The associated global work size is (R, TBS*TPB1). For computing ∆βlj, instead of a

single thread block of size TPB we now utilize R thread blocks of size TPB, one for each

replicate. We additionally extend the single kernel for cross-validation, so that each thread

block completes the CCD loop for TPB0 replicates.
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7.4 Demonstration

We examine the performance of GPU vs CPU in simulated data of varying sizes and

also in a real dataset of anticoagulants patients. As described, we utilize a NVIDIA Titan

V GPU. For CPU computations we utilize a Intel(R) Xeon(R) W-2155 CPU that runs at

3.3GHz and has 10 cores.

7.4.1 Non Cross-Validated Experiments

In our simulations, we simulate X with 2% sparsity, and draw β from a normal distribu-

tion with mean 0 and standard deviation 2. We then set 80% of the β values to 0 to simulate

sparsity in the coefficient effect sizes. We then calculate the logit of the linear predictors

and draw outcomes under a Bernoulli distribution. In the non cross-validated simulations,

we fit the data under a fixed lasso penalty with λ =
√

2. In the cross-validated simulations,

we fit the data under several (typically 3-6) values of λ, using an automated search strategy

[123]. We use 10-fold cross-validation with between 1-100 repetitions, resulting in between

10 to 1,000 cross-validation replicates.

Our first comparison is in fitting non cross-validated simulated data under a fixed number

of covariates (p = 1, 000) and a variable sample size n. In Figure 7.1 we compare the CPU

(CPU), the GPU with separate kernels for each step (GPU), and the GPU with a single kernel

for the CCD loop (GPU single). The GPU work group size is TPB = 512, and the number

of work groups is TBS = 16. Although successive sample sizes differ by approximately

3×, the ratios of CPU runtimes increase from 3× between the first two sample sizes to

8× between the last two sample sizes (the number of iterations are roughly equal). This

reflects increasingly slower memory access as the total data are increased. In comparison,

the GPU single method increases in runtime approximately 3× between successive sample

sizes at larger n. Surprisingly, the GPU method, which launches 3J kernels per CCD loop,

has approximately constant runtime throughout, with a slight increase at the highest sample

size. This suggests that the kernel overhead may be dominating the relatively little work

performed by each thread block. Across TBS = 16 thread blocks of size TPB = 512 each,
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we can handle approximately 8, 000 nonzero indices before having to loop within a thread

block, a size achieved only at the largest sample size (sample size * sparsity = 20, 000).

Overall, the GPU single method offers increasing speedup compared to CPU with increasing

sample size, and the GPU method begins to shine when the data are substantially large.

We see less decisive GPU gains when fixing the sample size at n = 100, 000 and increasing

the number of covariates, as shown in Figure 7.2. Referring back to Figure 7.1, the sample

size n = 100, 000 places us in a regime where the GPU method is only slightly faster than

CPU, and GPU single is approximately 3× faster than CPU. We see in Figure 7.2 that these

ratios roughly hold across different covariate counts p, except at the lowest levels p = 100

and p = 300. Between successive covariate values p, the runtimes increase by more than 3×

because of increasing iteration counts. CCD demands serial processing of covariates, so it is

not surprising that GPU does not offer dramatically increasing gains as the covariate count

is increased. The advantage of the GPU is more in being able to process the entire sample

size n in parallel within a CCD step.
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Figure 7.1: GPU vs CPU runtimes for variable n, p = 1,000. For the two
GPU methods, GPU to CPU speedup displayed as ratio of CPU runtime
to GPU runtime. GPU single refers to using the single combined kernel.
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7.4.2 Cross-Validated Experiments

In testing cross-validated logistic regression, we have more GPU methods to compare. We

can synchronize replicates or fit them serially (no-sync). Among synchronized approaches,

we can either use the interleaved (inter) or non-interleaved (non-inter) memory layout. Ad-

ditionally, we can utilize separate kernels for the individual CCD step components, or a

single kernel (single) to fit the entire CCD loop. We begin by comparing CPU (CPU) and

multithreaded CPU with 4 threads (CPU multithreaded) to six GPU methods for simulated

data of size n = 100, 000 and p = 1, 000 with different numbers of cross-validation replicates,

shown in Figure 7.3. Although our CPU can support more than 4 threads, we actually

find diminishing returns with greater threads; for example, 4 threads performs faster than

10. When not synchronizing the GPU replicates, we achieve the smallest gains compared

to CPU, approximately 1.5× speedup for GPU no-sync and 4.6× for GPU no-sync single.

Compared to CPU multithreaded, GPU no-sync is only 0.56× as fast at 1,000 replicates,

and GPU no-sync single is 1.7× faster. At the larger replicate counts, the two interleaved

memory methods shine, with both delivering approximately 100× speedup compared to CPU

at R = 1, 000, and 38× compared to CPU multithreaded. At a more reasonable R = 100
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replicates, the 4 synchronized GPU methods have close runtimes and deliver between 27.2×

and 71.1× speedup compared to CPU and between 10.1× and 37.4× compared to CPU

multithreaded. At lower replicate counts of R = 10 and R = 30, it is not more advanta-

geous to use interleaved memory, and the non-interleaved, single kernel method has the best

performance. Using a single kernel is advantageous for the non-interleaved memory layout

across simulations, while it is disadvantageous for the interleaved memory layout.
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Figure 7.3: Cross validated GPU vs sparse CPU runtimes for n = 100,000,
p = 1,000. GPU to CPU speedup shown as ratio

We perform logistic regression on a real dataset by estimating a propensity score of two

anticoagulants, dabigatran vs warfarin in patients with non-valvular atrial fibrillation, in the

Truven Health MarketScan Medicare Supplemental and Coordination of Benefits Database.

Dabigatran is the active treatment, and warfarin is the reference. The study size is 77,122

patients, with 20,474 dabigatran users and 56,648 warfarin users. We use 12,392 total pre-

treatment covariates that are indicator variables for demographics, patient conditions, pro-

cedures, and drugs.

Because the previous demonstration clearly shows the inefficiency of non-synchronized

GPU methods, we omit them from this next comparison. Figure 7.4 shows the results from

fitting cross-validation to this real dataset at different replicate counts. We see some sim-

ilar patterns as before. The non-interleaved, single kernel method is superior at the lower
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replicate counts, offering 5.7× speedup at R = 10 and 9.8× at R = 30 compared to CPU,

and respectively 2.0× and 3.8× compared to CPU multithreaded. CPU multithreaded is

the second fastest method at the lower replicate count R = 10, but its relative performance

diminishes with more replicates. At R = 100, non-interleaved, single kernel method again

has the best performance, with 13.0× speedup compared to CPU and 4.0× compared CPU

multithreaded, though the interleaved method is not far behind, at 11.4× and 3.5×, re-

spectively. At the highest replicate count tested, R = 300, the interleaved method has the

best performance with 24.3× speedup compared to CPU and 8.3× compared to CPU multi-

threaded, reducing the runtime from 14.4 hours on CPU and 4.9 hours on CPU multithreaded

to 35 minutes on GPU. Using a single kernel is again advantageous for the non-interleaved

method but disadvantageous for the interleaved method. Both interleaved methods have a

fewer than 2× in runtime from the smallest replicate count R = 10 to the largest replicate

count R = 300, suggesting excellent scaling with increased replicates.
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Figure 7.4: Cross validated GPU vs sparse CPU runtimes for anticoagu-
lants dataset, n = 77,122, p = 12,392. GPU to CPU speedup shown as
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7.4.3 Data Representation Format

The previous demonstrations all use data in indicator representation for both CPU and

GPU. This data representation stores only nonzero indices, because all nonzero data are 1.
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In contrast, sparse representation stores both nonzero indices and their values, and dense

representation stores values for all indices. We perform a comparison among indicator,

sparse, and dense representation using simulated data with n = 100, 000 and p = 1, 000.

The underlying data are either sparse, with 2% nonzero, or dense, with 20% nonzero. As

shown in Figure 7.5, sparse and indicator representations have very similar runtimes for GPU,

GPU single, and CPU methods, with indicator slightly faster. Surprisingly, using dense data

representation is slowest for both sparse and dense data, and for all three methods. While

GPU single (using indicator representation) is the fastest method for sparse data, GPU

(using indicator representation) is the fastest method for dense data.
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Figure 7.5: GPU vs CPU runtimes for variable n = 100,000, p = 1,000.
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7.4.4 Comparison to Glmnet

The R package glmnet [132] provides efficient software for fitting lasso and ridge regu-

larized CCD algorithms for logistic regression and other generalized linear models. Glmnet

achieves great efficiency in exploiting warm starts between successive λ values in a grid search,

that typically contains close to 100 search values. In comparison, our cross-validation search

method typically only searches 3-6 values for λ, but in a more adaptive manner than grid

search [123]. For a fair comparison in regards to total amount of work performed by 10-fold
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cross-validation, we compare the default cv.glmnet call to our implementation with 20 rep-

etitions, or R = 200. We use simulated data for which the true effect sizes β are known,

and compare the prediction accuracy through the c-statistic and the estimation accuracy

through the mean absolute difference between the estimated and true effect sizes β.

We perform tests with n = 100, 000 and p = 1, 000. β are drawn from a normal distribu-

tion with 0 mean and 2 standard deviation. Results for sparse β, with 80% zeros, are shown

in Table 7.1. Our GPU code in Cyclops runs approximately 3x faster than glmnet, and

achieves almost 10 times smaller mean absolute difference of the coefficients β. However,

glmnet’s lasso identifies significantly more of the 0’s in β. All tested methods achieve high

predictive accuracy (c-statistic) of almost 0.95. We additionally compared our GPU code

to glmnet on data generated from dense β, shown in Table 7.2. Both Cyclops and glmnet,

with both lasso and ridge regression, achieve very high c-statistic of almost 0.99. Runtimes

were similar throughout, with little benefit achieved from the GPU code. However, Cyclops

performed significantly better on estimating the underlying coefficients, with approximately

0.100 average absolute error, while glmnet with lasso had 2.162 average absolute error and

ridge had 1.696 average absolute error. Considering that the β are drawn from a distribution

with only 2 standard deviation, glmnet is providing very little accuracy for estimating the

model coefficients.

One reason that our GPU implementation does not achieve substantial speedup compared

to glmnet is because glmnet uses successive quadratic approximations to the likelihood func-

tion that are easier to optimize than using CCD directly on logistic regression [132]. However,

these quadratic approximations do not provide descent guarantees, and can converge to dif-

ferent solutions as optimizing logistic regression directly without approximations. We use

the built-in glm{stats} function in R as a gold standard to which we compare Cyclops and

glmnet without regularization. In Table 7.3 we simulate dense data with nonzero β under

a variety of n and p. Despite Cyclops and glmnet both running with a threshold of 10−7,

Cyclops comes several orders of magnitude closer to the output of glm, which runs iteratively

reweighted least squares. Not only does Cyclops come closer to the output of glm, we have

seen in Tables 7.1 and 7.2 that Cyclops also comes an order of magnitude closer to the true
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β values when running regularization.

GPU - lasso Glmnet - lasso GPU - ridge Glmnet - ridge

time (s) 11.827 31.995 16.903 55.707

% zeros found 22.5% 61% — —

average diff 0.0497 0.615 0.0622 0.492

c-statistic 0.948 0.947 0.948 0.947

Table 7.1: Cyclops vs Glmnet for sparse data

GPU - lasso Glmnet - lasso GPU - ridge Glmnet - ridge

time (s) 51.013 80.222 47.858 55.752

average diff 0.0918 2.162 0.101 1.696

c-statistic 0.989 0.989 0.989 0.988

Table 7.2: Cyclops vs Glmnet for dense data

Cyclops Glmnet

Test 1 8.85 ∗ 10−7 1.90 ∗ 10−3

Test 2 4.84 ∗ 10−6 1.61 ∗ 10−2

Test 3 9.07 ∗ 10−6 2.97 ∗ 10−2

Table 7.3: Mean absolute error of coefficients between Cyclops / Glmnet and Glm. Test 1: n =
1, 000, p = 10, Test 2: n = 5, 000, p = 50, Test 3: n = 10, 000, p = 100

7.5 Discussion

Logistic regression has relatively simple gradient and hessian calculations that render it

relatively resistant to GPU optimization, because the amount of arithmetic is small com-

pared to the amount of global memory transactions. Nevertheless, we are able to find fruitful

areas for GPU optimization. In non cross-validated computations, running the entire CCD

loop in a single GPU kernel saves on GPU kernel overhead and global memory operations,

and is preferred for smaller data sample sizes n. The GPU is better suited for large sample
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sizes n than for large covariate counts p, because we cannot escape the serial nature of CCD.

For cross-validation, we are able to simultaneously update all replicates by synchronizing

their progression through CCD. We also find impressive performance with interleaved mem-

ory at high replicate counts R, reflecting the benefit of coalesced memory access. In the

anticoagulants dataset, the runtime of the interleaved GPU method increases by less than

2× between R = 10 replicates and R = 300 replicates. This enables us to perform many

repetitions of k-fold cross-validation to reduce sampling variability [131], a process that pro-

duces a prohibitively linear increase in runtime on CPU. In a sense, adding more replicates

is almost “free,” coming with only a nominal increase in the running time.

In our demonstrations, we have tested replicate counts up to 1, 000, which begs the

question: why would we want to repeat 10-fold cross-validation 100 times? Many studies

and popular software don’t even perform any cross-validation repetitions. In practice, we

don’t need to perform so many cross-validation repetitions, but our machinery allows us to

perform other parallel tasks that are of interest. Our GPU code allows us to fit multiple

models synchronously that share underlying data X but have different weights and/or other

parameters. With 1,000 “replicates”, we could perform 10-fold cross-validation on a grid of

100 λ regularization hyperparameter values. Or, we could perform searches over multiple

regularization hyperparameters λi for different groups of covariates, or as in an elastic net.

Or, we could use 1,000 replicates to fit 1,000 bootstrap samples that each have different

weights wl. The GPU programming principles are the same: synchronize the replicates to

them simultaneously, and interleave their memory to achieve coalesced access.

Our results favor different GPU methods in regimes of less and more overall work. For

non cross-validated problems, using a single kernel is favorable except when the sample size

is very large, when it becomes advantageous to distribute work across multiple work groups.

For cross-validated problems, interleaved memory only outperforms non-interleaved memory

at high replicate counts, suggesting that noncoalesced memory operations is tolerable when

the total amount of work is small. When the replicate count increases, and the GPU be-

comes saturated with memory requests, interleaved memory dominates. Interestingly, using

a single kernel improves the performance of interleaved memory but decreased performance
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of noninterleaved memory. If we were to recommend a single GPU method to use across

different problems, it would be the interleaved, multiple-kernel method. While less favorable

at smaller problem sizes and replicate counts, this method has tolerable runtimes. When

the problem sizes grow in sample size n or replicate count R, to a regime most in need for

GPU optimization, this method shines and delivers the largest absolute decreases in runtime

compared to CPU.

We compare our GPU implementation in Cyclops to the popular R package glmnet for

running generalized linear models. We find several times speedup for cross-validated regres-

sions on sparse data, and marginal speedup for dense data. While both programs achieve

high predictive accuracy as measured by the c-statistic, Cyclops provides much better es-

timation of the underlying coefficients β. We demonstrate this better estimation in both

regularized and regularized simulations, and show orders of magnitude improvement both

in relation to the underlying β and the output of the glm{stats} function. We hypothe-

size that this improvement in estimation comes from our CCD algorithm more accurately

approaching the optimum parameter vector β̂ than glmnet which uses imprecise quadratic

approximations for computational speedup. The difference in estimation is significant for

regularized regression on dense data, in which the average absolute error of the estimated

coefficients from glmnet is approximately the same size as the standard deviation of the

underlying coefficients.

The massive parallelization potential of GPUs seems at first glance well suited to MM

algorithms [133], which seek to optimize a series of functions tangential to the target like-

lihood function. MM algorithms are able to achieve parameter separation in CCD, such

that updating each coordinate is an independent task and all coordinates can be updated

simultaneously on a GPU across different thread blocks. MM algorithms for logistic regres-

sion have been proposed [133], and we have explored them to preliminary extents. We find

that although parameter separation is indeed massively parallelizable and takes advantage

of GPU hardware, the increased number of iterations to convergence for MM algorithms is

immense and outweigh the benefits of parameter separation. MM in fact produces quadratic

approximations that, unlike that used in glmnet, provide descent guarantees, but the resul-
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tant objective function has contours too shallow for fast (or even moderate) convergence.

Perhaps generalized linear models other than logistic regression may benefit more from the

combination of MM parameter separation and GPU parallelization.
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Listing 7.1: updateGradHess

k e r n e l void computeGradHess (
// For sparse and dense data :

g l o b a l const r e a l ∗ X, // data va lue s

// For sparse and ind i c a t o r data :
g l o b a l const int∗ K, // nonzero ind i c e s

const uint offX , // o f f s e t in X
const uint offK , // o f f s e t in K

const uint N, // # nonzero ind i c e s
g l o b a l const r e a l ∗ xBeta , // l i n e a r p r ed i c t o r s
g l o b a l r e a l ∗ bu f f e r , // output b u f f e r

const uint index ) { // covar i a t e index

// Define shared memory fo r thread−b l o c k reduc t ion
l o c a l r e a l sGradient [TPB] , sHess ian [TPB] ;

// Par t i a l sums fo r t h i s thread
r e a l tSumGradient = 0 . 0 ; tSumHessian = 0 . 0 ;

int l i d = g e t l o c a l i d ( 0 ) ; // Thread id wi th in b l o c k
const uint l oopS i z e = g e t g l o b a l s i z e ( 0 ) ; // loop s i z e
int i = l i d ; // f i r s t e lement index f o r thread

while ( i < N) {
// Dense data access :
r e a l x = X[ of fX+i ] , // x from dense X
r e a l xb = XBeta [ i ] ; // cont iguous access o f XBeta

// Sparse data access :
int k = K[ offK + i ] ; // r ea l index o f s u b j e c t
r e a l x = X[ of fX + i ] , // x from sparse X
r e a l xb = XBeta [ k ] ; // noncontiguous access o f XBeta

// Ind i ca to r data access :
int k = K[ offK + i ] ; // r ea l index o f s u b j e c t
r e a l x = 1 ; // x i s 1
r e a l xb = XBeta [ k ] ; // noncontiguous access o f XBeta

// In t e r c ep t data access :
r e a l x = 1 ; // x i s 1
r e a l xb = XBeta [ i ] ; // cont iguous access o f XBeta

r e a l exb = exp ( xb ) ;
r e a l numer = x ∗ exb ;
r e a l denom = 1.0 + exb ;
r e a l tGradient = numer / denom ;
r e a l tHess ian = numer ∗ x / denom − tGradient ∗ tGradient ;
tSumGradient += tGradient ;
tSumHessian += tHess ian ;

i += loopS i z e ;
}

sGradient [ l i d ] = tSumGradient ;
sHess ian [ l i d ] = tSumHessian ;
// Reduce across a l l t hreads in b lock , l e a v e s t o t a l in f i r s t e lement
p a r a l l e l R e d u c t i o n ( sGradient ) ;
p a r a l l e l R e d u c t i o n ( sHess ian ) ;

i f ( l i d == 0) {
b u f f e r [ g e t g r o u p i d ( 0 ) ] = sGradient [ 0 ] ;
b u f f e r [ g e t g r o u p i d (0 ) + get num groups ( 0 ) ] = sHess ian [ 0 ] ;

}
}
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Listing 7.2: updateDelta

k e r n e l void updateDelta (
g l o b a l const REAL∗ bu f f e r , // input grad and hess components
g l o b a l r e a l ∗ de l taVector , // output s t ep s i z e d e l t a

const uint TBS,

g l o b a l r e a l ∗ boundVector , // adap tab l e t ru s t−reg ion bound
g l o b a l const r e a l ∗ priorParams , // r e g u l a r i z a t i o n hyperparameter
g l o b a l const r e a l ∗ XjYVector , // constant g rad i en t component
g l o b a l r e a l ∗ betaVector , // current be ta va lue s

const uint index ) {

// Define shared memory fo r thread−b l o c k reduc t ion
l o c a l r e a l sGradient [TPB] , sHess ian [TPB] ;

int l i d = g e t l o c a l i d ( 0 ) ; // Thread id wi th in b l o c k

// copy grad i en t and hess ian components in to l o c a l memory
while ( l i d < TBS) {

sGradient [ l i d ] += b u f f e r [ l i d ] ;
sHess ian [ l i d ] += b u f f e r [ l i d+TBS ] ;

}

// Reduce across a l l t h reads in b lock , l e a v e s t o t a l in f i r s t e lement
p a r a l l e l R e d u c t i o n ( sGradient ) ;
p a r a l l e l R e d u c t i o n ( sHess ian ) ;

i f ( l i d == 0) {
l o c a l REAL grad , hess , beta , d e l t a ;

grad = sGradient [ 0 ] − XjYVector [ index ] ; // inc lude constant g rad i en t component
hess = sHess ian [ 0 ] ;
beta = betaVector [ index ] ;
r e a l hyper = priorParams [ index ] ;

// Compute d e l t a according to r e g u l a r i z a t i o n type
d e l t a = computeDelta ( grad , hess , beta , hyper ) ;

// Apply then update adap tab l e t ru s t−reg ion bound
r e a l bound = boundVector [ index ] ;
i f ( d e l t a < −bound ) {

d e l t a = −bound ;
} else i f ( d e l t a > bound ) {

d e l t a = bound ;
}
r e a l in t e rmed ia t e = max( fabs ( d e l t a )∗2 , bound / 2 ) ;
in t e rmed ia t e = max( intermediate , 0 . 0 0 1 ) ;
boundVector [ index ] = inte rmed ia t e ;

de l taVector [ index ] = de l t a ;
betaVector [ index ] = d e l t a + beta ;

}
}
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Listing 7.3: updateXBeta (sparse)

k e r n e l void updateXBeta (
g l o b a l const REAL∗ X, // data va lue s
g l o b a l const int∗ K, // nonzero ind i c e s

const uint offX , // o f f s e t in X
const uint offK , // o f f s e t in K
const uint N, // # nonzero ind i c e s

g l o b a l const r e a l ∗ de l taVector ,
g l o b a l r e a l ∗ xBeta ,

const uint index ) {

uint i = g e t g l o b a l i d ( 0 ) ;
r e a l d e l t a = de l taVector [ index ] ;
const uint l oopS i z e = g e t g l o b a l s i z e ( 0 ) ;
while ( i < N) {

const uint k = K[ offK+i ] ;
const r e a l x = X[ of fX+i ] ;
const r e a l inc = d e l t a ∗ x ;
r e a l xb = xBeta [ k ] + inc ;
xBeta [ k ] = xb ;
i += loopS i z e ;

}
}
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Listing 7.4: updateGradHessCV (sparse)

k e r n e l void computeGradHessCV (
g l o b a l const r e a l ∗ X, // data va lue s
g l o b a l const int∗ K, // nonzero ind i c e s

const uint offX , // o f f s e t in X
const uint offK , // o f f s e t in K

const uint N, // # nonzero ind i c e s
g l o b a l const REAL∗ xBetaVector ,
g l o b a l REAL∗ bu f f e r ,

const uint cvStr ide ,
const uint kStr ide ,
const uint syncCVFolds ,

g l o b a l int∗ a l l Z e r o ) { // fo r s k i pp ing updateXBeta

i f ( g e t g l o b a l i d (0 ) == 0) a l l Z e r o [ 0 ] = 1 ; // r e s e t f l a g

// Define shared memory fo r thread−b l o c k reduc t ion
l o c a l r e a l sGradient [TPB] , sHess ian [TPB] ;

// Par t i a l sums fo r t h i s thread
r e a l tSumGradient = 0 . 0 ; tSumHessian = 0 . 0 ;

u int l i d 0 = g e t l o c a l i d ( 0 ) ; u int l i d 1 = g e t l o c a l i d ( 1 ) ;
u int cvIndex = g e t g l o b a l i d ( 0 ) ; // cv r e p l i c a t e
uint g id1 = g e t g l o b a l i d ( 1 ) ; u int i = gid1 ; // index f o r loop
uint l oopS i z e = g e t g l o b a l s i z e ( 1 ) ; // loop s i z e

i f ( cvIndex < syncCVFolds ) {
while ( i < N) {

int k = K[ offK + i ] ;
r e a l x = X[ of fX + i ] ,

// i n t e r l e a v e d l ayou t
uint o f f s e t = k ∗ cvSt r id e + cvIndex ;

// non in te r l eaved l ayou t
uint o f f s e t = k + kSt r ide ∗ cvIndex ;

r e a l xb = xBetaVector [ o f f s e t ] ;
r e a l exb = exp ( xb ) ;
r e a l numer = x ∗ exb ;
r e a l denom = ( r e a l ) 1 . 0 + exb ;
r e a l g = numer / denom ;
r e a l w = weightVector [ o f f s e t ] ; // CV weight
r e a l tGradient = w ∗ g ;
r e a l tHess ian = w ∗ g ∗ ( x − g ) ;
tSumGradient += tGradient ;
tSumHessian += tHess ian ;
i += loopS i z e ;

}

sGradient [ mylid ] = tSumGradient ;
sHess ian [ mylid ] = tSumHessian ;

// Reduce across a l l t hreads in b lock , l e a v e s t o t a l in e lements where l i d 1 == 0
uint l i d = l i d 1 ∗TPB0 + l i d 0 ; // index f o r p a r a l l e l reduc t ion
p a r a l l e l R e d u c t i o n ( sGradient ) ;
p a r a l l e l R e d u c t i o n ( sHess ian ) ;

i f ( l i d 1 == 0) {
b u f f e r [ cvIndex ∗ get num groups (1 ) + g e t g r o u p i d ( 1 ) ] = sGradient [ l i d ] ;
b u f f e r [ ( cvIndex + syncCVFolds ) ∗ get num groups (1 ) + g e t g r o u p i d ( 1 ) ] = sHess ian [ l i d ] ;

}
}

}

106



Listing 7.5: updateDeltaCV

k e r n e l void updateDeltaCV (
g l o b a l const REAL∗ bu f f e r , // input grad and hess components
g l o b a l r e a l ∗ de l taVector , // output s t ep s i z e d e l t a

const uint TBS,
const uint s t r i d e ,
const uint syncCVFolds ,
const uint cvStr ide ,

g l o b a l r e a l ∗ boundVector , // adap tab l e t ru s t−reg ion bound
g l o b a l const r e a l ∗ priorParams , // r e g u l a r i z a t i o n hyperparameter
g l o b a l const r e a l ∗ XjYVector , // constant g rad i en t component
g l o b a l r e a l ∗ betaVector , // current be ta va lue s

const uint index ,
g l o b a l u int ∗ a l lZe ro ,
g l o b a l const int∗ doneVector ) { // i nd i c a t o r s f o r completed CV r e p l i c a t e s

// Define shared memory fo r thread−b l o c k reduc t ion
l o c a l r e a l sGradient [TPB] , sHess ian [TPB] ;

u int cvIndex = g e t g r o u p i d ( 0 ) ;
int l i d = g e t l o c a l i d ( 0 ) ; // Thread id wi th in b l o c k

// copy grad i en t and hess ian components in to l o c a l memory
i f ( l i d < TBS) {

sGradient [ l i d ] = b u f f e r [ l i d + TBS ∗ cvIndex ] ;
sHess ian [ l i d ] = b u f f e r [ l i d + TBS ∗ ( cvIndex + syncCVFolds ) ] ;

}

// Reduce across a l l t h reads in b lock , l e a v e s t o t a l in f i r s t e lement
p a r a l l e l R e d u c t i o n ( sGradient ) ;
p a r a l l e l R e d u c t i o n ( sHess ian ) ;

i f ( l i d == 0) {
l o c a l u int o f f s e t ;

o f f s e t = index + J ∗ cvIndex ;
l o c a l REAL grad , hess , beta , d e l t a ;

grad = sGradient [ 0 ] − XjYVector [ o f f s e t ] ; // inc lude constant g rad i en t component
hess = sHess ian [ 0 ] ;
beta = betaVector [ o f f s e t ] ;
r e a l hyper = priorParams [ index ] ;

// Compute d e l t a according to r e g u l a r i z a t i o n type
d e l t a = computeDelta ( grad , hess , beta , hyper ) ;

// Apply then update adap tab l e t ru s t−reg ion bound
r e a l bound = boundVector [ o f f s e t ] ;
i f ( d e l t a < −bound ) {

d e l t a = −bound ;
} else i f ( d e l t a > bound ) {

d e l t a = bound ;
}
r e a l in t e rmed ia t e = max( fabs ( d e l t a )∗2 , bound / 2 ) ;
in t e rmed ia t e = max( intermediate , 0 . 0 0 1 ) ;
boundVector [ o f f s e t ] = inte rmed ia t e ;

de l taVector [ index ∗ cvSt r id e+cvIndex ] = d e l t a ;
betaVector [ o f f s e t ] = d e l t a + beta ;
i f ( d e l t a != 0 . 0 ) {

a l l Z e r o [ 0 ] = 0 ; // i f any nonzero , d i s a b l e f l a g
}

}
}
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Listing 7.6: updateXBetaCV (sparse)

k e r n e l void updateXBetaCV (
g l o b a l const REAL∗ X, // data va lue s
g l o b a l const int∗ K, // nonzero ind i c e s

const uint offX , // o f f s e t in X
const uint offK , // o f f s e t in K
const uint N, // # nonzero ind i c e s

g l o b a l const r e a l ∗ de l taVector ,
g l o b a l r e a l ∗ xBetaVector ,

const uint index ,
const uint cvStr ide ,
const uint kStr ide ,
const uint syncCVFolds ,

g l o b a l const int∗ a l l Z e r o ) {

uint l i d 0 = g e t l o c a l i d ( 0 ) ;
u int l i d 1 = g e t l o c a l i d ( 1 ) ;
i f ( a l l Z e r o [ 0 ] == 0) {

uint i = g e t g l o b a l i d ( 1 ) ;
u int cvIndex = g e t g l o b a l i d ( 0 ) ;
u int l oopS i z e = g e t g l o b a l s i z e ( 1 ) ;
i f ( cvIndex < syncCVFolds ) {

r e a l d e l t a = de l taVector [ index ∗ cvSt r id e + cvIndex ] ;
i f ( d e l t a != 0) {

while ( i < N) {
int k = K[ offK + i ] ;
r e a l x = X[ of fX + i ] ,
// i n t e r l e a v e d l ayou t
uint o f f s e t = k ∗ cvSt r id e + cvIndex ;

// non in te r l eaved l ayou t
uint o f f s e t = k + kSt r ide ∗ cvIndex ;

r e a l inc = d e l t a ∗ x ;
r e a l xb = xBetaVector [ v e cOf f s e t ] + inc ;
xBetaVector [ v e cOf f s e t ] = xb ;
i += loopS i z e ;

}
}

}
}

}
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CHAPTER 8

Comparative Safety and Effectiveness of Alendronate

Versus Raloxifene in Women with Osteoporosis

8.1 Introduction

Osteoporosis is a chronic, progressive disorder characterized by unbalanced bone resorp-

tion, decreased bone mass, and deterioration of the bone microarchitecture, leading to de-

creased bone strength and increased fracture susceptibility [134]. The already significant

global health burden of osteoporosis continues to increase alongside human longevity [135].

Postmenopausal women are especially at risk, with an associated osteoporosis prevalence

ranging from approximately 20% in the United States and the European Union to nearly

40% in South Korea and Japan [136, 137, 138].

Osteoporotic fractures, the most serious being those of the hip and vertebrae, are of

foremost concern to osteoporosis patients and fracture prevention is the primary target of

pharmacologic treatment. The bisphosphonate (and frequent first-line therapy) alendronate

and the selective estrogen receptor modulator (SERM) raloxifene are among the most pop-

ular antiresorptive agents for the prevention and treatment of postmenopausal osteoporosis

[139, 140]. Based on existing randomized studies that compare alendronate and raloxifene

separately to placebo [141, 142], alendronate seems to have superior fracture prevention ben-

efits. However, few randomized studies consider head-to-head comparative effectiveness of

osteoporosis drugs that should inform patient treatment decisions [143]. Some studies find

improved bone mineral density in alendronate vs raloxifene users [144, 145], but improved

bone mineral density has not been proven to decrease fracture risk [139, 142]. Observational

studies can provide evidence missing from the randomized study literature, especially re-
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garding rare but serious adverse events that require large study populations to detect. Two

existing observational studies perform propensity score (PS) adjusted comparative effective-

ness analysis on insurance claims databases and find no difference in both vertebral and

nonvertebral fracture rates between alendronate and raloxifene patients [137, 146], but do

not address suspected serious adverse events of long-term alendronate use such as atypical

femoral fractures, esophageal cancer, and osteonecrosis of the jaw.

In this paper, we conduct a retrospective database cohort study investigating comparative

risks of fractures and select adverse events among first-time initiators of alendronate and

raloxifene. We utilize the extensive research network of the Observational Health Data

Sciences and Informatics (OHDSI) collaborative [3] to conduct our study in nine clinical data

sources including insurance claims sets and electronic medical records (EMR), representing

a diversity of patient populations. We implement a suite of methods and analyses to address

confounding and bias inherent to observational studies. We construct PS models using a

large set of patient features that we believe offer more comprehensive confounding control

than the limited models traditionally used in observational studies. We also conduct negative

control experiments, an emerging tool in observational analytics [10], to adjust for residual

systematic study biases that are unaccounted for by measured confounders.

8.2 Methods

8.2.1 Data Sources

We conduct a new-user cohort study comparing first-time users of alendronate with new

users of raloxifene in nine clinical data sources encoded in the Observational Medical Out-

comes Partnership (OMOP) Common Data Model (CDM) version 5 [2] from participating

research partners across the OHDSI community [3, 38]. Three data sources are electronic

medical records: the University of Texas Cerner Health Facts Database (total of 2.4 million

[M] patients), Columbia University Medical Center/NewYork-Presbyterian Hospital (4.5M)

and Stanford University Hospital (2M). Six data sources are claims records: OptumInsight’s
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ClinformaticsTMDatamart (Eden Prairie, MN) (CEDM, 40.7M), Truven MarketScan Com-

mercial Claims and Encounters (CCAE, 122M), Truven MarketScan Multi-State Medicaid

(MDCD, 17.3M), Truven MarketScan Medicare Supplemental Beneficiaries (MDCR, 9.3M),

IQVIA PharMetrics Plus (P-Plus, 105M), and the Korean National Health Insurance Ser-

vice - National Sample Cohort (NHIS NSC, 1.1M). OHDSI network studies are carried out

through a federated model, where the access to data and statistical testing executes inside

the firewall of the research partners’ infrastructure on de-identified patient information, and

the research coordinators collect aggregate results absent of patient-level information for

meta-analysis, interpretation, and manuscript generation. Each partner has obtained the

necessary Institutional Review Board (IRB) approval or exemption to participate.

8.2.2 Study Design

This study follows a retrospective, observational, comparative cohort design [147]. We

include women over 45 years old who are first time users of alendronate or raloxifene, and who

have a diagnosis of osteoporosis in the year prior to treatment initiation. Patients are required

to have continuous observation in the database for at least one year prior to treatment

initiation and 90 days after. We exclude patients with a previous diagnosis of hip fracture,

high-energy trauma, or other diseases related to pathological fractures (including Paget’s

disease), as well as patients with prior hip replacements or exposure to any bisphosphonate

(including alendronate) or the SERMs raloxifene and bazedoxifene. We restrict the study

time from January 2001 to February 2012 because relative drug utilization rates are more

stable during that period across data sources. We use raloxifene as the reference treatment.

Full cohort details, including concept codes, are provided in the Supplementary Material.

The primary outcome of interest is osteoporotic hip fracture, while secondary outcomes

include vertebral fracture and suspected adverse events of long-term alendronate therapy:

atypical femoral fracture (AFF), osteonecrosis of the jaw (ONJ), and esophageal cancer. We

begin the outcome risk window at 90 days after treatment initiation, and exclude patients

with prior occurrence of that outcome before the risk window. As our primary analysis, we
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have elected before executing the study to end the outcome time-at-risk window when the

patient is no longer observable in the database, analogous to an intent-to-treat design. In

addition, to assess the sensitivity of our results to this decision, we consider an alternative

analysis in which we end the time-at-risk window at first cessation of the continuous drug

exposure, analogous to an on-treatment design. Continuous drug exposures are constructed

from the available longitudinal data by considering sequential prescriptions that have fewer

than 30 days gap between prescriptions. Due to database encoding difficulties in constructing

continuous drug exposure periods, we exclude the PharMetrics, Cerner, and NHIS NSC data

sources from the alternative analysis.

8.2.3 Statistical Analysis

We conduct our cohort study using the Open-Source OHDSI CohortMethod R pack-

age [87], with large-scale analytics achieved through the Cyclops R package [28]. We use

propensity scores – estimates of treatment exposure probability conditional on pre-treatment

baseline features in the one year prior to treatment initiation – to control for potential con-

founding and improve balance between the target (alendronate) and reference (raloxifene)

cohorts [21]. We include all available patient demographic and drug exposure, medical con-

dition and procedure codes as covariates in the PS model as potential confounders instead

of a prespecified set of investigator-selected confounders. Detailed covariate information is

provided in the Supplementary Material.

We fit the PS model using an L1-regularized large-scale logistic regression model [20, 33],

with L1 penalty hyperparameter selected through 10-fold cross-validation. We transform the

PS to preference scores that account for differences in drug prevalence and availability [64],

trim these preference scores <0.25 and >0.75, and create five equally-sized strata. To assess

successful confounding control, we present the preference score distributions and covariate

balance metrics.

We estimate comparative alendronate vs raloxifene hazard ratios (HR) using a Cox pro-

portional hazards model stratified by the preference scores strata. As confounding control is
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addressed by PS adjustment, we include treatment exposure as the sole covariate in the out-

come model. We report the estimated HR for each outcome along with their associated 95%

confidence intervals (CI) obtained from the profile likelihood [62]. We combine estimates

from data sources into a summary HR using a random effects model meta-analysis [148].

Finally, we present Kaplan-Meier survival plots for the primary outcome to characterize the

contour of hip fracture risk over time.

Propensity score adjustment addresses confounding from measured covariates, while

residual bias after PS adjustment derives from unmeasured and systematic sources within

our data and study design. To estimate such residual bias, we conduct negative control

outcome experiments with 147 negative control outcomes [15], identified through a data-rich

algorithm [61]. Negative control outcomes, separate of our study outcomes, are events be-

lieved to be unaffected by the studied treatments, thus having a presumed true HR of 1.

See the Supplementary Material for the list of included negative controls. The distribution

of the negative control estimates characterizes the study residual bias and is an important

artifact from which to assess the study design [11]. Fitting an empirical null distribution to

these negative control estimates allows us further to calibrate the p -values for the outcomes

of interest [10].

8.3 Results

8.3.1 Population Characteristics

Across all data sources, we identify 283,586 alendronate patients and 40,463 raloxifene

patients for the primary hip fracture analysis, totaling 1,076,597 and 156,080 patient-years

of observation, respectively; corresponding cohort sizes for all study outcomes are similar

(Table 8.1). For the hip fracture outcome, Table 8.2 further partitions these patients by data

source. Approximately, 98% of the patient come from claims databases, and the relatively

few raloxifene users from the Columbia and Stanford EHRs suggests that these data sources

contribute only modest information. Figure 8.1 presents the distributions of study entry year
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and age at study entry for each data source. By these two characteristics, the data sources

span a diversity of patient populations. The on-treatment alternative analysis yields similar

cohort sizes for included data sources (Supplementary Tables 7-8).
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Figure 8.1: A) year of and B) age at study entry, stratified by drug exposure and data source. Note
patient counts are on the log-scale
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Alendronate Raloxifene

Outcome Patients Years Events Rate Patients Years Events Rate

Hip fracture 283,586 1,076,597 8,051 7.48 40,463 156,080 1,033 6.62
Vertebal fracture 279,497 1,058,734 8,659 8.18 40,051 154,031 1,134 7.36
Atypical femural fracture 283,894 1,094,049 1,244 1.14 40,503 158,722 109 0.69
Esophageal cancer 283,981 1,096,983 234 0.21 40,482 158,858 35 0.22
Osteonecrosis of the jaw 284,079 1,097,499 101 0.09 40,511 158,972 9 0.06

Table 8.1: Size of study cohorts for each outcome of interest in primary analylsis. Rate: incidence
per 1,000 person-years

Alendronate Raloxifene

Data source Patients Years Events Patients Years Events
P-Plus 78,155 245,336 1,216 10,742 34,711 117
Optum CEDM 67,100 262,467 2,495 10,167 40,528 323
Truven CCAE 64,003 228,085 432 10,534 38,655 63
Truven MDCR 47,576 210,908 3,247 6,459 29,840 457
NHIS NSC 17,766 94,139 313 1,314 7,823 26
Truven MDCD 4,570 16,454 209 369 1,340 19
Cerner UT 2,644 8,867 100 787 2,740 23
Columbia 1,131 7,696 24 49 298 <6
Stanford 641 2,645 15 42 145 <6

Total 283,586 1,076,597 8,051 40,463 156,080 1,033

Table 8.2: Number of patients, observation years, and number of hip fracture events in study cohort
by data source in primary analysis

8.3.2 Primary Outcome Assessment

In the primary analysis, there are 8,051 and 1,033 total hip fractures in the alendronate

and raloxifene cohorts, corresponding to incidence rates of 7.48 and 6.62 events per 1,000

person-years (Table 8.1). The respective on-treatment alternative incidences are expectedly

lower, at 5.35 and 5.32 (Supplementary Table 9). Neither the primary analysis (summary HR

1.03, 95%CI: 0.94 - 1.13) (Figure 8.2a) nor the on-treatment alternative (summary HR 0.88,

95% CI: 0.71 - 1.11) (Figure 8.2b) demonstrate a statistically significant difference between

treatments. Figure 8.3 presents a representative Kaplan-Meier plot from the Optum CEDM

data source absent of stratification. While the plot seems to show slower raloxifene user hip
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fracture development, the PS stratified effect size estimate is statistically insignificant (HR

1.03, 95%CI: 0.92-1.16).

A) Primary Analysis

P−Plus
Optum CEDM
Truven CCAE
Truven MDCR
NHIS NSC
Truven MDCD
Cerner UT
Columbia
Stanford
Summary

1.25 (1.04−1.52)
1.03 (0.92−1.16)
1.07 (0.82−1.41)
0.95 (0.86−1.05)
0.96 (0.65−1.47)
0.99 (0.63−1.65)
1.25 (0.80−2.05)
0.41 (0.14−1.74)
0.42 (0.12−2.67)
1.03 (0.94−1.13)

Hazard Ratio (95% CI)

1.0 1.5 2.0 2.5 3.0 0.25 0.5 1 2 4

Hazard Ratio
B) Alternative Analysis

Optum CEDM
Truven CCAE
Truven MDCR
Truven MDCD
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Stanford
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1.10 (0.74−1.69)
0.89 (0.44−2.06)
0.78 (0.59−1.05)
1.80 (0.32−34.0)
 −− 
 −− 
0.88 (0.71−1.11)

Hazard Ratio (95% CI)
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Figure 8.2: A) Primary and B) alternative analysis hazard ratios for hip fracture. More precise
estimates have greater opacity. Missing HR from data sources with 0 raloxifene events
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Figure 8.3: Kaplan-Meier plot for hip fracture outcome in Optum CEDM data source

8.3.3 Secondary Outcome Assessment

In the primary analysis, there are 8,659 vertebral fracture, 1,244 AFF, 234 esophageal

cancer and 101 ONJ events among alendronate users, with corresponding crude incidence

rates of 8.18, 1.14, 0.21 and 0.09 events per 1,000 person-years (Table 8.1). Among raloxifene

users, there are 1,134 vertebral fracture, 109 AFF, 35 esophageal cancer and 9 ONJ events

(incidence rates: 7.36, 0.69, 0.22 and 0.06). Alendronate users show a slightly higher vertebral

fracture risk with statistical significance (summary HR 1.07, 95% CI: 1.01 - 1.14) (Figure

8.4a), and a markedly higher AFF risk (summary HR 1.51, 95% CI: 1.23 - 1.84) (Figure

8.4b). There is no significant difference in esophageal cancer risk (summary HR 0.95, 95%

CI 0.53 - 1.70) (Figure 8.4c) or ONJ risk (summary HR 1.62, 95% CI 0.78 - 3.34) (Figure

8.4d).
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A) Vert. Fracture
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B) AFF
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C) Eso. Cancer
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D) ONJ
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Figure 8.4: Primary analysis hazard ratios for A) vertebral fractures, B) atypical femoral fracture,
C) esophageal cancer, and D) osteonecrosis of the jaw. More precise estimates have greater opacity.
Missing HR from data sources with 0 raloxifene events
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In the on-treatment alternative analysis, the respective rates for the four secondary out-

comes are 6.28, 0.73, 0.11, 0.03 among alendronate users and 6.56, 0.35, 0.23, 0.00 among

raloxifene users (Supplementary Table 9). Some data sources have 0 events among one or

both treatment groups, and consequently have nonexistent HR estimates. We find no signifi-

cant vertebral fracture risk (summary HR 0.87, 95% CI: 0.71 - 1.07) and lose all power in the

other three hypotheses, with extremely wide confidence intervals for AFF and esophageal

cancer and 0 raloxifene cohort outcomes for ONJ (see Supplementary Material: Analysis

Results).

8.3.4 Cohort Balance

Treatment groups from real-world data require reasonable propensity score overlap to

meaningfully conduct a comparative effectiveness study. Across all data sources, preference

score distributions are generally similar, suggesting comparable prescription practices (Sup-

plementary Figure 12). A large majority of patients have intermediate preference scores, and

all data sources except Cerner and NHIS NSC display at most 10% loss to preference trim-

ming to 0.25-0.75 (Table 8.3). Figure 8.5 shows a representative preference score distribution

in the Optum CEDM data source.

Data source Alendronate Raloxifene Total

P-Plus 10% 11% 10%
Optum CEDM 7.2% 5.9% 7%
Truven CCAE 3.4% 3.8% 3.4%
Truven MDCR 5.8% 6.5% 5.9%
NHIS NSC 12% 17% 13%
Truven MDCD 7.9% 14% 8.4%
Cerner UT 21% 19% 21%
Columbia 0% 0% 0%
Stanford 0% 0% 0%

Table 8.3: Percentage of cohort eliminated by trimming to 0.25-0.75 preference score
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Figure 8.5: Preference score distribution of study subjects in Optum CEDM data source. Trimmed
to 0.25-0.75, with black lines indicating stratification thresholds

We assess the covariate balance achieved through PS adjustment by comparing the stan-

dardized difference between treatment groups for all covariates before and after PS trimming

and stratification, as shown graphically for Optum CEDM (Figure 8.6) and all data sources

(Supplementary Figure 1), with summary statistics for all data sources shown in Table 8.4.

In all but one data source (Stanford) that has poor PS differentiation, there are large de-

creases from PS adjustment in both the mean standardized difference and the proportion of

covariates with standardized difference greater than 0.05.
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Data source Before PS After PS

P-Plus 0.23 0.04
Optum CEDM 0.20 0.05
Truven CCAE 0.16 0.05
Truven MDCR 0.20 0.06
NHIS NSC 0.36 0.13
Truven MDCD 0.32 0.21
Cerner UT 0.46 0.13
Columbia 0.73 0.44
Stanford 0.45 0.44

Table 8.4: Mean standardized difference of all covariates before and after propensity score trimming
and stratification, by data source

Figure 8.6: Standardized difference of covariates (1 dot = 1 covariate) in Optum CEDM study
population before and after propensity score trimming and stratification

We analyze the covariate balance at the covariate-specific level by focusing on the top 20

originally unbalanced covariates from the Optum CEDM data source (Figure 8.7). Before

PS adjustment, the alendronate group has higher proportions of bone disorders and higher
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mortality risk as measured by the Charlson Comorbidity Index; the raloxifene group has

higher proportions of gynecologic examinations and procedures, and gastrointestinal con-

traindications to alendronate. These unbalanced clinical covariates have been previously

reported and are important potential confounders [149]. All of these top covariates become

balanced through the PS adjustment process to absolute standardized differences below 0.05.

In addition, all but one covariate have after-PS adjustment absolute standardized difference

less than 0.05, and that one covariate (dependence on respiratory device in 365 days prior

to treatment initiation) is still an improvement compared to the unadjusted cohort. Anal-

ysis of the top unbalanced covariates for the other data sources also show similar balance

improvements for potential confounders (Supplementary Figures 2-10). Overall, the PS ad-

justment process produces large improvements in covariate balance that reduces the impact

of potential confounding in our effect estimates.

Procedure 365d: Gynecologic examination

Measurement 365d: Cytopathology, cervical or vaginal

Procedure 365d: Dual−energy X−ray absorptiometry (DXA); axial skeleton

Index year: 2010

Index year: 2003

Index year: 2002

Condition 30d: Osteoporosis

Condition 30d: Disorder of bone

Distinct observation count 365d

Index year: 2011

Drug 365d: Lisinopril

Condition 365d: Disorder of esophagus

Age group: 80−84

Condition 365d: Esophagitis

Measurement 365d: normal eGFR (African−American)

Condition 365d: Gastro−esophageal reflux disease with esophagitis

Measurement 365d: normal eGFR (non African American)

Charlson Comorbidity Index

Condition 365d: Disorder of stomach

Procedure 365d: Comprehensive preventive medicine evaluation 

−0.2 −0.1 0.0 0.1 0.2

Standardized difference of mean

before matching after matching

Figure 8.7: Top 20 covariates by absolute standardized difference between alendronate and ralox-
ifene groups in Optum CEDM study. Positive difference indicates higher alendronate group fre-
quency
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8.3.5 Negative Control Outcomes

In the absence of bias, 95% of the negative controls estimates’ 95% confidence intervals

are expected to include the presumed null HR of 1. In the Optum CEDM study primary

analysis, we see that 141/147 (96%) of the CIs do so (Table 8.5). Figure 8.8a shows the

corresponding distribution of HR estimates and their associated standard errors from each

of the 147 negative control outcomes for the same study. 143/147 (97%) of the estimates

lie above the dotted line that represents the theoretical p -values; the slight difference from

the 141 CIs containing 1 is due to asymptotic p -value assumptions. The orange region

in Figure 8.8a represents the 95% threshold for calibrated p -values [10]; in the Optum

CEDM study 142/147 of the estimates lie above this region and thus accept the null effect

hypothesis. The negative control estimates are closely distributed around the presumed null

value, and Figure 8.8b reaffirms the similarity between the negative control p -values under

the theoretical calculation and under the calibrated empirical calculation. Table 8.6 gives

the calibrated p -values for the hip fracture outcome primary analyses for all data sources; no

estimate changes statistical significance as a result of calibration. Overall, negative control

results show low residual bias across data sources for both primary and alternative analyses

(Supplementary Figures 13 - 16), giving further credence to the relative unbiasedness of our

treatment effect estimates.
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Empirical Null Dist. Coverage of Null Effect

Data source Mean SD Controls Empirical CI Theoretical p Calibrated p

P-Plus -0.00803 0.0352 147 135 (92%) 135 (92%) 138 (94%)
Optum CEDM -0.0106 0.0157 147 141 (96%) 143 (97%) 142 (97%)
Truven CCAE -0.0221 0.014 146 139 (95%) 139 (95%) 141 (97%)
Truven MDCR -0.0345 0.0201 146 133 (91%) 133 (91%) 135 (92%)

NHIS NSC -0.00491 0.0162 122 117 (96%) 119 (98%) 118 (97%)
Truven MDCD -0.0462 0.0247 126 120 (95%) 123 (98%) 122 (97%)

Cerner UT 0.0627 0.0373 105 99 (94%) 103 (98%) 102 (97%)
Columbia -0.542 0.0178 53 51 (96%) 51 (96%) 52 (98%)
Stanford -0.964 0.0816 35 32 (91%) 32 (91%) 35 (100%)

Table 8.5: Empirical null distribution constructed from negative controls, and the number of esti-
mates that do not reject the null effect hypothesis. Empirical confidence intervals are from the pro-
file likelihood, theoretical p -values are from the likelihood asymptotic distribution, and calibrated
p -values are from the negative control calibrated standard errors. For the calibrated p -value, a
leave-one-out design was used. Results by data source for primary analysis

Original Estimate Calibrated p -value

Data source Mean SD p -value p -value 95% lb 95% ub
P-Plus 0.223 0.0982 0.0233 0.0316 0.016 0.0731

Optum CEDM 0.0328 0.0601 0.585 0.5 0.358 0.675
Truven CCAE 0.0657 0.137 0.631 0.528 0.441 0.624
Truven MDCR -0.0543 0.0508 0.286 0.738 0.513 0.959

NHIS NSC -0.0449 0.209 0.83 0.849 0.748 0.957
Truven MDCD -0.0125 0.246 0.96 0.887 0.7 0.994

Cerner UT 0.227 0.241 0.346 0.519 0.316 0.765
Columbia -0.9 0.645 0.163 0.581 0.386 0.798
Stanford -0.865 0.795 0.276 0.867 0.6 0.994

Table 8.6: Original estimates and p -values for hip fracture primary analysis, with negative control
calibrated p -values. Bounds on calibrated p -values calculated from the 95% bounds of original
estimate
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Figure 8.8: Negative control results from Optum CEDM primary analysis. A) Traditional and
calibrated significance testing. Estimates below the dashed line have p < 0.05 using traditional
p -value calculation. Estimates in the orange areas have p < 0.05 using the calibrated p -value
calculation. Blue dots indicate negative controls. B) Calibration plot showing the fraction of
negative controls with p < α, for different levels of α. Both traditional p -value calculation and
p -values using calibration are shown. For the calibrated p -value, a leave-one-out design was used

8.4 Discussion

Prevailing clinical wisdom favors alendronate as the first-line treatment option for osteo-

porosis patients against fracture [150, 151, 152, 153, 154]. However, head-to-head randomized

studies of alendronate vs raloxifene have only shown increased bone mineral density with

alendronate [144, 145], which do not necessarily relate to clinically observed fracture risk

[139, 142]. Our results find little difference in hip fracture risk between new users of alen-

dronate and raloxifene, and also find a small but statistically significant higher vertebral

fracture risk with alendronate. Foster et al report non-significantly higher alendronate ver-

tebral fracture risk compared to raloxifene using Truven CCAE and Truven MDCR data

[137]. Our data sources are similarly individually non-significant, but together they reveal a

statistically significant effect favoring raloxifene.

Growing concern over long-term bisphosphonate use has contributed to steep declines
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in their prescription [155]. Previous studies report conflicting non-significant [156, 157] and

positively significant [158, 159] estimates for AFF risk as a result of bisphosphonate-related

suppression of bone remodeling [160]. We find that compared to raloxifene, alendronate does

lead to increased AFF risk. Importantly, this well-known and statistically significant risk

difference demonstrates that our data sources and study design furnish sufficient statistical

power to detect a true difference in the hip fracture HR if one were to exist, given that the

rates of AFF are almost an order-of-magnitude less than of hip fracture in our data.

Further, upper gastrointestinal mucosa stimulation is a common bisphosphonate adverse

event [161, 162, 163, 164], but association with the related esophageal cancer is less estab-

lished [165, 13, 166, 167, 168]. We find very similar esophageal cancer incidence between

alendronate and raloxifene users, and no difference in hazard ratio. We similarly find no

difference for osteonecrosis of the jaw, although our study is likely underpowered for this

very rare adverse event.

Many sources of bias unique to retrospective, non-randomized data require attention in

order to confidently interpret observational study results. Firstly, results may vary from

database to database because of differences in study population, and the generalizability of

a single study is low [169]. Our study benefits from a large population (over 300,000 pa-

tients) ranging from a diversity of data sources held by multiple data partners in the OHDSI

community. Secondly, results from different observational studies are hard to compare to

one another due to differences in study implementation details. Our OHDSI network study

utilizes a common data vocabulary, standard research protocol, and shared implementation

software to reduce study heterogeneity from implementation specifications.

Thirdly, observational studies necessarily suffer from confounding due to non-random

treatment assignment. Propensity scores that model the treatment assignment probability

are a popular tool to address such confounding. While there are many different ways to build

pre-treatment covariates and to construct a PS model, the predominant approach involves

the investigator’s manual selection of suspected confounders. However, this approach may

introduce bias into the treatment effect estimate [35], and different investigators often arrive

at different expert-selected PS models. Our PS approach builds an expansive model that
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includes all available pre-treatment patient features and selects relevant confounders through

an automated regularization procedure. We additionally validate the performance of our PS

adjustment by studying the preference score distributions and covariate balance metrics in

each data source. Overall, we demonstrate large covariate balance improvements, suggesting

promising control of observed confounders in our study.

A common finding of meta-analyses, either of observational studies or randomized trials,

is that different studies attempting to estimate the same quantity produce entirely non-

overlapping confidence intervals. Typically constructed through statistical asymptotic the-

ory, reported confidence intervals only capture the element of random error, which becomes

smaller with larger sample size. The remaining differences among different studies arises from

non-random error, including study population differences, heterogeneous measurement error,

implementation discrepancies, and systematic differences between data sources. Combining

divergent study results without addressing these latter sources of bias defeats the purported

benefit of meta-analyses to leverage the larger aggregate sample sizes across studies to reduce

random error. In addition to demonstrating confounding control that should limit estimate

deviations from study population differences and using standard research protocols and tools

that should limit implementation discrepancies, our study addresses systematic error in each

data source through negative control analyses. We use negative controls to quantify sys-

tematic bias for this alendronate vs raloxifene comparative effectiveness study, and use the

empirical null distribution of negative control estimates to adjust the individual study p -

values for our actual outcomes of interest. In this study, we find low amounts of systematic

bias across data sources, providing credibility to our meta-analysis summary hazard ratio

estimates.

Recent 2017 guidelines from the American College of Physicians have expressed alarm for

raloxifene and other SERMs over cerebrovascular and thromboembolic event concerns borne

out of multiple randomized studies comparing raloxifene to placebo [170]. In the context of

the general lack of comparative effectiveness evidence for osteoporosis pharmacologic agents,

our study focuses on fracture outcomes and select adverse events associated with alendronate

therapy. Further comparative effectiveness research should additionally focus on the adverse
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events associated with raloxifene.

Our study carries several limitations. Bias from measured and unmeasured sources can-

not be ruled out of any observational study, this one included. Data derived from electronic

medical records and insurance claims are naturally noisy with missing and misclassified val-

ues, and unknown patient histories prior to database entry; our negative control experiments

are just one approach to address systematic study bias. Additionally, several of our insurance

claims data sources provided much larger study populations that proportionately dominate

the smaller data sources in the meta-analysis. As electronic medical records differ in funda-

mental ways from claims databases, either separate analyses or more complex meta-analysis

weighting schemes may accentuate their unique differences. Having said that, several of our

participating electronic medical record data sources have very little treatment or outcome

data, and may not be as suitable for comparative effectiveness studies.

8.5 Conclusion

In a retrospective, head-to-head comparative effectiveness study across nine data sources,

we find that raloxifene users have a similar hip fracture risk, slightly decreased vertebral

fracture risk, and fewer adverse atypical femoral fractures as compared with alendronate

users.

129



CHAPTER 9

Safety and Effectiveness of Recombinant Human

BMP-2 in Spinal Fusion Surgeries

9.1 Introduction

Back and neck pain are among the most common symptoms encountered in clinical prac-

tice, and contribute to high morbidity and excess health care expenditures in the range of

$100 billion per year in the United States [171]. While management of spinal pain is primar-

ily medical, over 100,000 patients yearly undergo spinal fusion surgery to treat underlying

conditions such as disk herniation or degenerative disease [172]. Bone-morphogenetic pro-

teins (BMPs) are growth factors that promote bone formation [173] and offer an alternative

to iliac crest bone grafts (ICBG) typically used in spinal fusion surgeries. Of the many

BMP subtypes identified, recombinant human (rh)BMP2 and rhBMP7 have been used in

orthopaedic surgery, and rhBMP2 (which we refer to as just “BMP”) is widely used in spinal

fusion surgeries [174]. In 2002, the US Food and Drug Administration (FDA) approved a

recombinant rhBMP2 device for anterior lumbar spine surgery. Supported by numerous

industry funded studies confirming its efficacy and safety, BMP use skyrocketed to double

digit percentages of all spinal fusion surgeries, both in the lumbar spine and for off-label

use in the cervical and thoracic spine [175, 176, 177]. However, in 2008 the FDA released a

“black box warning” regarding life-threatening soft tissue swelling in anterior cervical fusions

with BMP [178, 179, 180]. Medtronic, the owner of the commercial BMP/Infuse product,

released individual-patient data from its clinical trials and subsequently multiple systemic

reviews found serious misrepresentations of adverse events (AE) in previous industry-funded

publications [181, 182, 183, 184]. The reviews also found improved but non-significant effec-
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tiveness benefits for BMP over bone graft. Due to concerns over BMP complications, BMP

use peaked around 2007-2008 and fell dramatically afterwards [185, 186, 187].

BMP has been shown to improve primary outcomes in spinal fusion, producing as good

or better fusion compared to ICBG and similar to lower reoperation rates [174, 188, 189,

190, 191, 192, 193]. However, BMP has been associated with numerous suspected adverse

events (AE), the most serious among them postoperative wound complications, soft tissue

swelling, cancer, radiculopathy, and ectopic bone formation / heterotopic ossification [194].

Nevertheless, many of these AE have not been confirmed through high quality, large-scale

studies that adjust for potential confounding [182], perhaps explaining previously wary sur-

geons’ slow re-embrace of off-label BMP use. Large-scale databases offer an effective tool

for observational research in orthopaedic surgery [195], and several large-scale observational

studies examine BMP complication concerns. Two studies, Cahill et al. [175] and Williams

et al. [196], examine postoperative complications and find significantly increased BMP com-

plications only with anterior cervical fusion. Veeravagu et al. [197] reports lower revision

surgeries with BMP but also an increase in overall complications. Both Hindoyan et al. [198]

and Savage et al. [199] find that BMP is associated with lower complication rates for lumbar

fusion surgeries. However, these studies lack comprehensive control for potential confound-

ing. Several report unadjusted odds ratios, or match BMP to non-BMP patients based only

on a small number of patient characteristics.

Among the numerous suspected AE associated with BMP usage, cancer risk is arguably

the most concerning. In some small randomized trials, BMP was associated with surprisingly

high effect sizes with cancer, especially at high doses [200, 201]. However, this association

with cancer is not seen in several small retrospective studies [202, 203], including studies

focused on high dose BMP patients [204, 205]. Three large-scale retrospective studies on

national databases regarding BMP cancer risk have been published, and they reach conflict-

ing conclusions, with two finding no difference [206, 207], and a third finding lower BMP

cancer risk [208]. These large-scale retrospective studies also lack comprehensive control

for potential confounding. One [208] controls only for patient demographics, while the other

two control for a patient’s entire medical history only through a single Charlson Comorbidity
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Index and diagnosis leading to the fusion surgery.

In this paper, we conduct a retrospective database cohort study across five longitudi-

nal observational databases investigating repeat surgery and AE rates between BMP and

non-BMP spinal fusion surgeries. For AE, we focus on postoperative infection, postopera-

tive seroma and hematoma formation, radiculitis, heterotopic ossification, and cancer. We

additionally focus on cancer outcomes by malignant and benign subtypes. Using research

tools developed in the Observational Health Data Sciences and Informatics (OHDSI) com-

munity [3], we conduct our study in four claims databases and one electronic medical records

database using a common research protocol and data vocabulary. We implement a suite of

methods and analyses to address confounding and bias inherent to observational studies.

9.2 Methods

9.2.1 Data Sources

We conduct a new-user cohort study [38] comparing first-time recipients of spinal fusion

surgery with and without BMP administration in five clinical data sources encoded in the

Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) ver-

sion 5 [2]. The four insurance claims databases are IBM MarketScan Commercial Claims and

Encounters (US employer-based private payer; patient aged 65 years or older), Optum Clin-

Formatics (US private payer; primarily aged 65 years or younger), IBM MarketScan Medicare

Supplemental Beneficiaries (US retirees; patients aged > 65 years), IBM MarketScan Multi-

state Medicaid (US Medicaid enrollees; all ages). The electronic health record database is

Optum Pan-Therapeutic (US health systems; all ages). In order mentioned, we abbreviate

these five databases as CCAE, Optum, MDCR, MDCD, and PanTher.

9.2.2 Study Design

This study follows a retrospective, observational, comparative cohort design [38], compar-

ing a target group (T) to a comparator group (C) for the risk of an outcome (O). Our target
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group (T) consists of first-time recipients of any spinal fusion procedure, of at least 18 years

of age at time of procedure, who had administration of bone morphogenetic protein around

the time of their procedure. Our comparator group (C) consists of first-time recipients of

any spinal fusion procedure, of at least 18 years of age, who did not have administration

of bone morphogenetic protein. We restrict the study dates from January 1, 2003, around

the time of BMP introduction to the market, to December 31, 2017. Full cohort details,

including CDM concept codes, are provided in the Supplementary Material.

We conduct two different analyses in our study. In our primary analysis, we compare

BMP users to non-users with regards to a primary outcome of interest (refusion surgery), and

five secondary outcomes of interest that are suspected adverse events associated with BMP

(radiculitis, postoperative infection, postoperative seroma/hematoma, heterotopic ossifica-

tion, and cancer). Here we define refusion surgery as any subsequent spinal fusion surgery,

regardless of type. Cancer includes any new neoplasm, benign or malignant, regardless of

type. Table 9.1 details the risk windows for these primary analysis outcomes.

In our secondary analysis, we compare BMP users and non-users who have no history

of any cancer with regards to 18 benign and malignant neoplasms – all benign neoplasms,

all malignant neoplasms, and benign and malignant neoplasms of the following categories

based on the International Classification of Diseases (ICD9): lip, oral cavity, and pharynx;

digestive; thoracic and respiratory; connective (including bone, skin, and breast); genitouri-

nary; lymphatic and hematopoietic; nervous; endocrine. The risk window for these cancer

outcomes extends from 14 days after index date to the end of patient observation in the

database.

9.2.3 Statistical Analysis

To control for measured confounding in our comparisons of target and comparator co-

horts, we use propensity scores (PS), a predominant tool in retrospective studies [21, 33].

The PS is an estimate of the treatment assignment probability, which is unknown in obser-

vational studies. We build the PS model using a data-driven process through regularized
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Outcome Risk-window start Risk-window end Exclude previous
(days from index) (days from index) outcome?

Refusion surgery 14 end of observation NO
Postoperative infection 0 60 NO
Postoperative seroma/hematoma 0 60 NO
Radiculitis 14 end of observation NO
Heterotopic ossification 14 end of observation NO
Cancer 14 end of observation YES

Table 9.1: Outcome cohort definitions for primary analysis. Outcomes are only counted within the
risk window, defined relative to index date. When analyzing cancer, we exclude patients with prior
recorded neoplasms.

regression [19], using pre-treatment patient characteristics as model covariates. These covari-

ates include all observed clinical aspects, including demographics, previous conditions, drug

exposures, procedures, clinical measurements and observations, and morbidity scores. See

the Supplemental Material for detailed covariate descriptions. With the estimated propen-

sity score, we perform variable length matching [59] with a maximum ratio of 10:1 and a

standardized propensity score caliper of 0.20, and use a greedy matching algorithm [60]. We

then estimate the hazard ratio (HR) of treatment to comparator for each outcome using a

stratified Cox proportional hazard model. We combine estimates from data sources into a

summary HR using a random effects model meta-analysis [209]. We report the HR instead

of an odds ratio because we have access to longitudinal time-to-outcome data.

To control for the effect of unmeasured confounding, we employ negative and positive

controls to quantify the systemic bias in our system and compute adjusted HR estimates and

confidence intervals. Negative controls are outcomes a priori believed to not be differentially

affected by the compared exposures, thus having a presumed true hazard ratio of 1 [15, 14].

The distribution of estimated hazard ratios from a set of negative controls serves as an

estimate of the systemic bias present in a study, and can be used to calibrate p-values

[10]. Furthermore, using synthetic positive controls constructed from negative controls, we

are able to calibrate confidence intervals out of outcome hazard ratios [11]. We identify 100

negative controls for comparing BMP to non-BMP users through a combination of a data-rich

algorithm [61] and consideration of the potential adverse events listed in the INFUSE BMP

product manual. We use the empirical null distributions and synthetic positive controls to
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calibrate each HR estimate and its confidence interval, and p-value. Statistically significant

estimates have 95% confidence intervals (CI) that do not include the null hypothesis of no-

effect, which corresponds to a calibrated p-value of less than 0.05 without correcting for

multiple testing [210].

9.2.4 Software

This study was conducted using the software suite developed by the OHDSI community

for conducting high-quality, large-scale observational clinical studies. The study design was

formulated using the ATLAS open source software (https://github.com/ohdsi/atlas),

which allows efficient specification of study parameters and automated construction of a

R study package. The study package heavily uses the R CohortMethod package [27] for all

high-level analysis. Underlying statistical regressions, including building the computationally

intensive propensity score model, are serviced by the R Cyclops package [28]. These open

source software greatly facilitate the process of conducting an observational clinical study

using state-of-the-art methodology.

9.3 Results

For the refusion outcome, the proportion of patients who received BMP ranges from

12.1% in the MDCR database to 16.7% in the Panther database. The sole EMR database,

Panther, has comparable cohort sizes to the two larger insurance claims databases CCAE

and Optum. MDCR, the database with primarily patients over the Medicare age of 65

(Figure 9.1), has the largest decrease (approximately 65.6%) in cohort size when excluding

patients with prior neoplasm records for the cancer outcome analysis. Figure 9.2 shows the

proportion of spinal fusions with BMP by year for each database. In all five databases, the

proportion of BMP surgeries began decreasing between 2007 and 2011, and has continued

declining to very low levels (under 2%) by the end of our study period in 2017.
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Figure 9.1: Age demographics by database
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Figure 9.2: Proportion of spinal fusion surgeries with BMP by year and database

Across all data sources, we identify 60,427 patients with BMP and 349,771 patients

without BMP for the primary refusion analysis, totaling 161,213 and 934,822 years of patient

observation, respectively (Table 9.2). Corresponding population sizes are similar for the

other outcomes, except for the new neoplastic disease outcome that excludes patients with

prior cancer codes, that has 34,332 and 193,435 patients with and without BMP, respectively,

with 80,790 and 444,507 years of patient observation. Note the much lower periods of patient
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observation for the two postoperative outcomes, which have only a 60 day risk window. The

rates for heterotopic ossification outcomes are very low, below 0.50 per 1,000 person-years.

BMP no BMP

Outcome Patients Years Events Rate Patients Years Events Rate

subsequent fusion 60,427 161,213 8,829 54.77 349,771 934,822 50,822 54.37
seroma/hematoma 61,198 9,729 1,645 169.08 354,121 56,666 7,525 132.80
postoperative infection 61,198 9,761 1,671 171.19 354,121 56,613 9,398 166.00
radiculitis 60,427 161,482 7,917 49.03 349,771 906,607 52,609 58.03
heterotopic ossification 60,427 184,301 70 0.38 349,771 1,065,272 467 0.44
new neoplastic disease 34,332 80,790 9,396 116.30 193,435 444,507 53,744 120.91

Rate: incidence per 1,000 person-years

Table 9.2: Incidence for primary analysis

Figure 9.3 shows the results for the refusion outcome in the primary analysis. The un-

calibrated hazard ratios (HR) are displayed on the left. All five confidence intervals are

individually statistically significant and do not cross 1, and have small standard errors. The

summary HR is 0.98 (95% CI: 0.89-1.09). After empirical calibration, only two of the con-

fidence intervals are statistically significant, and the standard errors are larger, leading to

wider confidence intervals. The summary HR is not statistically significant at 0.95 (95% CI:

0.98-1.02), and actually has a narrower CI than the unadjusted HR, despite the five compo-

nent confidence intervals all being wider. The empirical calibration reduces the heterogeneity

across databases.
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Figure 9.3: Refusion outcome hazard ratios, primary analysis
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Among the six outcomes in the primary analysis, only postoperative infection has a

statistically significant calibrated summary HR is postoperative infection, for which BMP

patients have lower rates than non-BMP patients, at 0.88 (95% CI: 0.78-0.99)(Figure 9.4,

Table 9.3). Heterotopic ossification has a calibrated summary HR of 1.14 (95% CI: 0.86-

1.51), but due to very low outcome counts this outcome has wide confidence intervals, and

is nonsignificant.
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Figure 9.4: Postoperative infection outcome hazard ratios, primary analysis
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Outcome HR lower upper

Primary analysis
subsequent fusion 0.95 0.87 1.02
seroma/hematoma 0.97 0.80 1.17
postoperative infection 0.88 0.78 0.99
radiculitis 0.99 0.93 1.06
heterotopic ossification 1.14 0.86 1.51
new neoplastic disease 0.98 0.93 1.03

Cancer analysis
malignant all 0.96 0.90 1.04
malignant oral 1.01 0.77 1.32
malignant digestive 0.97 0.78 1.19
malignant thoracic 1.00 0.84 1.20
malignant connective 0.96 0.87 1.05
malignant genitourinary 0.85 0.70 1.03
malignant lymphoid/hematopoietic 0.93 0.80 1.08
malignant nervous 1.03 0.69 1.52
malignant endocrine 1.13 0.83 1.54
benign all 0.99 0.94 1.04
benign oral 0.94 0.74 1.18
benign digestive 0.95 0.88 1.02
benign thoracic 0.85 0.65 1.12
benign connective 1.01 0.96 1.07
benign genitourinary 1.00 0.89 1.11
benign lymphoid 1.36 0.88 2.11
benign nervous 0.89 0.71 1.11
benign endocrine 1.07 0.90 1.27

Table 9.3: Calibrated summary hazard ratios

In the secondary analysis of cancer outcomes by subtype, we have 33,447 and 188,478

patients with and without BMP for the analysis looking for all malignant neoplasms, with

97,893 and 543,468 years of patient observation, respectively (Table 9.4). The cohort sizes for

the other cancer outcomes are similar. The raw, unadjusted rates of all malignant neoplasms

are 26.16 per 1,000 person years among BMP patients and 27.00 among non-BMP patients.

For benign neoplasms, the respective rates are 85.91 and 90.06. No outcome among the 18

studied subtypes demonstrates a statistically significant result (Table 9.3). The calibrated

summary HR for all malignant neoplasms is 0.96 (95% CI: 0.90-1.04) and for all benign

neoplasms is 0.99 (95% CI: 0.94-1.04).
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BMP no BMP

Outcome Patients Years Events Rate Patients Years Events Rate

malignant all 33,447 97,893 2,561 26.16 188,478 543,468 14,675 27.00
malignant oral 33,592 104,334 163 1.56 189,273 579,480 886 1.53
malignant digestive 33,587 103,797 442 4.26 189,227 576,895 2,374 4.12
malignant thoracic 33,588 104,033 340 3.27 189,224 578,236 1,810 3.13
malignant connective 33,567 101,375 1,236 12.19 189,069 562,078 7,443 13.24
malignant genitourinary 33,564 103,343 511 4.94 189,120 574,039 2,860 4.98
malignant lymphoid/hemato. 33,535 103,653 365 3.52 189,003 575,846 2,089 3.63
malignant nervous 33,587 104,438 104 1.00 189,220 580,277 566 0.98
malignant endocrine 33,593 104,487 61 0.58 189,270 580,390 396 0.68
benign all 33,388 84,204 7,234 85.91 188,010 461,674 41,579 90.06
benign oral 33,595 104,299 141 1.35 189,276 578,741 938 1.62
benign digestive 33,580 96,211 3,144 32.68 189,199 530,023 18,834 35.53
benign thoracic 33,593 104,396 83 0.80 189,273 579,684 604 1.04
benign connective 33,456 92,192 4,425 48.00 188,440 509,642 25,135 49.32
benign genitourinary 33,580 102,729 713 6.94 189,190 570,068 4,014 7.04
benign lymphoid 33,594 104,491 44 0.42 189,260 580,628 232 0.40
benign nervous 33,575 104,162 154 1.48 189,153 578,692 933 1.61
benign endocrine 33,582 103,934 248 2.39 189,214 577,752 1,303 2.26

Rate: incidence per 1,000 person-years

Table 9.4: Incidence for secondary cancer analysis

Through our propensity score adjustment, covariate imbalance is greatly reduced for our

primary and secondary analyses. In the primary analysis (Figure 9.5), no covariate in any

database has a post-matching standardized difference greater than 1, an encouraging sign for

confounding control. In the secondary analysis, the covariate balance is similarly improved

by propensity score matching, although two covariates in the MDCR database do have post-

matching standardized differences greater than 0.1. One of these covariates is the Index year

for 2011, which is the year of dramatic decline in BMP usage due to published articles about

its safety. The other covariate is an indicator for Measurement of column chromatography

(includes mass spectrometry) in the 365 days prior to index date, which does not seem to

be related to BMP vs non-BMP usage.
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Figure 9.5: Covariate balance before and after matching, primary analysis. Each point represents
the covariate balance for a single covariate.

The results of our negative and positive control experiments are demonstrated in Figure
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9.6 for the primary analysis in the CCAE database. For the negative controls (true relative

risk = 1), only 77% of the estimates’ 95% confidence intervals include 1, and the null distri-

bution fitted to the estimates has a mean slightly greater than 1. We see that the areas of

statistical significance for the fitted null distribution, as delineated by the orange boundary,

deviates from the regions of statistical significance for the unadjusted distribution (dotted

lines). This is true for the three plots showing positive controls as well, demonstrating the

need for empirical calibration of our estimates. As we increase the true relative risk from

1 to 4, the proportion of estimates that fall under the nominal 95% region decreases from

77% to 55.6%, mostly due to the estimates spreading out in their point estimates without

an increase in their standard error. As seen in Figures 9.3 and 9.4, this has the effect of

increasing the standard error of the calibrated estimates for the outcomes of interest.

Figure 9.6: Negative and positive control distributions for CCAE database, primary analysis.

9.4 Discussion

Concerns over BMP adverse events borne out of misrepresented industry sponsored re-

search lead to a large decline in the utilization of BMP starting around 2008. According to

our study, this decrease in BMP utilization continued in dramatic fashion through 2017, the

latest year studied, to only around 2% of spinal fusion surgeries. However, we find that BMP

is safe to use in spinal fusion surgeries. Compared to spinal fusion surgeries without the use

of BMP, surgeries with BMP have similar, non-statistically significant, hazard ratios for re-

fusion surgeries, postoperative seromas/hematomas, radiculitis, heterotopic ossification, and

cancer. In addition, across our five studied databases, BMP has a lower summary HR for

postoperative infection, at 0.88 (95% CI: 0.78-0.99). In a detailed secondary analysis of 18

different categories of benign and malignant neoplasms, we find that BMP does not have
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significantly different hazard ratios compared to non-BMP for any category.

Because of our generous definition of refusion operations as any subsequent spinal fu-

sion surgery, we observe much higher rates of refusion than in other studies. Our observed

rates of refusion are 14.6% in BMP patients and 14.5% in non-BMP patients. This com-

pares to low-to-mid single digits reported in other studies [197, 198]. Our observed rates

of radiculopathy are also higher than those reported in [198]. However, our observed rates

of postoperative infection [197] and postoperative seroma/hematoma [199] do approximate

that seen elsewhere. We observe heterotopic ossification to have an extremely low incidence

of approximately 0.1%; this outcome is not well estimated in existing large-scale longitudinal

observational studies. Radiologic heterotopic ossification due to BMP is commonly observed

but rarely symptomatic, and thus not recorded in electronic medical records or insurance

claims [211, 212, 213]. One reason for the discrepancy in outcome rates for refusion and

radiculopathy is that they are dependent on follow-up time, which varies from study to

study. While we also report rates per 1,000 person-years, these rates are not reported in

the vast majority of BMP observational studies. Postoperative outcomes, even if they may

vary in exact definition, are more consistently measured across studies, and lend themselves

to more comparable rates. We advocate for increased reporting of rates per person-year for

longitudinal observational studies.

Our secondary analysis finds a malignant neoplasm rate of 7.7% in BMP patients and

7.8% in non-BMP patients, over a mean follow-up of 2.89 years. These rates are comparable

to that reported in two longitudinal observational studies of BMP cancer risk [207, 208] and

lower to that in a third [206]. Our observed rates of benign neoplasms, 21.67% in BMP

patients and 22.12% in non-BMP patients, are significantly higher than the mid-single digits

reported in [208]. This discrepancy is largely due to our inclusion of benign neoplasms of the

skin, which (categorized under connective) account for a majority of our benign neoplasm

cases. Overall, our cancer rates agree with that reported elsewhere, lending credence to our

analysis that finds no difference in cancer risk.

Our study benefits from a large combined sample size across five different databases.

Across 24 outcomes in our primary and secondary analyses, only a single, postoperative
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infection, has a significant summary HR, favoring BMP. However, there are many more

significant results among the individual databases. For example, for the refusion outcome,

two out of the five databases have a calibrated HR that significantly favors BMP. For the

postoperative seroma/hematoma outcome (see Supplementary Material), one calibrated HR

favors BMP and another favors non-BMP. Our meta-analysis combines these estimates into

a single HR that reflects the full combined populations across databases, and produces a

more credible estimate for the population-level effect size. Compared to a meta-analysis

that combines estimates across studies, our study benefits from a consistent study design

across databases. This reduces error arising from disparate study implementations, so that

the remaining differences across databases more accurately reflect the underlying differences

among study populations.

The excellent control of covariate balance in our primary and secondary analysis points

to successful control of confounding through propensity score matching. Compared to other

studies that adjust for baseline patient characteristics with or without propensity scores,

our methodology includes a much larger set of covariates that reflects the totality of patient

medical histories. The large models with many covariates that we use for our propensity

scores have been shown to be superior to smaller models in regards to achieving covariate

balance [19]. In addition, our negative and positive control experiments revealed apprecia-

ble amounts of residual bias that we control for by calibrating our hazard ratio confidence

intervals. This calibration has an observed effect of shifting individuals HR estimates and

also increasing standard errors, leading to fewer significant signals. For example, without

calibration all five databases have a significant HR for refusion, but after calibration only two

have a significant HR (Figure 9.3). We believe that our statistical methodology reduces spu-

rious results that may be due to measured or unmeasured confounding, and more accurately

estimates outcome effect sizes.

145



CHAPTER 10

Comprehensive Comparative Effectiveness of

Antidepressant Treatments in Preventing Suicide and

Suicidal Ideation

10.1 Introduction

Depression is the largest contributor to global disability, with over 300 million worldwide

patients [214]. Among the many sequelae to clinical depression, suicide and suicidal ideations

are arguably the most severe, and depression is a major factor in the close to 800,000 world-

wide suicides that occur annually [214]. Antidepressant medications and psychotherapy are

first-line treatments for clinical depression [215], though the association between drug classes

and suicidality is not well understood in real-world settings [216]. While it is clear that phar-

macological treatment for depression generally reduces suicide risk [217, 218], there are only

few studies that perform comparative effectiveness among treatments with regard to suicide

and suicidal ideation.

Clinical trials routinely assess suicide and suicidal ideation outcomes, but there are prac-

tical and ethical concerns in prospective studies of suicide [219]. In addition, clinical trials

typically aim to certify a specific treatment’s efficacy versus placebo, and rarely conduct

comparative effectiveness analyses among multiple efficacious treatments. For example, the

warnings against antidepressants in pediatric populations for fear of increasing suicidality

are based in placebo-controlled trials, not comparative effectiveness studies [220]. In the ab-

sence of randomized and prospective trials comparing depression treatments, observational

data offer a valuable resource in determining which antidepressant treatments pose less sui-
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cidality risk. Existing comparative effectiveness studies are consistently retrospective and

observational [221, 222, 223, 224].

Despite a possible (and controversial) association between antidepressants and suicidality

[225], the clinical benefits of pharmacotherapy outweigh the risks [226], and some treatment

is recommended [227]. But which treatment should it be? Individual studies contribute

individual yet sometimes contrasting pieces to the puzzle. For example, fluoxetine has been

shown in some studies to increase suicidality [228], while another study found that venlafaxine

has higher risk than fluoxetine [223]. In [222], SSRIs and SNRIs are reported to have a similar

risk of self-harm, while [224] found SNRIs have higher risk. Each published study investigates

a single hypothesis, and is subject to its own biases arising from study implementation details,

baseline population characteristics, and residual bias.

In prior work, we introduced a new paradigm for conducting high-throughput observa-

tional studies [229]. This high-throughput paradigm employs consistent and standardized

methods to generate calibrated estimates for a large number of hypotheses, thus minimizing

the reproducibility concerns of conducting single-hypothesis studies. We conducted a large-

scale comparative effectiveness study analyzing 17 antidepressant treatments with regards to

22 clinical outcomes across 4 observational databases, thus generating thousands of hypothe-

ses answered using a consistent methodology. In this paper we report on the clinical findings

of our previous work [229] focusing on suicide and suicidal ideation as a primary clinical

outcome of interest. We conduct all pairwise comparisons of 17 depression treatments and

draw conclusions with regard to individual treatments and treatment classes.

10.2 Methods

10.2.1 Data Sources

For each pairwise comparison of depression treatments in each database, we conduct a

new-user cohort study [38]. We conduct our study in four longitudinal insurance claims

databases encoded in the Observational Medical Outcomes Partnership (OMOP) Common
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Data Model (CDM) version 5 [2]. These databases are IBM MarketScan Commercial Claims

and Encounters (US employer-based private payer; patient aged 65 years or older), Optum

ClinFormatics (US private payer; primarily aged 65 years or younger), IBM MarketScan

Medicare Supplemental Beneficiaries (US retirees; patients aged > 65 years), IBM Mar-

ketScan Multi-state Medicaid (US Medicaid enrollees; all ages).

10.2.2 Study Design

We follow a retrospective, observational, comparative cohort design [38] comparing first

time users of a target treatment (T) to first time users of a comparator treatment (C) with

regards to an outcome (O). Our target and comparator treatments are drawn from the 17

depression treatments listed in Table 10.1. In each comparison, the T and C cohorts are

restricted to the years in which both treatments are observed in the database. Our outcome

of interest (O) is suicide and suicidal ideation, defined using CDM5 concept codes (see

Supplementary Material). Subjects with prior outcome are excluded from the analysis. We

define the time-at-risk for the outcome to start on the day of treatment initiation and end on

the last day of treatment administration, allowing for 30 day gaps in treatment continuation.

We additionally conduct a sensitivity analysis in which the time-at-risk ends on the last day

of patient observation in the database.

10.2.3 Statistical Analysis

Observational studies inherently contain confounding due to baseline differences among

compared treatment populations. To adjust for measured confounding from encoded patient

characteristics, we perform propensity score stratification. Propensity scores are estimates

of treatment assignment that are ubiquitous tools for confounding control in observational

analyses [21, 33]. We construct a propensity score for each comparison pair and data source

using a data-driven process through regularized regression [19]. We utilize an expansive

propensity score model that includes covariates for all conditions, procedures, drug exposures,

etc. and allow the data-driven regression to select an ideal model. Variables with fewer than
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Treatment Class

Amitriptyline Tricyclic antidepressant
Doxepin Tricyclic antidepressant
Nortriptyline Tricyclic antidepressant
Bupropion Atypical antidepressant
Mirtazipine Atypical antidepressant
Trazodone Atypical antidepressant
Vilazodone Atypical antidepressant
Citalopram Selective seronotinin reuptake inhibitor
Escitalopram Selective seronotinin reuptake inhibitor
Fluoxetine Selective seronotinin reuptake inhibitor
Paroxetine Selective seronotinin reuptake inhibitor
Sertraline Selective seronotinin reuptake inhibitor
Desvenlafaxine Serotonin norepinephrine reuptake inhibitor
Duloxetine Serotonin norepinephrine reuptake inhibitor
Venlafaxine Serotonin norepinephrine reuptake inhibitor
Electroconvulsive therapy Other
Psychotherapy Other

Table 10.1: Studied depression treatments

100 non-zero values are excluded from the model. See the Supplementary Material for a

description of included propensity score model covariates.

With the propensity score, we stratify the target and comparator cohorts into 10 equally

sized strata, and condition our outcome model on the strata. We use a Cox proportional

hazards model for estimating out outcome effect size to obtain hazard ratios of the target

versus comparator treatments. For each target-comparator-database combination, we re-

port diagnostics including covariate balance before and after propensity score stratification,

and plotted propensity score distributions. These diagnostics evaluate the effectiveness of

our propensity score analysis in removing confounding and generating comparable stratified

target and comparator cohorts.

Even after controlling for confounding from encoded variables, residual and systematic

bias exists in observational studies [10, 230]. It is not possible to estimate this bias using

hazard ratio estimates from our outcome of interest, that has an unknown true effect size.

Instead, we employ negative control outcomes, which have a presumed null effect size, to

quantify the size of the residual bias [15, 14]. We identify 52 negative controls for our study

through a data-rich algorithm [61]. Using these negative control estimates, and positive
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controls that we build using the negative controls, we are able to calibrate each outcome

estimate, its confidence interval, and its p-value for rejecting the null hypothesis of no differ-

ential effect [10, 11]. Calibrated estimates with 95% confidence intervals that do not include

1, or equivalently a p-value less than 0.05, are considered statistically significant.

10.3 Results

Table 10.2 represents the average cohort sizes for each treatment in each database. Each

treatment is independently compared to all other treatments, and in each individual com-

parison the cohorts represent first time users of the two treatments, and the patients could

have had prior exposures to the uncompared treatments. Several treatments are not present

in the MDCD and MDCR databases, namely vilazodone, paroxetine, and electroconvulsive

therapy for MDCD and MDCR, and additionally doxepin and desvenlafaxine for MDCR.

These treatments are also the ones with the smallest cohort sizes in the CCAE and Optum

databases. Among the four medication classes (TCAs, Atypicals, SSRIs, SNRIs), TCAs

have the smallest cohort sizes across all four databases. In all four databases, psychother-

apy has larger cohort sizes than any other individual treatment, and is comparable to all

SSRIs combined. Electroconvulsive therapy has by far the smallest cohort size among all

treatments.

We computed 822 estimates for all available pairwise comparisons of the 17 depression

treatments across the 4 databases. Figure 10.1 presents these data as class by class compar-

isons. Each individual point represents the hazard ratio for one comparison in one database,

with the target treatment from the first class (ex: TCA) and the comparator treatment from

the second class (ex: Atypicals). Under the null hypothesis of no differential effects, 95% of

the estimates should have statistically nonsignificant 95% confidence intervals. Compared

to all other treatment classes (atypicals, SSRIs, SNRIs, ECT, and psychotherapy), TCAs

have noticeably more than 5% of statistically significant estimates, and the significant esti-

mates almost all favor TCAs as having fewer suicide and suicidal ideation outcomes. After

TCAs, the next most favorable class of treatments is the atypical antidepressants, that have
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CCAE MDCD MDCR Optum

Amitriptyline 42480 9146 4067 22558
Doxepin 16912 2908 0 8207
Nortriptyline 22999 2617 3070 11507
Bupropion 195458 17928 12140 95990
Mirtazapine 56275 12773 17960 39216
Trazodone 152665 27162 14701 78680
Vilazodone 16691 0 0 6666
Citalopram 118253 25667 14109 71627
Escitalopram 161654 11760 15979 93405
Fluoxetine 125589 19017 7201 64019
Paroxetine 7322 0 0 3452
Sertraline 150763 19890 13971 85329
Desvenlafaxine 34345 3095 0 14671
Duloxetine 109124 12551 12306 54937
Venlafaxine 100857 9955 9511 58417
Electroconvulsive Therapy 3234 0 0 2359
Psychotherapy 509303 50946 34713 227345

Table 10.2: Cohort size within each database

many statistically significant estimates to the left compared to SSRIs, SNRIs, ECT, and

psychotherapy. The SSRIs vs SNRIs subplot does not display a marked preference for either

treatment class. All four medication classes are superior to ECT and to psychotherapy, while

ECT vs psychotherapy was not available for comparison.
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Figure 10.1: Class-class comparisons of hazard ratio estimates. Each individual point represents
the comparison of one treatment from the first class to one treatment from the second class in one
database. Effect sizes greater than 1 represent more suicide and suicidal ideation outcomes in the
first treatment class, and vice versa. Points above the dashed line are not statistically significant,
while points below the dashed line are statistically significant.

We delve into the individual treatment-treatment comparisons in Figure 10.2, which rep-

resents for each comparison the net number of databases that have a statistically significant

result favoring the target or the comparator treatment. The darker shade of red, the more
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databases have significantly fewer suicide and suicidal ideation in the target treatment, and

vice versa for shades of blue. Each comparison is performed independently, so for example

doxepin-nortriptyline has a different result than nortriptyline-doxepin due to slightly differ-

ent constructed propensity scores. Among all comparisons, only a single one, amitriptyline-

mirtazapine and mirtazapine-amitriptyline, have all four databases demonstrate statistically

significant results, favoring amitriptyline over mirtazapine. Amitriptyline, nortriptyline, and

bupropion have the most number of favorable statistically significant comparisons to other

treatments, while mirtazapine, fluoxetine, electroconvulsive therapy, and psychotherapy have

the most number of unfavorable comparisons. We see that the results favoring TCAs seem

in Figure 1 come from amitriptyline and nortriptyline, and less so doxepin. Furthermore, the

results favoring atypical antidepressants over SSRIs and SNRIs come almost entirely from

bupropion. The mixed results comparing SSRIs to SNRIs come from unfavorable compar-

isons involving fluoxetine (for SSRIs) and venlafaxine (for SNRIs).

153



Psychotherapy

Electroconvulsive therapy

venlafaxine

duloxetine

Desvenlafaxine

Sertraline

Paroxetine

Fluoxetine

Escitalopram

Citalopram

vilazodone

Trazodone

Mirtazapine

Bupropion

Nortriptyline

Doxepin

Amitriptyline

A
m

itr
ip

ty
lin

e

D
ox

ep
in

N
or

tr
ip

ty
lin

e

B
up

ro
pi

on

M
ir

ta
za

pi
ne

Tr
az

od
on

e

vi
la

zo
do

ne

C
ita

lo
pr

am

E
sc

ita
lo

pr
am

F
lu

ox
et

in
e

P
ar

ox
et

in
e

S
er

tr
al

in
e

D
es

ve
nl

af
ax

in
e

du
lo

xe
tin

e

ve
nl

af
ax

in
e

E
le

ct
ro

co
nv

ul
si

ve
 th

er
ap

y

P
sy

ch
ot

he
ra

py

Comparator treatment

Ta
rg

et
 tr

ea
tm

en
t

Significant
Databases

−4

−3

−2

−1

0

1

2

3

4

N/A

Figure 10.2: Comparison of individual treatments across four databases. Each cell displays the
number of databases for each treatment-treatment comparison giving a significant hazard ratio
estimate that is greater than (positive) or less than (negative) 1. For example, there is a net of 1
(out of 4) databases that have a statistically significant HR estimate less than 1 for the comparison
of amitriptyline to doxepin, a result that favors amitriptyline.

We utilize propensity scores to control for measured confounding and reduce covariate

imbalance between compared treatment groups. Often an after-stratification standardized
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difference threshold of 0.1 is used to evaluate successful propensity score adjustment. Figure

10.3 displays the maximum after-stratification standardized mean difference (SMD) among

all covariates for all pairwise comparisons of treatments in the CCAE database. Over-

all, most analyses have successful propensity score adjustment, but five treatments have

more than four comparisons with unbalanced covariates: amitriptyline, nortriptyline, vila-

zodone, paroxetine, and psychotherapy. No data were available for electroconvulsive therapy.

Amitriptyline, paroxetine, and psychotherapy have the most maximum SMD greater than

0.3, while most of the unbalanced comparisons for nortriptyline and vilazodone have maxi-

mum SMD between 0.1-0.3. Interestingly, these difficult-to-balance treatments include three

(amitriptyline, nortriptyline, and psychotherapy) of the treatments that also have strong

evidence with regards to the outcome, suicide and suicidal ideation (Figure 10.2).
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Figure 10.3: Maximum post-PS matching absolute standardized mean difference (SMD) among
all covariates in treatment-treatment comparisons in the CCAE database. Displays whether this
maximum SMD is greater than or less than 1.

On further inspection, the large maximum SMDs for some treatment comparisons are

due to increasingly disjoint PS distributions that are difficult to stratify. Figure 10.4a shows

the PS distribution for the duloxetine-sertraline comparison in the CCAE database. There
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is both reasonable separation between the cohorts and reasonable overlap, allowing for suc-

cessful stratification and covariate balancing (Figure 10.4b). The bupropion-vilazodone PS

distribution has slightly less overlap (Figure 10.4c) and more separation between cohorts.

Only a single covariate has slightly greater than 0.1 SMD (Figure 10.4d), and although

the overall covariate balance is worse than in duloxetine-sertraline, it is still reasonable. In

contrast, trazodone and paroxetine have little overlap between their PS distributions (Fig-

ure 10.5a), and although some of the most extreme before-stratification SMDs are reduced,

almost as many covariates seem to have improved as worsened covariate balance (Figure

10.5b). Finally, the amitriptyline-citalopram comparison has complete separation of PS dis-

tributions (Figure 10.5c), allowing for no stratification and no progress on covariate balance

(Figure 10.5d).
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Figure 10.4: PS distributions and covariate balance plots for duloxetine-sertraline and bupropion-
vilazodone comparisons in the CCAE database. Each covariate balance plot point represents a
single covariate’s before and after stratification standardized mean difference. Points below the
dotted line have improved covariate balance.
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Figure 10.5: PS distributions and covariate balance plots for trazodone-paroxetine and
amitriptyline-citalopram comparisons in the CCAE database. Each covariate balance plot point
represents a single covariate’s before and after stratification standardized mean difference. Points
below the dotted line have improved covariate balance.

10.4 Discussion

Randomized trials remain the gold standard of evidence in clinical medicine, but they

have areas of deficiency in generating evidence for real-world applications. Controlled studies

can be prohibitively expensive and have insufficiently large sample sizes to detect adverse

events or differential effects in comparative effectiveness studies. One review of clinical trials
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studying pharmacological effects on self-harm finds that relevant studies are too few and too

small to generate firm conclusions, and larger trials are needed [216]. Retrospective observa-

tional studies fill in this void for evidence by utilizing the staggering amount of information

available in longitudinal databases on millions of patients [3]. In this paper, we embrace

a new paradigm for generating observational evidence by conducting a comprehensive all-

by-all comparison of 17 different antidepressant treatments across 4 databases [229]. Each

individual clinical hypothesis is studied using the same consistent methodology and study

design, including cohort definitions, statistical analysis parameters, and decisions regarding

presentation of results.

We present a novel class-by-class comparison of all major antidepressant medication

classes. In our results, tricyclic antidepressants compare favorably to other treatment classes.

However, these favorable TCA comparisons are mostly from amitriptyline and nortriptyline

(Figure 10.2) that also have disjoint PS distributions and high after-stratification SMD in

comparison to several other treatments, indicating that these comparisons are ineffective.

Atypical depressants are the next most favorable class, with favorable signals coming mostly

from bupropion and some unfavorable signals coming from mirtazapine. SSRIs and SNRIs

are two of the more popular drug classes, and existing research using PS analysis shows

both no differential effect [222] and results favoring SNRIs [224]. We find mixed results com-

paring these two classes, with most statistically significant signals coming from unfavorable

comparisons involving fluoxetine (an SSRI) and venlafaxine (an SNRI) (Figure 10.2).

In our results, both ECT and psychotherapy lead to more suicide and suicidal ideation

outcomes compared to all medication classes (Figure 10.1). However, we employed a new-

user cohort design in which patients are only on a single treatment. Psychotherapy is rec-

ommended in conjunction with pharmacological treatment [215], and not as monotherapy,

which our study partially captures. We do not believe that psychotherapy is ineffective for

preventing suicide and suicidal ideations; our results mainly suggest against psychotherapy-

only treatment. Although we employ PS stratification with large-scale PS models [19] that

should remove measured confounding, there may still be residual confounding present in our

study. In particular, our ECT results suggest there may be channeling bias in our study,
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as ECT is reserved for serious patients unresponsive to other therapy [231], and our results

show strong evidence against ECT compared to other therapies.

The lack of direct comparative effectiveness research regarding suicide and suicidal ideation

presents challenges in prescribing one medication over another. Rubino et al. [223] reports

venlafaxine has higher suicide risk compared with citalopram and fluoxetine, a result we see

with citalopram, but not with fluoxetine (we observe fluoxetine has a higher risk). However,

that study relies on a small outcome model with 24 covariates to avoid saturation of the

statistical model, while we employ thousands of covariates along with regularized regression

[19] for model selection. Jick et al. [221] compares amitriptyline, fluoxetine, and paroxetine

separately to dothiepin, and not to each other, and find no differences in suicidal behavior.

By doing an exhaustive pairwise comparison of antidepressant drugs, we are able to see that

amitriptyline, fluoxetine, and paroxetine in fact compare very differently to other treatments.

Amitriptyline is our most favorable compared treatment, fluoxetine is our least favorable,

and paroxetine is squarely in the middle.

All-by-all comparisons of treatments within a clinical domain are a new way of conducting

observational research and utilizing the full scale of data available in longitudinal databases

[229]. Using a consistent methodology across hundreds of individual hypotheses and four

databases, our study reveals the benefits of bupropion and the risk of fluoxetine with regards

to suicide and suicidal behavior. In depth analysis of PS distributions and covariate balance

are able to reveal treatment-treatment combinations that are incomparable and unsuitable

for comparative effectiveness analysis. Our study results and methodology can inform the

treatment decision making process among multiple medications for clinical depression.
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CHAPTER 11

Comparative Effectiveness of Branded Versus Generic

Versions of Antihypertensive, Lipid-Lowering and

Hypoglycemic Substances

11.1 Introduction

Generic medications offer potential for substantial health care cost savings compared to

their branded drug counterparts [232, 233, 234], but their adoption is hindered by doubts

among physicians and patients regarding their efficacy and safety [235, 236, 237, 238, 239].

Some of the concerns arise from a lack of knowledge or misinformation regarding the concept

of bioequivalence and/or from marketing efforts of branded drug manufacturers. Frequently,

the argument is that while pharmaceutical companies need to conduct extensive clinical trials

to bring an innovator branded drug to market, they are required only to demonstrate biologic

equivalence for new generic drugs, and not equivalence in clinical outcomes [240]. However,

randomized controlled trials of generic drugs vs originators are rarely feasible or required

by regulators, unless bioequivalence cannot be shown with pharmacokinetic studies, e.g. for

drugs not administered systemically. As a result, randomized trials comparing generic to

branded drugs feature relatively small sample sizes that are sufficient to show bioequivalence,

but are by their very nature not powered to find significant differences in clinical efficacy

[241, 242, 243].

In the absence of randomized trials, retrospective data are a crucial resource to collect

clinical data on generic drugs [244]. Observational studies conducted using longitudinal

health databases that contain millions of patient records could discern clinically meaningful
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differences between branded and generic drugs. However, these studies require careful control

for potential confounding that plagues all observational research. Previous studies in this

field have highlighted the need to control not only for patient medical history, but also

additional factors such as socioeconomic status [245] and medication adherence [246].

There has been extensive observational research on antiepileptic drugs, including several

narrow therapeutic index drugs that are particularly concerning for introducing generic al-

ternatives [247, 248, 249, 250]. There are relatively fewer studies on generic medications for

chronic metabolic diseases such as hypertension or heart failure, hyperlipidemia, and dia-

betes mellitus that offer significant opportunities for cost savings owing to their widespread

use [251]. In this study, we compared death and cardiovascular outcomes between branded

and generic formulations of 17 antihypertensive, cholesterol-lowering, and oral hypoglycemic

drugs using national pharmacy and hospitalization data representing nearly all insured per-

sons in Austria.

11.2 Methods

11.2.1 Study Population and Data

We analyzed all filled prescriptions that were submitted for reimbursement to 13 Austrian

social security institutions, including all nine provincial sickness funds as well as four nation-

wide institutions (federal employees, farmers, independent business owners, and railroad and

mining employees). In total, these institutions cover 98.5% of all insured persons in Austria.

Prescription data were available for 9,413,620 insured persons from 2007 to 2012, and each

record contained a pseudonymized unique patient identifier, volume (number of packages),

package size (number of units per package), strength (dose per unit), the pharmacy article

identifier of the dispensed drug, and patient co-payment waiver status (yes or no). In addi-

tion, linked through the pseudonymized patient identifier we obtained patient birth months,

sex, date of deregistration from the social security institution (if applicable), date of death

(if applicable), and all hospitalizations in the study period including admission date, length
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of stay, and discharge diagnoses. These data have been utilized and described in previous

studies comparing generic and branded drug costs [234] and investigating double medication

rates [252].

11.2.2 Investigated Drug Classes

For each of the investigated chronic diseases (hypertension or heart failure, hyperlipi-

demia, and diabetes mellitus) we compiled a list of therapeutic substances in terms of

the World Health Organization (WHO)’s fifth-level (seven digit) Anatomical Therapeutic

Chemical (ATC) code [253] as previously reported [234]. From this list, we selected the 17

substances with the highest potential monetary savings that could be achieved by generic

substitution [234], and for which generic and branded versions were simultaneously available

in the same combination of package size and strength. This list comprised twelve single

substances or substance combinations for hypertension or heart failure treatment (meto-

prolol, bisoprolol, nebivolol, carvedilol, amlodipine, enalapril, lisinopril, ramipril, enalapril

and diuretics, lisinopril and diuretics, ramipril and diuretics, losartan and diuretics), two

lipid-lowering substances (simvastatin, fluvastatin), and three oral hypoglycemic substances

(metformin, gliclazide, repaglinide). A database supplied by the Austrian Agency for Health

and Food Safety (AGES) provided information on the branded versus generic status of each

pharmacy article. For each drug class we defined a start date of the study period as the

date at which a generic version of the drug was first reimbursed in our database. Thus, data

from branded medicines were only considered starting with the month when a generic was

also available. Only specific package size/strength combinations for which both generic and

branded products were available were considered.

11.2.3 Patient Inclusion

Patients were included when they filled a new prescription of any of the investigated

substances. This index date was used to determine subsequent study outcomes and ascertain

preceding covariates. Only patients who were at least 18 years old at the index date were
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considered in the analysis. A wash-out period of at least 180 days with no prescription of the

substance of interest was required to define a “new prescription” and to harvest covariates,

and therefore, patients were excluded if the wash-out period was not fully covered by our

database (Fig. 11.1). If a patient was simultaneously eligible for inclusion for multiple

substances, we randomly selected one substance for that patient and hence included the

patient only once in our study.

Figure 11.1: Data harvesting for the study. The inclusion date was the date of the first prescription
or hospital admission of a patient in the data base. The index date was the date of first prescription
of a study medication after a wash-out period of at least 6 months with no prescriptions of medicines
of the same ATC code. All patients with an index date occurring at least 6 months after the inclusion
date were included. Covariates (hospital discharge diagnoses, prescriptions, hospitalization days)
were harvested during the 6 months preceding the index date. The patients were followed-up in the
data base until an outcome event (death, MACCE), until deregistration from the insurer or until
31 December 2012, whichever occurred earlier.

11.2.4 Ascertainment of Study Outcomes

As primary outcomes, we considered time to all-cause death and time to major cardiac

or cerebrovascular events (MACCE). We defined MACCE as any myocardial infarction,

stroke, transient ischemic attack, or all-cause death. Ascertainment of MACCE was based

on the following ICD10 codes recorded in hospital discharge diagnoses: I20, I21, I60, I61,

I62, I63, I64, I65, I66, I69, G45. The starting point of these analyses was the time of

index prescription. If patients had no events recorded in the database, we censored them

at the date of their last observation date or at the date of deregistration from insurance,

165



whichever occurred first. Treatment discontinuation was defined as no refill of initial type of

prescription (branded or generic) within 180 days, conditional on survival and follow-up of

at least 180 days.

11.2.5 Ascertainment of Covariates

The following covariates were harvested at the date of index prescription: age at pre-

scription, sex, insurer, copayment waiver status, specialty of prescriber (general practitioner,

internal medicine specialist, hospital, other), and year of prescription. Within the time period

of 14 days preceding the index prescription, we extracted binary variables indicating whether

any hospitalization ended in that period, whether a “long” hospitalization (duration of more

than 14 days) ended in that period, an indicator for each discharge diagnosis recorded, and

indicators for each drug class prescribed (ATC2 level). The same set of variables was also

extracted for the time period of 180 to 14 days preceding the index prescription.

11.2.6 Statistical Analyses

A high-dimensional propensity score as outlined in Schneeweiss et al. [18] describing the

probability of receiving branded versus generic medication was fitted to calculate inverse

probability of received treatment weights (IPTW). Specifically, we included the main de-

scriptors (age, a quadratic age term (age/100)2, sex, any hospitalization in 180 day and 14

day windows, any discharge diagnosis indicating myocardial infarction or cerebrovascular

events), the 200 variables with the highest potential to correct for bias [18, 83], two-way

interactions among the main descriptors, and interactions between these main descriptors

and diagnoses and prescriptions. We applied the least angle shrinkage and selection operator

(lasso) to regularize and perform model selection among the interaction terms [20]. We used

IPTW to equalize differences in the characteristics between patients receiving branded drugs

and patients receiving generic drugs as index prescription. We evaluated success of propen-

sity score weighting by comparing standardized mean differences in all covariates before and

after weighting.
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Kaplan-Meier curves were used to describe time to death and time to MACCE. Ninety-

five percent confidence intervals (CI) for incidence rates were computed using a Poisson

distribution. Cox proportional hazards regression models were used to estimate unadjusted

and adjusted hazard ratios and 95% confidence intervals (95%CI) for all-cause death and

MACCE, and logistic regression was used to compute unadjusted and adjusted relative risks

and 95%CI for treatment discontinuation.

For each substance, we estimated hazard ratios for mortality as well for MACCE with

the following adjustment levels:

• unadjusted,

• minimally adjusted (adjusted for age, (age/100)2, sex, and copayment waiver status),

• adjusted by an extended set of covariates (minimal adjustment set plus calendar year

of index prescription, specialty of prescriber, previous hospitalizations, recent MI or

cerebrovascular events, any diagnosis in group of endocrine, nutritional or metabolic

diseases (ICD10 code E) or in group of diseases of circulatory system (ICD10 code I),

and any previous use of antihypertensive, lipid-lowering or hypoglycemic drugs),

• fully adjusted by IPTW weighting (aHR). IPTW-adjusted models were also subgrouped

by sex, by age (≤ or > 70 years), by any history of cardiovascular or diabetes disease

(CVDD) as evidenced by previous diagnosis codes or relevant drug prescriptions, and

by diabetes treatment status (no diabetes vs. oral hypoglycemic drugs prescribed but

no insulin vs. insulin prescribed).

As a sensitivity analysis for potential unmeasured confounding we calculated E-values for

point estimates and confidence limits according to VanderWeele and Ding [1]. E-values quan-

tify the minimum strength of an association between a hypothetical unmeasured confounder

and both treatment and outcome that could account for the observed treatment effect after

controlling for measured covariates. We investigated time-dependency of treatment effect

estimates by estimating adjusted hazard ratios during the first six months (censoring later
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events) and during the period after six months (conditional on surviving six months). These

analyses were accompanied by interaction testing.

To investigate the role of treatment discontinuation, three additional models were fitted

for each outcome (IPTW adjusted):

• a landmark model, conditional on survival of 6 months, including treatment discontin-

uation before 6 months as covariate,

• a subgroup landmark model with landmark set at 6 months including only patients

who continued treatment within 6 months from initial prescription,

• and a subgroup landmark model (6 months) including only patients who discontinued

treatment within 6 months from initial prescription.

All hazard ratios were estimated separately for each substance and were then pooled

across all substances of the same indication (antihypertensive drugs, lipid-lowering drugs,

hypoglycemic drugs) using random-effects meta-analysis. If weighted models were esti-

mated, then a robust covariance matrix was used. All models were stratified for package

size/strength combination at initial prescription.

Data were analyzed using PostGreSQL [254] and R [255].

11.2.7 Ethics, Data Protection and Data Availability

The protocol of the study was created in compliance with the Guidelines for Good Phar-

macoepidemiology Practices [256]. According to the Austrian Federal Act concerning the

Protection of Personal Data (‘Datenschutzgesetz’, DSG) the study was exempted from the

need to obtain informed consent from the participants as the research data base which was

provided by the Main Association of the Austrian Social Security Institutions was already

irreversibly pseudonymized and the identities of the participants could not be established.

As this was a retrospective study, participation in the study did not alter any risks of the par-

ticipants. The study protocol and the exempt from the need to obtain informed consent was
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approved by the Ethics Committee of the Medical University of Vienna (ECS 1533/2013).

The data that support the findings of this study are available from the Main Association of

the Austrian Social Security Institutions but restrictions apply to the availability of these

data, which were used under license for the current study, and so are not publicly available.

Data are however available from the authors upon reasonable request and with permission

of the Main Association of the Austrian Social Security Institutions.

11.3 Results

11.3.1 Patients

During the study period from 2007 to 2012, 986,149; 47,359; and 201,038 patients with in-

dex prescriptions for antihypertensive, lipid-lowering and hypoglycemic drugs were included,

respectively, with follow-up totaling to 1,920,544; 93,952; and 383,460 patient years. Fig-

ure 11.2 shows patient counts for each evaluated substance, grouped by branded or generic

medicines. Characteristics of patients at their first index prescription are displayed in Table

11.1. In general, patients receiving branded medicines were older, more often had recent

(within past 14 days) or previous (within past 180 days) hospitalizations, more often had

used antihypertensive, lipid-lowering and hypoglycemic drugs before and more often re-

ceived their index prescriptions from hospitals compared to patients treated with generic

medicines. For lipid-lowering and hypoglycemic drugs, we also observed that men received

branded medicines more often than women.
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Figure 11.2: Patient counts (1k = 1,000) for each substance evaluated.

Propensity models achieved concordance indices in the range of 0.639 (enalapril, C09AA02)

to 0.854 (losartan and diuretics, C09DA01). After IPTW weighting, maximum standardized

mean differences across all high-dimensional propensity score covariates were below 10% for

all substances, except for repaglinide, A10BX02 (17.3%) and bisoprolol, C07AB07 (12.4%,

Supplementary Table 1). The means of the standardized mean differences across all covari-

ates were always < 3%, and were < 1% for 15 of the 17 studied substances.

11.3.2 Antihypertensives: Primary Time-to-Event Outcomes

Across all 12 antihypertensive substances, 53.8 (95% CI; 53.3, 54.3) deaths per 1000

patient-years were observed for branded medicines, while the corresponding figure was 30.2

(95% CI; 29.9, 30.5) for generic medicines. After IPTW adjustment, the estimated incidence
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rates were 45.8 (95% CI; 45.5, 46.1) deaths per 1000 patient years for branded medicines

and 40.6 (95% CI; 40.4, 40.9) for generic medicines. Crude cumulative five-year survival

rates in branded and generics users were 77.8% (95% CI; 77.3%, 78.4%) and 85.9% (95%

CI; 85.5%, 86.2%), respectively, and the corresponding IPTW-adjusted rates were 79.8%

(95% CI; 79.4%, 80.1%) and 82.7% (95% CI; 82.4%, 83.0%) (Fig. 11.3). The unadjusted

pooled branded vs. generic hazard ratio (HR) of 1.75 (95% CI; 1.56, 1.98) was attenuated

after IPTW adjustment to an aHR of 1.15 (95% CI; 1.06, 1.26), favoring generics. Table

11.2 illustrates the aHR resulting from different adjustments, demonstrating a continuously

decreasing aHR with increasing covariate adjustment. Table 11.3 compares fully adjusted

aHRs across different substances. Interestingly, while results for most substances favored of

generics, the direction of association was reversed for bisoprolol (C07AB07) and nebivolol

(C07AB12). Among all subgroup analyses conducted, we only found significant treatment

effect modification with history of CVDD (interaction p < 0.001). In patients without CVDD

history, the aHR was 1.47 (95%CI; 1.31, 1.64), while being only 1.10 (95%CI; 1.01, 1.20) in

patients with CVDD history.
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Figure 11.3: Survival curves and curves of cumulative MACCE-free survival. (a) Overall survival for
patients with index prescriptions for antihypertensive drugs. (b) MACCE-free survival for patients
with index prescriptions for antihypertensive drugs. (c) Overall survival for patients with index pre-
scriptions for lipid-lowering drugs. (d) MACCE-free survival for patients with index prescriptions
for lipid-lowering drugs. (e) Overall survival for patients with index prescriptions for hypoglycemic
drugs. (f) MACCE-free survival for patients with index prescriptions for hypoglycemic drugs.

In patients receiving branded medicines, we observed a rate of 83.6 (95% CI; 82.9, 84.2)

major cardiac and cerebrovascular events (MACCE) per 1000 patient-years, compared to

51.3 (95% CI; 50.9, 51.8) in patients using generic medicines. The IPTW-adjusted MACCE
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incidence rates were 72.3 (95% CI; 72.0, 73.3) and 64.1 (95% CI; 63.8, 65.0). After IPTW

adjustment, the hazard ratio for MACCE was 1.13 (95% CI; 1.07, 1.20). While most individ-

ual substances favored generic drugs, an opposite effect estimate was observed for bisoprolol

(C07AB07) with aHR 0.91 (95% CI; 0.85, 0.98), and no significant benefit was observed

for nebivolol (C07AB12), enalapril and diuretics (C09BA02) and losartan and diuretics

(C09DA01) (Table 11.4). Nominally significant treatment effect modification was detected

for age (interaction p-value 0.042), with the estimated treatment effects being stronger in

patients aged 70 years or younger, aHR 1.20 (95% CI; 1.13, 1.28) than in relatively older

patients, aHR 1.10 (95% CI; 1.04, 1.17), and for history of CVDD (interaction p < 0.001)

(Table 11.4).

11.3.3 Antihypertensives: Treatment Discontinuation

In 26.7% of all index prescriptions of branded medicines and also in 26.7% of all index

prescriptions of generic medicines, no refill was observed within the first six months. However,

after IPTW adjustment, the adjusted relative risk of treatment discontinuation was 1.23 (95%

CI; 1.05, 1.44) in patients originally receiving branded medicines than in patients receiving

generic medicines. In the landmark analysis including only patients who survived and were

observed for at least six months and who were still using the originally prescribed medication,

the aHR for mortality was very similar to the main analysis, aHR = 1.17 (95% CI; 1.03,

1.34), and not significantly different from the aHR computed in patients who discontinued

treatment within six months from index prescription, aHR = 1.12 (95% CI; 1.04, 1.21) (p

for interaction = 0.558). In the landmark analysis that included treatment discontinuation

up to six months as a covariate, the aHR was virtually unchanged, aHR = 1.16 (95% CI;

1.04, 1.26).

11.3.4 Lipid-Lowering Drugs: Primary Time-to-Event Outcomes

Patients using branded or generic lipid-lowering drugs experienced 24.4 (95% CI; 23.0,

25.9) and 16.0 (95% CI; 15.0, 17.2) deaths per 1000 patient-years, respectively. The IPTW-

173



adjusted incidence rates per 1000 patient-years were 20.8 (95% CI; 19.9, 21.8) for branded

drugs and 17.8 (95% CI; 16.9, 18.6) for generics. Cumulative five year survival rates were

86.6% (95% CI; 82.8%, 90.6%) and 91.1% (95% CI; 89.9%, 92.4%) in these two groups, and

corresponded to adjusted survival rates of 89.0% (95% CI; 87.4%, 90.6%) and 90.6% (95%

CI; 89.5%, 91.8%), respectively (Fig. 11.3).

The unadjusted pooled hazard ratio for mortality was 1.69 (95% CI; 1.09, 2.63), which was

no longer significant after IPTW weighting, 1.13 (95% CI; 0.86, 1.47). For both individual

substances, results suggested a lower hazard for generic medicines, however, results did not

reach statistical significance for simvastatin (C10AA01). There was no significant effect

modification by history of CVDD (p = 0.07) or time period (p = 0.35).

Branded and generic lipid-lowering drug users exhibited incidence rates for MACCE

of 59.7 (95% CI; 57.4, 62.1) and 40.9 (95% CI; 39.1, 42.7) events per 1000 patient-years,

respectively, which changed to 53.1 (95% CI; 51.6, 54.1) and 44.4 (95% CI; 43.0, 45.3) after

IPTW adjustment. The pooled IPTW-adjusted hazard ratio was 1.20 (95% CI; 1.05, 1.38),

and was more pronounced and significant for fluvastatin (C10AA04), while being smaller

and non-significant in simvastatin (C10AA01). In subgroup analyses, we again observed a

larger treatment effect estimate in patients with no previous history of CVDD, pooled aHR

= 1.60 (95% CI; 1.19, 2.14), compared to patients with CVDD history, pooled aHR = 1.16

(95% CI; 1.03, 1.32), but interaction analyses failed to reach statistical significance (p =

0.052, Table 11.5). Similarly, there was no clear evidence for a time-dependent treatment

effect (aHR for first six months, 1.37; aHR after six months, 1.10; interaction p = 0.151).

11.3.5 Lipid-Lowering Drugs: Treatment Discontinuation

Treatment discontinuation rates were significantly higher in branded medicines with sim-

vastatin (C10AA01), 43.4% vs. 27.6%, adjusted relative risk 1.80 (95% CI; 1.63, 1.99).

However, discontinuation rates were virtually equal for fluvastatin (C10AA04), 31.5% vs.

32.2%, adjusted relative risk 1.03 (95% CI; 0.99, 1.08). A pooled relative risk estimate of

1.36 (95% CI; 0.79, 2.36) resulted for lipid-lowering drugs. Pooled adjusted hazard ratios for
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mortality from landmark analyses conditional on treatment continuation or discontinuation

at six months were similar (interaction p-value = 0.75). Furthermore, including treatment

discontinuation status at six month as covariate in a landmark analysis did not lead to a

significant change in the overall result, aHR = 1.08 (95% CI; 0.80, 1.45).

11.3.6 Hypoglycemic Drugs: Primary Time-to-Event Outcomes

Incidence rates of mortality in patients using branded or generic hypoglycemic drugs

were 55.5 (95% CI; 54.5, 56.6) and 29.8 (95% CI; 29.0, 30.6) events per 1000 patient-years,

respectively. The corresponding IPTW-adjusted numbers were 45.9 (95% CI; 45.5, 46.9)

and 40.3 (95% CI; 39.6, 40.9). Cumulative five-year survival rates were 75.1% (95% CI;

74.1%, 76.2%) and 85.0% (84.1%, 85.9%), respectively, and corresponded to IPTW adjusted

survival rates of 77.4% (95% CI; 76.6%, 78.3%) and 81.9% (95% CI; 81.2%, 82.6%) (Fig.

11.3). The crude pooled hazard ratio for mortality of 1.43 (95% CI; 1.37, 1.49) reduced after

IPTW adjustment to 1.09 (95% CI; 0.93, 1.28) (Table 11.2). A significantly lower mortality

hazard for generics was observed for metformin (A10BA02) only, with aHR 1.21 (95% CI;

1.15, 1.27) (Table 11.3). Interaction tests did not reveal any significant differences between

subgroups, nor between time periods (Table 11.6).

The incidence rates of MACCE for branded and generic hypoglycemic drug users were

88.5 (95% CI; 87.2, 89.9) and 54.2 (95% CI; 53.1, 55.3) events per 1000 patient-years, respec-

tively. After IPTW adjustment, the corresponding MACCE incidence rate were 76.0 (95%

CI; 75.1, 76.7) and 66.8 (95% CI; 66.0, 67.4). The IPTW-adjusted hazard ratio of MACCE

confirmed a small but significant difference in favor of generics, aHR = 1.11 (95% CI; 1.03,

1.20) (Table 11.2), which was also seen in separate analyses of metformin (A10BA02) and

gliclazide (A10BB09), while no difference was found for repaglinide (A10BX02) (Table 11.3).

IPTW-adjusted hazard ratios in subgroups were very similar, and no differences in treatment

effect could be confirmed by interaction tests. The aHR of MACCE did not change over

time (Table 11.6).
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11.3.7 Hypoglycemic Drugs: Treatment Discontinuation

Hypoglycemic treatment discontinuation rates at six months were 26.2% in branded users

and 30.0% in generics users, and after IPTW-adjustments, there was no difference in the

risk for discontinuation, with adjusted relative risk 1.02 (95% CI; 0.97, 1.07). In landmark

analyses including only patients on treatment at six months, there was a clear benefit for

metformin (A10BA02) generics users with respect to mortality, aHR = 1.27 (95% CI; 1.19,

1.35), but overall, the results pointed towards equivalence but with a wide confidence interval,

pooled aHR = 1.01 (95% CI; 0.77, 1.34). In patients discontinuing their initial treatment,

there was evidence for a small overall difference favoring generics, pooled aHR = 1.13 (95%

CI; 1.04, 1.22). If the landmark analyses included treatment discontinuation as covariate, the

pooled aHR was unchanged compared to the landmark analysis without further adjustment

for treatment discontinuation, pooled aHR = 1.03 (95% CI; 0.83, 1.29).

11.4 Discussion

We compared death and the incidence of MACCE for 17 branded versus generic versions

of several medications commonly prescribed for chronic metabolic illnesses (hypertension or

heart failure, hyperlipidemia, diabetes mellitus) within a national dataset representing nearly

all insured persons in Austria from 2007 to 2012. Drawing from national hospitalization and

pharmaceutical prescription fill data, we found a small but clear advantage for generic drugs

over their branded counterparts for most of the studied substances. This generic advantage

was robust across various levels of covariate adjustment, in landmark analyses considering

drug discontinuation, and among sub-analyses based on age, sex, and previous disease status.

Among the studied patients, users of branded drugs generally appeared sicker than generic

drug users. As shown in Table 11.1, branded drug patients had higher rates of recent hospi-

talizations, longer hospitalizations (and hospitals were more likely to initiate therapy with

originator products), higher medication use, higher rates of previous MACCE events, and

higher rates of copayment waivers suggesting lower socioeconomic status. As a result, unad-
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justed rates of mortality and MACCE favored generic drugs across all three drug categories.

However, despite overall good covariate balancing achieved by IPTW weighting, the as-

sociations favoring generics were considerably attenuated but not eliminated after inverse

probability of treatment weighting. Thus, residual confounding by unmeasured characteris-

tics remains a possibility. Our sensitivity analyses supplied E-values between 1.4 and 1.69

for the point estimates. For comparison, the ratios of unadjusted and fully adjusted hazard

ratios could be interpreted as the amount of bias removed by the considered covariates and

ranged from 1.22 to 1.52. We find it unlikely that there is additional unmeasured confounding

as strong as or even stronger than all measured covariates considered simultaneously.

Nevertheless, we believe disease severity is a possible source of unmeasured confound-

ing. Because our data only included hospital discharge diagnoses instead of comprehensive

medical records data with diagnoses from outpatient health care encounters, we were unable

to identify patients with prior disease with high sensitivity. This would explain the large

difference in adjusted hazard ratios among patients with and without prior CVDD for hyper-

tension and hyperlipidemia drugs. The subgroups with prior CVDD more accurately reflect

a sicker patient pool and have hazard ratios closer to 1, whereas the subgroups without prior

CVDD may include patients with relatively more severe disease who were given branded

medications. This subgroup difference based on CVDD disappeared when considering the

diabetes drugs, and instead it is prior diabetes status that yielded a small but significant

difference in subgroup analysis.

Prescribing doctor characteristics have been shown to affect medication prescription pref-

erences, including generic substitution [257]. Physician skepticism about generic medication

has been associated with age [258], and pharmaceutical marketing [259], and these trends

may extend to Austrian physicians. In Austria, where generic substitution at pharmacies

is generally prohibited by law, generic prescription lies entirely with the doctor. Unfortu-

nately, we did not have detailed information on prescribing physicians other than specialty,

and therefore could not extensively adjust for physician characteristics.

Two studied drugs had a maximum covariate standardized mean difference greater than

0.1 after IPTW weighting. These were bisoprolol (C07AB07) and repaglinide (A10BX02).
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Bisoprolol was associated with a higher copayment waive rate, 0.314 vs 0.265 among generic

users, and perhaps lower socioeconomic status among generic users of bisoprolol contributes

its being one of only two antihypertensive substances with significant branded drug advantage

for mortality and MACCE outcomes. Repaglinide was associated with higher rates of dilated

cardiomyopathy (as indicated by past discharge diagnoses) among generic users (0.011 vs

0.002). It was also associated with lower rates of mortality and MACCE among branded

users, although this difference is not significant given the small sample size of repaglinide.

These observations indicate that the observed outcomes are appreciably affected by imbal-

ance among important covariates. For the other drugs that have maximum SMD smaller

than 0.1, there may still be enough residual covariate imbalance after IPTW weighting to im-

pact results. Perhaps other propensity score estimation methods than the high-dimensional

propensity score may produce better covariate balance, such as including all covariates via

lasso [19] or machine learning algorithms [42].

Medication adherence has previously been identified as a potential cause for the differ-

ences between generic and branded drug users, with the observation that the more expen-

sive branded drugs engender lower drug adherence and therefore worse clinical outcomes

[246, 247, 260]. However, other than for simvastatin (C10AA01), for which we observed

higher branded discontinuation rates, we did not find significant differences in discontinua-

tion among the studied drugs. As branded simvastatin was predominantly reimbursed in the

20mg strength at the time of the study, some patients may have been switched to the generic

40mg form for convenience, as this can be split, providing a longer duration of therapy per

pack (and copayment). Landmark analyses using 6-month drug discontinuation also did not

produce any significant differences. In Austria, copayment increased from 4.70¤ in 2007 to

5.15¤ in 2012. Since medication copayments are not different between branded and generic

drugs and are generally low [234], we did not expect drug discontinuation to be a prominent

concern, as opposed to populations in systems with higher copayments or those with greater

copayments for branded medications.

Our studied drugs are not representative of the narrow therapeutic index drugs that pose

particular problems regarding generic substitution. Instead, we have studied common drugs
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for chronic diseases that could generate the greatest economic savings upon switching to

generic formulations. Other studies focusing on similar therapeutic targets find nonsignifi-

cant differences between generic and branded drugs. A meta-analysis by Manzoli et al. [243]

of small randomized studies for cardiovascular drugs found no difference between generic

and branded drugs for both soft and hard clinical outcomes. Randomized studies for statins

also did not identify any differences in blood cholesterol levels between generic and branded

users [261, 262]. Ahrens et al. [263] studied metoprolol in an observational study and found

higher unadjusted cardiovascular event rates among generic users that disappeared upon

confounder adjustment. Corrao et al. [245] studied simvastatin in an observational study

and found similar discontinuation rates and CV outcomes between generic and branded pa-

tients. By contrast, our results favored generic drugs both before and after adjustment. As

discussed, this may be due to unmeasured confounding by indication with Austrian health

providers, especially doctors in hospitals and specialists, perhaps preferring branded for-

mulations for sicker patients. Although there is no biologically plausible rationale for this

strategy, the economic incentives for choosing a particular brand or generic in the hospital

setting in Austria can be different from those in the outpatient setting, because the systems

of drug acquisition differ markedly in the two sectors [264].

While the limitations of our study include its observational nature, which may lead to

residual confounding from unobserved characteristics, there are also several strengths. These

include a large study population that is nationally representative and conducted in a country

with widely available access to healthcare, thus minimizing adherence differences and the

impact of socioeconomic status as confounders. We used state-of-the-art propensity score

methods to achieve good balance in observed covariates between compared groups, and

we provide robust results with multiple subgroup and E-value sensitivity analyses. Future

research would benefit from more detailed outpatient data to better characterize the patients’

health status, and more detailed prescriber characteristics, which could be achieved by linking

additional data sources.

We conclude from this comprehensive study of almost all insured individuals in Austria

that use of generic medications associated with similar or even slightly lower rates of mortality
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or nonfatal cardiovascular events. While there remains the potential for residual confounding

by indication, our findings support the safety of policies towards greater use of generic

substitute medications relative to their branded, and usually more expensive, versions.

180



Variable Branded
anti-
hyperten-
sive(N=
427,641)

Generic
anti-
hyperten-
sive(N=
558,508)

Branded
lipid-
lowering
(N=
21,665)

Generic
lipid-
lowering
(N=
25,694)

Branded
hypo-
glycemic
(N=
101,045)

Generic
hypo-
glycemic
(N=
99,993)

Age (years), mean (SD) 64.5
(15.4)

63.3
(14.5)

63.0
(12.8)

62.4
(12.5)

65.0
(13.9)

62.7
(13.5)

Sex: female 54.3% 54.5% 50.3% 54.3% 49.5% 50.2%
Copayment waiver 34.2% 29.9% 30.6% 26.3% 41.1% 38.3%
Hospitalization (ending in
last 180 days)

30.0% 19.9% 23.0% 18.1% 26.2% 18.7%

Hospitalization > 14 days
(ending in last 14 days)

7.3% 2.5% 3.7% 2.0% 5.7% 2.0%

Hospitalization > 14 days
(ending in last 180 days)

10.8% 5.4% 6.9% 4.6% 9.1% 4.9%

Index year:
2007 0.7% 0.6% 0.1% 0.4% 1.0% 0.7%
2008 10.1% 9.1% 1.4% 4.5% 11.2% 8.2%
2009 22.4% 22.0% 33.3% 16.9% 22.4% 18.4%
2010 27.0% 24.9% 28.1% 35.5% 25.6% 25.7%
2011 20.6% 23.3% 22.1% 25.4% 22.2% 25.4%
2012 19.2% 20.1% 15.0% 17.3% 17.6% 21.5%
Specialty of prescriber:
General practitioner 67.7% 78.5% 68.9% 75.4% 77.5% 81.7%
Internal medicine specialist 11.6% 13.3% 12.8% 15.5% 9.7% 10.4%
Hospital 9.8% 3.7% 10.2% 3.7% 5.7% 2.8%
Other 10.8% 4.6% 8.1% 5.4% 7.1% 5.2%
Recent myo-cardial infarc-
tion

2.5% 0.6% 3.8% 1.1% 0.9% 0.3%

Recent cerebro-vascular
event

2.3% 1.1% 2.3% 1.6% 1.6% 0.6%

Any diagnosis in group of
endocrine, nutritional or
metabolic diseases or in
group of diseases of circula-
tory system

33.0% 16.6% 25.3% 15.5% 28.0% 15.5%

Previous use of antihyper-
tensive, lipid-lowering or
hypoglycemic medicines

67.5% 64.1% 73.0% 69.0% 81.3% 76.4%

Previous use of injectable
insulins

1.9% 1.4% 2.0% 1.4% 3.2% 2.5%

Previous use of oral hypo-
glycemic drugs

12.7% 11.5% 14.6% 13.0% 39.2% 21.6%

Table 11.1: Characteristics of patients at first index prescription for antihypertensive, lipid-lowering
or hypoglycemic treatment. 181



Indication Adjustment variables Mortality HR
(95%CI) for branded
vs. generic

MACCE HR
(95%CI) for branded
vs. generic

Antihyper-
tensive
drugs

No adjustment 1.75 (1.56, 1.98) 1.62 (1.47, 1.77)
Age, sex, copayment
waiver

1.52 (1.37, 1.69) 1.44 (1.33, 1.56)

Extended set of covari-
ates*

1.23 (1.13, 1.34) 1.18 (1.12, 1.25)

IPTW via high-
dimensional propen-
sity scores

1.15 (1.06, 1.25) 1.13 (1.07, 1.20)

E-value (lower 95% confi-
dence limit)**

1.57 (1.31) 1.51 (1.34)

Lipid-
lowering
drugs

No adjustment 1.69 (1.09, 2.63) 1.49 (1.04, 2.12)
Age, sex, copayment
waiver

1.40 (0.84, 2.32) 1.32 (0.89, 1.96)

Extended set of covari-
ates*

1.33 (1.07, 1.64) 1.26 (1.17, 1.35)

IPTW via high-
dimensional propen-
sity scores

1.13 (0.86, 1.47) 1.20 (1.05, 1.38)

E-value (lower 95% confi-
dence limit)**

1.51 (1) 1.69 (1.28)

Hypo-
glycemic
drugs

No adjustment 1.43 (1.37, 1.49) 1.35 (1.31, 1.39)
Age, sex, copayment
waiver

1.32 (1.24, 1.40) 1.29 (1.26, 1.33)

Extended set of covari-
ates*

1.11 (1.01, 1.23) 1.10 (1.01, 1.18)

IPTW via high-
dimensional propen-
sity scores

1.09 (0.93, 1.28) 1.11 (1.03, 1.20)

E-value (lower 95% confi-
dence limit)**

1.4 (1) 1.45 (1.21)

Table 11.2: Pooled IPTW-adjusted hazard ratios (HR) for all-cause mortality and major cardiac
or cerebrovascular events (MACCE) comparing branded vs. generic medicines applying different
levels of adjustment. *Age, sex, copayment waiver status, calendar year, specialty of prescriber,
previous hospitalizations, recent MI or cerebrovascular events, any diagnosis in group of endocrine,
nutritional or metabolic diseases or in group of diseases of circulatory system, any previous use of
antihypertensive, lipid-lowering or hypoglycemic drugs. **E-values [1] for IPTW adjusted point
estimate and lower confidence limit.

182



Indication
Substance

ATC code N branded N generics Mortality: HR
(95%CI) for
branded vs.
generic

MACCE: HR
(95%CI) for
branded vs.
generic

Antihypertensive drugs
Metropolol C07AB02 9,185 8,202 1.13 (0.96, 1.32) 1.15 (1.01, 1.30)
Bisoprolol C07AB07 135,208 29,442 0.84 (0.76, 0.92) 0.91 (0.85, 0.98)
Nebivolol C07AB12 91,283 18,561 0.81 (0.68, 0.97) 0.98 (0.86, 1.11)
Carvedilol C07AG02 20,837 37,181 1.19 (1.10, 1.28) 1.17 (1.10, 1.25)
Amlodipine C08CA01 28,118 84,988 1.41 (1.35, 1.48) 1.28 (1.23, 1.33)
Enalapril C09AA02 17,053 71,065 1.08 (1.02, 1.15) 1.06 (1.01, 1.11)
Lisinopril C09AA03 51,443 99,145 1.15 (1.10, 1.20) 1.17 (1.13, 1.21)
Ramipril C09AA05 27,388 79,301 1.32 (1.24, 1.41) 1.26 (1.20, 1.33)
Enalapril
and diuret-
ics

C09BA02 4,492 16,024 1.08 (0.96, 1.22) 1.01 (0.91, 1.12)

Lisinopril
and diuret-
ics

C09BA03 27,967 66,727 1.24 (1.16, 1.32) 1.19 (1.13, 1.25)

Ramipril
and diuret-
ics

C09BA05 10,643 39,711 1.25 (1.15, 1.37) 1.23 (1.15, 1.32)

Losartan
and diuret-
ics

C09DA01 4,024 8,161 1.64 (1.23, 2.20) 1.20 (0.98, 1.46)

Lipid-lowering drugs
Simvastatin C10AA01 1,862 10,079 0.97 (0.76, 1.42) 1.09 (0.87, 1.33)
Fluvastatin C10AA04 19,803 15,615 1.28 (1.05, 1.56) 1.26 (1.14, 1.40)
Hypoglycemic drugs
Metformin A10BA02 41,889 87,929 1.21 (1.15, 1.26) 1.16 (1.11, 1.20)
Gliclazide A10BB09 50,520 11,504 1.02 (0.94, 1.11) 1.08 (1.01, 1.16)
Repaglinide A10BX02 2,636 560 0.91 (0.57, 1.45) 0.83 (0.57, 1.22)

Table 11.3: IPTW-adjusted hazard ratios (HR) and 95% confidence intervals (CI) of all-cause
mortality and major cardiac or cerebrovascular events (MACCE) for individual substances.

183



Subgroup N branded N generics Mortality
HR
(95%CI)

p-value for
interac-
tion*

MACCE
HR
(95%CI)

p-value for
interac-
tion*

Females 232,229 304,174 1.17 (1.06,
1.28)

0.3075 1.14 (1.07,
1.22)

0.6376

Males 195,412 254,334 1.14 (1.04,
1.24)

1.13 (1.07,
1.19)

Age ≤ 70
years

263,733 371,355 1.24 (1.11,
1.38)

0.0019 1.20 (1.13,
1.28)

< 0.0001

Age > 70
years

163,908 187,153 1.13 (1.04,
1.22)

1.10 (1.04,
1.17)

No history
of CVDD

110,087 183,383 1.47 (1.31,
1.64)

< 0.0001 1.34 (1.22,
1.47)

< 0.0001

History of
CVDD

317,554 375,125 1.10 (1.01,
1.20)

1.09 (1.03,
1.16)

No dia-
betes

373,288 494,452 1.17 (1.07,
1.28)

0.0006 1.15 (1.08,
1.23)

0.0003

Oral DM
therapy
but no
insulin use

46,134 56,091 1.10 (0.99,
1.22)

1.08 (1.01,
1.15)

Insulin use 8,219 7,965 1.06 (0.96,
1.18)

1.08 (0.99,
1.18)

Time-
dependent
effect: ≤ 6
months

427,641 558,508 1.12 (1.01,
1.24)

0.0876 1.28 (1.03,
1.58)

0.0111

> 6
months

352,719 479,187 1.16 (1.06,
1.27)

1.13 (1.07,
1.20)

Table 11.4: Antihypertensive drugs: pooled IPTW-adjusted hazard ratios from subgroup analyses.
*p-value for interaction of a variable with treatment, i.e., for testing the null hypothesis that HR
is equal in the subgroups.
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Subgroup N branded N generics Mortality
HR
(95%CI)

p-value for
interac-
tion*

MACCE
HR
(95%CI)

p-value for
interac-
tion*

Females 10,900 13,945 1.09 (0.79,
1.50)

0.3072 1.19 (1.04,
1.366)

0.3533

Males 10,765 11,749 1.18 (0.95,
1.47)

1.24 (1.07,
1.44)

Age ≤ 70
years

15,381 18,658 1.07 (0.68,
1.69)

0.3721 1.18 (0.92,
1.51)

0.5031

Age > 70
years

6,284 7,036 1.18 (0.97,
1.43)

1.23 (1.08,
1.40)

No history
of CVDD

4,798 7,237 1.64 (1.14,
2.37)

< 0.0001 1.60 (1.19,
2.14)

< 0.0001

History of
CVDD

16,867 18,457 1.08 (0.81,
1.43)

1.16 (1.03,
1.32)

No dia-
betes

18,512 22,351 1.21 (1.01,
1.44)

0.2248 1.26 (1.14,
1.40)

0.0046

Oral DM
therapy
but no
insulin use

2,727 2,977 0.85 (0.40,
1.81)

1.08 (0.86,
1.34)

Insulin use 426 366 0.97 (0.36,
2.56)

0.76 (0.19,
3.06)

Time-
dependent
effect:

21,665 25,694 1.32 (0.99,
1.77)

0.0294 1.37 (1.16,
1.62)

0.0009

> 6
months

19,055 22,857 1.08 (0.80,
1.45)

1.10 (0.86
1.41)

Table 11.5: Lipid-lowering drugs: pooled IPTW-adjusted hazard ratios from subgroup analyses.
*p-value for interaction of a variable with treatment, i.e., for testing the null hypothesis that HR
is equal in the subgroups.
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Subgroup N branded N generics Mortality
HR
(95%CI)

p-value for
interac-
tion*

MACCE
HR
(95%CI)

p-value for
interac-
tion*

Females 50,026 50,147 1.06 (0.85,
1,31)

0.3072 1.14 (1.03,
1.25)

0.2597

Males 51,019 49,846 1.12 (1.00,
1.25)

1.11 (1.06,
1.16)

Age ≤ 70
years

63,719 70,352 1.19
(1.11,1.29)

0.0075 1.16 (1.11,
1.22)

0.0008

Age > 70
years

37,326 29,641 1.04 (0.84,
1.29)

1.07 (0.97,
1.18)

No history
of CVDD

15,754 21,629 1.06 (0.78,
1.43)

0.5352 1.04 (0.77,
1.40)

0.2720

History of
CVDD

85,291 78,364 1.11 (0.96,
1.28)

1.12 (1.06,
1.19)

No dia-
betes

61,401 78,420 1.14 (1.00,
1.30)

0.0475 1.15 (1.11,
1.19)

0.0027

Oral DM
therapy
but no
insulin use

36,445 19,061 1.07 (0.93,
1.23)

1.09 (1.02,
1.16)

Insulin use 3,199 2,512 0.97 (0.69,
1.38)

1.09 (0.84,
1.40)

Time-
dependent
effect:

101,045 99,993 1.16 (1.06,
1.26)

0.0269 1.08 (1.02,
1.15)

0.3153

> 6
months

85,409 84,899 1.03 (0.82,
1.29)

1.11 (1.00,
1.24)

Table 11.6: Hypoglycemic drugs: pooled IPTW-adjusted hazard ratios from subgroup analyses.
*p-value for interaction of a variable with treatment, i.e., for testing the null hypothesis that HR
is equal in the subgroups.

186



CHAPTER 12

Conclusion

12.1 Vertical Integration

Observational clinical research spans multiple fields including computer science, statistics,

epidemiology, and medicine. Progress in one area propel advances in other fields. The main

computational bottleneck in performing observational studies is the time required to con-

struct large-scale propensity scores. Chapter 7 describes advances in GPU programming for

logistic regression that decrease the runtime of constructing a PS with over 10,000 covariates

by almost four times compared to multi-threaded CPU and more than ten times compared

to single-threaded CPU. This allowed the research of Chapter 5 to be computed on a single

personal TITAN V GPU card, whereas the earlier research of Chapter 4 required use of the

shared Hoffman2 computing cluster at UCLA. I had to queue for days to acquire computing

resources on Hoffman2 and utilized up to approximately 100 CPUs simultaneously. If our

methodology were applied on a larger scale requiring the use of cloud computing resources,

the improved efficiency of our statistical regressions could represent significant savings. In

such a case, even a 2× improvement in runtime, possibly unimpressive to some, would result

in halving the cost of computing.

Even without GPU programming, the Cyclops R package, published on CRAN, facili-

tates novel large-scale clinical research approaches. Using Cyclops, the research presented

in Chapter 10 was conducted in “five weeks on a computer with 32 processing cores and

168GB of memory” [229]. That is a seemingly long but previously unattainable process

to conduct an all-by-all comparison of treatments within an entire clinical domain (depres-

sion). These computational statistics advances of Suchard et al. [28] have introduced a
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new paradigm in exploring up to thousands of hypotheses under a consistent study design.

The antihypertensive medication study of [210] uses the same new observational analytic

framework.

The software suite developed in the OHDSI community, described at the end of Chapter

3, has provided tools for start-to-finish execution of a modern observational study. From

the moment of clinical question conception, the investigator can interface with ATLAS

to create cohort definitions and study specifications. Epidemiological considerations such

as PS estimation, PS adjustment, and outcome model decisions are incorporated into the

study design, and implemented through CohortMethod. A full stable of other software

support all aspects of the study execution and analysis. As an open community, OHDSI

invites all interested participants of observational clinical analytics, from medicine, academia,

industry, and government. The aforementioned software tools are open source, with the goal

of advancing observational research to improve clinical practice and benefit the most patients.

12.2 GPU All the Things

Developed by Marc Suchard, the currently published version of Cyclops provides ef-

ficient cyclic coordinate descent optimization of common generalized linear models using

the CPU. I have continued the work of developing GPU code, started in [28] for the self-

controlled case series, in my research in Chapter 7 on logistic regression. Immediate future

work includes developing this GPU code to production quality for other researchers’ use,

particularly for fitting large-scale propensity scores. Subsequent research includes develop-

ing GPU code for the other regressions serviced by Cyclops, including Cox proportional

hazards, tied Cox models, conditional logistic regression, and Poisson regression.

In Chapter 7, by interleaving vectors to achieve coalesced memory access, I develop GPU

code that scales well with the number of cross-validation replicates, of which I tested up to

1,000. This GPU code can be repurposed and further developed for other applications in

which multiple regressions share the same underlying data but have different weights. The

most immediate application is to perform cross-validation on a grid of λ values, an approach
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favored by many researchers. Another application is to apply this principle to bootstrapping,

in which each sample is a weighted resampling of the original population.

As mentioned in [28], a full Bayesian analysis of our regularization hyperparameters is

yet computationally intractable. The maximum likelihood estimation methods we use are

frequentist stand-in until Bayesian methods become available. Future research should focus

on developing a Bayesian alternative to cross-validation, ideally with GPU acceleration.

Machine learning is also a burgeoning field of computer science that is able to construct

predictive models such as the propensity score. While there have been some machine-learning

extensions to existing PS estimation algorithms [89], there remains a need to comprehensively

compare large-scale regularized regression [19] to machine learning alternatives.

12.3 The Network Study

Dubbed the “Save Our Sisyphus Challenge,” the alendronate vs raloxifene study of Chap-

ter 8 was the first OHDSI collaboration demonstrating the network capability of the commu-

nity. Individual OHDSI collaborators who are data holders volunteered participation in the

study, and UCLA operated as a central study coordinator for data analysis (Figure 12.1).

Each participating center was sent a R package that fully executed the study, and sent back

to the study coordinator a zip file including study results devoid of individual patient-level

information. By presenting meta-analyses of results from 9 different databases, the study

provides greater evidence than what can be provided by a single data source.

Chapters 8-10 all execute studies across multiple databases in the OHDSI network. By

using a consistent study design, differences among the databases are attributable to popu-

lation differences and residual bias, and not from study implementation discrepancies. The

data reported in Chapter 10 are displayed graphically online at https://data.ohdsi.org/

SystematicEvidence/, and highlight the reality that different databases can provide dif-

ferent answers to the same question. Network studies increase the scope of a studies by

providing evidence from multiple data sources, allowing clinical questions to be answered

using the maximum study populations available.
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Figure 12.1: Collaborators in alendronate-raloxifene study

Unfortunately, several US databases overlap in their patient populations. We don’t know

which patients overlap, but we know that the total combined sizes of available databases

exceeds the population of the country. The ideal network study combines nonoverlapping

databases. For example, chapter 11 is a study encompassing nearly all residents of Austria,

through a national database that would be ideal for a network study with other national

databases. The United States has no national database providing cradle-to-grave longitudi-

nal health data as some European countries do, complicating observational research.
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12.4 Automated Drug Surveillance

I am interested in applying observational analytical tools in building systems for utilizing

health data. The United States lacks automated drug surveillance systems to detect drug

safety issues, with the emphasis on “automated.” While the Food and Drug Administration

does have the ability to conduct drug safety studies in a distributed network of data sources

[265], it still relies on postmarket reviews or spontaneous reporting to identify signals worth

investigating. I envision a system in which drugs are constantly and automatically evaluated

for signals among outcomes of interest, so that adverse events can be detected at the earliest

possible time. Perhaps the all-by-all study paradigm used in Chapter 10 and recent OHDSI

studies [229, 210] for depression and hypertension can be run regularly for all major clinical

domains. This process would require large computational resources to query databases and

compute propensity scores, and sharp attention to detail in storing, updating, and presenting

results. As new longitudinal data become available, warm starts in fitting PS and outcome

models can reduce the computational burden of repeated model fitting. With up-to-date

and fully statistically adjusted hazard ratios comparing relevant treatments across many

clinical domains, we can truly provide pharmacoviligance for patients regarding the medical

products they utilize.

Another application of the observational tools used in the OHDSI community is to pro-

vide observational studies that parallel ongoing randomized clinical trials. Clinical trials for

products already on the market can benefit from a concurrent observational study research-

ing the same clinical question in a larger, real-world population. The observational study

may produce interesting safety signals that the clinical trial is underpowered to detect, or

provide ongoing results before clinical study endpoints are measured. Discrepancies between

observational and randomized trial results can be of interest to investigators. One close col-

laborator told me that it takes as much faith to generalize randomized and highly controlled

trial results to broader, real-world study populations as it does to believe the unverifiable

assumptions that underlie observational analysis. Both observational and randomized data

have flaws and benefits, and contribute to the net body of clinical evidence.
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