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Professor Alexander Kusenko, Co-Chair

Pseudo-Nambu Goldstone bosons (pNGBs), such as axion-like particles (ALPs), are a
compelling candidate for cold dark matter. In the following thesis, I will discuss two
separate ALP models of cold dark matter. In both models, a spontaneously bro-ken
approximate global U(1) symmetry results in the formation of an interlocking
network of 1- and 2-dimensional topological defects that is stable unless a bias term is
present in the Lagrangian. The annihilation of this system results in the production of
ALPs, gravitational waves, and possibly primordial black holes (PBHs). We dub this
process “catastrogenesis”, from the Greek word rkaraoTpogn, meaning “annihi-
lation.” The first model I will discuss assumes that the ALPs are stable and therefore
constitute some or all of the dark matter. In this case, if produced at temperatures
below 100 eV gravitational waves could be detected by future cosmological probes for
ALP masses anywhere between 10716 and 10° eV. The second possibility I discuss is
that ALPs could decay into Standard Model products that then thermalize, in which
case ALPs do not make up any of the dark matter. However, if PBHs are produced
during the last stages of string-wall annihilation they could themselves constitute up
to 100% of the dark matter. In addition, produced gravitational waves could be

detectable by future interferometers.
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A diagram of the configuration of the field ® after the formation of
the string-wall network for N = 3. In real space, the energy density
of the field is concentrated in domain walls at angles away from one
another corresponding to the separations between the global minima
of the potential, with cosmic strings lying at their intersections. Each
of the individual domains occupy different vacua in field space, which
have slightly different energy densities thanks to the presence of a bias
term in the potential. . . . . . . . ...
A graphical representation of the ALP cosmology we will be studying.
When the temperature becomes of the order of the length scale of the
symmetry breaking, the Kibble mechanism leads to the formation of
cosmic strings. This is followed by the formation of domain walls con-
necting these strings together when the Hubble parameter is on the
order of the mass of the axion, allowing for coherent oscillations and
for the axion to pick up a mass. Finally, the string-wall network anni-

hilates when the pressure from the bias term overcomes the tension of

the domain walls, tearing them apart and leading to “catastrogenesis.”
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Regions of interest of the bias parameter ¢, as a function of the spon-
taneous symmetry breaking scale V', for ALP masses of m, = 107 eV
in the left panel and m, = 1071% ¢V in the right panel. The red region
is excluded by either an ALP density larger than that of DM, or by
current CMB limits on GWs (see figure 3.1). Lines corresponding to
the fraction of the DM made up of ALPs farp = Q./Qpy = 1 and
farp = 0.1 are shown as well. The grey region is excluded by the re-
quirement that ALPs be produced at T,,, > 5 eV. T,,, grows with ¢,
as indicated by the T,,, = 50 eV orange dashed line. The blue region
will be explored in the near future by CMB probes and astrometry,
while we expect the region to the right of the black dotted lines to be
subject to structure formation bounds. . . . . . ... ... ... ..
Regions of interest in {V]€,} space for m, = 10° eV. The red regions
correspond to either ALP densities larger than that of the DM at
present or current CMB limits on GWs as displayed in figure 3.1. The
grey region is excluded by the requirement that 7;,, < 5 eV. The
green region is allowed but not testable, while the blue region will be

explored in the near future by CMB probes and astrometry. . . . . .
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Regions of the density parameter of GWs from walls Qg h? vs. the
peak frequency of the spectrum. The blue regions are probed by the
current and future reach of astrometry [DTP18, ADG20], the yel-
low regions by measurements of the effective neutrino degrees of free-
dom [PSM16a, Laull], and the red regions by CMB measurements
INSY19]. The connected black lines are an example of a differen-
tial GW spectrum from string-wall annihilation with 7,,, = 5 eV
and Qewh?|pear =~ 1072, The solid black line is the low-frequency
part of the spectrum predicted by causality, while the dotted black
line is uncertain; these are proportional to f2 and f~!, respectively.
The vertical dashed line indicates the frequency of GWs produced at
matter-radiation equality. . . . . . . .. ... L.
Current experimental bounds on the ALP mass due to a photon-axion
coupling. The dotted lines are the centers of detection regions at given
values of ¢,, whose width is of approximately two orders of magni-
tude. The current bounds on the mass of a possible ALP come from
laboratory measurements [Ball5, DEG16, Ehrl0], stellar measure-
ments [ADG14, VSV15], helioscopes [And07, Anal7], other astrophys-
ical measurements [PEF15, RMR20, DFS20, Abr13, FKM20, Ajel6]
(some of which assume an ALP DM [CR12, RTV21, GCKO07]), and di-
rect DM detection experiments [Asz10, Dul8, Bra20, Boul8, LAC20,
Zhol8, Bac2la, HSS90, MFI17, Ale19]. The light orange region will
be probed by future experiments, including [Ouel9, SDS13, MFL19,
LMP19, CDM17, BHL1S8, Stel6, ABD17]. . . ... ... ... ....
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Plots of the mass fraction fppy and mass Mpgy of PBHs produced
by the stable U(1) ALP model for the case where ALPs constitute
all of the DM and where they constitute only 10%. The green lines
correspond to different values of T,,,,, while the black lines correspond
to different values of o, which determine the relationship between
feer and p(T,pn,). Shown bounds are due to millilensing of compact
radio sources (RS), dynamical limits from disruption of wide binary
stars (WB) and globular clusters (GC), heating of stars in the Galactic
disk (DH), dynamical friction (DF), disruption of galaxies (G), and
the CMB dipole (CMB). The incredulity limit (IL) corresponds to one
PBH per Hubble volume. All of these limits are taken from [Den2la).
The present GW density Qg h? predominantly emitted by the string-
wall network at annihilation as a function of fpeqr or Tg,, as shown
on the upper and lower horizontal axes, respectively, for fppy = 1, as
shown in the orange region, and fppy = 1072, as shown in the yellow
region. The solid black lines correspond to fppy at fixed values of «
ranging from 7 to 28. We also show the upper limits and expected
reach of existing and future GW detectors as solid and dashed colored
contours, respectively. The quoted lower limits on m, exclude the
regions below and to the left of the respective slanted red lines if
T,/V = 107% for smaller values of this ratio, the allowed regions
shrink. Grey dotted lines correspond to constant values of Mpgy.
The consistency condition T,,, < 1072 T, < 10* V excludes the

region below and to the right of the thick blue line. . . . . .. .. ..
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Plots of possible combined spectra from both wall annihilation and
string annihilation for different values of m,. The thick, red, solid
lines correspond to a model with @ = 28, and show a spectrum that
is observable by several future GW detectors, while the corresponding
spectrum from strings shown as dark red lines would only be observ-
able by the ET for m, ~ 1 GeV. For a more typical model where
a = 12, the GWs from wall annihilation, which are shown in violet,
are observable, but the corresponding spectrum from strings, shown

inblue,isnot. . . . . . ...

A plot of the PBH DM fraction as a function of PBH mass, assuming
a monochromatic mass function, for different values of T, as given
in equation (4.0.25). Different colored lines correspond to different
values of a, with dashed blue lines for @« = 7, solid grey lines for
a = 19, and dashed dotted red lines for o = 28. Observational upper
limits on fppy are shown in grey. See main text for more details.

Regions of T,,, as a function of the PBH mass for which the PBH
DM fraction given in equation (4.0.25) is 1, in orange, or 1072, in
yellow which are allowed by the upper limits shown in (figure 1). Each
lower limit on m, excludes the region above and to the right of the
corresponding red line under the condition that T, < 1072V. Other
consistency conditions, Ty, < 1072 T,, < 107* V and T\, < Tonn,
reject the regions above the thick blue line and below the dashed
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A plot of the required dimensionality of the bias term as a function of
the ALP mass. We can see that theories with lower ALP masses will
require significantly more fine-tuning than those where the ALP mass

is greater than 1 GeV. . . . . . . . ... L
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CHAPTER 1

Introduction

1.1 Dark Matter

It is widely accepted that the best explanation for several key results in as-
trophysics and cosmology is the presence of a significant amount of matter in the
universe that is not directly detectable via photon detection. Despite strong evidence
for its existence, none of the possible candidates for dark matter that have been put
forward by theorists during the past few decades have been directly detected.

The observational evidence for dark matter is, at present, overwhelming. For
example, the observed mass-to-light ratio in our solar neighborhood yields a cosmo-
logical matter density parameter €2, ~ p,,/p. of approximately 0.01 [Zwi33|, where
pm is the energy density of matter, p. ~ 10.5 h? keV/cm? is the critical density at
present, and h ~ 0.7 x 100km/(Mpc sec?®) is the reduced Hubble parameter. On the

Ultra-light B jle Light DM
SERSUONI P Planck Scale

Fuzzy DM Axions Neutrinos WIMPs
¥ ALPs 10 "’4 1 10 102 10*kg
ol ! Il ] & e } i I i I | Il 'R Il l Il
Ll T T 1 T T Lagi T T d lm T xl) T T T : 2 T % T
T T T 10! 10 10%eV Y
Electroweak Primordial Black Holes
Tyow Scale Solar Mass

Figure 1.1: A summary of current dark matter candidates discussed in chapter 1.1
in the order of the mass of a single particle. The mass ranges of each variety of
candidate are shown in red, and are compared to the present temperature of the
photon background 7)., the electroweak scale, the Planck scale, and the solar mass
M, which are labelled in blue.



scale of binaries and groups of galaxies, however, this number rises to 0.1, and on
the scale of clusters this number becomes approximately 0.3 [FG79]. More recent
results, such as from the PLANCK telescope [Agh20], have suggested that the den-
sity of baryonic matter is around 0.04, and therefore the density of dark matter is
around 0.24. The presence of dark matter is required to resolve this discrepancy.
One can also appeal to observations of velocity curves of galaxies [PSS96], which
according to the virial theorem suggest a higher amount of matter present than is
visible to optical telescopes. The X-ray emissions of hot gas from elliptical galaxies
also provide evidence for dark matter WBH13]. The rate of emission of X-rays from
galaxies such as M87 [WBH13] and others of different morphological types [LMO02]
suggests that their visible mass makes up only 1% of the total mass present within
their volumes.

Gravitational lensing also presents straightforward evidence for the existence
of dark matter [TVW90]. The amount of lensing experienced by light at redshifts
between 1 and 3 is a function of the mass density of the medium, and can be compared
to the visible luminosity. Strong lensing, which involves the splitting of the image
of a galaxy into multiple images, suggests that €2, is also on the order of 0.3-0.4
[BN92]. Meanwhile, weak lensing, which involves the distortion of the images of
background galaxies, also predicts a value for €, of around 0.3 on scales above that
of galactic clusters [Mel99]. Weak lensing can also determine the amount of cosmic
shear [WMRO1] and can predict the existence of dark clusters, which do not have a
significant amount of visible matter within them [UF00].

At supergalactic scales, €2, can also be estimated by observing the peculiar
velocities of galaxies and clusters [DFB87]. These show that the total value of Q =
Q. + Qy is very close to 1, where €2, is the contribution to the density from dark

energy, which could be due to a cosmological constant. Observations of the CMB



anisotropy have helped to differentiate these two values. Fitting to the observed
power spectrum [Lee01, Net02, Hal02] has produced values of €2,, and 2, consistent
with a total density of 1 and a value for €, of around 0.3 as well. These have
also shown that the density of baryonic matter €2 is less than 0.05. The difference
between this and the total €2,, is an indicator of the presence of a contribution due
to dark matter Qpy = Qy,, — Qp [Abr02].

In addition to the observational evidence, there is also good theoretical evidence
for the existence of dark matter. For example, in the absence of inflation the Stan-
dard Model of cosmology requires that the dimensionless curvature of the universe
b~k /(R?*T#) where k is the curvature of the universe, Tj is the photon temperature
at present, and R is the scale factor, be constant and small, around the order of
10758 [LR99]. This is known as the “curvature problem”, and is resolved in infla-
tionary models, which require that k approach 0 and therefore 2 approach 1 during
inflation. Inflation also produces density perturbations that are adiabatic and lead
to anisotropies in the CMB [Pre80, Zel72]. As indicated first by the COBE results
[Wri92], the current magnitude of these anisotropies is too small for the formation of
galaxies to have been produced by the presence of baryonic matter alone. Instead,
the presence of dark matter at matter-radiation equality leads to small-scale pertur-
bations which then grow into larger-scale perturbations [BES80] that can then lead
to the growth of visible galaxies like we observe (and reside in!) today. A more
comprehensive overview of the experimental evidence for dark matter can be found
in [Oli03].

The full list of possible dark matter candidates is impossibly large. However,
all theoretical candidates are subject to stringent theoretical and experimental con-
straints [M 08]. For example, we know based on experimental observations [Ber00]

that the density of the dark matter in the universe Qpyh? is about equal to 0.12,



and therefore any model of dark matter production should not produce an energy
density greater than this. In addition, the dark matter present in the universe was
“cold”, i.e. non-relativistic when dwarf galaxy-size inhomogeneities were first en-
compassed by the horizon at a temperature of ~ 1 keV. In cosmologies with cold
dark matter (CDM), the structure of the universe grows from the “bottom up”, i.e.
from initial clumps smaller than dwarf galaxies which then coalesce into larger and
larger structures [Pee82]. With “hot” dark matter, which is relativistic at 7" ~ 1
keV, structure formation would happen from the top down, with superclusters form-
ing first and then fragmenting off into smaller structures like the ones we see today
[BST82]; HDM models are largely rejected by simulations of structure formation.
Dark matter is said to be “warm” when it becomes nonrelativistic at T ~ 1 keV;
examples include sterile neutrinos [BPP82] and gravitinos [BST82]. Currently, CDM
and WDM models are the ones in agreement with the large-scale structure of the
universe [BDO06]. Therefore, this thesis will focus exclusively on models of CDM.

There are many existing proposals for DM candidates, many of which are listed
in [G 05] and [Linl19]. They can be classified by the upper or lower bound on the
mass of a single object as shown in figure 1.1. The lightest candidates, at masses
on the order of 1072° eV, are referred to as fuzzy dark matter [HBG00]. These are
CDM candidates which persist in the form of a cold Bose-Einstein condensate and
which prevent the overabundance of dwarf galaxies predicted by other CDM models.
Next are axions, which are pseudo-Goldstone bosons associated with the breaking of
a U(1) global symmetry and which must be very light if they are also to be viable
dark matter candidates (< 0.01 €V) [DB09]. The bounds on the coupling of axions
to photons as a function of their mass are shown in figure 3.2. These include the
QCD axion as well as other axion-like particles known as ALPs.

At higher masses are sterile neutrinos [S 93b], whose mass is expected to range



from 1-10 keV. These are particles that behave like Standard Model neutrinos but
are not coupled with it through weak interactions. These could include right-handed
Standard Model neutrinos as well as other, similar particles whose mass is larger than
that of left-handed neutrinos due to the breaking of a global symmetry such as flavor.
Another proposal is light scalar dark matter [LW77], which could be non-interacting
or could be associated with e.g. the mass hierarchy between different flavors in the
Standard Model [FN79]. The mass range of these particles is extensive depending
on their mechanism of production, but most candidates fall between 10 keV and 100
MeV.

Sitting within three orders of magnitude on either side of the electroweak scale,
i.,e. 1 TeV, are weakly interacting massive particles, also known as WIMPs. Per the
name, these particles interact with the Standard Model solely via gravity and another
force weaker than the weak force. These are often produced in supersymmetric
theories; SUSY WIMP candidates include neutralinos, sneutrinos [T 94], gravitinos
[J 03], and axinos [S 93a].

In addition to fundamental particles, there is also the possibility of the pro-
duction of light primordial black holes (PBHs), which are a hypothetical variety
of black hole formed by the gravitational collapse of large stars in the early uni-
verse via processes such as an early phase transition. These were first proposed
by Zel’dovich and Novikov in 1966 [ZN66], Hawking in 1971 [Haw71], and Carr
and Hawking in 1974 [Haw74a|, and could explain the existence of dark matter
[ZN66, Haw71, Haw74a, Car75, CKS20, CK22]. The masses of viable PBH candi-
dates range from 10'° to 10?° kg as well as around the order of a single solar mass.
The viability of PBHs as dark matter candidates is supported by the fact that the
DM has not been observed to interact with matter in any other way except grav-

itationally [BHS05, DBD17]. DM PBHs should also evaporate slowly enough as



to survive until the present day [CKS10, Haw74b, Haw75, BC19b, DG19, CMP21].
They must also avoid current constraints from microlensing [Tis07, Niil9b, Niil9a]
as well as numerous other bounds collected in e.g. [Kav20]. As indicated above, the
window of PBH masses for which they could constitute all of the DM is between 1016
and 1071° M, i.e. roughly the mass of a typical asteroid. A necessarily incomplete
list of proposed formation scenarios for PBHs in the asteroid-mass range includes
density perturbations in the early universe [Car75, Yok95, GLW96, BT18] , bubble
collisions [HMS82, LV20], the collapse of cosmic strings [Haw89], scalar field dy-
namics [KMZ85, CK17], long-range interactions [FK21], and the collapse of domain
walls [GVZ16, DGV17] or vacuum bubbles [DV17, KSS20] in multi-field inflationary
scenarios.

Dark matter, as indicated by observations, is electromagnetically transparent,
i.e. any charged dark matter candidate should have a charge small enough that it
remains invisible to current optical searches. In addition, the presence of dark matter
should also be consistent with the relative abundances of elements produced during
Big Bang nucleosynthesis. In particular, structures such as topological defects could
survive until recombination; if so, their contribution to the number of neutrino de-
grees of freedom N,y should be less than current experimental observations, which
predict a value of AN,y of less than 0.5 [Agh20]. Other limits include stellar evo-
lution [Raf99], self-interaction constraints, bounds from direct detection, constraints
from gamma-ray astrophysics, and model-dependent astrophysical bounds, all of
which are discussed in much greater detail in [M 08]. Presently undetectable theo-
retical signatures from dark matter can also guide the direction of future experiments

and observations. More details can be found in [Lin19].



1.2 Nambu-Goldstone Bosons

The focus of this thesis is on models of axion-like particles, or ALPs, which are
a variety of pseudo Nambu-Goldstone boson (pNGB). In general, Nambu-Goldstone
bosons (NGBs) are massless bosons that are associated with the spontaneously bro-
ken global symmetry of a theory at some given energy scale. To illustrate, consider a
complex scalar field ¢ whose Lagrangian is invariant under a global U(1) symmetry.
In 341 dimensions the most general renormalizable Lagrangian for this field contains
terms proportional to [0¢|? and |¢|"* where n < 4. For illustrative purposes, we will
focus on the case where only even-numbered terms show up. The Lagrangian then

becomes
£ =106 - V(9) (1.21)
where
A 2\2
V(g) = 4 (o] = V%) (1.2.2)
is the corresponding potential. Because ¢ is complex, we can write it as
d(x) = p(z)e®®, (1.2.3)

In terms of the field amplitude p(x) and the phase 0(x), the Lagrangian becomes

1 1 A
£=§uw%+§f@%%—zwﬁ4ﬂﬂ (1.2.4)



In general, this does not help us when it comes to calculating the dynamics of these
fields. However, we notice that the potential we have constructed has a minimum
at pmin = V. When the total mean energy of the field is low enough (for example,
if the temperature of the vacuum is small) then the value of the field p will tend to
remain in the neighborhood of V. We can expand the potential about this value to
determine the dynamics near V', which is often referred to as the “true vacuum” (i.e.
where the potential energy is at a global minimum). However, we also see that at

this minimum the second term in equation (1.3.1) becomes
Liin = ! 20,00"0
kin — 5‘/ i ) (125)

which is the kinetic term of the Lagrangian of a massless particle a = V6. This is
not a coincidence; in fact, Goldstone’s theorem [Gol61] tells us that if the ground
state (where the potential is minimized) is not invariant under a global symmetry
of the Lagrangian, massless particles known as Nambu-Goldstone bosons (NGBs)
will appear. In the U(1) example, the NGB in question is the field a. In general,
one NGB will appear per generator of the spontaneously broken global symmetry.
Quantum mechanically, this means that near the ground state the field p picks up an
expectation value of (p) = V. Note that regardless of which symmetry is broken p
ought to be a scalar field, since a spinor or vector field having a vacuum expectation
value would violate Lorentz invariance.

In many cases, the global symmetry of the Lagrangian is only approximate, i.e.
it is explicitly broken at some smaller energy scale; this could be for various reasons,
although we expect all global symmetries to be explicitly broken by quantum gravity
at high enough energy scales regardless (see e.g. [GS89]). If this is the case, then

the associated NGB will be massive. NGBs that are associated with a spontaneously



broken symmetry at a given energy scale that is then explicitly broken at a lower
energy scale are known as pseudo-Nambu Goldstone bosons, or pNGBs for short.

Examples of U(1) pNGBs postulated in physics beyond the standard model
(SM) are numerous. Famously, the axion is associated with a global U(1) symmetry
that is then explicitly broken by the QCD phase transition [PQ77]. The original
axion model was proposed to explain why the neutron electric dipole moment, and
therefore the amount of CP violation in the quark sector of the SM, was so small
[VS00, Wei78, Wil78]. The dipole moment is smaller than 1072 ¢ cm [Bak06], which
implies that the f-parameter in the QCD Lagrangian must be very small (< 10710),
when it could in principle be of order 1. The solution to this problem, proposed
by Roberto Peccei and Helen Quinn [PQ77], is to promote the 6 parameter to a
dynamical field a/f,, whose dynamics then relax it to a small value. This field is
known as the axion field a, and it is in fact a pNGB due to the associated U(1)
symmetry being broken at the QCD energy scale A ~ 200 MeV. The motivation for
the existence of the axion is reviewed in more detail in [Bac21b] and [Hoo].

The original axion was rejected experimentally soon after it was proposed [DGN20a],
leading to the development of so-called “invisible axion” models. These propose an
axion that is much lighter than the original model due to symmetry breaking at a
higher scale V' > Agep [Kim79a, SVZ80b, DFS81a, Zhi80b]. Invisible axions are also
commonly referred to as QCD axions. These axions are referred to as “invisible” due
to the weakness of the coupling between the axion and the SM, which is proportional
to 1/V. Examples of invisible axion models include the Kim-Shifman-Vainshtein-
Zakharov (KSVZ) model and the Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model.
In KSVZ models, the PQ symmetry is broken by a quark pair with PQ charge,
and the interactions between the axion and the SM do not happen at tree level

[Kim79b, SVZ80a], while in DFSZ models the normal Higgs is replaced by two Higgs



doublets which carry PQ charge, and the resulting axion interacts with the SM at
tree level [DFS81b, Zhi80a].

Majorons are another example of U(1) pNGBs. These are hypothetical bosons
that accompany the violation of global U(1) lepton number [CMP81, SV82]. The
Majoron mass is expected to come from gravitational interactions. Another set of
pNGBs associated with an SM mass hierarchy are “familons” which result from the
spontaneous breaking of the symmetry between each of the quark-lepton families
in the SM (see e.g. [Wil82, Rei82, GNY83a|). In the case where this symmetry is
only between the leptons, these particles are referred to as “flavons” [FN79]. The
spontaneous breaking of flavor symmetry leads to the pronounced hierarchy between
the masses of leptons and quarks of each successive generation, while the masses of
the flavons and familons are once again expected to be generated by gravitational
interactions.

An example of pNGBs known to exist in the SM are the pions, which are
associated with the spontaneous breaking of the chiral flavor symmetries during the
QCD phase transition, which happens at scales larger than the explicit breaking due
to the quark masses [LMO47]. Other hypothetical pNGBs include familon models
involving SU(2) [WZ79] and SU(3) symmetries [Chk80]. pNGBs also show up in
theories outside of particle physics. Examples include theories of phonons [FK18],
Cooper pairs in superconductors [BCS57], and magnons [Blo30].

U(1) pNGBs that are not coupled to QCD but behave similarly to the QCD
axion are known as axion-like particles, or ALPs. When the spontaneous symmetry
breaking (SSB) scale is much higher than the explicit breaking scale, these are viable
DM candidates [JR10]. ALPs show up in models of cosmic strings [VS00] as well as
in proposed solutions to the transparency of the universe to TeV photons [DRMO7,

DMPO09]. They are associated with an approximate U(1) symmetry that is broken

10



into a discrete Zy symmetry by effects that are expected to come from gravitational
interactions. For more examples, see [SW06, ADD10, ABK10, DFK11, JR10].

The stability of heavy ALPs depends on their mass and on their couplings.
ALPs with a coupling to photons are probed up to masses of several hundred MeV
by beam-dump experiments [Ber85, Rio87, Doll7, Blu91l, Ban20] and supernovae
[JMR18, HS23, Luc20, CRV22a, Cap22, CRV22¢, Dia23a|, and neutron star mergers
[Dia23b], while cosmological observations can reach up to ~1 TeV for very small
couplings [CR12, DHS21]. Colliders can exclude masses up to the TeV scale [Knal7,
BNT17], though only for large couplings. (Note that this implies an open window for
the high-quality QCD axion [HKL20].) Assuming that ALPs couple to leptons also
leads to bounds from beam dumps [BNT17] and astrophysical observations [CRV22b,
FMM22], although the parameter space is largely unconstrained above the GeV scale.
Heavy majorons are similarly probed by cosmology [KSZ21], supernovae [FRV22],
and laboratory searches [Berl8, Gou20, Brd20], which again leave ALPs of masses

above 1 GeV largely unconstrained.

1.3 ALP Cosmology

The Lagrangian for a U(1) ALP should capture both SSB at a high energy scale
V and explicit symmetry breaking at some lower scale v. In the case of the QCD
axion, the explicit breaking is associated with a term that is a periodic function of
N6, where 6 is the phase of the complex scalar field and N is a model dependent
parameter that determines the number of true vacua present in the theory. For
example, in KSVZ models N is the number of fermions that carry QCD charge
[SVZ80a]. In the case of ALPs, N is a parameter of our choosing, and we incorporate

this phenomenon by introducing a term in the Lagrangian proportional to cos(/N6).
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Thus, the potential term in the Lagrangian for the field ® whose phase 6 = a/V is
proportional to the ALP field a includes the terms (see e.g. [HKS10] and references
therein)

4
2_ U

Kd
5 (1-— 7008(]\[9)) (1.3.1)

Lo —i(ycpy? -V

The sources of evidence for the existence of ALP dark matter we will focus on
are cosmological. The cosmology of these simple models, in which an approximate
U(1) symmetry is spontaneously broken, is surprisingly rich. To build a model of
large-scale axion dynamics, we make the usual assumption that the universe is homo-
geneous and isotropic to all relevant scales. The most generic nonreducable metric

that obeys these requirements is
ds® = dt* — R*(t)di” (1.3.2)

where s is the proper time, ¢ is the cosmic time, and R(t) is a time-dependent scale
factor. Plugging this into the Einstein field equations gives the Friedmann equations

for R(t) [Fri79]. Assuming that there is no spatial curvature, these are

<\ 2

R 87 A
2

— (=) =T, = 1.3.

H2(t) <R> 3Pt 3 (1.3.3)
R AnG A
o Py = 1.3.4
7 3 (p+3 )+3 (1.3.4)

where p and P are the density and pressure of the matter and radiation in the
universe, A is the cosmological constant, and H(t) = R/R is known as the Hubble

parameter. During the early universe, the A term is negligible.
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For any metric that is a solution to these equations, all lengths are scaled by
a redshift factor R(t)/R(ty). To calculate this explicitly, we will assume that the
universe is radiation-dominated (RD) during the timescales of interest, meaning that
the dominant contribution to the Friedmann equations is due to the energy density
of photons and relativistic particles, and that all other contributions can be ignored.

From thermodynamics, we can derive the relations Pr.qq = praa/3 and

praal®) = L (1.3.5)

where g,(T) is the effective number of degrees of freedom of all relativistic particles
at temperature 7. Plugging this into our equations and setting the present scale
factor R(to) = 1 gives the result that R(t) ~ t'/2 and H(t) = 1/(2t). We may also

write the Hubble parameter as a function of temperature,

_ [8w3g(T) T?

A(T) 90 Mp

(1.3.6)
where Mp = 1/\/@ is known as the Planck mass. In natural units, Mp = 1.22 x 10'°
GeV. In a RD universe, combining equations (1.3.3) and (1.3.5) as well as recognizing
that the cosmological constant is negligible in the early universe and that H(t) = 1/2t

gives us a relationship between the temperature 7' and the cosmic time ¢, which is

1/4
T(t) = <167T3é5g*(T)> 12 (1.3.7)

The U(1) symmetry of the first term in the potential in equation (1.3.1) is
spontaneously broken at a temperature T, ~ V', after which different volumes cor-
responding to different correlation lengths will have different values of the phase 6.

At this point, topological defects will form where a rotation of 27 around a point
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in real space can be mapped to a phase rotation of 2w in the phase space of the
field @ [Kib76]. The centers of these loops become 1-dimensional topological defects
known as cosmic strings. If the phase transition happens before inflation, then these
inhomogeneities will be inflated away, and the entire universe will be at a single value

of 6. This thesis focuses on the case where SSB happens post-inflation.

1.4 Cosmic Strings

The dynamics of the cosmic strings mentioned above very quickly approach
a regime known as the “scaling regime” in which the length scale of the strings
remains on the order of the horizon scale t. To illustrate why, we will follow the
argument outlined in [VS00]. Dimensionally, we expect the energy density of the
string network p, to be p, = u/L?, where L is some characteristic length scale and
is the mass per unit length of the strings. The energy in some volume V' is just pV .
The main mechanism by which strings lose energy is through the formation of loops
due to collisions with other strings. A string should collide once per characteristic
length L it travels in a characteristic volume L3, and therefore the rate of collision
per unit time per unit volume is then L~*. If the length scale of loops formed by
string collisions is also approximately L, then the total amount of energy lost due
to collisions per unit time in some volume V is then uLV x L~*. This plus the
contribution due to redshift gives a rough expression for the rate of change of the
total energy of the string network
Ry v

E~=F

2E= (1.4.1)

Meanwhile, because the string energy density p, ~ L™2 and quantities with dimen-

sions of length L in an FRW metric should redshift as L(t) = LoR/Ry, the string
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energy density redshifts as R72. Just as with equation (1.4.1), rate of change of the
string energy density is due to this redshift along with energy loss due to decaying
loops, i.e.

R p

ey (1.4.2)

.8%_27 s
P R L

To see how quickly L approaches the horizon scale ¢, we define a new variable v such
that L = ~t. Plugging this into equation (1.4.2) and applying the assumption that

the universe is RD gives

(1—~7h. (1.4.3)

This equation can actually be solved explicitly for v(t); the result is a solution that

3/2 In other words, a string network will

approaches 1 at a rate proportional to ¢~
approach the horizon scale within a time comparable to the Hubble time. Once it
has reached the horizon scale, it is in the scaling regime.

For strings in the scaling regime, the energy density of the string network is
about equal to £u/t?, where ¢ is the number of strings per horizon volume and can
be found via simulations. The calculation of i in terms of our given model parameters

is discussed in full in [VS00], but we will still outline it here. Once symmetry breaking

occurs, we know that the stable field solution is
P(z) = Ve, (1.4.4)

Furthermore, we know that for this configuration we expect 6(x) ~ n¢, where n is the

winding number of the string. The explicit symmetry breaking part of the potential
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is still small, so for a string with winding number 1 the energy of this solution is
E= /d3r|V<I>|2 - /d3r—2 (1.4.5)
T

Finding the mass per unit length, then, is just a matter of integrating this over a
plane normal to the string. To do so, we note that in any given plane there are
¢ strings per unit area ¢?, so our maximum cutoff length should be 7., = t/v/€.
Furthermore, our minimum cutoff length should be the Compton wavelength of the

radial component of the field; choosing a scale such that the value of A from equation

(1.3.1) is 1, this is 7,5, = (v/2V) 7', Altogether, we find that

(1.4.6)

A 2rV%n <\/§ﬂ/> .

§

1.5 Cosmic Walls Bounded by Strings

Let us now consider the effects of the explicit symmetry breaking. As mentioned
previously, the broken U(1) symmetry is associated with a pNGB a = V6. The
dynamics of this field at some given point in space ¥y can be derived from the

Lagrangian in equation (1.3.1); the associated Euler-Lagrange equation is

. . dV(a)
—3H — =0 1.5.1
a a+ o , ( )

where H is the Hubble parameter and V' (a) is the second term in equation (1.3.1).
The latter term becomes dynamically important when the field approaches the near-

est minimum of the potential in field space. Close one of of these minima, we can
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expand V' (a) for small changes in 6 to find

4 4 N2V2 2 1
%(1 —cos(NO) = % 5 T o §m§a2 : (1.5.2)
In other words, the ALP picks up a mass
N 2
My = o (1.5.3)

= v

In the case of the QCD axion, the axion mass is temperature-dependent due to
couplings with the SM. We assume, however, that the couplings between the ALP
field @ and the SM are small enough that any temperature dependence may be

neglected. The equation for the dynamics then becomes
i —3Ha+m2a = 0. (1.5.4)

The oscillatory term in this equation dominates over the damping term at a time

3H(ty,) = mg. In terms of our parameters, this happens at a time

Vv v o\ 2
_ ~1
ty = 2.12 GeV (NGeV) (GeV) (1.5.5)
and temperature
—1/4 —-1/2
T, = 7.4 x 10° GeV ( 10 > NGV Gov ) (1.5.6)

After t,, different regions of space reside in different vacua. The boundaries
between these regions are occupied by structures called domain walls [VS00], which

correspond to where values of the field ® interpolate between different vacua. As
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shown in figure 1.2, closed paths along which the field interpolates between each
of the N different vacua in turn will also have a cosmic string in their center, and
hence a total of N walls will attach to each string, forming a network of domain
walls bounded by cosmic strings. The energy density of domain walls is equal to
pw =~ Ao /R where o is the energy per unit area of the walls, A is a dimensionless,
order 1 parameter known as the area parameter which can be found via numerical
simulations, and R is the characteristic length scale of the walls.

We can determine how ¢ depends on our parameters by integrating the domain
wall solution for #(z) in the case where the approximate symmetry is U(1). The field

equation for 6 near one of the true vacua is [HKS13]

4

120,00 + %Nsin(NQ) ~0. (1.5.7)

The domain wall solution interpolates between two adjacent vacua and is symmetric
along two spatial axes and stable over time. In this case, these conditions are satisfied

by

0,(2) = 2;[]{ + ;\l[ arctan(exp(mgz)) (1.5.8)

where z is the axis normal to the domain wall, k£ is an integer ranging from 0 to
N —1, and m, is the mass of the ALP given in equation (1.5.3). The energy density

per unit area of the wall ¢ is then given by

o0 N> sm,V? SV
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Figure 1.2: A diagram of the configuration of the field ® after the formation of
the string-wall network for N = 3. In real space, the energy density of the field is
concentrated in domain walls at angles away from one another corresponding to the
separations between the global minima of the potential, with cosmic strings lying at
their intersections. Each of the individual domains occupy different vacua in field
space, which have slightly different energy densities thanks to the presence of a bias
term in the potential.

In general, then, the surface tension of a domain wall is

o= f,0*V/N (1.5.10)

where f, is a model-dependent constant. In this case, f, ~ 5.7, while for the QCD
axion f, ~ 6.5 [HS85]. For all of the subsequent calculations where specific values
are needed, we will take N =6 and f, ~ N.

As with strings, the length scale of the walls will quickly approach the cosmic
time t. A convoluted wall with radius of curvature R will experience a force per unit

area Fr ~ o/R. This will cause closed walls with R < ¢ to shrink and disappear
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[VS00]. Numerical simulations done by e.g. [PRS89] have confirmed this, and have
also shown that in general wall annihilation and recombination will sweep away any
sub-horizon scale defects, leaving behind one horizon-scale wall per horizon volume.
This means that we may therefore treat the walls as being in the scaling solution for
the purpose of our calculations.

Once walls enter the scaling regime, their energy density becomes p,, ~ o/t.
The energy density of an RD universe is given by equation (1.3.5). We may also use
equation (1.3.7) to show that p,.q ~ t~2. The wall energy density would exceed the

radiation energy density at a time corresponding to

oA 3 1
w ™ Prad = — X ——— . 1.5.11
Pu = Prod = 57 = 300G 2 (15.11)
Explicitly, this is
3mipy 56 -1 NV ( v )-2( v )1
tood ™ =447 x 1 , 1.5.12
= Yo PTGV Gev ) \Gev (15.12)

where mp; is the reduced Planck constant. This corresponds to a temperature

10 \"*" (LA VN0
= 3. -0 — z 1.5.1
Ty = 3.61 x 10710 GeV (g*(de)> <N> (GeV) (Gev) (1.5.13)

and a Hubble parameter of

1 2f, 2
H(T,q) = 2” ‘]fvf (J\‘f/p> Mo =~ 2.7 x 1076 (

2
— ) m. 1.5.14
ga) M (0510)

The evolution of the resulting network of walls bounded by strings after this depends
on N. If N=1 (i.e. if there is only one true vacuum in our model) then the string wall

network will consist of “ribbons” which will annihilate when the surface tension of
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the walls overcomes the tension of the strings [al12]. However, if N > 1, the resulting
string-wall network is stable. As first noticed by Zel’dovich, Kobzarev, and Okun
[ZKOT4], the presence of a stable string wall network is cosmologically unacceptable
if the discrete Zy symmetry of the potential is exact. Per [ZKOT74], we can solve
equation (1.3.3) with p ~ p, ~ o/R to find that in a wall-dominated universe
R(t) ~ t?. In other words, a string-wall network dominated universe will experience
a period of power-law inflation inconsistent with cosmological observations.

To solve the problem of power-law inflation, Zel’dovich, Kobzarev, and Okun
proposed making the Zy symmetry approximate, such that one of the vacua has a
lower energy density than the others [ZKO74]. To solve this issue in our case, we
will use the Zy breaking term first proposed by Pierre Sikivie in the context of the
QCD axion [Sik82]

o
Liins = —ebv4|v| cos(f — ) (1.5.15)

where ¢, is a dimensionless constant, ¢ is the orientation of the bias term relative to

the rest of the potential, and the energy scale of the explicit breaking is
Viias = e0* . (1.5.16)

Once the resulting bias between the other vacua and the unique true vacuum becomes
dynamically relevant, it drives the subsequent annihilation of the string-wall network
[HKS11b].

The process of wall annihilation is further discussed in [GNY83b]. The difference
in energy density between adjacent vacua exerts a pressure Py ~ v* on the walls

between them. We assume that this is initially much smaller than the surface tension
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of the walls Pr ~ 0A/t. Pr decreases over time until it becomes comparable with

Py, at which point the walls begin to annihilate. The time at which this happens is

o oA AV

tann =~ - 4 2
‘/bias €U NEbU

(1.5.17)

After this, the volume pressure dominates, and the walls are accelerated away from
regions where the field is in the true vacuum into regions of false vacuum. The
vacuum energy released by this process drives the wall motion that leads to the
annihilation of the domain walls. The corresponding temperature at which this

happens is

—1/4 ~1/2 _
o (45) () ()

10 N GeV GeV
(1.5.18)
and the Hubble parameter at this time is
1 Vias a
H(Tynn) = n Lhes O (1.5.19)

Qann 20 2f,

In addition to ALP production, the annihilation of the string-wall network leads
to the production of gravitational waves and possibly primordial black holes [HKS13].
Constraints on the bias term in the QCD axion Lagrangian mean that these gravita-
tional waves are not detectable by current searches. However, ALPs are not subject
to these constraints, and therefore it is fruitful to investigate the possibility of the
production of gravitational waves via the collapse of the string-wall network.

Notice that, in total, our model is governed by three independent parameters,
which we can choose to be the scale of the SSB V| the mass of the axion m,, and

the scale of the bias term ¢,, or V', the scale of the explicit symmetry breaking v,
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Production and annihilation of the cosmic string-wall network
Strings form Wall formation and misalignment Walls annihilate
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Figure 1.3: A graphical representation of the ALP cosmology we will be studying.
When the temperature becomes of the order of the length scale of the symmetry
breaking, the Kibble mechanism leads to the formation of cosmic strings. This is
followed by the formation of domain walls connecting these strings together when
the Hubble parameter is on the order of the mass of the axion, allowing for coherent
oscillations and for the axion to pick up a mass. Finally, the string-wall network
annihilates when the pressure from the bias term overcomes the tension of the domain
walls, tearing them apart and leading to “catastrogenesis.”

and ¢,. In addition, quantities related to the annihilation of the string-wall network
such as those given in equations (1.5.17) and (1.5.18) only depend on the surface
energy density of the walls ¢ and the scale of the bias V., which are given in
equations (1.5.10) and (1.5.16), respectively. Because we have assumed that interac-
tions between ALPs and the SM are negligible, the constraints that remain on our
model are those that come from its implications for the standard ACDM cosmology
and other astrophysical phenomena, as well as due to the need for the model to be

self-consistent.
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1.6 Gravitational Waves

The existence of gravitational waves (GWs) was first discussed by Oliver Heavi-
side by analogy with electrodynamics [Hea93]. In 1905, Henri Poincaré also proposed
their existence as a requirement of the validity of the Lorentz transformation [Poi07],
and Albert Einstein showed that the Einstein field equations admit a wave solution
that propagates at the speed of light [CGS16]. The first indirect observations of
GWs were from the decay of the orbital periods of neutron star and black hole bi-
nary systems [Bon57, TM75], but they were not directly detected until 2016 via
interferometry by the LIGO-VIRGO Collaborations [Abb16]. Since then they have
been a fruitful probe into the physics of our universe as well as a new tool to test
particle physics models [VS00, Mag07, Magl8, SS09, Bar19]. As I will show in this
thesis, GWs that are produced by catastrogenesis are also an excellent probe into
models of ALP DM candidates. Here in this thesis we will focus on stochastic GW
backgrounds emitted by objects in the early universe, following [Mag01] and then
[HKS10]. For a more complete review of the theory of GWs, see e.g. [Mag07] and
[Mag18].

In general, particles in the early universe decouple from the primordial plasma
when the interaction rate I' that maintains equilibrium becomes smaller than the

Hubble parameter H(t), i.e.

I(T)/H(T) < 1. (1.6.1)

For gravitons, the interaction in question is graviton-graviton four-point interactions,

which are discussed in more detail in e.g. [ZBC09, Gio20]; the interaction rate can
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be estimated without much effort as T' ~ T°/M3. This means that for GWs,

2 - (i)g (1.6.2)

meaning that GWs decouple below the Planck scale Mp ~ 10! GeV. GWs produced
below this temperature will therefore still encode all of the information about the
conditions under which they were created, making them an excellent probe of the
physics of the early universe.
We may characterize the intensity of a given stochastic GW background by its
differential spectrum, which is equal to
L dpgw

Qqu(f) = oo dlos [ (1.6.3)

where pg,, is the energy density of the GWs in question, f is the frequency, and p.
is the critical density of the universe at present, which per equation (1.3.3) can be
written as

33
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where Hy = hox 100 km/sec-Mpc is the Hubble parameter at present. It is generally
more convenient to calculate h2Q,,(f) to avoid having to deal directly with this
parameter; we refer to the quantity Qh? as the density parameter.

To demonstrate how to calculate the quantity in equation (1.6.3) in practice,
we will follow the discussion in [HKS10], which itself is derived from the calculations

done in [Duf07]. Assuming the metric given in equation (1.3.2), any perturbation
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hi;dz'dz? will induce a metric

where h;; obeys the conservation law 9;h;; = hi = 0. Plugging this ansatz into the
Einstein field equations lets us obtain

V2

hij + 3Hh; — T

hi; = 167GT" (1.6.6)

where TET is the transverse traceless component of the stress energy tensor of the
source of the GWs. If a source emits GWs within an interval ¢; < ¢ < t;, then this

equation can be solved using its Green’s function, i.e.

— -,

hij(7,k) = Ag; (k) sin[k(r — 74)] 4+ By; (k) cos[k(r — 74)] (1.6.7)

where

L1 T .
Aii(k) = 6]7;G /T'f dr’ cos |k(ty — 7)|a(r") T (7', k),

167G
k

B,-j(IZ) = /T.f dr'sin |k(rs — T’)|@(T')T5T(T', IZ), (1.6.8)
7 is the conformal time defined by dr = dt/R(t), k and k are the comoving momen-
tum and its magnitude, respectively, and h;; = R(t)hy;.

The GW energy density we are after is equal to the average of hij over all 3
spatial coordinates. Writing this out and then noting that the cross terms between

hi; and B;j vanish due to the requirement that h;; be real as well as assuming that
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]{I/RQ > Ho gives

1 1 d3k
w i (t, B)hij (¢, T
Pow = g (st Dhs(0.) = 5o v;om el

(T k)R (1.6.9)

where h;j is the derivative of h;; with respect to the conformal time and V., ~ R?
is the comoving volume.

If necessary, we may calculate this explicitly by substituting equation (1.6.7)
into the above expression. If we then substitute the resulting expression into equation

(1.6.3), we find that

1/3 2 3
g*(TO) Qradh Gk
Oy = I 1.6.1
- (%@» prad(T3) 27 Voom (1.6.10)
where
I =—735 dz, (1.6.11)

Qyaqh? = 4.15 x 1075 is the density parameter of radiation at present, and Praa(T;) is
the radiation energy density at the initial emission time ¢;. Likewise, the frequency

of emitted GWs at present is

f:%R%) 21 g.(T)) T,

k R(t) k g*(T)i (1.6.12)

where we have used the method to calculate the redshift factor outlined in chapter
8.

To determine how the differential GW spectrum of a given source depends on
k, we must then find the k-dependence of Ij; this is worked out for the string-wall

network discussed in chapter 1.5 in chapter 9.
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CHAPTER 2

Present Density of Stable ALPs

The formation and subsequent annihilation of the string-wall network produces
cosmological relics in the form of ALPs, GWs, and possibly also PBHs. In this
chapter, I will calculate the present energy density of ALPs in the case where they
do not decay. There are three ways ALPs may be produced: via misalignment,

emission from cosmic strings, and via catastrogenesis.

2.1 Production of ALPs via Misalignment

The first contribution to the present ALP density comes from the so-called
misalignment mechanism. When the temperature of the universe reaches T, and the
ALP field begins to oscillate about the N vacua, different patches of the universe will
initially be at phases 0; = a;/V that are displaced from the minima of the potential.
Per [PWW83, AS83, DF83]| the oscillations # about the minima in these patches will

produce an ALP energy density of

o 1 5 0m _N2U4 2
pmi5—<2maV 9i>_ i <9> (2.1.1)

where 62 = cq,,72 /3 is the naive average value of ; over the present horizon volume

multiplied by an anharmonic coefficient c¢,,;, ~ 2 [Tur86, Lyt92, BHK08, OPR22].
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At the present time, this results in an ALP energy density of

' 1 R(T ) 3 1 B V2ml/2 [g*(T )]3/4
Qmisp? = ( Z9*m2V? < hd ) h2> ~ 2.5 x 1072 (§? o ed
@ <2 te R(to) Pec < Z> GeVQeVUQ Gsx (Tw>
(2.1.2)

where the redshift factor R(T,)/R(to) is taken from equation (8.0.4) in chapter 8.

2.2 Production of ALPs via Cosmic Strings

Once cosmic strings form, they will continuously emit ALPs until the formation
of domain walls. Wall formation occurs when the mass of the ALPs becomes im-
portant, and thus at earlier times they may be treated as effectively massless. The
majority of the energy lost by the strings contributes to the production of ALPs,
which means that we may approximate the number density dn.(t) of massless ALPs

emitted at time t < ¢, as

dpst(t)> 1 (2.2.1)

dn®(t) ~ —dt ( o (B

where (E,) is the average energy of a single ALP. Because the ALPs are relativistic,

this should be equal to average momentum of a particle [HKS11b]

(Ea) = (p) = : (2.2.2)

Because the cosmic strings are in the scaling regime, the emission spectrum of the
axions they emit should be peaked at k ~ 27 /t, which has also been confirmed via
numerical simulations [HKS11b, DS89, YKY99]. Numerical simulations have also
determined that the actual peak of the spectrum is at kpeqr >~ € 127/t where et ~ 4

is a dimensionless parameter that has been determined via numerical simulations.
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Taking into account the redshift from the time of emission until the present, the

number density of ALPs due to strings at present can be written as

ng (to) ~ — /ttw dt (R};z)f (dp;tt(t)> 752/;1 (2.2.3)

where t; is the time at which strings first appear. We assume that t,; < t,,, and thus

that the dominant contribution to this integral is due to the production of ALPs at
the time of wall formation.

The resulting ALP energy density at present is psf(tg) = meni'(tg). Taking
9s+(Tp) = 3.93 and g.(Tp) = 3.38 to be the present values of the energy and entropy
density degrees of freedom as well as using the result for the string energy density

from equation (1.4.1), we find

st - V \? (ma\ Y2 (g (T)) 3V
QF ~ 1 x 10 23£(Ge\/> (eV) N ln(\/zm() . (2.2.4)

The value of £ can be derived from numerical simulations; in our case, we assume that
¢ = 25 [GHN21]. The contribution to the ALP density from strings always dominates
over the contribution due to misalignment. However, there are large uncertainties in
the evaluation of the ALP population due to strings [GHN21, OPR22| just as with
the results for the QCD axion case [KSS15, KM17, BFH22].

If the bias parameter ¢, is sufficiently large, the contribution to the ALP den-
sity from strings alone can also dominate over the contribution due to string-wall
annihilation given in equation (2.3.3) in chapter 2.3 (see the left panel of figure 2.1

for an example).
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Figure 2.1: Regions of interest of the bias parameter ¢, as a function of the spon-
taneous symmetry breaking scale V, for ALP masses of m, = 107% €V in the left
panel and m, = 107!¢ eV in the right panel. The red region is excluded by ei-
ther an ALP density larger than that of DM, or by current CMB limits on GWs
(see figure 3.1). Lines corresponding to the fraction of the DM made up of ALPs
farp = Qa/Qpy = 1 and farp = 0.1 are shown as well. The grey region is excluded
by the requirement that ALPs be produced at T,,, > 5 eV. Ty,, grows with ¢, as
indicated by the T, = 50 eV orange dashed line. The blue region will be explored
in the near future by CMB probes and astrometry, while we expect the region to the
right of the black dotted lines to be subject to structure formation bounds.

2.3 Production of ALPs via Catastrogenesis

We may follow a similar argument to the one given in chapter 2.2 to determine
the contribution to the present-day ALP density due to emission from the string-wall

network. As with equation (2.2.3), the number density of ALPs from walls is

Rl (1) ~ —/t: dt(%?) (dp;l“t(t>> <E1a>’ (2.3.1)

where in this case

(E,) = mgy\/1 + €2 (2.3.2)
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is the average energy per emitted ALP and ¢, is the ratio of the comoving momentum
of an ALP to its rest mass. According to numerical simulations (see e.g. [HKS13,
KSS15]) the emitted ALPs are quasi-nonrelativistic, i.e. €, ~ 1 and (FE,) ~ v/2m,.
Conservatively, we require that T,,, = 5 eV, meaning that the ALP momentum at
matter radiation equality (i.e. when T' ~ 0.75 eV) is of order m,/10 and therefore
ALPs produced in our model will make up a fraction of the CDM. As with strings,

the ALP energy density at present is p, = nam,, and so

QB2 ~ 2 x 10742 eV? < o >3/2 [g*(Tann>]3/4 N 2.4 % 10724 mcl/Q f3/4V 2
T Vb%i eV Jsx(Tamn) 611)/2e\/1/2 NGeV

(2.3.3)

Comparing equations (2.2.4) and (2.3.3), we see that the string-wall contribution to
the present ALP density will dominate over that of the string system if ¢, > 2 x 107°.
Adding all three ALP density contributions together and requiring that they be less
than 0.12 gives the overclosure bound shown in figure 2.2. The process of ALP

cosmology is summarized in figure 1.3.
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Figure 2.2: Regions of interest in {V, ¢} space for m, = 10° eV. The red regions
correspond to either ALP densities larger than that of the DM at present or current
CMB limits on GWs as displayed in figure 3.1. The grey region is excluded by the
requirement that T;,, < 5 eV. The green region is allowed but not testable, while
the blue region will be explored in the near future by CMB probes and astrometry.
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CHAPTER 3

Present Density of Gravitational Waves for Stable

ALPs

3.1 Present Energy Density Due to Catastrogenesis

In addition to the production of ALPs, gravitational waves are also produced
during catastrogenesis [Mic07]. We may estimate the power emitted in the form of
GWs using the quadrupole formula, i.e. P ~ G QU Q” As discussed in chapter
1.5, the linear size of the walls during the scaling regime is ~ ¢, meaning that the
quadrupole moment of the walls as a function of their energy E,, ~ ot? is Q;; ~ E,t*.
Thus, Qw ~ ot, and the power emitted in the form of GWsis P ~ Go?t?. The energy

density Apgw emitted during a time interval At is then

At
Apew =~ Ga2T : (3.1.1)

In a time interval equal to the Hubble time At ~ ¢, the emitted energy density is
Go?, meaning that the GW emission by walls is independent of the emission time
t. The contribution of the waves emitted at time ¢ to the present-day GW energy
density is redshifted by the ratio (R(t)/Ro)?, where R(t) is the scale factor of the
universe at time ¢, and at present the scale factor is Ry = 1. Therefore, the largest
contribution to the present GW energy density spectrum, which also corresponds to

the peak of the spectrum, will be from the GWs emitted at the latest emission time,
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i.e. at ty,,. Thus,

R(tann)\"
IOGW|peak = GUQ (;%))> : (312)

As usual, we define the density parameter Qawh?|peak = pew|pearh®/pe, Where p,.
is the present critical density and h is the reduced Hubble constant. Combining
this with the result from chapter 8 as well as taking the present number of entropic

degrees of freedom to be gg.(to) ~ 3.93 [SS18] lets us obtain

1.2 x 1077 g, (Tonn) o 1.2 x 107™g, (Tann) ( LV )4

- NGeV

2 ~
QGWh |p6(lk — ng [gs* (Tann)]4/3%%a8GeV4 — ng 612) [gs* (Tann)]4/3
(3.1.3)

This estimate has been confirmed by numerical simulations [HKS10, HKS14, KS11,
HKS13]. The parameter €, is a dimensionless factor derived from numerical sim-
ulations that parametrizes the efficiency of GW production (see e.g. figure 8 in
[HKS13]). For N =6, €4, ~ 10 — 20 [HKS13]. For our figures, we make the conser-
vative estimate that €, = 10.

The result in equation (3.1.3) is also the maximum of the GW energy spectrum
at time t as a function of the wavenumber at present k (which, if we define Ry = 1,
corresponds to the comoving wavenumber) or of the frequency f = k/(27), which

can be written in general as

Qewh?(k, 1) = ( h” > (dpGW(t)> (3.1.4)

pe(t) dlnk

(see e.g. [Mic07, GPV21]). In the scaling regime, the characteristic frequency of the
GWs emitted at time ¢ is the inverse of the horizon scale H(t), and therefore the

present-day frequency of waves emitted at time ¢ is f ~ R(t)H (t). For GWs emitted
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in the radiation dominated epoch (i.e. when H(t) = 1/(2t), dIn f = (H(t) — ¢t~ 1)dt,
and therefore dIn f = dlnk = —(1/2)dInt. Using the result from equation (3.1.1),
we find that

dpaw (t) 9
v~ Go?, (3.1.5)

which is independent of t. Consequently, the peak amplitude of this spectrum at
present for t = t; coincides with the result in equation (3.1.3).

Since the peak GW density is emitted at annihilation, the spectrum should be
peaked at fpear = R(tann)H (tann), namely

Tann [g* (Tann)]1/2
Gev [gs* (Tann)]l/s .

foear = 0.76 x 10 "Hz (3.1.6)

The requirement that the ALPs be produced safely before matter-radiation
equality, Ty, = 5 €V, implies that fpear > 5 X 1076 Hz. As detailed below, we find
that GWs observable in the near future in viable ALP models should have f,cqx close
to this lower limit.

The peak frequency estimated in equation (3.1.6) is insufficient to characterize
the complete emission spectrum of GWs. The full spectrum has been computed
numerically for axions for N > 1 in [HKS13]. Figure 6 of [HKS13| shows that
the spectral slope changes at two scales: there is a peak at k|peqw ~ R(tf)m, and
there is a bump at the scale k ~ R(t;)H(t;) where t; is the final time in their
simulation. Frequencies below the peak correspond to super-horizon wavelengths
at tun,. Causality requires that these be uncorrelated and therefore the spectrum
behaves like a white noise spectrum that goes to zero as k® for k < kpear [CDKO09).

The spectrum at frequencies above the peak is model-dependent. For a source
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that is uncorrelated at different times, i.e. one that is produced by a series of short
events, the spectrum should go as 1/k [CDK09]. The numerically obtained spectrum
in [HKS13] has a roughly 1/k dependence for k > kpear, although with an approxi-
mate slope and height of the secondary bump that depend on N. For a more detailed
calcultion of the GW spectrum emitted by domain walls see chapter 9.

An example of the approximate GW spectrum just mentioned is shown in fig-
ure 3.1, together with several bounds and reaches of several future experiments. For
f > 10* Hz, the most important bounds come from the Very Long Baseline Array
(VLBA) astrometric catalog [DTP18], as GWs produce an apparent distortion of the
position of background sources, and from the effective number of neutrino species
during CMB emission N.s; [PSM16a], as GWs are one of the components of the
radiation present in the early universe. In the near future, EUCLID will improve the
bounds on N.¢¢ by one order of magnitude [Laull], and astrometry could reach as
far as Q ~ 107® [ADG20]. At lower frequencies, measurements of the CMB polariza-
tion can be used to constrain GWs [KK99, SKC06, CCM20, Las16, CKP21]. Current
bounds are obtained from Planck temperature [Agh20] and BICEP /Keck Array po-
larization data sets [Adel8], and could be improved by planned experiments such
as LiteBIRD [Mat14], PICO [Han19], and CORE [Del18]. We also show constraints
and projections from [NSY19], in which the authors relaxed the usual assumption of
a power-law background and considered CMB constraints on monochromatic GWs,
which may be closer to the peaked spectrum of our model. Notice that the con-
straints from [NSY19] are based on temperature anisotropies, while the projections
for the future reach are obtained from the B-mode spectrum that optimistically as-
sumes a full sky observation, i.e. 1 pK-arcmin white noise with a 1 arcmin Gaussian

beam.
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3.2 Present Energy Density Due to Strings

The dominant source of GW emission from the string network before the walls
appear are loops continuously formed by string fragmentation. As with the string-
wall network, we may estimate the emission from these loops via the quadrupole
moment of the strings (see e.g. [CC20, GHN21, GSS20] and references therein).
The energy of the string network is B, ~ puH~!, where p is the string mass per
unit length. In this case, Qw ~ 1, and the power emitted in the form of GWs is
P ~ Gu?. Using the same assumptions as for walls, the GW energy density emitted
by the string network over some time At is Apfhy ~ Gu?(At).

We can fit an approximate simple expression to the numerical spectra of GWs

emitted by strings during the RD era obtained in [CC20, GHN21, GSS20], namely

10712 Hz\ V/® Voo
Qo ~2x 1078 [ () . 2.1
aw =210 ( 7 ) 101 GoV (82.1)

This spectrum has a low frequency cutoff that corresponds to the largest scale at
which loops could form, which is the horizon size when walls form. The Ly — «
lower limit m, > 2 x 1072 eV [RP21] on the mass of an ALP constituting all of
the DM imposes a limit 7,, > 5.3 keV (see equation (1.5.6)) on the temperature at
which walls appear. The frequency at present of GWs emitted at t,, by strings in the
scaling regime can be computed by finding the frequency given in equation (3.1.6)

for T, instead of T,,,; explicitly, this is

i o Lo [94(T)]Y2 [gss(Toann )]/
U T P (9o (T3 (g (T )] /2

(3.2.2)
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which in terms of the ALP mass is

8 HZ( Ma )1/2 [g*(Tw)]lﬂl [93*105 )]1/3 (3.2.3)

out = GeV 105 (Tonn

For T,, = 5.3 keV, this frequency is 4.7 x 107! Hz, with larger cutoff frequencies
corresponding to wall formation at earlier times and larger values of m, (see for
example figure 4 of [GHN21]). Therefore, in our model the only source of GWs with

f < 1072 Hz is the string-wall network.

3.3 Observability of Gravitational Waves

The region of the {¢,, V'} parameter space allowed by all present bounds and
which could be explored by forthcoming measurements of low frequency GWs de-
pends on m,. In figure 2.1 we show this region for m, = 1076 ¢V and m, = 10716
eV, respectively.

The blue region in figure 2.1 will be explored in the near future by CMB and

astrometry measurements. The GWs are observable at frequencies
5x 10710 Hz < fos < 1 x 107 Hz (3.3.1)

corresponding to a bound on the annihilation temperature 5 eV < T,,, < 10% €V.
Equations (1.5.18) and (3.1.6) imply that fpewx ~ €; as shown in the figure.

The red region in figure 2.1 is excluded by either requiring that the fraction of
the DM made up of ALPs to be farp = Q./Qpy < 1, or by current CMB limits on
GWs (see figure 3.1. The grey region corresponds to Ty, < 5 eV, which is excluded
by the requirement that any produced ALPs be nonrelativistic by matter-radiation

equality.
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Figure 3.1: Regions of the density parameter of GWs from walls Qg h? vs. the peak
frequency of the spectrum. The blue regions are probed by the current and future
reach of astrometry [DTP18, ADG20], the yellow regions by measurements of the
effective neutrino degrees of freedom [PSM16a, Laull], and the red regions by CMB
measurements [NSY19]. The connected black lines are an example of a differential
GW spectrum from string-wall annihilation with 7,,, = 5 eV and QGWh2|peak ~
1072, The solid black line is the low-frequency part of the spectrum predicted by
causality, while the dotted black line is uncertain; these are proportional to f3 and
f~1, respectively. The vertical dashed line indicates the frequency of GWs produced
at matter-radiation equality.

The observable region in the {¢,, V'} plane translates with the ALP mass m,
as V.~ m;'/? and ¢ ~ m;'. For a fixed ALP abundance, equation (2.3.3) implies
an expression for V' which can be substituted into equation (3.1.3) to find that the
GW amplitude depends on (mge;)™t ~ 0/Viias. As shown in equation (1.5.18),
the annihilation temperature and thus the peak GW frequency in equation (3.1.6)
depend on the ratio Vi,s/0 ~ mge€, as well.

As m, increases, the lowest value of V' in the observable region of the parameter
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space Vs decreases as

1076 oV /2
e) . (3.3.2)

My,

Vips =~ 105 GeV (

To ensure the hierarchy of the scales present in equation (1.3.1), we require that
v < 1072V and thus m, < 107*NV. For N = 6, compatibility with this limit
restricts the observable window to V' 2 2.5 GeV and m, < 1.5 MeV.

The scaling of the characteristic bias of the observable region

1070 eV
€b,0bs — 10718 < ¢ )

Mg

(3.3.3)
shows that ALP production by walls dominates over the production by strings for
me > 5 x 10710 eV (3.3.4)

for which e, < 2x107%. Thus, the observable region in figure 2.1 just translates with
the same shape for m, > 1071% eV, until the contribution to the ALP population from
strings becomes comparable to the wall contribution as shown in the right panel.
In figure 2.1, the region to the right of the dotted black line is where we expect
bounds from structure formation to become relevant. These bounds come specifically
from measurements of the CMB and of baryon acoustic oscillations (BAOs) as well
as from constraints on the number of Milky Way satellites. Bounds on the late
production of DM can be roughly estimated as bounds on WDM. The allowable
ratio of the density of WDM to the total DM density depends on the WDM mass
mwpa: the smaller the mass, the lower the temperature T' ~ my pay/3 at which
WDM particles become non-relativistic and thus become CDM. Similarly, the late

production of cold DM in our scenario possibly implies large effects on CMB, BAO,
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and Milky Way satellite observations (for alternative realizations of late forming DM
see e.g. [DW11, SDS15, DN21}). By taking mw pa = 3Ty from figure 5 of [DAG17],
we can obtain the region in figure 2.1 where bounds from structure formation become
relevant. To obtain more accurate limits would require a specific analysis of structure
formation in our scenario.

In the right panel of figure 2.1, the ALP mass is m, = 1x 10716 V. For this mass,
as indicated in equation (3.3.4), ALPs are mostly produced via wall annihilation for
e, < 2x 107, However, we can see in the change of the slopes of the fixed farp lines
that the ALP population emitted by strings dominates for larger values of .

Structure formation bounds are less stringent for ALPs with masses m, < 1071¢
eV, which are dominantly produced by strings due to being produced earlier, mostly
at wall formation. For these ALPs T,, > 0.5 MeV > T,,.,. However, they are
also subject to black hole superradiance limits (see e.g. [MDL20, UPL21]). These,
together with structure formation bounds, are the only valid limits regardless of the
strength of the couplings between the ALPs and SM particles unless the ALP quartic
self-coupling is large enough to suppress superradiance (e.g. [BGL20]), in which case
one can extend the observable window in figure 2.1 to lower ALP masses. Besides the
bounds already mentioned, black hole superradiance also puts constraints on ALPs
with masses in the range 1071 eV < m, < 107 eV [BGL20).

The emission of GWs from the string-wall network does not depend on any cou-
plings, including ALP-photon, ALP-electron, ALP-nucleon, and CP-violating cou-
plings such as those listed in [Sik21, IR18, OV20]. Rather, the emission only depends
on ¢, (for observability) and m,. Consequently, GWs could probe very “dark” ALPs,
which constitute a portal to the dark sector [KLY17, KKV19, AAJ20, CLM22]. If
future laboratory searches detect a particle through any coupling that has a mass

compatible with the QCD axion, the detection of GWs with a spectrum similar to
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Figure 3.2: Current experimental bounds on the ALP mass due to a photon-axion
coupling. The dotted lines are the centers of detection regions at given values of
€y, whose width is of approximately two orders of magnitude. The current bounds
on the mass of a possible ALP come from laboratory measurements [Ball5, DEG16,
Ehr10], stellar measurements [ADG14, VSV15], helioscopes [And07, Anal7], other
astrophysical measurements [PEF15, RMR20, DFS20, Abr13, FKM20, Ajel6] (some
of which assume an ALP DM [CR12, RTV21, GCKO07]), and direct DM detection
experiments [Asz10, Dul8, Bra20, Boul8, LAC20, Zhol8, Bac21la, HSS90, MFI17,
Alel9]. The light orange region will be probed by future experiments, including
[Ouel9, SDS13, MFL19, LMP19, CDM17, BHL18, Stel6, ABD17].

the one we have described would challenge the attribution of this signal to a QCD
axion, since GWs from QCD axions are not detectable [HKS13].

In addition to the already stated bounds on GW observation, we may also
combine equations (3.1.3), (3.1.6), and (2.3.3) as well as the overclosure bound

O.h? < Qpah? ~ 0.12 to obtain the limit

QGWh2 |peak fpeak ? —92
1 3.
07 \109m,) 0 (3:3.5)
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which shows that our allowed observable window is at frequencies below the current
range of direct GW detection, which goes from 107 to 103 Hz for Qqgwh? > 10715,
For example, this limit implies that for the reach of future astrometric data, which is
Qewh? ~ 1079, our observable window is at fpear < 107'* Hz as shown in figure 3.1.
The differential spectrum with Qg h? =1 x 1072 and T},,, = 100 eV that we show
in figure 3.1, corresponding to o ~ 200 GeV® and Viias =~ 1 x 10730 GeV* (realized
e.g. by mg ~6¢eV, e ~4x 107 V ~ 4 x 10° GeV) saturates this bound.

Recent results from the 15-year NANOGrav search [Afz23] have demonstrated
the existence of a GW background that is consistent with cosmological models. How-
ever, at the time of the writing of this thesis it has not been resolved whether or not
our model can explain this signal, nor whether or not there is a better explanation for
it that does not involve physics beyond the Standard Model. Therefore, this signal

is not taken to be evidence in favor of the models presented in this thesis.
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CHAPTER 4

Primordial Black Hole Mass and DM Fraction for
Stable ALPs

In addition to the direct production of dark matter and the indirect GW signal
from a collapsing string-wall network, the existence of a U(1) ALP could also provide
a mechanism for the formation of primordial black holes. The creation of these PBHs
is due to the collapse of closed domain walls.

During the process of the annihilation of the string-wall network, some fraction
of closed walls could shrink to their Schwarzschild radius Rge,(t) = 2M (t)/M3 and
collapse into PBHs [FMP19a], where M (t) is the mass within a closed wall at time ¢
and Mp = 1.22x 10" GeV is the Planck mass. During the scaling regime, the typical
linear size of the walls is the horizon size ¢, and so PBH formation will happen if the

ratio

_ Rsalt) _ 2M(1)
t tM2

p(t) (4.0.1)

which we will also refer to as the quality factor, is close to one. As I will show, this
could happen after the annihilation of the string-wall network has begun, i.e. when
T < Tonn.

As discussed in chapter 1.5, annihilation begins when the contribution of the

volume energy density to the mass within a closed wall of radius ¢ due to the bias
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term in equation (1.3.1) becomes comparable to the wall energy density. Shortly
afterwards, the volume density term dominates over the surface term, and the volume
pressure accelerates the walls towards one another. Close to annihilation, the mass

within a closed wall as a function of the lifetime of the universe ¢ is

M (t) =~ —7t*Viyigs + drt20. (4.0.2)

QO | W~

This implies that p(¢) will increase over time. If p is close to one at t4,,, then PBHs
will start to form as soon as annihilation begins. However, in our model p(t4u,) < 1,
meaning that PBHs will form at a later time ¢, > t,,,,, corresponding to a temperature
T, < T,y for which p(t.) = 1 at which only a fraction of the walls remain. We will
derive these quantities explicitly by assuming that the universe is still RD at this
time and thus the Hubble parameter is H(t) = 1/(2t).

The volume energy density of a region of space bounded by a closed domain
wall due to the bias Vi.s ~ €v* grows with time with respect to the surface energy

density of the wall o/t. These become comparable at Ty, and therefore

16

M (tann) ~ Emgmvbm : (4.0.3)
The quality factor at this time is
30 ‘/bias
Tann > - 404

Note that M (tn,) and p(T,,,) only depend on the parameters Vj;,s and o. After

tann, the volume contribution to the mass dominates over the surface contribution.
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In terms of ¢ and t,,,, the mass and quality factor are

tann
Tt Viias (1 4+ 3-20) (4.0.5)

M(t) ~ .

Q| W~

and

o(T) ~ PTann) ( t )2 <1 + 3“"") . (4.0.6)

4 tann t

When t > t,,, we can neglect the second term in both equations to obtain

T) ~ 4.0.
p(1) =~ Pt (5 (40.7)
We may then use this equation to define T, by writing
T,) ~ =1, 4.0.
pL) 4 g¢.(T) \ T (408)

which also implicitly defines the corresponding time at which PBHs form ¢,. Note
that we have assumed that the characteristic length scale of the walls is still ¢ after
annihilation begins. Larger deviations from the scaling regime are expected, but
determining when and how this happens will require more detailed simulations. The

mass of the resulting PBHs is then given by M (t.), which is

4 2 3\? M}
MPBH = M(t*) ~ 7%2'&9752 ~ 32> 1]/32.
& ‘/bias

’ oy M famn) = <

(4.0.9)

Equations (4.0.9) and (4.0.8) show that the PBH formation temperature T, only
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depends on Vs (or, equivalently, Mpgy) as

/4 1/2

‘/bias ! 0.5 GeV MQ

T.~09 GeV | ————— ~ ( ) 4.0.10

[Ge\/4 gx (T*)] [9.(T)]* \Mppn ( )

By inverting equations (4.0.1) and (4.0.9), we then obtain

(To) = 2..Mp 90 1 Mg 024 (10 eV>4 (1016M®>2

Pilamn) = MI%BH 32m3 g*(Tann) Télnan%BH g*<Tann) Tann MPBH ‘

(4.0.11)

It is likely that closed domain walls during this time will have nonzero angular
momentum and will also not be entirely spherical. This means that the probability
of forming a PBH at temperature 7' may be smaller than p(7). We take this into
account by defining the formation probability Prormation = p(T)?, where B > 1
is a real dimensionless coefficient. If the degree of asphericity of a closed domain
wall is high enough, this could prevent the formation of a PBH, as its degree of
asphericity will decrease initially but will increase again in the late stages of the
collapse [Wid89]. If p(T,,.,) < 1, however, this may not be the case, since walls
will need to evolve longer before p reaches 1. In this case, [FMP19b] suggests that
energy loss or angular momentum might impede the process of PBH formation. Still,
highly aspherical closed walls are unlikely, as shown in the context of the collapse of
a vacuum bubble produced via inflation [DV17]. We will thus assume that there will
be some portion of the walls for which the degree of asphericity is small enough that

collapse is still possible. With this in mind, the PBH density at formation is

ppaa =~ PP (T.) puw(TL). (4.0.12)

Making use of the fact that at the production temperature the quality factor is
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p(T.) = 1, the fraction fppy of the total DM that is made up of PBHs is

_ PrBa\ ) 8 pw(T*) _ pw<T>k) pw<Tann)
Jron = -7 (T*)PCDM(T*) * puw(Tunn) pepm (T

(4.0.13)

The bulk of the energy density of the string-wall network is used up in the production
of ALPs at annihilation, and thus py(Tann) = pa(Tann) = fare X pcoy(Tann), Where
farp is the fraction of the DM made up of ALPs. We may approximate the evolution

of the wall energy density after T, as

pil(ugi) - <Taj:m>a ' .

We can derive a from table VI and figure 4 of [KSS15], which display the times
t(10%) and t(1%) at which the string-wall network has reached 10% and 1% of
its original density after annihilation has started, which correspond respectively to
temperatures 7°(10%) and T'(1%). Note that this ratio is the same in comoving
(as given in [KSS15]) and physical coordinates. Note here that per [KSS15] we still
assume that the area parameter A(t) is approximately 1. Under varying assumptions,
the ratio ¢(1%)/t(10%) ranges from 1.7 to 1.5, which corresponds to values of «
between 7 and 12, meaning that (a — 3)/4 is between 1 and 2. If the energy of the
string-wall network is still dominated by the contribution of the walls until #(1%),

then pior ~ py, = Ao /V and

(T(lO%)>“ o Po(T0%)) _ A/V]aow _ 4, ( t(1%) ) (4.0.15)

T0%) ) = puTA%) ~ AVIan H(10%)

Fitting this to the aforementioned figure gives values of a roughly between 9 and
14, although we also choose to include o« = 7 as mentioned in [FMP19b]. Taking

into account the systematic errors quoted in Table VI of [KSS15], however, we see
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that a could be as large as 19. However, the volume contribution to the energy
density of the string-wall network may not be negligible, which introduces further
uncertainty when determining .. To get an estimate of this uncertainty, we proceed
assuming that the volume energy of the string-wall network is dominant and thus
the density is proportional to A%2. In fact, since the simulation volume in [KSS15] is
the same whether or not there is a bias present, the ratio of the area densities is also
the ratio between the area A of the walls in the biased case and the characteristic
area ~ t2 of walls that are perfectly in the scaling regime. Thus, [A(t(10%))]"/? ~
v/0.10t(10%) and [A(t(1%))]"/? ~ +/0.01¢(1%). Moreover, if the volume density due
to Viies dominates over the surface energy density, the energy density of the walls is

Pw = ViiasA(t)?? /13, which means that

(T(lO%))a o PulLQA0%)) s (4.0.16)

T(1%) ) — pu(T(1%))

which means that the value of a actually ranges from (3/2)7 to (3/2)19, suggesting
that a could be as large as 28.
Combining the assumption from equation (4.0.14) with equation (4.0.8) and the

fact that the axion number density redshifts as 72, we find that

(a=3)/4 (a=3)/4
Tann * Tann Sk Tmm

Iper = farp l 1 g*(T*) 9oe(T2)

Neglecting the possible change in degrees of freedom between T,,,,, and T, this implies

that fppy sits within the range

frem (fALP [p(i‘m")] , farp lp u;‘;"”)rm) : (4.0.18)
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We may also calculate fppy in terms of fixed a explicitly by noting that equations

(4.0.14) and (4.0.13) imply that

T, )“ pu(TLann) (4.0.19)

fPBH = (Tann pDM(T*) .

In this equation, p(7%) can be easily related via a redshift factor to the present DM
density. Meanwhile, p,(Tun,) can be related to the present radiation density by
noting that, since p,, ~ 1/t, it is related to the the wall energy density at the time
at which walls would have dominated the universe had they not annihilated ¢,4 by

the equation

Zfwcl

H Tann
pw(tann) - 7prad(twd) - ( )

77 Prad(twd)- 4.0.20

Using equations (1.5.10), (4.0.10), and (1.5.18) we may also rewrite Ty,q in terms of

o and in terms of T, and T, as

T 0.9 x 1076 Ge\/( o )1/2 2.0 GeV[g.(T,)]*/? ( T, )2 GeV
wd = ~
[

4.0.21
T \Gev - (Toa)ge (Tonn )77 \ GV T) (40.21)

as well as

3.4 GeV f;/z( 1% )( Ma >1/2

Twd =~
T 0 (T N \10° GeV/ \10 GeV

(4.0.22)

Incorporating the redshift of the radiation density to the present day, equation
(4.0.19) becomes

(4.0.23)

4.0 gs« (T()) [g* (Ttmn)g* (de)] 1/2 Tia_?))Tz%d Prad
frBH ~ )
0

Gx <T0> gs*(T*) TOTCE,%;m PDM
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or, using equation (4.0.21),

(4.0.24)

3.9 gor(T0) .(T.) T ( praa
f PBH &~ .
0

Gx (TO) s« (T*) TOTaann PDM

Using equation (4.0.10) and the values of the present entropy and energy degrees of

freedom written in the previous equation, we find

Fopn =~ 1.1 x 101 x 1.5 x 1072 (10_10M®>(a+1)/2 (106 Ge\/)a ( 105 )““‘3)/4 ( 105 )
pH = 1. . Mppy Tonn g.(T.) 9oe(T1) )

(4.0.25)

where we have assumed that T, and T,,, are close enough that we may neglect the
change in energy degrees of freedom between them.
The relic ALP density Q,h* from equation (2.3.3) can be written as a function

of the annihilation temperature 7,,,, and the PBH mass Mpgy,

3.5 %107 (GeVN® / M, 2
0 = ( . ) : 4.0.2
g$*<TaTln) (Tann> MPBH ( 0 6)

Combining this with equation (4.0.11) also lets us write this in terms of Mppy and

p(Tann)v

105 M 1/2 (9.(T, )]3/4
Q% = 3.2 [p(Tonn )P ( @> el 4.0.27
[p( )] MPBH gs*(Tann) ( )
Likewise, we may also rewrite equation (3.1.3) as
Qe ~ 1.4 x 10-9 205 [9-(Tann) < I >4 (10_7 HZ) (4.0.28)
v o [gs*(Tann ]4 MPBH fpeak . o

Requiring that ALPs constitute a fraction of the DM, i.e. Q,h? = farp x 0.12, leads
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Figure 4.1: Plots of the mass fraction fppy and mass Mpgy of PBHs produced
by the stable U(1) ALP model for the case where ALPs constitute all of the DM
and where they constitute only 10%. The green lines correspond to different values
of Ty, while the black lines correspond to different values of «, which determine
the relationship between fppy and p(7,,,). Shown bounds are due to millilensing
of compact radio sources (RS), dynamical limits from disruption of wide binary
stars (WB) and globular clusters (GC), hdating of stars in the Galactic disk (DH),
dynamical friction (DF), disruption of galaxies (G), and the CMB dipole (CMB).
The incredulity limit (IL) corresponds to one PBH per Hubble volume. All of these
limits are taken from [Den21a).



to the following expressions for p(T,,,) and Mppy,

/3 4/3

MppH ? [gs*(Tann)] /
Tonn) = 0.27 £33, [ LBH ) Dsxliann)l 4.0.29
) =027 11 (ppomt ) ) (1029)
MPBH o 17 X 104 Gev 3/2 —1/2 4 0 30
M@ B [gs*(Tann)]l/z Tann ALE ( o )

In other words, an upper limit on fs,p implies an upper limit on the PBH DM
fraction fpgpy and a lower limit on the PBH mass.

In figure 4.1 we show fppy for farp = 1 and far,p = 0.1 in the upper and lower
panels, respectively. All displayed bounds are taken from [CKS20] and references
therein, including mililensing of compact radio sources (RS), dynamical limits from
the disruption of wide binaries (WB) and globular clusters (GC), heating of stars in
the galactic disk (DH), dynamical friction constraints (DF), disruption of gala