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‘Cross-ancestry genome-wide meta-analysis of 61,047 cases and 
947,237 controls identifies new susceptibility loci contributing to 
lung cancer’

A full list of authors and affiliations appears at the end of the article.

Abstract

To identify new susceptibility loci to lung cancer among diverse populations, we performed 

cross-ancestry genome-wide association studies in European, East Asian, and African populations 

and discovered five loci that have not been previously reported. We replicated 26 signals and 

identified 10 new lead associations from previously reported loci. Rare-variant associations 

tended to be specific to populations, but even common-variant associations influencing smoking 

behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping 

and eQTL colocalization nominated several candidate variants and susceptibility genes such as 

IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a 

subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting 

endogenous DNA damage.
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(https://imputationserver.sph.umich.edu/index.html#!) were used for imputation and phasing, FastPop (https://github.com/
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www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), ezQTL (v1.0, https://analysistools.cancer.gov/ezqtl/#/home) 
were used for post-GWAS analyses, and flowjo (v10.6, https://www.flowjo.com) was used for single-cell flow cytometry analysis. 
MANTRA (version 1) is available as a suite of executables on request from the author (https://www.ncbi.nlm.nih.gov/pmc/articles/
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INTRODUCTION

Lung cancer is a multifactorial disease driven by environmental exposures, especially 

cigarette smoking, inherited germline genetic variants, and an accumulation of somatic 

genetic events1. Although genome-wide association studies (GWAS) have identified many 

significant contributing risk loci, the genetic underpinnings of lung cancer according to 

population variations remain incompletely understood2-6. Most GWAS have focused on 

genetically homogeneous case-control studies from European-ancestry populations7. Multi-

ancestry studies have been useful in examining the heritability and genetic architecture of 

complex traits and diseases in diverse populations7-10. Multi-population genome-wide meta-

analysis (GWMA) has been used to boost statistical power by increasing the total study 

sample size8. In addition, cross-ancestry analysis can improve association signal detection 

for low-frequency and rare alleles if they are more frequent in one population and help 

pinpoint functional variants when there is variability in linkage disequilibrium (LD) between 

functional variants and marker alleles across populations11. Consistency in allelic effects 

across populations can further support causal inference9,10,12.

In the past two decades, approximately 40 lung cancer susceptibility loci directly influencing 

lung cancer risk have been identified by GWAS2,3,13,14. Array-based and family-based 

heritability estimates of lung cancer attributable to genetic factors range from 8-21%1,6,15-17. 

Population differences in the incidence of lung cancer suggest underlying heterogeneity 

in lung cancer etiology among human populations. Building on the recently completed 

OncoArray lung cancer GWAS14,18-23 with additional earlier GWAS data sets24-28, we 

performed a cross-ancestry discovery GWMA comprising 35,732 cases and 34,424 controls 

to comprehensively characterize common and rare lung cancer genetic susceptibility loci 

across multiple ancestral populations (Table 1, Supplementary table 1). The significant 

cross-ancestry single nucleotide polymorphisms (SNPs) identified in discovery analyses 

were validated by combining the initial cross-ancestry GWMA discovery and independent 

external validation datasets, adding 25,315 cases and 912,813 controls (Supplementary 

table 1)16,29-34. By combining GWMA summary-level data across populations of diverse 

ancestries, we refined loci that detect associations with lung cancer development35.

RESULTS

Cross-ancestry GWMA of lung cancer.

We included 70,156 individuals from 12 studies of diverse ancestry populations in the 

discovery study (Table 1, Supplementary table 1). Most individuals were inferred as having 

European ancestry (EUR; 74%), with 18% having East Asian (EAS) ancestry and 8% 

having African ancestry (AFR)36. Prior to association analysis, all samples from the 12 

studies were imputed using 32,470 samples from the Haplotype Reference Consortium 

(HRC)37 as a reference panel. Detailed quality control processes are described in Methods. 

We conducted ancestry-stratified analyses in European (EUR), East Asian (EAS), and 

African (AFR) ancestry populations using Firth’s logistic regression method,36 which 

reduces bias when dealing with imbalanced data, especially in small sample sizes and 

with rare variants38,39. Firth’s logistic regression test may be anticonservative for very 

rare variants with minor allele frequency (MAF) < 0.001, but the overall performance of 
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Firth’s test for GWAS with a combined type I error and accuracy was improved compared 

with that of conventional logistic regression-based Wald, score, and likelihood ratio 

tests for unbalanced studies with rare variants39,40. We then implemented different multi-

ancestry meta-analysis methods9,11,41-43 described in Methods and reported in Table 2 and 

Supplementary table 2, because conventional fixed-effect meta-analysis ignores the potential 

heterogeneity across different populations. We also performed cross-ancestry GWMA to 

detect additional loci associated with predominant histological types: lung adenocarcinoma 

(ADE), lung squamous cell carcinoma (SQC), and small cell lung carcinoma (SCC) (Table 

2, Supplementary table 2-3). There were no detectable genomic inflations for lung cancer 

(λLung = 1.0044) or any histologic subtypes (λADE=1.0054; λSQC=1.0108; λSCC=1.0097) 

after adjustment to reflect a standardized sample size of 1,000 cases and 1,000 controls 

implying that residual population stratification is unlikely to be influencing association 

statistics within the ancestry-stratified analyses and combined meta-analyses across these 

diverse populations (Fig. 1, Supplementary table 4).

The cross-ancestry GWMA across three intercontinental populations identified 40 

associations, including 15 associations for overall lung cancer, and 14, 9, and 2 associations 

for ADE, SQC, and SCC, respectively, in the discovery study at Bonferroni-corrected 

genome-wide significance level of P_BE1 < 1.25×10−8, where P_BE1 represented a P-value 

from random binary-effects (BE) model42 using METASOFT in the discovery study (Fig. 1 

and Table 2). These conditions allow for genome-wide discovery across overall lung cancer 

and the three histological subtypes. The nine new loci passing the nominal genome-wide 

significance level of P_BE1 < 5.00×10−8 are reported in Table 2. Top ancestry-specific 

GWMA results in the discovery study showed only nine cross-ancestry variants (20% of all 

loci), defined as those variants with M-values42 greater than 0.9 across all three population 

models, indicating posterior probability that an effect exists in each population model under 

the assumption of heterogeneity (Supplementary table 2). For thirty-two cross-ancestry 

variants (71%), the significant effects stemmed from at least two ancestry populations, and 

thirty-one associations were significant in the EUR ancestry. Genomic cross-ancestry loci 

associated with lung cancer susceptibility with a P ≤ 10−5 are reported in Supplementary 

table 5-8. Ancestry-specific and cross-ancestry genomic regional association plots for the 

top new cross-ancestry genetic variants discovered in our discovery study are shown in 

Supplementary figure 1.

Validation of cross-ancestry GWMA.

To validate our cross-ancestry GWMA findings from the discovery dataset, we combined 

data from 938,128 individuals from seven studies consisting of a large, population-based 

cohort, the UK Biobank (UKBB)29 lung cancer cases and controls and other published 

summary-level data16,32-34 (Table 1, Supplementary table 1). Validation data include 

ancestry-specific summary-level data of European ancestry (UKBB, FinnGen, deCODE, 

SPAIN, INHALE, KPRB/GERA), East Asian ancestry (Nanjing), and African ancestry 

(INHALE). These data were not included in the discovery study. We used a validation 

analysis44 approach that further evaluated findings from the discovery phase. Individual-

level data for lung cancer GWAS were integrated into the discovery phase, so validation 

analysis using summary-level data let us support or reduce evidence of cross-ancestry 
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associations from the discovery study44. We conducted cross-ancestry GWMA of validation 

datasets for the 45 suggestive associations identified from discovery analyses (P_BE1 < 

5×10−8). We validated 11 associations for overall lung cancer, 11 for ADE, 4 for SQC, 

and 1 for SCC. In the validation study, to evaluate nine new susceptibility loci, we used a 

Bonferroni-corrected significance level of P_BE2 < 5.55×10−3 (=0.05/9 newly identified 

SNPs) (Table 2). Complementary validation analyses where we apply METASOFT to 

ancestry-specific summary-level datasets for all 45 SNPs are provided in Supplementary 

table 9.

During validation analysis, we combined three ancestry-specific discovery summary-level 

datasets (EUR1, EAS1, AFR1) with three ancestry-specific validation datasets (EUR2, 

EAS2, AFR2) using METASOFT for the 45 association signals identified in the discovery 

study (Supplementary table 2, Supplementary table 10). The combined cross-ancestry 

GWMA of discovery and validation studies supported 41 associations with lung cancer 

risk at the Bonferroni-corrected genome-wide significance (P≤1.25×10−8, adjusting for 3 

histological subtypes and overall lung cancer) after post-imputation quality control (Table 

2, Supplementary table 10). Eighteen association signals showed effects across at least five 

studies with an M value ≥ 0.9, indicating the genetic effect is likely to be present in each 

study tested in the cross-study meta-analysis (Supplementary figure 2)42. Table 2 presents 

all the risk loci based on cross-ancestry GWMA with sentinel variants from the discovery 

study at the nominal genome-wide significance level of P_BE1 < 5×10−8, P-values from 

a binary random-effect meta-analysis model of the validation study (P_BE2) and P-values 

from a combined model of discovery and validation summary-level data (P_BEC).

New and known associations in previously reported loci.

Our cross-ancestry GWMA identified 9 association signals for overall lung cancer, 10 for 

ADE, 6 for SQC, and 1 for SCC that were identified in previous ancestry-specific studies 

of EUR2,14,18, EAS25 or AFR27,45 populations and cross-ancestry studies of EUR and 

EAS populations34 at a Bonferroni-corrected genome-wide significance level of P_BEC < 

1.25×10−8 (Table 2, Supplementary table 2-3). These include rare, larger-effect variants 

in BRCA2 (rs11571815) and CHEK2 (rs17879961) genes initially identified in EUR 

populations and a variant in the ATM (rs56009889) gene in Ashkenazi Jewish populations; 

these variants are significant when combined with EAS and AFR populations. Further, our 

study identified ten new associated variants (four for overall lung cancer, five for ADE, 

and one for SQC) within ±500kb of a previously reported locus with a new lead SNP (an 

r2 with the previously reported lead SNP < 0.6 in a 1000 Genomes ALL populations46 

or not reaching a genome-wide significance level of 5×10−8 in the previous study47) at 

P_BEC < 1.25×10−8. These include new variants from well-established loci at 5p15.33, 

6p21.32, and 9p21.3, among others. An intergenic variant rs9374662 between ROS1 and 

DCBLD1 on 6q22.1 showed strong genetic signals in both EUR and EAS populations and 

was associated with ADE and overall lung cancer risk. A few intronic variants in DCBLD1 
have previously been associated with lung18 and colorectal cancer48. Additionally, well-

known variants associated with smoking behaviors, rs55781567 in CHRNA5 on 15q25.1 

and rs56113850 in CYP2A6 on 19q13.2 were also substantial in overall lung cancer, 

ADE, and SQC49,50, but showed variable associations with risk among non-European 
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populations. Another well-established lung cancer risk-associated variant, rs2853677 in 

TERT on 5p15.33 demonstrated allelic homogeneity showing the more consistent effects 

across three intercontinental populations51 (Supplementary figure 2). These new and known 

signals across lung cancer histology suggest that our analytic approach can robustly detect 

previously reported and additional signals within the known GWAS loci.

Identification of new susceptibility loci in cross-ancestry GWMA.

In addition to new and known signals in the previously reported loci, cross-ancestry GWMA 

identified five new susceptibility loci, including two in overall lung cancer, one in ADE, 

one in SQC, and one in SCC at the Bonferroni-corrected genome-wide significance level 

of P_BEC < 1.25×10−8 (Table 2). LocusZoom regional plots for the cross-ancestry genetic 

variants newly identified in our discovery study are shown in Extended Data figure 1. 

Among them is rs9865715 in CYP8B1 on 3p22.1, a low-frequency missense variant (allele 

frequency (AF) = 0.99, 1.00, and 0.95 in EUR, EAS, and AFR, respectively) with a 

binary effect model P-value, P_BEC=3.53×10−10. Newly identified association of an intronic 

variant, rs12203592, was detected in IRF4 on 6p25.3. rs12203592 has been previously 

associated with numerous pigmentation traits52, multiple blood cell traits53-55, squamous 

cell carcinoma of the skin56-58, and smoking cessation59 implying an important pleiotropy 

with this variant. We identified an intronic variant, rs17534632, in PPIL6 on 6q21, which 

was associated with lung cancer risk in EUR and EAS populations at a nominal genome-

wide significance level of 5×10−8 (P_BEC=3.61×10−8). Associations in PPIL6 with blood 

traits have been reported in blood traits in EUR populations60 and cross-ancestry and 

ancestry-specific studies53.

The histological subtype-stratified analysis identified three new susceptibility loci achieving 

Bonferroni-corrected genome-wide significance and three additional new variants/loci at 

a nominal genome-wide significance level of 5×10−8 (Table 2, Supplementary table 2). 

For SCC, we detected a new association signal for a rare missense variant, rs141178913 

on IL17RC at 3p25.3 (AF = 0.001, 1.2×10−4, and 2.8×10−4 in EUR, EAS, and AFR, 

respectively; P_BEC =2.35×10−9). Another association at rs191133092 near HLA complex 

group 15 (HCG15) was detected in AFR population (P_BEC =1.56 ×10−8; PAFR1 

=6.64×10−7). For ADE, one additional cross-ancestry locus was identified at rs268864, 

an intronic variant of ACTR2 on 2p14 showing the ancestry-specific association signals 

in both EUR and EAS populations (P_BEC=1.60×10−16; PEUR1 =1.13×10−7; PEAS1 

=0.07; PEUR2 =4.42×10−4; PEAS2 =3.56×10−7). For SQC, one newly identified intronic 

variant, rs2041742, in ncRNA LINC01122 on 2p16.1 was detected in EAS and AFR 

populations (P_BEC=1.48×10−11; PEAS1 =1.97×10−12; PAFR1 =0.09). Another intronic 

variant, rs6757055 in IKZF2 on 2q34 was identified in EAS only (P_BEC=4.54×10−8; PEAS1 

=1.51×10−10).

Conditional analyses on the top cross-ancestry associations.

Along with identifying the top association signals in multi-ancestry case-control meta-

analyses of lung cancer, we investigated secondary association signals at each locus 

having multiple associated SNPs based on cross-ancestry GWMA findings with a stringent 

imputation quality score ≥ 0.8. Stepwise iterative conditional analysis was performed by 
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conditioning on the primary associated SNP at each locus to test if any other SNPs 

are significantly associated until no SNP associated with lung cancer or any subtype 

remained61. We first implemented conditional analysis on the identified cross-ancestry lead 

SNP per population using GCTA v1.9361 (--cojo-cond) and then meta-analyzed them across 

populations. Additional associations identified from conditional analyses are reported in 

Supplementary table 11. Conditioning on intronic variant rs2853677 of TERT62 revealed 

one new independent variant in CLPTM1L18,63-65 (rs31487, P=3.91×10−32), and two in 

TERT18,34,66-68 (rs7705526, P=4.21×10−11; rs72709458, P=1.70×10−10). By conditioning 

on rs55781567 in CHRNA5 of 15q25.1, we discovered two independent variants, rs576982 

in CHRNA5 (P=4.71×10−14) and rs28654165 near IREB2 (P= 0.005), for lung cancer 

susceptibility and another two independent variants, rs113352275 in PSMA4 (P=1.09×10−9) 

and rs6495350 in MORF4L1 (P=0.002), for SQC.

Fine-mapping and functional annotation of candidate variants.

To nominate candidate variants from each locus for further follow-up, we performed fine-

mapping of cross-ancestry GWAS loci. We first performed cross-ancestry analysis using 

MANTRA11 to obtain Bayes factors for the variants passing our criteria (P < 10−4 in initial 

logistic regression, ±250kb of lead variant) while accounting for heterogeneity between 

different ancestries. Based on the cumulative Bayes factors within each locus69,70, we 

identified 715 variants falling into the 99% credible set across 45 GWAS loci (median 10 per 

locus, ranging 1-178 per locus; Supplementary table 12, Methods).

To functionally characterize the prioritized variants, we performed an integrated variant 

functional annotation approach71 using the Functional Annotation of Variants-Online 

Resource (FAVOR) platform (http://favor.genohub.org/), by incorporating the Multi-

dimensional Annotation Class Integrative Estimator (MACIE)72,73 (Supplementary table 

13). MACIE is a generalized linear mixed model designed to predict regulatory and 

evolutionarily conserved SNPs using 36 genome-wide annotations. Out of 715 variants 

within the 99% credible set, 105 unique variants across 27 GWAS loci (median 4 per 

locus, ranging 1–22 per locus) displayed a marginal probability > 0.9 for either “regulatory” 

or “conserved” functional features. For example, from the ADE locus in ACTR2 at 2p14 

tagged by rs268864, 3 of 23 variants found in the 99% credible set (rs10116, rs268882, 

and rs72822431) were predicted to have regulatory potential (marginal probability > 0.98). 

From another ADE locus in IRF4, at 6p25.3 and tagged by rs2316515, 4 of 10 variants 

within the 99% credible set (rs1050979, rs2316515, rs7768807, and rs872071) displayed 

regulatory potential (marginal probability > 0.99). Using a cross-ancestry fine-mapping 

followed by MACIE analysis we provide a prioritization of lung cancer GWAS loci and 

candidate variants for follow up with functional genomics experiments.

Prioritization of candidate genes from cross-ancestry GWMA.

To map susceptibility genes underlying the lung cancer GWAS associations, we performed 

expression quantitative trait locus (eQTL)-based analyses to identify allelic-specific effects 

on gene expression. Using the Functional Mapping and Annotation (FUMA) platform74, we 

surveyed an overlap between GWAS variants (variants that are linked with 38 lead SNPs 

from the multi-ancestry meta-analysis, r2 > 0.6 in 1000G ALL populations, phase 3) and 
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significant eQTL variants in lung cancer-relevant tissue types. Based on the predictions 

that risk variants may exert their effects via circulation, lung, immune system, and brain 

regions (potentially underlying smoking behavior), we defined eight lung cancer-relevant 

tissues as whole blood (n=670), lung (n=515), EBV-transformed lymphocytes (n=147), 

cortex (n=206), frontal cortex (n=175), hypothalamus (n=170), cerebellum (n=209), and 

nucleus accumbens basal ganglia (n=202). A total of 285 unique eQTL genes showed an 

overlap with GWAS variants (Supplementary table 14). To prioritize candidate susceptibility 

genes, we performed colocalization analyses using eQTL summary statistics of eight lung 

cancer-relevant tissues from the Genotype-Tissue Expression (GTEx) v8. Accounting for 

the heterogenous LD in our multi-ancestry GWAS population and eQTL population in 

GTEx v8, we applied an LD-dependent (eCAVIAR) approach using a European LD 

matrix (accounting for 74% of GWAS and 85% of eQTL populations) as well as an 

LD-independent approach (coloc) to avoid spurious colocalizations (Methods). Based on 

the concordance between eCAVIAR and coloc (posterior probability of > 0.01 and 0.8, 

respectively), a substantial proportion of lung cancer risk-associated variants (20 of 38 

variants, 52.6%) colocalized with eQTL of at least one gene from a tissue (Supplementary 

table 15-17). A total of 48 candidate genes, including three from the new cross-ancestry 

GWAS loci (IRF4, MICAL1, and AK9), were identified as potential susceptibility genes 

contributing to lung cancer risk (Supplementary table 17). Based on histological subtypes, 

colocalization identified 23, 23, 17, and 2 candidate genes for overall lung cancer, ADE, 

SQC, and SCC, respectively. For 11 of 38 risk variants, colocalizations were detected with 

multiple genes including 9 HLA genes for 3 MHC loci, highlighting the roles of cellular 

immune response. When excluding genes from MHC loci, these colocalized genes and 

the genes from FUMA results, including non-GTEx datasets, were significantly enriched 

in pathway affecting AMPK and calcium signaling, cell stress, and injury (Supplementary 

tables 18-19). Notably, the known cross-ancestry locus FUBP1 and a new cross-ancestry 

locus IRF4 displayed the highest probability scores from both eCAVIAR and coloc in more 

than one tissue types (lung, cerebellum, or whole blood) (Supplementary table 17; Fig. 

2a-d). Concurrent alterations of FUBP1 and PTEN have been shown to promote breast 

cancer through a global effect on alternative splicing75. Elevated expression of FUBP1 was 

reported in multiple cancer types including non-small cell lung cancer76. The lung cancer 

risk-associated A allele of the candidate colocalizing SNP, rs34517439 is correlated with 

lower FUBP1 expression in normal lung and brain tissues (GTEx, Supplementary figure 3). 

IRF4 has pleiotropic roles in immune cell differentiation77 and pigmentation phenotypes78 

and is a master regulator of aberrant gene expression networks in multiple myeloma79. The 

candidate colocalizing SNP, rs12203592, is the lead SNP in both GWAS of overall lung 

cancer and eQTL of lung and whole blood. It has been shown to be a functional SNP, 

displaying an allelic binding to TFAP2A driving an allelic enhancer function in both primary 

melanocytes and blood cells78,80. Importantly, the direction of the allelic effect in skin tissue 

is opposite of that in lung and whole blood tissues. The lung cancer risk-associated T allele 

is correlated with higher IRF4 expression in lung (Supplementary figure 3) and whole blood 

tissues but lower expression in skin tissues (GTEx v8) and primary melanocytes78,81,82.
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Dysregulation of lung cancer risk genes promotes DNA damage.

To further characterize top candidate susceptibility genes, we performed cell-based DNA 

damage assays on a subset of candidate genes prioritized from the eQTL colocalization 

analysis (Fig. 2a-d, Supplementary table 20). DNA damage from cellular intrinsic processes 

promotes mutations and cancer83. An increasing number of genes are shown to promote 

DNA damage via various direct and indirect mechanisms14,84,85. We hypothesized that 

a fraction of the GWAS-nominated risk-associated genes could promote lung cancer by 

increasing endogenous DNA damage and genome instability14. Of the 48 colocalized genes, 

we prioritized 17 genes that were amenable to test in our system (Supplementary table 

20). We also included two candidate genes from the GWAS loci based on the eQTL 

findings from non-GTEx datasets identified through FUMA analysis (Supplementary table 

20). We performed knockdown and/or overexpression of candidate genes, mimicking allelic 

expression changes associated with lung cancer (Supplementary table 20) followed by 

assessment of DNA damage as evidenced by γH2AX levels in immortalized, untransformed 

human lung fibroblasts. Of 19 genes, 7 over-expressing (IRF4, AK9, CYP21A2, DCBLD1, 
SECISBP2L, CCDC97, and FUBP1) (Fig. 3a, Supplementary table 20) and 2 knocked 

down (PPIL6 and ACTR2) genes displayed significantly increased DNA damage (Figure 

2F, Supplementary tables 20-23). The validation rates for candidates with increased DNA 

damage is higher than a set of over-expressed human genes84 (P = 0.0197, Fisher exact 

test) or knockdown of randomly selected genes (P=0.0286, Fisher exact test, Supplementary 

table 24). The 12 genes showing either increased or decreased DNA damage phenotype 

when over-expressed or knockdown included the top 5 colocalized genes with the highest 

probability scores (FUBP1, IRF4, SECISBP2L, CCHCR1, and CYP2A6) (Supplementary 

table 20) and 4 genes from new multi-ancestry meta-analysis loci (IRF4, ACTR2, PPIL6, 
and AK9) (Fig. 3b, Supplementary table 20). ACTR2 increased DNA damage when knocked 

down (P = 9.89×10−3, effect = 0.966) and reduced when overproduced (P = 6.46×10−5, 

effect = −1.826) (Fig. 3a and Supplementary table 20), suggesting a potential protective 

role. Conversely, AK9 significantly reduced median DNA damage when knocked down (P 

= 2.16×10−4, effect = −1.816; Supplementary table 20) and increased when overproduced 

(P = 4.84×10−5, effect = 1.865) indicating a DNA damage-promoting role (Fig. 3a and 

Supplementary table 20). Notably, IRF4 (P = 2.32×10−3, effect = 1.320) increased DNA 

damage when overproduced. Given that the lung cancer risk allele is correlated with 

higher IRF4 levels in lung tissue (Supplementary figure 3a), an endogenous DNA damage-

promoting role of IRF4 in lung cells could support the evidence of a potential mechanism 

contributing to lung cancer risk (Fig. 3a). Altogether, we expanded the list of genes 

associated with DNA damage in lung cancer and assigned a known cancer-promoting 

phenotype (DNA damage) to many lung cancer risk genes.

DISCUSSION

We conducted cross-ancestry GWMA of lung cancer involving 51,961 individuals of 

EUR ancestry, 12,434 of EAS ancestry, and 5,766 of AFR ancestry and validated the 

findings with 910,609 individuals of EUR ancestry, 26,640 of EAS analyzing populations 

of relatively homogeneous ancestry background. However, most findings are biased toward 

EUR-ancestry studies because multi-ancestry GWMA has not been feasible due to limited 
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genotyping data in other populations. In this study, we identified and validated five new 

cross-ancestry SNPs associated with overall lung cancer, ADE, SQC, and SCC at the 

Bonferroni-corrected genome-wide significance level of 1.25×10−8.

Lung carcinogenesis is a complex process that involves the acquisition of genetic 

mutations and epigenetic changes that alter cellular processes, such as proliferation 

and differentiation86. Lung cancer development also seems to have distinct population 

and geographical differences. Many studies have uncovered aspects of lung cancer 

pathogenesis87, but identifying new genetic variants associated with lung cancer remains 

challenging due to small effect sizes and the contribution of cigarette smoking. To date, a 

limited number of lung cancer-specific genes have been detected. Quantifying the genomic 

architecture of lung cancer risk is important to better understanding its pathogenesis. 

Therefore, improved elucidation of genetics in lung carcinogenesis is critical. For instance, 

better understanding the genomic diversity of oncogenes, tumor suppressor genes, or 

specific alterations across diverse ancestry populations can help in designing population-

specific targeted therapies. Additionally, deciphering the shared genetic variants underlying 

lung cancer predisposition in populations of diverse ancestry can help refine risk prediction 

models for individuals at high-risk across ancestral populations and potentially identify 

variants associated with lung cancer susceptibility in admixed populations and across 

ancestral groups. Our investigation of ancestry-specific and cross-ancestry associations with 

lung cancer and specific histological subtypes resulted in several key findings.

First, we confirmed nine cross-ancestry genomic risk associations for overall lung cancer, 

ten for ADE, six for SQC, and one for SCC, while concurrently identifying an additional 

four new genome-wide significant risk variants in previously reported loci for overall 

lung cancer, five for ADE, and one for SQC. These results highlight the utility of multi-

population meta-analysis in identifying and fine-mapping new signals.

Second, we discovered ancestry-specific effects of common and rare variants on lung 

cancer risk among EUR, EAS, and AFR populations. A common variant, rs9374662 

located between ROS1 and DCBLD1, displayed a strong association with lung cancer 

and ADE in both EUR and EAS populations at the Bonferroni-corrected genome-wide 

significance level and a suggestive association in AFR population although sample size of 

AFR individuals was smaller than those of other populations. While the sample size of AFR 

ancestry in this study is limited, we were able to identify a few new association signals 

in AFR population. As presented in Supplementary figure 1, a rare variant rs141178913 in 

IL17RC displayed a strong association with SCC risk among EUR and AFR populations 

(P_BE1
EUR1 =5.81×10−9; P_BE1

AFR1 =0.01) with both effect allele frequencies < 0.0001. 

Another population-specific association with SCC was observed at low-frequency variation 

rs191133092 near HCG15 in AFR population (P_BE1
AFR1=6.64×10−7) with effect allele 

frequency of 0.01. Our cross-ancestry fine-mapping considering heterogeneity between 

different populations nominated a small number of variants at each locus that were 

further annotated using functional databases. Future studies using statistical approaches 

incorporating the complexity of cross-population LD structure followed by experimental 

validation of candidate variants is warranted.

Byun et al. Page 9

Nat Genet. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Third, we identified and prioritized candidate lung cancer susceptibility genes, inferred 

biological pathways identified through eQTL colocalization analyses, and performed 

cell-based DNA damage assays. Colocalization analyses showed candidate genes were 

frequently part of biological pathways involving immune response and cellular stress 

response. 63% (12/19) of candidate genes prioritized based on eQTL colocalization 

displayed a significantly altered level of endogenous DNA damage in lung fibroblasts. This 

high positivity rate highlights the efficiency of our prioritization scheme of using eQTL 

colocalization in relevant tissue types. The results also indicated that a high proportion of 

candidate lung cancer susceptibility genes, including those from new cross-ancestry loci 

(IRF4, ACTR2, PPIL6, and AK9), could have roles in promoting or preventing endogenous 

DNA damage.

One limitation of this study was that some candidate associations evaluated in the validation 

study failed to reach the Bonferroni-corrected significance of P_BE2 <5.55×10−3. This 

could be due to a lack of power because replication datasets with similar study and 

analytical design features, such as imputation panel, availability of low-frequency and rare 

variants, and data for SCC were lacking, or some of these findings could be false positive 

associations. Future studies will help to resolve any possible false positive results, despite 

stringent quality control steps we have implemented. Thus, there is a need to include more 

individuals of underrepresented populations, so we can further characterize the genetic 

contribution to lung cancer development and provide better insight into genetic architecture 

of ancestry-specific and cross-ancestry lung cancer etiology.

Overall, our cross-ancestry meta-analysis of population-specific GWAS across multi-

ancestry populations has helped elucidate the etiology and mechanisms of lung cancer. 

Understanding the genetic architecture of lung cancer predisposition will help reveal how 

lung cancer develops and could assist in identifying new susceptibility biomarkers for better 

risk evaluation directed at early detection and diagnosis, targeted therapy, and improved 

preventive measures.

Methods

Ancestry-specific and cross-ancestry GWAS in lung cancer.

There are 101,821 samples from 12 studies: Affymetrix Axiom Array Study (AFFY)1, the 

Female Lung Cancer Consortium in Asia (FLCCA)2, the Genetic Epidemiology of Lung 

Cancer Consortium (GELCC)3, the Environment and Genetics in Lung cancer Etiology 

study (EAGLE)4,5, Helmholtz-Gemeinschaft Deutscher Forschungszentren Lung Cancer 

GWAS (GERMAN)5,6, the International Agency for Research on Cancer (IARC)5, the 

Institute of Cancer Research (ICR)5, MD Anderson Cancer Center Study (MDACC)5,7, NCI 

Lung Cancer and Smoking Phenotypes in African-American Cases and Controls (NCI)8, 

OncoArray Consortium Lung Study (OncoArray)5,9, the Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial (PLCO)5, and Samuel Lunenfeld Research Institute Study 

(SLRI)5 (Supplementary note, Supplementary table 25). Markers from various genotyping 

platforms were filtered based on the following criterion: only biallelic marker, call rate ≥ 

0.95, and MAF > 0 in each study. Markers were further checked using McCarthy Haplotype 

Reference Consortium (HRC) imputation preparation and checking tool (v4.2.11, https://
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www.well.ox.ac.uk/~wrayner/tools/) to make strand, position, ref/alt assignment consistent 

with HRC reference panel10. We conducted imputation of the phased data through Sanger 

imputation service in a two-stage strategy of pre-phasing and imputation using SHAPEIT2 

(v2.r790) and PBWT (2014). The reference panel was HRC (r1.1), which contains 32,470 

samples of predominantly European ancestry and about 40 million markers.

There were 2,854,462 common markers with information score of greater than or equal to 

0.6 among 12 studies and were further thinned to 193,050 markers based on r-square value 

of less than or equal to 0.5. The new set of 193,050 markers was used to calculate principal 

components and pair-wise identity by descent (IBD) values among 101,821 samples in 

PLINK. An empirical value of IBD of 0.15 was used as a cutoff to define samples’ related 

status, and all related samples were categorized into 15,884 clusters. While priority of 

sample was quantified by scoring properties such as disease status and study specific 

measurement such as average imputation information score in each cluster and samples 

with missing disease status were assigned the lowest priority. Lists of independent or less-

independent samples were generated and sorted by the total priority score. 70,639 samples 

with the highest scores in each cluster were finally generated for analysis through clustering 

and sampling process (Supplementary figure 4, Supplementary table 26).

Inference of ancestry memberships.

2,042 ancestry informative markers shared by 70,639 samples and 505 HapMap2 samples 

of CEU (EUR), CHB (EAS) and YRI (AFR) ancestry were used to infer ancestry origins 

using FastPop11, and then 51,961 samples of EUR origin, 12,434 samples of EAS origin 

and 5,761 samples of AFR origin were inferred (Extended Data figure 3). 15,265 cases of 

ADE, 7,850 SQC, and 2,482 SCC were defined based on available histological information 

(Supplementary figure 4).

Statistical analysis for ancestry- and cross-ancestry GWAS.

About 6 million markers having information score ≥ 0.4 were analyzed using logistic 

regression method using R glm function (R3.6.0) and markers were filtered for each stratum 

by population and histological subtypes at P < 1.0x10−4. The total number of unique 

49,576 markers were analyzed using Firth’s logistic regression procedure with the option 

of “firth” and “maxinter” using SAS (version 9.4). The first 20 principal components 

and 12 study sites as categorical variables were included in the model. Histological 

subtype-specific analyses were performed in each racial population including European-, 

East Asian-, and African-ancestry, respectively. Trans-ancestry genome-wide meta-analyses 

were further performed using METASOFT with binary random-effects meta-analysis 

model12. All statistical tests conducted in the multi-ancestry GWMA were two-sided. The 

METASOFT software provides four different meta-analysis methods; fixed-effects model 

(FE), conventional random-effects model (RE), new random-effects model optimized to 

detect associations under heterogeneity (RE2)13, and a new random binary-effects model 

optimized to detect associations when some studies have an effect and some studies do 

not (BE)12 along with M-values, i.e., the posterior probabilities that the effects exist in 

the populations being studied. M-values using cross-population information can be simply 

interpreted. An ancestry-specific study is predicted to have an effect, if M-value ≥ 0.9 and no 
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effect, if M-value ≤ 0.1; all other values have ambiguous predictive power. In addition, we 

implemented MANTRA with Bayes Factor14, across diverse populations.

Since the genomic inflation factor (lambda, λ) increases with sample size, we rescaled the 

observed lambda value (λobs) to the adjusted one (λadj) reflecting a standardized sample size 

of 1,000 cases and 1,000 controls based on the following formula,

λadj = 1 + (λobs − 1) ×
1

N . cases + 1
N . controls

1
1000 + 1

1000
.

In addition, we conducted post-imputation quality control using a two-proportion Z-test 

(“prop.test” in R v3.6.2) for missingness rate between cases and controls on the genotyped 

samples at the threshold of ∣Z∣ > 9.336 to minimize false-positive findings from ancestry-

specific GWAS. For the East Asian samples, this Z-value corresponded to less than 0.1% 

of tests and corresponds to a nominal P-value less than 1×10−20, which is conservative 

but allows for the large number of tests we conducted. We applied the exact test of Hardy-

Weinberg equilibrium15,16 (“HardyWeinberg” package in R v3.6.2) in controls, stratified by 

ancestry, to reduce the false-positive trans-ancestry association signals, and variants with a 

mid-P adjustment threshold < 1x10−8 in controls were excluded.

Validation of ancestry-specific and cross-ancestry GWMA.

Validation analyses for thirty-nine novel variants and sixteen new and nineteen known 

variants in the previously reported loci identified in trans-ancestry GWMA were conducted 

in seven independent genome-wide association studies comprising 25,315 cases and 912,813 

controls (Table 1, Supplementary table 1). This work includes UK Biobank17, FinnGen, 

deCODE study18,19, SPAIN study20,21, INHALE study22, China Nanjing Medical University 

Lung study23, and KPRB/GERA study24.

Ethics statement.

All participants provided informed consents according to protocols that were evaluated by 

the Internal Review Boards (IRB) of the contributing centers. All contents in the present 

study were approved by Baylor College of Medicine IRB.

Conditional analysis on the cross-ancestry lead SNPs.

Conditional analysis has been used as a tool to identify secondary association signals at a 

locus, involving association analysis conditioning on the primarily associated SNP at the 

locus to test whether there are any other SNPs significantly associated. A comprehensive 

strategy is to conduct a conditional analysis, starting with the sentinel trans-ancestry GWMA 

SNP for each locus, across the whole genome followed by a stepwise procedure of selecting 

additional SNPs, one by one, according to their conditional P-values. Such a strategy would 

enable us to detect more than two independently associated SNPs at a locus. We adopted 

a genome-wide stepwise selection procedure to select SNPs on the basis of conditional 

P-values in each population using GCTA v1.93 (--cojo-cond)25 and then meta-analyzed 

across all three populations. Conditional analysis of each associated locus was performed 
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within a standard region of 1 Mb-window centered on the lead SNP, which is the most 

associated SNP in lung cancer. LD patterns were estimated using best guess genotype data 

in each population consisting of 31,016 Europeans, 3850 East Asians, and 557 Africans, 

from Oncoarray data as reference. To extract best guess genotype data (FORMAT ID=GT) 

per population from the variant call format file, we implemented PLINK 1.9 using --vcf 

onco.vcf \ --keep sample list from each population (for example, CEU.list for European 

ancestry) \ --make-bed \ --out output file (for example, OncoCEU). Conditional association 

analysis per population was performed including the lead SNP as covariate. Any SNP 

showing a conditional association P < 5 × 10−8 was considered as independent signal and 

was further included in a new round of conditional analysis. This process was repeated until 

no SNP with P < 5 × 10−8 remained in any of the genomic regions explored.

Fine-mapping of cross-ancestry GWAS loci.

As described above, trans-ancestry meta-analysis using MANTRA was performed in each 

histological subtype following the ancestry-specific analysis using Firth’s logistic regression 

for 49,576 variants. MANTRA facilitates cross-ancestry analysis by assuming that allelic 

effects of a variant are the same within the cluster of individuals sharing similar ancestry 

but different between individuals in separate ancestry clusters14. To define credible causal 

variants for each locus, we ranked the variants within +/− 250kb of the lead variant based 

on their Bayes factors generated from MANTRA analysis. Credible set value for each 

variant was then calculated by dividing cumulative Bayes factor of ranked variants by the 

total cumulative Bayes factor in each locus. Variants within the credible set value of 0.99 

(including the first one that goes above the cutoff) were defined as 99% credible set26,27.

Integrative multi-omic annotation analysis.

We annotated the fine-mapped variants (within 99% credible set) using Multi-dimensional 

Annotation Class Integrative Estimator (MACIE)28 and the Functional Annotation of 

Variants – Online Resource (FAVOR) platform29 (http://favor.genohub.org/) for further 

prioritization. We integrated a variety of variant functional annotations in a generalized 

linear mixed model (GLMM) approach28,29. The Multi-dimensional Annotation Class 

Integrative Estimator (MACIE) models the regulatory and evolutionary conserved 

functionality of individual variants using two latent binary classes. Random effects are 

used to account for correlations among 8 annotations that are modeled as a function 

of the conserved class as well as 28 annotations that are modeled as a function of the 

regulatory class. Estimation occurs using an EM algorithm. The fitted model parameters 

are first found using a training dataset, and then one additional iteration of the EM 

algorithm is performed using these fitted parameters on the new SNPs of interest identified 

in this work. The MACIE output is a vector of 2*2 probabilities corresponding to the 

probabilities of belonging to both functional classes, either one of the classes alone, or 

neither class. The probabilities necessarily sum to 1. Marginal probabilities of regulatory 

function or evolutionarily conserved function can be found by simply adding two of the 

four probabilities. Formulating functionality as a set of multiple characteristics offers a more 

versatile and more detailed prediction than other integrative methods that produce a one-

dimensional score that can be difficult to interpret. Specially, the model treats functionality 

as an unobserved latent class and predicts (1) the probability of regulatory class only 

Byun et al. Page 13

Nat Genet. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://favor.genohub.org/


(MACIE01), (2) the probability of evolutionarily conserved class only (MACIE10), (3) the 

probability of neither class (MACIE00), or (4) the probability of both functional classes 

(MACIE11). Variants displaying a marginal probability score higher than 0.9 for regulatory 

function or evolutionary conservation from MACIE analysis were reported together with the 

detailed annotation obtained from FAVOR analysis.

Combined eQTL-based analysis.

We searched significant eQTL genes for high-LD variants from each GWAS locus using 

functional mapping and annotation (FUMA) platform30. We set the LD cutoff at r2 > 0.6 

with the lead SNP (1000 Genomes, all populations) and eQTL cut off at FDR < 0.05. Based 

on the prior knowledge, eQTL datasets for three lung-cancer-relevant tissue types (lung, 

blood – based on the contribution of inflammation and immune cells, and brain – based on 

the contribution of smoking behaviors to the etiology) were selected from 4 different studies 

(eQTLGen, BIOSQTL, BRAINEAC, and GTEx v8) (details in Supplementary table 14).

Colocalization between GWAS and GTEx eQTL signals.

The GTEx v8 includes data from normal tissues from 838 donors. GTEx eQTL association 

data for variants within +/− 100kb windows of the lead variants presented in the GWAS 

were extracted. For those loci overlapping MHC regions with an extended LD and 

high density of variants, we narrowed down to +/− 10kb windows of the lead variants. 

Colocalization of the GWAS and eQTL signals were calculated using the LD-dependent 

(eCAIVAR) and LD-independent approach (coloc). Given that both the study population 

in GWAS (74%) and eQTL (85%) is mainly European, European LD matrix from 1000 

Genomes (phase 3)31 was incorporated into the LD-dependent (eCAIVAR) approach32. 

We allowed the maximum number of 2 candidate ‘causal’ SNPs in eCAVIAR. To avoid 

potentially spurious colocalizations due to the violation of common LD assumption in 

all three datasets32 (GWAS, eQTL, LD matrix), we applied the LD-independent approach 

(coloc)33 to find concordance with the results from eCAVIAR. In coloc, we used the 

nominated P-value and MAF of complete GWAS population as the inputs. We only 

considered the colocalizations when both eCAVIAR and coloc suggested plausible posterior 

probability (CLPP>0.01 and PPH4>0.8).

Human cell lines, plasmids, and other reagents.

MRC5-SV40, an SV40-immortalized human lung fibroblast cell line was maintained 

in standard Dulbecco’s modified Eagle’s medium (#11965118, Gibco) with 10% fetal 

bovine serum (#10438034, Gibco), 2 mM L-glutamine, 100μg/mL penicillin, and 100 

μg/mL streptomycin (#10378016, Gibco) as described in 34. The MRC5-SV40 cell line 

was authenticated by American Type Culture Collection (ATCC) Short Tandem Repeat 

(STR) analysis and routinely check to be mycoplasma-free. Gateway entry clones for 

the following genes: ACTR2, PPIL6, AK9, CYP21A2, VARS2, CCHCR1, SECISBP2L, 

MPZL3, and DCBLD1 were synthesized, sequence-verified, and cloned into pDONR223 

by GenScipt. IRF4 (ccsbBroadEn_06459), FUBP1 (IOH14097), CYP2A6 (IOH63274), 

FLOT1 (IOH4826), SFTA2 (ccsbBroadEn_13655), CCDC97 (ccsbBroadEn_04511), 

C6orf48 (IOH13777), PSMA4 (ccsbBroadEn_06796), LY6G5B (IOH59693), STN1 

(ccsbBroadEn_08997) entry clones were acquired from the Kenneth Scott cDNA ORF 
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library (Baylor College of Medicine). All of the above clones were further subcloned into 

an N-terminal GFP tagged vector (pcDNA6.2/N-EmGFP-DEST, Invitrogen), using Gateway 

LR Clonase II Enzyme Mix (# 11791020, Invitrogen). Plasmid transfections were performed 

using GenJet In Vitro DNA Transfection Reagent Ver. II (# SL100489, SignaGen).

Non-targeting pool siRNA (D-001810-10, Dharmacon) and SMARTpool siRNAs each 

containing four targeting sequences were purchased from Dharmacon (Supplementary 

table 21). siRNA transfections were carried out with lipofectamine RNAiMax Transfection 

Reagent (#13778075, Invitrogen), following the manufacturer’s recommendations. 

SMARTpool ON-TARGETplus siRNAs were designed and modified for greater specificity 

and reduce off-targets up to 90%, although further validation of the phenotype using 

individual siRNAs or CRISPR/Cas9 editing is required for more in-depth functional studies.

RT-qPCR.

Total RNA was extracted by RNeasy mini kit (#74106, Qiagen) from cells 72 hours 

post siRNA transfection. 300 ng of total RNA from each sample was used to synthesize 

cDNA by the Superscript III first strand synthesis system (#18080051, Invitrogen). qPCR 

reactions were performed using iTaq Universal SYBR Green Supermix (#172-5121, Bio-

Rad Laboratories) on a QuantStudio 3 Real-Time PCR System (Applied Biosystems). 

For each gene, three replicates were analyzed and the average threshold cycle (Ct) was 

calculated. The relative expression levels were calculated with the 2–ΔΔCt method 35. 

Primers used in this study are listed in Supplementary table 22. siRNA knockdown 

efficiencies were summarized in Supplementary table 23.

Flow-cytometric DNA damage assays.

DNA damage assays by flow cytometry34 were performed as follows: approximately 

1 million MRC5-SV40 cells were harvested and prepared for staining 72hours post-

transfection with siRNAs or GFP-fusion plasmids. Cells were fixed with 2% formaldehyde 

for 15 minutes on ice, washed twice in cold-PBS and permeabilized with 0.05% Triton-X 

for 15 minutes on ice followed by two washes with PBS. The fixed cells were then blocked 

with 5% BSA-PBS for 30 minutes and stained with γH2AX pr6imary antibody (#05-636, 

Sigma, 1:750) for 1 hour at room temperature. Cells were further washed three times in 1% 

BSA-PBS followed by an incubation of Alexa Fluor 647 goat anti-mouse IgG secondary 

antibody (#A21236, Thermo Fisher, 1:1000) in 5% BSA-PBS for an additional hour at 

room temperature in the dark, before the flow cytometry acquisition and analyses by a 

BD LSRFortessa flow cytometer. FCS files were analyzed by FlowJo 10.6 software. For 

siRNA experiments, cells were collected 72 hours post transfection and mock cells with top 

0.5% γH2AX signal were gated as the γH2AX-high cells as previously described 34. The 

percentage of γH2AX positive cells in each sample was calculated and normalized to its 

corresponding non-targeting siRNA control. In addition, median γH2AX intensity for each 

siRNA knockdown was calculated and normalized to the non-targeting siRNA control.

For overproduction experiments, mock-transfected cells were used to set the gates to 

determine the GFP and γH2AX positive cells. Mock cells with top 0.5% γH2AX signal 

were gated as the γH2AX-high cells similar to the siRNA experiments. GFP positive 
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cells were gated and the median γH2AX intensity of each overproducing candidate was 

calculated and normalized to GFP-Tubulin. In addition, the fraction of the γH2AX positive 

cells in the GFP positive population for each genotype was calculated and normalized to the 

fraction of γH2AX positives in the GFP-Tubulin overproducing cells.

Extended Data

Extended Data Fig. 1. LocusZoom regional plots of newly identified cross-ancestry genetic 
variants.
Newly identified cross-ancestry variant is colored in purple, and colors of other dots indicate 

linkage disequilibrium measure r2 with the lead variant in purple. (a-b) Regional association 

plots at the CYP8B1 and IRF4 locus, in overall lung cancer (Lung). (c) Regional association 

plot at the ACTR2 locus in lung adenocarcinoma (ADE). (d) Regional association plot at the 

LINC01122 locus in lung squamous cell carcinoma (SQC). (e) Regional association plot at 

the IL17RC locus in small cell lung cancer (SCC).
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Extended Data Fig. 2. Gating strategies for DNA damage assays.
(a-c) Gating strategy, associated with Figure 3a. (d) histograms of γH2AX in EmGFP-

FUBP1 and EmGFP-Tubulin overproducing cells. (e-g) Gating strategy, associated with 

Figure 3b. (h-j) Gating strategy, associated with methods: flow-cytometric DNA damage 

assays, Q2/Q2+Q3 calculation in overproduction experiments.
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Extended Data Fig. 3. Inference of ancestry membership in three intercontinental populations 
using FastPop.
The colored points in grey indicate 70,639 individuals from diverse populations. Those in 

orange, green, and blue denote HapMap samples with European (CEU), East Asian (CHB), 

African (YRI) ancestry, respectively.
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available in the supplementary table. The eQTL data from GTEx v8 was obtained 

from https://gtexportal.org/home/datasets. The Icelandic population WGS genetic but not 

phenotypic data have been deposited at the European Variant Archive under accession 
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Results from GWMA at P ≤ 10−5 are available in the supplementary tables. All sequencing 

reads were mapped to the GRCh37/hg19 human reference genome. More details of data 

source used in this work are provided in the paper and supplementary tables.
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Figure 1. 
Manhattan plots and quantile-quantile plots of the GWAS meta-analysis for lung cancer in 

the cross-ancestry analyses. (a) Lung carcinoma: 35,732 cases and 34,424 controls. (b) Lung 

adenocarcinoma: 15,359 cases and 32,558 controls. (c) Lung squamous cell carcinoma: 

7,896 cases and 32,558 controls. (d) Small cell lung carcinoma: 2,499 cases and 32,558 

controls. The x-axis represents chromosomal location, and the y-axis −log10(P-value). The 

gene annotation for newly identified loci are in blue. The red horizontal line denotes 

the Bonferroni-corrected genome-wide significant two-sided P-value of P = −log10(1.25 × 

10−8). P-values are based on random binary-effects meta-analysis of three ancestry-specific 

summary statistics adjusted for principal components and study sites using Firth test.
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Figure 2. 
Functional validation of the prioritized genes from cross-ancestry lung cancer GWAS. (a, c) 

eQTL signals in GTEx v8 lung tissues (n = 515) for IRF4 (a) and FUBP1 (c) colocalize 

with those of overall lung cancer GWAS by eCAVIAR (CLPP = 0.976 for rs12203592 and 

1.000 for rs34517439) and coloc (PPH4 = 0.979 for rs12203592 and 0.996 for rs34517439). 

Pearson correlation is shown between log-transformed P values of eQTL (y-axis) and 

GWAS (x-axis). Variants are color-coded based on the LD R2 (1000 Genomes, EUR, phase 

3) with the candidate variants (red dots). Variants with imputation quality > 0.6 were 

plotted in this region. (b, d) Regional association plots of eQTL (blue shadow) and GWAS 

(green shadow) within +/− 100kb of rs12203592 (b) and rs34517439 (d) are presented. The 

horizontal line indicates Bonferroni-corrected genome-wide significant P-value for GWAS 

(1.25×10−8) and genome-wide empirical P-value threshold for eQTL of IRF4 (1×10−4) or 

FUBP1 (1.8×10−4). UCSC genes tracks are displayed as the full mode in this region.
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Figure 3. 
Dysregulation of cross-ancestry lung cancer GWAS-nominated risk genes promotes DNA 

damage. (a, b) A flow-cytometric screen for lung cancer DNA damageome genes and 

proteins. (a) Overproduction screen. Upper: assay scheme, N-terminal EmGFP fusions 

of lung cancer risk genes were transiently overproduced for 72hours, followed by DNA 

damage detection using flow cytometry. Lower: normalized γH2AX level of each of the 

overproduction candidate (GFP positive cells). FUBP1 (Representative histogram shown in 

the upper right corner), CCDC97, IRF4, DCBLD1, SECISBP2L, CCDC97, CYP21A2, and 

AK9 promote DNA damage when overexpressed. Gating strategy is shown in Extended 

Data figure 2 (a-d). All candidates are normalized to the median γH2AX intensity of 

GFP+ Tubulin (Tub) overproducing cells. mean ± SEM, n>=6. Two sample two-sided 

t-test assuming equal variances, * P < 0.00263 after Bonferroni correction, exact P-values 

in Supplementary table 20. (b) siRNA knockdown screen identifies PPIL6 as loss-of-

function DNA damageome gene. Upper: assay scheme, siRNAs targeting several lung 

cancer risk genes were transfected for 72 hours to achieve knockdown, followed by DNA 

damage measurements by flow cytometry. Lower left: normalized DNA damage for each 

siRNA knockdown. γH2AX-high cells are quantified using a threshold described in the 

methods, and gating strategy is shown in Extended Data figure 2 (e-g). All candidates are 

normalized to non-targeting (NT) pooled siRNAs. mean ± SEM, n>=6. Two sample t-test 

assuming unequal variances, * P < 0.0125 after Bonferroni correction, exact P-values in 

Supplementary table 20.
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Table 1.

Sample characteristics of the study populations by ancestry.

Discovery GWAS sample population Validation GWAS sample population

 

EUR EAS AFR Total
Cases

Total
Controls

EUR EAS AFR Total
Cases

Total
ControlsStrata Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

Lung 26,683 25,278 7,062 5,372 1,987 3,774 35,732 34,424 11,680 898,929 13,316 13,324 319 560 25,315 912,813

ADE 9,791 23,173
a 4,630 5,372 844 3,774 15,265 32,319 3,095 436,443 8,755 13,324 186 560 12,036 450,327

SQC 6,107 23,173
a 1,292 5,372 451 3,774 7,850 32,319 1,607 365,037 3,857 13,324 75 560 5,539 378,921

SCC 2,267 23,173
a 99 5,372 116 3,774 2,482 32,319 1,268 365,282 - - 29 560 1,297 365,842

a
Number of individuals included in the corresponding histology-specific analysis with histological information. Lung, Overall lung cancer; ADE, 

Lung adenocarcinoma; SQC, Lung squamous cell carcinoma; SCC, Small cell lung carcinoma; EUR, European; EAS, East Asian; AFR, African.
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Table 2.

Top associations in ancestry-specific and cross-ancestry lung cancer and histological subtype analyses.

Strata SNP Cytoband Position Nearest Gene Allele
EAF

(EUR1; EAS1; 
AFR1)

OR
(EUR1; 
EAS1; 
AFR1)

P_BE1 P_BE2 P_BEC

Lung Cancer

New# rs9865715 * 3p22.1 42917047 CYP8B1 G_A 0.993; 0.999; 
0.951

1.64; 
1.24; 
0.87

1.64×10−10 0.904 3.53×10−10

New# rs12203592 
* 6p25.3 396321 IRF4 T_C 0.143; 0.010; 

0.042

1.12; 
0.88; 
0.96

2.85×10−8 1.97×10−5 3.33×10−12

New# rs17534632 6q21 109740101 PPIL6 T_C 0.204; 0.020; 
0.041

1.10; 
1.09; 
0.99

8.78×10−9 0.166 3.61×10−8

New rs34102154* 6p21.32 32572106 HLA-DRB1, 
HLA-DQA1 A_G 0.157;0.231;0.213

0.90; 
0.94; 
0.93

7.51×10−10 0.048 1.88×10−9

New rs1885281* 10q25.2 114492898 VTI1A A_G 0.059; 0.290; 
0.191

1.01; 
1.24; 
1.13

9.21×10−13 4.02×10−10 1.23×10−20

New rs11607355* 11q23.3 118093547 JAML, 
AMICA1 T_C 0.502; 0.551; 

0.253

0.94; 
0.90; 
0.87

2.79×10−10 8.38×10−12 2.58×10−20

New rs2413932* 15q21.1 49383481 SECISBP2L, 
COPS2 T_C 0.734; 0.752; 

0.619

1.09; 
1.10; 
1.06

1.53×10−12 3.49×10−9 8.31×10−20

Lung adenocarcinoma

New# rs268864 * 2p14 65489742 ACTR2 A_G 0.843; 0.805; 
0.899

0.88; 
0.94; 
0.87

3.41×10−8 5.04×10−10 1.60×10−16

New# rs2316515 6p25.3 410848 IRF4 G_A 0.582; 0.549; 
0.388

1.11; 
0.98; 
1.09

3.21×10−9 0.563 1.82×10−8

New rs3129860* 6p21.32 32401079 LOC101929163, 
HLA-DRA G_A 0.868; 0.875; 

0.938

0.89; 
0.79; 
1.03

2.09×10−11 0.609 5.56×10−11

New rs12348845* 9p21.3 21775492 MIR31HG, 
MTAP A_G 0.098; 0.256; 

0.522

1.21; 
1.14; 
1.11

1.45×10−14 2.73×10−6 9.01×10−19

New rs7902587* 10q24.33 105694301 STN1,SLK T_C 0.105; 0.005; 
0.179

1.19; 
0.51; 
1.19

2.67×10−10 0.124 1.83×10−10

New rs12265047* 10q25.2 114487925 VTI1A A_G 0.968; 0.727; 
0.701

0.90; 
0.80; 
0.85

1.61×10−12 4.40×10−13 1.06×10−23

New rs75031349* 20q13.33 62314054 RTEL1-
TNFRSF6B G_A 0.084; 0.028; 

0.168

0.84; 
0.79; 
0.90

1.19×10−8 0.190 1.04×10−8

Lung squamous cell carcinoma

New# rs2041742 * 2p16.1 59086026 LINC01122 G_A 0.947; 0.981; 
0.987

1.03; 
0.54; 
0.60

2.03×10−12 0.846 1.48×10−11
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Strata SNP Cytoband Position Nearest Gene Allele
EAF

(EUR1; EAS1; 
AFR1)

OR
(EUR1; 
EAS1; 
AFR1)

P_BE1 P_BE2 P_BEC

New# rs6757055 2q34 213999410 IKZF2 A_C 0.950; 0.969; 
0.938

1.04; 
0.59; 
1.00

3.01×10−9 0.941 4.54×10−8

New rs9267123* 6p21.33 31427395 LINC01149, 
HCP5 C_G 0.116; 0.021; 

0.038

1.42; 
1.14; 
1.42

2.93×10−18 0.071 2.50×10−18

Small cell lung cancer

New# rs141178913 
* 3p25.3 9970073 IL17RC G_C 0.001; 1.2×10−4; 

2.8×10−4

5.36; 
NA; 
76.69

2.37×10−9 NA 2.37×10−9

New# rs191133092 6p22.1 28932985 LINC01556, 
HCG15 T_A 1.4×10−4; 

2.8×10−5; 0.014

12.56; 
NA; 
5.30

1.52×10−8 NA 1.52×10−8

Nearest gene (reference NCBI build37) is given as locus label and includes all the genes +/− 200kb of the genomic risk SNP; Asterisks * indicate 

the SNPs at the Bonferroni-corrected significance level of P_BEC ≤ 1.25E10-8; Allele, effect allele_other allele; EAF, effect allele frequency for 
European (EUR1), East Asian (EAS1), African (AFR1) population in discovery study, respectively; OR, odds ratio effect size for EUR1, EAS1, 

and AFR1 population, respectively; P_BE1, P_BE2, and P_BEC, P-value from binary random-effect meta-analysis model in cross-ancestry model 
of discovery study, validation study, and cross-ancestry combined model of discovery and validation studies using METASOFT, respectively; 

New#, new susceptibility loci discovered in this study; New, new lead variant from a previously reported loci with r2 < 0.6.
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