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ABSTRACT OF THE DISSERTATION

Unlearning and Privacy in Deep Neural Networks

by

Aditya Sharad Golatkar

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Stefano Soatto, Chair

We explore the problem of selectively forgetting (or unlearning) a particular subset of the data

used for training a deep neural network. While the effects of the data to be forgotten can be hidden

from the output of the network, insights may still be gleaned by probing deep into its weights. We

propose methods for “scrubbing” the weights clean of information about a particular set of training

data without requiring retraining from scratch. In the “white-box” setting, the weights are modified

so that any probing function of the weights is indistinguishable from the same function applied to

the weights of a network trained without the data to be forgotten. This condition is a generalized

and weaker form of Differential Privacy. Then we improve upon the white-box forgetting method

by generalizing it across different readout functions, and show that it can be extended to ensure

forgetting in the final activations of the network in a “black-box” setting. We introduce a new

bound on how much information can be extracted per query about the forgotten cohort from a

black-box network for which only the input-output behavior is observed. The proposed forgetting

procedure has a deterministic part derived from the differential equations of a linearized version of

the model, and a stochastic part that ensures information destruction by adding noise tailored to

the geometry of the loss landscape. We exploit the connections between the final activations and
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weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the

final activations. To improve the deterministic part of the forgetting procedure, we present the first

method for linearizing a pre-trained model (Linear Quadratic Fine-tuning) that achieves comparable

performance to non-linear fine-tuning on most of real-world image classification tasks tested, thus

enjoying the interpretability of linear models without incurring punishing losses in performance.

LQF consists of simple modifications to the architecture, loss function and optimization typically

used for classification which is sufficient to approach the performance of non-linear fine-tuning.

We use this to introduce a novel notion of forgetting in mixed-privacy setting, where we know that

a “core” subset of the training samples does not need to be forgotten. While this variation of the

problem is conceptually simple, we show that working in this setting significantly improves the

accuracy and guarantees of forgetting methods applied to vision classification tasks. Moreover, our

method allows efficient removal of all information contained in non-core data by simply setting

to zero a subset of the weights with minimal loss in performance and can achieve close to the

state-of-the-art accuracy on large scale vision tasks. To cover the other end of the privacy spectrum,

we introduce AdaMix, an adaptive differentially private algorithm for training deep neural network

classifiers using both private and public image data. AdaMix incorporates few-shot training, or

cross-modal zero-shot learning, on public data prior to private fine-tuning, to improve the trade-off.

AdaMix reduces the error increase from the non-private upper bound from the 167-311% of the

baseline, on average across 6 datasets, to 68-92% depending on the desired privacy level selected by

the user. AdaMix tackles the trade-off arising in visual classification, whereby the most privacy

sensitive data, corresponding to isolated points in representation space, are also critical for high

classification accuracy. In addition, AdaMix comes with strong theoretical privacy guarantees and

convergence analysis.
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is the ideal scrubbing direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Same experiment as Figure 3.2 for different architectures and datasets. (Row 1): ResNet-

18 on CIFAR, (Row 2): ResNet-18 on Lacuna, (Row 3): All-CNN on TinyImageNet

and (Row 4): ResNet-18 on TinyImageNet. In all the experiments we observe that for

different readout functions the proposed method lies in the green (target) region. . . . 63

3.8 Same experiment as Figure 3.3 for different architectures and datasets. (Row-1):

ResNet-18 on CIFAR, (Row-2): ResNet-18 on Lacuna, (Row-3): All-CNN on Tiny-

ImageNet, (Row-4): ResNet-18 on TinyImageNet. We observe consistent behaviour

across different architectures and datasets. . . . . . . . . . . . . . . . . . . . . . . . . 64
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4.1 Critical periods for regularization in DNNs : (Left) Final test accuracy as a function

of the epoch in which the regularizer is removed during training. Applying regulariza-

tion beyond the initial transient of training (around 100 epochs) produces no appreciable

increase in the test accuracy. In some cases, early removal of regularization e.g., at

epoch 75 for All-CNN, actually improves generalization. Despite the loss landscape

at convergence being un-regularized, the network achieves accuracy comparable to

a regularized one. (Center) Final test accuracy as a function of the onset of regular-

ization. Applying regularization after the initial transient changes the convergence

point (Fig. 4.2, B), but does not improve regularization. Thus, regularization does not

influence generalization by re-shaping the loss landscape near the eventual solution.

Instead, regularization biases the solution towards regions with good generalization

properties during the initial transient. Weight decay (blue) shows a more marked time

dependency than data augmentation (orange). The dashed line (green) in (Left) and

(Center) corresponds to the final accuracy when we regularize throughout the training.

(Right) Sensitivity (change in the final accuracy relative to un-regularized training) as

a function of the onset of a 50-epoch regularization window. Initial learning epochs

are more sensitive to weight decay compared to the intermediate training epochs for

data augmentation. The shape of the sensitivity curve depends on the regularization

scheme as well as the network architecture. For experiments with weight decay (or data

augmentation), we apply data augmentation (or weight decay) throughout the training.

Critical period for regularization occurs during the initial rapid decreasing phase of the

training loss (red dotted line), which in this case is from epoch 0 to 75. The error bars

indicate thrice the standard deviation across 5 independent trials. . . . . . . . . . . . . 71
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4.2 Intermediate application or removal of regularization affects the final solution:

(A-C) L2 norm of the weights as a function of the training epoch (corresponding to

Figure 4.1 (Top)). The weights of the network move after application or removal of

regularization, which can be seen by the change in their norm. Correlation between the

norm of the weights and generalization properties is not as straightforward as lower

norm implying better generalization. For instance, (C) applying weight decay only at the

beginning (curve 0) reduces the norm only during the critical period, and yields higher

norm asymptotically than, for example, curve 25. Yet it has better generalization. This

suggests that the having a lower norm mostly help only during the critical period. We

plot the norm of the weights for 200 training epochs to confirm that the weights stabilize

and would not improve further with additional training. (D) PCA-projection of the

training paths obtained removing weight decay at different times (see Section 4.4.1.1).

Removing WD before the end of the critical period (curves 25, 50) makes the network

converge to different regions of the parameter space. Removing WD after the critical

period (curves 75 to 200) still sensibly changes the final point (in particular, critical

periods are not due the optimization being stuck in a local minimum), but all points lie

in a similar area, supporting the Critical Period interpretation of [ARS19]. (E) Same

plots, but for DA, which unlike WD does not have a sharp critical period: all training

paths converge to a similar area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xvii



4.3 (Top) Critical periods for regularization are independent of the data distribution:

We repeat the same experiment as in Figure 4.1 on CIFAR-100. We observe that the

results are consistent with Figure 4.1. The dashed line (green) in (Left) and (Right)

denotes the final accuracy when regularization is applied throughout the training. The

dashed line on top corresponds to ResNet-18, while the one below it corresponds to

All-CNN. (Center) In the middle row (Left and Center), we show critical regularization

periods for models trained on SVHN [NWC11] and ImageNet [DDS09a]. Critical

periods for regularization also exists for regularization methods apart from weight

decay and data augmentation, for example, Mixup [ZCD17] (Center Right). In fact, we

observe that applying Mixup only during the critical period (first 75-100 epochs) results

in better generalization compared to applying it throughout the training. (Bottom)

Critical regularization periods with a piecewise constant learning rate schedule:

We repeat experiment in Figure 4.1, but change the learning rate scheduling. Networks

trained with piecewise constant learning rate exhibit behavior that is qualitatively similar

to the exponentially decaying learning rate. The same experiment with constant learning

rate is inconclusive since the network does not converge (see Appendix, Figure 4.11). 75

4.4 Critical periods for regularization are independent of Batch-Normalization: We

repeat the same experiment as in Figure 4.1, but without Batch-Normalization. The

results are largely compatible with previous experiments, suggesting that the effects are

not caused by the interaction between batch normalization and regularization. (Left)

Notice that, surprisingly, removal of weight decay right after the initial critical period

actually improves generalization. (Center) Data augmentation in this setting shows a

more marked dependency on timing. (Right) Unlike weight decay which mainly affects

initial epochs, data augmentation is critical for the intermediate epochs. . . . . . . . . 76
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4.5 Fisher Information and generalization: (Left) Trace of the Fisher Information Matrix

(FIM) as a function of the training epochs. Weight decay increases the peak of the

FIM during the transient, with negligible effect on the final value (see left plot when

regularization is terminated beyond 100 epochs). The FIM trace is proportional to

the norm of the gradients of the cross-entropy loss. FIM trace plots for delayed

application/sliding window can be found in the Appendix (Figure 4.7) (Center) &

(Right): Peak vs. final Fisher Information correlate differently with test accuracy:

Each point in the plot is a ResNet-18 trained on CIFAR-10 achieving 100% training

accuracy. Surprisingly, the maximum value of the FIM trace correlates far better with

generalization than its final value, which is instead related to the local curvature of the

loss landscape (“flat minima”). The Pearson correlation coefficient for the peak FIM

trace is 0.92 (p-value ¡ 0.001) compared to 0.29 (p-value ¿ 0.05) for the final FIM trace. 79

4.6 PCA-projection of the training paths for All-CNN on CIFAR-10. . . . . . . . . . . . 83

4.7 Trace of FIM as a function of training epochs for delayed and sliding window application

of weight decay for ResNet-18 on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . 83

4.8 We repeat the experiments from Figure 4.1 and replace the exponential learning rate

with a constant learning rate (lr = 0.001). However, those are inconclusive since the

error achievable with a constant rate does not saturate performance on the datasets we

tested them, with the architectures we used. Test error is almost twice than what was

achieved with an exponential or piecewise constant learning rate. It is possible that

careful tuning of the constant could achieve baseline performance and also display

critical period phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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4.9 Effect of learning rate on generalization: (Top) The effective learning rate ηeff,t =

ηt/∥wt∥22, where ηt is the learning rate at epoch t and ∥wt∥22 is the norm of weights at

epoch t. [ZWX19, HBG18, Laa17], shown as a function of the training epoch for the

experiments from Figure 4.1 (Top blue) / Figure 4.2. (Left) and (Center) The effective

learning rate is higher throughout the training (which includes the critical periods) for

models which generalize better (Figure 4.1 Top blue) (Right) When we apply weight

decay in a sliding window, the effective learning rate for the dark blue curve (weight

decay from 0-50) is higher during the critical period but lower afterwards, compared

to light blue curves (weight decay from 25-75, 50-100). However, the dark blue curve

yields a higher final accuracy (test accuracy increase of 1.92%) compared to light blue

curves (test accuracy increase of 1.39%, 0.24% respectively), despite having a lower

effective learning rate for the majority of the training. This suggests that having a

higher effective learning rate during the critical periods is more conducive to good

generalization when using weight decay. (Bottom) We test this further by plotting the

relationship between the effective learning rate and final test accuracy. Mean initial

effective learning rate is the average effective learning rate over the first 100 epoch,

while mean final effective learning rate is the average computed over the final 100

epochs. The initial effective learning rate correlates better with generalization (Pearson

correlation coefficient of 0.96 (p-value ¡ 0.001)) compared to the final effective learning

rate (Pearson correlation coefficient of 0.85 (p-value ¡ 0.001)). . . . . . . . . . . . . . 85

4.10 L2 norm of the weights as a function of the training epoch. We observe similar results

(compared to Figure 4.2) for different architectures (ResNet-18 and All-CNN) and

different datasets (CIFAR-10 and CIFAR-100). . . . . . . . . . . . . . . . . . . . . . 86

4.11 Plot of layer-wise Fisher Information for ResNet-18 trained on CIFAR-10. Unlike

[ARS19] we do not observe changes in the relative ordering of the21layers, which

makes sense since unlike the experiments in [ARS19], the underlying data distribution

is not changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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5.1 Linear vs. nonlinear fine-tuning (NLFT). (Left) Box-plot of the distribution of test

errors achieved by different linearization methods on the datasets in Table 5.1, relative

to the error achieved by NLFT (dashed line at origin). Whiskers show best/worst

results, boxes extend from lower to upper quartiles (the results on half of the datasets

are concentrated in the box), the central line represents the median increase in er-

ror. GaF [MLL20] (green, 47% median error increase) is better than training a

linear classifier on a fixed embedding (red, 71% increase), but slightly worse than

LQF applied just to that linear classifier (LQF FC, orange, 42% increase). LQF is

the closest linear method to the non-linear paragon (blue, 12% increase). (Right)

We show the distribution of best effective learning rates as the task varies. While for

NLFT we need to search in a wide range to find the optimal training parameters for a

task (wide dashed box), for LQF the same learning rate works almost equally well for

all tasks (narrow solid box). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Ablation study. Box plot showing relative error increase on the datasets in Table 5.1

when removing consititutive components of LQF. Removing MSE in favor of the

standard CE loss yields the largest increase in error (blue). Removing K-FAC pre-

conditioning, leaving standard SGD (orange), has also a sizeable effect. Finally, on

most datasets, Leaky-ReLU performs better than standard ReLU (green). . . . . . . . 90
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5.3 Unlike SGD, LQF requires pre-conditioning. Histogram of the eigenvalues of the

Hessian loss function at initialization (blue) and at the end of optimization of a non-

linear network (orange). Note that at initialization a few directions have very large

eigenvalues while many directions have much smaller eigenvalues, resulting in a high

condition number κ = 1482.4. However, SGD naturally moves to areas of the loss

landscape that are better conditioned, with κ = 179.7 at the end of training (note that

the largest eigenvalues decrease), thus making convergence easier. This “automatic

conditioning” makes pre-conditioning un-necessary in non-linear networks. On the

other hand, since in LQF the Hessian is fixed throughout the training, we need to use

K-FAC pre-conditioning to facilitate convergence. . . . . . . . . . . . . . . . . . . . 94

5.4 Efficiency of LQF at different data regimes. Comparison of LQF and standard

fine-tuning for different number of training samples per category (“shots”) in the same

datasets as Table 5.1. On average, LQF performs better than standard fine-tuning when

the datasets are relatively small. The single outlier (diamond) is FGVC Aircraft, where

NLFT tends to perform better (see Section 5.2.2). . . . . . . . . . . . . . . . . . . . . 101

5.5 Comparison of on-line learning methods. Standard non-liner networks may converge

to a bad local minimum when trained incrementally, and consequently have a sub-

optimal performance compared to a non-linear network re-trained from scratch every

time more data is obtained (paragon). On the other hand, LQF has a unique minimum

to which it is guaranteed to converge, ensuring that the performance will be close to the

paragon at all steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xxii



5.6 Informativeness of samples. (Top row) Seven representative examples from the 25

most informative images for a network trained on Oxford Flowers (complete set in

appendix). The network considers more informative samples of flowers that are hard

to distinguish, such as English Marigold and Barbeton Daisy, or Hibiscus, Petunia

and Pink Primrose. On the other hand, images of flowers that have a distinctive shape

(e.g., Orchid) or near duplicated images are not informative for the training (bottom

row). (Right) Dataset summarization. We plot the final test accuracy when training

LQF after dropping the N most informative training examples (blue line) and the N

less informative (orange line). The test performance decreases faster when dropping

informative examples, as we would expect, validating our informativeness measure. . 103

5.7 Ablation study on on-line learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.8 Using MSE loss with NLFT. Plot of the test error obtained by training with NLFT

using either cross-entropy of MSE loss for different number of training samples per

class (shots). While cross-entropy loss is comparably or better than MSE loss when

training with many samples, we observe that in the low-shot regime MSE tends to

always outperform CE. This suggests that using MSE loss is not beneficial only for

lienarized models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 Exploring different weight decay values via fine-tuning. We compare the test error

obtained by training from scratch with a given weight decay value λ, and the test error

obtained by loading the solution found with λ0 = 5 · 10−4 and fine-tuning with a

different value of λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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6.1 Mixed-Linear model has comparable accuracy to standard DNN. Plot of the test

errors for different datasets using different models. We take a ResNet-50 pretrained on

ImageNet and fine-tune it using different procedures, (DNN) We fine-tune the whole

network on various datasets, (Mixed-Linear) We fine-tune the linearized ResNet-50

(eq. (6.5)) in a mixed private setting, Last-Layer Features: We simply fine-tune the

final fully connected (FC) layer of the ResNet-50. We show that fine-tuning a linearized

DNN using the mixed-privacy framework performs comparable to fine-tuning a DNN

and outperforms simply fine-tuning the last FC layer. . . . . . . . . . . . . . . . . . . 124

6.2 Forgetting-Accuracy Trade-off Plots of the amount of remaining information in the

weights about the data to forget (red, left axis) and test error (blue, right axis) as a

function of the (top) scrubbing noise and (bottom) number of optimization iterations

used to compute the scrubbed weights in eq. (6.13). We aim to forget 10% of the

training data through 10 forgetting requests on the Caltech-256 (left) and Aircrafts

datasets (right). Note that the remaining information in the weights decreases with an

increase in the forgetting noise or the number of epochs during forgetting as predicted

by the bound in Theorem 1. Increasing the forgetting noise increases the test error after

forgetting (top). In terms of the computational efficiency/speed, doing 2-3 passes over

the data (i.e. 2-3 epochs) is sufficient for forgetting (in terms of the test error and the

remaining information) rather than re-training from scratch for 50 epochs (bottom) for

each forgetting request Dk
f . Thus providing a 16-25× speed-up per forgetting request.

We fine-tune the ML-Forgetting model for 50 epochs while training the user weights.

Values for τ and σ can be chosen using these trade-off curves given a desired privacy

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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6.3 Read-out functions for different forgetting methods. We forget a subset of 10% of

the training data through 10 equally-size sequential deletion requests using different

forgetting methods, and show the value of the several readout functions for the resulting

scrubbed models. Ideally, the value of the readout function should be the same as the

value (denoted with the green area) obtained on a model retrained from scratch without

those samples. Closer to the green area is better. (Original) denotes the trivial baseline

where we do apply any forgetting procedure. (Fisher) Adds Fisher noise as as described

in ( [GAS19a]), (ML-Forgetting) The model obtained with our method after forgetting.

In all cases, we observe that ML-Forgetting obtains a model that is indistinguishable

from one trained from scratch without the data, whereas the other methods fail to do so.

This is particularly the case for the Retrain Time readout functions, which exploits full

knowledge of the weights and it is therefore more difficult to defend against. . . . . . 129

6.4 Comparison of complete and stochastic residual gradient estimation for forgetting.

ML-Forgetting uses the complete residual gradient for the forgetting step, exploiting the

fact that the loss function is quadratic. However, one can also estimate it stochastically,

which is equivalent to fine-tuning on the remaining data to forget. Here we show that

indeed both methods work but – when using the same number of steps – complete

estimate gives a better solution due to smaller variance and faster convergence (lower

test error and information leakage). . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Effect of using a core data close to the task. Plot of the remaining information and test

error on Aircrafts using (a) generic ImageNet core data, and (b) ImageNet pre-training

+ 30% of the Aircrafts. When the core data contain information close to the user task

that the network does not need to forget, ML-Forgetting can exploit this to create better

core-weights and a correspondingly better linearized model. This improves both the

accuracy of the model and makes forgetting easier, as seen from the accuracy-forgetting

curves in the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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6.6 Readout function plot similar to Figure 6.3 for Caltech-256 dataset, where we forget an

entire class rather a sequence of randomly sampled data subsets. . . . . . . . . . . . . 135
6.7 Readout function plot similar to Figure 6.3 for FGVC-Aicrafts dataset, where we forget

an entire class rather a sequence of randomly sampled data subsets. . . . . . . . . . . . 135

6.8 Plot of the amount of remaining information and test error vs the L2 regularization

coefficient. We forget 10% of the training data sequentiall through 10 forgetting request.136

6.9 Same experiments as Figure 6.3 for StanfordDogs. . . . . . . . . . . . . . . . . . . . 137

6.10 Same experiments as Figure 6.3 for MIT-67. . . . . . . . . . . . . . . . . . . . . . . . 137

6.11 Same experiments as Figure 6.3 for CIFAR-10. . . . . . . . . . . . . . . . . . . . . . 138

6.12 Same experiments as Figure 6.3 for CUB-200. . . . . . . . . . . . . . . . . . . . . . . 138

6.13 Same experiments as Figure 6.3 for FGVC-Aircrafts. . . . . . . . . . . . . . . . . . . 139
6.14 Same experiment as Figure 6.2 for Stanforddogs and CUB-200 datasets. . . . . . . . . 140

6.15 Same experiment as Figure 6.2 for MIT67. . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1 Test error vs privacy for several methods. (Left) On MIT-67, we show the test error

obtained by different methods at different privacy parameters ϵ. The top horizontal red

line shows the perfectly private Only-Public baseline (not using the private data at all).

The bottom green line shows the non-private paragon (training on all data as if they

where public). By changing the privacy parameter ϵ, we can interpolate between the

two extrema. We see that AdaMix performs uniformly better than other methods, and

can use private and public data together to obtain significant boost at all ϵ. (Center)

Same as the before, but we zoom in to show the behavior of the different solutions in the

low-ϵ regime. (Right) For the same algorithms, we plot the robustness to adversarial

attacks (measured by AUC) vs test error obtained using different values of ϵ (annotated

near each point). AdaMix obtains the best trade-off between accuracy and robustness. 166
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7.2 (Left) Trade-off between public and private examples. We show the accuracy

reached on MIT-67 using N samples per class (x-axis) when they are public (green) or

private (in red for different values of ϵ). Fully private training requires as much as 10

times more samples. This leaves users with a trade-off between collecting more private

data or, if possible, a smaller amount of public data. (Right) Performance boost using

a private set for different methods. We plot the Performance Boost (PB) for different

DP methods as the ratio of public to private samples changes (see text for definition).

We see that AdaMix achieves the best performance boost. As expected, when the public

set is relatively large, the boost from adding private data decreases. . . . . . . . . . . . 168

7.3 (Left and center) Effect of public data on per-instance DP. For ϵ = 3, we plot the

sorted pDP scores for each sample in the dataset with Fully-Private training (left) and

with AdaMix (center). AdaMix makes the the target ϵ (horizontal line) closer to pDP

value used by most samples (blue curve). (Right) MixDP and domain-shifts. We

plot the performance of AdaMix when (purple curve) the public data come from the

same domain as the test (real images), and (blue curve) from different domains (public

images are paintings). We see that AdaMix use the private data from the target domain

(real images) to adapt the solution to the target task. This significantly improves over

using only the public data from the wrong domain (red line) and for large ϵ approaches

the non-private limit (green line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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7.4 (Left) Multi-modal initialization is better than zero initialization. We compare

the test accuracy on MIT-67 of a CLIP model trained with ϵ = 3 using different

initialization strategies. We observe that initializing the logistic weights to zero leads

to the worst results under a given privacy parameter. Using the public label names to

initialize the weights (language initialization) performs significantly better. However,

using the few available public images to initialize the weights still outperforms the other

choices. (Right) Multi-modal models. We compare the performance of ResNet-50

model, and a CLIP model. We see that CLIP performs significantly better under a

given privacy parameter. While the ResNet-50 model and the CLIP model are not

directly comparable due to different pre-training, this further reinforces that stronger

pre-training can indeed benefit the privacy setting and that the feature space learned by

multi-modal models may be better suited for privacy than standard vision networks. . 171

7.5 Ablation Studies Box plot showing the relative decrease in the test error across multiple

datasets when we add Subspace Projection, Adaptive Clipping and Subspace Projection

+ Adaptive Clipping (AdaMix) to NGD. We observe that adaptive clipping provides

more improvement compared to subspace projection, and the combination of the two

works the best across 6 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.6 Random Subspace Projection We plot the relative reconstruction error of the private

gradients when projecting on the subspace spanned by the public gradients or on a

random subspace during training (using AdaMix and ϵ = 3). The reconstruction error

when projecting on the random subspace is generally more than twice the error obtained

projecting on the subspace of public gradients, highlighting the importance of using the

latter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.7 Effect of adaptive clipping threshold We plot the test accuracy of AdaMix using

different values of adaptive clipping threshold percentile. . . . . . . . . . . . . . . . . 175
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7.8 Larger values of σ performs better. We plot the test accuracy of NGD and AdaMix

using different values of σ for ϵ = 3. A larger σ performs better but needs more training

steps thus verifying the claim empirically across multiple datasets. . . . . . . . . . . . 176

7.9 Test error vs Privacy and Robustness to Membership Attacks on Oxford-Flowers . . . 176

7.10 Test error vs Privacy and Robustness to Membership Attacks on CUB-200 . . . . . . . 177

7.11 Test error vs Privacy and Robustness to Membership Attacks on Oxford-Pets . . . . . . 177

7.12 Test error vs Privacy and Robustness to Membership Attacks on Stanford Dogs . . . . 177

7.13 Test error vs Privacy and Robustness to Membership Attacks on Caltech-256 . . . . . . 178

7.14 Effect of public data on per-instance DP for Oxford Flowers . . . . . . . . . . . . . . 178

7.15 Effect of public data on per-instance DP for CUB-200 . . . . . . . . . . . . . . . . . . 178

7.16 Effect of public data on per-instance DP for Oxford Pets . . . . . . . . . . . . . . . . 179

7.17 Effect of public data on per-instance DP for Stanford-Dogs . . . . . . . . . . . . . . . 179

7.18 Effect of public data on per-instance DP for Caltech-256 . . . . . . . . . . . . . . . . 180

7.19 Multi-model initialization and models for Oxford Pets . . . . . . . . . . . . . . . . . . 180

7.20 Multi-model initialization and models for Stanford Dogs . . . . . . . . . . . . . . . . 181

7.21 Multi-model initialization and models for Oxford Flowers . . . . . . . . . . . . . . . . 181

7.22 Multi-model initialization and models for CUB-200 . . . . . . . . . . . . . . . . . . . 181

xxix



LIST OF TABLES
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in the Retrain column is the optimal value which every other scrubbing procedure
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5.1 Test error of linear and non-linear fine-tuning on coarse-and fine-grained classifi-

cation. On almost all datasets LQF outperforms all other linear methods. Moreover,

on most coarse datasets LQF is within 0.5% absolute error from standard non-linear

fine-tuning. Linear methods performs worse than NLFT on fine-grained machine classi-

fication tasks that have a large domain gap with respect to ImageNet pretraining – e.g.,

Stanford Cars and FGVC Aircrafts. However, even in this case LQF reduces the error

by up to 20% with respect to competing methods. . . . . . . . . . . . . . . . . . . . . 97
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CHAPTER 1

Introduction

1.1 Motivation

Say you are the number ‘6’ in the MNIST handwritten digit database. You are proud of having

nurtured the development of convolutional neural networks and their many beneficial uses. But you

are beginning to feel uncomfortable with the attention surrounding the new “AI Revolution,” and

long to not be recognized everywhere you appear. You wish a service existed, like that offered by

the firm Lacuna INC in the screenplay The Eternal Sunshine of the Spotless Mind, whereby you

could submit your images to have your identity scrubbed clean from handwritten digit recognition

systems. Before you, the number ‘9’ already demanded that digit recognition systems returned,

instead of a ten-dimensional “pre-softmax” vector (meant to approximate the log-likelihood of an

image containing a number from 0 to 9) a nine-dimensional vector that excluded the number ‘9’. So

now, every image showing ‘9’ yields an outcome at random between 0 and 8. Is this enough? It

could be that the system still contains information about the number ’9,’ and just suppresses it in

the output. How do you know that the system has truly forgotten about you, even inside the black

box? Is it possible to scrub the system so clean that it behaves as if it had never seen an image of

you? Is it possible to do so without sabotaging information about other digits, who wish to continue

enjoying their celebrity status?

We study the problem of removing information pertaining to a given set of data points from

the weights of a trained network. After removal, a potential attacker should not be able to recover

information about the forgotten cohort, where an attacker is any agent intent to extract information
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about the data used for training, from the knowledge of the weights or outputs at inference time.

We consider both the cases in which the attacker has full access to the weights of the trained model,

and the less-studied case where the attacker can only query the model by observing some input data

and the corresponding output, for instance through a web API.

Machine unlearning or selective forgetting is a nascent field of increasing relevance with the

advent of large scale generative models, be it language, images, videos or a combination of different

modalities. Such large-scale models are also accompanied by stringent laws which enables user to

have their data forgotten from the weights of trained networks, some of these include the General

Data Protection Regulation in the European Union [Man13], California Consumer Protection

Act [Tor18], PIPEDA privacy legislation in Canada [Cof20]. Thus its important for researchers

to study the problem of unlearning, along with its connections and differences from Differential

Privacy [Dwo08].

1.2 A Proposed solution and Thesis outline

We provide the first result [GAS19a] to perform selective forgetting for trained deep networks. In

chapter 2 [GAS19a], we define the problem of selective forgetting information theoretically by

bounding the amount of remaining information after data removal, and attempt to provide a solution

by injecting noise into the weights of a network proportional to the Fisher Information Matrix.

More importantly, we show what does not constitute unlearning. Then we improve this solution by

providing a single shot forgetting update using inspiration from Neural Tangent Kernel [JGH18]

along with the Fisher Forgetting noise perturbation. This solution attempts to approximate the

non-linear deep networks with a linear approximation in infinite width. Using this we provide

information theoretic bounds for information leakage from the activations after data removal, and

provide unlearning update in the function space instead of weights space. We build on the previous

observations to propose linearized networks (chapter 5), which perform comparable to non-linear

fine-tuning by optimizing a quadratic loss function (Linear Quadratic Fine-tuning -LQF), which
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enables theory to meet practice for deep networks. Using LQF we propose a novel forgetting

procedure which exploits publically available core data which is not required to be forgotten in a

mixed-private setting which improves upon all the previously proposed methods, along with rigorous

theoretical guarantees and quantifiable information theoretic bounds. Finally, we extend the mixed-

private setting to Differential privacy [Dwo08] which aims to protect the privacy of every training

sample by limiting its influence in the training optimization. We show that our proposed algorithm

AdaMix, is able to outperform all the previous state of the art methods for differentially private

image classification tasks and also provide new benchmarks for the same. Overall, we analyse

the unlearning spectrum, (i) by starting from proposing forgetting procedures for deep networks

by simple perturbing their weights with gaussian noise, (ii) adding a single shot perturbation to

the weights of the non-linear network in addition to the scrubbing gaussian noise, (iii) linearizing

deep networks (LQF) in such a way that they perform comparable to non-linear fine-tuning, (iv)

propose a mixed-forgetting framework in a mixed-linear setting using the linearized deep networks

with access to publically available data, (v) explore mixed-private setting for differentially private

learning which aims to protect the privacy of every individual sample in the training data.

1.3 Summary of Contributions

In chapter 2 propose a definition of selective forgetting for trained neural network models. It is not

as simple as obfuscating the activations, and not as restrictive as Differential Privacy. Second, we

propose a scrubbing procedure that removes information from the trained weights, without the need

to access the original training data, nor to re-train the entire network. We compare the scrubbed

network to the gold-standard model(s) trained from scratch without any knowledge of the data to

be forgotten. We also prove the optimality of this procedure in the quadratic case. The approach

is applicable to both the case where an entire class needs to be forgotten (e.g. the number ‘6’) or

multiple classes (e.g., all odd numbers), or a particular subset of samples within a class, while still

maintaining output knowledge of that class. Our approach is applicable to networks pre-trained
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using standard loss functions, such as cross-entropy, unlike Differential Privacy methods that require

the training to be conducted in a special manner. Third, we introduce a computable upper bound

to the amount of the retained information, which can be efficiently computed even for DNNs. We

further characterize the optimal tradeoff with preserving complementary information. We illustrate

the criteria using the MNIST and CIFAR-10 datasets, in addition to a new dataset called “Lacuna.”

In chapter 3 we address the “black-box” setting, we introduce methods to scrub information

from, and analyze the content of deep networks from their final activations (black-box attacks). We

introduce a “one-shot” forgetting algorithms that work better than the previous method [GAS19a]

for both white-box and black-box attacks for DNNs. This is possible thanks to an elegant connection

between activations and weights dynamics inspired by the neural tangent kernel (NTK), which

allows us to better deal with the null-space of the network weights. Unlike the NTK formalism, we

do not need infinite-width DNNs. We show that better bounds can be obtained against black-box

attacks than white-box, which gives a better forgetting vs error trade-off curve. More precisely, we

show that we can quantify the maximum amount of information that an attacker can extract from

observing inputs and outputs (black-box attack), as well as from direct knowledge of the weights

(white-box).

To understand the role of the pre-trained backbone in unlearning in chapter 4 we seek to identify

the ”critical period” during training after which the model behaves more convexly, as a results linear

approximations to a neural network can used a proxy to construct an unlearning procedure. We find

that regularization via L2 penalty or data augmentation has the same effect on generalization when

applied only during the initial epochs of training. Conversely, if regularization is applied only in the

latter phase of convergence, it has little effect on the final solution, whose generalization is as bad

as if regularization never happened. This suggests that, contrary to classical models, the mechanism

by which regularization affects generalization in deep networks is not by changing the landscape

of critical points at convergence, but by influencing the early transient of learning. Applying L2

regularization during the initial period of the training enables the network to pass through narrow

bottlenecks during training and enter regions with flat or more convex loss landscapes. Thus
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linearizing networks after they cross the initial critical periods provides linear models with similar

generalization capabilities as that of non-linear fine-tuning. We hypothesis that pre-training is one

such way of crossing these narrow bottlenecks, to provide convex models during fine-tuning.

To enjoy the perks of linear optimization for unlearning we linearize deep networks to obtain

large linear models for downstream tasks, in our case image classification. chapter 5 introduces

Linear Quadratic Fine-Tuning (LQF), a method to linearize and train deep neural networks that

achieves comparable performance to non-linear fine-tuning (NLFT) on real-world image classifi-

cation, while enjoying all the benefits of linear-quadratic optimization. LQF performs fine-tuning

without optimizing hyper-parameters such as learning rate or batch size, enables predicting the effect

of even individual training samples on the trained classifier, and easily allows incorporating linear

constraints during training. LQF achieves performance comparable to NLFT, and better in the low-

data regime which is the most relevant to many real applications. The key enablers of LQF are simple

and known in the literature, although not frequently used: (i) We replace the cross-entropy loss with

the mean-squared error loss, making the optimization problem quadratic [GDN13, HB21, BD20],

(ii) we replace ReLU with Leaky-ReLU [MHN13], and (iii) we perform pre-conditioning using

Kronecker factorization (K-FAC) [MG15]. Individually, these changes bring limited improvements

to standard training of non-linear models. However, we show that their combined use has a much

larger impact on the performance of linearized models.

When building a classification system, one rarely has all the data to be used for training available

at the outset. More often, one starts by pre-training a model with some “core” dataset (e.g. ImageNet,

or datasets close to the target task) and then incorporates various cohorts of task-specific data as

they become available from diverse sources. In chapter 6 we introduce the problem of forgetting

(unlearning or data deletion or scrubbing) in a mixed-privacy setting which, compared to previous

formalizations, is better taylored to standard practice, and allows for better privacy guarantees. In

this setting we propose ML-Forgetting. ML-Forgetting trains a set of non-linear core weights and a

set of linear user weights, which allow it to achieve both good accuracy, thanks to the flexibility

of the non-linear weights, and strong privacy guarantees thanks to the linear weights. As a side
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effect, all the user data may be forgotten completely with the lowest possible drop in performance

by simply erasing the user weights. We show that ML-Forgetting can be applied to large-scale

vision datasets, and enjoys both strong forgetting guarantees and test time accuracy comparable

to standard training of a Deep Neural Network (DNN). To the best of our knowledge, this is the

first forgetting algorithm to do so. Furthermore, we show that ML-Forgetting can handle multiple

sequential forgetting requests without degrading its performance, which is important for real world

applications.

Unlearning removes data from the weights of training neural models, however, if the weights are

obtained after training privately such that the weights dont contain information about any specific

sample, the need for forgetting vanishes. Differential privacy is able to mathematically tackle

this problem and provides algorithms and rigorous guarantees. As a result we seek to provide

an improved algorithm which exploits public data in a mixed setting for private learning. To do

so, we change the setting from most work on DP to include labeled public data sourced with the

same labels as the target task. We call this setting mixed differential privacy, or MixDP. To address

MixDP, we propose to use the public data not just for pre-training the backbone, but for few-shot or

zero-shot learning of a classifier on the target tasks, prior to private fine-tuning. We show that indeed

in the MixDP setting it is possible to achieve significant gains compared to training with only the

private or only the public data, even using a small amount of the latter. To do so, we have to modify

existing DP training algorithms to the mixed setting, which leads us to the development of AdaMix,

a method for MixDP that uses public data to tune and adapt all major steps of private training, in

particular model initialization, clipping of the gradients, and projection onto a lower-dimensional

sub space. Some of these ideas to use auxiliary public data were applied in different contexts in

isolation, but have suboptimal privacy/performance trade-offs for visual tasks. We show significant

improvement w.r.t. baselines on a novel benchmark for MixDP vision tasks. We show that the

zero-shot text information can improve the performance of private models and analyze the goodness

of our method both theoretically (new theorems) and empirically (pDP analysis).
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1.4 Related Works

1.4.1 Unlearning or selective forgetting

The term “machine unlearning” was introduced by [CY15], who shows an efficient forgetting

algorithm in the restricted setting of statistical query learning, where the learning algorithm cannot

access individual samples. [MKK17] provided the first framework for instantaneous data summariza-

tion with data deletion using robust streaming submodular optimization. [GGV19] formalizes the

problem of efficient data elimination, and provides engineering principles for designing forgetting

algorithms. However, they only provide a data deletion algorithms for k-means clustering. These

unlearning procedures were proposed for classical pre-deep learning algorithms, which does not

involve removing information from trained deep neural networks. The problem of unlearning is

more applicable to trained deep networks compared to classical machine learning models as trained

deep networks contain millions (or billions with current large language models) of parameters, as

a results unlearning is essential and re-training models will cost exorbitant amount of monetary

resources and compute.

Unlearning methods can be broadly categorized in two directions, (i) approximate unlearning

methods, and (ii) sharding based forgetting methods. Approximate unlearning procedures are

inspired from differential privacy and also involve information theoretic bounds. In chapter 2

we propose the first unlearning method which involves removing information from trained deep

networks using Fisher forgetting. We talk about the weights of a network as containing “information,”

even though we have one set of weights whereas information is commonly defined only for random

variables. While this has caused some confusion in the literature, [AS19] proposes a viable

formalization of the notion, which is compatible with our framework. Thus, we will use the term

“information” liberally even when talking about a particular dataset and set of weights. In chapter 3

we extend the framework proposed in chapter 2 to activations. They also show that an approximation

of the training process based on a first-order Taylor expansion of the network (NTK theory) can

be used to the estimate the weights after forgetting. This approximation works well on small scale

7



vision datasets. However, the approximation accuracy and the computational cost degrade for larger

datasets (in particular the cost is quadratic in the number of samples). We also use linearizarion

but, crucially, instead of linearly approximating the training dynamics of a non-linear network, we

show that we can directly train a linearized network for forgetting. This ensures that our forgetting

procedure is correct, and it allows us to scale easily to standard real-world vision datasets. [BSZ20]

proposed a forgetting method for logit-based classification models by applying linear transformation

to the output logits, but do not remove information from the weights. [GGH19] formulates data

removal mechanisms using differential privacy, and provides an algorithm for convex problems

based on a second order Newton update. They suggest applying this method on top of the features

learned by a differentially private DNN, but do not provide a method to remove information from a

DNN itself. [ISC20] provides a projective residual update based method using synthetic data points

to delete data points for linear regression based models. [KL17, GSL19] provide a newton based

method for computing the influence of a training point on the model predictions in the context of

model interpretation and cross-validation, however, such an approach can also be used for data

removal. [WDD20] proposes to forgetting training samples by exploiting the iterative training

algorithm. They cache the intermediate statistics of training and when asked to forget a sample

they compute the total gradient accumulated by that sample during the training and subtract it

from the final weights. [NRS20] proposed a gradient descent based method for data deletion in

convex settings, with theoretical guarantees for multiple forgetting requests. They also introduce the

notion of statistical indistinguishably of the entire state or just the outputs similar to the information

theoretic framework of [GAS20].

The second direction in unlearning is using sharded models: [BCC19] propose a forgetting

procedure based on sharding the dataset and training multiple models. Aside from the storage cost,

they need to retrain subset of the models. Such methods enable complete information removal from

the models, as the weights affected by the samples to forget are discarded, however, if information

about the training samples may still exist in the choice of splitting.

Readout functions: The success of the forgetting procedure, can be measured by looking at
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whether a discriminator function R(w) that can guess – at better than chance probability – whether

a set of weights w was trained with or without Df or whether it was trained with Df and then

scrubbed. We call such functions readout functions. A popular example of readout function is the

confidence of the network (that is, the entropy of the output softmax vector) on the samples in Df :

Since networks tend to be overconfident on their training data [GPS17, KHH20], a higher than

expected confidence may indicate that the network was indeed trained on Df . Alternatively, we

can measure the success of the forgetting procedure by measuring the amount of remaining mutual

information I(S(w);Df ). 1 between the scrubbed weights S(w) and the data Df to be forgotten.

While this is more difficult to estimate, it can be shown that I(S(w);Df ) upper-bounds the amount

of information that any read-out function can extract. Said otherwise, it is an upper-bound on the

amount of information that an attacker can extract about Df using the scrubbed weights S(w).

Stability of SGD: In [HRS15], a bound is derived on the divergence of training path of models

trained with the same random seed (i.e., same initialization and sampling order) on datasets that

differ by one sample (the “stability” of the training path). This can be considered as a measure of

memorization of a sample and, thus, used to bound the generalization error. While these bounds are

often loose, we introduce a novel bound on the residual information about a set of samples to be

forgotten, which exploits ideas from both the stability bounds and the PAC-Bayes bounds [McA13],

which have been successful even for DNNs [DR17].

Catastrophic forgetting This occurs when a network trained on a task rapidly loses accuracy on

that task when fine-tuned for another. But while the network can forget a task, the information

on the data it used may still be accessible from the weights. Hence, even catastrophic forgetting

does not satisfy our stronger definition. Interestingly, however, our proposed solution for forgetting

relates to techniques used to avoid forgetting: [KPR17a] suggests adding an L2 regularizer using

the Fisher Information Matrix (FIM) of the task. We use the FIM, restricted to the samples we wish

to retain, to compute the optimal noise to destroy information, so that a cohort can be forgotten

1I(x, y) = EPx,y
[log (Px,y/PxPy)] is the mutual information between x and y, where Px,y is the joint distribution

and Px, Py are the marginal distributions.
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while maintaining good accuracy for the remaining samples. Part of our forgetting procedure in

Chapter 2 can be interpreted as performing “optimal brain damage” [LDS90] in order to remove

information from the weights if it is useful only or mainly to the class to be forgotten.

1.4.2 Membership Inference Attacks

[TLG19, HAP17, HMD19, PTD17, SS15, SRS17, SDO19] try to guess if a particular sample was

used for training a model. Since a model has forgotten only if an attacker cannot guess at better than

chance level, these attacks serve as a good metric for measuring the quality of forgetting. In our

experiments we construct a black-box membership inference attack similar to the shadow model

training approach in [SS15]. Such methods relate to model inversion methods [FJR15] which aim

to gain information about the training data from the model output.

1.4.3 Neural Tangent Kernel

[JGH18, LXS19] show that the training dynamics of a linearized version of a Deep Network —

which are described by the so called NTK matrix — approximate increasingly better the actual

training dynamics as the network width goes to infinity. [ADH19, LWY19] extend the framework to

convolutional networks. [SA19] compute information-theoretic quantities using the closed form

expressions for various quantities that can be derived in this settings. While we do use the infinite

width assumption, in Chapter 3 we show that the same linearization framework and solutions are

a good approximation of the network dynamics during fine-tuning, and use them to compute an

optimal scrubbing procedure.

1.4.4 Differential privacy

[DR14] focuses on guaranteeing that the parameters of a trained model do not leak information

about any particular individual. While this may be relevant in some applications, the condition is

often too difficult to enforce in deep learning (although see [ACG16]), and not always necessary. It
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requires the possible distribution of weights, given the dataset, P (w|D) to remain almost unchanged

after replacing a sample. Our definition of selective forgetting in chapter 2 can be seen as a

generalization of differential privacy. In particular, we do not require that information about any

sample in the dataset is minimized, but rather about a particular subset Df selected by the user.

Moreover, we can apply a “scrubbing” function S(w) that can perturb the weights in order to

remove information, so that P (S(w)|D), rather than P (w|D), needs to remain unchanged. This

less restrictive setting allows us to train standard deep neural networks using stochastic gradient

descent (SGD), while still being able to ensure forgetting.

Most work on Differential Privacy [CM08, SCS13, WG19, WG19, YNB21, BST14, SS15, INS19,

JW18,LK18] uses public data either for: generic pre-training unrelated to the task [TB21], or to tune

parameters [KRR20, ZWB21, YZC21], or as additional unlabeled data [PAE17, PSM18]. Instead,

we use a small amount of labeled public data related to the task to improve the accuracy of a private

model under a given privacy parameter ϵ.

Unlabeled public data. PATE [PAE17, PSM18, UNK21] trains teacher models on different

partitions of the data to predict labels, and privately vote on how to label public (unlabelled) data.

Then, a student model is trained in semi-supervised fashion on public data, now partially labelled

using the private data. This strategy does not directly allow to train a model on a mix of labeled

public and private data. [ZYC20] noted that the number of partitions required for meaningful privacy

guarantees may be prohibitive for vision datasets. As an alternative, they suggest labeling with

a differentially private KNN. In MixDP, where we assume that the public data is already labeled,

these algorithms would perform at best similarly to our Only-Public baseline. Instead, what we

are interested in effectively using labeled private data to improve performance relative to already

labeled public data.

Differential privacy for Language models. [LTL21, YNB21] show that a large language model

pre-trained on generic public data can be fine-tuned on task-specific private data with only modest

loss in accuracy. In contrast, our focus is on using small amounts of public data for fine-tuning. We
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note that in language models strong transfer of information from the pre-training is facilitated by the

fact that the output space (a sequence of tokens) is the same for all tasks. Conversely, vision models

need to relearn different output spaces based on the task (i.e., the last layer is always trained from

scratch) reducing the transfer of information. We show that we can partly recover this advantage by

either using an initialization based on public data of the same task, or a multi-modal vision-language

model. We use CLIP [RKH21] for zero-shot learning.

Adaptive clipping. Similarly to us, [WZ20] studies DP training with access to a small amount

of public data, and use adaptive gradient clipping [ZCH21, ATM21, BPS19, VSB18] based on

the public gradients. Contrary to us, they first train a private model separately and then a mixed

public-private model using the private one as a regularizer with compelling results on tabular data.

We found this approach ineffective for computer vision, where usually models are pre-trained on

public data. In Sec. 7.2 we show that AdaMix works better on vision tasks, and is further improved

with multi-modal data.

Adaptive projection. [KRR20, ZWB21, YZC21] suggest improving DP-SGD by projecting the

gradients into a lower-dimensional space estimated from public data. However, these methods

do not leverage the performance improvements derived from training on public data, which are

needed to make vision models viable. Using public data both to train and to estimate the subspace

introduces more challenges, since the gradients of the public data and private data will then behave

differently. Moreover, while they perform an SVD on the individual public sample gradients, we do

the SVD of the total gradient matrix. Unlike the SVD of the matrix of individual sample gradients,

this is cheaper to compute at each step.

12



CHAPTER 2

Eternal Sunshine of the Spotless Net: Selective Forgetting in

Deep Networks

In this chapter, we propose the definition of selective forgetting or unlearning for trained neural

network models. It is not as simple as obfuscating the activations, and not as restrictive as differential

privacy. Second, we propose a scrubbing procedure that removes information from the trained

weights, without the need to access the original training data, nor to re-train the entire network.

We compare the scrubbed network to the gold-standard model(s) trained from scratch without any

knowledge of the data to be forgotten. We also prove the optimality of this procedure in the quadratic

case. The approach is applicable to both the case where an entire class needs to be forgotten (e.g.

the number ‘6’) or multiple classes (e.g., all odd numbers), or a particular subset of samples within a

class, while still maintaining output knowledge of that class. Our approach is applicable to networks

pre-trained using standard loss functions, such as cross-entropy, unlike differential privacy methods

that require the training to be conducted in a special manner. Third, we introduce a computable

upper bound to the amount of the retained information, which can be efficiently computed even for

DNNs. We further characterize the optimal tradeoff with preserving complementary information.

We illustrate the criteria using the MNIST and CIFAR-10 datasets, in addition to a new dataset

called “Lacuna.”

This chapter serves as an introductory chapter which provides the basic foundations used in the

subsequent chapters. It aims to provide the basic idea of unlearning or selective forgetting for deep

neural networks. We also discuss what does it mean for a network to forget a training sample, and

more importantly what does not constitute forgetting i.e. what are some of the incorrect unlearning
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procedures which may seem to be correct.

2.0.1 Preliminaries and Notation

Let D = {xi, yi}Ni=1 be a dataset of images xi, each with an associated label yi ∈ {1, . . . , K}

representing a class (or label, or identity). We assume that (xi, yi) ∼ P (x, y) are drawn from an

unknown distribution P .

Let Df ⊂ D be a subset of the data (cohort), whose information we want to remove (scrub)

from a trained model, and let its complement Dr := D∁
f be the data that we want to retain. The data

to forget Df can be any subset of D, but we are especially interested in the case where Df consists

of all the data with a given label k (that is, we want to completely forget about a class), or a subset

of a class.

Let ϕw(·) ∈ RK be a parametric function (model), for instance a DNN, with parameters w

(weights) trained using D so that the k-th component of the vector ϕw in response to an image

x approximates the optimal discriminant (log-posterior), ϕw(x)k ≃ logP (y = k|x), up to a

normalizing constant.

2.0.2 Training algorithm and distribution of weights

Given a dataset D, we can train a model — or equivalently a set of weights — w using some

training algorithm A, that is w = A(D), where A(D) can be a stochastic function corresponding

to a stochastic algorithm, for example stochastic gradient descent (SGD). Let P (w|D) denote the

distribution of possible outputs of algorithm A, where P (w|D) will be a degenerate Dirac delta

if A is deterministic. The scrubbing function S(w) — introduced in the next section — is also

a stochastic function applied to the weights of a trained network. We denote by P (S(w)|D) the

distribution of possible weights obtained after training on the dataset D using algorithm A and then

applying the scrubbing function S(w). Given two distributions p(x) and q(x), their Kullback-Leibler

(KL) divergence is defined by KL
(
p(x) ∥ q(x)

)
:= Ex∼p(x)

[
log
(
p(x)/q(x)

)]
. The KL-divergence
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is always positive and can be thought of as a measure of similarity between distributions. In

particular it is zero if and only if p(x) = q(x). Given two random variables x and y, the amount of

Shannon Mutual Information that x has about y is defined as I(x; y) := Ex

[
KL
(
p(y|x) ∥ p(y)

)]
.

2.1 Definition and Testing of Forgetting

Let ϕw be a model trained on a dataset D = Df ⊔ Dr Then, a forgetting (or “scrubbing”) procedure

consists in applying a function S(w;Df ) to the weights, with the goal of forgetting, that is to

ensure that an “attacker” (algorithm) in possession of the model ϕw cannot compute some “readout

function” f(w), to reconstruct information about Df .

It should be noted that one can always infer some properties of Df , even without having ever

seen it. For example, if D consists of images of faces, we can infer that images in Df are likely to

display two eyes, even without looking at the model w. What matters for forgetting is the amount of

additional information f(w) can extract from a cohort Df by exploiting the weights w, that could

not have been inferred simply by its complement Dr. This can be formalized as follows:

Definition 1. Given a readout function f , an optimal scrubbing function for f is a function S(w;Df )

— or S(w), omitting the argument Df — such that there is another function S0(w) that does not

depend on Df
1 for which:

KL
(
P (f(S(w))|D) ∥P (f(S0(w))|Dr)

)
= 0. (2.1)

The function S0(w) in the definition can be thought as a certificate of forgetting, which shows

that S(w) is indistinguishable from a model that has never seen Df . Satisfying the condition above

is trivial by itself, e.g., by choosing S(w) = S0(w) = c to be constant. The point is to do so while

retaining as much information as possible about Dr, as we will see later when we introduce the

1If S0 could depend on Df , we could take S(w) = w to be the identity, and let S0(w) ignore w and obtain new
weights by training from scratch on D — that is S0(w) = w′ with w′ ∼ p(w|D). This brings the KL to zero, but does
not scrub any information, since S(w) is the identity.
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Forgetting Lagrangian in eq. (2.4). The formal connection between this definition and the amount

of Shannon Information about Df that a readout function can extract is given by the following:

Proposition 1. Let the forgetting set Df be a random variable, for instance, a random sampling of

the data to forget. Let Y be an attribute of interest that depends on Df . Then,

I(Y ; f(S(w))) ≤ EDf
[KL

(
P (f(S(w))|D) ∥P (f(S0(w))|Dr)

)
]. (2.2)

Yet another interpretation of eq. (2.1) arises from noticing that, if that quantity is zero then,

given the output of the readout function f(w), we cannot predict with better-than-chance accuracy

whether the model w′ = S(w) was trained with or without the data. In other words, after forgetting,

membership attacks will fail.

In general, we may not know what readout function a potential attacker will use, and hence we

want to be robust to every f(w). The following lemma is useful to this effect:

Lemma 1. For any function f(w) we have:

KL
(
P (f(S(w))|D) ∥P (f(S0(w))|Dr)

)
≤ KL

(
P (S(w)|D) ∥P (S0(w)|Dr)

)
Therefore, we can focus on minimizing the quantity

KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

)
, (2.3)

which guarantees robustness to any readout function. For the sake of concreteness, we now give a

first simple example of a possible scrubbing procedure.

Example 1 (Forgetting by adding noise). Assume the weights w of the model are bounded. Let

S(w) = S0(w) = w+σn, where n ∼ N (0, I), be the scrubbing procedure that adds noise sampled

from a Gaussian distribution. Then, as the variance σ increases, we achieve total forgetting:

KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

) σ→∞−−−→ 0.
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While adding noise with a large variance does indeed help forgetting, it throws away the baby

along with the bath water, rendering the model useless. Instead, we want to forget as much as

possible about a cohort while retaining the accuracy of the model. This can be formalized by

minimizing the Forgetting Lagrangian:

L = ES(w)

[
LDr(w)

]
+ λKL

(
P (S(w)|D) ∥P (S0(w)|Dr)

)
, (2.4)

where LDr(w) denotes the loss of the model w on the retained data Dr. Optimizing this first term is

relatively easy. The problem is doing so while also minimizing the second (forgetting) term: For

a DNN, the distribution P (w|D) of possible outcomes of the training process is complex making

difficult the estimation of the KL divergence above, a problem we address in the next section.

Nonetheless, the Forgetting Lagrangian, if optimized, captures the notion of selective forgetting at

the core of this work.

2.1.1 Stability and Local Forgetting Bound

Given a stochastic training algorithm A(D), we can make the dependency on the random seed ϵ

explicit by writing A(D, ϵ), where we assume that A(D, ϵ) is now a deterministic function of the

data and the random seed. We now make the following assumptions: (1) the cohort to be forgotten,

Df , is a small portion of the overall dataset D, lest one is better-off re-training than forgetting, and

(2) the training process A(D, ϵ) is stable, i.e., if D and D′ differ by a few samples, then the outcome

of training A(D, ϵ) is close to A(D′, ϵ). Under stable training, we expect the two distributions

P (S(w)|D) and P (S0(w)|Dr) in eq. (2.3) to be close, making forgetting easier. Indeed, we now

show how we can exploit the stability of the learning algorithm to bound the Forgetting Lagrangian.

Proposition 2 (Local Forgetting Bound). Let A(D, ϵ) be a training algorithm with random seed

ϵ ∼ P (ϵ). Notice that in this case P (S(w)|D) = Eϵ[P (S(w)|D, ϵ)]. We then have the bound:

KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

)
≤ Eϵ

[
KL
(
P (S(w)|D, ϵ) ∥P (S0(w)|Dr, ϵ)

)]
(2.5)

In the local forgetting bound we do not look at the global distribution of possible outcomes as
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the random seed varies, but only at the average of forgetting using a particular random seed. To see

the value of this bound, consider the following example.

Corollary 1 (Gaussian forgetting). Consider the case where S(w) = h(w)+n and S0(w) = w+n′,

where n, n′ ∼ N(0,Σ) is Gaussian noise and h(w) is a deterministic function. Since for a

fixed random seed ϵ the weights w = A(D, ϵ) are a deterministic function of the data, we have

P (S(w)|D, ϵ) = N (h(A(D, ϵ)),Σ) and similarly P (S0(w)|Dr, ϵ) = N (A(Dr, ϵ),Σ). Then, using

the previous bound, we have:

KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

)
≤ 1

2
Eϵ

[
(h(w)− w′)TΣ−1(h(w)− w′)

]
(2.6)

where w = A(D, ϵ) and w′ = A(Dr, ϵ).

That is, we can upper-bound the complex term KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

)
with a much

simpler one obtained by averaging the results of training and scrubbing with different random seeds.

Moreover, this suggests three simple but general procedures to forget. Under the stability

assumption, we can either (i) apply a function h(w) that bring w and w′ closer together (i.e.,

minimize h(w) − w′ in eq. (2.6)), or (ii) add noise whose covariance Σ is high in the direction

h(w)−w′, or (iii) both. Indeed, this will be the basis of our forgetting algorithm, which we describe

next.
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Figure 2.1: (Top) Distributions of weights P (w|D) and P (w|Dr) before and after the scrubbing procedure is applied

to forget the samples Df . The scrubbing procedure makes the two distributions indistinguishable, thus preventing an

attacker from extracting any information about Df . The KL divergence measures the maximum amount of information

that an attacker can extract. After forgetting, less than 1 NAT of information about the cohortDf is accessible. (Bottom)

The effect of the scrubbing procedure on the distribution of possible classification boundaries obtained after training.

After forgetting the subject on the top left blue cluster, the classification boundaries adjust as if she never existed, and

the distribution mimics the one that would have been obtained by training from scratch without that data.
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2.2 Optimal Quadratic Scrubbing Algorithm

In this section, we derive an optimal scrubbing algorithm under a local quadratic approximation.

We then validate the method empirically in complex real world problems where the assumptions are

violated. We start with strong assumptions, namely that the loss is quadratic and optimized in the

limit of small learning rate, giving the continuous gradient descent optimization

At(D, ϵ) = w0 − (I − e−ηAt)A−1∇wLD(w)|w=w0 ,

where A = ∇2LD(w) is the Hessian of the loss. We will relax these assumptions later.

Proposition 3 (Optimal quadratic scrubbing algorithm). Let the loss be LD(w) = LDf
(w)+LDr(w),

and assume both LD(w) and LDr(w) are quadratic. Assume that the optimization algorithm At(D, ϵ)

at time t is given by the gradient flow on the loss with random initialization. Consider the scrubbing

function

h(w) = w + e−BteAtd+ e−Bt(d− dr)− dr,

where A = ∇2LD(w), B = ∇2LDr(w), d = A−1∇wLD and dr = B−1∇wLDr . Then, h(w) is

such that h(At(D, ϵ)) = At(Dr, ϵ) for all random initializations ϵ and all times t. In particular,

S(w) = h(w) scrubs the model clean of all information in Df :

KL
(
P (S(w)|D, ϵ) ∥P (w|Dr, ϵ)

)
= 0.

Note that when t→∞, that is, after the optimization algorithm has converged, this reduces to the

simple Newton update:

S∞(w) = w −B−1∇LDr(w).
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Figure 2.2: Trade-off between information remaining about the class to forget and test error, mediated by the parameter

λ in the Lagrangian: We can always forget more, but this comes at the cost of decreased accuracy.

2.2.1 Robust Scrubbing

Proposition 3 requires the loss to be quadratic, which is typically not the case. Even if it was,

practical optimization proceeds in discrete steps, not as a gradient flow. To relax these assumptions,

we exploit the remaining degree of freedom in the general scrubbing procedure introduced in

Corollary 1, which is the noise.

Proposition 4 (Robust scrubbing procedure). Assume that h(w) is close to w′ up to some normally

distributed error h(w) − w′ ∼ N(0,Σh), and assume that LDr(w) is (locally) quadratic around

h(w). Then the optimal scrubbing procedure in the form S(w) = h(w) + n, with n ∼ N(0,Σ),

that minimizes the Forgetting Lagrangian eq. (2.4) is obtained when ΣBΣ = λΣh, where B =

∇2LDr(w). In particular, if the error is isotropic, that is Σh = σ2
hI is a multiple of the identity, we

have Σ =
√
λσ2

hB
−1/2.

Putting this together with the result in Proposition 3 gives us the following robust scrubbing

procedure:

St(w) = w + e−BteAtd+ e−Bt(d− dr)− dr + (λσ2
h)

1
4B−1/4n, (2.7)
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where n ∼ N(0, I) and B, d and dr are as in Proposition 3. In Figure 2.1 we show the effect of the

scrubbing procedure on a simple logistic regression problem (which is not quadratic) trained with

SGD (which does not satisfy the gradient flow assumption). Nonetheless, the scrubbing procedure

manages to bring the value of the KL divergence close to zero. Finally, when t → ∞ (i.e., the

optimization is near convergence), this simplifies to the noisy Newton update which can be more

readily applied:

St(w) = w −B−1∇LDr(w) + (λσ2
h)

1
4B−1/4ϵ. (2.8)

Here λ is a hyperparameter that trades off residual information about the data to be forgotten,

and accuracy on the data to be retained. The hyperparameter σh reflect the error in approximating

the SGD behavior with a continuous gradient flow.
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Figure 2.3: Filters of a network trained with the same random seed, with and without 5’s. Some filters specialize to be

5-specific (filter A), and differ between the two networks, while others are not 5-specific (filter B), and remain identical.

The scrubbing procedure brings original and target network closer by destroying 5-specific filters, effectively removing

information about 5’s.
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2.2.2 Forgetting using a subset of the data

Once a model is trained, a request to forget Df may be initiated by providing that cohort, as

in the fictional service of Lacuna INC, but in general one may no longer have available the

remainder of the dataset used for training, Dr. However, assuming we are at a minimum of

LD(w), we have ∇LD(w) = 0. Hence, we can rewrite ∇LDr(w) = −∇LDf
(w) and ∇2LDf

(w) =

∇2LD(w)−∇2LDr(w). Using these identities, instead of recomputing the gradients and Hessian

on the whole dataset, we can simply use those computed on the cohort to be forgotten, provided

we cached the Hessian ∇2LD(w) we obtained at the end of the training on the original dataset D.

Note that this is not a requirement, although recommended in case the data to be remembered is no

longer available.

2.2.3 Hessian approximation and Fisher Information

In practice, the Hessian is too expensive to compute for a DNN. In general, we cannot even ensure it

is positive definite. To address both issues, we use the Levenberg-Marquardt semi-positive-definite

approximation:

∇2LD(w) ≃ Ex∼D,y∼p(y|x)[∇w log pw(y|x)∇w log pw(y|x)T ]. (2.9)

This approximation of the Hessian coincides with the Fisher Information Matrix (FIM) [Mar14],

which opens the door to information-theoretic interpretations of the scrubbing procedure. Moreover,

this approximation is exact for some problems, such as linear (logistic) regression.

2.3 Deep Network Scrubbing

Finally, we now discuss how to robustly apply the forgetting procedure eq. (2.8) to deep networks.

We present two variants. The first uses the FIM of the network. However, since this depends on

the network gradients, it may not be robust when the loss landscape is highly irregular. To solve

this, we present a more robust method that attempts to minimize directly the Forgetting Lagrangian
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eq. (2.4) through a variational optimization procedure.

Fisher forgetting: As mentioned in eq. (2.9), we approximate the Hessian with the Fisher Informa-

tion Matrix. Since the FIM is too large to store in memory, we can compute its diagonal, or a better

Kronecker-factorized approximation [MG15]. In our experiments, we find that the diagonal is not a

good enough approximation of B for a full Newton step h(w) = w − B−1∇LDr(w) in eq. (2.8).

However, the diagonal is still a good approximation for the purpose of adding noise. Therefore, we

simplify the procedure and take h(w) = w, while we still use the approximation of the FIM as the

covariance of the noise. This results in the simplified scrubbing procedure:

S(w) = w + (λσ2
h)

1
4F−1/4,

where F is the FIM (eq. 2.9) computed at the point w for the dataset Dr. Here λ is a hyper-

parameter that trades off forgetting with the increase in error, as shown in Figure 3.3. Notice that,

since h(w) = w, instead of a Newton step, this procedure relies on w and w′ already being close,

which hinges on the stability of SGD. This procedure may be interpreted as adding noise to destroy

the weights that may have been informative about Df but not Dr (Figure 2.3).

Variational forgetting: Rather than using the FIM, we may optimize for the noise in the Forgetting

Lagrangian in eq. (2.4): Not knowing the optimal direction w − w′ along which to add noise (see

Corollary 1), we may add the maximum amount of noise in all directions, while keeping the increase

in the loss to a minimum. Formally, we minimize the proxy Lagrangian:

L(Σ) = En∼N(0,Σ)

[
LDr(w + n)

]
− λ log |Σ|.

The optimal Σ may be seen as the FIM computed over a smoothed landscape. Since the noise is

Gaussian, L(Σ) can be optimized using the local reparametrization trick [KSW15].
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Figure 2.4: Streisand Effect: Distribution of the entropy of model output (confidence) on: the retain set Dr, the forget

set Df , and the test set. The original model has seen Df , and its prediction on it are very confident (matching the

confidence on the train data). On the other hand, a model re-trained without seeing Df has a lower confidence Df .

After applying our scrubbing procedures (Fisher and Variational) to the original model, the confidence matches more

closely the one we would have expected for a model that has never seen the data (column 3 is more similar to 2 than 1).

For an incorrect method of forgetting, like training with random labels, we observe that the entropy of the forgotten

samples is very degenerate and different from what we would have expected if the model had actually never seen those

samples (it is concentrated only around chance level prediction entropy). That is, attempting to remove information

about a particular cohort using this method, may actually end up providing more information about the cohort than the

original model.

2.4 Experiments

We report experiments on MNIST, CIFAR10 [Kri09], Lacuna-10 and Lacuna-100, which we

introduce and consist respectively of faces of 10 and 100 different celebrities from VGGFaces2

[CSX18] (see Appendix for details). On both CIFAR-10 and Lacuna-10 we choose to forget either

an entire class, or a hundred images of the class.

For images (Lacuna-10 and CIFAR10), we use a small All-CNN (reducing the number of

layers) [SDB14], to which we add batch normalization before each non-linearity. We pre-train

on Lacuna-100/CIFAR-100 for 15 epochs using SGD with fixed learning rate of 0.1, momentum

0.9 and weight decay 0.0005. We fine-tune on Lacuna-10/CIFAR-10 with learning rate 0.01. To

simplify the analysis, during fine-tuning we do not update the running mean and variance of batch

normalization, and rather reuse the pre-trained ones.
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2.4.1 Linear logistic regression

First, to validate the theory, we test the scrubbing procedure in eq. (2.7) on logistic regression, where

the task is to forget data points belonging to one of two clusters comprising the class (see Figure 2.1).

We train using a uniform random initialization for the weights and SGD with batch size 10, with

early stopping after 10 epochs. Since the problem is low-dimensional, we easily approximate the

distribution p(w|D) and p(w|Dr) by training 100 times with different random seeds. As can be

seen in Figure 2.1, the scrubbing procedure is able to align the two distributions with near perfect

overlap, therefore preventing an attacker form extracting any information about the forgotten cluster.

Notice also that, since we use early stopping, the algorithm had not yet converged, and exploiting

the time dependency in eq. (2.7) rather than using the simpler eq. (2.8) is critical.

2.4.2 Baseline forgetting methods

Together with our proposed methods, we experiment with four other baselines which may intuitively

provide some degree of forgetting. (i) Fine-tune: we fine-tune the model on the remaining data

Dr using a slightly large learning rate. This is akin to catastrophic forgetting, where fine-tuning

without Df may make the model forget the original solution to Df (more so because of the larger

learning rate). (ii) Negative Gradient: we fine-tune on D by moving in the direction of increasing

loss for samples in Df , which is equivalent to using a negative gradient for the samples to forget.

This aims to damage features predicting Df correctly. (iii) Random Labels: fine-tune the model on

D by randomly resampling labels corresponding to images belonging to Df , so that those samples

will get a random gradient. (iv) Hiding: we simply remove the row corresponding to the class to

forget from the final classification layer of the DNN.

2.4.3 Readout functions used

Unlike our methods, these baselines do not come with an upper bound on the quantity of remaining

information. It is therefore unclear how much information is removed. For this reason, we introduce
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the following read-out functions, which may be used to gauge how much information they were

able destroy: (i) Error on the test set Dtest (ideally small), (ii) Error on the cohort to be forgotten

Df (ideally the same as a model trained without seeing Df ), (iii) Error on the residual Dr (ideally

small), (iv) Re-learn time (in epochs) time to retrain the scrubbed model on the forgotten data

(measured by the time for the loss to reach a fixed threshold, ideally slow). If a scrubbed model

can quickly recover a good accuracy, information about that cohort is likely still present in the

weights. (v) Model confidence: We plot the distribution of model confidence (entropy of the output

prediction) on the retain set Dr, forget set Df and the test set (should look similar to the confidence

of a model that has never seen the data). (vi) Information bound: For our methods, we compute

the information upper-bound about the cohort to be forgotten in NATs using Proposition 2.
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Figure 2.5: Re-learn time (in epochs) for various forgetting methods. All the baselines method can quickly recover

perfect performance on Df , suggesting that they do not actually scrub information from the weights. On the other hand,

the relearn time for our methods is higher, and closer to the one of a model that has never seen the data, suggesting that

they remove more information.

2.4.4 Results

First, in Table 2.1 we show the results of scrubbing Df from model trained on all the data. We

test both the case we want to forget only a subset of 100-images from the class, and when we
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want to forget a whole identity. We test on CIFAR-10 and Lacuna-10 with a network pretrained on

CIFAR-100 and Lacuna-100 respectively.

Retrain denotes the gold standard which every scrubbing procedure should attempt to match for

the error readout function. From the case where we want to scrub a subset of a class (first and third

row of Retrain) it is clear that scrubbing does not mean merely achieving 100% error on Df . In

fact, the reference Retrain has 15.3% and 19.3% error respectively on Df and not 100%. Rather

it means removing the information from the weights so that it behaves identically to a re-trained

model. Forgetting by fine-tuning on Dr, performs poorly on the error readout function (error on

Df and Dr), suggesting that using catastrophic forgetting is the not the correct solution to selective

forgetting.

The Negative Gradient and Random Labels methods perform well on the error readout function,

however, when we use the re-learn time as a readout function (Figure 2.5) it becomes clear that

very little information is actually removed, as the model relearn Df very quickly. This suggests that

merely scrubbing the activations by hiding or changing some output is not sufficient for selective

forgetting; rather, information needs to be removed from the weights as anticipated. Moreover,

applying an incorrect scrubbing procedure may make the images to forget more noticeable to an

attacker (Streisand effect), as we can see by from the confidence values in Figure 2.4. The ease

of forgetting a learnt cohort also depends on its size. In particular, in Figure 2.7 we observe that,

for a fixed value of λ in eq. (2.1), the upper-bound on the information retained by the model after

scrubbing increases with the size of the cohort to forget.

2.5 Discussion

Our approach is rooted in the connection between Differential Privacy (which our framework

generalizes) and the stability of SGD. Forgetting is also intrinsically connected with information:

Forgetting may also be seen as minimizing an upper-bound on the amount of information that the

weights contain about Df [AS19] and that an attacker may extract about that particular cohort
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Df using some readout function f . We have studied this problem from the point of view of

Shannon Information, which allows for an easy formalization. However, it also has the drawback of

considering the worst case of an attacker that has full knowledge of the training procedure and can

use arbitrarily complex readout functions which may, for example, simulate all possible trainings

of the network to extract the result. Characterizing forgetting with respect to a viable subset of

realistic readout functions f(w) is a promising area of research. We also exploit stability of the

training algorithm after pretraining. Forgetting without the pretraining assumption is an interesting

challenge, as it has been observed that slight perturbation of the initial critical learning period can

lead to large difference in the final solution [ARS19, GAS19b].

2.6 Appendix

In Figure 3.6 we plot the loss function along a line joining the original model trained on all data

and the ground-truth optimal model that was trained from the beginning without seeing the data to

forget. The plots confirm that the two models are close to each other, as expected from the stability

of SGD, and that the loss function in a neighborhood of the two points is convex (at least on the line

joining the two). This justifies the hypotheses that we made to apply our forgetting method (derived

in the case of a convex loss) to the more challenging case of deep networks.

To further confirm that our method can be applied to different architectures, in addition to

the experiments on All-CNN that we show in the main paper we run additional experiments on

a ResNet-18 architecture. In particular, Table 2.2 show the errors obtained by various forgetting

techniques and Figure 2.10 shows the relearn time for a class after forgetting. In Figure 2.9, we

show that ResNets too suffer from a Streisand effect if an improper forgetting procedure is applied.

2.6.1 Implementation details

The term e−BteAt in eq. (2.7) may diverge for t → ∞ if the actual dynamics of the optimization

algorithm do not exactly satisfy the hypotheses. In practice, we found it useful to replace it with
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eclamp(A−B,1/t)t, where clamp(A, 1/t) clamps the eigenvalues of A so that they are smaller or equal

to 1/t, so that the expression does not diverge.2 Notice also that in general e−BteAt ̸= e(A−B)t,

unless A and B commute, but we found this to be a good approximation in practice.

For DNNs, we perform experiments on Lacuna-10 and CIFAR-10 using All-CNN and ResNet.

For All-CNN, we use the model proposed in [SDB14] and for ResNet we use the ResNet-18

model; however, we reduce the number of filters by half in each layer and remove the final residual

block. For all the experiments we first pre-train the network on Lacuna-100 (CIFAR-100), and then

fine-tune it on Lacuna-10 (CIFAR-10). We do not use data augmentation in any of the experiments.

While pre-training the network we use a constant learning rate of 0.1 and train for 30 epochs

and while finetuning we use a constant learning rate of 0.01 and train for 50 epochs. In all the

experiments we use weight decay regularization with value 0.0005. We use PyTorch to perform all

the experiments.

In Table 2.1, ‘Original’ model (OM) denotes the case when we train the model on the entire

dataset, D. ‘Retrain’ denotes the case when we train on Dr (we can do this by simply replacing the

corresponding samples from the data loader). ‘Finetune’ (FT) is a possible scrubbing procedure

when we use the Original model and fine-tune it on Dr (we can simply use the data loader from

the Retrain case for fine-tuning). We run fine-tuning for 10 epochs with a learning rate 0.01 and

weight decay 0.0005. ‘Negative Gradient’ denotes the case when we fine-tune on the complete data;

however, for the samples belonging to Df we simply multiply the gradient by −1 (i.e. maximizing

the cross-entropy loss for the samples to forget). To prevent the loss from diverging, we clamp the

maximum loss to chance level. We train for 10 epochs with learning rate 0.01 and weight decay

0.0005. In ‘Random Labels,’ (RL) we randomly shuffle the labels for the samples we want to forget.

We use the same training hyper-parameters as the previous methods. For ‘Hiding,’ (HD) we replace

the row corresponding to the class of the samples to be forgotten in the final classifier layer of the

DNN with random initialization. Fisher denotes our method where we estimate the Fisher noise to

2If A = SDST is an eigenvalue decomposition of the symmetric matrix A, we define clamp(A,m) =
Smin(D,m)ST .
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add to the model. The Fisher noise is computed using a positive semi-definite approximation to the

actual Fisher Information Matrix. We compute the trace of the Fisher Information which can be

obtained by computing the expected outer product of the gradients of the DNN. In the experiments

we observe that F− 1
2 approximates the Fisher noise better compared to F− 1

4 . In Variational, we

compute the optimal noise to be added for scrubbing a cohort by solving a variational problem. For

Fisher and Variational forgetting we choose λ = 5 · 10−7.

In order to compute the Information bound (Fisher and Variational forgetting) we use the Local

Forgetting Bound i.e. we apply the scrubbing procedure to both the original and the retrain (target)

model and then compute the KL divergence of the two distributions. We use the same random seed

while training both the models and use the same scrubbing procedures for both, that is, S = S0.

Fisher and Variational forgetting method essentially consists of adding noise to the model weights,

i.e., S(w) = w + n where n ∼ N(0,Σ). Let wo, Σo and wr, Σr denote the weights and noise

covariance for the original and the target retrained model respectively, then the Information bound

is given by the following relation:

KL
(
N(wo,Σo) ∥N(wr,Σr)

)
=

1

2

(
tr(Σ−1

r Σo) + (wr − wo)
TΣ−1

r (wr − wo)− k + log
|Σr|
|Σo|

)
,

where k is the dimension of w. This bound should be computed for multiple values of the initial

random seed and then averaged to obtain the Local Forgetting Bound in Proposition 2. In our

experiments we compute the bound using a single random seed.

To compute the Relearn-time we train the scrubbed model on the dataset D for 50 epochs using

a constant learning rate 0.01. We report the first epoch when the loss value falls below a certain

threshold as the relearn-time.

2.6.1.1 Pre-training improves the forgetting bound

Our local forgetting bound assumes stability of the algorithm, which may not be guaranteed when

training a large deep network over many epochs. This can be obviated by pre-training the network,
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so all paths will start from a common configuration of weights and training time is decreased,

and with it the opportunity for paths to diverge. As we show next, the resulting bound is greatly

improved. The drawback is that the bound cannot guarantee forgetting of any information contained

in the pre-training dataset (that is, Df needs to be disjoint from Dpretrain).

2.6.1.2 Datasets

We report experiments on MNIST, CIFAR10 [Kri09], Lacuna-10 and Lacuna-100 which we intro-

duce. Lacuna-10 consists of face images of 10 celebrities from VGGFaces2 [CSX18], randomly

sampled with at least 500 images each. We split the data into a test set of 100 samples for each class,

while the remaining form the training set. Similarly, Lacuna-100 randomly samples 100 celebrities

with at least 500 images each. We resize the images to 32x32. There is no overlap between the two

Lacuna datasets. We use Lacuna-100 to pre-train (and hence assume that we do not have to forget

it), and fine-tune on Lacuna-10. The scrubbing procedure is required to forget some or all images

for one identity in Lacuna-10. On both CIFAR-10 and Lacuna-10 we choose to forget either the

entire class ‘5,’ which is chosen at random, or a hundred images of the class.

2.6.2 Proofs

Proposition 1 Let the forgetting set Df be a random variable, for instance, a random sampling of

the data to forget. Let Y be an attribute of interest that depends on Df . Then,

I(Y ; f(S(w))) ≤

EDf
[KL

(
P (f(S(w))|D) ∥P (f(S0(w))|Dr)

)
].

Proof. We have the following Markov Chain:

Y ←− Df −→ w −→ S(w) −→ f(S(w))

We assume that the retain set Dr is fixed and thus deterministic. Also, Df → w implies that we

first sample Df and then use D = Dr(fixed and known)∪Df for training w. From Data Processing
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Inequality, we know that: I(Y ; f(S(w))) ≤ I(Df ; f(S(w))). In order to prove the proposition we

bound the RHS term (i.e I(Df ; f(S(w)))).

= I(Df ; f(S(w)))

= EDf

[
KL
(
p(f(S(w))|Df ∪ Dr) ∥ p(f(S(w)))

)]
= EDf

Ep(f(S(w))|Df∪Dr)

[
log

p(f(S(w))|Df ∪ Dr)

p(f(S(w)))

]
= EDf

Ep(f(S(w))|Df∪Dr)

[
log

p(f(S(w))|Df ∪ Dr)

p(f(S0(w))|Dr)

+ log
p(f(S0(w))|Dr)

p(f(S(w)))

]
= EDf

[
KL
(
p(f(S(w))|Df ∪ Dr) ∥ p(f(S0(w))|Dr)

)]
−KL

(
p(f(S0(w))) ∥ p(f(S(w))|Dr)

)
≤ EDf

[
KL
(
p(f(S(w))|Df ∪ Dr) ∥ p(f(S0(w))|Dr)

)]
where the last inequality follows from the fact that KL-divergence is always non-negative.

Lemma 1 For any function f(w) have

KL
(
P (f(S(w))|D) ∥P (f(S0(w))|Dr)

)
≤ KL

(
P (S(w)|D) ∥P (S0(w)|Dr)

)
,

Proof. For simplicity sake, we will consider the random variables to be discrete. To keep the

notation uncluttered, we consider the expression

KL
(
Q(f(x)) ∥R(f(x))

)
≤ KL

(
Q(x) ∥R(x)

)
where Q(w) = P (S(w)|D) and R(w) = P (S0(w)|D−k). Let Wc = {w|f(w) = c}, so that we

have Q(f(w) = c) =
∑

w∈Wc
Q(w) and similarly R(f(w) = c) =

∑
w∈Wc

R(w). Rewriting the
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LHS with this notation, we get:

KL
(
Q(f(w)) ∥R(f(w))

)
=
∑
c

Q(f(w) = c) log
Q(f(w) = c)

R(f(w) = c)

=
∑
c

Q(f(w) = c) log

∑
w∈Wc

Q(w)∑
w∈Wc

R(w)
(2.10)

We can similarly rewrite the RHS:

KL
(
Q(w) ∥R(w)

)
=
∑
c

∑
w∈Wc

log
Q(w)

R(w)
(2.11)

From the log-sum inequality, we know that for each c in eq. (2.10) and eq. (2.11):

( ∑
w∈Wc

Q(w)
)
log

∑
w∈Wc

Q(w)∑
w∈Wc

R(w)
≤
∑
w∈Wc

Q(w) log
Q(w)

R(w)
(2.12)

Summation over all c on both sides of the inequality concludes the proof.

Proposition 2 Let A(D) be a (possibly stochastic) training algorithm, the outcome of which we

indicate as w = A(D, ϵ) for some deterministic function A and ϵ ∼ N(0, I), for instance a random

seed. Then, we have P (S(w)|D) = Eϵ[P (S(w)|D, ϵ)]. We have the bound:

KL
(
P (S(w)|D) ∥P (S0(w)|Dr)

)
≤ Eϵ

[
KL
(
P (S(w)|D, ϵ) ∥P (S0(w)|Dr, ϵ)

)]
Proof. To keep the notation uncluttered,we rewrite the inequality as:

KL
(
Q(w) ∥R(w)

)
≤ Eϵ

[
KL
(
Q(w|ϵ) ∥R(w|ϵ)

)]
where Q(w) = P (S(w)|D) and R(w) = P (S(w)|Dr) The LHS can be equivalently written as:

KL
(
Q(w) ∥R(w)

)
=

=

∫
Q(w) log

Q(w)

R(w)
)dw

=

∫
Eϵ[Q(w|ϵ)] log Eϵ[Q(w|ϵ)]

Eϵ[P (w|ϵ)]
dw

34



(∗)
≤
∫

Eϵ

[
Q(w|ϵ) log Q(w|ϵ)

P (w|ϵ)

]
dw

= Eϵ

[ ∫
Q(w|ϵ) log Q(w|ϵ)

P (w|ϵ)
dw
]

= Eϵ

[
KL
(
Q(w|ϵ) ∥R(w|ϵ)

)]
,

where in (*) we used the log-sum inequality.

Proposition 3 Let the loss be LD(w) = LDf
(w) + LDr(w), and assume both LD(w) and LDr(w)

are quadratic. Assume that the optimization algorithm At(D, ϵ) at time t is given by the gradient

flow of the loss with a random initialization, and let h(w) be the function:

h(w) = e−BteAtd+ e−Bt(d− dr)− dr,

where A = ∇2LD(w), B = ∇2LDr(w), d = A−1∇wLD and dr = B−1∇wLDr , and eAt denotes the

matrix exponential. Then h(At(D, ϵ)) = At(Dr, ϵ) for all random initializations ϵ and all times t.

Proof. Since LD and LDr are quadratic, assume without loss of generality that:

LD(w) =
1

2
(w − w∗

A)
TA(w − w∗

A)

LDf
(w) =

1

2
(w − w∗

B)
TB(w − w∗

B)

Since the training dynamic is given by a gradient flow, the training path is the solution to the

differential equation:

ẇA(t) = A(w(t)− w∗
A)

ẇB(t) = B(w(t)− w∗
B)

which is given respectively by:

wA(t) = w∗
A + e−At(w0 − w∗

A)

wB(t) = w∗
B + e−Bt(w0 − w∗

B)
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We can compute w0 from the first expression:

w0 = eAt(wA(t)− w∗
A) + w∗

A = eAtdA + w∗
A,

where we defined dA = wA(t)− w∗
A = A−1∇wLD(wA(t)). We now replace this expression of w0

in the second expression to obtain:

wB(t) = e−BteAtdA + e−Bt(w∗
A − w∗

B) + w∗
B

= wA(t) + e−BteAtdA + e−Bt(dB − dA)− dB

where dB := wA(t)− w∗
B = B−1∇wLDr(wA(t)).

Proposition 4

Assume that h(w) is close to w′ up to some normally distributed error h(w)− w′ ∼ N(0,Σh),

and assume that LDr(w) is (locally) quadratic around h(w). Then the optimal scrubbing procedure

in the form S(w) = h(w) + n, n ∼ N(0,Σ),that minimizes the Forgetting Lagrangian

L = Ew̃∼S(w)[LDr(w̃)]+

λEϵ

[
KL
(
P (S(w)|D, ϵ) ∥P (S0(w)|Dr, ϵ)

)]
is obtained when ΣBΣ = λΣh, where B = ∇2LDr(k). In particular, if the error is isotropic, that is

Σh = σ2
hI is a multiple of the identity, we have Σ =

√
λσ2

hB
−1/2.

Proof. We consider the following second order approximation to the loss function in the neighbour-

hood of the parameters at convergence:

Ew̃∼S(w)[LDr(w̃)] = En∼N(0,Σ)[LDr(h(w) + n)]

= En∼N(0,Σ)

[
LDr(h(w)) +

∇LDr(h(w))
TΣ

1
2n+

1

2
(Σ

1
2n)TB(Σ

1
2n) + o(n2)

]
≃ LDr(h(w)) +

1

2
En∼N(0,Σ)

[
(Σ

1
2n)TB(Σ

1
2n)
]
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= LDr(h(w)) +
1

2
En∼N(0,Σ)

[
tr(B(Σ

1
2nnTΣ

1
2 ))
]

= LDr(h(w)) +
1

2
tr(BΣ)

Recall that we take S0 to be S0(w) = w + n′ with n′ ∼ N(0,Σ), so that P (S0(w)|Dr, ϵ) ∼

N(w,Σ). Thus, we get the following expression for the KL divergence term:

Eϵ

[
KL
(
P (S(w)|D, ϵ) ∥P (S0(w)|Dr, ϵ)

)]
=

1

2
Eϵ

[
(h(w)− w′)TΣ−1(h(w)− h(w′))

]
=

1

2
tr(Σ−1Σh),

where in the last equality we have used that by hypothesis h(w)− w′ ∼ N(0,Σh). Combining the

two terms we get:

L = LDr(h(w)) +
1

2
tr(BΣ) +

1

2
tr(Σ−1Σh)

We now want to find the optimal covariance Σ of the noise to add in order to forget. Setting

∇ΣL = 0, we obtain the following optimality condition ΣBΣ = λΣh. If we further assume the

error Σh to be isotropic, that is, Σh = σ2
hI , then this condition simplifies to Σ =

√
λσ2

hB
−1/2.
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Metrics OM Retrain

(target)

FT NG RL HD Fisher

(ours)

Variational

(ours)

Lacuna-

10

Error on Dtest

(%)

10.2

±0.5

10.3

±0.4

10.2

±0.6

10.0

±0.4

12.0

±0.2

18.2

±0.4

14.5 ±1.6 13.7

±1.0

Scrub 100 Error onDf (%) 0.0 ±0.0 15.3

±0.6

0.0 ±0.0 0.0±0.0 6.0 ±3.6 100

±0.0

8.0 ±2.7 8.0 ±3.6

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.1 ±0.1 6.5 ±0.0 4.8 ±2.8 4.8 ±2.4

Info-bound
(kNATs)

3.3 ±1.1 3.0 ±0.5

Lacuna-

10

Error on Dtest

(%)

10.2

±0.5

18.4

±0.6

10.0

±0.6

18.4

±0.6

18.8

±0.6

18.2

±0.4

21.0 ±1.3 20.9

±0.4

Forget

class

Error onDf (%) 0.0 ±0.0 100

±0.0

0.0 ±0.0 100

±0.2

90.2

±1.5

100.0

±0.0

100.0

±0.0

100.0

±0.0

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 0.0 ±0.0 3.3 ±2.3 2.8 ±1.4

Info-bound
(kNATs)

13.2 ±2.8 12.0

±2.9

CIFAR-

10

Error on Dtest

(%)

14.4

±0.6

14.6

±0.7

13.5

±0.1

13.4

±0.1

13.8

±0.1

21.0

±0.5

19.8 ±2.8 20.9

±4.8

Scrub 100 Error onDf (%) 0.0 ±0.0 19.3

±4.5

0.0 ±0.0 0.0±0.0 0.0 ±0.0 100.0

±0.0

23.3 ±2.1 6.3 ±2.5

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 9.9 ±0.1 8.0 ±4.3 8.8 ±5.2

Info-bound
(kNATs)

33.4

±16.7

21.6

±5.2

CIFAR-

10

Error on Dtest

(%)

14.4

±0.7

21.1

±0.6

14.3

±0.1

20.2

±0.1

20.7

±0.4

21.0

±0.5

23.7 ±0.9 22.8

±0.3

Forget

class

Error onDf (%) 0.0 ±0.0 100

±0.0

10.0

±0.4

100

±0.2

88.1

±4.6

100.0

±0.0

100.0

±0.0

100.0

±0.0

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 0.0 ±0.0 2.6 ±1.8 2.3 ±0.7

Info-bound
(kNATs)

458.1

±172.2

371.5

±51.3

Table 2.1: Original model (OM) is the model trained on all data D = Df ⊔Dr. The forgetting algorithm should scrub

information from its weights. Retrain denotes the model obtained by retraining from scratch on Dr, without knowledge

of Df . The metric values in the Retrain column is the optimal value which every other scrubbing procedure should

attempt to match. We consider the following forgetting procedures: Fine-tune (FT) denotes fine-tuning the model on

Dr. Negative Gradient (NG) denotes fine-tuning on Df by moving in the direction of increasing loss. Random Label

(RL) denotes replacing the labels of the class with random labels and then fine-tuning on all D. Hiding (HD) denotes

simply removing the class from the final classification layer. Fisher and Variational are our proposed methods, which

add noise to the weights to destroy information about Df following the Forgetting Lagrangian. We benchmark these

methods using several readout functions: errors on Df and Dr after scrubbing, time to retrain on the forgotten samples

after scrubbing, distribution of the model entropy. In all cases, the read-out of the scrubbed model should be closer to

the target retrained model than to the original. Note that our methods also provide an upper-bound to the amount of

information remaining. We report mean/std over 3 random seeds.
38



100 101 102

Number of samples to forget (in log)

1000

2000

3000

4000

5000

6000
Re

m
ai

ni
ng

 In
fo

rm
at

io
n 

(n
at

s)
Variational Forgetting
Fisher Forgetting

Figure 2.6: Difficulty of forgetting increases with cohort size. For a fixed λ (forgetting parameter), we plot the

amount of information remaining after scrubbing as a function of the cohort size (|Df |).
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Figure 2.7: Difficulty of forgetting increases with cohort size (for ResNet) We plot the upper-bound on the remaining

information (i.e. the information the model contains about the cohort to forget after scrubbing) as a function of the

number of samples to forget for class ’5’ for different values of λ (Forgetting Lagrangian parameter). Increasing the

value of λ decreases the remaining information, but increases the error on the remaining samples. The number of

samples to forget in the plot varies between one sample and the whole class (404 samples).
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Figure 2.8: Loss landscape of LDr . Plot of loss and error on the dataset Dr of the remaining samples, interpolating

along the line joining the original model (at t = 0) and the (target) retrained model at t = 1. Precisely, let wo be the

original model and let wr be the retrained model, we plot L(w(t)), where w(t) = (1 − t) · wo + t · wr by varying

t ∈ [−0.5, 2.5]. We observe that the loss along the line joining the original and the target model is convex, and almost

flat throughout. In particular, there exists at least an optimal direction (the one joining the two models) along which we

can add noise without increasing the loss on the remaining data, and which would allow to forget the extra information.

This inspires and justifies our forgetting procedure.
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Figure 2.9: Same plot as in Figure 2.4 but with a different architecture: Streisand Effect for ResNet model
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Table 2.2: Same experiment as Table 2.1 but with a different architecture: Error readout functions for ResNet

trained on Lacuna-10 and CIFAR-10.

Metrics OM Retrain

(target)

FT NG RL HD Fisher

(ours)

Variational

(ours)

Lacuna-

10

Error on Dtest

(%)

18.0

±0.5

18.2

±0.3

18.1

±0.2

18.0

±0.5

19.3

±0.7

25.1

±0.1

24.5 ±0.7 28.2

±3.2

Scrub 100 Error onDf (%) 0.0 ±0.0 29.0

±0.1

0.0 ±0.0 0.0±0.0 14.3

±6.7

100

±0.0

17.7 ±6.7 3.0 ±1.0

ResNet Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.2 ±0.0 6.5 ±0.0 10.4 ±0.8 11.7

±5.8

Info-bound
(kNATs)

2.6 ±0.1 2.6 ±0.3

Lacuna-

10

Error on Dtest

(%)

18.0

±0.5

24.5

±0.4

18.1

±0.4

25.0

±0.4

24.6

±0.8

22.0

±5.2

26.6 ±1.0 26.8

±0.6

Forget

class

Error onDf (%) 0.0 ±0.0 100

±0.0

0.0 ±0.0 99.7

±0.3

90.3

±1.5

100.0

±0.0

100.0

±0.0

100.0

±0.0

ResNet Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 0.0 ±0.0 0.2 ±0.4 1.0 ±0.9

Info-bound
(kNATs)

33.2 ±2.2 25.7

±7.8

CIFAR-

10

Error on Dtest

(%)

17.3

±0.2

17.5

±1.0

17.3

±0.5

17.2

±0.3

17.9

±1.2

23.6

±1.3

21.9 ±2.2 23.1

±2.3

Scrub 100 Error onDf (%) 0.0 ±0.0 25.2

±5.2

0.0 ±0.0 0.0±0.0 0.0 ±0.0 100.0

±0.0

16.0 ±7.2 13.3

±7.4

ResNet Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 8.7 ±1.9 7.6 ±4.0 9.8 ±3.9

Info-bound
(kNATs)

46.0

±19.3

29.8

±8.0

CIFAR-

10

Error on Dtest

(%)

17.1

±0.3

22.8

±0.0

17.2

±0.1

22.8

±0.1

23.1

±0.2

22.8

±0.1

25.8 ±0.1 25.1

±0.3

Forget

class

Error onDf (%) 0.0 ±0.0 100

±0.0

0.7 ±0.5 100

±0.1

94.2

±5.7

100.0

±0.0

100.0

±0.0

100.0

±0.0

ResNet Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0±0.0 0.0 ±0.0 0.0 ±0.0 3.8 ±0.4 2.4 ±1.0

Info-bound
(kNATs)

235.4

±4.9

234.8

±6.1
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Figure 2.10: Same plot as in Figure 2.5 but with a different architecture: Re-learn time (in epochs) for various

forgetting methods using ResNet model.

42



CHAPTER 3

Forgetting Outside the Box: Scrubbing Deep Networks of

Information Accessible from Input-Output Observations

In this chapter, we propose a forgetting procedure which compute a single shot update to remove

information about a cohort of data from a fine-tuned neural network using the idea of linearization

of deep networks from NTK. Even though the models trained are highly non-linear the unlearning

perturbation obtained from the linearizing the output of the network still provides sufficiently

accurate unlearning performance against different readout functions.

More formally, let a datasetD be partitioned into a subsetDf to be forgotten, and its complement

Dr to be retained, D = Df ⊔Dr. A (possibly stochastic) training algorithm A takes Df and Dr and

outputs a weight vector w ∈ Rp:

A(Df ,Dr)→ w.

Assuming an attacker knows the training algorithm A (e.g., stochastic gradient descent, or

SGD), the weights w, and the retainable data Dr, she can exploit their relationship to recover

information about Df , at least for state-of-the-art deep neural networks (DNNs) using a “readout”

function [GAS19a], that is, a function R(w) that an attacker can apply on the weights of a DNN to

extract information about the dataset.

For example, an attacker may measure the confidence of the classifier on an input, or measure

the time that it takes to fine-tune the network on a given subset of samples to decide whether

that input or set was used to train the classifier (membership attack). We discuss additional

examples in Section 3.3.4. Ideally, the forgetting procedure should be robust to different choices of
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readout functions. Recent work [GAS19a, GGH19], introduces a “scrubbing procedure” (forgetting

procedure or data deletion/removal) SDf
(w) : Rp → Rp, that attempts to remove information about

Df from the weights, i.e.,

A(Df ,Dr)→ w → SDf
(w)

with an upper-bound on the amount of information aboutDf that can be extracted after the forgetting

procedure, provided the attack has access to the scrubbed weights SDf
(w), a process called “white-

box attack.”

Bounding the information that can be extracted from a white-box attack is often complex and

may be overly restrictive: Deep networks have large sets of equivalent solutions – a “null space” –

that would give the same activations on all test samples. Changes in Df may change the position of

the weights in the null space. Hence, the position of the weight in the null-space, even if irrelevant

for the input-output behavior, may be exploited to recover information about Df .

This suggests that the study of forgetting should be approached from the perspective of the

final activations, rather than the weights, since there could be infinitely many different models

that produce the same input-output behavior, and we are interested in preventing attacks that

affect the behavior of the network, rather than the specific solution to which the training process

converged. More precisely, denote by fw(x) the final activations of a network on a sample x (for

example the softmax or pre-softmax vector). We assume that an attacker makes queries on n images

x = (x1, . . . , xn), and obtains the activations fw(x). The pipeline then is described by the Markov

Chain

A(Df ,Dr)→ w → SDf
(w)→ fSDf

(w)(x).

The key question now is to determine how much information can an attacker recover about Df ,

starting from the final activations fSDf
(w)(x)? We provide a new set of bounds that quantifies the

average information per query an attacker can extract from the model.

The forgetting procedure we propose is obtained using the Neural Tangent Kernel (NTK). We

show that this forgetting procedure is able to handle the null space of the weights better than previous
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Without Shift With Shift

Training on 
Training on r

Initialization
Scrubbed Weight

Figure 3.1: Scrubbing procedure: PCA-projection of training paths on D (blue), Dr (orange) and the weights after

scrubbing, using (Left) The Fisher method of [GAS19a], and (Right) the proposed scrubbing method. Our proposed

scrubbing procedure (red cross) moves the model towards w(Dr), which reduces the amount of noise (point cloud) that

needs to be added to achieve forgetting.

approaches when using over-parametrized models such as DNNs. In experiments, we confirm that

it works uniformly better than previous proposals on all forgetting metrics introduced [GAS19a],

both in the white-box and black-box case (Figure 3.1).

Note that one may think of forgetting in a black-box setting as just changing the activations (e.g.,

adding noise or hiding one class output) so that less information can be extracted. This, however,

is not proper forgetting as the model still contains information, it is just not visible outside. We

refer to forgetting as removing information from the weights, but we provide bounds for how much

information can be extracted after scrubbing in the black-box case, and show that they are order of

magnitudes smaller than the corresponding bounds for white boxes for the same target accuracy.

3.1 Out of the box forgetting

In this section, we derive an upper-bound for how much information can be extracted by an attacker

that has black-box access to the model, that is, they can query the model with an image, and obtain

the corresponding output. We will then use this to design a forgetting procedure (Section 6.4).

While the problem itself may seem trivial — can the relation A(Df ,Dr) = w be inverted to

extract Df? — it is made more complex by the fact that the algorithm is stochastic, and that
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the map may not be invertible, but still partially invertible, that is, only a subset of information

about Df can be recovered. Hence, we employ a more formal information-theoretic framework,

inspired by [GAS19a] and that in turns generalizes Differential Privacy [DR14]. We provide a-

posteriori bounds which provide tighter answers, and allow one to design and benchmark scrubbing

procedures even for very complex models such as deep networks, for which a-priori bounds would

be impossible or vacuous. In this work, we focus on a-posteriori bounds for Deep Networks and use

them to design a scrubbing procedure.

3.1.1 Information Theoretic formalism

We start by modifying the framework of [GAS19a], developed for the weights of a network,

to the final activations. We expect an adversary to use a readout function applied to the final

activations. Given a set of images x = (x0, . . . , xn), we denote by fw(x) = (f(x0), . . . , f(xm))

the concatenation of their respective final activations. Let Df be the set of training data to forget,

and let y be some function of Df that an attacker wants to reconstruct (i.e., y is some piece of

information regarding the samples). To keep the notation uncluttered, we write SDf
(w) = S(w) for

the scrubbing procedure to forget Df . We then have the following Markov chain

y ←− Df −→ w −→ S(w) −→ fS(w)(x)

connecting all quantities. Using the Data Processing Inequality [CT12] we have the following

inequalities:

I(y; fS(w)(x))︸ ︷︷ ︸
Recovered information

≤ I(Df ; fS(w)(x))︸ ︷︷ ︸
Black-box upper bound

≤ I(Df ;S(w))︸ ︷︷ ︸
White box upper-bound

(3.1)

where I(x; y) denotes the Shannon Mutual Information between random variables x and y. Bound-

ing the last term — which is a general bound on how much information an attacker with full access

to the weights could extract — is the focus of [GAS19a]. In this work, we also consider the case

where the attacker can only access the final activations, and hence focus on the central term. As

we will show, if the number of queries is bounded then the central term provides a sharper bound

compared to the black-box case.
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3.1.2 Bound for activations

The mutual information in the central term is difficult to compute,1 but in our case has a simple

upper-bound:

Lemma 2 (Computable bound on mutual information). We have the following upper bound:

I(Df ; fS(w)(x)) ≤ EDf

[
KL
(
p(fS(w)(x)|Df ∪ Dr) ∥ p(fS0(w)(x)|Dr)

)]
, (3.2)

where p(fS(w)(x)|D = Df ∪ Dr) is the distribution of activations after training on the complete

dataset Df ⊔ Dr and scrubbing. Similarly, p(fS0(w)(x)|D = Dr) is the distribution of possible

activations after training only on the data to retain Dr and applying a function S0 (that does not

depend on Df ) to the weights.

The lemma introduces the important notion that we can estimate how much information we

erased by comparing the activations of our model with the activations of a reference model that was

trained in the same setting, but without Df . Clearly, if the activations after scrubbing are identical

to the activations of a model that has never seen Df , they cannot contain information about Df .

We now want to convert this bound in a more practical expected information gain per query.

This is not yet trivial due to them stochastic dependency of w on D: based on the random seed ϵ

used to train, we may obtain very different weights for the same dataset. Reasoning in a way similar

to that used to obtain the “local forgetting bound” of [GAS19a], we have:

Lemma 3. Write a stochastic training algorithm A as A(D, ϵ), where ϵ is the random seed and

A(D, ϵ) is a deterministic function. Then,

I(Df ; fS(w)(x)) ≤ EDf ,ϵ

[
KL
(
p(fS(wD)(x)) ∥ p(fS0(wDr )

(x))
)]

(3.3)

where we call wD = A(D, ϵ) the deterministic result of training on the datasetD using random seed

ϵ. The probability distribution inside the KL accounts only for the stochasticity of the scrubbing

map S(wD) and the baseline S0(wDr).

1Indeed, it is even difficult to define, as the quantities at play, Df and x, are fixed values, but that problem has been
addressed by [AS19, AS18] and we do not consider it here.
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The expression above is general. To gain some insight, it is useful to write it for a special case

where scrubbing is performed by adding Gaussian noise.

3.1.3 Close form bound for Gaussian scrubbing

We start by considering a particular class of scrubbing functions S(w) in the form

S(w) = h(w) + n, n ∼ N(0,Σ(w,D)) (3.4)

where h(w) is a deterministic shift (that depends on D and w) and n is Gaussian noise with a given

covariance (which may also depend on w and D). We consider a baseline S0(w) = w + n′ in a

similar form, where n′ ∼ N(0,Σ0(w,Dr)).

Assuming that the covariance of the noise is relatively small, so that fh(w)(x) is approximately

linear in w in a neighborhood of h(w) (we drop D without loss of generality), we can easily derive

the following approximation for the distribution of the final activations after scrubbing for a given

random seed ϵ:

fS(wD)(x) ∼ N(fh(wD)(x),∇wfh(wD)(x)Σ∇wfh(wD)(x)
T ) (3.5)

where ∇wfh(wD)(x) is the matrix whose row is the gradient of the activations with respect to the

weights, for each sample in x. Having an explicit (Gaussian) distribution for the activations, we can

plug it in Lemma 3 and obtain:

Proposition 5. For a Gaussian scrubbing procedure, we have the bounds:

I(Df ;S(w)) ≤ EDf ,ϵ

[
∆wTΣ0

−1∆w + d(Σ,Σ0)
]

(white-box) (3.6)

I(Df ; fS(w)(x)) ≤ EDf ,ϵ

[
∆fTΣ′

x
−1
∆f + d(Σx,Σ

′
x)
]

(black-box) (3.7)

where for a k × k matrix Σ we set d(Σ,Σ0) := tr(ΣΣ−1
0 ) + log |ΣΣ−1

0 | − k, and

∆w := h(wD)− wDr , ∆f := fh(wD)(x)− fwDr
(x)

Σx := ∇wfh(wD)(x) Σ∇wfh(wD)(x)
T , Σ′

x := ∇wfwDr
(x) Σ0∇wfwDr

(x)T .
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Avoiding curse of dimensionality: Proposition 5. Comparing eq. (3.6) and eq. (3.7), we see that

the bound in eq. (3.6) involves variables of the same dimension as the number of weights, while

eq. (3.7) scales with the number of query points. Hence, for highly overparametrized models such

as DNNs, we expect that the black-box bound in eq. (3.7) will be much smaller if the number of

queries is bounded, which indeed is what we observe in the experiments (Figure 3.3).

Blessing of the null-space: The white-box bound depends on the difference ∆w in weight space

between the scrubbed model and the reference model wDr , while the black-box bound depends on

the distance ∆f in the activations. As we mentioned in ??, over-parametrized models such as deep

networks have a large null-space of weights with similar final activations. It may hence happen that

even if ∆w is large, ∆f may still be small (and hence the bound in eq. (3.7) tighter) as long as ∆w

lives in the null-space. Indeed, we often observe this to be the case in our experiments.

Adversarial queries: Finally, this should not lead us to think that whenever the activations are

similar, little information can be extracted. Notice that the relevant quantity for the black box bound

is ∆f(JxΣ0J
T
x )

−1∆fT , which involves also the gradient Jx = ∇wfwDr
(x). Hence, if an attacker

crafts an adversarial query x such that its gradient Jx is small, they may be able to extract a large

amount of information even if the activations are close to each other. In particular, this happens

if the gradient of the samples lives in the null-space of the reference model, but not in that of the

scrubbed model. In Figure 3.3 (right), we show that indeed different images can extract different

amount of information.

3.2 An NTK-inspired forgetting procedure

We now introduce a new scrubbing procedure, which aims to minimize both the white-box and

black-box bounds of Proposition 5. It relates to the one introduced in [GAS19a, GGH19], but it

enjoys better numerical properties and can be computed without approximations (Section 3.2.1). In

Section 7.2 we show that it gives better results under all commonly used metrics.
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The main intuition we exploit is that most networks commonly used are fine-tuned from pre-

trained networks (e.g., on ImageNet), and that the weights do not move much during fine-tuning on

D = Dr ∪ Df will remain close to the pre-trained values. In this regime, the network activations

may be approximated as a linear function of the weights. This is inspired by a growing literature on

the the so called Neural Tangent Kernel, which posits that large networks during training evolve in

the same way as their linear approximation [LXS19]. Using the linearized model we can derive an

analytical expression for the optimal forgetting function, which we validate empirically. However,

we observe this to be misaligned with weights actually learned by SGD, and introduce a very simple

“isoceles trapezium” trick to realign the solutions (see Supplementary Material).

Using the same notation as [LXS19], we linearize the final activations around the pre-trained

weights θ0 as:

f lin
t (x) ≡ f0(x) +∇θf0(x)|θ=θ0wt

where wt = θt − θ0 and gives the following expected training dynamics for respectively the weights

and the final activations:

ẇt = −η∇θf0(D)T∇f lin
t (D)L (3.8)

ḟ lin
t (x) = −ηΘ0(x,D)∇f lin

t (D)L (3.9)

The matrix Θ0 = ∇θf(D)∇θf(D)T of size c|D| × c|D|, where c the number of classes, is

called the Neural Tangent Kernel (NTK) matrix [LXS19, JGH18]. Using this dynamics, we can

approximate in closed form the final training point when training with D and Dr, and compute

the optimal “one-shot forgetting” vector to jump from the weights wD that have been obtained by

training on D to the weights wDr that would have been obtained training on Dr alone:

Proposition 6. Assuming an L2 regression loss,2 the optimal scrubbing procedure under the NTK

approximation is given by

hNTK(w) = w + P∇f0(Df )
TMV (3.10)

2This assumption is to keep the expression simple, in the Supplementary Material we show the corresponding
expression for a softmax classification loss.
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where ∇f0(Df )
T is the matrix whose columns are the gradients of the sample to forget, computed

at θ0 and w = A(Dr ∪ Df ). P = I − ∇f0(Dr)
TΘ−1

rr ∇f0(Dr) is a projection matrix, that

projects the gradients of the samples to forget ∇f0(Df ) onto the orthogonal space to the space

spanned by the gradients of all samples to retain. The terms M =
[
Θff − ΘT

rfΘ
−1
rr Θrf

]−1 and

V = [(Yf − f0(Df )) + ΘT
rfΘ

−1
rr (Yr − f0(Dr))] re-weight each direction before summing them

together.

Given this result, our proposed scrubbing procedure is:

SNTK(w) = hNTK(w) + n (3.11)

where hNTK(w) is as in eq. (3.10), and we use noise n ∼ N(0, λF−1) where F = F (w) is the

Fisher Information Matrix computed at hNTK(w) using Dr. The noise model is as in [GAS19a], and

is designed to increase robustness to mistakes due to the linear approximation.

3.2.1 Relation between NTK and Fisher forgetting

In [GAS19a] and [GGH19], a different forgetting approach is suggested based on either the Hessian

or the Fisher Matrix at the final point: assuming that the solutions w(Dr) and w(D) of training

with and without the data to forget are close and that they are both minima of their respective loss,

one may compute the shift to to jump from one minimum to the other of a slightly perturbed loss

landscape. The resulting “scrubbing shift” w 7→ h(w) relates to the newton update:

h(w) = w −H(Dr)
−1∇wLDr(w). (3.12)

In the case of an L2 loss, and using the NTK model, the Hessian is given by H(w) = ∇f0(Dr)
T∇f0(Dr)

which in this case also coincides with the Fisher Matrix [Mar14]. To see how this relates to the NTK

matrix, consider deterimining the convergence point of the linearized NTK model, that for an L2

regression is given by w∗ = w0+∇f0(Dr)
+ Y , where∇f0(Dr)

+ denotes the matrix pseudo-inverse,

and Y denotes the regression targets. If ∇f0(Dr) is a tall matrix (more samples in the dataset than

parameters in the network), then the pseudo-inverse is ∇f0(Dr)
+ = H−1∇f0(Dr)

T , recovering
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the scrubbing procedure considered by [GAS19a, GGH19]. However, if the matrix is wide (more

parameters than samples in the network, as is often the case in Deep Learning), the Hessian is not

invertible, and the pseudo-inverse is instead given by∇f0(Dr)
+ = ∇f0(Dr)

TΘ−1, leading to our

proposed procedure. In general, when the model is over-parametrized there is a large null-space

of weights that do not change the final activations or the loss. The degenerate Hessian is not

informative of where the network will converge in this null-space, while the NTK matrix gives the

exact point.

3.3 Experiments

3.3.1 Datasets

We report experiments on smaller versions of CIFAR-10 [Kri09] and Lacuna-10 [GAS19a], a dataset

derived from the VGG-Faces [CSX18] dataset. We obtain the small datasets using the following

procedure: we randomly sample 500 images (100 images from each of the first 5 classes) from

the training/test set of CIFAR-10 and Lacuna-10 to obtain the small-training/test respectively. We

also sample 125 images from the training set (5 classes × 25 images) to get the validation set. So,

in short, we have 500 (5 × 100) examples for training and testing repectively, and 125 (5 × 25)

examples for validation. On both the datasets we choose to forget 25 random samples (5% of the

dataset). Without loss of generality we choose to forget samples from class 0.

3.3.2 Models and Training

We use All-CNN [SDB14] (to which we add batch-normalization before non-linearity) and ResNet-

18 [HZR16] as the deep neural networks for our experiments. We pre-train the models on CIFAR-

100/Lacuna-100 and then fine-tune them (all the weights) on CIFAR-10/Lacuna-10. We pre-train

using SGD for 30 epochs with a learning rate of 0.1, momentum 0.9 and weight decay 0.0005.

Pre-training helps in improving the stability of SGD while fine-tuning. For fine-tuning we use a
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learning rate of 0.01 and weight decay 0.1. While applying weight decay we bias the weights with

respect to the initialization. During training we always use a batch-size of 128 and fine-tune the

models till zero training error. Also, during fine-tuning we do not update the running mean and

variance of the batch-normalization parameters to simplify the training dynamics. We perform each

experiment 3 times and report the mean and standard deviation.

3.3.3 Baselines

We consider three baselines for comparison: (i) Fine-tune, we fine-tune w(D) on Dr (similar to

catastrophic forgetting) and (ii) Fisher forgetting [GAS19a], we scrubs the weights by adding

Gaussian noise using the inverse of the Fisher Information Matrix as covariance matrix, (iii)

Original corresponds to the original model trained on the complete dataset (w(D)) without any

forgetting. We compare those, and our proposal, with optimal reference the model w(Dr) trained

from scratch on the retain set, that is, without using Df in the first place. Values read from this

reference model corresponds to the green region in Figure 3.2 and represent the gold standard for

forgetting: In those plots, an optimal algorithm should lie inside the green area.

3.3.4 Readout Functions

We use multiple readout functions similar to [GAS19a]: (i) Error on residual (should be small),

(ii) Error on cohort to forget (should be similar to the model re-trained from scratch on Dr), (iii)

Error on test set (should be small), (iv) Re-learn time, measures how quickly a scrubbed model

learns the cohort to forget, when fine-tuned on the complete data. Re-learn time (measured in

epochs) is the first epoch when the loss during fine-tuning (the scrubbed model) falls below a certain

threshold (loss of the original model (model trained on D) on Df ). (v) Blackbox membership

inference attack: We construct a simple yet effective blackbox membership inference attack using

the entropy of the output probabilities of the scrubbed model. Similar to the method in [SS15], we

formulate the attack as a binary classification problem (class 1 - belongs to training set and class
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Figure 3.2: Comparison of different models baselines (original, finetune) and forgetting methods (Fisher [GAS19a] and

our NTK proposed method), using several readout functions ((Top) CIFAR and (Bottom) Lacuna). We benchmark them

against a model that has never seen the data (the gold reference for forgetting): values (mean and standard deviation)

measured from this models corresponds to the green region. Optimal scrubbing procedure should lie in the green region,

or they will leak information about Df . We compute three read-out functions: (a) Error on forget set Df , (b) Error on

retain set Dr, (c) Error on test set Dtest. (d) Black-box membership inference attack: We construct a simple yet effective

membership attack using the entropy of the output probabilities. We measures how often the attack model (using the

activations of the scrubbed network) classify a sample belonging Df as a training sample rather than being fooled by

the scrubbing. (e) Re-learn time for different scrubbing methods: How fast a scrubbed model learns the forgotten cohort

when fine-tuned on the complete dataset. We measure the re-learn time as the first epoch when the loss on Df goes

below a certain threshold.

0 - belongs to test set). For training the attack model (Support Vector Classifier with Radial Basis

Function Kernel) we use the retain set (Dr) as class 1 and the test set as class 0. We test the success

of the attack on the cohort to forget (Df ). Ideally, the attack accuracy for an optimally scrubbed

model should be the same as a model re-trained from scratch on Df , having a higher value implies

incorrect (or no) scrubbing, while a lower value may result in Streisand Effect, (vi) Remaining

information in the weights [GAS19a] and (vii) Remaining information in the activations: We

compute an upper bound on the information the activations contain about the cohort to forget (Df )

(after scrubbing) when queried with images from different subsets of the data (Dr, Dr).
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Figure 3.3: Error-forgetting trade-off Using the proposed scrubbing procedure, by changing the variance of the

noise, we can reduce the remaining information in the weights (white-box bound, left) and activations (black-box

bound, center). However, it comes at the cost of increasing the test error. Notice that the bound on activation is much

sharper than the bound on error at the same accuracy. (Right) Different samples leak different information. An

attacker querying samples from Df can gain much more information than querying unrelated images. This suggest that

adversarial samples may be created to leak even more information.

3.3.5 Results

Error readouts: In Figure 3.2 (a-c), we compare error based readout functions for different

forgetting methods. Our proposed method outperforms Fisher forgetting which incurs high error

on the retain (Dr) and test (DTest) set to attain the same level of forgetting. This is due the large

distance between w(D) and w(Dr) in weight space, which forces it to add too much noise to erase

information about Df , and ends up also erasing information about the retain set Dr (high error on

Dr in Figure 3.2). Instead, our proposed method first moves w(D) in the direction of w(Dr), thus

minimizing the amount of noise to be added (Figure 3.1). Fine-tuning the model onDr (catastrophic

forgetting) does not actually remove information from the weights and performs poorly on all the

readout functions.

Relearn time: In Figure 3.2 (d), we compare the re-learn time for different methods. Re-learn time

can be considered as a proxy for the information remaining in the weights about the cohort to forget

(Df ) after scrubbing. We observe that the proposed method outperforms all the baselines which is

in accordance with the previous observations (in Figure 3.2(a-c)).
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Figure 3.4: Scrubbing brings activations closer to the target. We plot the L1 norm of the difference between the

final activations (post-softmax) of the target model trained only on Dr, and models sampled along the line joining

the original model w(D) (α = 0) and the proposed scrubbed model (α = 1). The distance between the activations

decreases as we move along the scrubbing direction. The L1 distance is already low on the retain set (Dr) (red) as it

corresponds to the data common to w(D) and w(Dr). However, the two models differ on the forget set (Df ) (blue) and

we observe that the L1 distance decreases as move along the proposed scrubbing direction.

Membership attacks: In Figure 3.2 (e), we compare the robustness of different scrubbed models

against blackbox membership inference attacks (attack aims to identify if the scrubbed model was

ever trained on Df ). This can be considered as a proxy for the remaining information (about Df ) in

the activations. We observe that attack accuracy for the proposed method lies in the optimal region

(green), while Fine-tune does not forget (Df ), Fisher forgetting may result in Streisand effect which

is undesireable.

Closeness of activations: In Figure 3.4, we show that the proposed scrubbing method brings the

activations of the scrubbed model closer to retrain model (model retrained from scratch on Dr). We

measure the closeness by computing: Ex∼Df/Dr

[
∥fscrubbed(x) − fretrain(x)∥1

]
along the scrubbing

direction, where fscrubbed(x), fretrain(x) are the activations (post soft-max) of the proposed scrubbed

and retrain model respectively. The distance between the activations on the cohort to forget (Df )

decreases as we move along the scrubbing direction and achieves a minimum value at the scrubbed

model, while it almost remains constant on the retain set. Thus, the activations of the scrubbed

model shows desirable behaviour on both Dr and Df .
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Error-forgetting trade-off In Figure 3.3, we plot the trade-off between the test error and the

remaining information in the weights and activations respectively by changing the scale of the

variance of Fisher noise. We can reduce the remaining information but this comes at the cost

of increasing the test error. We observe that the black-box bound on the information accessible

with one query is much tighter than the white box bound at the same accuracy (compare left and

center plot x-axes). Finally, in (right), we show that query samples belonging to the cohort to be

forgotten (Df ) leaks more information about the Df rather than the retain/test set, proving that

indeed carefully selected samples are more informative to an attacker than random samples.

3.4 Discussion

Recent work [AS19, GAS19a, GGH19] has started providing insights on both the amount of

information that can be extracted from the weights about a particular cohort of the data used for

training, as well as give constructive algorithms to “selectively forget.” Note that forgetting alone

could be trivially obtained by replacing the model with a random vector generator, obviously to

the detriment of performance, or by retraining the model from scratch, to the detriment of (training

time) complexity. In some cases, the data to be retained may no longer be available, so the latter

may not even be an option.

We introduce a scrubbing procedure based on the NTK linearization which is designed to

minimize both a white-box bound (which assumes the attacker has the weights), and a newly

introduced black-box bound. The latter is a bound on the information that can be obtained about

a cohort using only the observed input-output behavior of the network. This is relevant when

the attacker performs a bounded number of queries. If the attacker is allowed infinitely many

observations, the matter of whether the black-box and white-box attack are equivalent remains open:

Can an attacker always craft sufficiently exciting inputs so that the exact values of all the weights

can be inferred? An answer would be akin to a generalized “Kalman Decomposition” for deep

networks. This alone is an interesting open problem, as it has been pointed out recently that good
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“clone models” can be created by copying the response of a black-box model on a relatively small

set of exciting inputs, at least in the restricted cases where every model is fine-tuned from a common

pre-trained models [KTP19].

While our bounds are tighter that others proposed in the literature, our model has limitations.

Chiefly, computational complexity. The main source of computational complexity is computing

and storing the matrix P in eq. (3.10), which naively would require O(c2|Dr|2) memory and

O(|w| · c2|Dr|2) time. For this reason, we conduct experiments on a relatively small scale, sufficient

to validate the theoretical results, but our method is not yet scalable to production level. However,

we notice that P is the projection matrix on the orthogonal of the subspace spanned by the training

samples, and there is a long history [BNS78] of numerical methods to incrementally compute such

operator incrementally and without storing it fully in memory. We leave these promising option to

scale the method as subject of future investigation.

[?] has recently shown that linearized models with gradients as features perform comparable

to deep networks. This means that we can train a linear model for tasks like image classification,

without significantly compromising the accuracy compared to a DNN. This is an interesting avenue

for future work, as using a linearized DNN will mitigate the problems arising due to the poor

stability of the non-convex loss landscape of DNNs, thus allowing us to enjoy the convex nature of

the training optimization enabling better forgetting.

Federated learning is a modern machine learning technique which allows different clients to

train their models locally, and then communicate their weights through a central server. Lets say

that one of the client decides to withdraw itself from the federated learning setup, and also wishes

that the effect of its data be removed from all the other weights (both clients and central server).

This motivates another future direction for designing forgetting/machine unlearning procedures

which will scrub all the remaining weights clean, every time a client withdraws itself. Of course,

differential privacy can be enforced when the clients communicate with the central server, however,

this will come at the cost of the model accuracy, while a forgetting procedure will ensure high

accuracy without compromising accuracy.
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[TSC18] performed an empirical study of example forgetting during training (catastrophic

forgetting) and observed that certain examples can be forgotten easily, while the unforgettable

examples generalize across DNN architectures. A similar study for selective forgetting is also an

interesting direction for future work.

Even though we propose a method for scrubbing deep networks using linearization from NTK,

removing information directly from the weights of highly non-linear deep networks without any

approximation still remains an unsolved problem at large.

3.5 Appendix

We present the following:

• Section 3.5.1: Provide implementation details for our scrubbing procedure;

• Section 3.5.2: Show further experiments on more datasets (CIFAR-10, Lacuna, TinyImagenet)

and models (AllCNN, ResNet).

• Section 3.5.3: Provide proofs for all propositions and equations in the paper;

3.5.1 Experimental Details

We train our models with SGD (learning rate η = 0.01 and momentum m = 0.9) using weight

decay (λ = 0.1). All models are trained to convergence (we stop the training 5 epochs after the

model achieves zero training error).

Pre-training and weight-decay. In all cases, we use pre-trained models (we pre-train the models

on CIFAR-100/Lacuna-100/TinyImageNet (first 150 classes) respectively), and denote by w0 the pre-

trained weight configuration. One important point is that we change the weight decay regularization

term from the standard ∥w∥22 (which pulls the weights toward zero) to ∥w − w0∥22 (which pulls the

weights toward the initialization). This serves two purposes, (i) It ensures that the weights remain
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close to the initialization (in our case, a pre-trained network). This further helps the weight during

training to remain in the neighborhood of the initialization where the the linear approximation

(NTK) is good; (ii) With this change, the training dynamics of the weights/activations of a linearized

network only depend on the relative change in the weights from its initial value (see [LXS19, Section

2.2 ] for more details).

( )���� ��
(�)����

�(�)�( )��

�

Figure 3.5: Isosceles Trapezium Trick: ∥w(Dr)−w(D)∥ = ∥wlin(Dr)−wlin(D)∥+ 2 sinα∥wlin(D)−w(D)∥. This

allows us to match outputs of the linear dynamic model with the real output, without having to match the effective

learning rate of the two, and while being more robust to wrong estimation of the curvature by the linearized model.

NTK matrix, weight decay and cross-entropy. For clarity, in Section 4 and Proposition 2 we

only considered a unregularized MSE regression problem. To apply the theory to the more practical

case of a classification cross-entropy loss with weight-decay regularization, we need the following

changes.

First, using weight decay the NTK matrix becomes Θ = ∇f0(D)∇f0(D)T + λI , where λ is

the weight decay coefficient. Second, when using the cross-entropy loss, the gradients∇f lin
t (D)L of

the loss function can be approximated as ∇fw(x)L ≈ ∇fw0(x)
L+Hfw0 (x)

(fw(x)− fw0(x)), where

Hfw0 (x)
is the Hessian of the loss with respect to the output activations. With these two together, we

obtain Θ = Hfw0 (x)
∇f0(D)∇f0(D)T + λI as the NTK matrix to use in our setting.

We did however notice that replacing Hfw0 (x)
with the identity matrix I works better in practice.

This may be due to Hfw0 (x)
estimating the wrong curvature when the softmax saturates. Also
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we found that — while in principle identical as long as the network remains in the linear regime

— linearizing around w(D) provides a better estimate of the scrubbing direction compared to

linearizing around w0.

Trapezium trick. We observe that the linearized dynamics of in eq. (8) and eq. (9) correctly

approximate the training direction but they usually undershoot and give a smaller norm solution

than SGD. This may be due to difficulty in matching the learning rate of continuous gradient descent

and discrete SGD. To overstep these issues in a robust way, we use the following simple “trapezium

trick” (Figure 3.5) to renormalize the scrubbing vector obtained with the linear dynamics: Instead of

trying to predicting the unknown w(Dr) directly using the scrubbing vector suggested by eq. (3.10),

we compute the two final points of the linearized dynamics wlin(D) and wlin(Dr), and approximate

w(Dr) by constructing the isosceles trapezium in Figure 3.5. Effectively, this rescales the ideal

linearized forgetting direction wlin(Dr)− wlin(D) to correct for the undershooting.

3.5.2 Additional Experiments

In Figure 3.6 we use a PCA projection to show the geometry of the loss landscape after convergence

and the training paths obtained by training the weights on the full dataset D or only on Dr. We

observe that the loss landscape around the pretraining point is smooth and almost convex. Moreover,

the two training paths remain close to each other. This supports our choice of using a simple

linearized approximation to compute the shift that jumps from one path to the other.

In Figure 3.7 and Figure 3.8 we show additional experiments on several architectures (ResNet-

18, All-CNN) and datasets (Lacuna, CIFAR-10, TinyImageNet). In all cases we observe a similar

qualitative behavior to the one discussed in the paper.
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Figure 3.6: (Right) The loss landscape and training dynamics after pretraining are smooth and regular. This

justifies our linearization approach to study the dynamics. The black and yellow lines are the training paths on D and

Dr respectively. Notice that they remain close. (Upper left) Loss along the line joining the model at initialization

(α = 0) and the model after training on D (α = 1) (the black path). (Lower left) Loss along the line joining the end

point of the two paths (α = 0 and 1 respectively), which is the ideal scrubbing direction.

3.5.3 Proofs

Markov chain in Section 3.1.1. We consider the retain set Dr (not shown) as an observed random

variable, while the cohort to forget Df is an hidden variable sampled randomly from the data

distribution. The directed edge Df → w in the Markov chain derives from the fact that we first

sample Df , to obtain the full complete training set D = Dr ⊔ Df , and then train the network on D

to obtain the weights w.

Proof of Lemma 1. We have the following upper-bound for I(Df ; fS(w)(x)):

I(Df ; fS(w)(x)) = I(Df ; fS(w)(x))

= EDf

[
KL
(
p(fS(w)(x)|Df ∪ Dr) ∥ p(fS(w)(x)|Dr)

)]
= EDf

Ep(fS(w)(x)|Df∪Dr)

[
log

p(fS(w)(x)|Df ∪ Dr)

p(fS(w)(x)|Dr)

]
= EDf

Ep(fS(w)(x)|Df∪Dr)

[
log

p(fS(w)(x)|Df ∪ Dr)

p(fS(w)(x)|Dr)
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Figure 3.7: Same experiment as Figure 3.2 for different architectures and datasets. (Row 1): ResNet-18 on CIFAR,

(Row 2): ResNet-18 on Lacuna, (Row 3): All-CNN on TinyImageNet and (Row 4): ResNet-18 on TinyImageNet. In

all the experiments we observe that for different readout functions the proposed method lies in the green (target) region.

+ log
p(fS0(w)(x)|Dr)

p(fS0(w)(x)|Dr)

]
= EDf

[
KL
(
p(fS(w)(x)|Df ∪ Dr) ∥ p(fS0(w)(x)|Dr)

)]
−KL

(
p(fS(w)(x)|Dr) ∥ p(fS0(w)(x)|Dr)

)
≤ EDf

[
KL
(
p(fS(w)(x)|Df ∪ Dr) ∥ p(fS0(w)(x)|Dr)

)]
where the last inequality follows from the fact that KL-divergence is always non-negative.
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Figure 3.8: Same experiment as Figure 3.3 for different architectures and datasets. (Row-1): ResNet-18 on CIFAR,

(Row-2): ResNet-18 on Lacuna, (Row-3): All-CNN on TinyImageNet, (Row-4): ResNet-18 on TinyImageNet. We

observe consistent behaviour across different architectures and datasets.
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Proof of Lemma 2. We have the inequalities:

I(Df ; fS(w)(x)) ≤ EDf

[
KL
(
p(fS(wD)(x)) ∥ p(fS0(wDr )

(x))
)]

≤ EDf ,ϵ

[
KL
(
p(fS(wD)(x)) ∥ p(fS0(wDr )

(x))
)]

where the first inequality comes from Lemma 1, and the second inequality is from [GAS19a,

Proposition 2].

Proof of eq. (5). The activations of a scrubbed network (using the Gaussian scrubbing procedure

in eq. (3.4)) for a given sample x are given by fh(w)+n(x), where n ∼ N(0,Σ). By linearizing

the activations (using NTK formalism) around h(w), we obtain the distribution of the scrubbed

activations:

fh(w)+n(x) ∼ N(fh(w)(x),∇wfh(w)(x)Σ∇wfh(w)(x)
T )

For the original model we compute this at w = wD and take h to be the the NTK scrubbing shift in

eq. (3.10). The baseline model does not use any shift, so h(w) = w, and is computed at w = wDr .

Proof of Proposition 1, eq. (3.6).

As in [GAS19a, Example 2].

Proof of Proposition 1, eq. (3.7).

Using Equation (3.5) we write the distribution of the activations of a scrubbed network:

fS(wD)(x) ∼ N(fh(wD)(x), JΣJ
T )

where J = ∇wfh(wD)(x). We can similarly write the activations for baseline as:

fS0(wDr )
(x) ∼ N(fwDr

(x), J ′Σ0J
′T )
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where J ′ = ∇wfwDr
(x) Using the two distributions, we rewrite the bound in Lemma 2 as:

I(Df ; fS(w)(x)) ≤ EDf ,ϵ

[
KL
(
N(fh(wD)(x), JΣJ

T ) ∥N(fwDr
(x), J ′Σ0J

′T )]
= EDf ,ϵ

[
∆fTΣ′

x
−1
∆f + tr(ΣxΣ

′
x
−1
)− log |ΣxΣ

′
x
−1| − n

]
where ∆f = fh(wD)(x) − fwDr

(x), Σx = JΣJT , Σ′
x = J ′Σ0J

′T , and we used the closed form

expression for the KL divergence of two normal distributions.

Proof of Proposition 2.

Let D = Dr ∪ Df be the complete training set. To keep the notation simpler, we assume that

the loss is an mean-square-error regression loss (we discuss classification using cross-entropy in

Appendix B).

Let w0 be the weights obtained after pre-training on Dpre-train. Taking inspiration from the NTK

analysis [JGH18, LXS19] we approximate the activations fw(x) for a test datum x after fine-tuning

on D using the liner approximation f lin
w (x) = fw0(x) +∇wfw0(x)(w − w0). To keep the notation

uncluttered, we write f0(x) instead of fw0(x).

The training dynamics under the linear approximation (assuming continuous gradient descent)

are then given by eq. (8) and (9), and will converge at the final solution (see [LXS19] for more

details):

wlin(D) = ∇f0(D)TΘ−1(f0(D)− Y ) + w0.

Here∇f0(D) ∈ RNc×p is the gradient of the output with respect to the parameters (at initialization)

for all the samples in D stacked along the rows to form a matrix (p is the number of parameters

in the model, N = |D| and c is the number of classes), Θ = ∇f0(D)∇f0(D)T (∈ RNc×Nc) is the

NTK matrix. Similarly, Y is the matrix formed by stacking all ground-truth labels one below the

other and f0(D) ∈ R(Nc×1) are the stacked outputs of the DNN at initialization on D.

Similarly the baseline solution (training only on the data to retain) is:

wlin(Dr) = ∇f0(Dr)
TΘ−1

rr (f0(Dr)− Yr) + w0,
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where Θrr = ∇f0(Dr)
T∇f0(Dr). The optimal scrubbing vector (at least for the linearized model)

would then be δw := wlin(Dr) − wlin(D): adding δw to the weights obtained by training on D

makes us forget the extra examples (Df ), so that we obtain weights equivalent to training on Dr

alone. We now derive the simplified expression in eq. (3.10) for the optimal scrubbing vector δw.

We start by rewriting wlin(D) using block matrixes:

wlin(D) = ∇f0(D)TΘ−1(f0(D)− Y ) + w0

=
[
∇f0(Dr)

T∇f0(Df )
T
]Θrr Θrf

ΘT
rf Θff

−1 f0(Dr)− Yr

f0(Df )− Yf

+ w0

We can expand the inverse of the NTK matrix using the following equations:Θrr Θrf

ΘT
rf Θff

−1

=

[Θrr −ΘrfΘ
−1
ffΘ

T
rf

]−1

−Θ−1
rr ΘrfM

−MΘT
rfΘ

−1
rr M


Where M =

[
Θff −ΘT

rfΘ
−1
rr Θrf

]−1. Using Woodbury Matrix Identity:

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

We obtain: [
Θrr −ΘrfΘ

−1
ffΘ

T
rf

]−1

= Θ−1
rr +Θ−1

rr ΘrfMΘT
rfΘ

−1
rr

Thus, Θrr Θrf

ΘT
rf Θff

−1

=

Θ−1
rr +Θ−1

rr ΘrfMΘT
rfΘ

−1
rr −Θ−1

rr ΘrfM

−MΘT
rfΘ

−1
rr M


Using the above relation we get

wlin(D) = ∇f0(Dr)
T
(
Θ−1

rr +Θ−1
rr ΘrfMΘT

rfΘ
−1
rr

)
(f0(Dr)− Yr)

−∇f0(Df )
TMΘT

rfΘ
−1
rr (f0(Dr)− Yr)

−∇f0(Dr)
TΘ−1

rr ΘrfM(f0(Df )− Yf )

+∇f0(Df )
TM(f0(Df )− Yf ) + w0.
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Finally, using this the optimal shift δw for scrubbing the weights is

∆w = wlin(Dr)− wlin(D)

= −∇f0(Dr)
TΘ−1

rr ΘrfMΘT
rfΘ

−1
rr (f0(Dr)− Yr)

+∇f0(Df )
TMΘT

rfΘ
−1
rr (f0(Dr)− Yr)

+∇f0(Dr)
TΘ−1

rr ΘrfM(f0(Df )− Yf )

−∇f0(Df )
TM(f0(Df )− Yf )

=
[
I −∇f0(Dr)

TΘ−1
rr ∇f0(Dr)

]
∇f0(Df )

TM
[
ΘT

rfΘ
−1
rr (f0(Dr)− Yr)

]
+
[
I −∇f0(Dr)

TΘ−1
rr ∇f0(Dr)

]
∇f0(Df )

TM
[
(Yf − f0(Df ))

]
= P∇f0(Df )

TMV,

where P = I −∇f0(Dr)
TΘ−1

rr ∇f0(Dr), M =
[
Θff −ΘT

rfΘ
−1
rr Θrf

]−1 and V = [(Yf − f0(Df )) +

ΘT
rfΘ

−1
rr (Yr − f0(Dr))].
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CHAPTER 4

Time Matters in Regularizing Deep Networks: Weight Decay

and Data Augmentation Affect Early Learning Dynamics,

Matter Little Near Convergence

In chapter 3 we provide a procedure for unlearning by computing a closed form update which can

be subtracted from the weights of a trained deep neural network. This update enables us to remove

information from the weights or the activations of the network in a single shot, while also providing

tight information theoretic bounds. chapter 3 is inspired from the idea of neural tangent kernels,

which show that under appropriate initialization, and neural network width, deep networks behave

as linear models around the initialization random gaussian initialization. This theory has inspired an

entire field which aims to study the deep learning phenomenon through the eyes of linear models.

However, in our experiments in chapter 3 we observed that models linearized around initialization

random initialization have poor stability and as a results have worse forgetting bounds. Instead we

showed that using pre-trained networks as initialization NTK linearization provides better empirical

results.

In this chapter we seek to study which part of training dynamics of deep networks is critical

for the final performance, and thus around which point should the deep network be linearized to

obtain the forgetting perturbation from chapter 3. In this chapter we show that the initial part of

training is extremely critical for the final performance, as the network crosses different bottlenecks

during the initial transients to reach convex basins in the loss landscape around which the model can

be linearized. Such periods of training are ”critical periods”. Once the model crosses the critical
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period, it can be linearized and then the dynamics of a highly non-convex model can be mimicked

by a linear model.

Towards this end we try to understand the role of initial training dynamics through the lens

of regularization in deep networks. We try two types of regularization, (i) weight decay (or L2

regularization) and (ii) data augmentation. Of the two L2 regularization is more interesting to us

as it aims to convexity the training loss function. Through our experiments we observe that L2

regularization is only required until the network completes the initial critical period during training.

Once the initial critical period is over, removal of L2 regularization does not change the model

performance as the model already reaches a convex basin, thus the smooth effect of L2 regularization

if no longer required for better generalization. This empirical justifies our choice of computing the

NTK linearization in chapter 3 around some pre-trained weights which have crossed the critical

periods for the fine-tuning task compared to the initial point. In the further chapters we show that

instead of computing the optimal unlearning step for a linearized network and then applying it to

a non-linear model, we can directly train linearized models which perform comparable (or even

outperform) their non-linear counterparts. In the rest of the chapter we provide some rigorous

empirical evidence to study critical periods for regularization in deep networks.

4.1 Preliminaries and notation

Given an observed input x (e.g., an image) and a random variable y we are trying to infer (e.g., a

discrete label), we denote with pw(y|x) the output distribution of a deep network parameterized

by weights w. For discrete y, we usually have pw(y|x) = softmax(fw(x)) for some parametric

function fw(x). Given a dataset D = {(xi, yi)}Ni=1, the cross-entropy loss of the network pw(y|x)

on the dataset D is defined as LD(w) :=
1
N

∑N
i=1 ℓ(y, fw(xi)) = E(xi,yi)∼D[− log pw(yi|xi)].

When minimizing LD(w) with stochastic gradient descent (SGD), we update the weights w

with an estimate of the gradient computed from a small number of samples (mini-batch). That

is, wt+1 ← wt − ηEi∈ξt [∇ℓ(yi, fw(xi))] where ξt ⊆ {1, . . . , N} is a random subset of indices
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Figure 4.1: Critical periods for regularization in DNNs : (Left) Final test accuracy as a function of the epoch in

which the regularizer is removed during training. Applying regularization beyond the initial transient of training (around

100 epochs) produces no appreciable increase in the test accuracy. In some cases, early removal of regularization

e.g., at epoch 75 for All-CNN, actually improves generalization. Despite the loss landscape at convergence being

un-regularized, the network achieves accuracy comparable to a regularized one. (Center) Final test accuracy as a

function of the onset of regularization. Applying regularization after the initial transient changes the convergence point

(Fig. 4.2, B), but does not improve regularization. Thus, regularization does not influence generalization by re-shaping

the loss landscape near the eventual solution. Instead, regularization biases the solution towards regions with good

generalization properties during the initial transient. Weight decay (blue) shows a more marked time dependency

than data augmentation (orange). The dashed line (green) in (Left) and (Center) corresponds to the final accuracy

when we regularize throughout the training. (Right) Sensitivity (change in the final accuracy relative to un-regularized

training) as a function of the onset of a 50-epoch regularization window. Initial learning epochs are more sensitive to

weight decay compared to the intermediate training epochs for data augmentation. The shape of the sensitivity curve

depends on the regularization scheme as well as the network architecture. For experiments with weight decay (or data

augmentation), we apply data augmentation (or weight decay) throughout the training. Critical period for regularization

occurs during the initial rapid decreasing phase of the training loss (red dotted line), which in this case is from epoch 0

to 75. The error bars indicate thrice the standard deviation across 5 independent trials.
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of size |ξt| = B (mini-batch size). In our implementation, weight decay (WD) is equivalent

to imposing a penalty to the L2 norm of the weights, so that we minimize the regularized loss

L = LD(w) +
λ
2
∥w∥2.

Data augmentation (DA) expands the training set by choosing a set of random transformations

of the data, x′ = g(x) (e.g, random translations, rotations, reflections of the domain and affine

transformations of the range of the images), sampled from a known distribution Pg, to yield

D′(g) = {(gj(xi), yi)}gj∼Pg .

In our experiments, we choose g to be random cropping and horizontal flipping (reflections) of

the images; D are the CIFAR-10 and CIFAR-100 datasets [Kri09], and the class of functions fw are

ResNet-18 [HZR16] and All-CNN [SDB14]. For all experiments, unless otherwise noted, we train

with SGD with momentum 0.9 and exponentially decaying learning rate with factor γ = 0.97 per

epoch, starting from learning rate η = 0.1 (see also Section 4.4.1).

4.2 Experiments

To test the hypothesis that regularization can have different effects when applied at different epochs

of training, we perform three kinds of experiments. In the first, we apply regularization up to a

certain point, and then switch off the regularizer. In the second, we initially forgo regularization,

and switch it on only after a certain number of epochs. In the third, we apply regularization for a

short window during the training process. We describe these three experiments in order, before

discussing the effect of batch normalization, and analyzing changes in the loss landscape during

training using local curvature (Fisher Information).

Regularization interrupted. We train standard DNN architectures (ResNet-18/All-CNN on

CIFAR-10) using weight decay (WD) during the first t0 epochs, then continue without WD. Similarly,

we augment the dataset (DA) up to t0 epochs, past which we revert to the original training set. We

train both the architectures for 200 epochs. In all cases, the training loss converges to essentially

zero for all values of t0. We then examine the final test accuracy as a function of t0 (Figure 4.1, Left).
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Figure 4.2: Intermediate application or removal of regularization affects the final solution: (A-C) L2 norm of the

weights as a function of the training epoch (corresponding to Figure 4.1 (Top)). The weights of the network move after

application or removal of regularization, which can be seen by the change in their norm. Correlation between the norm

of the weights and generalization properties is not as straightforward as lower norm implying better generalization. For

instance, (C) applying weight decay only at the beginning (curve 0) reduces the norm only during the critical period,

and yields higher norm asymptotically than, for example, curve 25. Yet it has better generalization. This suggests that

the having a lower norm mostly help only during the critical period. We plot the norm of the weights for 200 training

epochs to confirm that the weights stabilize and would not improve further with additional training. (D) PCA-projection

of the training paths obtained removing weight decay at different times (see Section 4.4.1.1). Removing WD before

the end of the critical period (curves 25, 50) makes the network converge to different regions of the parameter space.

Removing WD after the critical period (curves 75 to 200) still sensibly changes the final point (in particular, critical

periods are not due the optimization being stuck in a local minimum), but all points lie in a similar area, supporting the

Critical Period interpretation of [ARS19]. (E) Same plots, but for DA, which unlike WD does not have a sharp critical

period: all training paths converge to a similar area.
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We observe that applying regularization beyond the initial transient (around 100 epochs) produces

no measurable improvement in generalization (test accuracy). In Figure 4.3 (Left), we observe

similar results for a different data distribution (CIFAR-100). Surprisingly, limiting regularization to

the initial learning epochs yields final test accuracy that is as good as that achieved by regularizing

to the end, even if the final loss landscapes, and hence the minima encountered at convergence, are

different.

It is tempting to ascribe the imperviousness to regularization in the latter epochs of training

(Figure 4.1, Left) to the optimization being stuck in a local minimum. After all, the decreased

learning rate, or the shape of the loss around the minimum, could prevent the solution from moving.

However, Figure 4.2 (A, curves 75/100) shows that the norm of the weights changes significantly

after switching off the regularizer: the optimization is not stuck. The point of convergence does

change, just not in a way that improves test accuracy.

The fact that applying regularization only at the very beginning yields comparable results,

suggests that regularization matters not because it alters the shape of the loss function at convergence,

reducing convergence to spurious minimizers, but rather because it “directs” the initial phase of

training towards regions with multiple extrema with similar generalization properties. Once the

network enters such a region, removing regularization causes the solution to move to different

extrema, with no appreciable change in test accuracy.

Regularization delayed. In this experiment, we switch on regularization starting at some epoch t0,

and continue training to convergence. We train the DNNs for 200 epochs, except when regularization

is applied late (from epoch 150/175), where we allow the training to continue for an additional

50 epochs to ensure the network’s convergence. Figure 4.1 (Center) displays the final accuracy as

a function of the onset t0, which shows that there is a “critical period” to perform regularization

(around epoch 50), beyond which adding a regularizer yields no benefit.

Absence of regularization can be thought of as a form of learning deficit. The permanent effect

of temporary deficits during the early phases of learning has been documented across different tasks
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Figure 4.3: (Top) Critical periods for regularization are independent of the data distribution: We repeat the same

experiment as in Figure 4.1 on CIFAR-100. We observe that the results are consistent with Figure 4.1. The dashed

line (green) in (Left) and (Right) denotes the final accuracy when regularization is applied throughout the training.

The dashed line on top corresponds to ResNet-18, while the one below it corresponds to All-CNN. (Center) In the

middle row (Left and Center), we show critical regularization periods for models trained on SVHN [NWC11] and

ImageNet [DDS09a]. Critical periods for regularization also exists for regularization methods apart from weight decay

and data augmentation, for example, Mixup [ZCD17] (Center Right). In fact, we observe that applying Mixup only

during the critical period (first 75-100 epochs) results in better generalization compared to applying it throughout the

training. (Bottom) Critical regularization periods with a piecewise constant learning rate schedule: We repeat

experiment in Figure 4.1, but change the learning rate scheduling. Networks trained with piecewise constant learning

rate exhibit behavior that is qualitatively similar to the exponentially decaying learning rate. The same experiment with

constant learning rate is inconclusive since the network does not converge (see Appendix, Figure 4.11).
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Figure 4.4: Critical periods for regularization are independent of Batch-Normalization: We repeat the same

experiment as in Figure 4.1, but without Batch-Normalization. The results are largely compatible with previous

experiments, suggesting that the effects are not caused by the interaction between batch normalization and regularization.

(Left) Notice that, surprisingly, removal of weight decay right after the initial critical period actually improves

generalization. (Center) Data augmentation in this setting shows a more marked dependency on timing. (Right) Unlike

weight decay which mainly affects initial epochs, data augmentation is critical for the intermediate epochs.

and systems, both biological and artificial [ARS19]. Critical periods thus appear to be fundamental

phenomena, not just quirks of biology or the choice of the dataset, architecture, learning rate, or

other hyperparameters in deep networks.

In Figure 4.1 (Top Center), we see that delaying WD by 50 epochs causes a 40% increase in

test error, from 5% regularizing all along, to 7% with onset t0 = 50 epochs. This is despite the two

optimization problems sharing the same loss landscape at convergence. This reinforces the intuition

that WD does not improve generalization by modifying the loss function, lest Figure 4.1 (Center)

would show an increase in test accuracy after the onset of regularization.

Here, too, we see that the optimization is not stuck in a local minimum: Figure 4.2 (B) shows the

weights changing even after late onset of regularization. Unlike the previous case, in the absence of

regularization, the network enters prematurely into regions with multiple sub-optimal local extrema,

seen in the flat part of the curve in Figure 4.1 (Center).

Note that the magnitude of critical period effects depends on the kind of regularization. Fig-

ure 4.1 (Center) shows that WD exhibits more significant critical period behavior than DA. At

convergence, data augmentation is more effective than weight decay. In Figure 4.3 (Center), we

observe critical periods for DNNs trained on CIFAR-100, suggesting that they are independent of

the data distribution.
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Sliding Window Regularization. In an effort to regress which phase of learning is most impacted

by regularization, we compute the maximum sensitivity against a sliding window of 50 epochs

during which WD and DA are applied (Figure 4.1 Right). The early epochs are the most sensitive,

and regularizing for a short 50 epochs yields generalization that is almost as if we had regularized

all along. This captures the critical period for regularization. Note that the shape of the sensitivity

to critical periods depends on the type of regularization: Data augmentation has essentially the

same effect throughout training, whereas weight decay impacts critically only the initial epochs.

Similar to the previous experiments, we train the networks for 200 epochs except, when the window

onsets late (epoch 125/150/175), where we train for 50 additional epochs after the termination of

the regularization window which ensures that the network converges.

Reshaping the loss landscape. L2 regularization is classically understood as trading classification

loss against the norm of the parameters (weights), which is a simple proxy for model complexity.

The effects of such a tradeoff on generalization are established in classical models such as linear

regression or support-vector machines. However, DNNs need not trade classification accuracy

for the L2 norm of the weights, as evident from the fact that the training error can always reach

zero regardless of the amount of L2 regularization. Current explanations [GBC16] are based on

asymptotic convergence properties, that is, on the effect of regularization on the loss landscape

and the minima to which the optimization converges. In fact, for learning algorithm that reduces

to a convex problem, this is the only possible effect. However, Figure 4.1 shows that for DNNs,

the critical role of regularization is to change the dynamics of the initial transient, which biases

the model towards regions with good generalization. This can be seen in Figure 4.1 (Left), where

despite halting regularization after 100 epochs, thus letting the model converge in the un-regularized

loss landscape, the network achieves around 5% test error. Also in Figure 4.1 (Top Center), despite

applying regularization after 50 epochs, thus converging in the regularized loss landscape, the

DNN generalizes poorly (around 7% error). Thus, while there is reshaping of the loss landscape

at convergence, this is not the mechanism by which deep networks achieve generalization. It is

commonly believed that a smaller L2 norm of the weights at convergence implies better generaliza-
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tion [WRS17, NBS18]. Our experiments show no such causation: Slight changes of the training

algorithm can yield solutions with larger norm that generalize better (Figure 4.2, (C) & Figure 4.1,

Top right: onset epoch 0 vs 25/50).

Effect of Batch-Normalization. One would expect L2 regularization to be ineffective when used in

conjunction with Batch-Normalization (BN) [IS15], since BN makes the network’s output invariant

to changes in the norm of its weights. However, it has been observed that, in practice, WD improves

generalization even, or especially, when used with BN. Several authors [ZWX19, HBG18, Laa17]

have observed that WD increases the effective learning rate ηeff,t = ηt/∥wt∥22, where ηt is the

learning rate at epoch t and ∥wt∥22 is the squared-norm of weights at epoch t, by decreasing

the weight norm, which increases the effective gradient noise, which promotes generalization

[NVL15, JKA17, HHS17]. However, in the sliding window experiment for L2 regularization, we

observe that networks with regularization applied around epoch 50, despite having smaller weight

norm (Figure 4.2 (C), compare onset epoch 50 to onset epoch 0) and thus a higher effective learning

rate, generalize poorly (Figure 4.1 Top Right: onset epoch 50 has a mean test accuracy increase of

0.24% compared to 1.92% for onset epoch 0). We interpret the latter (onset epoch 0) as having a

higher effective learning rate during the critical period, while for the former (onset epoch 50) it was

past its critical period. Thus, previous observations in the literature should be considered with more

nuance: we contend that an increased effective learning rate induces generalization only insofar as

it modifies the dynamics during the critical period, reinforcing the importance of studying when

to regularize, in addition to how. In Figure 4.9 in the Appendix, we show that the initial effective

learning rate correlates better with generalization (Pearson coefficient 0.96, p-value ¡ 0.001) than

the final effective learning rate (Pearson coefficient 0.85, p-value ¡ 0.001).

We repeat the experiments in Figure 4.1 without Batch-Normalization (Figure 4.4). We observe

a similar result, suggesting that the positive effect of weight decay during the transient cannot be

due solely to the use of batch normalization and an increased effective learning rate.

Weight decay, Fisher and flatness.
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Figure 4.5: Fisher Information and generalization: (Left) Trace of the Fisher Information Matrix (FIM) as a function

of the training epochs. Weight decay increases the peak of the FIM during the transient, with negligible effect on the

final value (see left plot when regularization is terminated beyond 100 epochs). The FIM trace is proportional to the

norm of the gradients of the cross-entropy loss. FIM trace plots for delayed application/sliding window can be found in

the Appendix (Figure 4.7) (Center) & (Right): Peak vs. final Fisher Information correlate differently with test

accuracy: Each point in the plot is a ResNet-18 trained on CIFAR-10 achieving 100% training accuracy. Surprisingly,

the maximum value of the FIM trace correlates far better with generalization than its final value, which is instead related

to the local curvature of the loss landscape (“flat minima”). The Pearson correlation coefficient for the peak FIM trace

is 0.92 (p-value ¡ 0.001) compared to 0.29 (p-value ¿ 0.05) for the final FIM trace.

Generalization for DNNs is often correlated with the flatness of the minima to which the network

converges during training [HS97,LXT18,KMN16,CCS16], where solutions corresponding to flatter

minima seem to generalize better. In order to understand if the effect of regularization is to increase

the flatness at convergence, we use the Fisher Information Matrix (FIM), which is a semi-definite

approximation of the Hessian of the loss function [Mar14] and thus a measure of the curvature of

the loss landscape. We recall that the Fisher Information Matrix is defined as:

F := Ex∼D′(x)Ey∼pw(y|x)[∇w log pw(y|x)∇w log pw(y|x)T ].

In Figure 4.5 (Left) we plot the trace of FIM against the final accuracy. Notice that, contrary to

our expectations, weight decay increases the FIM norm, and hence curvature of the convergence

point, but this still leads to better generalization. Moreover, the effect of weight decay on the

curvature is more marked during the transient (Figure 4.5). This suggests that the peak curvature

reached during the transient, rather than its final value, may correlate with the effectiveness of

regularization. To test this hypothesis, we consider the DNNs trained in Figure 4.1 (Top) and

plot the relationship between peak/final FIM value and test accuracy in Figure 4.5 (Center, Right):
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Indeed, while the peak value of the FIM strongly correlates with the final test performance (Pearson

coefficient 0.92, p-value ¡ 0.001), the final value of the FIM norm does not (Pearson 0.29, p-value ¿

0.05). We report plots of the Fisher Norm for delayed/sliding window application of WD in the

Appendix (Figure 4.7).

The FIM was also used to study critical period for changes in the data distribution in [ARS19],

which however in their setting observe an anti-correlation between Fisher and generalization. Indeed,

the relationship between the flatness of the convergence point and generalization established in

the literature emerges as rather complex, and we may hypothesize a more complex bias-variance

trade-off like a connection between the two, where either too low or too high curvature can be

detrimental.

Jacobian norm. [ZWX19] relates the effect of regularization to the norm of the Gauss-Newton

matrix, G = E[JT
wJw], where Jw is the Jacobian of fw(x) w.r.t w, which in turn relates to norm of the

networks input-output Jacobian. The Fisher Information Matrix is indeed related to the GN matrix

(more precisely, it coincides with the generalized Gauss-Newton matrix, G = E[JT
wHJw], where H

is the Hessian of ℓ(y, fw(x)) w.r.t. fw(x)). However, while the GN norm remains approximately

constant during training, we found the changes of the Fisher-Norm during training (and in particular

its peak) to be informative of the critical period for regularization, allowing for a more detailed

analysis.

4.3 Discussion and Conclusions

We have tested the hypothesis that there exists a “critical period” for regularization in training deep

neural networks. Unlike classical machine learning, where regularization trades off the training

error in the loss being minimized, DNNs are not subject to this trade-off: One can train a model

with sufficient capacity to zero training error regardless of the norm constraint imposed on the

weights. Yet, weight decay works, even in the case where it seems it should not, for instance when

the network is invariant to the scale of the weights, e.g., in the presence of batch normalization. We
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believe the reason is that regularization affects the early epochs of training by biasing the solution

towards regions that have good generalization properties. Once there, there are many local extrema

to which the optimization can converge. Which to is unimportant: Turning the regularizer on or off

changes the loss function, and the optimizer moves accordingly, but test error is unaffected, at least

for the variety of architectures, training sets, and learning rates we tested.

We believe that there are universal phenomena at play, and what we observe is not the byproduct

of accidental choices of training set, architecture, and hyperparameters: One can see the absence of

regularization as a learning deficit, and it has been known for decades that deficits that interfere

with the early phases of learning, or critical periods, have irreversible effects, from humans to

songbirds and, as recently shown by [ARS19], deep neural networks. Critical periods depend on the

type of deficits, the task, the species or architecture. We have shown results for two datasets, two

architectures, two learning rate schedules.

While our exploration is by no means exhaustive, it supports the point that considerably more

effort should be devoted to the analysis of the transient dynamics of Deep Learning. To this date,

most of the theoretical work in Deep Learning focuses on the asymptotics and the properties of the

minimum at convergence.

Our hypothesis also stands when considering the interaction with other forms of generalized

regularization, such as batch normalization, and explains why weight decay still works, even though

batch normalization makes the activations invariant to the norm of the weights, which challenges

previous explanation of the mechanisms of action of weight decay.

We note that there is no trade-off between regularization and loss in DNNs, and the effects of

regularization cannot (solely) be to change the shape of the loss landscape (WD), or to change the

variety of gradient noise (DA) preventing the network from converging to some local minimizers,

as without regularization in the end, everything works. The main effect of regularization ought to

be on the transient dynamics before convergence.

At present, there is no viable theory on transient regularization. The empirical results we present
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should be a call to arms for theoreticians interested in understanding Deep Learning. A possible

interpretation advanced by [ARS19] is to interpret critical periods as the (irreversible) crossing of

narrow bottlenecks in the loss landscape. Increasing the noise – either by increasing the effective

learning rate (WD) or by adding variety to the samples (DA) – may help the network cross the right

bottlenecks while avoiding those leading to irreversibly sub-optimal solutions. If this is the case,

can better regularizers be designed for this task?

4.4 Appendix

4.4.1 Details of the Experiments

We use the standard ResNet-18 architecture [HZR16] in all the experiments, stated unless otherwise.

We train all the networks using SGD (momentum = 0.9) with a batch-size of 128 for 200 epochs,

except when regularization is applied late during the training, where we train for an extra 50 epochs,

to ensure the convergence of the networks. For experiments with ResNet-18, we use an initial

learning rate of 0.1, with learning rate decay factor of 0.97 per epoch and a weight decay coefficient

of 0.0005. In the piece-wise constant learning rate experiment, we use an initial learning rate of 0.1

and decay it by a factor of 0.1 every 60 epochs. While in the constant learning experiment we fix

it to 0.001. For the All-CNN [SDB14] experiments, we use an initial learning rate of 0.05 with a

weight decay coefficient of 0.001 and a learning rate decay of 0.97 per epoch. For All-CNN, we do

not use dropout and instead we add Batch-Normalization to all layers.

4.4.1.1 Path Plotting

We follow the method proposed by [LXT18] to plot the training trajectories of the DNNs for varying

duration of regularization (Figure 4.2 A). More precisely, we combine the weights of the network

(stored at regular intervals during the training) for different duration of regularization into a single

matrix M and then project them on the first two principal components of M .
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Figure 4.6: PCA-projection of the training paths for All-CNN on CIFAR-10.

4.4.2 Additional Experiments
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Figure 4.7: Trace of FIM as a function of training epochs for delayed and sliding window application of weight decay

for ResNet-18 on CIFAR-10.
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Figure 4.8: We repeat the experiments from Figure 4.1 and replace the exponential learning rate with a constant learning

rate (lr = 0.001). However, those are inconclusive since the error achievable with a constant rate does not saturate

performance on the datasets we tested them, with the architectures we used. Test error is almost twice than what was

achieved with an exponential or piecewise constant learning rate. It is possible that careful tuning of the constant could

achieve baseline performance and also display critical period phenomena.
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Figure 4.9: Effect of learning rate on generalization: (Top) The effective learning rate ηeff,t = ηt/∥wt∥22, where

ηt is the learning rate at epoch t and ∥wt∥22 is the norm of weights at epoch t. [ZWX19, HBG18, Laa17], shown as a

function of the training epoch for the experiments from Figure 4.1 (Top blue) / Figure 4.2. (Left) and (Center) The

effective learning rate is higher throughout the training (which includes the critical periods) for models which generalize

better (Figure 4.1 Top blue) (Right) When we apply weight decay in a sliding window, the effective learning rate for

the dark blue curve (weight decay from 0-50) is higher during the critical period but lower afterwards, compared to

light blue curves (weight decay from 25-75, 50-100). However, the dark blue curve yields a higher final accuracy

(test accuracy increase of 1.92%) compared to light blue curves (test accuracy increase of 1.39%, 0.24% respectively),

despite having a lower effective learning rate for the majority of the training. This suggests that having a higher

effective learning rate during the critical periods is more conducive to good generalization when using weight decay.

(Bottom) We test this further by plotting the relationship between the effective learning rate and final test accuracy.

Mean initial effective learning rate is the average effective learning rate over the first 100 epoch, while mean final

effective learning rate is the average computed over the final 100 epochs. The initial effective learning rate correlates

better with generalization (Pearson correlation coefficient of 0.96 (p-value ¡ 0.001)) compared to the final effective

learning rate (Pearson correlation coefficient of 0.85 (p-value ¡ 0.001)).
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Figure 4.10: L2 norm of the weights as a function of the training epoch. We observe similar results (compared to

Figure 4.2) for different architectures (ResNet-18 and All-CNN) and different datasets (CIFAR-10 and CIFAR-100).
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Figure 4.11: Plot of layer-wise Fisher Information for ResNet-18 trained on CIFAR-10. Unlike [ARS19] we do not

observe changes in the relative ordering of the21layers, which makes sense since unlike the experiments in [ARS19],

the underlying data distribution is not changing
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CHAPTER 5

Linear-Quadratic Fine-tuning

In chapter 3 we provided a single shot forgetting procedure for non-convex models using the NTK

linearization around some pre-trained network. This procedure enables to perform quick forgetting

from the weights or the activations. Even though the procedure performs well empirically, it still

involves some approximations, most importantly applying the optimal forgetting update of a linear

model to a non-linear model. While in chapter 4 we show that the initial training dynamics are

critical for the final performance. Thus fine-tuning pre-trained models for practical downstream

tasks provides better empirical approximation for forgetting. To overcome all these limitations

in this chapter we provide a training procedure for fine-tuning large-scale linearized networks.

These networks are first-order Taylor series approximations of the activations with respect of the

weights around some pre-training point (for instance ImageNet pre-trained networks). The Taylor

series perturbation is what we learn while fine-tuning these models for different downstream tasks.

Unlike chapter 3 where the network fine-tuned is non-linear but the optimal forgetting step is for a

linear model, here we inherently train a linear model, and in chapter 6 provide a perfect forgetting

procedure for this linearized network. Since these models are linear in their parameters, and trained

by optimizing a convex loss function, have predictable behavior with respect to changes in the

training data, initial conditions, and optimization.

We show that by linearizing the networks around a pre-trained point, along with some modifica-

tions of the training loss landscape and the optimization algorithm, we can fine-tune large linearized

models which perform comparable to their non-linear counterparts. This enables us to exploit the

strength of non-linear models in obtaining good generalization and the theoretical properties of
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Figure 5.1: Linear vs. nonlinear fine-tuning (NLFT). (Left) Box-plot of the distribution of test errors achieved

by different linearization methods on the datasets in Table 5.1, relative to the error achieved by NLFT (dashed

line at origin). Whiskers show best/worst results, boxes extend from lower to upper quartiles (the results

on half of the datasets are concentrated in the box), the central line represents the median increase in error.

GaF [MLL20] (green, 47% median error increase) is better than training a linear classifier on a fixed embed-

ding (red, 71% increase), but slightly worse than LQF applied just to that linear classifier (LQF FC, orange,

42% increase). LQF is the closest linear method to the non-linear paragon (blue, 12% increase). (Right)

We show the distribution of best effective learning rates as the task varies. While for NLFT we need to search

in a wide range to find the optimal training parameters for a task (wide dashed box), for LQF the same learning rate

works almost equally well for all tasks (narrow solid box).

linear models to perform efficient and optimal forgetting. Since we linearize around a pre-trained

network, the fine-tuning model is already past its critical period as a result training a linearized

model performs comparably to a non-linear model which partly justifies the success of this method.

In the subsequent sections we describe our method, provide a detailed describe of its subcompo-

nents, along with its applications for different downstream tasks which is not restricted to forgetting,

for instance, few-shot learning, robustness and interpretibility.

88



5.1 Method

Linearized model. LQF addresses the lack of robustness and interpretability of non-linear deep

models by replacing the network itself with a first-order linear approximation. Let fw(x) denote

the output of a deep network with weighs w on an input image x, let w0 denotes an initial set of

weights, for example obtained after pre-training on ImageNet. We consider the linearization f lin
w (x)

of the network fw(x) given by the first-order Taylor expansion of fw(x) around w0:

f lin
w (x) = fw0(x) +∇wfw0(x) · (w − w0). (5.1)

Note that f lin
w (x) is linear with respect to the weights w; however, due to the non-linear activation

functions, it is still a highly non-linear function of the input x. If the approximation is accurate,

ideally we want the linearized f lin
w and the original fw to reach similar accuracy when trained:

accuracy(f lin
ŵ ,Dtest) ≈ accuracy(fw,Dtest) (5.2)

where ŵ and w are obtained by minimizing, respectively, the loss of the linear and non-linear model

on a training set D. The obvious advantage of the linear model is that, for strongly convex loss

functions, the global optimum w̄ is unique and, for a quadratic loss functions, can even be written in

closed form. So, if eq. (5.2) was satisfied, we would stand to gain in terms of speed of fine-tuning,

performance (convergence is guaranteed to the global optimum), and interpretability (the effect of a

training sample on the test prediction can be computed exactly).

Training a linearized model requires computing the product of the Jacobian∇wfw0(x) with the

weights w, which would require a separate backward pass for each sample. However, [MLL20]

shows that using Gradients as Features (GaF) the Jacobian-Vector product of eq. (5.1) can be

computed with a modified forward pass, at a cost comparable to that of the running the original

network.

Accuracy of linearized models. In Figure 7.1 and Table 5.1 we show that the accuracy of linearized

models suffers compared to the paragon of NLFT. In most datasets, even the simple linear baseline
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Figure 5.2: Ablation study. Box plot showing relative error increase on the datasets in Table 5.1 when removing

consititutive components of LQF. Removing MSE in favor of the standard CE loss yields the largest increase in error

(blue). Removing K-FAC pre-conditioning, leaving standard SGD (orange), has also a sizeable effect. Finally, on most

datasets, Leaky-ReLU performs better than standard ReLU (green).

obtained by fine-tuning just the linear classifier (fully-connected, or FC, layer) is only slightly worse

than GaF, violating (5.2). We now analyze the causes of these differences between the dynamics of

fine-tuning a non-linear network and its linearized version, and propose a set of changes that lead to

LQF.

5.1.1 Loss function

We use a regularized mean-squared error (MSE) loss, even if the original model is pre-trained by

minimizing the regularized cross-entropy loss:

LMSE(f ;D) =
∑

(xi,yi)∈D

∥αyi − f(xi)∥2 +
λ

2
∥w − w0∥2, (5.3)
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where yi is the one-hot vector encoding the class label and α is a scaling factor for the targets (we

set α = 15 as in [HB21]).1 There are several reasons to make this change. First, while standard

DNNs have several normalization layers (such as batch normalization) that keep the output bounded,

the linear model f lin
w (x) in eq. (5.1) directly outputs the dot product ∇wfw0(x) · w, which involves

tens of millions of weights. This product can easily grow large and saturate the softmax of the

cross-entropy loss, making the training process unstable. When that happens, we observe that only

the last layer features are effectively trained. On the other hand, the MSE loss does not saturate and

forces the output to remain close to the target one-hot vectors, and hence bounded. We also note

that using MSE gives better results even for standard non-linear training (see Appendix), especially

when training on small datasets.

A secondary effect of using the MSE loss in conjunction with a linear model is that we can write

the unique global optimum in closed form:

w∗ = (JTJ + λI)−1J(Y − f0(X)) (5.4)

where J ≡ ∇wfw0(X)T is the matrix of the Jacobians of all the samples in the training set and Y

is the matrix of all target vectors. While w∗ cannot be computed directly using this formula due

to large size of the matrices, in Section 5.1.4 we show that eq. (5.4) allows us to easily compute

the influence of a given training sample on the test predictions, enhancing interpretability of the

training process.

5.1.2 Pre-conditioning with K-FAC

The MSE loss in eq. (5.3) is strictly convex, so SGD is guaranteed to converge to the unique global

minimum, provided an appropriate learning rate decaying schedule is used [Nes13]. However,

different directions in the loss landscape may have different curvature, slowing convergence: the

same learning rate may be too fast high-curvature directions and too small for flat ones. Convergence

1Note that we penalize the distance of the weights w from the pretraining w0. This is more natural than the weight
decay penalty λ

2 ∥w∥
2 in our setting, since we are optimizing for the perturbation w − w0. It may also lead to better

transfer results on some tasks [LGD18].
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speed is governed by the condition number of the Hessian matrix (ratio between the largest and

smallest eigenvalues, i.e., maximum and minimum curvature), which can be modified by multiplying

the update with a pre-conditioning matrix At

wt+1 = wt − ηAtgt, (5.5)

where gt is the batch gradient computed at step t and η is the learning rate. The matrix At allows

training at different speed in each direction. In a quadratic problem with constant preconditioning

At = A, the expected distance from the optimum w∗ at time t using adaptive SGD is given by:

E[wt − w∗] = (I − ηAH)t(w0 − w∗), (5.6)

where H is the (constant) Hessian of the loss function. In particular, the fastest convergence is

obtained when A = H−1 is the inverse of the hessian. For this reason, most adaptive methods try to

approximate H−1.

Adaptive methods are commonplace in convex optimization and some [KB15] are widely used

in deep learning. However, for large-scale visual classification, standard SGD with momentum

performs comparably or better than adaptive methods. We hypothesize that this may be due to the

changing curvature during training, which causes the condition number to decrease, making the

problem well-conditioned even without adaptation (see Figure 5.3). However, this cannot happen

when training a linearized network, since the curvature of eq. (5.3) is constant and fully determined

in pre-training. For this reason, we add a pre-conditioner for eq. (5.3) in LQF.

In our case, since the problem is quadratic, the Hessian coincides with the Fisher Information

Matrix (FIM). We thus use the Kronecker-Factorized (K-FAC) approximation of the FIM as pre-

conditioner [MG15]. Unlike diagonal approximations, K-FAC allows us to estimate off-diagonal

terms while remaining tractable.

K-FAC is efficient for LQF. On standard non-linear networks, K-FAC may make the weights

converge too quickly to suboptimal sharp minima that do not generalize well and, since the curvature

changes over time, the approximation of the Hessian needs to be updated. However, in LQF there is
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a unique minimizer and the curvature is constant. This makes the use of K-FAC especially efficient

in our setting. Compared to other adaptive methods like Adam [KB15], in our setting K-FAC

provides an accurate estimation of the Hessian inverse which can be used to interpret the effect of a

training sample (Section 5.1.4) and to easy select an appropriate learning rate.

Learning rate selection. From eq. (5.6) it follows that, to guarantee convergence, the norm of the

eigenvalues of I − ηAH should be smaller than one. In particular, if A is a good approximation

of H , the eigenvalues of AH are centered around 1 and η = 1 is optimal. In our case A will

not be a perfect approximation of H−1, however since we expect λmax(A
−1H) ≈ 1 and we need

η < 2/λmax(A
−1H) to guarantee convergence, we choose a conservative η = 0.1, which we observe

gives consistent performance on all datasets without further tuning (Figure 7.1, right).

5.1.3 Leaky-ReLU activations

Rectified linear units (ReLUs) [NH10,SWT15] leave the positive component of the input unchanged

and replace the negative component with zero, which blocks information from certain weights.

This is not harmful during normal training, since batch normalization helps avoiding dead filters.

However, in linearized models only the gradient of the filter at initialization matters in computing the

Jacobian-Vector Product. If this is zero, it will stunt training for that filter. To prevent this, we simply

replace ReLU with Leaky-ReLu [MHN13], which does not annihilate the negative component but

simply replaces it with a value proportional to the input. Another advantage of Leaky-ReLU is that

its first order approximation near zero is more accurate than that of ReLU, making the first-order

approximation in eq. (5.1) more accurate.

Performance of LQF. After accounting for these changes, we repeat the previous experiments

on different datasets and report the overall results in Figure 7.1 and detailed in Table 5.1. LQF

outperforms other linearization methods on all the datasets, and achieves performance comparable

to non-linear fine-tuning on most. In the low data regime, the strong inductive bias of the linear

model acts as a regularizer and the linearized model outperforms the non-linear fine-tuned one
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Figure 5.3: Unlike SGD, LQF requires pre-conditioning. Histogram of the eigenvalues of the Hessian loss function

at initialization (blue) and at the end of optimization of a non-linear network (orange). Note that at initialization a

few directions have very large eigenvalues while many directions have much smaller eigenvalues, resulting in a high

condition number κ = 1482.4. However, SGD naturally moves to areas of the loss landscape that are better conditioned,

with κ = 179.7 at the end of training (note that the largest eigenvalues decrease), thus making convergence easier. This

“automatic conditioning” makes pre-conditioning un-necessary in non-linear networks. On the other hand, since in LQF

the Hessian is fixed throughout the training, we need to use K-FAC pre-conditioning to facilitate convergence.
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(Figure 5.4). We discuss the results in detail in Section 7.2.

5.1.4 Interpretability

LQF gives us an efficient way of estimating the influence, or “effect” of a given training sample on

the final weights and on the test predictions of the DNN, as well as measuring the informativeness

to the training process. This can be used for dataset summarization (Sect. 5.2.6) and to interpret

model predictions: Had a particular sample (cause) not been used for training, how would the final

model (effect) differ? Using eq. (5.4) we have the following expression for the weights w−i we

would have obtained if training without the sample xi:

w∗
−i = w∗ + (F−i + λI)−1gi. (5.7)

where gi ≡ ∇w∗fw(x) is the Jacobian of the i-th sample, ei ≡ 1
N
(y − w∗gi) is the weighted

prediction error on the sample xi, N is the number of training samples, and F−i is the hessian (or,

equivalently, the FIM) computed without xi.

Using eq. (5.7) we can estimate how much the prediction fw(xtest) on a test sample xtest would

change had we not seen the training sample xi. That is, we can measure which training sample has

contributed more to a correct or incorrect decision of the network. Using eq. (5.7), in the Appendix

we show that

fw∗(xtest)− fw∗
−i
(xtest) ≈(

1− αi

N − 1 + αi

)
eig

T
test(F + λI)−1gi, (5.8)

where αi ≃ gi(F + λI)−1gTi . Since K-FAC already provides an approximation of (F + λI)−1, we

can estimate the expression efficiently.

More generally, one can define the unique functional information [HAP21] of a training sample

xi as the expected influence that the sample has on the network output on a validation set:

F-SI((xi, yi)) = Ex∼Dval

[
∥fw(x)− fw−i

(x)∥2
]

(5.9)
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This measure – which can be used for dataset summarization and to interpret what the network learn

from a training samples (Section 5.2.6) – is also easily estimated using eq. (5.8).

5.2 Results

We test LQF on several standard vision classification tasks used to benchmark fine-tuning learning

[LGD18, LCY20] and additional tasks to test cross-domain transfer (see Appendix for details

on the datasets). We find that LQF outperforms other linearization methods on almost all tasks.

LQF also outperforms standard non-linear training (NLFT) in tasks such as few-shot learning and

on-line learning, where scarce data causes training instabilities. We also illustrate the benefits of

interpretability.

Architecture and training. As the base model for linearization we use a ResNet-50 with Leaky-

ReLU pre-trained on ImageNet. We implement the forward pass of eq. (5.1) using [MLL20], and

minimize the MSE loss, with K-FAC pre-conditioning (using the implementation of [GLB18]). For

NLFT, we also use a pre-trained ResNet-50 with ReLU activations, and minimize the cross-entropy

loss. All experiments are conducted with SGD with momentum 0.9, learning rates η ∈ {0.01, 0.001},

weight decay ∈ {10−4, 10−5} and report the best results. We discuss further training details in the

Appendix.

5.2.1 Comparison

Ideally, LQF should achieve close performance to NLFT on all tasks. We also compare with two

other linearization methods: Standard FC, which uses the pre-trained network as a feature and only

retrains the last FC layer, and Gradients as Features (GaF) [MLL20] which linearizes the network

without any of the changes described in Section 5.1. We also introduce a further baseline, LQF FC,

which uses the changes in Section 5.1, but only to train the final FC layer.

We train each model on several “coarse-grained” datasets, covering different tasks and domains
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NLFT LQF∗ LQF FC∗ GaF FC

Caltech-256 [GHP] 14.1 14.5 17.4 15.4 15.7

Chest X-Ray [KGC18] 4.6 7.1 8.3 9.5 11.2

Malaria Cells [RAP18] 3.2 4.1 5.5 4.8 6.4

MIT-67 [QT09] 20.5 20.7 24.7 23.1 24.3

Oxford Pets [PVZ12] 6.7 6.9 7.7 7.4 7.7

Fine-grained datasets (sorted by ImageNet distance)

Stanf. Dogs [KJY11] 13.8 12.4 12.9 10.5 9.9

Ox. Flowers [NZ06] 7.1 7.1 9.7 13.3 13.6

CUB-200 [WBM10] 19.6 24.0 29.1 28.4 29.2

Aircrafts [MKR13] 14.5 34.5 43.8 48.4 54.2

Stanf. Cars [KSD13] 9.6 27.1 39.2 39.4 47.3

Table 5.1: Test error of linear and non-linear fine-tuning on coarse-and fine-grained classification. On almost all

datasets LQF outperforms all other linear methods. Moreover, on most coarse datasets LQF is within 0.5% absolute

error from standard non-linear fine-tuning. Linear methods performs worse than NLFT on fine-grained machine

classification tasks that have a large domain gap with respect to ImageNet pretraining – e.g., Stanford Cars and FGVC

Aircrafts. However, even in this case LQF reduces the error by up to 20% with respect to competing methods.

and report the results in Table 5.1. In Figure 7.1 we show the distribution of error of each methods

relative to the NLFT paragon. We see that GaF improves only marginally over the FC baseline, and

is usually far from the non-linear performance. On the other hand, LQF performs comparably with

NLFT on all the coarse-grained datasets. Surprisingly, training only the final classifier using LQF

(LQF FC) improves over Standard FC, suggesting that the changes discussed in Section 5.1 are

helpful in broader scenarios.
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5.2.2 Fine-grained classification and Bilinear Pooling

Since LQF is based on a first-order Taylor expansion, it has an implicit bias toward remaining

close to the pre-training (ImageNet in our case). [LCY20] notes that such a bias may improves

accuracy on tasks that are easier or nearby (e.g., Stanford Dogs, Caltech-256), but it is detrimental

on fine-grained tasks with a large domain gap from ImageNet (e.g., CUB-200, Aircrafts, Cars). We

expect the same to hold LQF. Indeed, in Table 5.1 we show that while performance is close or better

on similar tasks, it degrades for farther tasks (sorted as in [LCY20]). However, even in this case, we

observe that LQF significantly outperforms other linearization techniques.

B-LQF. These results suggest that finding a pre-training closer to the target task may help improve

the linearizaion performance [ALT19, NHA20, CSS18], which is indeed an intereting direction

of research. On the other hand, [LRM15] suggests that even for generic ImageNet pretraining,

the covariance of the last-layer features, rather than their mean, is more suited as a feature for

fine-grained visual classification. Following this intuition, we replace the last layer global spatial

mean pooling with square root bilinear pooling: if zi,j are the features of the last-layer feature map,

instead of feeding their mean µ = Ei,j[zi,j] to the fully connected layer, we feed the square root
√
Σ

of their covariance matrix Σ [LRM15, LM17, GLB18]. In Table 5.2 we see that – while bilinear

pooling does not improve the performace of NLFT too much – combining bilinear-pooling with

LQF (B-LQF) significantly boosts its performance on fine-grained tasks.

5.2.3 Ablation study

We measure the effect of each component of LQF on its final accuracy. In Figure 7.5 we show the

relative increase in error when we ablate the changes discussed in Section 5.1. Using the MSE

loss instead of cross-entropy yields the largest improvement. Using K-FAC also carries significant

weight in the final solution. This is interesting since, in principle, SGD without pre-conditioning

should recover the same minimum. This reinforces the point that the optimization problem is badly

conditioned (Figure 5.3), and proper pre-conditioning is necessary. Using Leaky-ReLU activations
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NLFT MPN-COV B-LQF∗ LQF∗ GaF

CUB-200 19.6 17.0 17.1 24.0 29.2

Aircrafts 14.5 15.4 29.2 34.5 54.2

Cars 9.6 9.1 16.3 27.1 47.3

Table 5.2: Fine-grained classification and bilinear pooling. Normalized bilinear pooling (MPN-COV) [LM17,GLB18]

does not significantly improve ordinary classification results (NLFT) in our setting. However, LQF with bilinear pooling

(B-LQF) significantly improves test accuracy compared to average pooling (LQF).

instead of ReLUs also improve the final results on average, even if by a lesser margin than the other

two changes. However, in additional ablation studies where we ablate pairs of components, we

observe that using Leaky ReLU makes a larger difference if K-FAC is not present, possibly because

Leaky ReLU simplifies the optimization of the linear model and is more useful when K-FAC is

disabled.

5.2.4 Low-shot data regime

LQF, like any linearization, cannot be expected to outperform NLFT in general. However, there

may be scenarios where it does systematically. In the low-data regime, non-linear networks can

easily memorize samples using spurious correlation without having a chance to converge to fit

relevant features. On the other hand, LQF should have a strong inductive bias arising from the

existence of a unique global minimum. To test this, in Figure 5.4 we plot the test error of LQF

relative to the NLFT paragon. In the k-shot scenario (i.e., training using only k samples per class)

LQF outperforms NLFT systematically. This suggests that LQF may be a better base model than

NLFT in few-shot learning, also because it facilitates the incorporation of any convex regularizer.
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5.2.5 On-line learning

In many applications, training data is not all available at the outset. Instead, it trickles in continu-

ously and triggers re-training upon reaching a sufficiently large volume. This protocol engenders

tradeoffs between cost and obsolescence. Fine-tuning with relatively small batches is a typical

compromise, but can lead to suboptimal solutions when the network memorizes the new samples or

catastrophically forgets old ones. LQF is not subject to this tradeoff as it has a unique minimum

that is adjusted incrementally as new data is received.

In Figure 5.5, we compare incremental LQF incremental re-training with incremental NLFT

training and with the paragon of re-training from scratch every time we obtain more data on the

MIT-67 dataset. Let Dt be the dataset containing all the samples seen up to step t; we train on Dt

starting from the weights wt−1 obtained at the previous step and stop training when the train error

on Dt is below 0.5% for 5 consecutive epochs. In Figure 5.5, we split all the samples of MIT-67 in

30 incremental steps (each step containing 178 samples sampled uniformly from all classes) and

show the test accuracy of the model at different steps. As expected, incremental NLFT performs

substantially worse than the paragon, as it gets stuck in suboptimal local minima. On the other hand,

LQF is always close to the paragon even if trained incrementally while being much cheaper to train

since we do not need to retrain from scratch.

5.2.6 Informativeness of samples

LQF is interpretable in that it allows measuring the effect of individual data on the trained model,

which can be used to summarize a dataset. We use eq. (5.9) to measure how informative a training

sample is for the predictions of the final model. In Figure 5.6, we display the most and least

informative samples: Qualitatively, we observe that easy samples and near-duplicates are not

informative. On the other hand, samples of classes that are easy to confuse are considered very

informative by the model, since they affect the decision boundary. To test this, in Figure 5.6

(right) we plot the test error of the model when the most/least informative training samples are
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Figure 5.4: Efficiency of LQF at different data regimes. Comparison of LQF and standard fine-tuning for different

number of training samples per category (“shots”) in the same datasets as Table 5.1. On average, LQF performs better

than standard fine-tuning when the datasets are relatively small. The single outlier (diamond) is FGVC Aircraft, where

NLFT tends to perform better (see Section 5.2.2).
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Figure 5.5: Comparison of on-line learning methods. Standard non-liner networks may converge to a bad local

minimum when trained incrementally, and consequently have a sub-optimal performance compared to a non-linear

network re-trained from scratch every time more data is obtained (paragon). On the other hand, LQF has a unique

minimum to which it is guaranteed to converge, ensuring that the performance will be close to the paragon at all steps.

removed. As we expect, removing informative samples degrades the performance more than

removing uninformative samples.

5.2.7 Robustness to optimization hyper-parameters

Non-linear fine-tuning is highly sensitive to the choice of hyperparameters (Figure 7.1, right). This

has a direct impact on cost, as training requires broad hyper-parameter search. It would be desirable

if one could fix hyperparameters once for fine-tuning. In Section 5.1.2 we argued that, due to the use

of MSE loss and K-FAC pre-conditioning, the optimal learning rate is independent of the task for

LQF. When using SGD with momentum, the situation is slightly more complex, as we also need to

select batch size b and the momentum m. As already noted by [LCY20], when fine-tuning, different
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Figure 5.6: Informativeness of samples. (Top row) Seven representative examples from the 25 most informative

images for a network trained on Oxford Flowers (complete set in appendix). The network considers more informative

samples of flowers that are hard to distinguish, such as English Marigold and Barbeton Daisy, or Hibiscus, Petunia and

Pink Primrose. On the other hand, images of flowers that have a distinctive shape (e.g., Orchid) or near duplicated

images are not informative for the training (bottom row). (Right) Dataset summarization. We plot the final test

accuracy when training LQF after dropping the N most informative training examples (blue line) and the N less

informative (orange line). The test performance decreases faster when dropping informative examples, as we would

expect, validating our informativeness measure.

runs typically have the same test accuracy as long as the effective learning rate ELR = η
(1−m)b

is the

same. We claim that, for LQF, there is a single ELR which is optimal for most tasks. To test this, we

search the best learning rate η ∈ {0.05, 0.01, 0.005, 0.001, 0.0001} and batch size b ∈ {16, 32, 64},

and compute the ELR of the best combination for each task. In Figure 7.1 (right) we report the

distribution of effective learning rates that yield the best performance. The interval of optimal ELRs

for LQF is small, so one choice of ERL is nearly optimal for all tasks. Moreover, we do not observe

significant changes in test accuracy for minor variations of ELR. On the other hand, for NLFT

the ELR can vary by orders of magnitude depending on the task, and test performance can vary

widely within that interval. Thus, fine-grained search of the ELR is necessary for NLFT but not for

LQF. This robustness comes at the cost of a slight decrease in performance (Section 5.2.1, left), as

expected due to the linearization.
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5.3 Discussion

Usage of deep neural networks in practice often involves fine-tuning pre-trained models followed

by heavy hyper-parameter optimization (HPO). This method can achieve good performance, but

even minor variations of hyper-parameters can spoil performance. The low-data regime is also

treacherous, as models can easily memorize the samples provided. It is difficult for non-expert to

predict the effect of regularizers and hyper-parameters beyond trying it and seeing. Linear models,

on the other hand, are supported by decades of theory that allows to predict the effect of changes in

the data, or in the parameters, and bounds on the generalization error. However, their performance

has not been comparable to that of black-box DNNs. LQF is a linear model that gets closer, to

the point of making linearization viable beyond a theoretical analysis tool, as a practical method.

The small drop in performance is offset by improved ease of training, interpretability, and cheaper

hyper-parameter search.

LQF is not the solution to all fine-tuning problems. Being a first-order approximation, it can

realistically be expected to work well when the task on which we wish to fine-tune is sufficiently

close to the task on which the model was pre-trained. In practice, this limitation may be circumvented

by a “zoo” of different pretrained models, together with a selection technique to find the best

initialization for the task [ALT19]. Better understanding of the distance between tasks may also

help characterizing the range in which linearization can be expected to work well.

Linearization can be made more flexible with architecture changes. For example, fine-grained

classification tasks are typically far from generic models pre-trained on ImageNet. Indeed we

observe that LQF drops in performance in fine-grained tasks, which have been noted to be further

from ImageNet [LCY20]. However, we have shown in Section 5.2.2, that for this specific case,

simply replacing average pooling with bilinear pooling can stretch the performance of LQF in the

fine-grained setting.

There are many possible uses for LQF, like any other linear model. Rather than providing

an exhaustive list of all possibilities, we showed some illustrative examples. We leave various
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applications of LQF to future work, including its use in (i) uncertainty quantification, (ii) backward

compatibility [SXX20], (iii) leave-one-out cross validation without a validation set [GSL19],

(iv) active/online learning [SL07], (v) counterfactual analysis in the first order, (vi) continual

learning [KPR17b], (vii) selective forgetting or machine unlearning [GAS19a, GAS20, GGH19],

(viii) training including privacy or fairness constraints [Dwo08, KR19], .

5.4 Appendix

In this appendix we provide additional empirical results (Section 5.4.1), more details about the

training procedure and implementation used (Section 5.4.2), and we derive the expression in eq. (5.8)

for the change in activations when a training sample is removed (Section 5.4.3).

5.4.1 Additional results

Preconditioning with Adam vs. K-FAC. In Section 5.2.1 we train LQF and LQF FC using

K-FAC for preconditioning, instead of alternatives like Adam. K-FAC provides several advantages:

the learning rate choice is easy to interpret in the case of a quadratic problem (Section 5.1.2), it

easy to analyze theoretically (e.g., in eq. 5.6), and it provides better convergence guarantees that

Adam. Moreover, it provides an approximation of the inverse of the Hessian which we need to

compute eq. (5.8). We now test how Adam and K-FAC preconditioning compare to each other in

terms of raw test error after hyper-parameter optimization. We train LQF, LQF FC and GaF with

Adam on all datasets and report the results in Table 5.3. For each dataset we try different learning

rates η ∈ {0.001, 0.0004, 0.0001}, weight decay λ ∈ {10−5, 10−6} and augmentation schemes

(central crop, random crop, random resized crop) and report the best result. We observe that after

hyper-parameter optimization LQF obtains similar final accuracies when trained with Adam and

K-FAC (Table 5.3). Similarly, for GaF we observe that Adam achieves errors comparable with SGD

(in this case without K-FAC). However, K-FAC performs better than Adam when training only the

last layer (LQF FC). This suggests that the more sophisticated pre-conditioning of K-FAC is more
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LQF LQF FC GaF

Caltech-256 14.2 17.2 16.0

Chest X-Ray 6.6 9.6 6.1

Malaria Cells 4.2 6.1 4.8

MIT-67 20.4 25.4 23.1

Oxford Pets 6.7 7.8 7.2

Fine-grained datasets

Stanford Dogs 12.4 13.3 11.7

Oxford Flowers 6.5 10.8 13.8

CUB-200 23.1 29.3 28.5

Aircrafts 33.1 45.9 45.6

Stanford Cars 24.0 39.2 37.0

Table 5.3: Test errors using Adam. We report the test errors obtained by training different linear methods with

Adam instead of SGD (in the case of LQF, we also train without K-FAC preconditioning). We note that Adam gives

comparable results to SGD+K-FAC for LQF and to standalone SGD for GaF (Table 5.1), but is slighly worse than

SGD+K-FAC for LQF FC, where we only optimize the last layer. The only exception where Adam improved results for

LQF and GaF is Chest X-Ray, possibly due to the more exhaustive hyper-parameter search we used for Adam.

important to ensure good convergence when optimizing the lower dimensional, badly conditioned

problem of LQF FC.

MSE loss for non-linear fine-tuning. In Figure 5.8 we train a standard non-linear network using

cross-entropy loss and MSE loss with different number of training samples. We train with learning

rate η ∈ {0.1, 0.05, 0.01, 0.001, 0.0001} and weight decay λ ∈ {0.0001, 0.00001} and report the

best result. We observe that the MSE loss tends to outperform cross-entropy in the low-data regime,

suggesting that some of the benefits of the MSE loss also apply to non-linear fine-tuning.

Ablation study for on-line learning. In addition to Figure 5.5, in Figure 5.7 we show the result
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of using LQF with CE loss instead of MSE, ReLU instead of Leaky ReLU or not using K-FAC.

This shows that all components contribute to better on-line performance, but their contribution is

relatively minor with respect to the difference between using LQF (solving a convex problem) or

NLFT (non-convex).

Tuning weight-decay. We did not observe major differences in accuracy by tuning the weight decay

parameter suggesting that the inductive bias of linearization is enough to grant good generalization.

However, if required, we note that LQF provides a way to tune weight decay efficiently. Since

there the LQF loss function is strongly convex, it has a unique global minimum. This implies that,

after training with a given value of weight decay, we can increase the value of weight decay and

fine-tune the previous solution to converge to the new global minimum. This is in contrast with

DNNs, which may remain stuck in a suboptimal local minimum if weight decay is changed after

convergence [GAS19b]. In Figure 5.9 we show the test accuracy obtained on Caltech-256 when

training from scratch with different values λ ∈ {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5} of weight

decay. We then load the solution obtained with λ0 = 5 · 10−5 and fine-tune it with different values

λ of weight decay and compare this with the results obtained training from scratch. We observe that

the two approaches (training from scratch and fine-tuning) obtain similar errors, suggesting that

indeed for LQF we cab use a cheaper hyper-parameter search based on fine-tuning.

We can also go a step further and automatically optimize weight decay using a validation set.

Recall from eq. (5.4) that the weights at convergence as a function of the weight decay λ can be

written as:

w∗(λ) = (JTJ + λI)−1J(Y − f0(X)). (5.10)

In particular, w∗(λ) is a differentiable function of λ, so we expect to be able to optimize λ using

gradient descent. In order to do that, consider the validation loss:

LMSE
val (w∗(λ)) =

1

|Dval|
∑

(x,y)∈Dval

∥y − f0(x)−∇wf0(x)w
∗(λ)∥2. (5.11)
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We want to find the value of λ that minimizes Lval. The gradient with respect to λ is given by

∂λLval = −w∗ ·(F + λI)−1∇wLval︸ ︷︷ ︸
preconditioned gradient of val. set

(5.12)

Note that the second term of ∂λLval is simply the pre-conditioned gradient of the validation loss,

which can approximated using K-FAC. We leave further exploration of this research direction to

future work.

5.4.2 Experimental details

Choice of datasets. We have compared the algorithms on a several datasets (Table 5.1). Most of

the datasets are standard in the fine-tuning or fine-grained classification literature [LCY20, LGD18,

LRM15]. We have added additional datasets to this list (Chest X-ray, Malaria Cells) so that we

could compare on a different domain (medical images instead of natural images). Some of the

datasets we use do not have a standard train/test split. In those cases, we use the following splits

when reporting the results: For Oxford Flowers we do not merge training and validation data, we

only use the training images (1020 samples, instead of the 2040 of train+val). For Caltech-256,

we randomly sample 60 images per class to train and test on the remaining images (this scheme is

sometimes called Caltech-256-60 in the literature). For Malaria Cell, we randomly select 75% of

samples for training, and test of the remaining ones.

Pre-training. In all our experiments we use a ResNet-50 backbone pretrained on ImageNet

using SGD (we use the reference PyTorch pretraining scheme: 90 epochs with cross-entropy loss,

learning rate 0.1 decayed by a factor 10 every 30 epochs, momentum 0.9). We use Leaky ReLU

activations for LQF, while we use standard ReLU activations for all other methods. To ensure that

the comparison is as fair as possible, we obtain the weights of the Leaky ReLU network by starting

from the pretrained ReLU network, changing the activations, and then fine-tune on ImageNet with

SGD for another epoch.2 We also tried training the backbone from scratch on ImageNet using

2Interestingly, we observe that even without fine-tuning the weights learned for ReLU activations still achieve a
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Leaky ReLU activations, but did not observe any major difference in performance between the two.

Optimization. In all experiments, we train using SGD with momentum 0.9 and batch size 28. We

search for the learning rate in η ∈ {0.01, 0.001} and weight decay λ ∈ {10−4, 10−5}. We report

the best result. Instead of applying weight decay directly to the gradient update as often done, we

add the ℓ2 weight penalty to the loss function. This is required when using K-FAC to compute the

correct pre-conditioned update, but it does not otherwise change the udpate equation when not using

K-FAC.

In Section 5.4.1 we present additional results using Adam. In this case we search for the learning

rate in η ∈ {0.001, 0.0004, 0.0001} and weight decay λ ∈ {10−5, 10−6}. When training GaF with

Adam we use β1 = 0.5 as suggested in [MLL20], otherwise we use β1 = 0.9.

Data augmentation. Since different tasks may require different types of data augmentation, we

train with different augmentation schemes (center crop, random crop, resized random crop) and

report the best result. For center crop, we resize the image to 256× 256 and extract the central crop

of size 224×224, while for random crop we extract a 224×224 in a random position and also apply

a random horizontal flip. In both cases we test with center crops. We also try the resized random

crops augmentation commonly used for ImageNet pre-training. We found this augmentation to be

too strong for some tasks, and it gives significantly better results only in the case of Chest X-Rays.

For this reason, and to save computation time, we only train random crop with one combination of

hyper-parameters (learning rate η = 0.001 and weight decay λ = 10−5).

Linearization. We follow the procedure of [MLL20] to linearize the network. The main difference

is that we do not fuse the batch norm layer with the previous convolutional layer, but rather we also

linearize the batch norm layer. We did not observe major difference in performance by using one

or the other solution, but we opted for the latter to keep the structure of the linearized and original

network as close as possible when performing the comparison. In order to ensure linearity, for all

good test error when used with Leaky ReLU activations. This makes fine-tuning with the new activations particularly
easy.
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linear models (LQF, LQF FC, GaF, Standard FC) we put batch normalization in eval mode when

training (that is, we use the (frozen) running mean and variance to whithen the features rather than

using the current mini-batch statistics).

B-LQF. The only change necessary for B-LQF with respect to stnadard LQF is to replace the global

average pooling before the classification layer with a linearized version of bilinear pooling with

square root normalization [LM17]. Let z ∈ RHW×C be the last convolutional layer features, where

H and W are the spatial dimensions and C is the number of channels. Their covariance matrix

Σ ∈ RC×C can be written as:

Σ =
1

N
zT (I − 1

N
1)z = zTAz (5.13)

where I denotes the identity matrix and 1 denotes the matrix of all ones and N = H ·W . Using

the same notation as [MLL20], let h(z(r)) =
√
Σ =

√
zT (r)Az(r). To compute the linearization

forward pass of the layer we need to compute:

∂rh(z(r)) =
1

2

√
Σ

−1
(∂rz

TAz + zTA∂rz). (5.14)

Note that we already have
√
Σ from the forward pass of the base model, so computing the forward

pass of the linearized model does not add much to the complexity.

Robustness to optimization hyper-parameters. As mentioned in Section 5.2.7, to obtain the plot

in Figure 7.1 (right) we train LQF and NLFT with SGD with η ∈ {0.05, 0.01, 0.005, 0.001, 0.0001},

batch size b ∈ {16, 32, 64} and weight decay λ ∈ {10−5, 10−4, 5 · 10−4} and we report the best

result. Due to the larger search space, we report the results only for a representative subset of the

datasets: Oxford Flowers, MIT-67,CUB-200, Caltech-256, Stanford Dogs, FGVC Aircrafts.

5.4.3 Derivation of interpretability (eq. 5.8)

Recall that in the case of LQF the hessian of the MSE loss (eq. (5.3)) is given by H = F +λI where

F = 1
N
JJT = 1

N

∑N
j=1 g

T
j gj , where gj = ∇wf0(xj) are the Jacobian of the i-th sample computed at
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the linearization point w0. To keep the notation simple, assume this a binary classification problem,

so that the label y ∈ {0, 1} is a scalar and the Jacobian gi is a row vector (a similar derivation holds

for a multi-class problem).

Let w∗ be the optimum of the loss function computed using N training samples. Since in a

quadratic problem a Newton-update converges to the optimum in a single step, we can write the

new optimal weights obtained after removing the i-th training sample – that is, training with only

N − 1 samples – as:

w∗
−i = w∗ −H−1

−i∇wL−i(w
∗) (5.15)

where L−i and H−i are respectively the training loss computed without the sample i and H−i is its

hessian. Note that we can write L−i(w) as

L−i(w) = L(w)− 1

N
∥yi − f0(xi)− giw∥2.

Since w∗ is the optimum of the original problem, we have∇L(w∗) = 0. Using this and the previous

equation we get:

∇wL−i(w
∗) = ∇wL(w

∗)− gTi ei = −gTi ei

where ei ≡ 1
N
(y − giw

∗)· is the (weighted) prediction error on the sample xi. Plugging this in

eq. (5.15) we have

w∗
−i = w∗ +H−1

−i g
T
i ei.

We now derive an expression for H−1
−i as a function of F . Note that

H−i = F−i + λI =
N

N − 1
F + λI − 1

N − 1
gTi gi.

Let A = N
N−1

F + λI . Note that H−i is a rank-1 update of A. Using the Sherman–Morrison formula

for the inverse of a rank-1 update (or, more generally, the Woodbury identity in the case of a

multi-class problem), we have

H−1
−i = (A− 1

N − 1
gTi gi)

−1 = A−1 − A−1gTi giA
−1

N − 1 + giA−1gTi
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The activation change ∆f(xtest) = fw∗(xtest)− fw∗
−1
(xtest) after removing a training sample is then

given by:

∆f(xtest) = gtest(w
∗ − w∗

−i)

= gtestH
−1
−i g

T
i ei

= eigtestA
−1gi −

eigtestA
−1gTi giA

−1gi
N − 1 + giA−1gTi

Reorganizing the terms, we obtain the following expression for eq. (5.8) in the main paper:

∆f(xtest) = (1− αi

N − 1 + αi

)eigtestA
−1gTi

where we defined αi = giA
−1gTi . In particular, note that for large datasets (N ≫ 1) the change in

activations is simply given by eigtestA
−1gTi which measures the similarity of the Jacobian of the

sample xtest and the jacobian of xi under the metric induced by the kernel A−1. Finally, note that

A−1 is the inverse of the Fisher Information Matrix F plus a multiple of the identity, which we

can easily estimate using K-FAC [MG15]. This is particularly convenient since we are already

computing the K-FAC approximation to pre-condition the gradients.

In the case of a multiclass problem, the Jacobian gi is a C ×D matrix, where C is the number

of classes and D is the number of parameters. In this case, we get a similar expression:

H−1
−i = A−1 − A−1gTi ((N − 1)Ic + giA

−1gTi )
−1giA

−1

The activation change ∆f(xtest) = fw∗(xtest)− fw∗
−1
(xtest) after removing a training sample is then

given by:

∆f(xtest) =gtest(w
∗ − w∗

−i)

=gtestH
−1
−i g

T
i ei

=gtestA
−1gTi ei

− gtestA
−1gTi ((N − 1)Ic + giA

−1gTi )
−1giA

−1gTi ei
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Reorganizing the terms, we have:

∆f(xtest) = gtestA
−1gTi (IC −M−1αi)ei

where M = (N − 1)Ic + αi, αi = giA
−1gTi is now a C × C matrix and IC denotes the C × C

identity.
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Figure 5.7: Ablation study on on-line learning.
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Figure 5.8: Using MSE loss with NLFT. Plot of the test error obtained by training with NLFT using either cross-entropy

of MSE loss for different number of training samples per class (shots). While cross-entropy loss is comparably or

better than MSE loss when training with many samples, we observe that in the low-shot regime MSE tends to always

outperform CE. This suggests that using MSE loss is not beneficial only for lienarized models.
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CHAPTER 6

Mixed-Privacy Forgetting in Deep Neural Networks

Building on the work from the previous chapters, in this chapter we show that the influence of a

subset of the training samples can be removed – or “forgotten” – from the weights of a network

trained on large-scale image classification tasks, and we provide strong computable bounds on the

amount of remaining information after forgetting. Inspired by real-world applications of forgetting

techniques, we introduce a novel notion of forgetting in mixed-privacy setting, where we know that

a “core” subset of the training samples does not need to be forgotten. While this variation of the

problem is conceptually simple, we show that working in this setting significantly improves the

accuracy and guarantees of forgetting methods applied to vision classification tasks. Moreover, our

method allows efficient removal of all information contained in non-core data by simply setting

to zero a subset of the weights with minimal loss in performance. We achieve these results by

replacing a standard deep network with a suitable linear approximation. With opportune changes to

the network architecture and training procedure, we show that such linear approximation achieves

comparable performance to the original network and that the forgetting problem becomes quadratic

and can be solved efficiently even for large models. Unlike previous forgetting methods on deep

networks, ours can achieve close to the state-of-the-art accuracy on large scale vision tasks. In

particular, we show that our method allows forgetting without having to trade off the model accuracy.

In this chapter we provide a method to overcome the limitations of chapter 3, here the model is

linear, the optimization problem is quadratic and as a result the unlearning procedure is exact and

optimal. Also, since the NTK approximation is valid in setting where the width of the network

limits to infinity we were restricted with smaller datasets in chapter 3, while in this chapter since we

train a simple linear model (Taylor series approximation) without the NTK approximation, we are
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able to depict the efficacy of our method on large-scale practical tasks.

In the subsequent sections, we describe our forgetting procedure using mixed linear models,

provide a rigorous theoretical bound for the amount of information the weights contain about the

removed training samples, and provide extensive empirical analysis showing the robustness of our

procedure to different read out functions.

6.1 Preliminaries and Notations

We use the empirical risk minimization (ERM) framework throughout this paper for training. Let

D = {xi,yi}ni=1 be a dataset where xi ∈ X denotes the input datum (for example, images) and

yi ∈ Y the corresponding output (for example, one hot vector in classification). Given an input

image x, let fw(x) : X × Rd → Y (for instance, a DNN) be a function parameterized by w ∈ Rd

used to model the relation X → Y . Given a input-target pair (x,y) ∈ (X ,Y), we denote empirical

risk or the training loss for (x,y) by ℓ(fw(x),y) : X × Y × Rd → R+. We will sometimes abuse

notation and use ℓ(w) by dropping x,y. For a training dataset D = {xi,yi}ni=1 ⊂ (X ,Y)n, we

denote the empirical risk/total training loss on D by LD(w) ≜ 1
|D|
∑

i∈D ℓ(fw(xi),yi). We will

interchangebly use LD(fw) with LD(w). Let Aτ (LD(w0)) : (X ,Y)n × Rd × N → Rd, denote

the weights obtained after τ steps of a training algorithm A using w0 as the initialization (for

examples, SGD in our case). We denote with ∥w∥ the L2 norm of a vector w and with λMax(Q)

the largest eigenvalue of a matrix Q. To keep the notation uncluttered, we also use the shorthand

∇wL(w
′) ≜ ∇wL(w)|w=w′ .

6.2 The Forgetting Problem

The weights w of a trained deep network fw(x) are a (possibly stochastic) function of the training

data D. As such, they may retain information about the training samples which an attacker1 can

1An attacker is any agent intent to extract information about the data used for training.
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extract from knowledge of the weights or outputs at inference time. A forgetting procedure is a

function S(w,D,DF )
2 (also called scrubbing function) which, given a set of weights w trained

on D and a subset Df ⊂ D of images to forget, outputs a new set of weights w′ which are

indistinguishable from weights obtained by training without Df .

Readout functions. The success of the forgetting procedure, can be measured by looking

at whether a discriminator function R(w) that can guess – at better than chance probability –

whether a set of weights w was trained with or without Df or whether it was trained with Df

and then scrubbed. Following [GAS19a, GAS20] we call such functions readout functions. A

popular example of readout function is the confidence of the network (that is, the entropy of the

output softmax vector) on the samples in Df : Since networks tend to be overconfident on their

training data [GPS17, KHH20], a higher than expected confidence may indicate that the network

was indeed trained on Df . We discuss more read-out functions in Section 6.6.1. Alternatively,

we can measure the success of the forgetting procedure by measuring the amount of remaining

mutual information I(S(w);Df )
3 between the scrubbed weights S(w) and the data Df to be

forgotten. While this is more difficult to estimate, it can be shown that I(S(w);Df ) upper-bounds

the amount of information that any read-out function can extract [GAS19a, GAS20]. That is, it is an

upper-bound on the amount of information that an attacker can extract about Df using the scrubbed

weights S(w).

Quadratic forgetting. An important example is forgetting in a linear regression problem,

which has a quadratic loss function LD(w) =
∑

(xi,yi)∈D ∥yi − wTxi∥2. Given the weights

w = Aτ (LD(w)) obtained after training on LD(w) using algorithm A, the optimal forgetting

function is given by:

w 7→ w −H−1
Dr
∇wLDr(w), (6.1)

where H−1
Dr

,∇wLDf
(w) is the hessian and gradient of the loss function computed on the remaining

2We will abuse the notation and write S(w) when its arguments are clear from the context.

3I(x,y) = EPx,y [log (Px,y/PxPy)] is the mutual information between x and y, where Px,y is the joint distribution
and Px, Py are the marginal distributions.
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data respectively. When Aτ (LD(w)) = w∗ ≜ argminwLD(w), we can replace LDr(w
∗) with

−LDf
(w∗) in which case it can be interpreted as a reverse Newton-step that unlearns the data

Df [GGH19, GAS19a]. Since, as we will see later, the “user weights” of ML-Forgetting minimize

a similar quadratic loss function, eq. (6.1) also describes the optimal forgetting procedure for our

model. The main challenge for us will be how to accurately compute the forgetting step since the

Hessian matrix can’t be computed or stored in memory due to the high-number of parameters of a

deep network (Section 6.4).

Convex forgetting. Unfortunately, for more general machine learning models we do not have a

close form expression for the optimal forgetting step. However, it can be shown [KL17] that eq. (6.1)

is always a first-order approximation of the optimal forgetting. [GGH19] shows that for strongly

convex Lipschitz loss functions, the discrepancy between eq. (6.1) and the optimal forgetting is

bounded. Since this discrepancy – even if bounded – can leak information, a possible solution is to

add a small amount of noise after forgetting:

w 7→ w +H−1
Dr

(w)∇wLDf
(w) + σ2ϵ, (6.2)

where ϵ ∼ N(0, I) is a vector of random Gaussian noise, which aims to destroy any information

that may leak due to small discrepancies. Increasing the variance σ of the noise destroys more

information, thus making forgetting more secure, but also reduces the accuracy of the model since

the weights are increasingly random. The curve of possible Pareto-optimal trade-offs between

accuracy and forgetting can be formalized with the Forgetting Lagrangian [GAS19a].

Alternatively, to forget data in a strongly convex problem, one can fine-tune the weights on

the remaining data using perturbed projected-GD [NRS20]. Since projected-GD converges to the

unique minimum of a strongly convex function regardless of the initial condition (contrary to SGD,

which may not converge unless proper learning rate scheduling is used), this is guaranteed to remove

all influence of the initial data [NRS20]. The downside is that gradient descent (GD) is impractical

for large-scale deep learning applications compared to SGD, projection based algorithms are not

popular in practice, and the commonly used loss functions are not generally Lipschitz.
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Non-convex forgetting. Due to their highly non-convex loss-landscape, small changes of

the training data can cause large changes in the final weights of a deep network. This makes

application of eq. (6.2) challenging. [GAS19a] shows that pre-training helps increasing the stability

of SGD and derives a similar expression to eq. (6.2) for DNNs, and also provides a way to upper-

bound the amount of remaining information in a DNN. [GAS19a] builds on recent results in

linear approximation of DNNs, and approximate the training path of a DNN with that of its linear

approximation. While this improves the forgetting results, the approximation is still not good

enough to remove all the information. Moreover, computing the forgetting step scales quadratically

with the number of training samples and classes, which restricts the applicability of the algorithm to

smaller datasets.

6.3 Mixed-Linear Forgetting

Let fw(x) be the output of a deep network model with weights w computed on an input image x.

For ease of notation, assume that the core dataset and the user dataset share the same output space

(for example, the same set of classes, for a classification problem). After training a set of weights

wc on a core-dataset Dc we would like to further perturb those weights to fine-tune the network on

user data D. We can think of this as solving the two minimization problems:

w∗
c = argmin

wc

LDc(fwc) (6.3)

w∗
u = argmin

wu

LD
(
fw∗

c+wu

)
(6.4)

where we can think of the user weights wu a perturbation to the core weights that adapts them to the

user task. However, since the deep network fw is not a linear function in of the weights w, the loss

function LD
(
fw∗

c+wu

)
can be highly non-convex. As discussed in the previous section, this makes

forgetting difficult. However, if the perturbation wu is small, we can hope for a linear approximation

of the DNN around w∗
c to have a similar performance to fine-tuning the whole network [MLL20],

while at the same time granting us easiness of forgetting.
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Motivated, by this, we introduce the following model, which we call Mixed-Linear Forgetting

model (ML-model):

fML
w∗

c ,wu
(x) ≜ fw∗

c
(x)︸ ︷︷ ︸

trained on Dc

+

train on D︷ ︸︸ ︷
∇wfw∗

c
(x) ·wu . (6.5)

The model fML
w∗

c ,wu
(x) can be seen as first-order Taylor approximation of the effect of fine-tuning the

original deep network fw∗
c+wu(x). It has two sets of weights, a set of non-linear core weights wc,

which enters the model through the non-linear network fwc(x), and a set linear user-weights wu

which enters the model linearly. Even though the model is linear in wu, it is still a highly non-linear

function of x due to the non-linear activations in∇wf(w
∗
c).

We train the model solving two separate minimization problems:

w∗
c = argmin

wc

LCE
Dc
(fwc), (6.6)

w∗
u = argmin

wu

LMSE
D
(
fML
w∗

c+wu

)
. (6.7)

Eq. (6.6) is akin to pretraining the weights wc on the core dataset Dc, while eq. (6.7) fine-tunes the

linear weights on all the data D. This ensures the weights wc will only contain information about

the core dataset Dc, while all information about the user data D is contained in wu. Also note that

we introduce two separate loss functions for the core and user data. To train the user weights we use

a mean square error (i.e., L2) loss [HB21, MNS20, GDN13]:

LMSE
D (wu) =

1

2|D|
∑

(x,y)∈D

∥∥fw∗
c
(x) +∇wfw∗

c
(x) ·wu − y

∥∥2
+

µ

2
∥wu∥2 (6.8)

where y is a one-hot encoding of the class label. This loss has the advantage that the weights wu

are the solution to a quadratic problem, in which case the optimal forgetting step can be written in

closed form (see eq. 6.1). On the other hand, since we do not need to remove any information from

the the weights wc, we can train them using any loss in eq. (6.3). We pick the standard cross-entropy

loss, although this choice is not fundamental for our method.
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6.3.1 Optimizing the Mixed-Linear model

Ideally, we want the ML-model to have a similar accuracy on the user data to a standard non-linear

network. At the same time, we want the ML-model to perform significantly better than simply

training a linear classifier on top of the last layer features of fw∗
c
, which is the trivial baseline method

to train a linear model for an object classification task. In Figure 6.1 (see Section 7.2 for details) we

see that this is indeed the case: while linear, the ML-model is still flexible enough to fit the data

with a comparable accuracy to the fully non-linear model (DNN). However, some considerations

are in order regarding how to train our ML-model.

Training the core model. Eq. (6.3) reduces to the standard training of a DNN on the dataset Dc

using cross-entropy loss. We train using SGD with annealing learnig rate. In case Dc is composed

of multiple datasets, for example ImageNet and a second dataset closer to the user task, we first

pretrain on ImageNet, then fine-tune on the other dataset.

Training the Mixed-Linear model. Training the linear weights of the Mixed-Linear model in

eq. (6.4) is slighly more involved, since we need to compute the Jacobian-Vector product (JVP) of

∇wfw∗
c
(x) ·wu. While a naı̈ve implementation would require a separate backward pass for each

sample, [MLL20, Pea94] show that the JVP of a batch of samples can be computed easily for deep

networks using a slightly modified forward pass. The modified forward pass has only double the

computational cost of a standard forward pass, and can be further reduced by linearizing only the

final layers of the network. Using the algorithm of [MLL20] to compute the model output, eq. (6.4)

reduces to a standard optimization, which we perform again with SGD with annealing learning rate.

Note that, since the problem is quadratic, we could use more powerful quasi-Netwon methods to

optimize, however we avoid that to keep the analysis simpler, since optimization speed is not the

focus of this paper.

Architecture changes. We observe that a straightforward application of [MLL20] to a standard

pre-trained ResNet-50 tend to under-perform in our setting (fine-tuning on large scale vision tasks).

In particular, it achieves only slightly better performance than training a linear classifier on top of
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Figure 6.1: Mixed-Linear model has comparable accuracy to standard DNN. Plot of the test errors for different

datasets using different models. We take a ResNet-50 pretrained on ImageNet and fine-tune it using different procedures,

(DNN) We fine-tune the whole network on various datasets, (Mixed-Linear) We fine-tune the linearized ResNet-50

(eq. (6.5)) in a mixed private setting, Last-Layer Features: We simply fine-tune the final fully connected (FC) layer of

the ResNet-50. We show that fine-tuning a linearized DNN using the mixed-privacy framework performs comparable to

fine-tuning a DNN and outperforms simply fine-tuning the last FC layer.

the last layer features. Following the suggetsion of [AGR21a], we replace the ReLUs with Leaky

ReLUs, since it boosts the accuracy of linearized models.

6.4 Forgetting procedure

The user weights wu are obtained by minimizing the quadratic loss function LMSE
D in eq. (6.8) on the

user data D. Let Df ⊂ D denote a subset of samples we want to forget (by hypothesis Dc ∩Df = ∅,

i.e., the core data is not going to change) and let Dr = D − Df denote the remaining data. As

discussed in Section 6.2, in case of quadratic training loss the optimal forgetting step to delete Df is

given by:

wu 7→wu −H−1
Dr

(wc)gDr(wu), (6.9)
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where we define gDr(wu) ≜ ∇wLDr(wu) and we can explicitly write the Hessian HDr(wc) of the

loss eq. (6.8) as:

HDr(wc) =
∑
x∈Dr

∇wfwc(x)
T∇wfwc(x) + µI. (6.10)

where I is the identity matrix of size d. Thus, forgetting amounts to computing the update step

eq. (6.9). Unfortunately, even if we can easily write the hessian DDr in closed form, we cannot

store it in memory and much less invert it. Instead, we now discuss how to find an approximation of

the forgetting step H−1
Dr

(wc)gDr(wu) by solving an optimization problem which does not require

constructing or inverting the hessian.

Since HDr(wc) is positive definite, we can define the auxiliary loss function

L̂Dr(v) =
1

2
vTHDr(wc)v − gDr(wu)

Tv (6.11)

By setting the gradient to zero, it is easy to see that the forgetting update H−1
Dr

(wc)gDr(wu) is the

unique minimizer of L̂Dr(v), so we can recast computing the forgetting update as simply minimizing

the loss L̂Dr(v) using SGD. In general, the product vTHDr(wc)v of eq. (6.11) can be computed

efficiently without constructing the Hessian using the Hessian-Vector product algorithm [KL17].

However, in our case we have a better alternative due to the fact that we use MSE loss and that

ML-model is linear in weight-space: Using eq. (6.10), we have that

vTHDr(wc)v =
∑
x∈Dr

∥∇wfw∗
c
(x)v∥2 + µ∥v∥2, (6.12)

where ∇wfw∗
c
(x)v is a Jacobian-Vector product which can be computed efficiently (see Sec-

tion 6.3.1). Using this result, we compute the (approximate) minimizer of eq. (6.11) using SGD.

When optimizing eq. (6.11), we compute gDr(wu) exactly on Dr and approximate eq. (6.10) by

Monte-Carlo sampling. In Figure 6.4, we show this method outperforms full stochastic minimization

of eq. (6.11).

Mixed-Linear Forgetting. Let ∆wu ≜ Aτ (L̂Dr) be the approximate minimizer of eq. (6.11)

obtained by training with SGD for τ iterations. Our Mixed-Linear (ML) forgetting procedure S(w)
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for the ML-model in eq. (6.5) is:

wu 7→ wu −∆wu + σ2ϵ (6.13)

where ϵ ∼ N(0, I) is a random noise vector [GAS19a, GAS20]. As mentioned in Section 6.2, we

need to add noise to the weights since ∆wu is only an approximation of the optimal forgetting step,

and the small difference may still contain information about the original data. By adding noise, we

destroy the remaining information. Larger values of σ ensure better forgetting, but can reduce the

performance of the model. In the next sections, we analyze theoretically and practically the role of

σ.

Sequential forgetting. In practical applications, we may receive several separate requests to

forget the data in a sequential fashion. In such cases, we simply apply the forgetting procedure in

eq. (6.13) on the weights obtained at the end of the previous step. A key component is to ensure

that the performance of the system does not deteriorate too much after many sequential requests,

which we do next.

6.5 Bounds on Remaining Information

We now derive bounds on the amount of information that an attacker can extract from the weights

of the model after applying the scrubbing procedure eq. (6.13). This will also guide us in selecting

the optimal σ and the number of iterations τ to approximate the forgetting step that are necessary to

reach a given privacy level (see fig. 6.2). Let YDF
denote some attribute of interest regarding Df an

attacker might want to access, then from Proposition 1 in [GAS19a] we have:

I(YDf
, S(w))︸ ︷︷ ︸

Recovered Information

≤ I(Df , S(w))︸ ︷︷ ︸
Remaining Information in Weights

where S(w) = S(w,D,Df ) is the scrubbing/forgetting method which given weights w trained

on D removes information about Df (which in our case is given by eq. 6.13). Hence, bounding

the amount of information about Df that remains in the weights S(w) after forgetting uniformly

bounds all the information that an attacker can extract.
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We now upper-bound the remaining information I(Df , S(w)) after applying the forgetting

procedure in eq. (6.13) to our ML-model, over multiple forgetting requests. Let ∪Kk=1Df
k be the

total data asked to be forgotten at the end of K forgetting requests and let wK
u be the weights

obtained using the forgetting procedure in eq. (6.13) sequentially. Then we seek to provide a bound

on the mutual information between the two, i.e., I(∪Kk=1Dk
f ) ≜ I(∪Kk=1Dk

f ,w
K
u ). We prove the

following theorem.

Theorem 1 (Informal). Let ∆wu = Aτ (L̂Dr) be the approximate update step obtained minimizing

L̂Dr (eq. 6.13) using τ steps of SGD with mini-batch size B. Let γ = 1 − µ2/β2, where β is the

smoothness constant of the loss in eq. (6.7). Consider a sequence of K equally sized forgetting

requests {D1
f ,D2

f , . . . ,DK
f } and let wK

u be the weights obtained after the K requests using eq. (6.13).

Then we have the following bound on the amount of information remaining in the weights wK
u about

∪Kk=1Dk
f

I(∪Kk=1Dk
f ) ≤

[L1R]γτ

forgetting
steps

c0

(
[L1R]c1

r2

σ2

ratio to
forget

+[L1R]d

num.
params
)
+ [L1R]

c2
Bσ2

batch
size

1− (1 + α)γτ
. (6.14)

where c0, c1, c2 > 0, r = |Dk
f |/|D| and 0 < α < 1/γτ − 1, d = dim(w) and γ < 1.

In [NRS20] a similar probabilistic bound is given on the distance of the scrubbed weights from

the optimal weights for strongly convex Lipschitz loss functions trained using projected GD. We

prove our bound for the more general case of a convex loss function with L2 regularization trained

using SGD (instead of GD) and also bound the remaining information in the weights.

Role of σ. We make some observations regarding eq. (6.14). First, increasing the variance σ2

of the noise added to the weights after the forgetting step further reduces the possible leakage of

information from an imperfect approximation. Of course, the downside is that increasing the noise

may reduce the performance of the model (see Figure 6.2 (top) for the trade-off between the two).

Forgetting with more iterations. Running the algorithm A for an increasing number of steps τ

improves the accuracy of the forgetting step, and hence reduces the amount of remaining information.

We confirm this empirically in Figure 6.2 (bottom). Note however that there is a diminishing return.
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Figure 6.2: Forgetting-Accuracy Trade-off Plots of the amount of remaining information in the weights about the data

to forget (red, left axis) and test error (blue, right axis) as a function of the (top) scrubbing noise and (bottom) number

of optimization iterations used to compute the scrubbed weights in eq. (6.13). We aim to forget 10% of the training

data through 10 forgetting requests on the Caltech-256 (left) and Aircrafts datasets (right). Note that the remaining

information in the weights decreases with an increase in the forgetting noise or the number of epochs during forgetting

as predicted by the bound in Theorem 1. Increasing the forgetting noise increases the test error after forgetting (top). In

terms of the computational efficiency/speed, doing 2-3 passes over the data (i.e. 2-3 epochs) is sufficient for forgetting

(in terms of the test error and the remaining information) rather than re-training from scratch for 50 epochs (bottom) for

each forgetting request Dk
f . Thus providing a 16-25× speed-up per forgetting request. We fine-tune the ML-Forgetting

model for 50 epochs while training the user weights. Values for τ and σ can be chosen using these trade-off curves

given a desired privacy level.
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Figure 6.3: Read-out functions for different forgetting methods. We forget a subset of 10% of the training data

through 10 equally-size sequential deletion requests using different forgetting methods, and show the value of the

several readout functions for the resulting scrubbed models. Ideally, the value of the readout function should be the

same as the value (denoted with the green area) obtained on a model retrained from scratch without those samples.

Closer to the green area is better. (Original) denotes the trivial baseline where we do apply any forgetting procedure.

(Fisher) Adds Fisher noise as as described in ( [GAS19a]), (ML-Forgetting) The model obtained with our method

after forgetting. In all cases, we observe that ML-Forgetting obtains a model that is indistinguishable from one trained

from scratch without the data, whereas the other methods fail to do so. This is particularly the case for the Retrain Time

readout functions, which exploits full knowledge of the weights and it is therefore more difficult to defend against.

This is due to the variance of the stochastic optimization overshadowing gains in accuracy from

longer optimization (see the additive term depending on the batch size). Increasing the batch-size,

B in eq. (6.13) reduces the variance of the estimation and leads to better convergence.

Fraction of data to forget. Finally, forgetting a smaller fraction r = |Dk
f |/|D| of the data

is easier. On the other hand, increasing the number of parameters d of the model may make the

forgetting more difficult.
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6.6 Experiments

We use a ResNet-50 [HZR16] as the model fw(x) in ML-Forgetting. Unless specified otherwise, we

forget 10% of randomly chosen training data in all the experiments through 10 sequential forgetting

requests each of size 1%. In the appendix, we also provide results for forgetting an entire class and

show that our method is invariant to the choice of the subset to be forgotten. More experimental

details can be found in the appendix.

Datasets used. We test our method on the following image classification tasks: Caltech-

256 [GHP07], MIT-67 [SAS14], Stanford Dogs [KJY], CUB-200 [WBW11], FGVC Aircrafts [MRK13],

CIFAR-10 [Kri09]. Readout function and forgetting-accuracy trade-off plots for MIT-67, Stanford-

Dogs, CUB-200 and CIFAR-10 can be found in the appendix.

6.6.1 Readout functions

The forgetting procedure should be such that an attacker with access to the scrubbed weights w

should not be able to construct some function R(w) : Rd → R, which will leak information about

the set to forget Df . More precisely the scrubbing procedure should be such that for all R(w):

KL
(
P(R(S(w,D,Df ))|D︸ ︷︷ ︸

readout on weights
after forgetting Df

) ∥P( R(S0(w))|Dr︸ ︷︷ ︸
readout on weights

after re-training on Dr

)
= 0 (6.15)

where S0(w) is some baseline function that does not depend on Df (it only depends on the subset

to retain Dr = D−Df ). Here P(w|D), P(w|Dr) corresponds to the distribution of weights (due to

the stochastic training algorithm) obtained after minimizing the empirical risk onD, Dr respectively.

S(w,D,Df ) corresponds to the scrubbing update defined in eq. (6.13). We choose S0(w) = w+ z,

where z ∼ N (0, σ2I). For an ideal forgetting procedure, the value of the readout functions (or

evaluation metrics) should be same for a model obtained after forgetting Df and re-trained from

scratch without using Df . Some common choice of readout functions include (see Figure 6.3):

1. Error on Dr, Df , DTest: The scrubbed and the re-trained model (from scratch on Dr) should
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have similar accuracy on all the three subsets of the data

2. Re-learn Time: We fine-tune the scrubbed (model after forgetting) and re-trained model for

a few iterations on a subset of the training data (which includes Df ) and compute the number

of iterations it takes for the models to re-learn Df . An ideal forgetting procedure should be

such that the re-learn time should be comparable to the re-trained model (we plot the relative

re-train time in Figure 6.3). Re-learn time serves a proxy for the amount of information

remaining in the weights about Df (see Figure 6.3).

3. Activation Distance: We compute the distance between the final activations of the scrubbed

weights and the re-trained model (wDr) on different subsets of data. More precisely we

compute the following: Ex∈D′ [∥ softmax(fw(x)) − softmax(fwDr
(x))∥1], where D′ =

Dr,Df ,DTest. We compare different w corresponding to the original weights without any

forgetting, weights after adding Fisher noise and ML-forgetting (see Figure 6.3). This serves

as a proxy for the amount of information remaining in the activations about Df .

4. Membership Attack: We construct a simple yet effective membership attack similar to

[GAS20] using the entropy of the model output. Ideally, a forgetting procedure should have

the same attack success as a re-trained model (which is what we observe, see Figure 6.3).

6.6.2 Complete vs Stochastic residual gradient

In eq. (6.13) we compute the residual gradient gDr(wu) completely once over the remaining data

instead of estimating that term stochastically using A. In Figure 6.4, we compare both the methods

of computing the residual gradient. We show that in the ideal region of noise (i.e. σ ∈ [10−5, 10−3]),

both the remaining information and test error after forgetting (10% of the data through 10 requests)

is lower when computing the residual gradient completely.
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Figure 6.4: Comparison of complete and stochastic residual gradient estimation for forgetting. ML-Forgetting uses

the complete residual gradient for the forgetting step, exploiting the fact that the loss function is quadratic. However,

one can also estimate it stochastically, which is equivalent to fine-tuning on the remaining data to forget. Here we show

that indeed both methods work but – when using the same number of steps – complete estimate gives a better solution

due to smaller variance and faster convergence (lower test error and information leakage).
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Figure 6.5: Effect of using a core data close to the task. Plot of the remaining information and test error on Aircrafts

using (a) generic ImageNet core data, and (b) ImageNet pre-training + 30% of the Aircrafts. When the core data contain

information close to the user task that the network does not need to forget, ML-Forgetting can exploit this to create

better core-weights and a correspondingly better linearized model. This improves both the accuracy of the model and

makes forgetting easier, as seen from the accuracy-forgetting curves in the plot.
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6.6.3 Effect of choosing different core datasets

For fine-grained datasets like FGVC-Aircrafts and CUB-200, we show that if the core data has

some information about the user task, then it improves forgetting significantly both in terms of the

remaining information and the test accuracy. In Figure 6.5, we show that using ImageNet + 30%

of the Aircrafts (we assume that we are not asked to forget this 30% of the data) as core data and

100% of the Aircrafts as the user data, performs much better than simply using ImageNet as core.

In Figure 6.5 (right), we also show that increasing the percentage of user distribution in the core

data improves the test accuracy of the Mixed-Linear model.

6.7 Conclusion

We provide a practical forgetting procedure to remove the influence of a subset of the data from a

trained image classification model. We achieve this by linearizing the model using a mixed-privacy

setting which enables us to split the weights into a set of core and forgettable user weights. When

asked to delete all the user data, we can simply discard the user weights. The quadratic nature of

the training loss enables us to efficiently forget a subset of the user data without compromising

the accuracy of the model. In terms of the time-complexity, we only need 2-3 passes over the

dataset per forgetting query for removing information from the weights rather than the 50 re-training

epochs, thus, providing a 16× or more speed-up per request (see Figure 6.2). We test the forgetting

procedure against various read-out functions, and show that it performs comparably to a model

re-trained from scratch (the ideal paragon). Finally, we also provide theoretical guarantees on the

amount of remaining information in the weights and verify the behavior of the information bounds

empirically through extensive evaluation in Figure 6.2.

Our forgetting procedure heavily relies on the strongly convex nature of the loss landscape

which is induced by L2 regularization (increasing it improves forgetting but compromises accuracy).

The quality of forgetting also relies on the subset of data to be forgotten, however, we will leave

this for the future work. Even though we provide a forgetting procedure for deep networks by
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linearizing them without compromising their accuracy, directly removing information from highly

non-convex deep networks efficiently still remains an unsolved problem at large.

6.8 Appendix

In this appendix we provide additional experiments (Section 6.8.1), experimental details (Sec-

tion 6.8.3) and theoretical results (Section 6.8.4).

6.8.1 Additional Experiments

6.8.1.1 Forgetting an entire class

In the main paper we considered forgetting a random subset of 10% of the training data. Here

we consider instead the problem of completely forgetting all samples of a given class in a single

forgetting request. In Figures 6.6 and 6.7, we observe that also in this setting our proposed method

outperforms other methods and is robust to different readout functions. Note that for the case of

removing an entire class the target forget error (i.e. the error on the class to forget) is 100%.

6.8.1.2 Role of L2-Regularization

We plot the amount of remaining information and the test error as a function of the L2 regularization

coefficient. Note that instead of incorporating weight decay directly in the optimization step, as it is

often done, we explicitly add the L2 regularization to the loss function. As expected theoretically

(Theorem 3), increasing the regularization coefficient makes the training optimization problem

more strongly convex, which in turn makes forgetting easy. However, increasing weight decay

too much also hurts the accuracy of the model. Hence there is a trade-off between the amount of

remaining information and the amount of regularization with respect to the regularization. We plot

the trade-off in Figure 6.8.
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Figure 6.6: Readout function plot similar to Figure 6.3 for Caltech-256 dataset, where we forget an entire class rather a

sequence of randomly sampled data subsets.
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Figure 6.7: Readout function plot similar to Figure 6.3 for FGVC-Aicrafts dataset, where we forget an entire class

rather a sequence of randomly sampled data subsets.
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Figure 6.8: Plot of the amount of remaining information and test error vs the L2 regularization coefficient. We forget

10% of the training data sequentiall through 10 forgetting request.

6.8.1.3 More experiments using SGD for forgetting

We repeat the same experiments as in Figure 6.3 on the following datasets: Stanford Dogs, MIT-67,

CIFAR-10, CUB-200, FGVC Aircrafts. Overall, we observe consistent results over all datasets.

6.8.2 Information vs Noise/Epochs

6.8.3 Experimental Details

We use a ResNet-50 pre-trained on ImageNet. For the plots in Figure 6.1, we train ML-Forgetting

model using SGD for 50 epochs with batch size 64, learning rate lr=0.05, momentum=0.9, weight

decay=0.00001 where the learning rate is annealed by 0.1 at 25 and 40 epochs. We explicitly add

the L2 regularization to the loss function instead of incorporating it in the SGD update equation.

We only linearize the final layers of ResNet-50 and scale the one-hot vectors by 5 while using the

MSE loss. For fine-grained datasets, FGVC-Aircrafts and CUB-200, in addition to the ImageNet

pre-training, we also pre-train them using randomly sampled 30% of the training data (which we

assume is part of the core set).
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Figure 6.9: Same experiments as Figure 6.3 for StanfordDogs.
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Figure 6.10: Same experiments as Figure 6.3 for MIT-67.

137



Orig
ina

l
Fis

he
r

Pro
po

sed
0

5

10

Er
ro

r (
%

)

Retain Error

Orig
ina

l
Fis

he
r

Pro
po

sed
0

5

10

Er
ro

r (
%

)

Forget Error

Orig
ina

l
Fis

he
r

Pro
po

sed
0

5

10

Er
ro

r (
%

)

Test Error

Orig
ina

l
Fis

he
r

Pro
po

sed
0

20

40

Ti
m

e 
(in

 E
po

ch
)

Retrain Time

Orig
ina

l
Fis

he
r

Pro
po

sed
0.0

0.1

0.2

Ac
tiv

at
io

ns
 D

ist
an

ce Retain Set

Orig
ina

l
Fis

he
r

Pro
po

sed
0.0

0.1

0.2

Ac
tiv

at
io

ns
 D

ist
an

ce Forget Set

Orig
ina

l
Fis

he
r

Pro
po

sed
0.0

0.1

0.2

Ac
tiv

at
io

ns
 D

ist
an

ce Test Set

Orig
ina

l
Fis

he
r

Pro
po

sed
0

50

100

Ac
cu

ra
cy

 (%
)

Membership Attack

Figure 6.11: Same experiments as Figure 6.3 for CIFAR-10.
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Figure 6.12: Same experiments as Figure 6.3 for CUB-200.
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Figure 6.13: Same experiments as Figure 6.3 for FGVC-Aircrafts.

For the training the ML-Forgetting model in the readout functions and information plots using

SGD, we use the same experimental setting as above with a increased weight decay=0.0005 for

Caltech-256,StanfordDogs and CIFAR-10 and 0.001 for MIT-67,CUB-200 and FGVC-Aircrafts.

We use a higher value of weight decay to increase the strong convexity constant of the training loss

function, which facilitates forgetting (see Lemma 7).

For forgetting using ML-Forgetting model in the readout function/information plots using SGD

(ML-Forgetting to minimize eq. (6.11)), we use momentum=0.999 and decrease the learning rate by

0.5 per epoch. We run SGD for 3 epochs with an initial lr=0.01 for Caltech-256, StanfordDogs and

CIFAR-10 and run it for 4 epochs with initial lr=0.025 for MIT-67, CUB-200 and FGVC-Aircrafts.
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Figure 6.14: Same experiment as Figure 6.2 for Stanforddogs and CUB-200 datasets.
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Figure 6.15: Same experiment as Figure 6.2 for MIT67.
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6.8.4 Theoretical Results

Lemma 4. Let x,y be two random vectors such that E∥x∥2,E∥y∥2 > 0. Then we have the

following, for any α > 0:

E∥x+ y∥2 ≤ (1 + α)E∥x∥2 + (1 +
1

α
)E∥y∥2

Proof.

E∥x+ y∥2 = E(∥x∥2 + ∥y∥2 + 2
〈
x,y

〉
)

≤ E(∥x∥2 + ∥y∥2 + 2|
〈
x,y

〉
|)

(a)

≤ E
(
∥x∥2 + ∥y∥2 + 2

√
∥x∥2

√
∥y∥2

)
= E

(
∥x∥2 + ∥y∥2 + 2

√
∥x∥2α

√
∥y∥2

α

)
(b)

≤ E
(
∥x∥2 + ∥y∥2 + ∥x∥2α + ∥y∥2 1

α

)
= (1 + α)E∥x∥2 + (1 +

1

α
)E∥y∥2 (6.16)

for any α > 0, where (a) follows from the Cauchy-Schwarz inequality and (b) follows from the

AM-GM inequality.

Lemma 5. Let C = {w|w ∈ Rd and ∥w∥ ≤ R <∞} and ℓ(w) : Rd → R+ be a strongly convex

function with maxw∈Cℓ(w) < ∞, G ≜ maxw∈C∥∇ℓ(w)∥ < ∞ and w∗ = argminw∈Rdℓ(w) such

that ∥w∗∥ <∞. Then ∀w1,w2 ∈ C, we have that |ℓ(w1)− ℓ(w2)| ≤ G∥w1 −w2∥. When ℓ(w)

is also quadratic with β = λMax(∇2ℓ(w)), the maximum eigen value of the Hessian, we have that

G = β
(
R + ∥w∗∥

)
.

Proof. Let g(t) = ℓ(w1t +w2(1 − t)), where t ∈ [0, 1] then from Mean Value Theorem (MVT)

we have that g(1)− g(0) = g
′
(c) for some c in between 0 and 1. This implies that g(1) = ℓ(w1),

g(0) = ℓ(w2) and g
′
(c) =

〈
∇ℓ(w1t+w2(1− t)),w1 −w2

〉
. Thus from MVT we get:
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|ℓ(w1)− ℓ(w2)| = |
〈
∇ℓ(w1t+w2(1− t)),w1 −w2

〉
|

(a)

≤ ∥∇ℓ(w1t+w2(1− t))∥∥w1 −w2∥
(b)

≤ (maxw∈C∥∇ℓ(w)∥)∥w1 −w2∥ (6.17)

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from the fact that w1t +

w2(1− t) ∈ C and ∀w ∈ C, ∥∇ℓ(w)∥ ≤ maxw∈C∥∇ℓ(w)∥.

When ℓ(w) is quadratic, then we can always write ℓ(w) =
1

2
(w−w∗)TQ(w−w∗)+ c0, where

Q = ∇2ℓ(w) is a constant symmetric matrix and c0 = ℓ(w∗). From our definition of ℓ(w) we can

write:

maxw∈C∥∇ℓ(w)∥ = maxw∈C∥Q(w −w∗)∥
(a)

≤ maxw∈Cβ∥w −w∗∥
(b)

≤ β(maxw∈C∥w∥+ ∥w∗∥)

≤ β(R + ∥w∗∥)

where (a) follows from the definition of β and (b) follows from the triangle inequality. Substituting

this result in Equation (6.17) we get:

|ℓ(w1)− ℓ(w2)| ≤ β
(
R + ∥w∗∥

)
∥w1 −w2∥

Lemma 6. Consider a function LD(w) =
1

n

∑
i∈D

ℓi(w) +
µ

2
∥w∥2, where ℓi(w) : Rd → R+,

ℓi(0) ≤M and D is a dataset of size n. Let w∗
D = argminw∈RdLD(w), then ∥w∗

D∥ ≤
√

2M

µ
.

Proof.
µ

2
∥w∗

D∥2
(a)

≤ LD(w
∗
D)

(b)

≤ LD(0)
(c)

≤ M
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Thus, ∥w∗
D∥ ≤

√
2M

µ
, where (a) follows from the assumption that ℓi(w) is non-negative, (b)

follows from the fact that w∗
D is the minimizer of LD(w) and (c) follows from the assumption that

ℓi(0) ≤ M . Note that the result is independent of n, thus, the empirical risk minimizers of the

datasets obtained by removing a subset of samples will also lie within a d−dimensional sphere of

radius
√

2M

µ
.

Lemma 7. Consider a function LD(w) =
1

n

∑
i∈D

ℓ̂i(w), where ℓ̂i(w) = ℓi(w) +
µ

2
∥w∥2, ℓi(w) :

Rd → R+ is strongly convex function with ℓi(0) ≤ M < ∞. Let Dr (retain set) be the dataset

remaining after removing b samples Df (forget set) from D i.e. Dr = D − Df . Let w∗
D ≜

argminw∈RdLD(w) and w∗
Dr

≜ argminw∈RdLDr(w). Let C = {w|w ∈ Rd and ∥w∥ ≤
√
2M/µ}

and G ≜ maxw∈C∥∇ℓ(w)∥ <∞. Then we have that:

∥w∗
D −w∗

Dr
∥ ≤ 2bG

nµ

When ℓi(w) is also quadratic with β = maxi∈DλM(∇2ℓ̂i(w)), the smoothness constant of

LD(w), we have that G = 2β
√
2M/µ.

Proof. We use the same technique as proposed in [NRS20].

LD(w
∗
Dr
) =

n− b

n
LDr(w

∗
Dr
) +

b

n
LDf

(w∗
Dr
)

(a)

≤ n− b

n
LDr(w

∗
D) +

b

n
LDf

(w∗
Dr
)

= LD(w
∗
D) +

b

n
LDf

(w∗
Dr
)− b

n
LDf

(w∗
D)

(6.18)

where, (a) first inequality follows from the fact that w∗
Dr

is the minimizer of LDr(w).

From Lemma 6 we know that ∥w∗
D∥, ∥w∗

Dr
∥, ∥w∗

Df
∥ ≤

√
2M

µ
. Also from the definition of β

we have that λM(∇2LDf
(w)) ≤ β. Then applying Lemma 5 with R =

√
2M

µ
for LDf

(w) we get
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that

|LDf
(w∗

D)− LDf
(w∗

Dr
)| ≤ G∥w∗

D −w∗
Dr
∥ (6.19)

From the the definition of LDf
(w) we know that it is a µ−strongly convex function. So we have

the following property:

LDf
(w∗

Dr
) ≥ LDf

(w∗
D) +

µ

2
∥w∗

D −w∗
Dr
∥2 (6.20)

Substituting Equation (6.19) and Equation (6.20) in Equation (6.18) we get:

µ

2
∥w∗

D −w∗
Dr
∥2 ≤ bG∥w∗

D −w∗
Dr
∥

∥w∗
D −w∗

Dr
∥ ≤ 2bG

nµ

When ℓi(w) is also quadratic with β = maxi∈DλMax(∇2ℓ̂i(w)), the smoothness constant, then

from Lemma 5 we have G = β
(
R + ∥w∗

D∥
)
≤ β(2

√
2M/µ).

∥w∗
D −w∗

Dr
∥ ≤ 4bβ

√
2M

nµ3/2

Lemma 8. Let ℓ(w) : Rd → R+ be a convex and β− smooth with minimizer, w∗ = argminw∈Rdℓ(w).

Then we have that:

1. ℓ(w)− ℓ(w∗) ≤ β

2
∥w −w∗∥2

2. ∥∇ℓ(w)∥2 ≤ 2β(ℓ(w)− ℓ(w∗))
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Proof. From the definition of β−smoothness we have that:

ℓ(w1) ≤ ℓ(w2) +
〈
∇ℓ(w2),w1 −w2

〉
+

β

2
∥w1 −w2∥2 (6.21)

Setting w1 = w, w2 = w∗ and using the fact that∇ℓ(w∗) = 0, we get that:

ℓ(w)− ℓ(w∗) ≤ β

2
∥w −w∗∥2

For (2) we minimize Equation (6.21) with respect to w1:

minw1∈Rdℓ(w1) ≤ minw1∈Rd

(
ℓ(w2) +

〈
∇ℓ(w2),w1 −w2

〉
+

β

2
∥w1 −w2∥2

)
= ℓ(w2) + minw1∈Rd

(〈
∇ℓ(w2),w1 −w2

〉
+

β

2
∥w1 −w2∥2

)
(a)
= ℓ(w2)−

∥∇ℓ(w2)∥2

2β
(6.22)

(6.23)

where (a) follows from the result that w1 = w2 −
∇ℓ(w2)

β
= argminw1∈Rd

(〈
∇ℓ(w2),w1 −

w2

〉
+

β

2
∥w1 −w2∥2

)
. Setting w2 = w, minw1∈Rd = ℓ(w∗) in Equation (6.23) and re-arranging

the terms we get (2).

Theorem 2. (SGD) Consider LD(w) =
1

n

∑
i∈D

ℓi(w), where ℓi(w) : Rd → R+ is β−smooth and

µ− strongly convex. Let w∗ = argminw∈RdLD(w) and w∗
i = argminw∈Rdℓi(w). Then we have the

following result after t steps of SGD with batch-size B and constant learning rate η = µ/β2:

E∥wt −w∗∥2 ≤
(
1− µ2

β2

)t
∥w0 −w∗∥2 + 2σℓ

Bβ

where σℓ =
1

n

n∑
i=1

ℓi(w
∗)− 1

n

n∑
i=1

ℓi(w
∗
i )

Proof. We do not use the bounded gradient assumption for the convergence of SGD and instead

use the smoothness of our loss function [BBM18]. This is because the training loss in our case is a

quadratic function whose gradient is linear and not bounded.
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Consider a mini-batch SGD update,

wt+1 = wt − η · 1
B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)

where the examples {i(1)t+1, i
(2)
t+1, · · · i

(B)
t+1} are sampled uniformly at random with replacement for all

the iterations t.

Then by expanding ∥wt+1 −w∗∥2,

∥wt+1 −w∗∥2 =
∥∥∥wt − η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)−w∗
∥∥∥2

= ∥wt −w∗∥2 − 2
〈
wt −w∗, η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
〉
+
∥∥∥η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
∥∥∥2

Now taking expectation over the randomness of sampling we get that,

E∥wt+1 −w∗∥2 ≤ E∥wt −w∗∥2 − 2E
〈
wt −w∗, η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
〉

︸ ︷︷ ︸
(T1)

+ E
∥∥∥η · 1

m

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
∥∥∥2︸ ︷︷ ︸

(T2)

(6.24)

We will lower bound (T1) and upper bound (T2). Let ξt = {i(1)t , i
(2)
t , · · · i(B)

t }. Then for (T1) we

have,

E

[〈
wt −w∗, η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
〉]

= Eξ1···ξt

[
Eξt+1

[〈
wt −w∗, η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
〉∣∣∣ξ1 · · · ξt]]

= Eξ1···ξt

[〈
wt −w∗, η · 1

B

B∑
j=1

Eξt+1∇ℓi(j)t+1
(wt)

〉]]

= E

[〈
wt −w∗, η · 1

B

B∑
j=1

∇LD(wt)
〉]
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= E

[〈
wt −w∗, η∇LD(wt)

〉]
(a)

≥ µη · E∥wt −w∗∥2 (6.25)

where (a) follows from the strong convexity of LD. Note that if ℓi(w) is µ−strongly convex then

even LD is µ−strongly convex.

Using the same conditioning argument as before and the fact that each sample in a batch is

sampled i.i.d. for (T2) we get that:

E
∥∥∥η · 1

B

B∑
j=1

∇ℓ
i
(j)
t+1

(wt)
∥∥∥2 = η2

( 1

B
E
[
∥∇ℓ

i
(1)
t+1

(wt)∥2
]
+

B − 1

B
E∥∇LD(wt)∥2

)
(a)

≤ η2

(
2β

B

(
EL(wt)−

1

n

n∑
i=1

ℓi(w
∗
i )
)
+

2β(B − 1)

B

(
ELD(wt)−

1

n

n∑
i=1

ℓi(w
∗)
))

= η2

(
2β

B

(
ELD(wt)−

1

n

n∑
i=1

ℓi(w
∗) +

1

n

n∑
i=1

ℓi(w
∗)− 1

n

n∑
i=1

ℓi(w
∗
i )
)

+
2β(B − 1)

B

(
ELD(wt)−

1

n

n∑
i=1

ℓi(w
∗)
))

= η2

(
2β

B

( 1
n

n∑
i=1

ℓi(w
∗)− 1

n

n∑
i=1

ℓi(w
∗
i )
)

+ 2β
(
ELD(wt)−

1

n

n∑
i=1

ℓi(w
∗)
))

(b)

≤ η2

(
2β

B

( 1
n

n∑
i=1

ℓi(w
∗)− 1

n

n∑
i=1

ℓi(w
∗
i )
)
+ β2E∥wt −w∗∥2

)

≤ η2 · β2 · E∥wt −w∗∥2 + 2βη2

B

( 1

n

n∑
i=1

ℓi(w
∗)− 1

n

n∑
i=1

ℓi(w
∗
i )︸ ︷︷ ︸

σℓ

)

= η2 · β2 · E∥wt −w∗∥2 + 2βη2σℓ

B
(6.26)

where (a) follows from applying Lemma 8 (1) to ℓ
i
(j)
t+1

(wt) and LD(wt) and (b) follows from

applying Lemma 8 (2).
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Now substituting Equation (6.25) and Equation (6.26) in Equation (6.24), we get that,

E∥wt+1 −w∗∥2 ≤ (1− 2ηµ+ η2β2)E∥wt −w∗∥2 + 2βη2σℓ

B
(6.27)

Minimizing the coefficient with respect to η we get η∗ =
µ

β2
, which gives the following update

equation:

E∥wt+1 −w∗∥2 ≤
(
1− µ2

β2

)
E∥wt −w∗∥2 + 2µ2σℓ

Bβ3
(6.28)

Now applying this update recursively we get:

E∥wt −w∗∥2 ≤
(
1− µ2

β2

)t
E∥w0 −w∗∥2 + 2σℓ

Bβ

Definition 2. (Forgetting: Single Request) Consider an ERM problem with LD(w) =
1

n

∑
i∈D

ℓ̂i(w),

where ℓ̂i = ℓi(w) +
µ

2
∥w∥2, ℓi(w) : Rd → R+ is a quadratic convex function and D is a dataset of

size n. Let wD = AT (LD(w)) be the weights obtained after T steps of algorithm A (SGD in our

case) on LD(w). Then given a request to forget a set Df ⊂ D we apply the following scrubbing

procedure:

S(wD,D,Df ) ≜ wD −∆wD,Df
+ z (6.29)

where ∆wD,Df
= Aτ (L̃D−Df

(w)), τ is the number of steps of A to minimize L̃Dr(w) (where

Dr = D −Df ). Here

L̃Dr(w) = 0.5 ·wTHDrw −wTgDr(wD) (6.30)

z ∼ N (0, σI) and HDr is the hessian on the remaining data (Dr). We compute the residual gradient,

gDr(wD) = ∇LDr(wD) once over entire Dr, while wTHDr(wD)w is compute stochastically in A.
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Definition 3. (Forgetting: Multiple Requests) Consider that we are provided with a sequence of

forgetting request (Dj
f ). Let Dj ⊂ D be the dataset remaining, wDj

(or simply wj) be the weights

obtained after j forgetting requests. Then given the j + 1th request to forget Dj+1
f ⊂ Dj , from

Equation (6.29) in Definition 2 we have that:

wj+1 ≜ S(wj,Dj,Dj+1
f ) = wj −∆wDj ,Dj+1

f
+ z (6.31)

where z ∼ N (0, σI) and w0 = wD are the weights obtained after training on the entire data D.

Theorem 3. (Formal) Consider an empirical risk, LD(w) =
1

n

∑
i∈D

ℓ̂i(w), where ℓ̂i(w) = ℓi(w) +

µ

2
∥w∥2, ℓi(w) : Rd → R+ is quadratic convex function with symmetric∇2ℓ(w), β = maxi∈DλM(∇2ℓ̂i(w))

is the smoothness constant of LD(w), ℓi(0) ≤M <∞ and D is a dataset of size n. Let A be SGD

with mini-batch size B, σℓ > 0 be some constant associated with SGD, γ = 1− µ2/β2, τ be the

number of steps of A performed while forgetting and a ∈ (0, 1/γτ − 1). From Definition 3, let

wj−1,Dj−1 be the scrubbed weights and the dataset remaining after j − 1 removal requests, then

given a forgetting request to remove Dj
f (|D

j
f | = b) we obtain the following bound on the amount of

information remaining in the weights after using the scrubbing procedure in Definition 3:

I(∪jk=1D
k
f , S(wj−1,Dj−1,Dj

f )) ≤
2γτ (2 + 1/α)

[(
8bβ
√
2M

nµ3/2
√
σ

)2

+ d

]
+

8σℓ

Bβσ

1− (1 + α)γτ

Proof. We follow similar proof technique to [NRS20]. Consider a dataset D of size n and a

forgetting sequence DForget = (Dj
f )j (batches of data of size b that we want to forget). Let

wj,w
′
j, ŵj,Dj be the scrubbed weights with noise, scrubbed weights without noise, weights

obtained by re-training from scratch using SGD and the remaining dataset after j requests of

forgetting. Let nj be the size of Dj and w∗
j = argminw∈RdLDj

(w). Then from Definition 3 we have

that

wj = w
′

j + z (6.32)
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w
′

j = wj−1 −∆wDj−1,Dj
f

(6.33)

where z ∼ N (0, σ2I), ∆wDj−1,Dj
f
= Aτ (L̃Dj−1−Dj

f
(w)),Aτ is τ steps of SGD and L̃Dj−1−Dj

f
(w) =

1

2|Dj−1 −Dj
f |
∑

i∈Dj−1−Dj
f
wT∇2ℓi(wD)w −

〈
∇LDj−1−Dj

f
(wD),w

〉
. Note that ŵj are weights

obtained at the end of training with SGD while w∗
j is the true empirical risk minimizer of LDj

(w).

After re-training from scratch on Dj for T
j steps using SGD with mini-batch size of B, we have

the following relation for j ≥ 0, using Theorem 2:

E∥ŵj −w∗
j∥2 ≤ γ

T
j ∥ŵinit −w∗

j∥2 +
2σℓ

Bβ
(6.34)

where γ = 1 − µ2/β2 and ŵinit = 0 is the training initialization, ŵ0 are the weights obtained by

training on D0 = D, which is the complete dataset before receiving any forgetting request. When

training the linearized model the user weights are initialized to 0 since they correspond to the first

order perturbation of the non-linear weights.

Let us select T
j ≥ τ +

2 log (njµ/4bβ)

log 1/γ
, where nj ≥

n

2
. Here τ is the number of steps of SGD

used to remove one batch (b samples) of data during forgetting. Substituting τj in Equation (6.34)

we get:

E∥ŵj −w∗
j∥2 ≤ γτ

(
4bβ

njµ

)2

∥ŵinit −w∗
j∥2 +

2σℓ

Bβ

(a)

≤ γτ

(
8bβ
√
2M

nµ3/2

)2

+
2σℓ

Bβ
(6.35)

where (a) follows from ∥ŵinit −w∗
j∥ ≤

√
2M

µ
and 1/nj ≤ 2/n.

Now we will compute a similar bound for the weights obtained by applying the forgetting

procedure. For any j ≥ 1, using the scrubbing procedure in Definition 3 we have the following

relation:

E∥w′

j −w∗
j∥2 ≤

γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ

1− (1 + α)γτ
(6.36)

for 0 < α < 1/γτ − 1. Note that wj are the weights after applying the newton update but before

adding the scrubbing noise.

From the scrubbing procedure described in eq. (6.32) and eq. (6.33) to solve for ∆wDj−1,Dj
f

we minimize L̂Dj−1−Dj
f

using SGD. While the optimal value of ∆w∗
Dj−1,Dj

f

= wj−1 − w∗
j , thus,
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∆wDj−1,Dj
f
−∆w∗

Dj−1,Dj
f

= ∆wDj−1,Dj
f
−wj−1 +w∗

j = w∗
j −w

′
j . We can bound E∥∆wDj−1,Dj

f
−

∆w∗
Dj−1,Dj

f

∥2 using Theorem 2 and thus also bound E∥w∗
j −w

′
j∥.

More precisely we have:

E∥∆wDj−1,Dj
f
−∆w∗

Dj−1,Dj
f

∥2 (a)
= E∥w′

j −w∗
j∥2

E∥w′

j −w∗
j∥2

(b)

≤ γτE∥∆w
(0)

Dj−1,Dj
f

−∆w∗
Dj−1,Dj

f

∥2 + 2σℓ

Bβ

E∥w′

j −w∗
j∥2

(c)
= γτE∥wj−1 −w∗

j∥+
2σℓ

Bβ
(6.37)

where the (a) follows from the definition of the scrubbing update as shown above, (b) follows from

Theorem 2 and (c) follows from ∆w
(0)
Dj−1,Df j

= 0. Note that both while training (T j iterations) and

forgetting (τ iterations) we use SGD with a constant step-size. We will use eq. (6.37) along with

induction to prove eq. (6.39). For z ∼ N (0, σ2I), we have:

E∥z∥2 = dσ2 (6.38)

To prove eq. (6.39) we use induction. Lets consider the base case j = 1.

E∥w′

1 −w∗
1∥2

(1)

≤ γτE∥w0 −w∗
1∥2 +

2σ2
ℓ

Bβ
(2)
= γτE∥ŵ0 −w∗

0 +w∗
0 −w∗

1∥2 +
2σℓ

Bβ
(3)

≤ γτ (1 + α)E∥ŵ0 −w∗
0∥2 + γτ (1 + 1/α)E∥w∗

0 −w∗
1∥2 +

2σℓ

Bβ

(4)

≤ γτ (1 + α)E∥ŵ0 −w∗
0∥2 + γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ︸ ︷︷ ︸
(A)

(5)

≤ γτ (1 + α)
[
γτ

(
8bβ
√
2M

nµ3/2

)2

+
2σℓ

Bβ

]
︸ ︷︷ ︸

≤(A)

+(A)

≤ γτ (1 + α)(A) + (A)

≤ γτ (1 + α)

1− (1 + α)γτ
(A) + (A)
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=

γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ

1− (1 + α)γτ

where (1) follows from eq. (6.37), (2) follows from the Definition 3, (3) follows from Lemma 4,

(4) follows from Lemma 7 and eq. (6.38), (5) follows from eq. (6.35). Note that in the base case

w0 = ŵ0 which are the weights obtained by training on the complete data. For Lemma 7, Dj and

Dj−1 differ in b samples and nj ≥ n/2. Also note that the expectation above is with respect to the

randomness of SGD.

Now that we have the base case, for any general j > 1 we get:

E∥w′
j −w∗

j∥2
(1)

≤ γτE∥wj−1 −w∗
j∥2 +

2σℓ

Bβ
(2)
= γτE∥w′

j−1 −w∗
j + z∥2 + 2σℓ

Bβ

= γτE∥w′

j−1 −w∗
j−1 +w∗

j−1 −w∗
j + z∥+ 2σℓ

Bβ
(3)

≤ γτ (1 + α)E∥w′

j−1 −w∗
j−1∥2 + γτ (1 + 1/α)E∥w∗

j−1 −w∗
j + z∥2 + 2σℓ

Bβ

(4)

≤ γτ (1 + α)E∥w′

j−1 −w∗
j−1∥2︸ ︷︷ ︸

≤
(A)

1− γτ (1 + α)

+ γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ︸ ︷︷ ︸
(A)

≤ γτ (1 + α)

1− γτ (1 + α)
(A) + (A)

=

γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ

1− (1 + α)γτ

where (1) follows from eq. (6.37), (2) follows from the eq. (6.32), (3) follows from Lemma 4, (4)

follows from induction update, Lemma 7 and eq. (6.38). For Lemma 7, Di and Di−1 differ in b
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samples. The expectation above is with respect to the randomness of SGD and the scrubbing noise

z.

Thus we have:

E∥w′
j −w∗

j∥2 ≤
γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

2σℓ

Bβ

1− (1 + α)γτ
(6.39)

Combining eq. (6.35) and eq. (6.39) using Lemma 4 we get:

E∥w′

j − ŵj∥2 = E∥w′

j −w∗
j +w∗

j − ŵj∥22
(1)

≤ 2E∥w′

j −w∗
j∥2 + 2E∥w∗

j − ŵj∥2

≤
2γτ (1 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

4σℓ

Bβ

1− (1 + α)γτ
+ 2γT

(
8bβ
√
2M

nµ3/2

)2

+
4σℓ

mβ

≤
2γτ (2 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

8σℓ

Bβ

1− (1 + α)γτ

where (1) follows from Lemma 4.

Thus, we get:

E∥w′

j − ŵj∥2 ≤
2γτ (2 + 1/α)

[(
8bβ
√
2M

nµ3/2

)2

+ dσ2

]
+

8σℓ

Bβ

1− (1 + α)γτ
(6.40)

Since the problem is quadratic, the hessian will be same at all points. From Proposition 1

in [GAS20], we have:

I(∪jk=1D
k
f , S(wj−1,Dj−1,Dj

f )) ≤ E
[
(w′

j − ŵj)
T (σ2I)−1(w′

j − ŵj)
]

≤ E∥w′
i − ŵi∥22
σ2

Note that the expectation in the previous expression is with respect to the randomness in the

training algorithm and the forgetting algorithm, plus the set Dk
f . Then using eq. (6.40) with the

previous equation we obtain that:
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I(∪jk=1D
k
f , S(wj−1,Dj−1,Dj

f )) ≤
2γτ (2 + 1/α)

[(
8bβ
√
2M

nµ3/2σ

)2

+ d

]
+

8σℓ

Bβσ2

1− (1 + α)γτ
(6.41)
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CHAPTER 7

Mixed Differential Privacy for Vision

Differential privacy enables us to train machine learning models with statistical indistinguiablility

guarantees. It involves restricting the information contained in the weights about every individual

sample. Differentially private training generates weights such that removal of any training example

from the dataset should not change the weights significantly, thus minimizing the impact each

sample has during training. It can be considered as an approximately stricter version of unlearning

where instead of only removing the influence of subset of training data, we want to remove the

influence of all the training samples. After having explored various forgetting procedures in this

chapter we seek to improve differentially private training of image classifiers using the mixed-private

setting proposed in chapter 6. Using this setting along with a novel training algorithm we show that

we can improve on the state of private training algorithms, thus providing another procedure for

unlearning in the mixed-private setting.

More precisely, we introduce AdaMix, an adaptive differentially private algorithm for training

deep neural network classifiers using both private and public image data. While pre-training

language models on large public datasets has enabled strong differential privacy (DP) guarantees

with minor loss of accuracy, a similar practice yields punishing trade-offs in vision tasks. A few-shot

or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large

private dataset. AdaMix incorporates few-shot training, or cross-modal zero-shot learning, on public

data prior to private fine-tuning, to improve the trade-off. AdaMix reduces the error increase from

the non-private upper bound from the 167-311% of the baseline, on average across 6 datasets, to

68-92% depending on the desired privacy level selected by the user. AdaMix tackles the trade-off
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arising in visual classification, whereby the most privacy sensitive data, corresponding to isolated

points in representation space, are also critical for high classification accuracy. In addition, AdaMix

comes with strong theoretical privacy guarantees and convergence analysis.

In the subsequent sections we describe AdaMix, show that it’s differentially private, provide

generalization guarantees, along with extensive empirical evaluation for practical vision tasks.

7.1 Method

Notation. Let z ∈ Z be a datum, with z = (x, y) being the feature/label pair; Z∗ = ∪∞n=0Zn

is the universe of datasets with arbitrary size. For learning, we have access to a private dataset

Dpri := {z1, ..., zNpri} and a public one Dpub := {z̃1, ..., z̃Npub}. The loss function ℓ : Z ×W → R

takes data z ∈ Z and “weights” w ∈ W ⊂ Rd to yield the total loss on the private and public

dataset Lpri(w) :=
∑Npri

i=1 ℓi(w) and Lpub(w) :=
∑Npub

j=1 ℓ̃j(w), with ℓi and ℓ̃j short-hands for ℓ(w, zi)

and ℓ(w, z̃j) respectively. Notice that Lpri and Lpub are sums, not averages, of the loss functions.

Their gradients are indicated by gpri
i (w) = ∇wℓi(w), g

pub
j (w) = ∇wℓ̃j(w), Gpri(w) = ∇wLpri(w),

Gpub(w) = ∇wLpub(w). In addition, we say N = Npri +Npub and L(w) = Lpri(w) + Lpub(w).

The average empirical risk is written as R̂(w) := L(w)/N . When the data are drawn from

some distribution D, the risk, i.e., generalization error, R(w) := Ez∼D[ℓ(z, w)]. Our goal is to

design a differentially private algorithm that returns ŵ which minimizes L(ŵ). Its performance

is measured by the excess empirical risk, i.e., R̂(ŵ) − minw∈W R̂(w); and by the excess risk

R(ŵ)−minw∈W R(w). In the experiments, the latter is measured by the error on a test set.

7.1.1 Differential privacy

Two datasets D, D′ ∈ Z∗ are said to be neighboring, written as D ≃ D′, if we can obtain D′ from

D by adding or removing a single data point.

Definition 4 (Differential privacy [DMN06, DR14]). For ϵ > 0 and δ ≥ 0, a randomized algorithm
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Algorithm 1: (Projected) Noisy Gradient Descent
Data: Constraint setW , initialization w1, noise level σ, clipping threshold τ , number of

iteration T , weight decay parameters λ and wref, learning rates ηt.

Result: w1, ..., wT+1

for t = 1, . . . , T do

Gt =
∑Npri

i=1 clipτ (gi(wt));

nt ∼ N(0, σ2τ 2I);

wt+1 ← wt − ηt(Gt + nt + λ(wt − wref));

wt+1 ← ΠW(wt+1);

end

M is (ϵ, δ)-differentially private if for any neighboring datasets D ≃ D′ and any measurable

S ⊆ range(M),

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

In our context,M is the randomized learning algorithm, and Y is the space of model weights.

This condition bounds the maximum amount of information that an attacker, having access to the

weights of the model, can extract about one of the training samples. The parameter ϵ is referred to

as the privacy parameter: lower values of ϵ carry better privacy guarantees, but also make it harder

to train an accurate model, as it reduces the amount of information about the training samples that

can be represented via the parameters of the model. The goal of a good DP training algorithm A is

to train an accurate model while satisfying the (ϵ, δ)-privacy constraint selected by the user where,

ideally, ϵ ≈ 1 and δ = o(1/n).

NoisyGD. NoisyGD is defined in Algorithm 1. We now show that NoisyGD is differentially private

and that, in the convex case, it converges to the optimal solution.

Proposition 4 (NoisyGD is (ϵ, δ)-DP, informal). Algorithm 1 with parameter T, σ2 such that

ρ := T 2

2σ2 satisfies the (ϵ, δ(ϵ))-DP, where δ(ϵ) := Φ(µ
2
− ϵ

µ
)− eϵΦ(−µ

2
− ϵ

µ
), µ =

√
2ρ and Φ is the
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CDF of the normal distribution.

For any prescribed privacy parameter (ϵ, δ), it suffices to choose this ρ parameter, thus from

here onward we will use ρ as the privacy parameter of interest (note that, asymptotically, ρ ≍

min{ϵ, ϵ2/ log(1/δ)}).

Mixed private learning. We define the problem of differentially private learning when we have

access to an additional public dataset mixed private learning. We say the algorithmM (now taking

two arguments Dpri and Dpub) satisfies (ϵ, δ)-DP ifM(·, Dpub) satisfies (ϵ, δ)-DP (Def. 4) for every

fixed Dpub. [ABM19] shows that a small public dataset from the same distribution allows one to

privately PAC-learn any classes with bounded VC-dimension, but with an inefficient algorithm.

We focus on designing practical DP algorithm that can effectively use both public and private data

under the setting of convex empirical risk minimization [CMS11] and convex fine-tuning of deep

models [AGR21b].

7.1.2 AdaMix

Model. Following [TB21], we use a linear logistic regression model trained on top of the last layer

features of an ImageNet pre-trained network. This reduces the expressivity of the model compared

to training a full network. However, the significant reduction in number of parameters makes it a

better choice DP algorithms and recent deep networks allow for competitive performance on most

tasks even when training only the last layer. We normalize the features before feeding them to the

logistic model, which both improves the accuracy and bound the gradients at each step.

Initialization and regularization. The choice of initialization is normally of minor concern for

logistic regression: since the problem is convex we will converge to a global optimum regardless

of the initialization. L2 regularization (weight decay), when employed, is usually centering at 0

by default. However, centering the regularizer is critical in differential privacy, as we prove in the

following result:
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Theorem 5 (Convergence of NoisyGD on strongly convex problems). Assume W is a convex

set satisfying supw∈W ∥w∥ ≤ B. Let w1, ..., wT+1 be the parameter vectors returned by running

Algorithm 1 on the following regularized loss J(w) = L(w) + λ
2
∥w − wref∥2 with w1 = wref ∈ W ,

learning rate ηt =
2

λ(t+1)
and λ =

√
ρ

2∥w∗−wref∥dL2 . Then, the ensemble solution:

w̄ = 2
T (T+1)

∑T
t=1 t wt

obeys the bound

E[R̂(w̄)]− R̂(w∗) ≤ 4(Nτ+λB)2

λTN
+

√
dτ∥w∗−wref∥√

2ρN

for any w∗ ∈ W , where ρ is the privacy parameter of the algorithm.

Note that as T → +∞ the first term vanishes and the second term matches the information-

theoretic limit for privately solving general convex ERM problems when wref = 0 [BST14].

However, this can improve if we choose wref according to the public data such that wref is closer

to w∗ than 0. This motivated us to propose choosing wref by training on the public data. Then, we

proceed to fine-tune the model on the concatenation of private and public data, using Noisy-GD

while preserving (ϵ, δ)-DP.

Provable benefits of public data access. Next we provide a theoretical guarantee for the above

approach under standard statistical learning assumptions.

Theorem 6 (Generalization with access to public data, informal). Assume that private and public

data are drawn i.i.d. from the same distribution D and that R(w) = E(x,y)∼D[ℓ(w, (x, y))] is c-

strongly convex inW . Let wref be obtained by training for one epoch on the public dataset and let

w̄ be as in Thm. 5, then at the limit when T is sufficiently large, the excess risk obeys

E[R(w̄)]−R(w∗)

≤ 4
√
dL2

c
√

NpubN
√
2ρ

+ Gen(w̄, N) + Gen(w∗, N),

where w∗ = argminw∈W R(w) and Gen(w,N) :=
∣∣∣E[R(w)− R̂(w)]∣∣∣ is the expected generaliza-

tion gap of (a potentially data-dependent) w.
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To the best of our knowledge, Theorem 6 is the first demonstrated claim that access to even a

very small public dataset can improve private learning in the convex ERM setting. We note that the

generalization bound decomposes in a first term, which describes the generalization cost incurred by

using DP, and a second part which is common to non-private learners. Interestingly, in the Appendix

we show that in MixDP the cost of privacy asymptotically vanishes even if the percentage of public

data becomes neglegible (i.e., when Npub →∞, Npub/N → 0).

Besides providing a good initialization, access to a small public dataset also enables ways to

further improve Noisy-GD in practice, as we will now see.

Adaptive threshold. Since the norm of the gradients changes significantly during training, a fixed

clipping threshold τ is suboptimal throughout training. [WZ20] suggests to tune this threshold

adaptively using public data. However, the norm of the average gradient of the public sample, may

not yield good clipping thresholds for the per-sample gradients. Instead, we find the following

adaptive threshold to be more robust:

τ = quantile90({∥g
pub
i (w)∥}Npub

i=i ),

that is, we take the 90-th quantile of the norm of the public gradients, where gpub
i (w) = ∇wℓ̃i(w) is

the gradient of the i-th public sample. Then the clipped gradient we use is

g̃pri
i (w) =

gpri
i (w)

∥gpri
i (w)∥

min(∥gpri
i (w)∥, τ).

This quantile rule is also used by [ATM21], but we differ in the use of public data to determine

τ , rather than allocating part of the privacy-budget for releasing the quantile. It was established

in [CWH20] that gradient clipping has the effect of Huberization of the loss function in the GLM

cases. The convergence to the optimal solution of a modified objective function is guaranteed if we

fix the clipping parameter. Our approach on the adaptive clipping has the effect of selecting the

hyperparameter adaptively in a homotopy style algorithm, which shows further empirical benefits.

Adaptive subspace projection. From Thm. 6, the utility of a DP algorithm decreases with the

number of parameters d of the model. In view of this, we do not train the whole network but rather
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use it as a feature extractor and only train a linear model on top. However, for modern vision

architectures, even the number of parameters of the final layer is in the order of tens of thousands.

Therefore, we use an adaptive mechanism to project private gradients onto a low-dimensional

subspace before adding noise. More precisely,

Gpub(w) = ∇wLDpub(w) =

Npub∑
i=1

∇wℓ(z̃i, w)

be the total gradient of the public dataset Dpub. Since we are using a linear logistic model, Gpub(w)

is a D × C matrix where D is the number of features and C is the number of classes. Consider the

SVD decomposition:

Gpub(w) = USV.

We now project each (clipped) private gradient matrix g̃pri
i on the top P components, and obtain

a matrix ĝpri
i = U tg̃pri

i of size P × C. Other methods projecting the gradient using public data

[ZWB21,YZC21,KRR20] do not compute the SVD of the total gradient matrix, as noted in Sec. ??.

Rather, use the vectorized per-sample gradients of the public examples to compute the principal

components to project. Since, in vision, the size of matrix of all per-sample gradients has a much

larger size N × FC (rather than our F ×C), several approximations would be required to carry out

this strategy.

Final algorithm. The final gradient update step at time t is:

wt+1 ← wt − ηt(G
pub + UĜpri + λ · wt)

where

Ĝpri =
∑Npri

i=1 U
T g̃pri

i + nt.

and nt ∼ N (0, σ2τ 2IC). We then train for T steps. The pseudo-code of algorithm is given in

Algorithm 2.

Proposition 7. Algorithm 2 with parameter T, σ2 such that ρ := T 2

2σ2 satisfies the (ϵ, δ(ϵ))-DP of a

Gaussian mechanism in Theorem 8 [BW18] with parameter µ =
√
2ρ.
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Note that the privacy guarantee is the same as long as the ratio σ/
√
T remains constant, which

gives a degree of freedom in choosing σ (hence T ). Higher values of σ requires more training steps

T , but, by Thm. 5, it also ensures better convergence (which we validate this empirically in Sec. 7.2).

Hence, the user should generally pick the largest σ allowed by their computational budget.

Algorithm 2: AdaMix training algorithm.
Data: Public dataset Dpub, private dataset Dpri, privacy parameter (ϵ, δ), noise variance σ,

learning rate η, L2 reg. coefficient λ

Result: w = A(S)

Tmax ← Calibrate(ϵ, δ, σ);

w ← Pretrain(Su);

for t = 1, . . . , Tmax do

τt ← quantile90
(
{∥gpub

i (w)∥}Npub
i=1

)
;

U, S, V ← SVD(Gpublic(w));

nt ∼ N(0, σ2τ 2t I);

g̃pri
i (w)← g

pri
i (w)

∥gpri
i (w)∥

min(τt, ∥gpri
i (w)∥);

G̃pri(w) =
∑Npri

i=1 U
T g̃pri

i (w) + nt;

w ← w − η(Gpub(w) + UG̃pri(w) + λ · w);

end

7.1.3 Textual side information

CLIP [RKH21] is an embedding trained so that the representation of an image is close to the

representation of its textual description. This enables zero-shot learning, i.e., initializing an high-

performance image classification model using only the name of the labels or a textual description of

the classes, which is generally public. AdaMix can be easily adapted to work in this multi-modal

MixDP setting, where the public data comes from a different modality. First, we initialize a linear

logistic model using the names of the classes: Let ci be the text associated to the i-th class, the
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Public Shots Non-Private Only-Public Fully-PrivatePPGD [WZ20]AdaMix Fully-PrivatePPGD [WZ20]AdaMix

(paragon) (baseline) ϵ = 1 ϵ = 3

Ox. Flowers [NZ06] 2 12.34 40.16 95.12 40.99 39.48 81.42 39.22 36.11

CUB-200 [WBM10] 2 31.97 64.01 96.79 64.20 63.58 81.61 61.59 59.15

Stanf. Dogs [KJY11] 2 10.08 16.58 33.87 16.42 15.38 15.93 15.61 12.72

MIT-67 [QT09] 5 25.17 43.58 69.55 42.02 40.46 42.99 39.60 33.03

Oxford Pets [PVZ12] 5 7.17 12.83 26.02 12.85 11.54 12.37 11.15 9.53

Caltech-256 [GHP] 5 14.64 24.88 60.72 24.61 23.74 27.15 23.71 20.85

Table 7.1: Mixed privacy, full privacy and AdaMix. We report the result (test errors) of different methods on a diverse

set of vision tasks (see text for description). Surprisingly Only-Public, which throws away private data and only trains

a model on the small amount of public data outperforms Fully-Private, which trains on all data as if it was private.

AdaMix is instead able to effectively use both the private and public data at the same time, and achieves a significant

improvement even at relatively small value of ϵ (e.g., 10% improvement on MIT-67 w.r.t. Only-Public). Instead, the

closest method to us, PPGD does not significantly improve over the Only-Public baseline.

weight matrix is [RKH21]:

W = β[enc(c1), . . . , enc(cC)],

that is, each row is the normalized encoding of a label scaled by a parameter β (we use β = 100).

Starting from this public initialization, we train with AdaMix on image data.

7.2 Results

Setting. Unless otherwise specified, we train a linear logistic model on top of the last layer features

of a ResNet-50 [HZR16] pre-trained on ImageNet [DDS09b]. For NoisyGD, we initalize the logistic

weights to zero, fix σ = 20 and δ = 10−5. We train with λ = 1e− 2, weight decay centered at zero,

learning rate η ∈ {0.0005, 0.001, 0.0025, 0.005}, and select the best learning rate for each value of

ϵ. For AdaMix, we initialize the weights by training on the public data until convergence. We use

the Gaussian mechanism implementation of autodp1 to calibrate the parameters of the training

1https://github.com/yuxiangw/autodp
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algorithm, in particular Tmax, in order to achieve the desired (ϵ, δ)-DP requirement.

Datasets. We test our algorithm on the following vision classification datasets commonly used in

transfer learning (see Tab. 7.1). We split each training dataset into a “public” dataset consisting of

N -samples per class (see Tab. 7.1), and consider the remaining training data as private. In all cases,

the public data is less than 10% of the private data.

Baselines considered. We compare AdaMix with the following baselines: (Fully-Private) Ignore

the MixDP setting and simply train on all data as if it was private, starting form a zero initialization

and using NoisyGD; (Only-Public) Train a standard non-private model using only the few public

samples and discarding the private ones; (PPGD) A version of PPSGD [WZ20], but trained

with NoisyGD rather than DP-SGD for easier comparison. Unlike AdaMix, PPGD has several

hyper-parameters: we manually searched for the best combination to ensure the best comparison;

(NGD) An ablated version of AdaMix which uses fixed hyper-parameters rather than the adaptive

components.

7.2.1 Experiments

Mixed Privacy vs Full Privacy. In Table 7.1 we see that, perhaps surprisingly, Only-Public is

always significantly better than Fully-Private even if it actually throws away most of the available

data. This suggests that, in vision, collecting a small amount of public data may be preferred to

collecting a much larger amount of private data (Fig. 7.2). However, we see that AdaMix is able

to effectively use both the private and public data at the same time, and achieves a significant

improvement even at relatively small value of ϵ (e.g., 10% improvement on MIT-67 w.r.t. Only-

Public at ϵ = 3). Conversely, the method closest to us, PPGD, does not significantly improve over

the Only-Public baseline even after our changes to adapt it better to vision tasks.

Ablation study and finer comparison. In Fig. 7.1 (left and center) we plot the average accuracy

obtained by various methods and ablations of AdaMix for different privacy parameters ϵ. Both
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Figure 7.1: Test error vs privacy for several methods. (Left) On MIT-67, we show the test error obtained by different

methods at different privacy parameters ϵ. The top horizontal red line shows the perfectly private Only-Public baseline

(not using the private data at all). The bottom green line shows the non-private paragon (training on all data as if they

where public). By changing the privacy parameter ϵ, we can interpolate between the two extrema. We see that AdaMix

performs uniformly better than other methods, and can use private and public data together to obtain significant boost

at all ϵ. (Center) Same as the before, but we zoom in to show the behavior of the different solutions in the low-ϵ

regime. (Right) For the same algorithms, we plot the robustness to adversarial attacks (measured by AUC) vs test error

obtained using different values of ϵ (annotated near each point). AdaMix obtains the best trade-off between accuracy

and robustness.
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AdaMix and the ablated NGD are able to improve over the Only-Public baseline. Interestingly,

this holds true even when considering relatively low privacy parameters ϵ ≈ 1 which is usually

considered too restrictive to train in a fully private setting (as seen in Tab. 7.1). On the other hand,

thanks to the MixDP training we can obtain high-accuracy models even at restrictive privacy settings.

We note that AdaMix performs uniformly better than other methods at all privacy regimes. From the

ablation of AdaMix, we see that initializing the model with the public data has the largest impact,

followed by adaptive clipping and adaptive projection.

Membership attacks. Differential privacy is a very strong requirement, and is it often assumed

that using higher value of ϵ may still provide valuable defense to attacks [SSS17, CLE19, CTW21,

RRL18, BGR19, ZH20, SDO19, LAG19, MZH19] even if the theoretical guarantees are weak.

Conversely, [JUO20] suggests using attacks to give a lower-bound on the privacy parameter of the

algorithm. In Fig. 7.1 (right) we plot the Area Under Curve of a membership attack executed against

models for different values of ϵ. We use a thresholding based membership attack as proposed

in [SDO19]. The loss for samples in the private training set are labelled as 0 and test samples are

labelled as 1. Then we simply compute the AUC for this. We find that the sorting of the algorithms

does not change: algorithms with better theoretical bounds are also more robust to attacks.

Performance Boost and size of public data. We hypothesize that, when enough public data is

present, the contribution of using private data may be less noticeable. To test this, we define the

Performance Boost of a Mixed Privacy method as PB = (errpublic − errparagon)/(errDP − errparagon),

where errparagon is the error obtained by training on non-private model on both public and private

data, errpublic is the error obtained by training only on the public data, and errDP is the error obtained

by using training a mixed privacy model. This measures how well we can learn from the private data

in the MixDP setting compared to the non-private upper-bound. In Fig. 7.2 we plot the performance

boost for different sizes of the public set. We observe that the performance boost derived of using

mixed privacy is very high when the public data is scarce, disappears when the amount of public

data is comparable or larger than the private data.
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Figure 7.2: (Left) Trade-off between public and private examples. We show the accuracy reached on MIT-67 using

N samples per class (x-axis) when they are public (green) or private (in red for different values of ϵ). Fully private

training requires as much as 10 times more samples. This leaves users with a trade-off between collecting more private

data or, if possible, a smaller amount of public data. (Right) Performance boost using a private set for different

methods. We plot the Performance Boost (PB) for different DP methods as the ratio of public to private samples

changes (see text for definition). We see that AdaMix achieves the best performance boost. As expected, when the

public set is relatively large, the boost from adding private data decreases.

Multi-modal initialization. In Fig. 7.4 we compare CLIP models initialized with (1) a random

initialization, (2) a zero-shot initialization based on the public label names (Sec. 7.1.3), and (3)

using few public image samples. While the latter performs the best at a given privacy level ϵ, the

zero-shot initialization still improves significantly over the random initialization, thus showing that

even just small amount of textual information (which is often available) can be used to significantly

boost accuracy. Multi-modal models may also learn a better lower-dimensional representation of

the data that is more amenable to DP. In Fig. 7.4 we compare AdaMix using an ImageNet pretrained

ResNet-50 and using CLIP. This is not a direct comparison, but we see a significant performance

boost by using CLIP at a given privacy level ϵ, suggesting that the move to multi-modal model may

be a logical next step for DP.

Effect of differential privacy on individual samples. DP is a worst-case guarantee which may

penalize the accuracy of a model on unusual data, or data on the long-tails of the distribution, which
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Figure 7.3: (Left and center) Effect of public data on per-instance DP. For ϵ = 3, we plot the sorted pDP scores for

each sample in the dataset with Fully-Private training (left) and with AdaMix (center). AdaMix makes the the target ϵ

(horizontal line) closer to pDP value used by most samples (blue curve). (Right) MixDP and domain-shifts. We plot

the performance of AdaMix when (purple curve) the public data come from the same domain as the test (real images),

and (blue curve) from different domains (public images are paintings). We see that AdaMix use the private data from

the target domain (real images) to adapt the solution to the target task. This significantly improves over using only the

public data from the wrong domain (red line) and for large ϵ approaches the non-private limit (green line).

however may play an important role for generalization in vision [Fel20, FZ20]. MixDP may ease

the problem, since it allows to collect public data to ensure that each sub-population is sufficiently

covered, lessening the accuracy cost of making that data private. We show this effect using the

per-instance DP (pDP) analysis of [Wan19], which measures the privacy loss ϵ′ incurred by each

individual z during the private training. This allows us to provide a finer analysis of different

methods by comparing the histogram of pDP loss ϵ for each individual in the dataset D on top of the

worst case DP bounds, which we do in Fig. 7.3 (see Appendix for details and theoretical analysis).

We observe that, when using AdaMix, the pDP losses of most samples are the same, and is close

to the maximum privacy budget ϵ = 3, indicating that we are using the prescribed privacy budget

more effectively and more uniformly across samples, thereby improving utility.

Domain shift. Often, the private and public data may come from slightly different domains. To test

the robustness of AdaMix to domain shifts, we use the DomainNet dataset, which aims to classify

objects in different domains. In particular, we train a model to classify objects in painting, using

however public data coming from real pictures (while the private data is in the painting domain). In

Fig. 7.3 (right), we show that, even if the public comes from a different domain, AdaMix is still
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able to use the public data to significantly improve performance of private training.

Effect of σ. Outside of the learning rate η, the main other sensitive hyper-parameter of AdaMix is

the noise variance σ. From Prop. 5 we expect that the best accuracy will be obtained using a large σ

and training for a respectively larger amount of epochs T . In the Appendix, we plot the test error as

a function of σ and we see that indeed, a larger σ give better results at the expense of longer training

time.

7.3 Discussion

We study Mixed Differential Privacy learning in computer vision, and show that in this setting

differential privacy can be used to provide high accuracy models while respecting a given privacy

parameter. To do this, we introduce AdaMix, an adaptive differential privacy mechanism that uses

the public data to initialize and compute, at each step, an optimal subspace and clipping threshold.

We also show that multi-modal vision and text can significantly improve accuracy under a privacy

constrain.

Limitations. In our analysis we train a linear model on pre-trained features, rather than fine-tuning

the whole network. This is common in DP, since fine-tuning multiple layers may not significantly

improve the accuracy while the additional parameters negatively affects the privacy bounds. This

limitation is partially offset by new models that are trained to have generic and transferable last-

layer features without the need of additional fine-tuning. We discuss several theoretical bounds

that guide us in understanding the behavior of the algorithm. However, these bounds refer to a

slighlty simplified version of AdaMix (see Appendix for details) and use hyper-parameters that are

asymptotically optimal, but may not be practical.

Conclusions. Differentially Private models in computer vision often cannot reach the same level of

performance as non-private model for realistic privacy parameters. Using AdaMix in the MixDP

learning setting, we have shown that, assuming the presence of a small amount of public data,
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Figure 7.4: (Left) Multi-modal initialization is better than zero initialization. We compare the test accuracy on

MIT-67 of a CLIP model trained with ϵ = 3 using different initialization strategies. We observe that initializing the

logistic weights to zero leads to the worst results under a given privacy parameter. Using the public label names to

initialize the weights (language initialization) performs significantly better. However, using the few available public

images to initialize the weights still outperforms the other choices. (Right) Multi-modal models. We compare the

performance of ResNet-50 model, and a CLIP model. We see that CLIP performs significantly better under a given

privacy parameter. While the ResNet-50 model and the CLIP model are not directly comparable due to different

pre-training, this further reinforces that stronger pre-training can indeed benefit the privacy setting and that the feature

space learned by multi-modal models may be better suited for privacy than standard vision networks.

accurate networks can be produced that reach better accuracies than fully private training without

compromising the privacy of the data. We hope that further research in this field may help the

adoption of private models in more areas of computer vision.

7.4 Appendix

In the supplementary material we perform, (1) Ablation studies analyzing different components

of our algorithm (section 7.4.1), (2) tuning the adaptive clipping threshold can further improve

AdaMix (7.4.2), (3) show that using a larger σ (training for longer) is better (7.4.3), (4) provide

additional experimental results (7.4.4), (5) provide details experimental details (7.4.5, 7.4.6), and

(6) proofs for all the theoretical results presented in the paper (section 7.5, 7.6, 7.7).
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7.4.1 Ablation Studies

In fig. 7.5, we ablate the two components of our algorithm, namely, Subspace Projection and

Adaptive Clipping. We consider the Noisy-GD (NGD) as the baseline and analyze the improvement

provided by the two components separately and finally in combination (AdaMix). We observe that

adaptive clipping is the key component of the AdaMix algorithm. We show that using the two

components together performs the best across multiple datasets. In the next section we show that

further tuning the adaptive clipping threshold can improve the performance even more on some

datasets. In fig. 7.6, we plot the relative reconstruction error for the private gradients on the public

gradient subspace and a random subspace. We observe that the reconstruction error on the public

gradient subspace is at least half the random subspace throughout training, which suggests the

importance of the public gradients for AdaMix.

7.4.2 Effect of AdaMix clip threshold

We plot the effect of adaptive clipping threshold (percentile) on the test error for AdaMix (we use

90 percentile in all of our experiments) in fig. 7.7. However for CUB-200 and Caltech-256 tuning

it to 75 percentile works better indicating that AdaMix has more scope for improvement. Note,

however that using 90 percentile for CUB-200 and Caltech-256 still outperforms all the baselines.

7.4.3 Longer training with more noise

Higher values of σ requires more training steps, however, theorem 5 shows that it leads to better

convergence, which leads to better generalization. In fig. 7.8 we see that indeed, at the same level of

privacy, using a large of σ significantly reduces the test error compared to using a smaller σ.
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observe that adaptive clipping provides more improvement compared to subspace projection, and the combination of

the two works the best across 6 datasets.
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Figure 7.6: Random Subspace Projection We plot the relative reconstruction error of the private gradients when

projecting on the subspace spanned by the public gradients or on a random subspace during training (using AdaMix

and ϵ = 3). The reconstruction error when projecting on the random subspace is generally more than twice the error

obtained projecting on the subspace of public gradients, highlighting the importance of using the latter.
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Figure 7.7: Effect of adaptive clipping threshold We plot the test accuracy of AdaMix using different values of

adaptive clipping threshold percentile.

7.4.4 Additional Experiments

In the main paper we presented detailed experimental results on MIT-67, here we present detailed

results on all the remaining datasets.

7.4.4.1 Test Error vs Privacy

We show the test error obtained by different methods for different levels of privacy ϵ and the

robustness to membership attack, similar to fig. 7.1 for different datasets in figs. 7.9 to 7.13

7.4.4.2 Per-Instance Privacy

We show the pDP loss for NGD and AdaMix for different datasets in figs. 7.14 to 7.18, similar to

fig. 7.3 (we use ϵ = 3).
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Figure 7.8: Larger values of σ performs better. We plot the test accuracy of NGD and AdaMix using different values

of σ for ϵ = 3. A larger σ performs better but needs more training steps thus verifying the claim empirically across

multiple datasets.

0 2 4 6 8
Eps

15

20

25

30

35

40

Er
ro

r (
%

)

Error vs Privacy

Public Data
Private Data 
 (Non-Private Training)
NGD
PPGD
AdaMix

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Eps

35

36

37

38

39

40

Er
ro

r (
%

)

High Privacy Regime

52.5 55.0 57.5 60.0 62.5 65.0 67.5
MIA (AUC)

28

30

32

34

36

38

40

Er
ro

r (
%

)

1
2

3

8

1 2

3

8

1

2

3

8

Robustness to Membership Attacks

Oxfordflowers

Figure 7.9: Test error vs Privacy and Robustness to Membership Attacks on Oxford-Flowers
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Figure 7.10: Test error vs Privacy and Robustness to Membership Attacks on CUB-200
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Figure 7.11: Test error vs Privacy and Robustness to Membership Attacks on Oxford-Pets
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Figure 7.12: Test error vs Privacy and Robustness to Membership Attacks on Stanford Dogs

177



0 2 4 6 8
Eps

16

18

20

22

24

Er
ro

r (
%

)

Error vs Privacy

Public Data
Private Data 
 (Non-Private Training)
NGD
PPGD
AdaMix

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Eps

22.0

22.5

23.0

23.5

24.0

24.5

25.0

Er
ro

r (
%

)

High Privacy Regime

48 50 52 54
MIA (AUC)

18

19

20

21

22

23

24

Er
ro

r (
%

)

1

2

3

8

1

2
3

8

1

2

3

8

Robustness to Membership Attacks

Caltech-256

Figure 7.13: Test error vs Privacy and Robustness to Membership Attacks on Caltech-256
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Figure 7.14: Effect of public data on per-instance DP for Oxford Flowers
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Figure 7.15: Effect of public data on per-instance DP for CUB-200
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Figure 7.16: Effect of public data on per-instance DP for Oxford Pets
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Figure 7.17: Effect of public data on per-instance DP for Stanford-Dogs
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Figure 7.18: Effect of public data on per-instance DP for Caltech-256
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Figure 7.19: Multi-model initialization and models for Oxford Pets

7.4.5 Multi-modal Initialization

We show the effect of using different initializations and CLIP features for different datasets in

figs. 7.19 to 7.22, similar to fig. 7.4 (we use ϵ = 3). We show that for Stanford Dogs and Oxford Pets

datasets (fig. 7.19 and fig. 7.20) which have images which are very similar to images in ImageNet,

ResNet-50 trained on ImageNet performs better than CLIP features. However, the trend for the

effect of initialization remains the same across all the datasets.
7.4.6 Experimental Details

We use https://github.com/yuxiangw/autodpAuto-DP library for all of our experiments. For ResNet-

50 features we use the torchvision version of the ResNet-50 model and for CLIP features we
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Figure 7.20: Multi-model initialization and models for Stanford Dogs
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Figure 7.21: Multi-model initialization and models for Oxford Flowers
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Figure 7.22: Multi-model initialization and models for CUB-200
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use the model provided.2

To create the public and private datasets, we take 2 samples (for Oxford-Flowers and CUB-200)

and 5 samples (for MIT-67, Stanford Dogs, Oxford Pets, Caltech-256) from each class as the public

dataset and the remaining samples as the private dataset. In this way, the public set is less than 10%

of the private set. We repeat all the experiments with 3 random seeds and report its mean and std.

For all the experiments we try multiple values for the learning rate: {1e− 3, 2.5e− 3, 5e− 3}

for ResNet-50 experiments and {1e− 6, 5e− 7, 1e− 7} for CLIP experiments, and report the best

values across 3 random seeds. We use 1e − 2 as the L2 regularization coefficient across all the

experiments. For subspace projection we project the gradients on a 2000-dimensional subspace for

experiments with ResNet-50 features and 500-dimensional subspace for experiments with CLIP

features. For the clipping threshold percentile we use a constant value of 90 percentile across

all the experiments in the paper. In fig. 7.7, we show that further tuning the clipping threshold

percentile can improve performance on certain datasets, however, even with a pre-decided value of

90 percentile it still out-performs all the other methods.

We train the logistic model on the public data (few shot data) for 200 epochs (sames as iterations

since we use gradient descent) for multiple values of learning rate: {1e − 1, 5e − 2, 1e − 2} for

ResNet-50 features and {1e− 4, 5e− 5, 1e− 5} for CLIP features and choose the best performing

model. For the private training, we use σ = 20 for all the experiments and calculate the number of

iterations required for private training using methods provided in the library mentioned above. In

the experiments we observe that choosing a higher value of σ (thus training for more iterations)

generally results in better performance.

2https://github.com/openai/CLIP
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7.5 Differential privacy basics

In this section, we describes tools we need from differential privacy and use them to prove that

Algorithm 2 and Algorithm 3 satisfies a family of differential privacy parameters.

Lemma 9 (Analytical Gaussian mechanism [BW18]). For a numeric query f : X ∗ → Rd over

a dataset D, the randomized algorithm that outputs f(D) + Z where Z ∼ N (0, σ2Id) satisfies

(ϵ, δ(ϵ))-DP for all ϵ ≥ 0 and δ(ϵ) = Φ(µ
2
− ϵ

µ
)− eϵΦ(−µ

2
− ϵ

µ
) with parameter µ := ∆/σ, where

∆ := ∆
(f)
2 = maxD∼D′ ∥f(D)−f(D′)∥2 is the global L2 sensitivity of f and Φ is the CDF function

of N (0, 1).

The above lemma tightly characterizes the (ϵ, δ)-DP guarantee of a single invocation of the

Gaussian mechanism, and the following lemma shows that we can use the same result for an

adaptive composition of a sequence of Gaussian mechanisms.

Definition 5 (Gaussian Differential privacy [DRS21]). We say a mechanismM satisfies µ-Gaussian

differential privacy (GDP), if it satisfies (ϵ, δ(ϵ))-DP for all ϵ ≥ 0 and δ(ϵ) being that of a single

Gaussian mechanism (in Lemma 9) with parameter µ.

Lemma 10 (Composition of Gaussian mechanisms [DRS21]). The adaptive composition of a

sequence of Gaussian mechanism with noise level σ1, σ2, . . . and global L2 sensitivity ∆1,∆2, . . .

satisfies µ-GDP with parameter µ = (
∑

i(∆i/σi)
2)

1/2.

Specifically, the noisy gradient descent (NoisyGD) algorithm (Algorithm 1) we use is a compo-

sition of T Gaussian mechanisms for releasing the gradients and its privacy guarantee is equivalent

to that of a single Gaussian mechanism.

Proposition 8. Let ∇f(w) be a function of the private dataset with global L2 sensitivity smaller

than L for any w ∈ W , then Algorithm 1 with parameter T, σ2 such that ρ := T 2L2

2σ2 satisfies
√
2ρ-Gaussian differential privacy.

Proof. The proof follows from Lemma 10 as Algorithm 1 is an adaptive composition of T Gaussian

mechanisms with global sensitivity L.
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7.6 Per-instance differential privacy

In this section, we provide details on the per-instance differential privacy [Wan19] that we used

to generate Figure 7.3. To cleanly define per-instance differential privacy, we first define indistin-

guishability.

Definition 6 ((ϵ, δ)-indistinguishability). We say two distributions P,Q are (ϵ, δ)-indistinguishable

if for any measurable set S

PrP [S] ≤ eϵ · PrQ[S] + δ and PrQ[S] ≤ eϵ · PrP [S] + δ.

Definition 7 ( [Wan19]). We say a randomized algorithmM is (ϵ(·), δ)-per-instance differentially

private (pDP) for scalar δ ≥ 0 and function ϵ : Z∗ ×Z → R+, such that for any dataset D ∈ Z∗,

individual z ∈ Z ,M(D) andM(D ∪ {z}) are (ϵ(D, z), δ)-indistinguishable.

pDP loss ϵ is a function of one particular pair of neighboring datasets. It describes the formal

privacy loss incurred to the particular individual z that is added (if z is not part of the input dataset)

or removed (if z is part of the input dataset). pDP is a strict generalization of DP, as we can recover

DP from pDP by maximizing ϵ(·) over D, z.

Lemma 11. IfM is (ϵ(·), δ)-pDP, thenM is also (supD∈Z∗,z∈Z ϵ(D, z), δ)-DP.

We emphasize that the pDP loss ϵ(·) itself is data-independent, but specific evaluations of the

pDP losses (e.g., ϵ(D−z, z) or ϵ(D, z)) depends on the private dataset D, thus should not be revealed

unless additional care is taken to privately release these numbers.

For our purpose, we are interested in the distribution of pDP losses of individuals in the dataset

induced by different DP algorithms. This is used to provide a theoretically-sound alternative to the

prevalent practices of using specific attacks (such as membership inference attacks) for evaluating

the data-dependent privacy losses. Before we state the pDP bounds of our algorithms, we extend

the standard (ϵ(·), δ)-pDP definition to a per-instance version of the Gaussian DP.
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Definition 8. We say a mechanism is µ(·)-per-instance Gaussian Differentially Private (pGDP),

if (D,D ∪ z) (and (D ∪ z,D)) are (ϵ, δ)-indistinguishable for all ϵ, δ parameters described by

µ(D, z)-GDP.

This allows us to obtain precise pDP bounds under composition.

Proposition 9 (pDP analysis of AdaMix). Let z1, ..., zn be the data points of the private dataset.

Algorithm 3 satisfies µ(·)-pGDP with

µ(D−i, zi) =

√√√√ T∑
t=1

min{∥∇ℓi(wt)∥, τ}2
σ2

.

Similarly, Algorithm 2 satisfies µ(·)-pGDP with

µ(D−i, zi) =

√√√√ T∑
t=1

∥UT g̃pri
i (wt)∥22
τ 2t σ

2
.

Proof. Both algorithms are the composition of T -Gaussian mechanisms. Thus the results follow

by the composition of pGDP. The composition of pGDP is implied by the composition theorem of

GDP (Lemma 10) by choosing the space of datasets to be just {D,D ∪ {z}}.

Fixing any δ, we can then compute the corresponding ϵ(·) for (ϵ(·), δ)-pDP using the formula of

Gaussian mechanism with µ taken to be µ(·) pointwise.

7.7 Proofs of the technical results

We will be using the following O(1/t) convergence bound due to Lacoste-Julien, Schmidt and

Bach [LSB12], which uses a decaying learning rate and a non-uniform averaging scheme.

3As we discussed earlier, per-example gradient clipping can be viewed as Huberizing the loss function in GLMs
[SST21], all our results apply to the updated loss function. The adaptive clipping approach we took, can be viewed as
an heuristic that automatically identifies an appropriate level of Huberization.
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Theorem 10 (Convergence of SGD for Strongly Convex Objectives [LSB12]). Let f be a m-

strongly convex and defined on a convex setW . Assume stochastic gradient oracle gt satisfies that

E[gt|wt] ∈ ∂f(wt) and E[∥gt∥2] ≤ G2 for all t = 1, ..., T . Then the (projected) stochastic gradient

descent with learning rate ηt =
2

m(t+1)
satisfies

E[f(
T∑
t=1

2t

T (T + 1)
wt)]− f(w∗) ≤ 2G2

m(T + 1)
(7.1)

and E[∥wT+1 − w∗∥2] ≤ 4G2

m2(T + 1)
. (7.2)

Corollary 2 (NoisyGD for Strongly Convex Objectives). Let J(w) = L(w)+ λ
2
∥w∥2 with individual

loss functions ℓ being L-Lipschitz on W . Assume supw∈W ∥w∥ ≤ B. Let the learning rate be

ηt =
2

λ(t+1)
, then

E

[
J

(
2

T (T + 1)

T∑
t=1

twt

)]
− J∗ ≤2(NL+ λB)2

λT
+

2dσ2

λT
(7.3)

=
2(NL+ λB)2

λT
+

dL2

λρ
, (7.4)

where ρ := TL2

2σ2 is the privacy parameter of the algorithm (
√
2ρ-GDP).

Proof. First check that NL+λB upper bounds the Lipschitz constant of J on because the Lipschitz

constant of λ
2
∥w∥2 is smaller than λB due to the bounded domain. Second, check that the noisy

gradient oracle satisfies that it is unbiased, and the added noise has a variance of σ2 per coordinate

for all d coordinates. Thus

E[∥gt∥2|wt] = E[∥∇J(wt)∥2|wt] + E[∥nt∥2|wt] ≤ (NL+ λB)2 + dσ2.

Thus by taking expectation on both sides we verify that we can take G2 = (NL+ λB)2 + dσ2.

It remains to substitute these quantities and apply the first statement of Theorem 10.

Corollary 3 (One-Pass SGD on public data). Assume the public data with N samples are drawn

from the same distribution of the private data. Assume that the (population risk)

R(θ) = E(x,y)∼D[ℓ(θ
∗, (x, y))]
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is c-strongly convex at θ∗ for some constant c. Then the one-pass SGD algorithm below

wt+1 = wt −
2

c(t+ 1)
∇ℓ(wt, (xt, yt))

for t = 1, ..., Npub obeys that

E[∥wNpub+1 − w∗∥2] ≤ 4L2

c2Npub

where w∗ = argminw∈W R(w).

Proof. First note that since the data is drawn iid, running one-pass SGD by going through the

data points in a random order uses a fresh sample to update the parameters. This is is equivalent

to optimizing the population risk directly. Check that for any fixed w and all t = 1, ..., Npub

E(xt,yt)∼D[∇wℓ(w, (xt, yt))] = ∇R(w). Moreover, we need this stochastic gradient oracle to satisfy

E(x,y)∼D[∥∇ℓ(θ, (x, y))∥2] ≤ G2. Notice that by our assumption ∥∇ℓ(θ, (x, y))∥2 ≤ L2, thus we

can take G = L. By invoking the second statement of Theorem 10 the result follows.

With these two corollaries stated, we are now ready to prove Theorem 5 and Theorem 11.

Proof of Theorem 5. The proof relies on Corollary 2, and the following argument. When additional

regularization with parameter λ, the utility we consider should still be considered in terms of

L(ŵ)− L(w∗). Let w∗ be any comparator satisfying B > ∥w∗∥

L(w̄)− L(w∗) = J(w̄)− Jλ(w
∗
λ)

+ Jλ(w
∗
λ)− J(w∗) +

λ

2
∥w∗ − wref∥2 −

λ

2
∥ŵ − wref∥2

≤J(ŵ)− Jλ(w
∗
λ) +

λ

2
∥w∗ − wref∥2.

Take expectation on both sides and apply Corollary 2

E[L(w̄)]− L(w∗) ≤ 2(NL+ λB)2

λT
+

dL2

λρ
+

λ

2
∥w∗ − wref∥2.

Finally, choosing λ =
√

ρ
2∥w∗−wref∥dL2 yields

E[L(ŵ)]− L(w∗) ≤ 4(nL+ λB)2

λT
+

√
dL∥w∗ − wref∥√

2ρ

as claimed (dividing N on both sides to get R̂).
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Theorem 11. Assume the private data and public data are drawn i.i.d. from the same distribution

D and that R(w) = E(x,y)∼D[ℓ(w, (x, y))] is c-strongly convex inW . Let wref = wNpub+1 — the last

iterate of a single pass stochastic gradient descent on R̂pub(w) (initializing from w0 = 0) that goes

over the public dataset exactly once one data-point at a time with learning rate ηt = 2
c(t+1)

. Let wref

be passed into Theorem 5’s instantiation of NoisyGD, which returns w̄ (The pseudo-code of this

algorithm is summarized in Algorithm 3 in the appendix), then at the limit when T is sufficiently

large, the excess risk obeys that

E[R(w̄)]−R(w∗)

≤ 4
√
dL2

c
√

NpubN
√
2ρ

+ Gen(w̄, N) + Gen(w∗, N),

where w∗ = argminw∈W R(w) and Gen(w,N) :=
∣∣∣E[R(w)− R̂(w)]∣∣∣ is the expected generaliza-

tion gap of (a potentially data-dependent) w.

Proof of Theorem 11. Let w∗ = argminw∈W R(w). By Corollary 3, we have

E[∥wref − w∗∥2] ≤ 4L2

c2Npub
,

which implies (by Jensen’s inequality) that E[∥wref − w∗∥] ≤
√

4L2

c2Npub
.

Now by plugging in the w∗ in theorem, take expectation over the public dataset, and substitute

the above bound, we get

E[E[R̂(w̄)]− R̂(w∗)] ≤ 4(NL+ λB)2

λTN
+

2
√
dL2

c
√
NpubN

√
2ρ

.

Take T to be sufficiently large so that the second term dominates, we obtain the stated bound.

Finally, to convert the above bound into that of the excess risk:

E[E[R̂(w̄)]− R̂(w∗)]− (E[R(w̄)]−R(w∗))

≤|E[E[R̂(w̄)]−R(w̄)]|+ |E[R̂(w∗)]−R(w∗)|

:=Gen(w̄, N) + Gen(w∗, N),

which completes the proof.
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We make two additional remarks. First, we do not require the empirical objective Lpub to be

strongly convex. In practice, we do not have strong convexity when Npub < d. The assumption of

c-strong convexity is on the population-level risk functionR. Second, our bound decomposes the

excess (population) risk of the private learner into a (local) uniform-convergence bound (which

is required by a non-private learner too) and an additional cost due to privacy. Note that Gen(N)

is usually O(1/
√
N) but could be O(1/N) when certain data-dependent “fast rate” conditions are

met, e.g., realizability, low-noise, or curvature (see, e.g., [KL15]). Our results suggest that the cost

of privacy asymptotically vanishes (fix ρ, Npub →∞, and Npub/N → 0) even under these fast rate

conditions relative to the non-private rate.
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Algorithm 3: (Theoretical version of) AdaMix training algorithm (no clipping, no adaptive

projection, slightly different pretraining, theoretically chosen learning rate).
Data: Public dataset Dpub, private dataset Dpri, privacy parameter (ϵ, δ), noise variance σ,

Lipschitz constant L3, population-level strong convex parameter c, regularization

parameter λ and a constraint setW .

Result: w̄

Public Pretraining Phase (OnePassSGD on Dpub): w1 = 0. for t = 1, . . . , Npub do

In a shuffled order ηt = 2
c(t+1)

;

wt+1 ← ΠW
(
wt − ηt∇ℓ(wt, (x̃t, ỹt))

)
;

end

wref ← wNpub+1.

Mix Training Phase (NoisyGD on Dpub ∪Dpri):

T ← Calibrate(ϵ, δ, σ) (i.e., Tτ2

2σ2 =: ρ) NoisyGD on objective function

L(w) + λ
2
∥w − wref∥2

w1 = wref;

for t = 1, . . . , T do

ηt ← 2
λ(t+1)

;

nt ∼ N(0, σ2I);

wt+1 ← ΠW
(
wt − ηt(

∑Npri
i=1∇ℓi(wt) +

∑Npub
j=1 ∇ℓ̃j(wt) + nt)

)
;

end

The following averaging can be implemented incrementally without saving wt

w̄ ←
∑T

t=1
2t

T (T+1)
wt
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CHAPTER 8

Discussion and Future Work

Machine unlearning is a nascent field with widespread applications in data removal, private analysis,

fairness, copyright protection etc. Our work [GAS19a] provided the initial result in selectively

forgetting samples from the weights of a trained neural network. We provide few methods to

remove data which includes perturbing the weights by adding Fisher noise, add a single shot update,

linearizing the network in a mixed-private setting, and training models in a differentially private

manner with adaptive updates. We show applications of these methods for image classification

tasks, however, our method is not restricted to any domain or modality. We also provide computable

information theoretic bounds to estimate the amount of residual information after forgetting. Our

results attempts to answer some questions but also provides a lot of directions for future works:

Compartmentalized Training: Sharded learning is another approach to perform selective for-

getting, where the training data is split into multiple shards and a separate model is trained for

each shard. During inference based on the application model predictions are combined appropri-

ately. When asked to remove a subset of the dataset, one can simply discard the subset of models

contaminated by those samples, and re-train them from scratch. We explored this direction in

a recent work [DBA23], where we seek to combine sharded learning with differentially private

algorithms. Compartmentalized training opens a few directions: (i) how many splits should the

data be sharded into, (ii) which samples should be present in each, (iii) what properties should

samples belonging to the same splits have, (iv) how should the individual splits be trained, (v)

depending on the application, whats the ideal mechanism to combine the predictions. For instance

in a classification setting, its easy to gauge that choosing the top-k predictions could be the best way
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for combining predictions, however there is need for more work to address tasks like generative

modelling, sentence completion, image segmentation, object detection and so on.

Approximate Unlearning: Our work majorly provides algorithm for approximately removing the

influence of training samples from the weights, where we bound the approximation error information

theoretically. However, majority of the unlearning algorithms are focused on removing information

using linear approximations or linearized versions of deep networks. Addressing approximate

removal for non-linear networks without the use of Newton-style updates is an interesting direction

for future work, including the effect of stability of training algorithms which measures the divergence

of different solutions.

Linearized Models: Our work in chapter 5 prompted an important observation, that for fine-

tuning tasks linearized deep networks perform comparable to their non-linear counterparts. Since

majority of the models used in practical tasks are often fine-tuned its important to understand

the efficacy of such models in different applications as linear models offer significant theoretical

benefits compared to non-linear models. Linearized models should be explored in domains other

than image classification, for instance, fine-tuning massive generative models on few-shot data, as

in chapter 5 we show that linear models perform significantly better than non-linear in few shot

regimes

Continual and Composable learning: Unlearning correlates heavily with continual learning, as

continual learning involves adding small subsets of data to trained models while unlearning involves

removing data from trained weights. An unlearning method can be reversed while handling the

subtle details to obtain a continual learning method. Similarly inspiration from continual learning

methods can be used to obtain better forgetting methods as continual learning is a much older field

than unlearning. Using linearized models also enables one to learn models in a composable way, as

the activations are a linear combination of the weights, as a result combining multiple activations

is equivalent to simply combining the weights correspondingly. This is especially useful while

employing large scale models as the cost of inference through such models can be significantly high,

192



which can be bypassed by composing linearized deep networks.

Computable information theoretic bounds: Our bounds also enables us to estimate information

theoretic quantities like Conditional Mutual Information for generalization of deep neural networks

[RAG22], and are not restricted to privacy applications. In chapter 3 we show how these bounds can

be computed efficiently for deep neural networks, and how the activations leak lesser information

compared to the weights. This provides an interesting way to compute such quantities however it

also necessitates the need for future research to improve the empirical tightness of these bounds.

Copyright Protection: With the increase in deployment of large scale generative models, it is

becoming necessary to protect the copyrights of the training data. Especially when the training data

belongs to artists, or professionals in art/photography. [VKB23] recently proposed a method for

generative modelling with copyright protection. Their method involves training multiple models

on sharded data, and using a privacy-preserving combining technique which generates samples

which are copyright protected with respect to the training data. Thus training models in a sharded

fashion can not only enable unlearning samples efficiently, but also generate data in a copyright

protected manner, which prompts the need for additional research at the intersection of sharded

learning, copyright protection and differential privacy.
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